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In a Rayleigh-Taylor instability a dense fluid sits metastably atop a less dense fluid, a configuration
that can be stabilized using a magnetic field gradient when one fluid is highly paramagnetic. On
switching off the magnetic field, the instability occurs as the dense fluid falls under gravity. By
affixing appropriately shaped magnetically-permeable wires to the outside of the cell, one may
impose arbitrarily-chosen and well-controlled initial perturbations on the interface. This technique is
used to examine both the linear and nonlinear growth regimes for which the perturbation amplitudes,
growth rates, and nonlinear growth coefficients are obtained.

PACS numbers:

The general Rayleigh-Taylor (RT) instability
occurs when a density gradient is subjected to an acceler-
ation by an antiparallel pressure gradient in the presence
of perturbations, i.e., when ∇P · ∇ρ < 0 [1–3], where
P is the pressure and ρ is the mass density. This oc-
curs, for example, when a dense fluid is placed above
a less dense fluid in the presence of gravity and then
falls when the interface is perturbed. The RT instability
develops in three stages, beginning with an exponential
growth in which each perturbation mode develops inde-
pendently and is well described by linear stability theory
[3]. When the mode amplitude becomes comparable to
its wavelength, nonlinearities cause the growth rate to
decline [4–6], with bubbles of less dense fluid rising par-
allel to ∇ρ and separated by narrower spikes of denser
fluid traveling in the opposite direction. Finally, the now
large amplitude modes interact strongly, the scale of the
dominant structures increases, fluid interpenetration be-
comes turbulent, and memory of the initial perturbations
fades or is lost [6–9]. It is these last two stages that re-
ceive the overwhelming bulk of attention, as there are
significant inconsistencies among theory, simulation, and
experiment [10]. This is due in large part to poorly de-
fined initial conditions in experiments, particularly the
presence of uncontrolled long-wavelength perturbations.
To date experiments have been based mainly on physical
motion of the cell [5, 7, 10–15]. These protocols suf-
fer from jitter and not-well-controlled initial conditions,
and tend to be poorly suited for establishing initial in-
terface perturbations that involve a specific single mode
or spectrum of modes [13, 16].

In this Letter we demonstrate how an extension of our
magnetic levitation technique [17, 18] enables us to fine-
tune the initial conditions. We accomplish this by af-
fixing precisely-shaped magnetically permeable materials
to the outside of the fluid cell, which perturb the mag-
netic force and thereby the shape of the interface. On
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FIG. 1: Cartoon of experimental setup. Note that wires are
attached to the outside of the cell, and that the x-axis view
is expanded for clarity. The arrow indicating the direction of
∇

`
H2

´
applies only in the absence of the wires.

turning off the magnetic field, the total magnetic force
disappears, leading to a purely gravity-driven RT insta-
bility with precisely controlled initial conditions. As a
first application, we measure the amplitude of the initial
interface perturbation and its growth due to an applied
single mode perturbation as a function of the amplitude
of a pair of sinusoidally-shaped magnetically-permeable
wires.

In our experiments fluid 1 is a moderately strong para-
magnetic mixture of water, 58.6 wt.-% MnCl.2 · 4H2O,
approximately 1 wt.-% surfactant octa(ethylene glycol)
dodecyl ether (“C12E8”) to reduce surface tension, and
a small amount of rhodamine 6G dye; fluid 2 is weakly
diamagnetic hexadecane, which is immiscible with fluid
1 and of nearly the same refractive index. The inter-
facial tension γ = (2.6 ± 0.3) erg cm−2, as determined
by the pendant drop technique, and wetting properties
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are such that the meniscus is virtually absent. When
placed in a cell, the lighter hexadecane (ρ2 = 0.773
g cm−3) ordinarily sits atop the heavier paramagnetic
mixture (density ρ1 = 1.394 g cm−3), where the At-
wood number A ≡ (ρ1 − ρ2) / (ρ1 + ρ2) = 0.29. How-
ever, in the presence of a vertical magnetic field gradi-
ent ∇

