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Abstract 

 

Earlier detection of diseases, such as cancer, often leads to improved 

prognosis. Therefore, the ability to efficiently, accurately, sensitively, and 

non-invasively screen for cancer at the earliest stages possible is of 

paramount importance. Furthermore, a better understanding of the basic 

biology of molecular mechanisms, cellular pathways, and cellular 

heterogeneity may lead to more personalized and efficient therapies. In 

order to achieve this task and to also detect rare cells that may also enable 

earlier disease detection, specific biomarkers must be studied at single 

molecule resolution within individual cells. This thesis focuses on the 

detection of protein biomarkers at ultralow levels in serum for early cancer 

detection and for fundamental single cell studies using single molecule 

protein counting technology.  

This thesis describes the technology, single molecule arrays 

(SiMoA), that is utilized throughout the included works and discusses the 

fundamental kinetics behind the method.  Chapter 3 describes how a 

biomarker can be detected at ultralow concentrations in serum prior to 

palpable tumor formation using a mouse model, indicating the utility of 

SiMoA as an early cancer detection tool. Chapter 4 describes the use of 

SiMoA in a panel of breast cancer protein biomarkers and examines the 

utility of these biomarkers in detecting early stage breast cancer from serum 
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samples by using supervised multivariate regression models. Chapter 5 

demonstrates the use of SiMoA technology as a straightforward approach 

for counting single protein molecules within single cells. Chapter 6 

includes work towards creating a breast cancer mouse model for studying 

early cancer progression. One appendix is included that includes detailed 

patient information relevant to Chapter 4.  
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1.1     Introduction 

Currently available technologies used to screen and diagnose cancer, 

specifically breast cancer, are insufficient in terms of sensitivity, specificity, and 

patient experience. There is an overwhelming need to develop more accurate, 

sensitive, and biologically relevant non-invasive testing methodologies for earlier 

breast cancer detection. In the United States, breast cancer represents the second 

highest cancer-related cause of death, after lung cancer. Breast cancer was also 

the cause of approximately 40,000 deaths in 2014, which represents 6.8% of all 

cancer-related deaths.
1
 The probability of a woman developing breast cancer in 

the United States is approximately 12.3%.
2
 It is estimated that 232,667 new cases 

of breast cancer were diagnosed in 2014, or 14% of all new cancer cases.
1
 On a 

global scale, breast cancer represents the most common cancer in women 

worldwide and the second most common cancer overall, accounting for 

approximately 1.7 million new cases in 2012.
3
 Breast cancer is thus both a 

national and global health issue. The implementation of improved technologies 

that are both sensitive and specific enough to detect early stage cancers are 

required to reduce breast cancer mortality.
4
 This chapter describes fundamental 

information about breast cancer, stresses the importance of early detection, 

discusses current screening practices and approved breast cancer biomarkers, and 

introduces the topic of ultra-sensitive single molecule technology as a new 

methodology to improve upon the currently accepted practices. 
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1.2 Importance of Early Detection 

The earlier a disease is detected and diagnosed, the sooner it can be treated, 

cured, or managed to prevent further complications. In the case of breast cancer, 

earlier detection indicates better overall survival. Table 1.1 depicts the relative 

5-year survival rate compared to the stage at which breast cancer is diagnosed.
5
 

Logically, the more advanced the cancer is at diagnosis, the poorer the prognosis 

and overall survival are. It is thus vital that breast cancer is detected early to 

enable the best chance for survival as well as to decrease the physical and 

emotional trauma and financial burdens associated with undergoing cancer 

therapy. 

 

Table 1.1 Relative 5-year breast cancer survival rates compared to stage at 

diagnosis (Adapted from Reference 5).  

 

 

 

1.3  Breast Cancer Risk Factors  

Several different factors can put women at more risk for developing breast 

cancer in their lifetime. Age is one of the most obvious risk associated traits, with 
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95% of U.S. women being diagnosed after the age of 40.
6
 Other modifiable 

factors that have proven to increase the risk of developing breast cancer include 

drinking alcohol,
7
 having a first child after age 30,

8
 being overweight,

9
 and not 

breastfeeding.
6
 Studies have demonstrated that 5-10% of all breast cancers are the 

result of inherited mutations, most commonly the BRCA1 and BRCA2 mutations, 

which are present in less than 1% of the population.
10, 11

 Other genetic conditions 

also increase the risk of developing breast cancer, such as LiFraumeni Syndrome, 

which involves germline mutations in the TP53 tumor suppressor gene
12

 and 

Cowden syndrome, a disorder that affects multiple bodily systems due to a 

germline mutation of the PTEN gene.
13

 Family history, undoubtedly an undefined 

underlying genetic propensity, can also play a large role in whether or not one 

will develop breast cancer, where women with close relatives with breast cancer 

have a higher risk of developing the disease than those who do not.
6, 14

  

 

1.4  Breast Cancer Staging 

Cancer is broadly defined by the National Cancer Institute as the 

uncontrolled division of abnormal cells that are capable of invading other bodily 

tissues.
15

 Breast cancer is not a single disease, but rather a mix of complex 

diseases with different clinical, pathological, morphological, and molecular 

characteristics.
16

 The majority, approximately 95%, of breast cancers are 

characterized as adenocarcinomas. Adenocarcinomas can be further sub-

categorized into what are known as carcinoma in situ (CIS), which are non-

invasive, and invasive carcinomas.
16

  

http://en.wikipedia.org/wiki/P53
http://en.wikipedia.org/wiki/Tumor_suppressor_gene
http://en.wikipedia.org/wiki/Tumor_suppressor_gene


5 
 

Ductal carcinoma in situ (DCIS) is a non-invasive malignant epithelial cell 

proliferation. DCIS is the most common type of non-invasive breast cancer and 

accounts for 25% of all breast cancers detected via screening.
17

 DCIS does not 

always progress to invasive carcinomas, but increases the likelihood that the 

patient will either recur with DCIS or develop invasive carcinoma in the future.
17, 

18
  

Breast cancer is diagnosed using morphological features, such as tumor 

size, nuclear and cellular characteristics, necrosis, hormonal receptors, 

histological type, and axillary tumor lymph node status.
19

 Breast cancer is staged 

using a modified version of the tumor node metastasis (TNM) classification 

system.
20

 This system classifies breast cancer into four stages with several sub-

stages depending on size, localization, and extension of the primary tumor into the 

surrounding structures. Also taken into account are the involvement of regional 

lymph nodes and the presence of metastases.
20

 Table 1.2 shows the most updated 

staging requirements using this system. ‘T’ refers to the primary tumor, ‘N’ refers 

to the nodes involved, and ‘M’ refers to metastasis. A legend explaining the TNM 

score is shown in Table 1.3.  
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Table 1.2 TNM staging for breast cancer. T= tumor; N = lymph nodes; M = 

metastasis (Adapted from Reference 20).  

 
 
 

Table1.3 Abbreviated key for TNM breast cancer staging. T= tumor; N = lymph 

nodes; M = metastasis. Dotted lines indicate stages that are not applicable for the 

respective T, N, or M characteristics (Adapted from Reference 20).  

 
 
 

 T N M 

 Stage 0 Tis N0 M0 

 Stage 1A T1 N0 M0 

 Stage 1B T0-T1 N1mi M0 

 Stage 2A T0 

T1 

T2 

N1 

N1 

N0 

M0 

 Stage 2B T2 

T3 

N1 

N0 

M0 

 Stage 3A T0 

T1* 

T2 

T3 

T3 

N2 

N2 

N2 

N1 

N2 

M0 

 Stage 3B T4 

T4 

T4 

N0 

N1 

N2 

M0 

 Stage 3C Any T N3 M0 

 Stage 4 Any T Any T M1 
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1.5  Molecular Subtypes of Breast Cancer 

As previously mentioned, breast cancer is not a single simple disease but a 

rather complicated and heterogeneous group of diseases. Through gene expression 

studies, it has been determined that breast cancer can be categorized into three 

major molecular subtypes: basal, HER2, and luminal
21-23

 (Table 1.4). Luminal 

breast cancer can be further subcategorized into Luminal A and Luminal B. The 

categories are primarily based on the expression levels of estrogen receptors (ER), 

progesterone receptors (PR), and human epidermal growth factor receptor 2 

(HER2). The functions of ER and PR will be discussed in more detail in Chapter 

4. Briefly, ER and PR are hormone receptors located within the cell that are 

overexpressed in approximately 70% of breast cancers.
24

 HER2 is a 

transmembrane tyrosine kinase receptor that plays a role in nuclear gene 

activation.
25

 When overexpressed, HER2 has been associated with the 

proliferation of aggressive breast cancer.
43

 Also included in distinguishing 

Luminal A and Luminal B is Ki67, which is a nuclear protein that has been 

associated with proliferation.
26

   

Both the Basal and HER2 subtypes are characterized by having low or 

absent gene expression of ER and PR. These two subtypes differ in their 

expression level of HER2, where it is overexpressed in the HER2 subtype and not 

expressed in the basal subtype. Due to the lack of expression of these three main 

markers, the basal subtype is often known as triple negative breast cancer 

(TNBC). Basal breast cancer also commonly has BRCA1 mutations. Luminal 

breast cancer is typically ER+ and/or PR+, where + indicates overexpression. 
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Luminal A is typically HER2-, where – indicates low expression, with low Ki67 

expression and Luminal B is typically HER2+ or can be HER2- with high K167 

expression. The prognosis for Luminal breast cancer tends to be overall better 

than for both HER2 and basal breast cancer and it is also the most common form 

of breast cancer.
23, 27

 

 

Table 1.4 The four major molecular subtypes of breast cancer. Subtypes are listed 

in columns and associated markers and other aspects are listed in the rows 

(Adapted from References 23 and 27). 

