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Abstract. This paper investigates the performance of a parallel Newton, first-order system
least-squares (FOSLS) finite-element method with local adaptive refinement and algebraic multigrid
(AMG) applied to incompressible, resistive magnetohydrodynamics. In particular, an island coales-
cence test problem is studied that models magnetic reconnection using a reduced two-dimensional
(2D) model of a tokamak fusion reactor. The results show that, using an appropriate temporal and
spatial resolution, these methods are capable of resolving the physical instabilities accurately at small
computational cost. The time-dependent, nonlinear system of PDEs is solved using work equiva-
lent to about 50–60 simple relaxation sweeps (Gauss–Seidel iterations) per time step. Experiments
show that, unless the time step is sufficiently small, nonphysical numerical instabilities may occur.
Further, decreasing the time step size does not proportionally increase the cost of the computation,
because AMG convergence is improved. In addition, an effective implementation of the methods in
parallel keeps load balancing issues to a minimum. Various quantities, such as the reconnection rate
and the “sloshing” effect of the plasma instability, are measured to confirm that the correct physics
is reproduced.
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1. Introduction. The island coalescence problem for studying fast magnetic re-
connection in a plasma has been studied extensively (e.g., in [9, 11, 34, 41, 42, 45, 52]).
Many numerical algorithms have been implemented to simulate this problem using
various types of physical and mathematical models [1, 15, 22, 24, 25, 35, 37, 38, 41,
43, 44, 46, 47, 49, 50]. The aim of this paper is to extend the results of [2, 3, 4] and
show that by using the first-order system least-squares (FOSLS) finite-element method
along with nested iteration (NI), algebraic multigrid (AMG), and an efficiency-based
adaptive local refinement scheme (ACE) in parallel, the relevant physics of the recon-
nection is modeled with a low amount of computational cost. Preliminary results are
obtained in [2, 3, 4] using an incompressible resistive magnetohydrodynamics (MHD)
model with the above methods. However, limitations with the computational re-
sources used exposed several deficiencies in the method. Namely, at high Lundquist
numbers (low resistivity), time integration was not resolving the magnetic instabili-
ties, resulting in numerical oscillations in the current density peak. These, in turn,
affected the performance of the solvers and the convergence of the discrete meth-
ods. With an efficient implementation of the method on computers with a distributed
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memory architecture, including a parallel version of the ACE adaptive refinement
algorithm [16], higher spatial and temporal resolutions are obtained. This higher res-
olution removes the numerical instability, produces an accurate solution, and verifies
the asymptotic efficiency of the NI-Newton-FOSLS-ACE-AMG methodology. This
paper shows that decreasing the time step size of the simulations not only increases
the accuracy of the numerical solutions, but does so without significantly increasing
the amount of computational work. The aim here is to show these results and demon-
strate the powerful performance of the NI-Newton-FOSLS-ACE-AMG methodology
on a parallel machine. In addition, load balancing issues are easily managed. After
each refinement, a new partitioning is created based on a parallel quadtree structure
and a space filling curve (SFC). This preserves the locality of the mesh, so that most
communication happens among nearest neighboring processors. Also, the ACE al-
gorithm is designed to equally distribute local errors, which leads to nearly uniform
refinement on successively finer grids. This, in turn, eliminates load balancing on finer
levels. Numerical results show that the methods developed here are highly efficient
for solving complex physical problems, such as the MHD system.

This paper starts in section 2 with a description of the NI, FOSLS, AMG, and
ACE algorithms, as well as a description of the parallel considerations that are needed
to obtain an efficient algorithm. In section 3, a brief background of the MHD system
and the island coalescence problem are presented. Then, in section 4, the numerical
results for various resistivities including qualitative measures of the accuracy and
quantitative measures of the efficiency of the simulation are shown. Finally, section 5
contains concluding remarks and a discussion of future work.

2. NI-Newton-FOSLS-ACE-AMG. This section briefly describes the basic
concepts behind the NI-Newton-FOSLS-AMG approach and introduces the notation
used in the rest of the paper.

2.1. FOSLS methodology. First-order system least squares (FOSLS) is a finite-
element method that is based on reformulating a set of PDEs as a system of first-
order equations. The problem is posed as the minimization of a functional in which
the first-order differential terms appear quadratically, so that the functional norm is
equivalent to a norm that is meaningful for the given problem. In equations of el-
liptic type, this is usually a product H1-norm. In other contexts, it may be product
spaces of H1, H(div), and H(curl). Some of the compelling features of the FOSLS
methodology include self-adjoint discrete equations stemming from the minimization
principle; good operator conditioning stemming from the use of first-order formula-
tions of the PDE; and finite-element and multigrid performance that is optimal and
uniform in certain parameters (e.g., the Reynolds number for the Navier–Stokes equa-
tions), stemming from uniform product-norm equivalence. Many large-scale physical
problems, including those described by self-adjoint elliptic PDEs, can be solved by
minimizing a known “energy” functional over an infinite-dimensional space of admis-
sible functions. When properly posed, such optimization problems have the advantage
that they can be discretized by the Rayleigh–Ritz process of minimizing the functional
over a finite-dimensional subspace of the admissible function space. If done with a
correct formulation and an appropriate function space, this leads to a continuous and
coercive weak form of the problem.

