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Chapter 1

Introduction

Modeling fluid flow through a porous medium is a fundamental problem of interest in many areas of science

and engineering. Petroleum engineers are concerned with strategies for hydrocarbon recovery and reservoir

development [4]. Packed-bed reactors in chemical engineering are filled with a catalyst particulate through

which gas reactants are pumped and must be carefully monitored [18]. In environmental engineering and

contaminant hydrology, researchers develop methods to predict the flow of pollutants in groundwater [7].

The common denominator is the flow of some fluid – typically a gas or liquid – through a domain that only

admits flow through some regions (the pores or void spaces) and not others (the solid matrix), such as soil,

a tube packed with sand, or swiss cheese. We concern ourselves in this thesis with contaminant transport

and the modeling of groundwater flow in the subsurface.

Industrial and agricultural contamination of groundwater due to run-off, spills, or leakage is a widespread

problem, which causes great ecological concern and negatively impacts water quality [9]. A particularly

troublesome class of contaminants is Non-Aqueous Phase Liquids (NAPLs) such as pesticides or gasoline.

As their name implies, such contaminants do not mix with water and, thus, tend to exist as a distinct fluid

phase when introduced to a subsurface soil system [7].

Once a contaminant is introduced to an aquifer such as Figure 1, the pore space at a given point can be

saturated with water, the NAPL, air, or some mix of the three. If an air phase is present, then the overall

system is one of three-phase flow, and we refer to the region as unsaturated, otherwise it is saturated [9].



Figure 1.1: A typical aquifer cross-section. Image c© Hans Hillewaert / CC-BY-SA-3.0

In either case, the contaminant is subject to the fluid dynamics of the subsurface regime wherein pressure

differences and complicated physical interactions between the medium and the fluid phases drive the fluids

from one place to another.

If a pollutant is known to have been released into the subsurface, a mathematical model for the way it

moves through the soil and interacts physically with the fluids already present there is an invaluable tool

to aid containment and ultimate remediation. However, models for physical properties of the soil, such

as porosity, cannot be expected to have a simple functional representation – rather, such data is available

from measurement or statistical simulation [13]. Even if all the relevant material and fluid properties did

have analytic functional forms, the system of partial differential equations that models subsurface flow is

complicated, nonlinear, and does not, in general, admit analytical solution [7]. Thus, we turn to numerical
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methods for the solution of the system.

In [1], Abriola et al. develop a numerical model and solution scheme (VALOR) for the problem of NAPL

transport in two dimensions, using the Implicit Pressure - Explicit Saturation (IMPES) scheme. They later

extend the VALOR software to solve three-dimensional problems. In this thesis, we take VALOR and IMPES

as the initial model and modify the numerical methods used, with the goal of improving program runtime and

efficiency. As such, the primary original contribution of this research is the study of the iterative methods

used as applied to the final numerical models obtained.

For completeness, we first include a thorough derivation of both the continuous model for multiphase fluid

flow through the subsurface based on first principles, as well as the resulting finite-difference discretization.

While this discrete system is nonlinear, a linear system can be obtained through the method of Picard

linearization [25] and, thus, the bulk of the numerical problem becomes the solution of a large number of

linear systems and the method of generating them from the nonlinear model. We look at the theory of the

generalized minimum residual (GMRES) method [30], an iterative technique used by VALOR for solving

linear systems, as well as the theory of the Picard linearization process itself.

We look at several changes to the VALOR solution scheme. The GMRES method has different tolerances

to detemine when to stop the iterative process, which we tune by hand to obtain better performance.

Additionally, a well-known method of improving the convergence of iterative techniques such as GMRES is

preconditioning, or modification of the system to one with the same solution but a different matrix with better

numerical properties [19]. We look at both the method of Jacobi preconditioning originally used by VALOR

and an alternative, more complicated preconditioning method – algebraic multigrid [32]. In addition, we

introduce another error check to the Picard linearization step wherein we monitor the residual error from the

linearization step to ensure that the linear approximation does not deviate substantially from the nonlinear

solution. We use this check to investigate an alternative Picard linearization structure to resolve the pressure

nonlinearities. All modifications are tested on an example problem that exhibits realistic structure of the

physical domain over 5 days.
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Chapter 2

Derivation of Models

Here, we first derive a system of partial differential equations describing the pressures and saturations of

multiphase fluid flow with an organic contaminant. We then derive a discrete analog of the system for the

special case of two-phase flow, where we assume the flow is saturated and, thus, there is no air phase present.

While the full multiphase model offers a more complete picture of the physics at hand, it is an extension of

the two-phase model and, thus, the numerical methods which we consider could be generalized to multiphase

flow without much difficulty. We note that the derivations in this section follow closely those of Abriola et

al. in [1].

2.1 Terminology

When a NAPL contaminant, or “organic liquid”, is present, the subsurface fluid is made up of three distinct

phases: air, water, and the organic liquid itself. As such, we will index fluid properties with a subscript

denoting the fluid phase to which they refer: a for air, w for water, and o for the organic liquid. As the

equations are symmetric with respect to the fluid phase labeling, we will in general refer simply to the

α−fluid, where α = a,w, o. We will use bold-face font for vector or tensor quantities.
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2.2 Physical Model

2.2.1 Base Model

We begin with the principle of conservation of mass, a core tenet of physics that states that the mass of

a closed system remains constant over time. In the context of fluid dynamics, this simply means that any

change in the amount of a fluid present at one point of the system must be due to either

(i) movement of the fluid between the current point and another point in the system, or

(ii) external sources or sinks (e.g., pumping or injection),

where here we neglect internal sources or sinks due to chemical or biological processes, as well as interphase

mass transfer1.

When expressing conservation of mass for our system, it is important to realize that fluid flow in the

subsurface is governed in large part by the permeability of the soil itself. For example, a subsurface region

that is completely occupied by the soil medium cannot accommodate any additional volume, so fluid flow is

impossible. While, in the ideal case, we would take the exact mathematical description of the distribution

of void space on a microscopic level and simulate fluid flow on this domain, this is completely impractical

due to a lack of knowledge of the physical configuration of these pores and the intractable nature of such a

computation [9]. As such, we will use a macroscopic model and look at simply the fraction of the soil volume

that can actually be occupied by a fluid on average, i.e., the soil porosity,

φ ≡ volume of void space

volume of soil
.

We will use this continuum approach throughout our model.

We can now formalize the conservation of mass equation for a given phase as

∂

∂t
[φSαρα] = −∇ · [ραφSαvα] + qα, (2.1)

where ρα is the density of the α−fluid, vα is the α−fluid velocity, Sα is the α−fluid saturation,

Sα ≡
volume of α-fluid

volume of void space
,

1Valid as, in our case we are interested in time scales and organic contaminants for which these effects are not large [1].
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and qα is the net effect of external sources/sinks on the α−fluid.

To convert Equation (2.1) to an equation in terms of pressure rather than velocity, we will use a modified

form of Darcy’s Law that relates the flux, F ≡ φSαvα, to the pressure gradient,

F ≡ φSαvα = −κkrα
µα

[∇Pα − γα∇z]. (2.2)

Above, we have introduced a few new variables. κ is the soil intrinsic permeability tensor, which describes

from a macroscopic viewpoint the geometrical configuration of the void space [8]. The relative permeability,

krα, gives the permeability “seen” by fluid phase α,

krα ≡
| κ effective for α-fluid|

|κ actual|
.

Additionally, µα is the dynamic viscosity (which describes a fluids resistance to flow), Pα is the fluid pressure,

and γα = ραg is the specific weight (where g is the acceleration due to gravity). In a simplified sense, Equation

(2.2) says that the fluid movement is caused by pressure differences and gravity, which is intuitive – some

potential difference (described by the gradient of the pressure) causes fluid to flow at a given rate (described

by the flux), but some fluids flow more freely than others so we need to account for that (via the viscosity).

We substitute Equation (2.2) into Equation (2.1) to obtain

∂

∂t
[φSαρα] = ∇ · [λα(∇Pα − γα∇z)] + qα, (2.3)

where

λα ≡
ρακkrα
µα

is the transmissibility of the α−fluid.

2.2.2 Simplifying Assumptions

We make a number of simplifying assumptions to make solution of Equation (2.3) more tractable. In

particular, we will assume the following

• The system is isothermal, i.e., temperature gradients do not impact fluid flow. This assumption is not

always valid2, but, in the subsurface regime that we model, the temperature gradients are not large

2For example, the density of a fluid changes with temperature [8].
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enough to modify the flow significantly [1].

• The dependence of fluid viscosity on pressure is negligible:

µα ≈ constant.

Abriola et al. note [1] that this assumption is valid for the liquid phases as the actual dependence is

negligible over the range of pressures of interest, but caution that further study is needed for the air

phase.

• The soil matrix structure is static, i.e., the porosity does not change during the course of the fluid

imbibition and drainage:

∂φ

∂t
≈ 0.

This assumption is really one about the interplay between the pressures of interest and the poroelasticity

of the material [10] – we are assuming that the pressures in our system at any point are not strong

enough to increase the pore size there during imbibition, and that the depths aren’t great enough that

the force exerted by the soil column above isn’t great enough to compress the pores during drainage.

Abriola et al. assert this to be a fair assumption in [1].

• Gas phase compressibility follows the Ideal Gas Law:

ρa =
PaMa

RT
,

where Ma is the gas phase molecular weight, T is temperature, and R is the universal gas constant.

• The liquid compressibility,

cα ≡ −
1

Vα

∂ρα
∂Pα

,

is constant over the range of interest (where, here, Vα is volume). Under this assumption, we see that

ρα ≈ ρ∗α[1 + cα(Pα − P ∗α)]

by integrating and linearizing around a reference density and pressure, ρ∗α and P ∗α.
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• The capillary pressure at an α, β-fluid interface,

Pcαβ ≡ Pα − Pβ ,

can be determined as a function of the saturations:

Pcαβ = f(Sα, Sβ). (2.4)

We note that, in the literature, the capillary pressure-saturation relationship is in fact hysteretic, but

we will neglect this in favor of a functional form [1].

• The relative permeability, krα, can be determined as a function of the saturation3,

krα = g(Sα). (2.5)

• The fluid saturation accounts totally for the pore volume (continuity),

So + Sw + Sa = 1.

We relegate a description of the functional forms used to describe the capillary pressure - saturation and

relative permeability - saturation relationships, to Appendix A. Suffice it to say that the relationships are

nonlinear and contribute significantly to the difficulty of this problem.

2.3 Numerical Discretization

To convert the physical model of Equation (2.3) to a numerical model, there are a number of decisions which

must be made that impact the ultimate system to be solved. First, there are a few different fundamental

methods typically used to discretize a system – finite elements, finite differences, etc. – each with its own pros

and cons. Second, these methods can differ in how they treat the time-stepping procedure, i.e., implicitly,

explicitly, or some combination of the two.