 
 

 

1.6  Current Breast Cancer Screening Technologies  

There are several methods currently used for breast cancer screening, including 

mammography, magnetic resonance imaging (MRI), and ultrasound. The most 

common technique, by far, is mammography. This section describes the impact of 

screening mammography on breast cancer detection as well as the utility of both 

MRI and ultrasound. 
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1.6.1  Mammography 

Mammograms are x-ray images taken of the breast as it is compressed 

between two plates, which is an uncomfortable process. Breast cancer presents on 

mammograms as abnormal masses, architectural distortions, densities, and/or 

grouped calcifications.
28

 Women over the age of 40 have been recommended to 

receive annual mammograms, since breast cancer risk increases with age.
6, 29

  

Mammography was introduced in 1983, but was not widely used for breast 

cancer screening until 1986.
30

 In order to demonstrate the impact that 

mammography screening has had on breast cancer detection and survival, Figure 

1.1 shows the trends of reported in situ and invasive breast cancer cases between 

1975 and 2010 with the implementation of mammography screening 

highlighted.
29, 31

 As shown in Figure 1.1a, cases of reported in situ, or non-

invasive breast cancer, rose rapidly when mammography started to be heavily 

used for screening, although rates increased faster in women over 50. The rates of 

DCIS increased so rapidly that the number of DCIS cases in 1992 were 

approximately 200% higher than anticipated, based on previous trends between 

1973 and 1983.
30

  The rapid increase is believed to be attributed to the fact that 

mammography is capable of detecting indolent, or slow growing cancers, that 

may not have otherwise been detected for 1-3 years.
29, 31

 After the rapid spike, 

incidence rates of in situ breast cancer stabilized from 1999-2010 for women over 

50; however, incidence rates for women under 50 continued to slowly rise at 

approximately 1.9% per year during the same time period.
32
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In terms of cases of invasive breast cancer, the implementation of 

mammography screening also had a rapid spike in the rate of incidence, primarily 

in women over 50 who are at greater risk for developing the disease (Figure 

1.1b). Other risk factors were also associated with increased rates of breast cancer 

incidence during this time period, such as increased obesity rates, delays in child 

birth, and having fewer children.
29

 A sharp drop in the incidence rate of invasive 

breast cancer occurred between 2002 and 2003. This drop can be mainly 

attributed to findings that the use of combined hormonal therapy used for treating 

postmenopausal women correlated to both higher rates of larger and more 

advanced breast cancers. After the studies were released, use of this specific type 

of combined therapy was reduced.
33

 The overall incidence rates of breast cancer 

have remained relatively stable for cases of both in situ and invasive breast cancer 

since 2004. It has been suggested that a combination of early breast cancer 

detection and improved treatment have decreased death rates from 1994 to 2010 

by as much as 34%.
2, 34

  

 
Figure 1.1 Impact of mammography screening from 1975-2010 (Adapted from 

Reference 29).  
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More recent studies with evidence correlating mortality rates and breast 

cancer screening urged the U.S. Preventative Services Task Force (USPSTF) to 

alter the recommendations for mammography screenings.
35, 36

 The new 

recommendation for women between the age of 50 and 69 is to have biennial 

mammography screenings. Women in this age group were demonstrated to have a 

significant decrease in mortality as a result of being screened and therefore 

benefitted the most.
35

 Results were inconclusive for screening women above 69 in 

terms of the benefits. It was concluded that only women who have family history 

of breast cancer or who have other risk factors should consider screening before 

age 49 since the net benefit of screening at this age is small.
36

 The goal of these 

new recommendations is to decrease over-diagnosis and overtreatment.  

Despite the improvements in early detection and decreased death rates that 

mammography has had on breast cancer, it has multiple disadvantages as a 

screening technique. The main drawback of mammography screening is the often 

required follow-up biopsies that patients must undergo. There are several different 

types of biopsies that can be performed. Biopsies involve the removal of tissue 

from the mass or tumor in question, which is an extremely invasive process. Fine 

needle aspiration (FNA) offers less invasiveness by utilizing a needle to aspirate 

cells from the site, however, inadequate sample is often acquired using this 

technique and the results are dependent on the level of experience of the 

cytopathologists and radiologists performing the biopsy.
37

  

Mammography is also associated with a relatively high false positive rate 

of 8-10%.
38

 False positives may be the result of benign masses, such as cysts or 
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fibroadenomas, or due to imaging abnormalities caused by thick or dense breast 

tissue. Approximately 10% of women who undergo mammography screening 

require a follow-up biopsy. Of the women requiring biopsy, only approximately 

20-30% have cancer, meaning that 70–80% of women are biopsied 

unnecessarily.
39

 False positives can cause anxiety and psychological stress as well 

as financial burden and physical discomfort from additional tests.
40

  

Since mammography is strictly an imaging technique, it is not possible to 

distinguish cancers that may progress from non-progressive cancers. Thus, 

although mammography may be detecting cancers early through screening, some 

of the cancers it detects may not progress, leading to overtreatment. In fact, 1 in 3 

invasive cancers may be over-diagnosed and some of the cancers detected through 

screening may regress on their own.
41, 42

  Since it is difficult to decipher between 

a cancer that will or will not progress, they are treated the same, subjecting 

patients to the adverse effects of harsh cancer treatments unnecessarily. 

Since mammography is limited by the ability to see tumors of 

approximately 5 mm,
43

 it is not able to detect tumors that are fast growing or 

aggressive. For example, Figure 1.2 shows the progression of four tumors, A, B, 

C, and D. The arrows depict when the patient had her prescribed screening 

mammograms. Tumor A progressed too quickly to be detected by mammography 

screening methods. Tumor B was detected while in a treatable state but is destined 

to be fatal. Tumor C was eventually detected and was still localized. This tumor 

did not cause symptoms, progress, or lead to death. Tumor D was microscopic 

and was below the detection limit of mammography. This tumor was not detected 
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nor did it progress, cause symptoms, or cause death. From this example, the only 

case that benefits from mammography screening are patients similar to Tumor B, 

where the cancer was destined to be fatal but was caught in time.
28

  

 
 

Figure 1.2 Effectiveness of mammography screening on different theoretical 

tumor growth rates. The growth rates of tumors A, B C, and D are displayed along 

with mammography screening time points. Tumor A grows too fast to be 

detected. Tumor B is detected while curable but is destined to be metastatic. 

Tumor C grows until it can be detected, but does not cause symptoms, progress, 

or lead to death. Tumor D remains undetectable and without morbidity during the 

patient's lifetime. Consequently, the only patient that benefits from 

mammography screening is the patient with Tumor B. Tumor detection is 

indicated with a red star (Adapted from Reference 28).
 

 

 

Mammography is also associated with false negatives, missing 

approximately 20% of cancers.
29

 This may be due to human error or to the 

inability to see a tumor mass through dense breast tissue, which is more common 

among premenopausal women.
29

 Since mammograms are x-rays, they expose the 

patient to potentially harmful radiation. Although the levels of radiation are low - 

approximately 0.4 mSv or approximately the amount of radiation an average 
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American would be exposed to in 7 weeks - repeated exposure can increase the 

causes of cancer.
44  

 

Mammography is a powerful imaging technique for tumor detection; 

however, it lacks the ability to decipher benign from cancerous tumors, is unable 

to detect tumors smaller than ~5 mm,
43

 misses approximately 20% of breast 

cancers potentially present at the time of screening, and has a high false positive 

rate.
38

 These drawbacks lead to inaccurate patient diagnosis, which can allow 

potentially fatal disease progression, or in the cases of over-treatment, 

unnecessary physical and emotional trauma.
45

 In addition, biopsies are often taken 

if a tumor is suspected from a mammogram, which is an invasive process.  In 

addition to mammography, several other techniques are available for diagnosing 

breast cancer, including MRI and ultrasound.  

 

 

1.6.2  MRI 

MRI is another imaging technique that is often used for breast cancer 

evaluation. Unlike mammography, MRI does not require ionizing radiation and 

instead uses magnetic interrogation that is not harmful. In comparison to both 

mammography and ultrasound, MRI is superior at establishing tumor size as well 

as showing enlarged lymph nodes to suggest metastatic spread.
28

 However, since 

MRI cannot distinguish between lesions that are benign or cancerous and is more 

expensive than mammography, it is not recommended as a screening tool by itself 

and is only recommended as a supplement to mammography for women who have 
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an increased risk for breast cancer.
46

 MRI is commonly used in new patient 

diagnoses to evaluate the extent of disease.
28

 

 

1.6.3 Ultrasound 

An additional imaging method sometimes used to follow-up on abnormal 

findings from screening/diagnostic mammograms or physical exams is 

ultrasound. Ultrasounds utilize high-frequency sound waves to produce images of 

structures within the body. The use of ultrasound is helpful in the case of patients 

with dense breast tissue, which are technically challenging to image using 

mammography.
28, 29

 Ultrasounds are known to have negative predictive values of 

99-100%, meaning that if no abnormalities are detected on the ultrasound then it 

is unlikely that the patient has cancer.
47

  It has been reported that ultrasound 

actually detects more cancer in dense breast tissue than when only mammography 

is used; however, it has been suggested that ultrasound on its own may lead to 

higher false positive rates.
48

 For this reason, ultrasound is not currently 

recommended as a screening tool for breast cancer, but rather as a diagnostic 

supplement.  

 

1.7  Biomarkers Used In Breast Cancer Detection 

Screening using only mammography or other imaging technologies 

increases the detection rate of indolent or potentially non-life threatening cancers, 

leading to over diagnosis. These methodologies may require painful biopsies 

when imaging results are suspicious and a significant number of women are 

biopsied unnecessarily. Current screening technologies are also not sensitive 
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enough to detect aggressive cancers that will lead to poor prognostic outcomes. A 

new direction in breast cancer research has focused on the use of biologically 

relevant biomarkers for breast cancer prevention and detection.
28

 

 

 

 1.7.1  Biomarkers  

 

 Biomarkers can be broadly defined as characteristics or objective 

indications capable of being quantitatively measured to imply either a healthy or 

diseased state.
49

 Ideal biomarkers should elucidate understanding of disease 

prediction, cause, diagnosis, regression, and/or outcome.
50

  Ideally, a biomarker 

test should be able to accurately, reproducibly, and reliably divide populations 

into at least two groups associated with significantly different clinical outcomes. 

The use of biomarker tests should also improve patient outcome to ensure clinical 

utility.
39, 51

 Tumor biomarkers specifically are biomarkers produced by either 

cancer cells or by the body in response to the presence of cancer. Common types 

of tumor biomarkers include proteins, RNA, DNA abnormalities and 

metabolites.
39

  A variety of different media can be used for biomarkers testing, 

but most commonly biomarkers are monitored in tissue as well as in blood, urine, 

stool, saliva, and breast ductal fluid.
39

  

Due to the previously described high rate of biopsies that are performed as 

a result of the shortcomings associated with mammography, the implementation 

of biomarker assays may benefit breast cancer screening and diagnostics in 

several ways. First, more accurate screening processes for breast cancer, either 

stand-alone methods or in conjunction with mammography, could eliminate or 
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significantly reduce the number of inconclusive or abnormal mammographies that 

lead to unnecessary biopsies.
39

 Second, biomarkers can be used to monitor 

therapeutic efficacy to ensure that patients respond appropriately to the treatment 

provided and to determine any necessary changes in care.
39

 Third, the monitoring 

of biomarkers can indicate disease progression, recurrence, or metastasis. Next, 

biomarkers can offer prognostic information. Since biomarkers are molecular 

markers, they also offer insight into the subtype of cancer, which will aid in 

diagnostics. Finally, sensitive methods of biomarker detection can be used for 

early disease detection.
19

 Currently, no single or multivariate biomarker assay has 

come close to attaining the above-described analytical or clinical utility 

requirements for breast cancer screening or diagnosis.
19, 39  

  The American Society of Clinical Oncology (ASCO) has only officially 

recommended a short list of biomarkers as well as one 21-gene recurrence score 

assay (OncotypeDxR) for clinical applications in treating breast cancer. Four of 

the approved biomarkers are tissue biomarkers and only two are circulating 

biomarkers. ER, PR, HER2, OncotypeDxR, and urinary plasminogen 

activator/plasminogen activator inhibitor 1 (UPA/PAI-1) have all been approved 

as tissue biomarkers. These biomarkers are used for isolated tissue from biopsies.  