To illustrate the basic concept of FOSLS, consider a PDE written abstractly as
Lu = f . It should be noted that, for a time-dependent, nonlinear problem, it is
assumed that the time discretization is done first, followed by several linearization
steps. At each step, the following minimization is performed on the semidiscrete lin-
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earized system. This is illustrated further in section 2.1.2. Introducing new variables,
a first-order system is given:

(2.1) Liu = fi, i = 1, 2, . . . ,M,

where M is the number of equations in the system and Li is a first-order, linear,
differential operator. Assuming fi ∈ L2(Ω), consider the associated FOSLS functional
given by

(2.2) G(u, f) =
M∑
i=1

||Liu− fi||20,Ω,

where ||u||0,Ω =
√∫

Ω |u|2 is the L2-norm. This functional is then minimized over an

appropriate Hilbert space, V , such that

(2.3) u = argmin
v∈V

G(v; f).

Usually, V is equivalent to a product of H1, H(div), and H(curl) spaces. Under
general regularity assumptions, the homogeneous part, G(v;0), is equivalent to the
squared V-norm:

(2.4) c1 ≤ G(v;0)
||v||2V

≤ c2

for some positive constants c1 and c2 and for every v ∈ V . In this case, the functional
is said to be continuous and coercive (i.e., “elliptic”) with respect to the V-norm; see,
e.g., [20, 21]. This ellipticity guarantees the existence and uniqueness of the solution
u. Next, let Vh ⊂ V be a finite-dimensional subspace of V , which often consists
of continuous piecewise polynomials. Then, the discretization can be written as a
minimization problem:

(2.5) uh = arg min
vh∈Vh

G(vh; f).

Well-posedness of (2.5) follows directly from ellipticity, since the weak form obtained
comes from a minimization principle. Therefore, the FOSLS formulation is not
restricted by any Ladyžsenskaja–Babuška–Brezzi condition (i.e., inf-sup condition)
[14, 17]. This is a condition on the finite-element spaces that would restrict them to
those that ensure stability and weak coercivity of the bilinear form. Also, while not a
necessary condition, if V is a product of H1 spaces, then ellipticity also ensures that
there is an optimal multigrid solver of the discrete system [21, 55]; that is, standard
multigrid solvers converge with factors bounded uniformly in the mesh size, h.

The introduction of new dependent variables increases the number of degrees
of freedom, much like in the mixed finite-element methods. However, unlike mixed
methods, FOSLS yields a symmetric positive definite algebraic system that is, in
general, amenable to multilevel solution techniques. As a result, it is often possible
to obtain a specified accuracy with much smaller computational cost.

2.1.1. Newton-FOSLS. In the context of this paper, a nonlinear PDE is con-
sidered. Therefore, the functional of the nonlinear operator, referred to as the “non-
linear functional,” needs to be minimized. One way to accomplish this is by directly
minimizing the nonlinear functional, yielding a nonlinear discrete system to solve.
This can be solved using nonlinear multigrid methods such as the full approximation
scheme [18]. A simpler approach, Newton-FOSLS, consists of linearizing the PDE
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itself and then performing the minimization on this “linearized functional.” In this
way, standard Newton steps can be used in conjunction with classical AMG itera-
tions on the resulting discrete linear systems. This approach is described in more
detail in [4, 27]. In addition, other approaches to solving sets of nonlinear transient
equations can lead to unconditionally stable methods that can reduce the cost of the
linearizations and increase the accuracy of the time discretization (e.g., in [40, 51]).

2.1.2. Time-dependent Newton-FOSLS. To illustrate the approach used,
consider a time-dependent nonlinear first-order system of PDEs,

∂u

∂t
+ L(u) = f .

First, discretize the time derivative using some time-stepping scheme. For simplicity,
consider Backward Euler (BDF-1). Let uk denote the solution at time step k with
time step Δt. This yields

uk − uk−1

Δt
+ L(uk) = f .

Next, linearize the nonlinear system in L by a simple Newton step about the solution,
uk
� , and solve for the update:

δu

Δt
+ L′(uk

� )[δu] = f +
uk−1 − uk

�

Δt
− L(uk

� ),(2.6)

uk
�+1 = uk

� + δu.

Here, L′(uk
� )[δu] is the Fréchet derivative of L centered at uk

� in the direction of
δu. The FOSLS method is then applied to the linear system obtained in (2.6) by
minimizing the functional,∥∥∥∥ δuΔt

+ L′(uk
� )[δu]− f − uk−1 − uk

�

Δt
+ L(uk

ell)

∥∥∥∥
2

0

,

and solving for a discrete approximation to δu in a subspace of H1. When referring
to the ellipticity of the FOSLS functional, we are usually referring to this linearized
system at each time step.

2.2. Efficiency-based adaptive refinement (ACE). Another direct result of
FOSLS is that its functional is equivalent to the error in the solution-space norm. In
general, this induces a seminorm on a subdomain, which is then available for use as a
local a posteriori error estimator. The FOSLS functional provides a unique capability
for adaptive refinement: a sharp error indicator at no additional computational cost
[10]. Since the functional value is zero at the solution, the FOSLS functional itself
is a measure of the total error in a given approximation. It provides both absolute
and relative error measures, as well as global and local error estimates that are much
simpler and potentially sharper than conventional error estimators. To illustrate this,
for any element, τ ∈ T , define the local FOSLS functional as

(2.7) Gτ (u
h; f) =

M∑
i=1

||Liu
h − fi||20,τ .

Writing ετ =
√
Gτ (uh; f), the ellipticity expressed in (2.4) implies that

(2.8)
1

c2
ε2τ =

1

c2
Gτ (u

h − u; 0) ≤ ||uh − u||2V,τ
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and

(2.9) ||uh − u||2V ≤ 1

c1
G(uh − u; 0) =

1

c1

∑
τ∈T

ε2τ .