Before a discretization model is chosen, it is important to consider the impact that the model will have

on the overall solution scheme. Here, we will briefly review the theory of finite differences, then apply them

to our system of PDEs.

3Again, known to actually be hysteretic, partly due to poroelasticity.
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2.3.1 Finite Difference Schemes

The method of finite differences is a popular scheme for discretizing a differential equation due to its simplicity

and intuitive nature. We look first at the discretization of a simple ordinary differential equation, then extend

the theory to partial differential equations.

Ordinary Differential Equations

Given a differential operator, L, a real-valued function of one variable u(x), and a real-valued forcing function

f(x), we aim, in general, to generate an approximate solution to the equation,

Lu(x) = f(x), for x ∈ Ω,

subject to some initial or boundary conditions. For simplicity, we will assume Ω is bounded.

The finite difference discretization scheme comes out of Taylor’s Theorem, which says loosely that, for

a function u which is k-times differentiable at the point x, u can be approximated around x by the Taylor

polynomial

u(x+ h) ≈ u(x) + u′(x)h+
u′′(x)h2

2!
+ ...+

u(k)(x)h

k!
.

In particular, the first-order Taylor polynomial approximation gives

u(x+ h) = u(x) + u′(x)h+O(h2),

which we can rearrange and truncate to yield the first-order forward difference approximation of u′(x),

u′(x) =
u(x+ h)− u(x) +O(h2)

h
=
u(x+ h)− u(x)

h
+O(h),

≈ u(x+ h)− u(x)

h
≡ ∆+u(x). (2.6)

We note that the truncation error here is O(h). We can similarly derive the first-order backward and central

difference approximations, with truncation error O(h) and O(h2) respectively:

u′(x) ≈ u(x)− u(x− h)

h
≡ ∆−u(x), (2.7)

u′(x) ≈ u(x+ h/2)− u(x− h/2)

h
≡ ∆0u(x). (2.8)
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In the finite difference scheme, we discretize Ω with N points, yielding a discrete domain ΩN , and

approximate all differential operators according to schemes such as Equations (2.6), (2.7), or (2.8). As an

example, if we let

Lu(x) ≡ du(x)

dx
= f(x), x ∈ Ω = [0, 1], (2.9)

u(0) = 0,

then we can discretize Equation (2.9) according to Equation (2.6) with N points by defining

xi ≡
i

N
, i = 1...N

h ≡ xi+1 − xi =
1

N
,

ui ≡ u(xi)

fi ≡ f(xi),

which yields

du(xi)

dx
=

ui+1 − ui
h

= fi, (2.10)

u0 = 0.

We can rearrange Equation (2.10) to yield an explicit formula for ui+1 in terms of ui and fi,

ui+1 = ui + fih. (2.11)

This is easily solved given the boundary condition.

Partial Differential Equations

The theory of finite differences for partial differential equations does not differ substantially from that for

ordinary differential equations, though each new dimension of Ω must be discretized independently. For

example, for a function u(x, y) defined on Ω = (0, 1]× (0, 1] with NxNy points, we can define

xi ≡
i

Nx

yj ≡ j

Ny

ui,j ≡ u(xi, yj),
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and then proceed as above. For example, consider

Lu(x, t) ≡ ∂u(x, t)

∂t
− ∂u(x, t)

∂x
= 0, (x, t) ∈ Ω = (0, 1)× (0, t0],

u(x, 0) = u0(x), (2.12)

u(0, t) = 0.

We can discretize Equation (2.12) using Equation (2.6) for both x and t by defining

xi ≡
i

N
, i = 1...N

tk ≡ k

K
t0, k = 1...K

hx ≡ xi+1 − xi =
1

N
,

ht ≡ tk+1 − tk =
t0
K
,

ui,k ≡ u(xi, tk)

fi ≡ f(xi),

which yields

ui,k+1 − ui,k
ht

+
ui+1,k − ui,k

hx
= 0.

Rearranging gives

ui,k+1 = ui,k −
ht
hx

(ui+1,k − ui,k).

This, again, can be solved easily by utilizing the initial and boundary conditions.

2.3.2 Explicit Methods vs Implicit Methods

As we mentioned above, numerical methods that use a time-stepping procedure can be broadly classified

into either explicit methods or implicit methods. Similar to the way we discretized x and y in Section

2.3.1, solving a time-dependent differential equation requires discretization of t for approximation of time

derivatives.

Assume that we are looking for a solution to an equation of the form

Fu(x, t) = 0,
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where x is a vector of the spatial variables and F is a differential operator4. In an explicit method, the

system of equations that result from the discretization process gives an explicit equation for u(x, t+ ∆t) in

terms of the values from previous timesteps,

u(x, t+ ∆t) = f [u(x, 0 : t),x, 0 : t].

Here we define a function dependent on 0 : t to be one that is dependent on potentially any timestep in the

range [0, t]. Equation (2.11) is an example of an explicit scheme.

In contrast, in an implicit method, the relationship between u(x, t + ∆t) and u(x, 0 : t) is a nontrivial

implicit equation which must be solved with each time step to yield u(x, t+ ∆t):

g[u(x, t+ ∆t), u(x, 0 : t),x, 0 : t] = 0.

In general, implicit time-stepping methods are computationally more expensive than explicit methods

because implicit equations are inherently more difficult to solve than explicit equations. In the case of finite

difference discretizations of linear PDEs5, implicit time-stepping methods require the solution of at least

one linear system of equations, Ax = b, at each time-step, whereas explicit methods do not. The trade-off,

however, comes in the form of numerical stability, which refers to how the error in an approximate solution

accumulates in successive time-steps. Explicit time-stepping methods can face severe stability problems

where the error grows in an unbounded way. Avoiding this sort of error growth requires adherence to what is

known as an equation’s Courant-Friedrichs-Lewy (CFL) condition, which gives a bound relating the temporal

discretization size and the spatial discretization size [24]. This CFL bound usually forces a smaller time step

or larger spatial step than would otherwise be desireable.

In contaminant hydrology, the CFL conditions associated with fully explicit time-stepping methods are

generally too restrictive to be of practical use, which has made fully implicit methods much more broadly

used [14]. In petroleum engineering, however, a commonly used scheme is neither fully implicit nor fully

explicit: the Implicit Pressure - Explicit Saturation (IMPES) method [1].

4Here, we have incorporated any forcing terms into F .
5As our system is nonlinear, we will later discuss linearization.
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2.3.3 The IMPES Scheme

The IMPES solution scheme is a hybrid method in reservoir simulation which updates the pressure variables

and saturation variables of Equation (2.3) separately, using an implicit method for the pressure update and

an explicit method for the saturation update. This is obtained by solving for new pressures based on the

saturations from the previous iteration, and then updating the saturation based on these new pressures.

The key advantage of the IMPES method is that it is more stable than a fully explicit method, but less

costly than a fully implicit method. As the saturation update is the only explicit part of the procedure,

the previously restrictive CFL condition becomes looser and allows larger time steps for the same spatial

discretization size, which is desireable.

The fundamental assumption required for the IMPES method is that the capillary pressures change only

negligibly with time, i.e.,

∂Pcαβ
∂t

≈ 0.

By definition of Pcαβ , this implies:

∂Pw
∂t

=
∂Po
∂t

=
∂Pa
∂t

, (2.13)

which we can use to form an equation with only the pressure variables [1].

By applying the product rule to the left-hand side of Equation (2.3), we obtain

∂

∂t
[φSwρw] =

[
φSw

∂ρw
∂Pw

+ ρwSw
∂φ

∂Pw

]
∂Pw
∂t

+ φρw
∂Sw
∂t

= ∇ · [λw(∇Pw − γw∇z)] + qw

∂

∂t
[φSaρa] =

[
φSa

∂ρa
∂Pa

+ ρaSa
∂φ

∂Pa

]
∂Pa
∂t

+ φρa
∂Sa
∂t

= ∇ · [λa(∇Pa − γa∇z)] + qa

∂

∂t
[φSoρo] =

[
φSo

∂ρo
∂Po

+ ρoSo
∂φ

∂Po

]
∂Po
∂t

+ φρo
∂So
∂t

= ∇ · [λo(∇Po − γo∇z)] + qo.

Using the definition of capillary pressure and our assumption in Equation (2.13), we can write all the pressures

in terms of the water pressure and associated capillary pressure for that phase interface, as below:

(φSw
∂ρw
∂Pw

+ ρwSw
∂φ

∂Pw
)
∂Pw
∂t

+ φρw
∂Sw
∂t

= ∇ · [λw(∇Pw − γw∇z)] + qw

(φSa
∂ρa
∂Pa

+ ρaSa
∂φ

∂Pa
)
∂Pw
∂t

+ φρa
∂Sa
∂t

= ∇ · [λa(∇Pw +∇Pcal − γa∇z)] + qa

(φSo
∂ρo
∂Po

+ ρoSo
∂φ

∂Po
)
∂Pw
∂t

+ φρo
∂So
∂t

= ∇ · [λo(∇Pw +∇Pcow − γo∇z)] + qo. (2.14)
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In the above, Pcal is the capillary pressure at the air-liquid interface, which depends on whether the organic

liquid is present or not6. We can rewrite the above to obtain the IMPES saturation equations,

φρw
∂Sw
∂t

= ∇ · [λw(∇Pw − γw∇z)]− (φSw
∂ρw
∂Pw

+ ρwSw
∂φ

∂Pw
)
∂Pw
∂t

+ qw

φρa
∂Sa
∂t

= ∇ · [λa(∇Pw +∇Pcal − γa∇z)]− (φSa
∂ρa
∂Pa

+ ρaSa
∂φ

∂Pa
)
∂Pw
∂t

+ qa

φρo
∂So
∂t

= ∇ · [λo(∇Pw +∇Pcow − γo∇z)]− (φSo
∂ρo
∂Po

+ ρoSo
∂φ

∂Po
)
∂Pw
∂t

+ qo. (2.15)

By careful manipulation of the the saturation equations, we can eliminate the saturation derivatives (note

that So + Sa + Sw = 1, so ∂
∂t (So + Sa + Sw) = 0). Defining

dα1 ≡ φSα
∂ρα
∂Pα

+ ραSα
∂φ

∂Pα

dα2 ≡ φρα,

we have

(dw2da2do1 + do2da2dw1 + dw2do2da1)
∂Pw
∂t

=

do2dw2∇ · [λa(∇Pw +∇Pcal − γa∇z)] + do2dw2qa

+da2dw2∇ · [λo(∇Pw +∇Pcow − γo∇z)] + da2dw2qo

+do2da2∇ · [λw(∇Pw − γw∇z)] + do2da2qw.