The only recommended blood serum biomarkers are carcinoembryonic antigen 

(CEA) and two soluble forms of mucin-1 (MUC-1), cancer antigens 15-3 and 

27.29 (CA 15-3 and CA 27.29). 
25, 39

 
52
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1.7.2  Currently Recommended Breast Cancer Biomarkers 

The main advantage in being able to monitor biomarkers in blood 

components, including serum, is that obtaining blood samples is minimally 

invasive. In order to test tissue samples, a biopsy is typically performed. The 

following section describes the current status of recommended biomarkers for 

breast cancer in both blood and tissue. 

ER and PR are nuclear steroid hormone receptors that play a critical role 

in mammary gland biology and are associated with breast cancer progression.
24

 In 

the cases of ER and PR, which are both recommended as tissue-based markers, 

ASCO suggests that both markers be measured in both pre and post-menopausal 

women to establish hormone status and determine whether or not patients will 

benefit from endocrine therapy.
25

 Only tumors in which ≥ 1% of the cell nuclei 

react immunohistochemically to either ER or PR are considered ER+ or PR+, 

respectively.
53

  

Although HER2 status is a hallmark in breast cancer treatment and has 

been associated with poor prognosis, overexpression of either the HER2 gene or 

receptor has been observed in various cancers.
25, 54

 Despite correlations with poor 

prognosis in breast cancer, HER2 has not been validated as a prognostic marker 

by the ASCO. The main use of HER2 is for establishing the benefit of utilizing 

anti-HER2 therapies, such as trastuzumab. For such purposes, the ASCO 

recommends that HER2 expression be assessed at the time of diagnosis or 

recurrence so the appropriate therapy can be prescribed.
25

 



19 
 

UPA is an extracellular matrix degrading protease that has been associated 

with both cancer invasion and metastasis.
55

 PAI-1is a serine protease inhibitor that 

is instrumental in extracellular matrix degradation as well as in the release of 

angiogenic factors.
56

 The use of an enzyme linked immunosorbant assay (ELISA) 

to study uPA/PAI-1 was added to the ASCO recommendation for breast cancer 

diagnostics in 2007. The use of this assay is only recommended for studying 

breast tissue for prognosis determination of newly diagnosed node negative breast 

cancer patients. Low levels of uPA/PAI-1 indicate low risk of recurrence and 

marginal benefits from additional chemotherapy, and vice versa.
25

  

In the OncotypeDxR assay, total RNA is extracted from paraffin-

embedded tumor tissue. The RNA is treated with DNase I and reverse transcribed 

to obtain cDNA. Quantitative PCR (qPCR) is then performed on the cDNA 

products of a total of 21 genes, including 16 breast cancer related genes and 5 

reference genes. A recurrence-score algorithm is then normalized using the 

response from the reference genes to indicate the likelihood of recurrence.
57

 

ASCO has accepted the use of the OncotypeDxR assay for predicting risk 

associated with recurrence in cases of newly diagnosed node-negative and ER+ 

breast cancer. This assay may also be used to predict if patients will benefit from 

either endocrine therapy or chemotherapy.
25

 Drawbacks of this method include 

the requirement of invasive tissue samples, special training to prevent both RNase 

and DNase contamination during sample preparation, and possible amplification 

of unspecific products during qPCR.
58
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In addition to the OncotypeDX assay, other promising gene expression 

profiling methods not approved by the ASCO have been studied. One example is 

the MammaPrint microarray or RT-qPCR based gene-expression profiling assay 

that examines 70 different genes. MamaPrint is the only FDA approved gene-

expression assay for prognostic testing of women with node-negative breast 

cancers, but is not currently included in the ASCO guidelines.
59

 Two additional 

examples include the Rotterdam 76 gene signature and the Mapquant DX. The 

Rotterdam 76 gene signature claims to be able to predict distant metastasis within 

5 years in node negative patients who did not receive chemotherapy regardless of 

age or tumor size.
59, 60

 Mapquant DX is another microarray technique that creates 

a predictive and prognostic signature in attempts to stratify tumors according to 

histological grade.
61

 Although vital information is obtained from gene expression 

profiling, including what biomarkers are involved in breast cancer progression 

and metastasis, the clinical utility of the described tests need to be further 

explored. As mentioned for the OncotypeDX assay, these methods rely on 

obtaining tissue samples and examining RNA content, which may require extra 

skills to prevent contamination. Therefore, the use of gene expression profiling, 

although extremely important for determining information about the heterogeneity 

of breast cancer, is not an ideal method for screening or patient monitoring. 

MUC1 is a large, glycosolated, transmembrane protein that has been 

associated with cell adhesion, immunity, and metastasis. MUC1 is often measured 

in blood via detection of either CA 15-3 or CA.29, which are antigens comprised 

of different portions of the MUC1 protein.
62-64 

CEA is an oncofetal glycoprotein 
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involved in cell adhesion whose overexpression has been correlated with 

cancer.
63, 65

  Although studies have shown correlations of CEA and CA 15-3 

concentrations in blood with both disease progression and metastasis, ASCO only 

recommends the monitoring of CEA and CA 15-3 or CA 27.29 levels in patients 

with metastatic disease who are undergoing active therapy.
25

 
66-68

 The use of these 

biomarkers should only be considered in addition to information acquired from 

adjunct diagnostic imaging, physical exams, and patient history. However, 

measurement of CEA and CA15-3 or CA 27.29 may be considered to indicate 

treatment failure in situations where other methodologies cannot readily measure 

disease.
25

 Since expression of all three markers have been associated with both 

other cancers and benign conditions,
63

 the use of CEA, CA15-3, and CA 27.29 are 

not recommended for screening, diagnosis, staging, or monitoring purposes.
25, 66

  

The currently available biomarker technology for breast cancer is only 

sufficient following breast cancer diagnosis and to predict therapy. These 

biomarkers are insufficient for implementation in early breast cancer screening or 

for other beneficial purposes, such as monitoring therapeutic efficacy, recurrence, 

or offering prognostic information. The majority of biomarkers require tissue 

samples, which means that a biopsy must be performed—an incredibly invasive 

process. For the two markers that have been approved for testing in blood, the 

markers are not specific enough for breast cancer nor are they sensitive enough 

for early detection testing. In addition, the ability to discriminate between 

malignant and benign tumors as well as tumors that will not progress could be 

incredibly powerful in reducing or eliminating the overtreatment of patients. 
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Overtreatment is a problem currently plaguing early detection methodologies and 

none of the described biomarkers or other available technologies are capable of 

performing the described tasks.
69

 It is thus of vital importance to develop 

biomarker assays that are sensitive and specific for breast cancer. Since a single 

marker is unlikely to be sufficient for such a task, a panel of biomarkers can be 

used to improve both analytical and clinical utility.  

 

1.8  Ultra-sensitive biomarker detection in serum 

Blood components, such as serum or plasma, are ideal testing media 

compared to tissue or other bodily fluids. Serum and plasma are thought to 

contain thousands of protein molecules that arise from either active secretion or 

leakage from various cells and tissues that comprehensively sample the human 

phenotype.
70

 Although other media can be sampled non-invasively, such as saliva, 

tears, or urine, these media typically represent only small subsets of what is 

available in serum and plasma and provide a restricted local picture of cellular 

activity.
71

 In addition, serum and plasma are already the most clinically analyzed 

proteome, making them easy and safe to obtain.
71

  It is believed that the majority 

of protein biomarkers that exist in serum and plasma have yet to be discovered 

due to sensitivity limitations.
71

 In order to measure relevant biomarkers for the 

early detection of breast cancer in serum, a new methodology must be 

implemented that is not in current practice.  
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Single molecule array (SiMoA) assays, also known as Digital ELISA, are 

ultra- sensitive ELISAs that are capable of detecting protein molecules in serum at 

concentrations approximately 1,000× more dilute than traditional ELISAs.
72

 

SiMoA technology has proven to be effective for the detection of several different 

types of protein biomarkers in serum, including prostate specific antigen (PSA) 

for monitoring the recurrence of prostate cancer after radical prostatectomy,
73

 as 

well as tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) for 

monitoring therapeutic efficacy in Crohn's disease.
74  

Due to the vast improvement 

in sensitivity, the development of SiMoA assays for breast cancer biomarkers in 

serum could lead to improved early detection as well as recurrence monitoring 

and therapeutic efficacy for breast cancer patients.  

 

1.9 Scope of thesis 

The present studies aim to demonstrate the applicability of SiMoA as a 

platform for non-invasive early cancer detection by measuring protein biomarkers 

in serum. Additionally, a method for isolating single cancer cells and sensitively 

counting the protein content using SiMoA is described. Chapter 2 describes the 

SiMoA methodology that is used in subsequent chapters and discusses how single 

molecule technology gains added sensitivity over traditional ELISAs protein 

assays. Chapter 3 describes a mouse model using PSA as a gold standard protein 

biomarker to demonstrate that SiMoA can be utilized to monitor increasing 

concentrations of biomarkers in blood over time beyond the scope of ELISA and 
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prior to tumor formation. Chapter 4 describes the design of SiMoA assays for 

breast cancer biomarkers as well as results from both healthy and breast cancer 

patients. Chapter 5 discusses the development of a single cell platform where 

single cancer cells are isolated and SiMoA is used to count the number of protein 

molecules in each cell. Chapter 6 describes preliminary work to develop a breast 

cancer mouse model. One appendix is included that contains patient information 

for samples used in Chapter 4 as well as other relevant information regarding the 

data analysis in that chapter. 
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2.1 Introduction  

One of the most significant challenges that restrict biomarkers studies for 

early cancer detection is the limited sensitivity of existing methods to detect 

useful biomarkers that may be indicative of early stage disease. As previously 

discussed in Chapter 1, a significant portion of currently studied biomarkers are 

proteins. In order to sensitively measure the concentration of biomarkers at the 

earliest stages of cancer, a methodology capable of detecting low abundant 

proteins must be used. This chapter discusses the methodology and fundamental 

principles of SiMoA, the technology used throughout this work. First, a general 

overview of ELISA is provided. Next, the use of SiMoA in optical fibers is 

introduced and discussed. A fully automated SiMoA platform is then described 

followed by the principles and fundamentals of SiMoA. Finally, a general 

materials and methods section provides details for how SiMoA experiments are 

performed. 