An error estimate, ετ , that satisfies an inequality of type (2.8) is called locally sharp.
It implies that if ετ is large, then the error is large within that element. In the
literature, an inequality of type (2.9) is called a reliability bound; see [54]. Note that
a small sum of local estimates, ετ , implies a small global error.

Specifically, this property of FOSLS helps make it possible to efficiently solve
complex systems. At each step in the solution algorithm, a local measure of the
functional is available. This allows judgements in the grid-refinement process to be
made based on estimates of the increase of accuracy that results from an increase in
computational cost. As a result, the elements are ordered (symbolically) in terms of
estimated error and a refinement pattern is then chosen that optimizes the effective
error reduction. In this manner, a near optimal grid is obtained, where optimal
means a grid that provides a specified accuracy with the smallest number of degrees
of freedom. In other words, the refinement that obtains the highest accuracy per
computational cost is found [2, 30].

2.3. NI and AMG. Along with the FOSLS discretization and local adaptive
grid refinement, multigrid is applied to solve the discrete systems. NI, or full multi-
grid (FMG) [18] in the multigrid context, involves starting the solution process on a
relatively coarse grid, where the computational cost is relatively low. The solution
on the coarse grid is used as an initial guess for the problem on the next finer grid.
Since the objective on each grid is to minimize the FOSLS functional, the coarse-grid
solution should provide a good starting guess. On each refinement level, solving the
discrete minimization problem, (2.5), involves fast iterative solvers applied to the ma-
trix equations. If the FOSLS functional is equivalent to a product H1-norm, then
there exists an optimal multilevel solution algorithm [55]. Experience shows that,
in this context, AMG also yields an approximate solution to the discrete equations
associated with quasi-uniform grids in optimal time with the convergence factor, ρ,
bounded uniformly below 1, independent of mesh size h. AMG methods, together
with the NI strategy and local refinement, provide a powerful approach for approxi-
mating solutions of PDEs. Numerical and theoretical results confirm that the overall
cost of such a scheme resides predominantly in the cost of the finest-level processing.
Due to the good initial approximation obtained inexpensively from the coarse grids,
the total cost is usually much cheaper than solving the problem directly on the finest,
near optimal grid, which generally is not even known in advance.

Finally, the NI approach complements the Newton-FOSLS method. Since, on
each successively finer grid, the initial guess is a better approximation to the discrete
solution, the convergence of Newton’s method will take fewer and fewer iterations.
As a result, when the desired grid resolution is reached, only one Newton iteration is
usually needed to solve the nonlinear problem. This has been theoretically established
under mild hypotheses in [27, 28]. This greatly reduces the cost of the algorithm,
because the setup cost for construction of the Jacobian in the relinearization can be
expensive on fine grids.

2.4. Parallel FOSLS. In this section, application of the method in parallel is
discussed, with special attention to the adaptive refinement scheme, ACE. An efficient
parallel extension of the ACE algorithm to massively parallel distributed memory
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Fig. 2.1. Parallel quadtree–based adaptive mesh refinement and load balancing. The left dia-
gram is the associated parallel quadtree structure and the right is the actual mesh. Dashed circles
represent inactive parent elements and solid circles represent currently active elements on the finest
grid. Double-arrow lines represent off-processor parent-child connections. Postorder traversal of the
active leafs gives the Lebesgue SFC that connects active elements in the finest mesh. Equal partition
of the curve yields the new partition of elements.

machines relies on binning strategies that group elements on the basis of local error
(cf. [16]). At each refinement level, the global maximum local functional found in
element τ , ε2max,τ , is obtained through a local search in each processor followed by a
simple global “all-reduce” communication. Elements are then grouped into bins such
that the ith bin contains elements with the local functional in the range

(qi+1ε2max,τ , q
iε2max,τ ], i = 0, 1, 2, . . . .

Here, 0 < q < 1 is chosen based on the polynomial degree of the finite-element
subspace, Vh, such that if an element in bin i is refined and bin i + 1 is not refined,
then child elements from refining bin i will land in the bin i + 1. In addition, this
puts the element with the largest error, εmax,τ , in the first bin, i = 0. Refinement
decisions are then made on the basis of treating each bin as an abstract element in
order to minimize the effective error reduction. Various numerical results show that
this parallel ACE (pACE) algorithm produces results similar to the original serial
algorithm with low communication cost [16]. On finer levels, almost all error falls
in one or two bins, which implies that the error is almost equidistributed. Once
the error has become equidistributed, subsequent refinement becomes uniform global
refinement, which mitigates load balancing requirements as described below.

To address load balancing issues, the parallel quadtree– (octree– in three dimen-
sions) based mesh [19, 53] is used. Starting on coarser grids, where computation and
communication are relatively cheap, and after performing local refinement, a preorder
traversal of the associated quadtree generates a Lebesgue SFC (or Morton ordering
of the elements). Equal partition of the curve yields the new partition of elements.
For example, in Figure 2.1, leafs are ordered as

I → J → K → L → F → G → H → B → C → D,

which leads to the new partition as illustrated by the picture on the right.
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Finally, the parallel quadtree structures are used to help in tracking solutions of
time-dependent problems, where each time step may use a different locally refined
spatial mesh. Assuming that every time step starts with the same coarsest grid, the
tree structures associated with the previous time step’s mesh is used to evaluate the
previous time step’s solution at any point. By using the parent-child tree structure,
the finest region in the previous mesh that includes any given set of quadrature nodes
is located with low cost. For more details, see [16].