(
H2

)
[∼ 2.0 × 107 G2cm−1 at the interface], the

denser fluid 1 resides above the less dense fluid 2 when∣∣ 1
2χ1∇

(
H2

)∣∣ > |(ρ1 − ρ2) g|; see Fig. 1. Here χ1 is the
(positive) magnetic susceptibility of fluid 1 and the sus-
ceptibility of fluid 2 is negligible. On switching off the
magnetic force, the layering becomes unstable in the pres-
ence of small, random perturbations — the large, con-
trolled interfacial perturbations have not yet been ap-
plied — and the denser fluid 1 falls to the bottom of the
container under uniform gravity. Figure 2a (where “a”
refers to the column) shows how the instability develops
as a function of time for these fluids, with the initial ob-
servable growth being that of the fastest growing mode.
In this experiment the cell is constructed of 0.2 cm thick
glass; is 15 cm in height, 7 cm in width (span-wise, along
the y-axis), and d = 0.3 cm thick (i.e., the cell gap along
the x-axis); and has no observable meniscus (Fig. 2a-
i). Because the characteristic time for viscous diffusion
across the cell [18] tv ∼ d2ρ/πη ∼ 0.5 s , where η ∼ 5 cP
is the mean viscosity, the system can be considered to be
in the purely 2D RT regime for time t . tv. Using the
technique of planar laser induced fluorescence (“PLIF”,
[19]), the cell is illuminated from above with a ∼ 0.1
cm thick “sheet” of light, created by passing a Nd:YaG
laser beam at 532 nm through a cylindrical lens. The
light sheet passes through the midplane of the cell, caus-
ing the dye in fluid 1 to fluoresce. Videos of the lower
portion of the cell are collected at 60 frames per sec-
ond using a CCD camera. On switching off the magnet,
the instability passes first through the linear regime (Fig.
2a-ii) with a wavelength λ∗ = (0.69 ± 0.05) cm for the
fastest growing mode (denoted by an asterisk ∗), con-
sistent with the prediction of λ∗ = 0.71 cm from linear
stability theory (LST) [3]. (We note that the measured
λ∗ values also are nearly identical for cells of other thick-
nesses, viz., d = 0.2 and d = 0.4 cm). Because of the
small wavelength, video frames at early times have an in-
sufficient number of pixels to resolve properly the intial
growth rate σ∗, which LST predicts to be 33.5 s−1. Us-
ing several well-resolved images at later times for which
hk/λ∗ & 0.15, where hk is the perturbation amplitude,
we experimentally find σ∗ = (24± 0.5) s−1; as expected,
this is smaller than the LST prediction because the in-
stability is already transitioning from the linear to the
nonlinear regime, as seen in Fig. 2a-iii through 2a-vi.

Aside from physically agitating the cell to create stand-
ing waves [20] — a technique that severely limits the
range of initial conditions and creates unwanted jitter —
there is no viable extant method for establishing an arbi-
trary and controlled initial interface shape. Here we show

 

FIG. 2: Images of spike growth vs. time in sec., where t = 0 is
the time at which the magnet current first begins to decrease.
Column a) no wire; b− d) wires of amplitude Aw = 0.1, 0.2,
and 0.3 cm, respectively.

that the interface shape can be manipulated by perturb-
ing the magnetic field’s spatial profile. We use several
pairs of T-304 cold-worked stainless steel wires (diameter
= 0.088 cm) bent into a sinusoidal shape with a period
of 2.25 cm and amplitudes Aw = 0.10 (Fig. 2b), 0.15,
0.20 (Fig. 2c), 0.25, and 0.30 cm (Fig. 2d). The wire’s
relative magnetic permeability µ = (2.6± 0.3), as mea-
sured by balancing the upward magnetic force against
downward gravity. Each pair of wires, painted black
to reduce spurious light, is affixed to the outside of the
cell’s two faces; see Fig. 1. The front wires can be
seen as a silhouette in each image in Fig. 2b, c, and
d; the rear wires are obscured and not easily visible. We
emphasize that all aspects of the experiments shown in
Fig. 2, including both the fluids and the cell, are iden-
tical, except for the addition of the wires in Fig. 2b,
c, and d. [Note that the wires are placed so that the
fluid interface is at the wires’ midpoint along z. The
apparent vertical displacement in Fig. 2 is an illusion
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due to parallax]. On application of an external field
the fluid interface is perturbed very slightly by the span-
wise inhomogeneous magnetic force induced by the wires
(Figs. 2b-i, 2c-i, and 2d-i), where the period of the in-
terface instability λ = 1.12 cm is exactly one-half that of
the wires. λ can be understood by noting that, even at
the cost of surface and buoyancy energies, the magnetic
fluid accumulates near regions where the wire’s projec-
tion crosses the interface, resulting in a perturbation of
the interface with half the wire’s period. Although too
small to image, the amplitude hk0 of the initial perturba-
tion at wavevector k can be estimated. The amplitude
hk for the early growth can be derived from the equation
d2hk/dt2 − σ2hk = 0, where σ is approximately propor-
tional to A1/2 [3]. However, because the magnetic force
decays exponentially with a time constant τm ∼ 0.065 s,
the effective Atwood number ∼ A