 

2.2  ELISA 

ELISA is both a rapid and convenient method for protein detection that 

can be both quantitative and qualitative and is often used for the detection of 

protein analytes in blood or blood components, such as serum or plasma.
1-3

 

ELISA is a widely used immunoassay for protein detection and is also the current 

gold standard for analyte quantitation in clinical samples.
3, 4

  In ELISA assays, 

antibodies are used to specifically recognize a protein or antigen of interest by 
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forming an immunocomplex.
2
  There are several forms of ELISA assays, such as 

direct, indirect, sandwich, and competitive ELISA.
5
 Of these formats, sandwich 

ELISA offers the ability to quantify low concentrations of antigen; in the range of 

ng/mL, or in some cases, pg/mL, of protein.
2, 6

  

In sandwich ELISA formats, a capture antibody is adsorbed to the bottom of a 

well, typically in a 96-well plate. A sample containing the antigen is then added 

and allowed to bind with the surface bound capture antibodies. A second 

antibody, known as a detection antibody, is added, followed by subsequent 

labeling with an enzyme, typically via biotin-streptavidin binding. Some 

commonly used enzymes in ELISA are alkaline phosphatase, horseradish 

peroxidase and streptavidin-β-galactosidase (SβG). When substrate is introduced, 

the enzyme molecules turn over the substrate molecules to produce product 

molecules. The substrate used typically undergoes a color change or becomes 

fluorescent upon turn over to facilitate detection. Several substrates are available 

for each enzyme, depending on whether the desired readout is colorimetric or 

fluorescent. Since each enzyme is capable of turning over many substrate 

molecules to produce product molecules, the signal from each molecule is 

amplified, a process known as signal amplification (Figure 2.1).  
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Figure 2.1 Scheme of traditional sandwich ELISA. Capture antibodies (orange) 

are adsorbed onto the surface of a 96-well plate. When target molecules (pink) are 

close enough to the surface, they bind to capture antibodies. Biotinylated 

detection antibodies (green with red circle for biotin tag) are added to tag all 

captured proteins. A streptavidin labeled enzyme (blue and yellow) binds to the 

biotinylated detection antibody. When substrate is added, a colorimetric or 

fluorescence (large red circle) readout is obtained to determine protein 

concentration. 

 

Sandwich ELISAs are specific in that different antibodies can be used to 

target a specific protein of interest.
3
 The resulting enzymatic amplification leading 

to product release within the wells is proportional to the amount of target present 

and can be quantified.
2, 3

 Since ELISA is so widely used, kits are available from 

many vendors and results are generally reproducible.
3
 The scope of this thesis 

focuses on the use of sandwich ELISA, and thus from here on the term “ELISA” 

will strictly refer to sandwich ELISA. 

Despite the many benefits of using traditional ELISA, there are two major 

disadvantages. Since traditional ELISA technology is performed in wells 

containing volumes of approximately 100 μL or more, in order to detect a 

distinguishable change in color/fluorescence above background, a large number of 

product molecules must be produced. Despite signal amplification from the 

enzyme, if the concentration of target is too low, enough target molecules within 
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the solution may not bind to the capture antibodies on the plate surface to result in 

enough signal to read above the background. This requirement raises the detection 

limit of ELISA, making it less sensitive.  Second, since one type of capture 

antibody is coated to the well to produce product, ELISA is limited by its inability 

to multiplex, or simultaneously investigate multiple biomarkers within the same 

sample. In order to probe a sample for more than one biomarker using ELISA, 

multiple wells must be used, which requires more sample volume and decreases 

throughput.
3
 The use of smaller wells and thus lower volumes would lead to the 

generation of more concentrated products from smaller initial target 

concentrations, facilitating lower detection limits. The following section describes 

an ultra-sensitive, single molecule ELISA platform to count individual protein 

molecules in femtoliter sized wells, known as SiMoA.  

 

2.3 SiMoA in Optical Fibers 

The theoretical limit of detection of an ultra-sensitive assay is a single 

molecule.
1
 SiMoA enables the sensitive detection of protein molecules by 

capturing individual molecules, isolating them, and digitally counting them. 

SiMoA is very similar to traditional ELISA assays in that it uses a sandwich 

format. However, instead of using the surface of wells in a 96-well plate to adsorb 

the capture antibodies, capture antibodies are instead covalently linked to 

magnetic microspheres (Figure 2.2). Samples containing low abundance proteins, 

several thousand to tens of thousands of molecules per 100 μL, are added to 

approximately 500,000 microspheres, each containing hundreds of thousands of 
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capture antibodies on the surface. Statistically, due to the significant excess of 

beads in comparison to target protein molecules, some beads will capture only 

one protein molecule and the majority of beads will remain unbound. This process 

follows a Poisson distribution, which is explained further in a following section. 

The beads are allowed to incubate with the sample at room temperature while 

shaking for 2 hours. After the protein molecules are captured by the beads, the 

beads are washed to remove the remaining complex media from the sample. Since 

the beads are magnetic, this step is performed using magnetic separation. Next, an 

excess amount of biotinylated detection antibody is added to the beads and 

incubated for 1 hour with shaking at room temperature. The detection antibody is 

added in excess to ensure that all of the captured protein molecules will be 

labeled. This step is also followed by several washing steps to remove any 

remaining unbound or nonspecifically-bound detection antibody. Finally, SβG, 

the enzyme used in SiMoA, is added to complete the immunocomplex. The 

substrate used is resorufin-β-D-galactopyranoside (RGP), which is not 

fluorescent. However, upon hydrolysis catalyzed by SβG, RGP yields the 

fluorescent product resorufin, which is measured at excitation/emission 

wavelengths of 577/620 nm. 
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Figure 2.2 Scheme of SiMoA using beads. a) Excess beads are incubated with 

target molecules such that some beads will bind to only one molecule and most 

beads will remain unbound. b) Scheme showing one bead that captured a protein 

target. Beads are incubated with biotinylated detection antibodies followed by 

SβG. RGP is then turned over to produce the fluorescent product resorufin. 

 

As previously mentioned, one of the major disadvantages of ELISA is that in 

the wells of standard 96-well plates and at low sample concentrations, the amount 

of substrate produced cannot be measured because it is being diluted in a 

relatively large volume. In order to measure the fluorescent signal being produced 

from single molecules, SiMoA first utilized micron-sized wells created in optical 

fiber bundles.
7
 To create these wells, optical fiber bundles containing 

approximately 50,000 individual fibers are polished and then etched in a weak 

hydrochloric acid solution. The core and the cladding materials of the fibers etch 

at different rates, leading to the formation of micro-wells (Figure 2.3). The 

resulting array consists of wells that are approximately 4.5 μm wide and 3.25 μm 



36 
 

deep and hold a volume of about 50 fL – or about 2 billion times less than the 100 

μL volume usually used in ELISA.  

 

Figure 2.3 Scanning electron micrograph of wells formed in a fiber optic array 

after bead loading (Reprinted with permission from Reference 7). 

 

 Beads are loaded into the wells of the array via centrifuge. The beads used 

are ~2.7 μm in diameter and, thus by size exclusion, only one bead can physically 

fit in each well. The loading efficiency using this technique is approximately 

50%, and only about 20,000-25,000 beads are loaded into the array (Figure 2.4). 

The wells are enclosed via mechanical sealing. The seal consists of a glass slide 

covered with a thin sheet of polydimethylsiloxane (PDMS). A droplet of RGP is 

placed on the PDMS seal such that the wells are filled with substrate upon 

sealing. Good sealing is vital to prevent leaking of fluorescent product into 

neighboring wells. Only wells that contain a bead and an immunocomplex will 

create a fluorescent signal. Since the volume of the wells is so small, the local 

concentration of product is high enough to be easily detected using standard 

fluorescence microscopes and an uncooled CCD camera. The concentration of 

analyte is determined by digitally counting the number of wells that light up and 



37 
 

comparing it to the number of total beads present. In order to reduce background 

signal and eliminate possible contaminants, only wells that contain a bead and 

increase in fluorescence by 20% over five frames (due to enzymatic activity) are 

considered to be a positive signal. The dynamic range of SiMoA can be extended 

beyond the single molecule regime. Samples containing higher protein 

concentrations will lead to beads with multiple enzyme labels. In this case, analog 

measurements are made where the average fluorescence intensity of each bead is 

quantified. The dynamic range of SiMoA spans from 10
−19

 M to 10
−13

 M.
8
 In 

order to increase throughput, strips containing eight fiber bundles can be 

assembled via custom glass holders. 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic of SiMoA assay in a fiber. a) Spin and coagulate whole 

blood sample to obtain serum. b) Incubate beads with 100uL of serum. Follow 

with incubations with detection antibody and SβG to create complete 

immunocomplexes. c) Load beads with complete immunocomplex into fiber 

array. d) Seal with substrate. e) Fluorescent product is produced in wells 

containing a bead with an enzyme. f) Fluorescence and white light images are 

taken of the entire fiber. Only wells that increase in fluorescence intensity by 20% 

over five frames are considered a true positive. 

 

100 μm 

b. c. 
d. 

e. 
f. 

a. 

Fluorescence  White light  
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 Despite the incredible increased sensitivity that SiMoA presented in 

optical fibers, it still suffers from a few limitations. Preparation time for 

experiments is lengthy. Fibers must be polished uniformly, which can take up to 

an hour for every fiber strip. In order to obtain optimal sealing, fibers are then 

silanized, which requires preparation under nitrogen and large quantities of 

ethanol. This process takes approximately 4 hours for up to 120 fibers. Seals must 

also be prepared, which involves precisely cutting pieces of PDMS to fit onto 

glass cover slides, cleaning the PDMS, and carefully placing the PDMS on the 

glass slide such that there are no air bubbles. Since optical fibers are made of 

glass, they sometimes break during imaging, losing valuable data. There are 

multiple and repetitive pipetting steps, and all reagents are pipetted manually, 

although washes can be performed on automatic washers. In order to load beads 

into the fibers, tubing must be affixed to the fibers as holders for the bead 

solution. Bead loading is not always uniform using this methodology and 

coefficients of variation (CVs) were highly variable. The number of steps 

involved in this process and all of the manual pipetting introduces potential errors 

as well as low reproducibility. In order to obtain triplicate measurements and 

calibration data for each experiment a large number of fibers must be used. In 

general, this methodology is extremely tedious, time consuming, and requires 

expert users to achieve optimal results. 
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2.4 Fully Automated SiMoA 

In 2013, Quanterix Corp. released the HD-1 Analyzer, a fully automated 

instrument with integrated analysis software capable of performing SiMoA assays 

with significantly less preparation time than fiber assays.(Figure 2.5a)
9
 The wells 

used in the automated platform are of the same size used for fiber assay, but the 

array size is significantly larger; 216,000 wells compared to the 50,000 wells in 

each optical fiber. In place of individual fibers, the larger arrays are contained 

within a microfluidic device, or ‘disc’ in the shape of a standard DVD, where 

each disc holds 24 3×4 mm arrays (Figure 2.5b-d).
10

 The wells are contained 

within a microfluidic channel that is 500 μm deep and contains both an inlet and 

vent port. After samples have been incubated with the appropriate reagents 

according to the designated protocol described above, the beads are resuspended 

in RGP and are loaded into the disc array via the fluidic inlet port, sealed with oil 

and imaged. When compared to fiber arrays, the use of discs dramatically reduces 

the required preparation time since no polishing or silanization are necessary and 

up to 24 experiments can be performed on one disc. 

The HD-1 Analyzer utilizes a precise automated liquid handling system to 

add all reagents and samples to cuvettes for processing, thus eliminating the 

majority of manual pipetting steps and limiting opportunities to introduce errors. 