3. Incompressible resistive MHD. The incompressible resistive MHD equa-
tions are a time-dependent, nonlinear set of PDEs that model the movement of charged
particles as a plasma [34]. While there are many physical and mathematical models to
describe a plasma, the single fluid approach is taken here. As a result, the system is a
coupling of the incompressible Navier–Stokes and Maxwell’s equations. The primitive
variables are defined to be the fluid velocity, u, the fluid pressure, p, the magnetic
field, B, the current density, j, and the electric field, E. In addition, a resistive form
of Ohm’s law,

(3.1) j = σ(E+ u×B),

is used to eliminate the electric field, E, from the equations. After a nondimensional-
ization using Alfvén units, the following equations for incompressible resistive MHD
are obtained (i.e., Navier–Stokes coupled with Maxwell’s equations) [45]:

∂u

∂t
+ u · ∇u− j×B+∇p− 1

Re
∇2u = f ,(3.2)

∂B

∂t
−B · ∇u+ u · ∇B+

1

SL
(∇× j) = g,(3.3)

∇×B = j,(3.4)

∇ ·B = 0,(3.5)

∇ · u = 0,(3.6)

∇ · j = 0.(3.7)

Here, Re is the fluid Reynolds number and SL is the Lundquist number, both of which
are assumed to be constants and adjusted for different types of physical behavior.
The Lundquist number is inversely proportional to the resistivity of the system, and,
therefore, large values of this parameter coincide with small resistivities. The lower
the resistivity, the more “ideal” the plasma behaves and the more the PDE becomes
advection dominated. For the numerical experiments in this paper, the Reynolds
number is assumed to be equal to the Lundquist number.

3.1. Island coalescence. In this section, a test problem that investigates mag-
netic reconnection in a tokamak fusion model is considered [22, 41, 46, 50, 52]. A
reduced set of MHD equations is obtained that models a “large-aspect-ratio” toka-
mak, with noncircular cross-sections. The magnetic B-field along the z-direction, or
the toroidal direction, is very large and mostly constant. In this context, the plasma
behavior of interest occurs in the poloidal cross-section. The reduced model allows
the tokamak geometry to be simulated on a Cartesian grid by a small annular cross-
section in the poloidal direction. See Figure 3.1. Using the FOSLS methodology, the
system is first put into a differential first-order system of equations. This is done
based on a vorticity-velocity-pressure-current formulation, referring to the dependent
variables used to make it first order. Since explicit vorticity boundary conditions are
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Fig. 3.1. Torus-shaped tokamak reduced to a two-dimensional (2D) Cartesian grid. The domain
is periodic in x, the poloidal direction, and y represents the annular region in the poloidal cross-
section.

provided in all the test problems (shown below), this is an appropriate formulation.
A scaling analysis is performed in [3], which yields a nice block structure for the MHD
system.

Vorticity, ω = ∇× u, is introduced and the final formulation is

L1(U) =
1√
Re

∇× u−
√
Reω = 0,(3.8)

L2(U) =
1√
Re

∇ · u = 0,(3.9)

1√
Re

∂u

∂t
+ L3(U) =

1√
Re

∂u

∂t
− u× ω − j×B−

√
Re∇p+

1√
Re

∇⊥ω = f ,(3.10)

L4(U) =
1√
SL

∇×B−
√
SLj = 0,(3.11)

L5(U) =
1√
SL

∇ ·B = 0,(3.12)

1√
SL

∂B

∂t
+ L6(U) =

1√
SL

∂B

∂t
+

1√
ReSL

(u · ∇B−B · ∇u) +
1√
SL

∇⊥j = g,(3.13)

where U = (u, ω, p,B, j)T represents all the unknowns in the system. The x-direction
denotes the periodic poloidal direction in the tokamak, while the y-direction represents
a thin annulus in the poloidal cross-section. In this 2D setting, the vorticity, ω, and the
current density, j, are both scalar variables. The vector notation for these variables
makes the cross-product well defined: ω = (0, 0, ω)T and j = (0, 0, j)T . The equations
have been scaled using the Reynolds number, Re, and the Lundquist number, SL, so
that, in the context of a FOSLS discretization, the resultant discrete linear system is
more amenable to solution by AMG.

One physical instability that can arise in a tokamak fusion reactor is an island
coalescence in the current density arising from perturbations in an initial current
density sheet. This instability causes a reconnection in the magnetic field lines and
the merging of two islands in the current density field, producing a sharp peak in
current density where the magnetic field lines reconnect. This region is known as the
reconnection zone, and the point at which the magnetic field lines break is known as
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the X -point. See [9, 41] for more details. For the simulations shown in this paper,
the domain Ω = [−1, 1] × [−1, 1] is used. See Figure 4.1. The initial conditions at
equilibrium are

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

(
sinh(2πy)
k sin(2πx)

)
,(3.14)

u0(x, y) = 0,(3.15)

ω0(x, y) = 0,(3.16)

j0(x, y) = ∇×B0 =
2π(k2 − 1)

(cosh(2πy) + 0.2 cos(2πx))2
,(3.17)

p0(x, y) =
(1− k2)

2

(
1 +

1

(cosh(2πy) + 0.2 cos(2πx))2

)
,(3.18)

where k = 0.2. These initial conditions are perturbed away from equilibrium as
follows:

δB0(x, y) =

(
−ε 1

π cos(πx) sin(π y
2 )

1
2ε

1
π cos(π y

2 ) sin(πx)

)
,(3.19)