This is the IMPES pressure equation. We again point out that the treatment here of the capillary pressures

is important, and direct the reader to Appendix A for more information.

2.3.4 Final Model

We now make the transition to a numerical model of two-phase flow consisting of water and the organic

phase liquid. We note that this implies the saturation continuity equation changes to

Sw + So = 1,

6We direct the reader to Section 4.2.3.3 of [1], though we note that this term does not appear in the ultimate two-phase

model we will consider.
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and that there is only one capillary pressure in the system, Pcow. With these changes, however, the IMPES

derivation above is still valid and we can modify Equation (2.15) and Equation (2.16) to obtain

φρw
∂Sw
∂t

= ∇ · [λw(∇Pw − γw∇z)]− (φSw
∂ρw
∂Pw

+ ρwSw
∂φ

∂Pw
)
∂Pw
∂t

+ qw

φρo
∂So
∂t

= ∇ · [λo(∇Pw +∇Pcow − γo∇z)]− (φSo
∂ρo
∂Po

+ ρoSo
∂φ

∂Po
)
∂Pw
∂t

+ qo, (2.16)

and

(do2dw1 + dw2do1)
∂Pw
∂t

=

dw2∇ · [λo(∇Pw +∇Pcow − γo∇z)] + dw2qo

+do2∇ · [λw(∇Pw − γw∇z)] + do2qw.

(2.17)

To discretize Equation (2.17), we will use a central difference for all spatial discretizations and a backwards

difference for time – this gives an implicit formulation appropriate for IMPES. First, we explicitly write out

the differential operators:

(do2dw1 + dw2do1)
∂Pw
∂t

=

dw2

(
∂

∂x
[λo(

∂Pw
∂x

+
∂Pcow
∂x

)] +
∂

∂y
[λo(

∂Pw
∂y

+
∂Pcow
∂y

)] +
∂

∂z
[λo(

∂Pw
∂z

+
∂Pcow
∂z

+ γo)] + qo

)
+do2

(
∂

∂x
[λw

∂Pw
∂x

] +
∂

∂y
[λw

∂Pw
∂y

] +
∂

∂z
[λw(

∂Pw
∂z

+ γw)] + qw

)
.

Next, we will substitute the central difference approximation ∆0 for all spatial derivatives. For the

temporal derivative, we will use a backward difference. Below, we assume a uniform discretization within

each dimension, though we allow each dimension a different step-size. We define

Pα,i,j,l,t = Pα(xi, yj , zl, tt),

for some suitable discretization of the space in rectangular coordinates, and write
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(do2dw1 + dw2do1)i,j,l,t∆
−
t Pw,i,j,l,t =

dw2,i,j,l,t(∆
0
x[λo,i,j,l(∆

0
xPw,i,j,l,t + ∆0

xPcow,i,j,l)]

+ ∆0
y[λo,i,j,l(∆

0
yPw,i,j,l,t + ∆0

yPcow,i,j,l)]

+ ∆0
z[λo,i,j,l(∆

0
zPw,i,j,l,t + ∆0

zPcow,i,j,l −∆0
zγo,i,j,l)] + qo,i,j,l,t)

+ do2,i,j,l,t(∆
0
x[λw,i,j,l,t∆

0
xPw,i,j,l,t]

+ ∆0
y[λw,i,j,l,t∆

0
yPw,i,j,l,t]

+ ∆0
z[λw,i,j,l,t∆

0
zPw,i,j,l,t −∆0

zγw,i,j,l,t] + qw,i,j,l,t).

Expanding the finite difference operators above, we obtain Equation (2.21), a giant system of equations that

gives Pt ≡ {Pw,i,j,l,t} implicitly in terms of Pt−1
7. Because the difference Pt −Pt−1 may be small relative

to the summands themselves, we will define this change in pressure as δPt and reformulate Equation (2.21)

in terms of this. If we additionally gather like terms, we obtain the final discrete pressure equation, Equation

(2.22) (with coefficients as defined in Equation (2.23) and Equation (2.24) and right hand side as defined in

Equation (2.25)). Under an appropriate vectorization of the space and linearization scheme, we can write

this as a matrix inverse problem,

AtδPt = bt, (2.18)

where At ∈ RN×N , δPt,bt ∈ RN .

Equations (2.22) through (2.25) give an implicit discretization of the pressure equations, but we still need

to discretize the saturation system in Equation (2.16). The first thing to note is that from our assumption

of continuity, we only need to update the organic saturation So – the water saturation can be found as

Sw = 1 − So. We can then obtain an expression for updating So by following a similar method as for the

pressure, yielding Equation (2.26). This gives a saturation update of the form

St = St−1 +BPt,

7Because of their length, some of the equations mentioned on this page are found on later pages.
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where B is some coefficient matrix. These equations should be all we need for the IMPES method, but we

note that there are a few problems with the formulation of Equation (2.22) and Equation (2.26).

First, as written these require the evaluation of λα and γα at half-integer indices, and we have not as of

yet defined what we mean by this. In a seemingly obvious approach, we would simply define the value at

the half-integer index to be the average of the neighboring values, i.e.,

λα,i+ 1
2 ,j,l,t

=
λα,i,j,l,t + λα,i+1,j,l,t

2
. (2.19)

However, as Abriola et al. note [1], this is not physically realistic when applied to the transmissibilities.

Instead, we calculate the transmissibilties using an upstream weighting, defined as

λα,i+ 1
2 ,j,l,t

=


λα,i,j,l,t if flow is from i to i+ 1,

λα,i+1,j,l,t if flow is from i+ 1 to i.

(2.20)

This promotes physically realistic results. For γ, however, we see no such physical limitations and use the

simple average.

The next problem we note with Equation (2.22) is that it is nonlinear, with functions of pressure and

saturations multiplying other functions of pressure and saturations. Thus, while it does provide a finite

difference approximation of Equation (2.17), we must resolve the nonlinearities or it can face accuracy

problems. In particular, we see that the coefficients dαi are linear in the pressures and saturations, so their

product is quadratic. Similarly, λα and γα are functions of the pressure, so evaluating them at time t as

Equation (2.22) suggests is impractical, since the pressure at time t is exactly that for which we are trying to

solve. We will explore these problems more in Chapter 3, where we look at the Picard linearization method

and lagging certain variables to obtain a good approximation of the equation we want to solve.

Finally, we mention that while we’ve assumed analytically by use of the IMPES method that
∂Pcαβ
∂t ≈ 0,

it is possible that more accurate results could be obtained by tacking on correction terms to Equation (2.25)

to compensate for the capillary pressure time derivatives,

b̃i,j,l,t = bi,j,l,t −
dw2do1
ht

(Pcow,i,j,l,t − Pcow,i,j,l,t−1).

Such a correction will also require lagging variables in the linearization process, as mentioned above.
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(do2dw1 + dw2do1)i,j,l,t
∆t

(Pw,i,j,l,t − Pw,i,j,l,t−1) =

dw2,i,j,l,t

(
λo,i+ 1

2 ,j,l,t

hx

[
Pw,i+1,j,l,t − Pw,i,j,l,t

hx
+
Pcow,i+1,j,l,t − Pcow,i,j,l,t

hx

]
−

λo,i− 1
2 ,j,l,t

hx

[
Pw,i,j,l,t − Pw,i−1,j,l,t

hx
+
Pcow,i,j,l,t − Pcow,i−1,j,l,t

hx

]
+

λo,i,j+ 1
2 ,l,t

hy

[
Pw,i,j+1,l,t − Pw,i,j,l,t

hy
+
Pcow,i,j+1,l,t − Pcow,i,j,l,t

hy

]
−

λo,i,j− 1
2 ,l,t

hy

[
Pw,i,j,l,t − Pw,i,j−1,l,t

hy
+
Pcow,i,j,l,t − Pcow,i,j−1,l,t

hy

]
+

λo,i,j,l+ 1
2 ,t

hz

[
Pw,i,j,l+1,t − Pw,i,j,l,t

hz
+
Pcow,i,j,l+1,t − Pcow,i,j,l,t

hz
− γo,i,j,l+ 1

2 ,t

]
−

λo,i,j,l− 1
2 ,t

hz

[
Pw,i,j,l,t − Pw,i,j,l−1,t

hz
+
Pcow,i,j,l,t − Pcow,i,j,l−1,t

hz
− γo,i,j,l− 1

2 ,t

])
+ do2,i,j,l,t

(
λw,i+ 1

2 ,j,l,t

hx

[
Pw,i+1,j,l,t − Pw,i,j,l,t

hx

]
−

λw,i− 1
2 ,j,l,t

hx

[
Pw,i,j,l,t − Pw,i−1,j,l,t

hx

]
+

λw,i,j+ 1
2 ,l,t

hy

[
Pw,i,j+1,l,t − Pw,i,j,l,t

hy

]
−

λw,i,j− 1
2 ,l,t

hy

[
Pw,i,j,l,t − Pw,i,j−1,l,t

hy

]
+

λw,i,j,l+ 1
2 ,t

hz

[
Pw,i,j,l+1,t − Pw,i,j,l,t

hz
− γw,i,j,l+ 1

2 ,t

]
−

λw,i,j,l− 1
2 ,t

hz

[
Pw,i,j,l,t − Pw,i,j,l−1,t

hz
− γw,i,j,l− 1

2 ,t

])
+ dw2,i,j,l,tqo,i,j,l,t + do2,i,j,l,tqw,i,j,l,t. (2.21)

a0,i,j,l,tδPw,i,j,l,t + a1,i,j,l,tδPw,i−1,j,l,t + a2,i,j,l,tδPw,i+1,j,l,t + a3,i,j,l,tδPw,i,j−1,l,t

+a4,i,j,l,tδPw,i,j+1,l,t + a5,i,j,l,tδPw,i,j,l−1,t + a6,i,j,l,tδPw,i,j,l+1,t

= bi,j,l,t (2.22)
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a0,i,j,l,t =
(do2dw1 + dw2do1)i,j,l,t

∆t
+

1

h2x
(dw2,i,j,l,t(λo,i+ 1

2 ,j,l,t
+ λo,i− 1

2 ,j,l,t
)

+ do2,i,j,l,t(λw,i+ 1
2 ,j,l,t

+ λw,i− 1
2 ,j,l,t

))

+
1

h2y
(dw2,i,j,l,t(λo,i,j+ 1

2 ,l,t
+ λo,i,j− 1

2 ,l,t
)

+ do2,i,j,l,t(λw,i,j+ 1
2 ,l,t

+ λw,i,j− 1
2 ,l,t

))

+
1

h2z
(dw2,i,j,l,t(λo,i,j,l+ 1

2 ,t
+ λo,i,j,l− 1

2 ,t
)