The use of liquid handling generally produces reduced CVs compared to fiber 

assays performed with manual pipetting. CVs using the HD-1 Analyzer are 

consistently under 10%. In addition, cuvettes containing samples are processed in 

succession such that the timing of each sample is exactly the same throughout the 
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SiMoA process, which is not the case when performing washes and reagent 

additions by hand.  

 

Figure 2.5 Simoa HD-1 Analyzer and Simoa discs. a) Picture of Simoa HD-1 

Analyzer instrument. b) Top view of Simoa disc c.) Close up view of Simoa disc 

showing channel features, including array, fluidic inlet, channel, and vent port. d) 

SEM images of 216,000 well array in disc and inset is close-up of one individual 

well. Wells are 4.2 μm wide and 3.3 μm deep (Reprinted with permission from 

Reference 10).  

 

In place of PDMS seals, a fluorocarbon oil is flowed through the channel 

to seal the wells. Vacuum is applied to the channel exit to facilitate bead loading 

and sealing. The oil also removes any excess beads that were not loaded into the 

wells. Once the excess beads and substrate are removed, the beads are effectively 

sealed inside the wells and can generate locally high concentrations of fluorescent 

product (Figure 2.6).
10

 

 

 

c. 
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Figure 2.6 Schematic describing the oil sealing process in disc arrays for fully 

automated SiMoA. a) A mixture of beads with and without enzyme complexes 

suspended in RGP is flowed into the array via pipette. b) Beads are allowed to 

settle  into the array via gravity c) A fluorocarbon oil is flowed through to remove 

excess RGP and beads and to seal the wells d) The channel is filled with oil and 

all wells are isolated, enabling imaging of the fluorescent signals generated by 

individual molecules (Reprinted with permission from Reference 10).  

 

Reagent bottles are used to hold beads, detector antibody, SβG, sample 

diluent, and RGP. Samples can be loaded in either a 96-well plate or test tube 

rack. The HD-1 Analyzer performs all incubation and wash steps, loads the 

reagents, images, and processes the data. Assays can be performed in 3, 2, or 1 

a. 

c. 

b. 

d. 
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step, where the steps indicate the number of incubations. Standard 3-step assays 

consist of a 15 minute target incubation, 5 minute detector antibody incubation, 

and 5 minute SβG incubation. Standard 2-step assays consist of a 35 minute 

incubation of both target and detector antibody and a 5 minute SβG incubation. 

One step assays are not common as they only call for one washing step, which 

may result in higher background. These short incubation times paired with full 

automation enable extremely high throughput sampling: 96 samples can be fully 

processed in under 3 hours. This processing time is significantly shorter than fiber 

assays and is even shorter than most ELISA protocols.  

Not only does the HD-1 maximize throughput, minimize CVs, and reduce 

assay time and preparation, but it also enables multiplexing by using dye-encoded 

beads, which can be incorporated with fiber assays as well, but is not possible 

using standard ELISA.
11

 Multiplexing has been demonstrated using up to four 

different analytes in plasma samples with no loss in sensitivity.
11

 The general 

protocols for the preparation of SiMoA reagents as well as SiMoA assays used 

throughout this work are described in the Materials and Methods section below. 

 

2.5 Principles of SiMoA 

2.5.1  Digital Counting of Molecules 

As described previously, at low concentrations, a majority of beads will 

contain no enzyme complexes (“off” beads). In order to digitally count molecules, 

the fraction of beads that are associated with enzyme complexes (active or “on” 
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beads) is used to determine the protein concentration via Poisson Statistics.
8
 The 

Poisson distribution (Equation 1) describes the probability that a discrete number 

of events will occur within a fixed time interval if the average number of events is 

known, where µ is the expected average number of events (e.g. average number 

of labeled molecules/number of beads), x is the number of expected events (e.g. 0, 

1, 2, 3…), and P is the probability of observing x events.
12

 By calculating values 

of µ from SiMoA data, one is actually calculating the average number of enzymes 

per bead, or the AEB.  

𝑃𝜇(𝑥) =
𝑒−𝜇𝜇𝑥

𝑥!
     (Eq. 1) 

Due to the static heterogeneity of enzymes, a bead can only be considered ‘off’ at 

x = 0. Therefore, if Equation 1 is solved for Pμ(0) while also assuming that the 

fraction of off beads (foff) can be defined as 1− fon, where fon is the fraction of ‘on’ 

beads (total active beads/total beads), the AEB for the digital regime can be 

described as (Equation 2):
8
 

𝜇 = 𝐴𝐸𝐵𝑑𝑖𝑔𝑖𝑡𝑎𝑙 =  −ln [1 − 𝑓𝑜𝑛]    (Eq. 2) 

2.5.2 Analog Counting in SiMoA 

When in the digital regime, the number of counted “on” beads is 

independent of the fluorescence intensity generated in each well. However, once 

the ratios of enzymes to beads get higher, digital counting is no longer accurate. 

In order to extend the dynamic range of SiMoA, an analog approach is used when 

>70% of the beads in an array are active.
8
 This approach determines the average 
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fluorescence intensity of a bead in a given well (𝐼�̅�𝑒𝑎𝑑) to determine the AEB. 

Digital measurements are required in order to obtain analog values so that the 

average intensity of a single molecule (𝐼�̅�𝑖𝑛𝑔𝑙𝑒) for that assay can be established. 

Equation 3 describes the derivation of AEBanalog:
8
 

𝑨𝑬𝑩𝒂𝒏𝒂𝒍𝒐𝒈 =  
𝒇𝒐𝒏 × �̅�𝒃𝒆𝒂𝒅

�̅�𝒔𝒊𝒏𝒈𝒍𝒆
      (Eq. 3) 

By combining both digital and analog quantification, SiMoA is able to span over 

four orders of magnitude for PSA concentration, a gold standard assay.
8
 

 

2.5.3  SiMoA Sensitivity and Efficiency 

 

 

By utilizing bead-based capture, SiMoA strives to both capture and label 

all, or close to all, of the target protein molecules in each sample. The efficiency 

of these processes is what leads to the unprecedented sensitivity of this 

technique.
13

 As described above, there are three major binding events that occur 

during standard SiMoA assays: 1- target capture, 2- detector binding, and 3- SβG 

labeling. Chang et al. has described the conditions that lead to SiMoA’s excellent 

capture efficiency by using simple kinetics.
13

  

Each capture bead used in SiMoA is covered with approximately 274,000 

antibodies, which correlates to a capture antibody concentration of 2.3 nM when 

using 500,000  beads in 100 uL.
13

 The capture efficiency of SiMoA has been 

calculated using dissociation constants (KD) ranging from 10
-8 

M
 
to 10

-11 
M. The 

results of this study demonstrated that effectively all of the proteins in solution 
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can be captured when KD≤ 10
− 10

 M. For KD values that are slightly higher 

(KD=10
-9 

M), the efficiency drops to about 70%.
13

  

It has also been demonstrated that the optimal antibodies for protein 

capture have high on rates, where kon = 10
5
-10

6
 M

-1
s

-1
. However, SiMoA is also 

very efficient at labeling the proteins that are captured; where close to 100% of 

captured proteins are labeled with detection antibodies with KD values of 10
-9 

M 

at concentrations varying from 1-100 nM. In addition, assuming a KD of 10
-15 

M 

for biotin-streptavidin binding, it has been determined that the efficiency of 

binding for SβG is approximately 94% at 150 pM.
13

 Thus, even in assays where 

low capture efficiencies result in a low percentage of bound protein, effectively 

all of the bound protein can be labeled.  

The concentration of SβG used also has an effect on the assay LOD by 

leading to increased background signal. At lower concentrations of SβG (e.g. 15 

pM), lower percentages of captured molecules are labeled intentionally to reduce 

non-specific binding and lower the background signal.
13

  By reducing the 

concentration of labeling reagents, the background signal in SiMoA is equivalent 

to approximately 100 active beads. The overall Poisson noise is thus reduced to ≤ 

10%, where Poisson noise is defined as √𝑁/𝑁 and N is the number of active 

beads.
13, 14

 

In addition, it has been observed that the off-rates of proteins bound to 

immobilized antibodies are lower in comparison to antibodies in solution. 

Explanations for the differences in off-rates are likely due to possible multivalent 

interactions as well as multiple rebinding effects. The lower off-rates of the bound 
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protein and antibody complexes on the beads in SiMoA enable vigorously 

washing, further decreasing background signals by washing away lower affinity 

proteins.
13, 14

 Due to efficient capture efficiency and labeling, as well as low off-

rates leading to rebinding and polavalency effects which then lead to low 

background, SiMoA is able to detect proteins at concentrations in the femtomolar 

regime using antibodies that may only have nanomolar affinity.  

One of the limitations of SiMoA that may detract from its ability to detect 

‘every’ protein molecule in solution, is the low efficiency associated with bead 

loading. Of the 500,000 beads used for the assay, only 25,000–30,000 beads are 

loaded and analyzed in the 216,000 well array, which equates to an overall 

efficiency of < 6%. The ability to load and count more beads may enable 

detection at even lower concentrations, especially for assays that have low capture 

efficiency.  

 

2.6  Conclusion 

 SiMoA, both in the fiber optics and the fully-automated commercialized 

versions, is an extremely powerful technique that has vastly improved upon the 

current gold standard ELISA. SiMoA is both a sensitive and specific technique 

that utilizes beads to obtain extremely high capture efficiencies of low 

concentrations of target molecules despite sub-optimal antibody binding affinities. 

The use of both digital and analog quantification strategies enables sampling over 

a span of four orders of magnitude in concentration. The ability to create high 

throughput SiMoA assays to test many samples in replicates with low CVs and 
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limited preparation time makes SiMoA an ideal tool for academia, industry, and 

clinical settings.  

 

2.7  Materials and Methods 

Simoa discs, Wash Buffers 1&2, HD-1 pipette tips, cuvettes, sealing oil, 

RGP, 2.7 μm carboxyl magnetic beads, Bead Diluent, SβG Diluent, SβG 

concentrate, Detector Diluent, Bead Conjugation Buffer, Bead Biotinylation 

Buffer, Bead Wash Buffer, and Bead Blocking Buffer were all purchased from 

Quanterix Corp. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDC) was purchased from Thermo Pierce Scientific. Reagent bottles were 

purchased from VWR and 96-well plates were from Axygen. Amicon centrifugal 

spin filters were purchased from Millipore. 1.7 mL microcentrifuge tubes were 

purchased from Eppendorf. Biotin reagent was purchased from Thermo Scientific. 

Antibodies were purchased from various sources as indicated in each chapter. All 

water used was Milli-Q water. All buffers are filter sterilized using various sized 

vacuum filtration systems with PES membranes purchased from VWR. 

 

2.7.1  Bead Conjugation 

Approximately 0.12 mg of capture antibody is buffer exchanged into Bead 

Conjugation Buffer (Quanterix, 101357) using Amicon centrifugal spin filters 

(Amicon Ultra 50KD, UFC50596) by adding the antibody to the spin column and 

filling the column to 500 μL with Bead Conjugation buffer. The columns are spun 

at 14,000 g for 5 min. The supernatant is removed and followed with two 

consecutive washes with 500 μL of Bead Conjugation Buffer. To recover the 
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antibody, the column is inverted inside a new tube and spun at 1,000 g for 2 min. 