δj0(x, y) = ε cos
(
π
y

2

)
cos(πx),(3.20)

where ε = −0.01. The boundary conditions are periodic in x and Dirichlet for the
current density and vorticity on the top and bottom of the domain. Also, n · u and
n · B are known on the top and bottom. With these boundary conditions and the
simple domain, H(curl) ∩ H(div) = H1 [32, 33], and, thus, the linearized version of
the FOSLS formulation, (3.8)–(3.13), is elliptic in a subspace of a product H1-norm
[5]. No higher regularity for the variables is needed to achieve this, since the weak
form comes from a minimization of a quadratic functional. This assumes that the
time derivative has been discretized using an implicit time-stepping scheme. For the
results that follow, we use a second-order backward differencing formula (BDF-2).
Thus, the functional that is minimized for each time step k and Newton step 
 is
(using the notation in (3.8)–(3.13))

||L1(δU) + L1(Uk
�−1)||20 + ||L2(δU) + L2(Uk

�−1)||20

+

∣∣∣∣
∣∣∣∣ 3

2
√
ReΔt

δu+ L3(δU) + L3(Uk
�−1) +

3

2
√
ReΔt

(uk
�−1 −

4

3
uk−1 +

1

3
uk−2)− f

∣∣∣∣
∣∣∣∣
2

0

+
∣∣∣∣L4(δU) + L4(Uk

�−1)||20 + ||L5(δU) + L5(Uk
�−1)

∣∣∣∣2
0

+

∣∣∣∣
∣∣∣∣ 3

2
√
SLΔt

δB+ L6(δU) + L6(Uk
�−1) +

3

2
√
SLΔt

(Bk
�−1 −

4

3
Bk−1 +

1

3
Bk−2)− g

∣∣∣∣
∣∣∣∣
2

0

,

where Uk
� = Uk

�−1 + δU .
4. Numerical results. With these boundary conditions, it is shown here that

the appropriate physical behavior is efficiently captured by the NI-Newton-FOSLS-
ACE-AMG algorithm. A range of Lundquist values from high resistivity to low resis-
tivity is modeled. In this range, variations in the reconnection rate of the system are
seen. Here, the reconnection rate is defined as the time rate of change of the poloidal
flux function, Ψ, where B = −∇⊥Ψ, evaluated at the X -point [9, 34, 41, 52]. Using
the first-order formulation, this is rewritten in terms of the Lundquist number and
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Fig. 4.1. Current density plot at t = 6τa for SL = 5,000 (left) and SL = 10,000 (right) using
a time step of Δt = 0.1.

the current density,

(4.1) R =
∂Ψ

∂t

∣∣∣∣
X

=
1

SL
(j(X )− j0(X )) ,

where j0 is the equilibrium state of the current density. At low Lundquist numbers,
the reconnection zone is wider with a less steep gradient in the current density when
the peak occurs. As the Lundquist number increases, this reconnection zone narrows,
resulting in a sharper, yet shorter, peak. In addition, a “sloshing” effect occurs, where
the islands bounce a little before fully merging into one. This yields a peak in the
reconnection rate, whose height oscillates as the islands come together. See Figure 4.2.

In all test cases, the problem was run to time 15τA with varying time step sizes,
using a BDF-2 implicit time-stepping scheme. Here, τA is the time in Alfvén units. It
is the time needed for an Alfvén wave to travel across the domain [9, 41]. By this time,
the islands have begun to coalesce and a sharp peak in current density has formed at
the reconnection point.

For the spatial discretization, biquadratic H1 conforming finite elements are used
on a quadrilateral mesh. All simulations were performed on an IBM Blue Gene/L
machine using up to 1024 cores in the co-processor mode so that communication and
computation can overlap in a way that improves parallel efficiency. The linear system
on each refinement level is solved by the conjugate gradient method with a single
V(1, 1) AMG cycle used as a preconditioner. BoomerAMG from the HYPRE package
developed by Lawrence Livermore National Laboratory was used, with symmetric
hybrid Gauss–Seidel (Gauss–Seidel on nodes within the processor and block Jacobi
across processors) as the smoother. In the previous results shown in [2, 4], a serial
machine was used and, thus, the spatial resolution was limited. With the use of a
parallel machine, the results were greatly improved, in both accuracy and efficiency
of the methods, by using finer spatial resolutions as well as smaller time step sizes. A
more detailed analysis of the parallel FOSLS performance, including scalability and
parallel efficiency, is given in [16].

For high resistivities, the NI-Newton-FOSLS-ACE-AMG method is able to cap-
ture the reconnection fairly easily. Figure 4.1 shows the current density at time
t = 6τA, when the peak reconnection occurs. A time step of 0.1τA is used. Figure 4.2
shows the reconnection rate versus time for these simulations, as well as the position
of the “o-point” or center of the island over time. Notice that, as the Lundquist
number is increased, more “sloshing” of the islands occurs.
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(a) Reconnection Rates vs. Time

(b) O-point position vs. Time

Fig. 4.2. Simulations for SL = 5,000 (left) and SL = 10,000 (right) using a time step of Δt = 0.1.

(a) SL = 25,000 (b) SL = 50,000

Fig. 4.3. Current density plot at t = 6τA using a time step of Δt = 0.1.

When lower resistivities or higher Lundquist numbers are simulated, still using
a time step of 0.1, numerical instabilities are introduced. Figure 4.3 shows that, for
SL = 25,000 and SL = 50,000, a double peak occurs. This instability comes from not
capturing the solenoidal constraints as accurately as possible, due to a lack of temporal
resolution in the simulation [8, 12]. In the FOSLS setting, the system is written as
a set of differential algebraic equations (DAEs) [13], where not all variables are time
evolved and auxiliary non–time-dependent equations need to be satisfied, such as
the solenoidal constraint. Since the FOSLS discretization minimizes the residual of
all the equations in the system equally, these auxiliary equations are not solved any
more accurately than the rest of the system. As a result, errors in these equations or
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(a) Current density at t = 6τA using a time step of Δt = 0.025 (left) and Δt = 0.0125 (right).