(
1− e−t/τm

)
. Thus,

d2hk/dt2 − σ2
(
1− e−t/τm

)
hk = 0. The solution hk =

hk0J−β

(
βe−t/2τm

)
/J−β (β), where J−β is a Bessel func-

tion of the first kind of order −β and β = 2στm, is equal
to hk0 exp (σt) in the limit τm → 0. Fitting hk to the two
earliest resolvable interface amplitudes hk(t) (such that
hkk ∼ 0.5) for each wire amplitude Aw, along with the
LST values σ = 33.0 s−1 (cells with wires, k = 5.6 cm−1),
we determine hk0 (Table 1) and the dimensionless quan-
tity khk0 (inset in Fig. 3). These values are consider-
ably larger than those that occur without the perturbing
wires (Table 1), where we use the LST value σ∗ = 33.5
s−1 (cell without wires, k∗ = 9.1 cm−1). Additionally,
the data indicate that hk0 increases smoothly with Aw.
When the field is switched off, Fig. 2b-ii through vi,
Fig. 2c-ii through vi, and Fig. 2d-ii through vi show
the evolution of the perturbations. (In fact, data were
collected for a total time t ∼ 30/σ∗ s before the spikes
reached the bottom of the cell.) Several features are
apparent. First, as noted above, the wavelength of the
instability is half that of the wire. Second, spikes aris-
ing from initially larger amplitude perturbations of the
fluid interface in Fig. 2 grow to correspondingly longer
lengths (i.e., larger hk) before the instability evolves into
the late time regime. This behavior occurs because of
the larger initial amplitudes hk0: the imposed mode can
grow significantly before interaction with other modes
becomes important. Figure 4a shows the advance hk vs.
time of the spike front for the Aw = 0.3 cm amplitude
wire (Fig. 2d), as defined by the maximum extent to
which least 5% of the denser fluid has fallen. Figure 4b
shows its velocity dhk/dt, and Fig. 4c shows the instanta-
neous growth coefficient αs, defined as (dhk/dt)2 /4Aghk,
where g is the gravitational acceleration [21, 22]. (Val-
ues for αs and dhk/dt for all runs are collected in Ta-
ble 1). αs and its bubble counterpart ab have been the
subject of intense interest [10, 23], as there are signifi-
cant discrepancies between experiments, which have been
plagued by not-well-controlled initial conditions, and cal-
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the cell for Aw = 0.25 cm. Wide gray curve is projection of
wire into the midplane, dotted line is fluid interface at t = 0,
and solid curve is actual fluid interface measured at t = 0.265
s. The force, which affects fluid 1 due to its large χ1, is largest
near the wire’s crossing points, and results in a collection of
fluid 1 at the crossing points. Inset: Dimensionless interface
perturbation amplitude khk0 vs. wire amplitude Aw.