The solution is kept, and the column is washed with 50 μL of Bead Conjugation 

Buffer to remove residual antibody from the column and spun for an additional 2 

min at 1000 g. The buffer exchanged antibody concentration is measured by 

reading the absorbance at 280 nm using a NanoDrop 1000 (Thermo Scientific). A 

200 μL solution of the buffer exchanged antibody is prepared in Bead 

Conjugation Buffer at 0.5 mg/mL and is kept on ice. Approximately 2×10
8
 (100 

uL) of stock beads (Quanterix, 101360) are washed three times with 200 μL Bead 

Wash Buffer (Quanterix, 101355) and 2× with 200μL Bead Conjugation Buffer. 

Washes are performed by vortexing the liquid and quickly centrifuging the tube to 

remove liquid from the cap. Beads are collected using a magnet so the supernatant 

can be removed. Beads are then resuspended in 190 μL of Bead Wash Buffer and 

kept on ice. A 10 mg/mL solution of EDC is prepared by adding 1 mL of ice cold 

Bead Conjugation Buffer directly to a 10 mg bottle of EDC (Thermo Pierce, 

77149) and completely dissolving the contents. 10 μL of the 10 mg/mL EDC 

solution is added to the 190 μL of beads. The bead solution is immediately 

vortexed for approximately 10 s and is placed on a shaker for 30 min. at room 

temperature. The supernatant is then removed and the beads are washed 1× with 

200 μL ice cold Bead Conjugation Buffer. The Bead Conjugation Buffer is 

aspirated and the 200 μL solution of 0.5 mg/mL buffer exchanged antibody is 

added. The beads are mixed and placed on a shaker for 2 h at room temperature. 

After the antibody conjugation, the supernatant is removed and saved for analysis. 

The beads are washed 2× with Bead Wash Buffer and the first wash is also saved. 



49 
 

Next, 1 mL of Bead Blocking Buffer (Quanterix, 100457) is added to the beads 

and they are placed on a shaker at room temperature for 30 min. The beads are 

then collected on a magnet and the supernatant is removed. The beads are washed 

1× with 200 μL of Bead Conjugation buffer followed by resuspension in 200 μL 

of Bead Conjugation. The beads are then transferred to a clean microcentrifuge 

tube. The beads are counted using a Z2 Coulter Counter (Beckman Coulter) to 

calculate the concentration. The saved supernatant and first wash are measured 

using a NanoDrop 1000 to approximate the antibody coating efficiency. The 

coating efficiency is calculated by subtracting the values obtained for the 

supernatant and first wash from the initial antibody concentration, while 

accounting for volume.  

 

2.7.2  Detection Antibody Biotinylation 

 Approximately 0.13 mg of detection antibody is buffer exchanged into 

Biotinylation Reaction Buffer (Quanterix, 101358) using Amicon centrifugal spin 

filters. The buffer exchanged antibody concentration is measured by reading the 

absorbance at 280 nm using a NanoDrop 1000. The buffered exchanged antibody 

concentration is adjusted to 1 mg/mL in Biotinylation Reaction Buffer. 100 μL of 

Milli-Q water is added to one 2 mg vial EZ-link NHS-PEG4-Biotin (Thermo 

Scientific, 21329). The solution is pipette mixed completely and transferred to a 

new microcentrifuge tube. This process is repeated one time followed by the 

addition of 800 μL of Milli-Q water to the microcentrifuge tube. The resulting 
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biotin solution is 3.4 mM. The biotin to antibody ratio used for the reaction is 

40:1. A total of 100 μL of 1 mg/mL detection antibody, 3 μL 3.4 mM biotin and 

1.5 μL of Biotinylation Reaction Buffer are added into a 1.7 μL microcentrifuge 

tube. The tube is briefly vortexed and centrifuged to remove liquid from the cap. 

The reaction is left at room temperature without shaking for 30 min. Next, 

antibodies are purified using the same Amicon filters used for buffer exchange 

and following the same procedure. The final antibody concentration is verified 

using absorbance measurements at 280 on a NanoDrop 1000.  

 

2.7.3  SiMoA Reagent Preparation and Assay Set-up 

A solution of beads conjugated with capture antibodies is prepared at a 

concentration of 5×10
6
 beads/mL in Bead Diluent (Quanterix, 101362) in a 15 

mL bottle (VWR, 16067-000). The total volume of bead solution required is 

calculated by multiplying the number of samples per assay by 110 μL and adding 

3.5 mL to account for the dead volume of the bottle.  A solution of biotinylated 

detector antibody is prepared at an optimized concentration for the assay, 

typically 1 μg/mL unless otherwise stated. For 2-step and 3-step assays, the total 

volume of detector solution required is calculated by multiplying the number of 

samples per assay by 30 μL and 110 μL, respectively, and adding 3.5 mL to 

account for the dead volume of the bottle.  A solution of SβG is made by diluting 

SβG concentrate (Quanterix, 100439) in SβG Diluent (Quanterix, 100375). The 

concentration of SβG used is optimized per assay. The total volume of SβG 
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required is calculated by multiplying the number of samples per assay by 110 μL 

and adding 3.5 mL to account for the dead volume of the bottle. Sample Diluent is 

prepared depending on the assay, and for a 1:4 dilution 75 μL of Sample Diluent 

is required for each sample being diluted plus an additional 3.5 mL for dead 

volume. Beads, Detector, SβG, and Sample Diluent are all loaded into the reagent 

bays of the HD-1 analyzer and assigned in the software. Beads must be placed in 

a rack capable of shaking so that no bead settling occurs during imaging (spots 1-

3). RGP (Quanterix, 100030) is assigned in the appropriate bay in the HD-1 

Analyzer and assigned in the software. Calibrators are made by diluting a known 

protein standard in 25% Newborn Calf Serum (Life Technologies, 16010-142), 

0.01% Tween-20 (Sigma, P7949), 5 mM Ethylenediaminetetraacetic acid (EDTA) 

(Invitrogen, 15575-020), 0.15% ProClin300 (Sigma Aldrich, 48914-U), and PBS 

(Sigma Aldrich, P5493-1L). The volume of all calibrators required is 100 μL plus 

an additional 50 μL (150 μL total) for each replicate per concentration with one 

replicate per well. For samples that are not diluted, the same volume is required. 

For samples that are diluted 1:4, a total of 125 μL is required for three replicates 

and can be placed in one well (25 μL x 3 replicates + 50 μL dead volume). 

Calibrators and samples are loaded into a 96-well plate (Axygen, PCR-96-FS-C), 

loaded into the instrument, and properly assigned in the software.  

 

 

 

http://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
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2.7.4 General HD-1 Procedure 

The following steps are performed automatically by the HD-1 Analyzer. A 

fixed tip pipette is used to remove 110 μL of bead solution from the assigned 

reagent bottle and dispenses it into a cuvette. A magnet collects the beads and the 

pipette is used to remove the supernatant. A disposable tip pipette is used to 

remove 100 μL of sample from the inserted 96-well plate and add it to the beads. 

If the assay is a 3step assay, the cuvette is then incubated for 15 min. If the assay 

is a 2-step assay, 20 μL of detector are added and then the solution is incubated 

for 35 min. After the first incubation, the cuvette enters a wash ring where it is 

washed 4 times to remove excess reagent and/or sample. In the 3-step assay, this 

initial wash is followed by the addition of 100 μl of detector, a 5 min incubation, 

and 4 more washes. In both cases, the next step is now the addition of 100 μL of 

SβG followed by a 5 min incubation and 4 subsequent washes. The SβG is 

removed and the beads are resuspended in of RGP using the disposable tip 

pipette. The bead solution in RGP is then loaded onto the Simoa disc (Quanterix, 

100001) and Simoa oil (Quanterix, 100206) is flowed in to seal the wells. White 

light and fluorescence images are taken and stored as IPL files.  

 

2.7.5 Data Analysis 

The HD-1 Analyzer calculates the AEB and respective concentration in 

pg/mL for each sample based off of the assigned calibrators. The calibration curve 
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is fit using a 1/y
2
 weighted 4-PL fit. The LOD is calculated by extrapolation using 

3 standard deviations from the blank measurement. 
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Chapter 3 

Ultra-Sensitive Protein Detection via Single 

Molecule Arrays Towards Early Stage Cancer 

Monitoring 
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3.1 Introduction 

The ultimate goal in cancer diagnostics is to develop tools to detect 

harmful disease states as early as possible. The ability to detect and treat cancer at 

early stages is of paramount importance in clinical practice, because for multiple 

types of cancer, including prostate,
1
 breast,

2
 ovarian,

3
 and colon,

4
 it has been 

demonstrated that early detection leads to both improved prognosis and improved 

survival rates. Tumor biomarkers typically consist of protein, RNA, or DNA 

abnormalities produced by either cancer cells or by the body in response to the 

presence of cancer.
5
 While cancer-screening methods continue to push the 

boundaries in terms of detection limits, the development of ultrasensitive blood-

based detection methods for cancer and cancer biomarkers could significantly 

benefit cancer diagnostics by enabling earlier detection than is currently possible. 

Furthermore, the use of biomarkers in blood-based diagnostics has the potential 

for differentiating biologically relevant disease from tumors that may never 

become symptomatic—a dimension that image-based diagnostics lack.
6
 Unlike 

methods that require tumor tissue, such as tissue genotyping,
7
 measuring protein 

biomarkers in blood represents a less invasive process.  

ELISAs are the most common test available for measuring protein 

concentrations in blood; however, due to a lack of sensitivity, ELISAs may not be 

able to detect clinically relevant protein biomarkers in serum at very low levels.
8
 

In order to detect ultra-low concentrations of the cancer biomarker PSA, this work 

utilized SiMoA, a recently developed ultra-sensitive ELISA based on single 

molecule counting technology.
9
 The LOD of a leading clinical diagnostic PSA 
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ELISA assay (Siemens)
10

 is 100 pg/mL and the LOD of commercially available 

ultra-sensitive ELISA-based PSA tests is between 3-10 pg/mL.
11

 Results from the 

experiments described in this chapter are compared to one or both of these 

benchmark assays, depending on the range of the described data.  We obtained a 

LOD of 0.005 pg/mL for PSA using SiMoA, which is significantly more sensitive 

than standard and ultra-sensitive ELISA and is comparable to previous SiMoA 

work.
9, 12

 Other literature reports have also demonstrated sensitive PSA tests, 

including recent work by Liu et al. where they utilized gold nanoparticles to 

create a colorimetric ultra-sensitive assay for PSA with a LOD of 0.0031 pg/mL.
13

 

Recently, several groups have produced ultra-sensitive assays for the 

detection of various protein biomarkers. Notable works have utilized 

electrochemical microfluidic arrays,
14

 electrochemical immunosensors with gold 

nanoparticles functionalized with magnetic multi-walled carbon nanotubes,
15

 and 

novel laser-induced fluorescence systems
16

 to detect cancer biomarkers. Although 

these reports advanced the field of ultra-sensitive biomarker detection, many of 

them require complicated assay set-ups, lengthy preparation, or are subject to 

sensor fouling.  