(b) O-point position vs. Time

Fig. 4.4. Left plots show SL = 25,000 with Δt = 0.025. Right plots show SL = 50,000 with
Δt = 0.0125.

variables may feed back into the time-evolved equations, resulting in a lower accuracy
than expected when using a standard implicit time-stepping scheme. However, as the
time step size is cut down, the solutions better approximate the reconnection peak.
Figure 4.4 shows plots similar to those in Figure 4.3, but with smaller time step
sizes. Plots of the “O-point” positions in Figure 4.4 also indicate that the appropriate
“sloshing” effect of the islands remains stable.

In addition, the reconnection rates are captured accurately when using the ap-
propriate time step size. Figure 4.5 gives the reconnection rates for SL = 25,000 and
SL = 50,000 using various time step sizes. As Δt gets smaller, the solution more
accurately approximates the magnetic reconnection. In Figure 4.6, using the highest
resolution simulations, the peak reconnection rate versus Lundquist number is com-
pared and the expected square root decay in maximum peak height of the current
density at the reconnection point is seen [41]. This suggests that adaptive time step-
ping should be explored. This would allow the time step size to be small enough
when needed to resolve the physics, or to be larger when that is sufficient to solve the
problem, without adding extra computational cost.

Next, the performance of the algorithm is discussed. To understand the efficiency
of the method, computational cost is given in terms of a work unit (WU), defined
to be the amount of work required to perform a single iteration of a simple relax-
ation method, such as Gauss–Seidel or Jacobi, on the linear system obtained from the
Newton-FOSLS method on a nearly optimal grid. A grid is said to be optimal if it
yields a discrete solution with the total functional less than a given tolerance, while
using a minimal number of degrees of freedom. One objective of the ACE algorithm
is to produce a nearly optimal grid. The minimal cost to solve a problem is, then, di-
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ISLAND COALESCENCE WITH FOSLS S183

(a) SL = 25,000

(b) SL = 50,000

Fig. 4.5. Reconnection rates using various time step sizes for the low viscosity (high Lundquist
number) cases.

rectly tied to the cost of forming a residual, or performing a simple relaxation method
on the linear system corresponding to this optimal grid. This cost is the equivalent of
performing one matrix-vector multiplication on this optimal grid. However, at each
time step, this measure changes as a different optimal grid is found, depending on
the evolving solution. Therefore, in order to compare the results evenly across time
steps and across simulations, a “standard” WU is considered. For the simulations
presented in this paper, this standard WU is defined on a uniformly refined grid using
1024 by 1024 biquadratic rectangular elements. Thus, since the 2D MHD system has
eight unknowns (a stream function is introduced to system (3.8)–(3.13) in order to
better enforce incompressibility), this corresponds to a system with over 33 million
degrees of freedom. In order to calculate the WUs appropriately, we have to consider
the costs of the linear solver. For all of the parallel runs, we use CLJP-coarsening (a
parallel coarsening algorithm using independent sets) and extended classical modified
interpolation [36]. The strength of the strong connection used was 0.25. Grid com-
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Fig. 4.6. Peak reconnection rate versus resistivity, 1
SL

, is proportional to 1√
SL

.

plexities ranged from 1.40 to 1.65, which gave operator complexities for a V(1,1) cycle
ranging from 2.80 to 3.3. This is lower than the operator complexities using the serial
AMG that was implemented using Ruge–Steuben coarsening given that the parallel
coarsening algorithm is more aggressive. The total WUs, and also total standardized
WUs, are then based on these operator complexities and are equal to (the number of
V-cycles)*(the operator complexity). Thus, based on these average operator complex-
ities, each iteration of a V-cycle reported in the following tables is equivalent to about
3 WUs or 3 matrix-vector multiplications on the fine grid. In Figure 4.7, the number
of standard WUs needed per time step for the various Lundquist numbers are shown.
In each figure, the work due to the setup of the method is separated from the work
due to the linear solves, noting that the setup phase is more costly than the solve
phase. Also, it is interesting to note that the WUs increase during the time when the
reconnection occurs, or when steep gradients are introduced into the solutions.

At higher Lundquist numbers, specifically SL = 50,000, AMG performance im-
proves when using a smaller time step. As the temporal resolution is improved, the
reconnection is captured more accurately as shown above. In addition, the efficiency
of the method improves. When no numerical instabilities are introduced, the approxi-
mate solution is smoother and, therefore, the AMG solver performs better. Thus, the
number of WUs required to solve the system decreases. Figure 4.8 shows the average
number of iterations required to get one digit of accuracy in the solution using AMG
at each time step. This is related to the convergence factor of the AMG solves, ρ,
by solving for the number of iterations, q, in ρq = 0.1. Thus, q = − 1

log10(ρ)
. For the

smaller time step size, the average convergence factor and, therefore, the number of
iterations are reduced. However, this simulation requires twice as many time steps.
Comparing with twice the number of iterations per digit of accuracy at each time step
shows that this does not correspond to twice the number of iterations. To make this
more concrete, Table 4.1 compares the average standard WUs per time step for the
solve over the whole simulation, as well as the maximum amount of standard WUs
needed at some time step (usually when the reconnection just starts). Less work is
being done with the smaller time step size during the solve phase per time step. Dur-
ing the reconnection, when the maximum amount of work is being performed, halving
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(a) SL = 5,000 and Δt = 0.1 (b) SL = 10,000 and Δt = 0.1

(c) SL = 25,000 and Δt = 0.025 (d) SL = 50,000 and Δt = 0.0125

Fig. 4.7. WUs per time step. Setup cost (dashed curve) and solve cost (solid line) are separated.