culations, which depend critically upon the initial pertur-
bation spectrum and often are smaller than experimen-
tal values, e.g., ∼ 0.03 [23, 24], 0.025 to 0.06 [25], 0.033
to 0.06 [22],and 0.06 [26]. We note from Fig. 4c that
αs ∼ (0.07 ± 0.02) during the self-similar growth period
t = 0.3 to t = 0.45 s, after which it decays as the velocity
has reached a terminal value (dhk/dt)t ∼ 11 cm s−1 (Fig.
2d-iii). Although we expect — and observe — a terminal
velocity for small A when only a single mode is present
[14, 27], we believe that the terminal velocity’s origin lies
elsewhere. That the crossover from self-similar growth
to terminal velocity always occurs in the neighborhood
of t ∼ 0.5 s, which corresponds to the diffusion time tv
for the surface vorticity layer, suggests that the terminal
velocity is due in part to the instability’s transitioning
from the 2D RT to the Hele-Shaw regime [18]. We em-
phasize that the initial linear growth regime and most
of the subsequent self-similar growth regime, both tak-
ing place before vorticity has reached the mid-plane of
the cell, should thus be very little influenced by friction
on the glass walls. It also has been suggested that fluc-
tuations result in a coarsening of the spikes and droplet
breakoff, leading to Stokes-like frictional flow with a ter-
minal velocity [26].

We now calculate the static force on the fluids in the
presence of the wires. In the absence of current a scalar
magnetic potential ϕ may be introduced into Laplace’s
equation ∇·(µ∇ϕ) = 0, where −→H = −∇ϕ. A commercial
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Aw (cm) No wire 0.1 0.15 0.2 0.25 0.3
104 × hk0 (cm) 0.043± 0.008 0.4± 0.1 0.9± 0.2 1.6± 0.4 3.9± 0.9 6± 1
(dhk/dt)t (cm s−1) 8± 0.5 11± 1 11± 1 10± 2 10± 1 11± 1
αs 0.065± 0.01 0.06± 0.02 0.07± 0.01 0.06± 0.02 0.06± 0.01 0.07± 0.02

TABLE I: Interface perturbation amplitude hk0, terminal velocity, and growth coefficient for different wire amplitudes Aw
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FIG. 4: Growth data vs. time for cell with wire of amplitude
Aw = 0.3 cm. a) the position of the front, b) the velocity of
the front, and c) the instantaneous growth coefficient αs.

finite-element package, FlexPDE, is used on a computa-
tional domain of 3.0×2.25×4.0 cm, with periodic bound-
ary conditions. In the model the wires are sinusoidally
shaped with Aw = 0.25 cm, period 2.25 cm, relative per-
meability µ = 2.6, and square cross-section, such that
the wires’ cross-sectional area is equal to that in the ex-
periment. Dirichlet conditions are applied at the pole
pieces. The total magnetic force

−−−→
Fwire

[
∝

(−→
H · ∇

)−→
H

]
with the wires present minus the force

−→
F 0 in the absence

of the wires, scaled by
−→
F 0, at the cell’s mid-plane is plot-

ted in Fig. 3; also shown is the experimental interface
at t = 0.265 s. It is clear that the wires produce a
force on paramagnetic fluid 1 that is directed toward the
wire’s crossing points with the interface. Thus the over-
all energy, including magnetic, gravitational, and surface
tension, can be reduced if the paramagnetic (upper) fluid
collects near the wire / fluid interface crossings, lowering
the interface near the crossings and raising it near the
wires’ extrema. For small wire amplitude Aw the shape
of the interface is very nearly a single sinusoid, as seen in
Fig. 3. With increasing Aw, however, contributions from
higher harmonics of k begin to emerge, suggesting that
hk0 can be increased more efficaciously by increasing µ
or the wire diameter.

We have studied the growth of an imposed single mode
perturbation. One also can create an arbitrary spectrum
of initial perturbation modes, requiring the solution of
the inverse problem in which the appropriate magnet

current and wire parameters need to be determined to
achieve the desired initial perturbation. Besides demon-
strating a powerful technique for RT experiments with ar-
bitrary initial conditions, this work has yielded a precise
measurement of the growth coefficient αs, independent
of wire amplitude, for a precise set of experimental con-
ditions: a moderately large Atwood number (A = 0.29)
and a jitter-free single-mode initial perturbation, two ele-
ments that would have been difficult to achieve by other
means. Clearly, the ability to manipulate the initial
interface shape facilitates many heretofore inaccessible
investigations involving controlled initial conditions.
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