SiMoA has been previously implemented in studies utilizing PSA for 

monitoring recurrence of prostate cancer after radical prostatectomy,
12

 as well as 

tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) for monitoring 

therapeutic efficacy in Crohn's disease.
17 

Importantly, recent work by Warren et 

al. describes the use of SiMoA to noninvasively discriminate between mice with 

and without thrombosis by detecting microdosed disease-tailored nanoparticles at 
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ultra-low levels.
18

 SiMoA represents an already commercialized method that is 

simple, straightforward, and can be performed in a fully automated instrument in 

a few hours with minimal preparation making it an ideal tool for implementation 

in clinical settings. 

We chose to use PSA as a cancer biomarker for a proof-of-concept study 

for early cancer detection due to the extremely sensitive SiMoA LOD and its high 

reproducibility. This work describes the use of a prostate cancer cell line to create 

a novel murine xenograft model to monitor tumor formation in mice. Since the 

only source of human PSA within the mouse model are the human cells that are 

injected and then replicated in the mouse, the concentration of PSA in the 

mouse’s bloodstream should correspond to the relative number of cancer cells that 

may lead to tumor formation. We demonstrate that due to its high sensitivity, 

SiMoA can be used to detect the presence of nascent tumors at a much earlier 

stage than is possible with any other protein assay.  Although this work is 

demonstrated with PSA, it should be applicable to any biomarker associated with 

tumor growth that is found in the blood. 

 

3.2 Mouse Model Development 

3.2.1 Preliminary Mouse Models 

The main goal of this work was to create a mouse model for prostate 

cancer and to track the progression of serum PSA concentration using SiMoA 

technology prior to the formation of palpable tumors. In order to accomplish this 
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goal, cell line-based mouse xenografts were utilized. This type of mouse model 

is commonly used in cancer research and is employed in this study using LNCaP 

cells, which secrete PSA. LNCaP cells are an epithelial cell line that originated 

from a metastatic lesion of a human prostatic adenocarcinoma and are commonly 

used in prostate cancer research. The doubling time for this cell line in vitro is 

approximately 60 hours.
19

  

Previous studies have demonstrated that upon inoculation of 3.0×10
6
 

LNCaP cells, tumors will form in male immunocompromised mice within eight 

weeks.
19

 Building on this work, experiments were performed to determine a 

baseline level of PSA in the serum of mice inoculated with standard 

concentrations of LNCaP cells. In a preliminary study, a cohort of five female 

NOD/SCID mice was subcutaneously injected with LNCaP cells. Four mice 

received two injections for a total of 3.0×10
6
 LNCaP cells while the final mouse 

received a single injection of 1.5×10
6

 cells. The experimental scheme is shown in 

Figure 3.1. Time course bleeds were taken on a weekly basis from each mouse 

for a total of 77 days with the final time point being a terminal bleed.  
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Figure 3.1 Scheme describing mouse study. Five female NOD/SCID mice were 

subcutaneously injected with either 3.0×10
6 

or
 
1.5×10

6
 LNCaP cells. Tumors 

developed in two of the mice that received a 3.0×10
6 

cell injection.   

 

The PSA content of the collected serum samples was measured using 

SiMoA. Of the five mice included in this study, two of the mice that were 

inoculated with 3.0×10
6
 LNCaP cells developed large palpable tumors, while the 

remaining three mice did not. Figure 3.2 shows the results of the single molecule 

analysis from one of the mice that developed a tumor. Since the sample volume 

was limited and it was unclear whether or not the concentration of PSA would be 

detectable within the serum, 10 fold dilutions were made. Any remaining serum 

was then diluted 20 fold to obtain as many replicates as possible from each 

sample. Dilutions were made in 5 mM EDTA/PBS containing 10 μg/mL 

TruBlock, which is a heterophilic blocker. As is demonstrated from the bar graph, 

the concentrations of PSA within these samples were significantly higher than the 

LOD of standard PSA ELISA assays. PSA from these samples can easily be 

detected using traditional ELISA, even as early as two weeks after inoculation. 

These results agree well with what was presented in the literature in terms of 

tumor growth in the expected time frame and cell inoculum; however, all of the 
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concentrations of PSA were too high to properly utilize SiMoA for the monitoring 

of tumor formation in this mouse. 

Figure 3.2 a) Bar graph of measured PSA concentrations in the serum of one 

mouse inoculated with 3.0×10
6
 LNCaP cells. Measurements were taken over the 

course of 77 days and ultimately the mouse developed a palpable tumor. Error 

bars represent the standard deviation. b) Tabulated values for each measurement. 

 

Interestingly, two of the mice from the same 3.0×10
6 

inoculation cohort 

did not develop large tumors. Single molecule analysis of the PSA concentration 

in these samples is shown in Figure 3.3. Although samples were collected weekly 

for a total of 77 days, samples collected after day 35 had PSA concentrations that 

saturated the instrument and were thus not measurable and are not contained on 

the graph below. Unlike the mouse that developed a large tumor, the two mice, 

indicated as mouse 1 and mouse 4, which received the same LNCaP inoculum but 

did not develop tumors had significantly lower concentrations of PSA in their 

serum. Fourteen days after inoculation, mice without tumors had approximately a 

7-fold lower PSA concentration than the corresponding mouse that developed a 

large tumor. Despite the decreased concentration of PSA, the overall 

Standard ELISA LOD  

 

Days after 

inoculation 

[PSA] 

(pg/mL) n 

14 897±20 3 

21 4835±39 2 

28 3918±333 5 

35 7151±808 3 

49 6651±453 3 

63 6433±505 2 

77 9747±1620 15 

a. b. 

Standard ELISA LOD 
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concentrations of PSA in the majority of samples were either at or above the LOD 

for standard PSA ELISA. Although these mice did not form large palpable 

tumors, it was noted that a few cells were stuck in the Matrigel plug used for 

inoculation. These few cells never formed a proper tumor, but could be the cause 

for the notable increase in PSA concentration over time.  

Figure 3.3 a) Bar graph of measured PSA concentrations in the serum of two 

mice inoculated with 3.0×10
6
 LNCaP cells. Measurements were taken over the 

course of 35 days and the mice did not develop tumors after 77 days. Error bars 

represent the standard deviation. b) Tabulated values for each measurement. 

 

The final mouse in this cohort was only inoculated with 1.5x10
6
 LNCaP 

cells, which was half of the concentration that the literature stated would form 

tumors in immunocompromised mice within eight weeks. This mouse did not 

form tumors, but similarly to two of the mice inoculated with 3.0×10
6
 cells 

described above, it was observed that cells were stuck in the Matrigel plug used 

for injection. Single molecule analysis of the PSA concentration in these samples 

is shown in Figure 3.4. As shown in the graph, the concentration of PSA steadily 

increased over time and only surpasses the LOD of standard ELISA after day 63. 
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The LOD for the PSA assay for this run was 0.06pg/mL and all values were well 

above the SiMoA threshold. Despite the lack tumor formation, these results 

demonstrate that PSA can be measured in mouse serum with only the presence of 

a few cells and it can also be measured using SiMoA over time for potential 

tumor growth monitoring. 

Figure 3.4 a) Bar graph of measured PSA concentrations in the serum of one 

mouse inoculated with 1.5.0×10
6
 LNCaP cells. Measurements were taken over the 

course of 63 days and did not ultimately lead to tumor formation after 77 days. 

Error bars represent the standard deviation. b) Tabulated values for each 

measurement. 

 

Due to the method used for obtaining weekly bleeds, only a small volume 

of whole blood is obtained from each sample and thus an even smaller volume of 

serum (~30-50 μL) is available for analysis. For this reason, it is not always 

possible to obtain replicate measurements, such as the case for days 28 and 35, 

despite dilution. The sample from day 49 was tested and discarded as an outlier as 

determined via q-test. This sample had a red color, indicating it had undergone 

hemolysis. Hemolysis likely occurred during sample collection. The presence of 
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burst red blood cells was likely the cause of the false positive signal. The sample 

for day 77 was also hemolyzed and was not measurable using SiMoA. 

The experiments described above demonstrate that LNCaP cells can be 

used in a mouse xenograft model to measure increasing PSA concentrations over 

time with lower than typical cell inoculums. One oversight in the design of the 

above experiments was that the mice used were female and the cell line used is 

derived from male prostate tissue. Since the concentration of cells used in these 

studies should have all produced tumors, it is likely that the reason some of the 

mice did not produce tumors is linked to their sex. In order to confirm that results 

using male NOD/SCID mice would be similar, two mice were inoculated with 

4x10
6
 LNCaP cells and terminal bleeds were collected after four weeks. At end 

stage, tumors from these mice measured about 10 mm in diameter. Serum PSA 

concentrations were extremely high, measuring approximately 30,000 and 78,000 

pg/mL for each mouse (Figure 3.5). As expected, these values were significantly 

higher than the LOD of standard ELISA PSA assays and were also greater than 

the PSA concentrations from the initial study. 
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Figure 3.5 Bar graph of measured PSA concentrations in the serum of mice 

inoculated with 4×10
6
 LNCaP cells. Measurements were taken four weeks after 

inoculation. Both measurements were well above the detection limits of standard 

ELISA and beyond the scope of SiMoA. Error bars represent the standard 

deviation of triplicate measurements. 

 

All further mouse models described in this text using LNCaP cells were 

performed with male NOD/SCID mice. Despite the original oversight, meaningful 

information was gained regarding the ability to track PSA prior to potential tumor 

formation. Since the male mice that were tested and formed tumors also had 

extremely high concentrations of PSA within their serum, another study was 

designed to determine how soon an inoculum of just 1×0 x10
6 

cells could be 

detected in mouse serum. In this study, 19 male NOD/SCID mice were inoculated 

with 1x10
6
 LNCaP cells subcutaneously. In order to obtain more sample volume 

per mouse and thus more replicates, terminal bleeds were used for this study 

instead of the previously described weekly bleeds. Terminal bleeds were taken 

daily for 19 days, beginning the day after inoculation, thus the data presented here 

are from three different mice at each time point. Although several measurements 

were below the detection limit, PSA was detected in the serum of one mouse after 



66 
 

only three days (Figure 3.6). A general trend of increasing PSA concentration 

over the 19 days was observed and all values were below the detection limit of 

standard ELISA. Ultra-sensitive ELISA was able to detect PSA in samples from 

days 12 and 16-19. None of the mice in this study developed tumors; however, the 

study only spanned three weeks. Follow-up experiments (vide infra) using 

luciferase tagged LNCaP cells with the same cell concentration for inoculation 

suggest that it is extremely likely these mice would have developed tumors within 

a few more weeks. These results further demonstrate the sensitivity of SiMoA for 

detecting low-level serum-based biomarkers within cancer models. 