Fig. 4.8. Average iterations per digit of accuracy for AMG solves at each time step for SL =
50,000. Results for Δt = 0.025 and Δt = 0.0125 are shown as well as twice the number of iterations
for Δt = 0.0125 for comparison.

the time step almost halves the work per time step. For the entire simulation, the
ratio of WUs for the smaller time step size to the bigger one is 2∗32.68

44.15 = 1.48. Thus,
the smaller time step size simulation requires only 48% more work, while performing
twice as many time steps. This is because fewer V-cycles are needed per iteration due
to better convergence. Since accuracy is better in this case and work is about equal,
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Table 4.1

Standard WUs are calculated based on a 1024 by 1024 biquadratic grid for each time step.
Average and maximum are computed over all time steps. The average number of V-cycles on the
finest grid are also shown to give an idea of what the actual work units are.

SL = 50,000 Standard WUs
Δt Average WU Max WU Average V-cycles

0.025 44.15 129.71 16.5
0.0125 32.68 69.32 12.9

Table 4.2

Average number of degree of freedoms (eight unknowns for each node on the grid) and average
number of Newton steps at each NI grid level per time step.

SL = 5,000 Δt = 0.1000 SL = 10,000 Δt = 0.1000
Level DOFs Newton V-cycles DOFs Newton V-cycles
1 8,712 1.993 17.06 8,712 1.993 18.89
2 33,800 1.540 11.86 33,800 1.613 15.37
3 50,935 1.286 10.67 50,700 1.387 11.93
4 103,850 1.213 13.45 98,261 1.360 16.07
5 312,940 1.140 13.87 256,903 1.353 19.56
6 747,591 1.000 13.37 643,268 1.295 22.71
7 1,378,802 1.000 13.55 1,398,085 1.130 22.57
8 2,321,583 1.000 13.47 1,914,774 1.000 21.89
9 7,050,189 1.000 14.31 4,908,584 1.000 21.88

SL = 25,000 Δt = 0.0250 SL = 50,000 Δt = 0.0125
Level DOFs Newton V-cycles DOFs Newton V-cycles
1 33,800 1.998 12.60 33,800 1.999 10.31
2 133,128 1.543 7.92 133,128 1.083 4.84
3 184,355 1.000 7.45 189,181 1.000 4.56
4 320,833 1.614 13.25 303,223 1.722 10.20
5 618,366 1.236 12.54 484,576 1.574 10.95
6 877,089 1.495 18.44 799,240 1.606 16.52
7 1,574,753 1.000 15.25 1,592,414 1.000 15.59
8 3,480,815 1.000 14.51 2,965,895 1.000 13.90
9 9,869,081 1.000 14.80 8,837,814 1.000 14.01
10 29,946,167 1.000 10.64 27,971,981 1.000 12.88

the overall accuracy per computational cost is much better and the system is solved
more efficiently. As stated earlier, future research will address adaptive time stepping
in order to further reduce the computational cost.

Furthermore, the effectiveness of the nested iteration algorithm is analyzed. Over
all time steps, the average number of degrees of freedom needed at each grid level is
calculated, as is the average number of Newton steps required to solve the nonlinear
system at that level. Here, Level 1 corresponds to the coarsest grid. As can be seen in
Table 4.2, the average number of Newton steps approaches one step before the finest
grid is reached, where the Newton iterations are the most computationally expensive.
Thus, the extra overhead of many linearizations is avoided by performing this work
on coarser grids, which involve many fewer elements. Also, the average number of
V-cycles performed at each level is given. At the finest level, only a handful of cycles
are needed. Thus, in terms of actual WUs (i.e., the smallest amount of work needed
to form the residual on the finest grid of the given time step), the problem is being
solved quite effectively.

Finally, performance of the pACE algorithm and the load balancing method are
discussed. Details of the strong scalability and weak scalability results for the pACE
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Fig. 4.9. Breakdown of total runtime into different components related to ACE routines (light
and dark blue) and numerical PDE routines (green, yellow, orange, and red) at each time step for
SL = 5,000 (left) and SL = 50,000 (right). Color is available only in the online version.