+ do2,i,j,l,t(λw,i,j,l+ 1
2 ,t

+ λw,i,j,l− 1
2 ,t

)) (2.23)

a1,i,j,l,t = − 1

h2x
[dw2,i,j,l,tλo,i− 1

2 ,j,l,t
+ do2,i,j,l,tλw,i− 1

2 ,j,l,t
]

a2,i,j,l,t = − 1

h2x
[dw2,i,j,l,tλo,i+ 1

2 ,j,l,t
+ do2,i,j,l,tλw,i+ 1

2 ,j,l,t
]

a3,i,j,l,t = − 1

h2y
[dw2,i,j,l,tλo,i,j− 1

2 ,l,t
+ do2,i,j,l,tλw,i,j− 1

2 ,l,t
]

a4,i,j,l,t = − 1

h2y
[dw2,i,j,l,tλo,i,j+ 1

2 ,l,t
+ do2,i,j,l,tλw,i,j+ 1

2 ,l,t
]

a5,i,j,l,t = − 1

h2z
[dw2,i,j,l,tλo,i,j,l− 1

2 ,t
+ do2,i,j,l,tλw,i,j,l− 1

2 ,t
]

a6,i,j,l,t = − 1

h2z
[dw2,i,j,l,tλo,i,j,l+ 1

2 ,t
+ do2,i,j,l,tλw,i,j,l+ 1

2 ,t
+] (2.24)
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bi,j,l,t = dw2,i,j,l,t

[
1

h2x
(λo,i+ 1

2 ,j,l,t
(Pw,i+1,j,l,t−1 − Pw,i,j,l,t−1 + Pcow,i+1,j,l,t−1 − Pcow,i,j,l,t−1)

−λo,i− 1
2 ,j,l,t

(Pw,i,j,l,t−1 − Pw,i−1,j,l,t−1 + Pcow,i,j,l,t−1 − Pcow,i−1,j,l,t−1))

+
1

h2y
(λo,i,j+ 1

2 ,l,t
(Pw,i,j+1,l,t−1 − Pw,i,j,l,t−1 + Pcow,i,j+1,l,t−1 − Pcow,i,j,l,t−1)

−λo,i,j− 1
2 ,l,t

(Pw,i,j,l,t−1 − Pw,i,j−1,l,t−1 + Pcow,i,j,l,t−1 − Pcow,i,j−1,l,t−1))

+
1

h2z
(λo,i,j,l+ 1

2 ,t
(Pw,i,j,l+1,t−1 − Pw,i,j,l,t−1 + Pcow,i,j,l+1,t−1 − Pcow,i,j,l,t−1)

−λo,i,j,l− 1
2 ,t

(Pw,i,j,l,t−1 − Pw,i,j,l−1,t−1 + Pcow,i,j,l,t−1 − Pcow,i,j,l−1,t−1))

− 1

hz
(λo,i,j,l+ 1

2 ,t
γo,i,j,l+ 1

2 ,t−1
− λo,i,j,l− 1

2 ,t
γo,i,j,l− 1

2 ,t−1
) + qo,i,j,l,t

]
+do2,i,j,l,t

[
1

h2x
(λw,i+ 1

2 ,j,l,t
(Pw,i+1,j,l,t−1 − Pw,i,j,l,t−1)

−λw,i− 1
2 ,j,l,t

(Pw,i,j,l,t−1 − Pw,i−1,j,l,t−1))

+
1

h2y
(λw,i,j+ 1

2 ,l,t
(Pw,i,j+1,l,t−1 − Pw,i,j,l,t−1)

−λw,i,j− 1
2 ,l,t

(Pw,i,j,l,t−1 − Pw,i,j−1,l,t−1))

+
1

h2z
(λw,i,j,l+ 1

2 ,t
(Pw,i,j,l+1,t−1 − Pw,i,j,l,t−1)

−λw,i,j,l− 1
2 ,t

(Pw,i,j,l,t−1 − Pw,i,j,l−1,t−1))

− 1

hz
(λw,i,j,l+ 1

2 ,t
γw,i,j,l+ 1

2 ,t−1
− λw,i,j,l− 1

2 ,t
γw,i,j,l− 1

2 ,t−1
) + qw,i,j,l,t

]
(2.25)

So,i,j,l,t = So,i,j,l,t−1 +
∆t

do2,i,j,l,t

(
λo,i+ 1

2 ,j,l,t

hx

[
Pw,i+1,j,l,t − Pw,i,j,l,t

hx
+
Pcow,i+1,j,l,t − Pcow,i,j,l,t

hx

]
−

λo,i− 1
2 ,j,l,t

hx

[
Pw,i,j,l,t − Pw,i−1,j,l,t

hx
+
Pcow,i,j,l,t − Pcow,i−1,j,l,t

hx

]
+

λo,i,j+ 1
2 ,l,t

hy

[
Pw,i,j+1,l,t − Pw,i,j,l,t

hy
+
Pcow,i,j+1,l,t − Pcow,i,j,l,t

hy

]
−

λo,i,j− 1
2 ,l,t

hy

[
Pw,i,j,l,t − Pw,i,j−1,l,t

hy
+
Pcow,i,j,l,t − Pcow,i,j−1,l,t

hy

]
+

λo,i,j,l+ 1
2 ,t

hz

[
Pw,i,j,l+1,t − Pw,i,j,l,t

hz
+
Pcow,i,j,l+1,t − Pcow,i,j,l,t

hz
− γo,i,j,l+ 1

2 ,t

]
−

λo,i,j,l− 1
2 ,t

hz

[
Pw,i,j,l,t − Pw,i,j,l−1,t

hz
+
Pcow,i,j,l,t − Pcow,i,j,l−1,t

hz
− γo,i,j,l− 1

2 ,t

]
− do1,i,j,l,t

∆t
δPi,j,l,t + qo,i,j,l,t

)
(2.26)
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Chapter 3

Solution Scheme

The separation of Equation (2.3) into Equations (2.16) and (2.17) in the IMPES method allows us to easily

solve the nonlinear system in an iterative fashion: first, we solve the implicit pressure equation, then we

update the saturation equations explicitly using the new pressures.

To solve the finite-difference pressure equation, Equation (2.21), we need to solve a linear system of the

form Ax = b for x. This is a problem that is well-studied (see, for example, [31]). While general direct

methods for solving the system exist (consider the QR and LU decompositions, etc.), they are not sufficient

for our needs for two reasons:

1. Direct methods are expensive, and

2. Direct methods do not, in general preserve matrix sparsity.

Regarding (1), most direct methods for general matrices cost O(n3), which is not acceptable in our case (as

any suitable discretization of the subsurface over which we will be computing will be generating more than

104 unknowns). With respect to (2), each point in our grid is connected to at most six others (neighboring

nodes left and right, up and down, forward and backward), so the resulting matrices are sparse, i.e., have

very few nonzeros relative to the potential number of nonzeros. Knowing that the underlying structure has

only O(n) nonzeros, it is inconvenient1 to store the potentially full matrices that result from naively applying

direct methods.
1Sometimes impossible, depending on available memory and the size of the problem.
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Two alternatives to general direct methods are iterative methods and adaptations to direct methods

to preserve sparsity. To preserve sparsity, there exist methods that take advantage of the small number of

nonzeros by using reordering techniques, typically in an LU decomposition. However, for 3D problems such as

those in which we are interested, comparable or better performance can be obtained with iterative methods,

which develop improved approximations to the solution with successive iterations [29]. The inherent benefit

in such approximation methods is that often the cost to compute a “good enough” solution (i.e., one that is

accurate to discretization error) is much less than that for an exact solution.

3.1 GMRES

Solving Ax = b in an iterative fashion requires first generating an initial guess, x0, of the solution, x, then

improving the guess via some iterative algorithm. To ease the following discussion, we will adopt some

mathematical formalism here. In particular, let A ∈ Rn×n, x ∈ Rn, b ∈ Rn, and ε ∈ R+. In an iterative

method then, our goal is to find an x̂ ∈ Rn such that the norm2 of the residual is sufficiently small, i.e.,

||r|| ≡ ||Ax̂− b|| < ε.

A popular iterative method (and the method we will use) for finding an approximation x̂ is the generalized

minimal residual method, or GMRES [30]. While, in many formulations, the pressure matrix is symmetric

and, thus, methods to take advantage of this symmetry (such as the conjugate gradient method3) are

employed, the coefficients dα2 which appear in Equation (2.24) depend on the current node’s porosity and

fluid density (which in turn depends on the pressure at that node), precluding symmetry. This causes the

problem to require a more general iterative method such as GMRES.

The GMRES method, in concept, is simple: at each iteration, k, we seek xk ∈ Kk to minimize the kth

residual norm, ||rk||. Here, Kk is the kth Krylov subspace of the problem, defined as

Kk(A, r0) ≡ span
{
r0, Ar0, A

2r0, ..., A
k−1r0

}
,

where r0 ≡ b−Ax0 for some initial guess x0. In our algorithms, we will choose x0 = 0 and thus r0 = b. We

2Whenever not specified, the norm used should be assumed to be the Euclidean 2-norm || · ||2
3Assuming the matrix is additionally positive-definite.
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see that, by definition, this means that the approximations we find are of the form

A−1b ≈ xk = pk−1(A)b, (3.1)

where pk−1 is a polynomial of degree k − 1 [29].

To explicity construct xk, we use a process known as Arnoldi iteration to form an orthonormal basis of

Kk(A, r0). Our goal is to find the xk that is the minimizer of ||Ax− b||:

xk = argmin
x∈Kk

||Ax− b||. (3.2)

Given an orthonormal basis {qi} for Kk, we can assert the existence of a y ∈ Rk such that xk = Qky, where

here Qk is the n× k matrix

Qk = [q1|q2|...|qk] .

Such a Qk is exactly what the Arnoldi algorithm (Algorithm 1) gives us. Beginning with q1 = b/||b||, we

use the modified Gram-Schmidt process to form our orthonormal basis by, at each iteration k, generating a

vector q̃k ∈ Kk via multiplication by A to generate a new direction, which is orthogonalized against each of

the previously generated vectors in turn to construct qk ∈ Kk \Kk−1. In matrix form, the Arnoldi algorithm

Algorithm 1 The Arnoldi Algorithm [19]

Given q1 with ||q1|| = 1

for j = 1, 2, ... do

q̃j+1 ← Aqj

for i = 1, 2, ..., j do

hi,j ← 〈q̃j+1, qi〉

q̃j+1 ← q̃j+1 − hijqi

end for

hj+1,j = ||q̃j+1||

qj+1 = q̃j+1/hj+1,j

end for

may be written as

AQk = Qk+1Hk+1,k,
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where Hk+1 ∈ Rk+1×k is the matrix whose top k × k block is made up of {hi,j} (according to Algorithm 1)

and whose last row is zero except for the element hk+1,k.

Hence, with Arnoldi in hand, we can reframe the problem of Equation (3.2) as finding

yk = argmin
y∈Rk

||AQky − b|| = argmin
y∈Rk

||Qk+1Hk+1,ky − b|| (3.3)

= argmin
y∈Rk

||Qk+1(Hk+1,ky − βe1)|| = argmin
y∈Rk

||Hk+1,ky − βe1||,

xk = Qkyk,

where e1 is the vector with a 1 in the first component and zeros everywhere else, β = ||b||, and the last

equality follows from the columns of Qk+1 being orthonormal. Vector yk can now be found cheaply with a

QR factorization of Hk+1,k, and xk extracted from yk. Because of the form of Hk+1,k, information regarding

its QR factorization can be saved from iteration to iteration via Givens rotations to reduce the cost of

the algorithm. The GMRES algorithm can be seen in Algorithm 2, where we terminate when the desired

accuracy is reached (or some maximum iteration count is exceeded). We note that the residual norm ||Ax−b||

can be checked implicitly.

3.1.1 Restarts

As the size of the matrices involved increases with each iteration, one common modification to GMRES is

to incorporate a ‘restart’ after some number of iterations, where we take the current estimate xk and throw

away our information about the Krylov subspace, then set x0 = xk and begin the Arnoldi iteration from

the beginning (this variant is known as GMRES(k)). This puts a limit on the number of basis vectors that

must be stored and orthogonalized against, but it also unfortunately can cause the iteration to stagnate,

and GMRES(k) is not guaranteed to converge [29]. We choose to use GMRES(k) for our problem in order

to cut down on costs, but note that, depending on the number of iterations before restart and number of

total iterations, standard GMRES could potentially be a better choice.
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Algorithm 2 The GMRES Algorithm [31]

q1 ← b/||b||

for k = 1, 2, ..., N do

q̃k+1 ← Aqk

for i = 1, 2, ..., k do

hi,k ← 〈q̃k+1, qi〉

q̃k+1 ← q̃k+1 − hikqi

end for

hk+1,k = ||q̃k+1||

qk+1 = q̃k+1/hk+1,k

Check ||Ax− b||

end for

yk ← argmin
y∈Rk

||Hk+1,ky − βe1||

x← Qkyk

3.2 Convergence and Preconditioning of GMRES

3.2.1 Convergence

An important factor regarding the GMRES Algorithm, or, indeed, any iterative algorithm, is its rate of

convergence – how many iterations do we need to perform to get the residual norm down to the desired error

tolerance?

From Equation (3.1), the residual rk in standard GMRES satisfies

||rk|| = min
pk
||pk(A)r0||,

with the restriction that pk(0) = 1. We see this by noting that Equation (3.1) implies

rk ≡ b−Axk = b−Apk−1(A)b = [I −Apk−1(A)] b = pk(A)b

where, for the general case, b can be replaced by r0. Since the identity naturally arises at each iteration, we

see that the constant value of the polynomial pk must be 1, which explains our restriction above.
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Following the derivation of Greenbaum [19], we assume that A is diagonalizable as A = V ΛV −1 (where

V is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues) and see that

||rk|| = min
pk
||pk(A)r0|| = min

pk
||V pk(Λ)V −1r0|| ≤ κ(V ) min

pk
||pk(Λ)|| · ||r0||

and thus, assuming ||r0|| 6= 0, that

||rk||
||r0||

≤ κ(V ) min
pk

max
i
|pk(λi)|, (3.4)

where κ(V ) is the 2-norm condition number of V .

As we have mentioned before, in our case the matrix A is not symmetric. However, it is close to being

symmetric, positive-definite (SPD). In particular, if we look at a subset4 of the eigenvalues for a particular

problem (Figure 3.1) we see that the imaginary parts are small (in this case, zero, though again we stress

this is only a subset) and the real parts are positive. We note that we obtain estimates of the extremal

eigenvalues of A by using those of the Hessenberg matrix H inside GMRES [5].

In the case that the eigenvalues are all positive real (A is SPD), κ(V ) = 1 and the optimization problem of

Equation (3.4) reduces to the problem of finding the minimax polynomial on the real interval [λmin, λmax]. In

approximation theory, it is well known that this corresponds to the kth shifted, scaled Chebyshev polynomial,

and it follow from this that

||rk||
||r0||

≤ 2

(√
λmax/λmin − 1√
λmax/λmin + 1

)k
. (3.5)

For a detailed proof of this, we direct the reader to [19].

In Equation (3.5), we see a nice bound on the convergence rate of GMRES in terms of the largest and

smallest eigenvalues for an SPD matrix. Heuristically, we can5 argue that, because A is close to SPD, the

derived bound still provides some useful intuition behind how GMRES will behave. In particular, we see

that the wider the spectrum of A is, the more GMRES iterations it will take to bring the residual down to

a given tolerance. This difference can be dramatic. Consider, the case of a small spectrum, λmax = 4 and

λmin = 1. Then we see in the SPD case that with each iteration the residual norm decreases by at least a

4It is infeasible to calculate all the eigenvalues for a given discretization for problems of the size with which we are dealing.
5Though perhaps we shouldn’t.
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Figure 3.1: The first 100 eigenvalues estimated by GMRES for a typical problem, plotted in the complex

plane. Note that the real axis is plotted on a logarithmic scale.
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factor of 3. In contrast, if a spectrum is very wide, e.g., λmax = 106, λmin = 1, then the residual is only

guaranteed to decrease by a factor of about 1.005 – the iteration is almost useless.

3.2.2 Preconditioning

As the convergence of GMRES depends on the spectrum of the matrix with which we are iterating, an

essential tool in numerical linear algebra is to replace A in the iteration with a “preconditioned” version of

A, which has a nicer spectrum. For right preconditioning, we seek a matrix M such that AM−1 is closer to

normal than A with more clustered eigenvalues, then we use AM−1 in our iterative method instead of A,

solving the system

AM−1y = b,

and then, finally, computing x = M−1y. The end result is an iterative process that, if we’ve chosen M well,

converges more quickly than simply iterating on A.

Choosing the correct preconditioner is a difficult problem and, in most cases, it seems that preconditioner

choice is more of an art than a science. For our purposes, we will look at two difference choices of precondi-

tioner: the Jacobi (or “diagonal”) preconditioner, and an Algebraic Multigrid (AMG) preconditioner. The

former is one of the simplest forms of preconditioning and is very cheap to construct and apply, whereas the

latter is based on more modern ideas and can be expensive.

Jacobi

The Jacobi preconditioner is a simple, yet effective one for many problems of interest. For Jacobi precondi-

tioning, we choose M = D ≡ diag(A), such that the matrix AM−1 is simply A with each element aij divided

by the element on the main diagonal6 of that column, δjj [19]. Jacobi has the advantage of being very cheap

to construct and use, given that the entries of D can easily be extracted from A and multiplication by a

diagonal matrix can be done in linear time, but it often faces problems due to a lack of robustness – its

simplicity is its downfall, and there are many more complicated preconditioners which often beat Jacobi in

terms of convergence rate and overall time-to-solution.

6Here we note that we require the main diagonal to be non-zero, which is true for our matrices of interest.
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AMG

A more complicated method for preconditioning involves the use of what are known as algebraic multigrid

(AMG) methods. Originally, multigrid methods arose from a geometric observation: during Jacobi- or

Gauss-Seidel-like iteration on some elliptic differential equation discretized on a grid, the high-frequency

error is damped much more quickly than the low-frequency (or “smooth”) error [32].

In a discretized setting, it is well-known that the concept of frequency is relative to the discretization.

For example, if we consider the function cos(πx) on the discrete domain Ω1 = {0, 1, ..., 10}, then we see

in Figure 3.2 (top) that we would consider it to be highly oscillatory7. However, if we consider the same

function on the finer domain Ω2 = {0, 1/10, ..., 10}, we see in Figure 3.2 (bottom) that, relative to this grid,

the function is much smoother.

Such observation gave rise to the idea of geometric multigrid: given a problem discretized on a fine grid

Ωh, improve the solution by restricting the error and residual to a coarser grid (in many cases, this coarser

grid is Ω2h = “every other point in Ωh”), solving there, then interpolating a correction term back to the fine

grid. Via this method, the portion of the error in the solution that was smooth relative to Ωh should have

been sufficiently damped (as it is resolved well on Ω2h) and the remaining error in the solution should be

oscillatory relative to Ωh, which is quickly damped by (weighted-) Jacobi or Gauss-Seidel iteration on Ωh

[32]. This would be considered a an example of a “two-grid” scheme, but one strength of multigrid is its

recursive nature – we could simply continue to restrict things in our initial guess, to Ω4h,Ω8h and so on.

In geometric multigrid as we’ve discussed so far, the key idea has been taking advantage of the phyiscal

grid inherent in the problem and different observations regarding the spatial sampling frequency. The success

of geometric multigrid, however, has prompted the application of multigrid-type methods to general linear

systems, even those in which no underlying grid exists – this is AMG.

Geometric multigrid has two basic aspects: the relaxation scheme, which smooths high-frequency error,

and the coarse-grid correction scheme. For AMG, once we have a relaxation scheme, we face two main

questions [11]:

• What does it mean for error to be low-frequency when no grid exists?

7In fact, it is the highest frequency representable on this grid.
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Figure 3.2: The function cos(πx) on two different discrete domains. Relative to Ω1 (top), the function is

very oscillatory, but relative to Ω2 (bottom), it looks much less oscillatory.
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• How do we generate a “coarse grid” from a general matrix A?

A simple solution for the first question is to simply define low-frequency (algebraically smooth) error

as that error which the relaxation scheme does not effectively damp [32]. With regards to the second

question, we can think about the matrix A as being a weighted adjacency matrix and consider the nodes of

its associated graph F to make up the fine “grid”. The problem then reduces to finding a subset, C ⊂ F ,

such that the the solution on C can be used to approximate the solution on F and the high-frequency error

appears smoother on C [11]. There exist algorithms for finding C, which can be more or less complicated,

but what they have in common is that they use the information in the elements of A to find the coarse grid.

As such, AMG is very flexible, but this comes at the cost of an additional setup phase in which A is analyzed

to determine the grid hierarchy and necessary interpolation/restriction operators [32].

Now that we’ve given a (very) basic outline of AMG, its use as a preconditioner is not difficult to

understand. Given a Krylov method such as GMRES, our preconditioner can be considered a general

operator, and in AMG-preconditioned GMRES we let the preconditioning algorithm be the actual application

of multigrid for a certain number of cycles. For example, we can consider the case of a multigrid V-cycle with

grids ΩN−1 to Ω0. Application of AMG as a preconditioner in GMRES involves solving systems of the form

Mz = r (or equivalently, computing z = M−1r) [19], which then corresponds to restricting r to the coarsest

level Ω0 (pre-smoothing before each restriction), solving on the coarse grid, then interpolating corrections

to the solution of Ae = r back to the finest grid ΩN−1 (post-smoothing before each interpolation). We

note that the theory of using a multilevel preconditioner does not differ significantly from applying Jacobi

or Gauss-Seidel as a preconditioner itself [32]. For a more in-depth treatment (including parallelization), we

direct the reader to [20].