approach applied to various problems can be found in [16]. Due to the great complex-
ity required to solve the MHD system and hardware limitations, scalability results
for the MHD system are not listed here. Instead, for various Lundquist numbers and
time step sizes, a breakdown of the overall runtime is plotted into two major cate-
gories: numerical PDE solves (assembly of matrices, AMG solver setup, and linear
system solves) and adaptive refinement routines (estimating error, marking, refining,
and load balancing); see Figure 4.9. The cost of all ACE routines is controlled within
10% of the overall runtime for all time steps and Lundquist numbers. In particular,
the CPU time corresponding to the load balancing cost (the light blue strip) is barely
recognized, which confirms the efficiency of the load balancing approach applied to
complex systems such as the MHD equations. Even for a low Lundquist number,
SL = 5,000, which requires fewer Newton iterations and AMG cycles to solve the
problem, the overall cost of the pACE algorithm and the load balancing is a lot
smaller than the numerical PDE solves, 10% versus 90%. It should also be noted that
a switch was included in cases where a high number of elements were being marked
to be refined (about 99%). In these instances, uniform refinement was performed
instead, as it involved less overhead. Since memory was an issue on the machine used,
a bit of performance was sacrificed in order to improve the accuracy. However, as
seen in Figure 4.9, grid repartition took up a negligible amount of the computation
time. Determining the most effective percentage at which to switch is the subject
of future work. Thus, the parallel scalability of the NI-Newton-FOSLS-AMG-ACE
approach is mainly determined by the three components of the numerical PDE solves:
assembling matrices, AMG setup, and AMG solves. The first component is almost
embarrassingly parallel. Matrices are assembled blockwise within each processor with-
out communication. The third component usually has nice parallel scalability up to
tens of thousand of processors [6, 7]. The issue, then, is the second component, AMG
setup. Depending on the specific problem, it can be expensive. For example, for
high Lundquist numbers (right side of Figure 4.9), AMG setup takes roughly 50% of
the overall simulation time, since more Newton iterations are required, and the setup
has to be redone for every Newton step. Therefore, improving AMG setup in the
context of NI remains an open problem. One option is to reuse the coarsening hier-
archy across Newton steps and possibly time steps as well. However, in the context
of NI, the solutions tend to change quickly across linearization as more features are
introduced and, therefore, reusing the setup is not so useful. In addition, most of the
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linearizations are done on coarse grids where this setup is cheap. On the finest grids,
where this could be beneficial, only one Newton step is used on average anyway. For
using the same coarsening across time steps, the solution could change rapidly with
respect to time and, then, the hierarchy of adaptive grids across time steps would
change drastically and, therefore, should be independent of each other. However, as
shown above, reducing the time step size improves the efficiency of the NI algorithm
by using fewer nonlinear iterations and, thus, less of these setup phases are needed.

5. Discussion. Using the NI-Newton-FOSLS-ACE-AMG scheme, reconnection
rates are accurately captured. Using an appropriate time step size and spatial resolu-
tion, the discrete systems are solved using about 50–60 standard WUs per time step,
or the equivalent of that many matrix-vector operations on a linear system with 33
million degrees of freedom. The key features are the efficiency-based local adaptive
refinement and NI, which allow for most of the computationally expensive work to
be performed on coarse grids, reducing the cost. Also, implementation of a scalable
parallel scheme for these methods allows for the system to be solved much more ef-
ficiently. Care is taken in parallelization of the adaptive refinement routine so that
load balancing issues are minimized and so that the MHD system is solved with much
better resolution.

For higher values of the Lundquist number, numerical instabilities appear when
the spatial and temporal scales are not resolved. With the aid of a parallel ma-
chine, however, appropriate accuracy is regained and the correct physical results are
obtained. It is also demonstrated that the numerical methods are converging asymp-
totically at their expected rates. As stated above, the issue comes from the fact that
the FOSLS formulation yields a system of DAEs, and more care has to be taken in
the analysis of the time-stepping accuracy. The reduced, resistive, MHD system used
above is classified as a nonlinear semiexplicit index-two DAE. It is semiexplicit in the
sense that none of the nonlinearities involves the time derivatives. In other words,
the time derivatives, ∂u

∂t and ∂B
∂t , can be explicitly solved for in terms of the other

variables. The index of a DAE is the minimal number of constraint equation differen-
tiations needed to get explicit time-evolving equations for all the dependent variables.
In [13], it is shown that backward differencing formulas of order k < 7 are convergent
and accurate for DAE systems of this type assuming the constraint equations are
solved to a sufficient accuracy. This affects any discretization method that introduces
auxiliary equations into the system (for instance, mixed methods). However, with
the numerical techniques used here, the accuracy of the approximation is easily mea-
sured. Future work will examine how the different first-order formulations affect the
accuracy of the time-stepping schemes in this manner. Preliminary analysis on using
FOSLS for the time-dependent Stokes equations shows that the stability is dependent
on the time step size and Reynolds number. Since the MHD system shares many of
the properties of the Stokes system, it is not surprising that, as the Lundquist number
is increased, the time step must be decreased in order to get the expected stability of
the numerical scheme. The plan is to investigate this further and find a better rela-
tionship between these parameters. In addition, the use of an adaptive time-stepping
scheme would greatly improve the results. Only during the time interval when the
reconnection occurs is the higher temporal accuracy needed. Thus, outside this inter-
val, larger time steps could be taken, reducing the cost of solving the system. Also,
similar to the AMR schemes employed, the error estimators could be used to optimize
the appropriate time step size that is needed to resolve the solution. Time adaptivity
has been studied in various complex fluid problems with success (e.g., in [31, 40]).
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Future work will involve automating these processes to choose nearly optimal grids
and time step sizes for every step of the algorithm based on the system and how well
it is being solved. Nevertheless, as shown above, cutting the time step size in half,
thus doubling the number of time steps, did not double the computational cost.

Another aspect to consider is that these physical systems are governed by an
energy law that is satisfied exactly at the continuous level. Any discretization method
can only approximate this energy law, and, therefore, it is important to analyze how
this affects the numerical solution. For instance, understanding how accurately one
needs to solve a solenoidal or incompressibility constraint can be studied by looking
at the “discrete” energy laws that are produced. Future work will look at the FOSLS
discretization and attempt to understand how well it approximates the energetics of
the system. This includes considering symplectic time integrators such as Crank–
Nicolson and the midpoint rule [29, 48].

Finally, a future goal is to apply these methods to MHD in more complex geome-
tries and to introduce more physics into the model, such as Hall terms and electron
inertia [23, 34, 45]. These more complex equations are more accurate for models of
fusion reactors and in space physics [11]. The algorithms presented in this paper show
the potential to efficiently resolve these more complicated models.
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