3.3 Picard Linearization

We have looked at some of the theory behind solving linear systems numerically, but, as we mentioned

in Section 2.3, our system of PDEs has some nonlinearities that should not be ignored. There are two

main linearization strategies used in solving groundwater flow equations: Picard iteration, and Newton

iteration [25]. As their names imply, each involves employing a nested iteration within the time-stepping
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loop. Each method has its pros and cons. In particular, the Picard scheme is inexpensive, but exhibits

only linear convergence of the inner iteration, whereas Newton iteration converges quadraticaly but requires

computation of a Jacobian, which is expensive [28]. In essence, with Picard we can perform more inner

iterations of a cheaper method, whereas with Newton we would perform fewer inner iterations of a more

expensive method [25].

We will use a Picard iteration for our equations, due to its simplicity and cheap computational cost per

iteration. Picard iteration is a fixed-point method for solving nonlinear systems of the form

x = F (x), (3.6)

where F is some system nonlinear in x ∈ Rn. Picard iteration involves simply taking an initial guess x0 and

then obtaining better approximations by applying F repeatedly,

x(0) = x0

x(k) = F (x(k−1)).

Given that Equation (3.6) does, in fact, have a solution and that F follows some loose assumptions with

regard to Lipschitz continuity (we direct the reader to [22]), the Picard iteration will converge. We define

the nonlinear residual norm as

||r(k)NL|| ≡ ||x
(k) − F (x(k))||.

In our model, the equation we need to linearize comes from Equation (2.18), where we note that because

both the matrix At and the vector bt depend on coefficients that are functions of the pressure and saturation,

we can write At as At = A(δPt,St), and bt as b = b(δPt,St). Then the fixed-point equation of interest is

δPt = A(δPt,St)
−1b(δPt,St).

The natural initial guess for the change in pressure between successive timesteps is δPt = 0, and with this

the corresponding Picard iteration is

δP
(0)
t = 0

δP
(k)
t = A(δP

(k−1)
t )−1b(δP

(k−1)
t ). (3.7)

32



Even in Equation (3.7), there are still choices that can be made. In paticular, when choosing how to

update A and b in the Picard iteration, we note that they are dependent not only on δP but also on S. The

purpose of the iteration is to resolve the nonlinearities of the equation, and so it is popular to treat linear

terms or terms that are less strongly nonlinear as “frozen” and not update them with each iteration,k.

For our purposes we will look at two different program structures for the nonlinear updates. The first,

following Abriola et al. [1], simply involves updating every dependence at each Picard iteration following

Algorithm 3 . Because this resolves nonlinearities in both the pressure and the saturation at each iteration,

we will refer to this as Parallel Picard iteration. We note that the convergence criterion is some tolerance

on the nonlinear residual, or a maximum number of iterations, among other choices.

Algorithm 3 Parallel Picard iteration

for t = 1, 2, ..., tmax do

δP
(0)
t = 0

S
(0)
t = St−1

for k = 1, 2, ..., kmax do

//Picard iteration

δP
(k)
t = A−1(δP

(k−1)
t ,S

(k−1)
t )b(δP

(k−1)
t ,S

(k−1)
t )

P
(k)
t = Pt−1 + δP

(k)
t

S
(k)
t = St−1 +B(δP

(k)
t ,S

(k−1)
t )P

(k)
t

if converged then

break

end if

end for

end for

The second method we will use freezes the saturations for the Picard iteration process and calculates the

saturation update after the fact. This saturation can then be used to perform an additional linearization of

the pressure equations. If the saturation and this linearization sufficiently agree (ie, the nonlinear residual is

small), then we can move on to the next timestep. Otherwise, we will use this new saturation and perform
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the entire Picard iteration process again. This sort of additional “sanity check” can be thought of as a

predictor-corrector loop, where we guess the saturation will not change drastically with the pressure, solve

the pressure, then update the saturation and see if this new saturation affects the pressure substantially or

not. We refer to this as Predictor-Corrector Picard iteration, and it can be seen in Algorithm 4.

The motivation for Algorithm 4 is mathematical. In the parallel scheme of Algorithm 3, we note that the

pressure nonlinearities are never resolved to our tolerance before we use them to update the saturations. In

contrast, pulling the saturation out of the Picard loop allows us to, for a given saturation guess, completely

resolve the pressure before we move on to update the saturation again. The predictor-corrector step then

provides an extra check to ensure that the new saturation and calculated pressure agree – if they don’t, we

perform the same steps again. This makes sense, because it restricts the Picard iteration itself to the implicit

portion of the solution scheme, i.e., that for which we can actually track the residual.

3.4 Adaptive Time-stepping

Due to the hybrid implicit/explicit nature of IMPES, the resultant numerical algorithm faces some restric-

tions on the maximum timestep, as mentioned previously. In [1], however, Abriola et al. point out that these

restrictions are a function of not only the discretization in space, but also the soil and fluid properties such as

the capillary pressure gradient. As these variables change over the course of the simulation, it is reasonable

to intelligently vary the timestep size so as to take as large a timestep as possible at each iteration, thus

reducing the overall number of solves required.

We use the same heuristic as in [1] for Parallel Picard iteration, adjusting the timestep as a function of

the number of Picard iterations required for the previous solve. In particular, given some specified initial

timestep ∆t0, we define the next time step as

∆tt =


0.75∆tt−1 if more than 20 Picard iterations required at time t− 1,

1.05∆tt−1 if 3 or fewer Picard iterations required at time t− 1,

∆tt−1 else.
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Algorithm 4 Predictor-Corrector Picard iteration

for t = 1, 2, ..., tmax do

S
(0)
t = St−1

for p = 1, 2, ..., pmax do

//Predictor-Corrector

δP
(0,p)
t = 0

for k = 1, 2, ..., kmax do

//Picard iteration

δP
(k,p)
t = A−1(δP

(k−1,p)
t ,S

(p−1)
t )b(δP

(k−1,p)
t ,S

(p−1)
t )

P
(k,p)
t = Pt−1 + δP

(k,p)
t

if Picard converged then

break

end if

end for

S
(p)
t = St−1 +B(δP

(p)
t ,S

(p−1)
t )P

(p)
t

if Predictor-Corrector converged then

break

end if

end for

end for
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Chapter 4

Results

In this chapter, all simulations were run on a single node of the Tufts Linux Research Cluster with a 2.8GHz

Intel R© Xeon R© processor and 16GB of RAM. For these numerical experiments, we use a test problem with

a completely flat water table and fluid parameters as given in Appendix B. Our timestep parameters are

∆t0 = 60s, ∆tmin = 1× 10−4s, and ∆tmax = 86400s. In our spatial discretization, we use l = 141 points in

the vertical (z) direction, m = 65 points in one horizontal direction (x), and n = 21 in the other (y). The

spatial step sizes are hz = 0.05 m, hx = 0.25 m, and hy = 0.5 m. We enforce no flow through the top and

bottom boundaries, and constant pressure / saturation at the horizontal boundaries.Material property values

for the capillary pressure and saturation calculations were generated from simulation with the Transition

Probability Geostatistical Software Library (T-PROGS) [13].

4.1 Original Fortran and C Port

The original VALOR library of Abriola et al. outlined in [1] was written in Fortran using sparse linear

algebra routines from the SLATEC Common Mathematical Library. The implementation uses Jacobi for

left preconditioning of GMRES and follows the Parallel Picard iteration as described in Algorithm 3.

Because the SLATEC library is no longer well-documented nor supported, we will move away from it

in this thesis in favor of the Portable, Extensible Toolkit for Scientific Computation (PETSc), a C/C++

library which includes BLAS- and LAPACK-type subroutines such as are in SLATEC, and also provides a
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front-end to several other modern scientific computing libraries [6].

We port the pressure matrix assembly and solution via GMRES to the PETSc library, using the same

algorithms and parameters. In particular, we use a restart parameter k = 10 and run GMRES for 30

iterations at each time step (i.e., restart three times). The Parallel Picard iteration is terminated when the

maximum change in saturation over all nodes is less than 1× 10−4. Note that as part of the porting process

the sparse matrix format was changed from the SLATEC-preferred coordinate format to the PETSc-preferred

Compressed Sparse Row (CSR) format [5].

In Figures 4.1 and 4.2, we see views for the solution after 5 days for both Fortran and C performing the

same calculations. Qualititatively, the solutions have the same basic profile – we see high concentrations

and low concentrations in the same place for both implementations, which gives credence to the idea that

these are comparable solutions. Numerically, the 2-norm of the difference between the solutions is on the

order of 1×10−4, which is sufficiently small. We note that while the solutions are not exactly the same, this

discrepancy can be expected as we are using different libraries which perform the computations in a different

order.

A fortunate benefit of the switch from Fortran to C for the pressure solve is the greater efficiency of the

PETSc library for solving the sparse system – even with the same parameters, we see in Figure 4.3 that the

C implementation is about 1.7x faster overall than the Fortran implementation, with all of that speed-up

coming from the pressure solve.

There are two other preliminary changes we would like to make to the original implementation for our

following numerical experiments. First, because we will later be changing the flat 30 iterations to tolerances

on the residual, we would like to switch from left preconditioning to right preconditioning. The reason for

this is that left preconditioning will change the residual norm that we are actually minimizing during the

GMRES alogrithm, while right preconditioning will not [29].

Second, we would like to add an additional error criterion to our Picard iteration. In particular, whereas

the original VALOR source code uses only the max-norm over saturation as described above, we would like

to monitor the max-norm over the pressure, and the nonlinear residual as well. Since the pressure solution

is changing with each linearization as well as the saturation solution, enforcing the pressure solution to
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Figure 4.1: NAPL Saturation after 5 days for Fortran implementation.

have converged before we advance the timestep is good practice. We use a scaled L2 norm to monitor the

nonlinear residual, defined as ||A(δPk
t )δPk

t − b(δPtk)||2/(mnl). We note that scaling by the total number of

grid points allows for some normalization with respect to grid size. We restrict this to 1×10−4 in accordance

with our other tolerances.
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Figure 4.2: NAPL Saturation after 5 days for C implementation.

Figure 4.4 shows the comparative runtimes for right and left preconditioning, and for right preconditioning

with the new error criterion. We note that right preconditioning takes a small performance hit with these

parameters, but that the additional error criterion does not increase the runtime noticeably.

For all the remaining simulations, we will use right-preconditioned GMRES in the C implementation
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Figure 4.3: Comparative runtime for the C and Fortran implementations. We break the total time down

into three main components: the pressure solve, the saturation solve, and the general program overhead (file

I/O, matrix/vector assembly, etc.).

Figure 4.4: Comparative runtime for left preconditioning, right preconditioning, and right preconditioning

with a tolerance on the nonlinear residual norm.
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with the two-norm error as described above.

4.2 Varying GMRES Tolerances

While above we focused on using a set number of iterations of GMRES for each linear solve, an alternate

practice that we will adopt is using a tolerance on the residual as described in Section 3.1. This makes

sense because our ultimate goal is not to enforce a given number of iterations of GMRES–it’s to find an

approximate solution of the linear system. Using the Euclidean two-norm, we will put tolerances on both

the absolute residual norm,

Rabs ≡ ||b−Ax||,

and the relative residual norm,

Rrel ≡ ||b−Ax||/||b||.

The first is a metric for the size of the residual in an absolute sense, and the second gives us the relative size

of the residual compared to the size of the right-hand side, which is also the ratio that gives the reduction

in the size of the residual as compared to the initial guess x0 = 0.

In addition to the standard residual checks above, we also implement a “stagnation” tolerance due to

a simple observation. In the initial implementation, the GMRES solver tends to perform well initially for

any given linearization and then the reduction in residual between successive iterations approaches zero

(examples can be seen in Figure 4.5.). To avoid wasting cycles on iterations that aren’t really helping, we

force GMRES to quit when the reduction in residual is less than 1% in sucessive iterations. This returns us to

the linearization step of the IMPES algorithm, in hopes that the system resulting from the next linearization

will be better conditioned, or that progress can be made from a smaller improvement.

In Figure 4.6, we see the runtime breakdown for different tolerance choices. It is interesting to note that

the stagnation tolerance makes a marked improvement in the pressure solve time, but beyond that the choice

of tolerance does not drastically impact the program run time. A comparison of the solutions shows that

the 2-norm difference when adding the stagnation tolerance to GMRES is on the order of 1×10−3 and the

max-norm difference is on the order of 1×10−4. This is greater deviation then we saw in the transition from
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Figure 4.5: Plots of the relative residual in GMRES with Jacobi preconditioning as a function of iteration

index for example timesteps. Above, we see an iteration that starts off functional then slowly stagnates.

Below, the algorithm is effectively stagnant after even just the first few iterations.
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Figure 4.6: Comparative runtime for different choices of tolerances. Top, we see the C version with nonlinear

residual tolerance from Figure 4.4. Below that is the same setup with the stagnation tolerance implemented.

The remaining runs use the stagnation tolerance with various relative residual tolerances (rtol) and absolute

residual tolerances (atol).

Fortran to C, but not by much. The parameters which showed the least deviation were rtol = 1×10−4, atol

= 1×10−8, so we will use those in the following simulations, since the computational cost does not differ

substantially from the best-case parameters1.

4.3 Varying Restart Parameter

Another parameter which is notoriously difficult to choose is the restart parameter k of restarted GMRES.

One would expect that a larger restart parameter would imply better convergence at the cost of more work

(as we are discarding less information), but this is not necessarily the case [15]. In this section, we look at

the effect of hand-tuning k on our test problem.

Figure 4.7 shows the results for values of k between 5 and 50, using rtol=1×10−4 and atol = 1×10−8 as

described above. The difference between the worst choice (k=50, about 4875 seconds of runtime) and the

1Basically, running for as many iterations as needed until GMRES stagnates.
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best choice (k=30, about 4267 seconds of runtime) is 608 seconds, which gives an idea of the overall range

of variation. The improvement of the best choice over the previous method (k=10, about 4608 seconds of

runtime) is 341 seconds. This is not as substantial a performance increase as we saw tuning other parameters,

but does represent a 1.08x boost that was repeatable in multiple trials.

Figure 4.7: Comparative runtime for different choices of GMRES restart parameter k.

4.4 Alternative Choice of Preconditioner

In Section 3.2.2, we discussed the importance of preconditioning for the GMRES algorithm. Until now,

our simulations have all been using a simple Jacobi preconditioner, but now we look at using AMG for

this problem. Using the BoomerAMG preconditioner from the Hypre library [16], we explore two different

methods. In the first, we perform the AMG setup phase (in which the coarse grid operators are determined

from the matrix) at each matrix solve separately. However, as we’ve previously mentioned, the AMG setup

phase is costly. Thus, our second method involves amortizing the cost of the setup over multiple linear

solves.

For a given timestep, the preconditioner is constructed for the first Picard linearization, but is not updated

with the pressures and saturation. If the initial guess is close to the true result, the old preconditioner should
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still be effective, though it will perhaps require a few more iterations (either GMRES or linearizations, or

both). If the cost of these additional iterations is less than the cost of the setup, there is a net gain.

Monitoring the GMRES residual at the same two timesteps we saw in Figure 4.5, Figure 4.8 shows the

strength of AMG. GMRES on the AMG-preconditioned problem does not stagnate and exhibits a much

better convergence rate than on the Jacobi-preconditioned problem. However, we must expect this to come

at some cost.

In Figure 4.9, we see the runtime results of applying these two AMG methods. For the non-amortized case,

we choose a strength threshold of 0.75, which is a parameter that determines which inter-node connections

are “strong” in the coarsening process. For the amortized case, as it is more promising than the first, we

explore the parameter space for the strength threshold.

We see that the non-amortized implementation of AMG performs very poorly, taking even more time

to run than the original Fortran code. This illustrates the problem with AMG we previously discussed –

the setup phase can be expensive, and we are constructing many different linear systems in the course of

time-evolving the pressures and saturations.

The amortized implementations show varying performance. All the choices of strength threshold perform

better than the non-amortized case with respect to the pressure solve itself, but we see that AMG with a

threshold of 0.25 does not beat the non-amortized case overall. This can be simply explained by the adaptive

timestepping – the amortized, low-threshold implementation does not solve the system well, and thus causes

the timestep to be decreased. This results in more total pressure solves, saturation solves, and matrix/vector

assemblies.

The amortized implementations with strength thresholds of 0.75 and 0.5 perform better, but still do not

see as great of a computational gain as the best-case Jacobi parameters. We note that experiments with

incomplete LU and Cholesky2 preconditioners did not yield results significantly better than the amortized

AMG case.

2Not technically applicable, but A ≈ SPD.
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Figure 4.8: Plots of the relative residual in GMRES with AMG preconditioning as a function of iteration

index for example timesteps. The strength threshold for BoomerAMG was set to 0.75.

4.5 Alternative Linearization Structure

The final alteration we consider is the restructuring of the fixed-point iteration described in Section 3.3.

Using the same tolerances as before (rtol = 1×10−4, atol = 1×10−8) and the Jacobi preconditioner, we
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Figure 4.9: Comparative runtime for AMG implementations. Compare to Figure 4.5 for Jacobi. Note that

the vertical and horizontal limits are different between these and the Jacobi plots.

run the test problem using both the Parallel Picard iteration and the Predictor-Corrector Picard iteration

structure. For the predictor-corrector loop, we use as our convergence criterion the same nonlinear residual

check that we introduced for the original structure.

In Figure 4.10, we see that the new linearization structure results in a greater runtime, both for the

pressure solution and saturation solution. It is understandable that we might see this result – we can

perform more Picard iterations now per saturation solve, so we might expect the number of pressure solves

to increase in general. Indeed, profiling reveals that the new linearization structure averages about 8 Picard

iterations (and thus linear solves) total per time step, whereas the previous method averages about 6. The

profiling also reveals that the number of timesteps for the new structuring is greater than those previously

(possible because of the adaptive timestepping) – 4136 versus 3451. This is rather substantial, so we look

further at the time behavior of the solution.

Figure 4.11 shows the net simulated time as a function of the iteration for each of the two cases. We

see that while both methods increase and decrease the time step at the same time in the simulation (i.e.,

horizontal cross-sections hit points on the curves which have roughly the same derivative), the iteration at
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Figure 4.10: Comparative runtime results with the Parallel Picard iteration structure and Predictor-Corrector

Picard iteration structure.

Figure 4.11: Simulated time vs timestep for the two different Picard structures. We see that the adaptive

time-stepping behaves differently for the two cases – the new structure lags the old.
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which these events occur is not the same for both. In fact, the new predictor-corrector linearization starts

off performing the same as the previous Picard structure, then begins to lag it. This difference in behavior

implies that the predictor-corrector requires more linearizations than the previous structure at certain time

steps, and thus the step-size does not increase there, which causes the predictor-corrector to fall behind.

We note that the max norm difference between the solution for the new structure and the old is on the

order of 1×10−2, much larger than we’ve seen previously. We discuss this more in Section 4.6.

4.6 Discussion

4.6.1 Summary of Results

Figure 4.12: Comparative runtimes for each change explored in this thesis. Note that the cases where

the stagnation tolerance was introduced and restart parameter was modified both use right Jacobi and

monitor the nonlinear residual, as does the implementation using the Predictor-Corrector loop. The AMG

implementations also use GMRES(30) and the stagnation tolerance, though stagnation was never an issue

with AMG.

In Figure 4.12, we see the comparative runtimes plotted together for the original test problem. From the

top, the first 5 bars show roughly the “successful” changes to the solution algorithm and how much each
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contributed to lessening the runtime. The remaining plots, consisting of the AMG cases and the alternative

linearization scheme, did not offer computational gain in the form of runtime improvement, for different

reasons that we explore below.

For verification of the results obtained with our successful changes, we use an alternative test problem

with the same fluid and block parameters as the first but with different material parameters as generated by

T-PROGS. The max-norm difference of the solutions is about 7×10−4, which is not large. The comparative

runtimes can be seen in Figure 4.13, where we observe about a 6.25x speed-up.

Figure 4.13: Comparative runtimes for the second test problem. We look at the original Fortran program

and the C implementation using right Jacobi, rtol = 1×10−4, atol = 1×10−8, the stagnation criterion, and

k = 30.

4.6.2 AMG vs Jacobi

We observed in the Results section that, even when amortizing AMG builds across multiple linear solves,

Jacobi still outmatches AMG by a wide margin. To more deeply understand this, we will look at the

eigenvalues of the preconditioned matrices for both the Jacobi and AMG cases, in accordance with the

theory outlined in Section 3.2.1.

Figure 4.14 shows the eigenvalues estimated from GMRES for a given timestep on a log plot for both types
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Figure 4.14: Eigenvalue magnitudes obtained for both the Jacobi and AMG preconditioners for a given

timestep. We note that the number of eigenvalues obtained for AMG is less than the 100 obtained for Jacobi

beacuse the AMG residual reaches machine precision in much fewer than 100 iterations.
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of preconditioning. We note that in both cases, the eigenvalues obtained were positive real, which reinforces

our belief that A is close to SPD. Looking at the plots, we see that, while the estimated conditioning of the

Jacobi matrix is obviously inferior to that of the AMG matrix, the Jacobi conditioning isn’t too bad.

In particular, we can use Equation (3.5) to get a rough estimate on the number of iterations it would

require to obtain a relative reduction in residual of 1×10−4, given our data. Solving for k, we see that

achieving such a reduction for Jacobi would require about 314 iterations in the SPD case (estimating λmax ≈ 2

and λmin ≈ 5 × 10−4), where the same reduction for AMG would require about 9 iterations (estimating

λmax ≈ 1 and λmin ≈ 3 × 10−1). While this is a large difference, the cost of an AMG iteration is much

higher than that of a Jacobi iteration, and we have to take the AMG setup costs into account. If we assume

that the cost of assembly can be amortized across the AMG iterations, in order for AMG to be more cost-

efficient we would need the amortized cost of assembly plus the cost of an iteration of AMG to be less than

314/9 ≈ 35 times as expensive as the cost of a Jacobi iteration. Because the cost of AMG depends on the

structure of the matrix A [32], it is not possible to give an exact statistic here on how expensive we expect

the cost to be on average during our timestepping, but we can assert that this is the range where it is feasible

that we might see Jacobi outperform AMG.

Given the above, while AMG provides a nice convergence rate and steady behavior throughout the

simulation, it seems that for our application it is advisable to just stick with Jacobi due to the sheer number

of linearizations and subsequent solves required.

4.6.3 Picard Restructuring

As we mentioned above, the Predictor-Corrector Picard iteration yielded results that varied numerically from

the previous results by an “uncomfortable” amount (max-norm difference on the order of 1×10−2). Visual

inspection of the solution cross sections after 5 days (Figure 4.15) shows that the solution does not differ

substantially in trends or overall character, but this is not the most rigorous measure. Because ground truth3

is not available for these simulations, it is difficult to say whether the new structure is providing spurious

results or not. It would be advisable to validate the solution against laboratory experiments to determine

3So to speak.
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how it compares to the previous solution.

Figure 4.15: Cross-sections of the solution obtained after 5-days of Predictor-Corrector Picard iteration on

our initial test problem. Compare to Figure 4.1.

We note additionally that the original adaptive timestepping scheme was developed for the original

Parallel Picard iteration, and thus it mostly likely needs modification to be optimal with the alternative
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algorithm structure. It is possible that a more fine-tuned method for changing the step-size could make the

new linearization scheme comparable to the old in terms of computational cost and runtime.
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Chapter 5

Conclusion

In this thesis, we first derived an expression for modeling contaminant transport in the subsurface, using

conservation of mass and Darcy’s law to obtain a system of partial differential equations relating the time

evolution of the phase saturations and the phase pressures. After a brief review of finite-difference theory,

we used the IMPES method to break the system into a discrete analogue with an implicit and explicit part

– the pressure and saturation, respectively.

We used the GMRES(k) method and Picard linearization to solve the nonlinear IMPES equations, under

a variety of configurations. Compared to the original implementation of Abriola et al. in [1], we observed

the following results with a test problem generated to simulate real conditions:

• Porting the matrix assembly and pressure solve to C with the PETSc library improved runtime over the

original Fortran version by about 1.7x. Modifying the code to use right-preconditioning and monitor

the nonlinear residual from the Picard linearization brought this gain down to about 1.6x.

• Monitoring the relative residual and terminating the GMRES iteration when stagnation was evident

yielded a further runtime improvement of just under 3x.

• Choice of residual tolerances for GMRES did not improve runtime by any substantial amount, but

proved to affect accuracy when compared to the original Fortran solution (i.e., some choices caused

solutions that agreed more with the Fortran output than others did).
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• Varying the GMRES restart parameter showed a small, but repeatable improvement of 1.08x between

the best-case (k = 30) and the previous parameter choice (k = 10).

• Use of an algebraic multigrid preconditioner proved to greatly improve GMRES efficacy, but setup cost

made the method impractical. Attempts to improve runtime by preconditioner re-use were somewhat

successful, but did not beat the Jacobi preconditioning runtimes.

• An alternative structure to the Picard linearization algorithm to separate the linearization of the

pressure from the saturation solution proved slower than the previous structure, and additionally

caused the final saturations to differ from the Fortran solution by as much as 1×10−2.

Attempts to use AMG as a preconditioner for GMRES, as mentioned, suffered due to the sheer number

of linearizations required during the timestepping process combined with the cost of assembling the precon-

ditioner. This is unfortunate, as the AMG preconditioner proved very effective in actually solving the linear

systems. Because of this fact, it would be interesting to look more at the use of AMG, perhaps in a different

context. For example, in [32], a streamline method for applying multigrid to IMPES equations is discussed,

which could potentially be used in our formulation.

The alternative linearization structure investigated in this thesis, as well, could warrant further investi-

gation. Due to the lack of a knowledge of the true solution to the system, it is unclear whether the difference

in solution in the new linearization as compared to the original structure is error, improvement, or simply

“difference”. Aziz and Settari imply in [4] that perhaps the nonlinear dependence of pressure on saturation

is much more important and difficult to resolve than the self-dependence of pressure, which could account

for the discrepancy, but further work is needed.

In total, we observed a 4.75x speed-up over the implementation in [1] for one test-problem, and a 6.25x

speed-up for another with similar parameters. Both of these tests used right-preconditioned GMRES with

Jacobi and tolerances as detailed in this thesis. The primary source of speed-up was clearly the implemen-

tation of the stagnation tolerance, which is a simple modification to the original algorithm that proves quite

effective.
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Appendix A

Calculating Capillary Pressure and

Relative Permeability

A.1 Functional Forms for Hysteretic Relationship

In multiphase flow, where the available pore volume is occupied by two or more distinct, immiscible fluids,

properly modeling the relation between capillary pressure of the fluids and their migration is critical to

obtaining accurate simulations [1]. In a canonical paper [12], Brooks and Corey note the hysteretic nature

of the capillary pressure / saturation and relative permeability / saturation relationships, concluding that,

while hysteresis is an important phenomenon in modeling imbibition and drainage, a functional form can

suffice in many cases. They present such a form for both the capillary pressure and relative permeability for

two-phase flow.

In two-phase flow, one phase can be considered as the “wetting” phase, and the other the “non-wetting”

phase, depending on how they interact in a capillary tube [12]. In our model, the wetting phase is water,

and the non-wetting phase is the organic liquid. From empirical observation, Brooks and Corey noted that

the log of the effective (or “normalized”) saturation of the wetting phase is approximately a linear function

of the log of the capillary pressure between the phases, i.e.,

57



S̄ ≡ S − Sr
Sm − Sr

≈
[
Pb
Pc

]λ
. (A.1)

Above, S is the wetting phase saturation, Sr is the residual wetting phase saturation, a constant dependent

on the fluid and medium which describes the fluid volume that cannot be reduced hydraulically, and Sm

is the maximum wetting phase saturation (which we assume to be identically one in our model). Pb is a

media-dependent constant called the bubbling pressure, and the parameter λ is an empirical fitting parameter

known as the pore size distibution index [1]. We obtain the functional form for the capillary pressure between

the fluid phases, Equation (A.2), by rearranging Equation (A.1), yielding

Pc = PbS̄
−1/λ. (A.2)

In [27], Parker, Lenhard, and Kuppusamy propose that once the above relationship is calculated for a given

wetting fluid and media, it can be transformed to the correct relationship for a different wetting fluid via a

scaling factor based on the fluid interfacial tensions. Following Abriola et al. in [1], we take the air/water

capillary pressure as the datum and obtain the NAPL/water capillary pressure by scaling Equation (A.2)

by the dimensionless parameter βow = σaw/σow, where σαβ is the α− β fluid pair interfacial tension.

The Brooks-Corey model of [12] also relates the relative permeability and normalized saturation using

the same parameters as above, for both the wetting and non-wetting fluids. The relative permeability of the

wetting fluid is given by

krw ≈ S̄(2+3λ)/λ =

[
Pb
Pc

]2+3λ

, (A.3)

and, for the non-wetting fluid, we have

krnw ≈ (1− S̄)2(1− S̄(2+λ)/λ) =

(
1−

[
Pb
Pc

]λ)2(
1−

[
Pb
Pc

]2+λ)
. (A.4)

A.2 Parker-Lenhard Model

In multiphase flow contaminant problems, another important dynamic for accurate transport modeling is

the entrapment of the organic phase liquid during imbibition (wherein a volume of the contaminant becomes

isolated by the water phase, bypassing the pores) [21]. In [26], Parker and Lenhard give a model for estimating

the effect of the entrapped organic phase on the apparent saturation of the water phase.

58



In particular, they consider an empirical result by Land [23] in which the normalized residual organic

saturation (corresponding to trapped organic saturation at zero capillary pressure) , S̄or, is given by

S̄or =
1− S̄minw

1 +R(1− S̄minw )
(A.5)

R =
1

S̄maxor

− 1, (A.6)

where S̄minw is the minimum normalized water saturation that has occurred at the location since oil was

introduced and S̄maxor is the maximum normalized residual organic saturation,

S̄maxor ≡ Sor
1− Swr

. (A.7)

They note that this is the maximum normalized entrapped organic saturation, achieved if free organic

liquid is continuously present during complete water imbibition, and then use simple linear interpolation to

calculate the actual normalized entrapped organic saturation, S̄ot, as a function of S̄w,

S̄ot = min

{
S̄or

(
S̄w − S̄minw

1− S̄minw

)
, S̄o

}
. (A.8)

Here, we take the minimum of the calculated value with the total normalized organic saturation because we

note total entrapped liquid cannot exceed the total present liquid [26].

Thus, during water imbibition, we use the Parker-Lenhard model to correct the normalized saturation

for entrapment and define the apparent water saturation as

S̄apprtw ≡ min
{
S̄w + S̄ot, 1

}
, (A.9)

where again we restrict the saturation to its theoretical maximum, one. This apparent saturation is then

used to calculate the capillary pressure.
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Appendix B

Test Problem Parameters

The following are the parameters used in the test problem for our numerical experiments.

• Gravity constant g = 9.80665m/s2

• 15 NAPL source nodes (1 L/day spill rate for 2.5 days)

• Compressibilities: Cw = 4.4× 10−10/Pa, Co = 0

• Reference Densities: ρ∗w = 999.032 kg/m3, ρ∗o = 1625 kg/m3

• Reference Pressures: P ∗w = P ∗o = 1.013× 105 Pa

• Viscosities: µw = 1.121× 10−3 Pa · s, µo = 8.9× 10−4 Pa · s

• System Temperature: 15◦ C

• Interfacial Tensions: σaw = 72.75 dyn/cm, σow = 47.8 dyn/cm
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