Figure 3.6 Bar graph showing the log of PSA concentrations in the serum of mice 

inoculated with 1x10
6
 LNCaP cells over 19 days. All measurements were taken 

using serum from terminal bleeds of individual mice where one mouse was 

sacrificed for each time point. A general increase in PSA concentration is 

displayed over time from days 1-19. The assay SiMoA LOD was 0.005 pg/mL. 

For comparison, the LOD of ultrasensitive (3 pg/mL) and standard ELISA (100 

pg/mL) are shown. Each sample was measured in triplicate. Error bars represent 

the standard deviation between triplicate measurements for each individual 

sample. 
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As previously mentioned, a luciferase tagged LNCaP cell line (luc-

LNCaP) was constructed. The primary reason for using this cell line was to 

determine that the only source of PSA within the mouse serum was from the 

primary tumor and not from distant metastases. A total of three male NOD/SCID 

mice were inoculated with 1×10
6
 LNCaP cells and observed for several weeks. 

An additional three mice were inoculated with Matrigel as a control. After 8 

weeks, two of the mice inoculated with the luc-LNCaP cells developed tumors 

that were approximately 1 cm in diameter. This experiment demonstrates that the 

mice in the previous study very likely did not have sufficient time to develop 

tumors and would have if the experiment had been conducted over a longer period 

of time. One of the mice inoculated with the luc-LNCaP cells did not develop any 

tumors and none of the control mice developed tumors. Bioluminescence imaging 

was used to visualize the presence of the tumors within the mice as well as to 

determine whether or not there were any metastatic regions (Figure 3.7). No 

metastases were present in either of the two mice that had tumors, indicating that 

the only source of PSA within the mouse serum is from the resected tumors. 
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Figure 3.7 Bioluminescence images of three NOD/SCID mice inoculated with 

1x10
6
 luc-LNCaP cells. Also shown are three control mice injected with Matrigel 

and cell growth media after 8 weeks. The control mice showed no signs of tumor 

formation in either the left (a) or right (b) views; however, the mice injected with 

the luc-LNCaP cells had 1 cm tumors that were clearly visible from both the left 

(c) and right (d) views of the animal. No evidence of metastasis is present among 

any of the three mice. The middle mouse did not grow a tumor. 

 

3.2.2 Development of PSA/LNCaP Mouse Model with Low Cell Inoculation 

Since the goal of this work was to monitor PSA levels in serum over time 

prior to tumor formation, preferably over multiple weeks, it was vital that the 

inoculation concentration of cancer cells was not too high. An inoculation of 

1×10
6
 LNCaP cells, as previously described, can still be considered relatively 

high when factoring the overall volume of blood in an average mouse 

(approximately 2 mL). Thus, experiments were conducted to monitor tumor 
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progression in mice using significantly reduced cell concentrations of 100,000 

(100k) and 10,000 (10k) cells. To my knowledge, this is the first example of a 

mouse xenograft model using such a low concentration of LNCaP cells. 

 

3.2.2a Inoculation with 100k Cells 

Eighteen NOD/SCID mice were subcutaneously injected with 100,000 

LNCaP cells. Terminal bleeds were performed on three mice per week for a total 

of five weeks. The remaining three mice were sacrificed when palpable tumors 

formed (week 8). Replicates were used for each time point due to restrictions on 

the volume of whole blood that can be drawn from each mouse per week as well 

as the dead volume of the assay plates used for analysis, as described in the 

Materials and Methods section. Figure 3.8a-b illustrates the increase in PSA 

concentration in the serum of mice over time, where each time point represents a 

terminal bleed from an individual mouse. Figure 3.8c demonstrates that the 

increase in PSA over time is exponential. Serum from three mice was measured 

for each time point and triplicate measurements were made for each sample.  

Serum from six healthy male mice was tested and all samples had 

undetectable levels of PSA (not shown). This result is expected since mice do not 

express human PSA. Despite decreasing the number of cells used to inoculate the 

mice, the concentration of PSA in the serum of the majority of mice sacrificed 

after 1 to 5 weeks was measurable at values well above the SiMoA detection 

limit. All values measured with SiMoA prior to tumor formation were at or below 
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the detection limit of commercially available ELISA kits. All measurements taken 

from weeks 1 to 3 were only measurable using SiMoA. Ultrasensitive ELISA was 

able to measure one sample in week 4 and both of the samples that were 

measurable by SiMoA from week 5. Two out of three mice developed large 

tumors (>8 mm in diameter) after eight weeks and had significantly elevated 

serum PSA levels (355±2 pg/mL) compared to the rest of the mice. Notably, the 

mouse that did not develop a tumor after eight weeks also had undetectable levels 

of PSA. The mice with palpable tumors were the only samples with serum PSA 

concentrations that would have been easily detected using standard ELISA.  

Figure 3.8 PSA in serum of mice inoculated with 100k LNCaP cells. a) Bar graph 

of measured PSA concentrations in the serum of mice inoculated with 100k 

LNCaP cells on a log scale. All measurements were taken using serum from 
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terminal bleeds of individual mice. Each sample was measured in triplicate. Error 

bars represent the standard deviation between triplicate measurements for each 

individual sample. An exponential increase in PSA concentration is observed over 

time. Three mice were examined at each time point, but several samples were 

below the 0.005 pg/mL detection limit for the assay. All samples with values 

below the LOD are plotted on the LOD line. LODs for standard ELISA and ultra-

sensitive ELISA are shown for comparison at 100 pg/mL and 3 pg/mL. b) 

Tabulated values for each measurement. c) Scatter plots showing the exponential 

increase of PSA over time. 

 

3.2.2b Inoculation of 10k Cells 

In order to assess the sensitivity limits of SiMoA with our mouse model, 

the cell inoculate was further reduced to 10,000 LNCaP cells—over 100 times 

lower than the typical dose used for inducing tumors. A similar experimental 

approach was used, where 18 NOD/SCID mice were subcutaneously injected with 

10,000 LNCaP cells and weekly terminal bleeds were performed. Small tumors 

(>3 mm in diameter) were present at week 8 in all three mice that were not 

sacrificed earlier; however, one mouse developed thymic lymphoma and it was 

not possible to obtain a serum sample (week 8, sample 2). Figure 3.9a-b depicts 

the increase in PSA concentration over time, with a large increase at week eight 

(average of 82.4±4.7 pg/mL PSA), where palpable tumor formation occurred. As 

demonstrated in Figure 3.9c, the increase in PSA over time is exponential. 

Several mice exhibited PSA concentrations below the SiMoA LOD, but 

measurements for at least two mice were recorded for each time point in triplicate. 

All measured PSA concentrations, including those with tumors, were below the 

detection limit of standard ELISA, as depicted on the graph, and only the samples 

containing tumors were detectable using ultra-sensitive ELISA. 
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Figure 3.9 PSA in serum of mice inoculated with 10k LNCaP cells. a) Bar graph 

of measured PSA concentrations in the serum of mice inoculated with 10k LNCaP 

cells on a log scale. All measurements were taken using serum from terminal 

bleeds of individual mice. Each sample was measured in triplicate. Error bars 

represent the standard deviation between triplicate measurements for each 

individual sample. An exponential increase in PSA concentration is observed over 

time. Three mice were examined at each time point, but several samples were 

below the 0.005 pg/mL detection limit of the assay. LODs for standard ELISA 

and ultra-sensitive ELISA are shown for comparison at 100 pg/mL and 3 pg/mL. 

b) Tabulated values for each measurement. c) Scatter plots showing the 

exponential increase of PSA over time. 

 

3.2.2c Tumor Characterization 

As previously mentioned, mice from both the 10k and 100k cell cohorts 

developed tumors within eight weeks of inoculation. Images highlighting the 
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location of tumors in vivo are shown in Figure 3.10a. The tumors were removed 

for characterization and images of representative resected tumors are shown in 

Figure 3.10b-c. Tables including tumor diameter, weight, volume, and serum 

PSA concentration are shown in Figure 3.10d-e. The average PSA levels for each 

cohort were very similar, with an average of 82.4±4.7 pg/mL and 355±2 pg/mL 

for the 10k and 100k cohorts measured at week 8, respectively.  

 

Figure 3.10 Characterization of tumors from mice inoculated with 100k and 10k 

LNCaP cells. a) Representative photographs of mice inoculated with 10k and 
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100k LNCaP cells. Photographs were taken after 8 weeks with tumor locations 

indicated by arrows. b-c) Photographs showing representative tumors removed 

from mice inoculated with 10k and 100k LNCaP cells respectively, after 8 weeks 

at 8x magnification. d-e) Tables describing data pertaining to the tumors found in 

the 10k and 100k mouse cohorts, respectively, as well as the concentrations of 

PSA within the serum. 

 

The tumor volume, however, was more variable between the samples. For 

example, the tumor volume in mice 1 and 2 from the 100k cohort were 288.5 and 

407.5 mm
3
, respectively, despite having very similar concentrations of PSA. The 

discrepancy between tumor volume and the amount of PSA produced from the 

tumor can possibly be attributed to necrosis within the tumor, or dead tumor cells. 

Necrotic cells would be expected to produce lower amounts of PSA. Although it 

is difficult to characterize exactly how much necrosis was present in each tumor, 

Figure 3.11 shows a representative photo from a 100k tumor with H&E staining. 

Another possible explanation is restricted diffusion from the center of a tumor.  

Such restriction would prevent PSA from accessing the vasculature and would 

reduce the amount detectable in the blood. 

 

Figure 3.11 Representative photo of H&E stained tumor from mice inoculated 

with 100k LNCaP cells. The necrotic area is highlighted via the dotted line. Image 
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taken at 100× magnification. Scale bar is 100 μm. The presence and extent of 

necrosis in the tumors from each mouse may lead to varying PSA concentrations 

in the respective serum. 

 

 Finally, all tumors were preserved in formalin after removal. Tumor 

sections were stained with both hematoxylin and eosin (H&E) as well as for PSA 

(Figure 3.12). The PSA stain confirmed that the tumor cells were PSA positive. 

 

Figure 3.12 H&E and PSA staining of tumor samples from mice inoculated with 

both 10k and 100k LNCaP cells. PSA staining confirms the presence of PSA in 

the cells of the resected tumors. Scale bars are100 μm.  

 

3.3 Discussion 

SiMoA technology has the potential to revolutionize cancer diagnostics 

and therapeutics by non-invasively detecting cancer biomarkers in serum earlier 

than current methods. This chapter describes a proof-of-concept study where 

prostate cancer was induced in a mouse model at very low cell inoculums to 
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demonstrate the utility of SiMoA as an early cancer detection tool. Increasing 

levels of PSA were measured in the serum of mice as a sign of tumor progression, 

since the only source of increasing levels of secreted human PSA in the mouse 

model is the proliferation of the PSA-secreting cancer cells. Several mice 

developed tumors, indicating that SiMoA can be used to monitor ultra-low levels 

of biomarkers in serum prior to the formation of palpable tumors. 

The initial mouse model utilizing female mice illustrates the ability of 

SiMoA to track PSA increasing within mouse serum at both high and low PSA 

concentrations. LNCaP cells are androgen sensitive and while the rate of tumor 

growth is independent of hormone status, tumor development has been shown to 

directly correlate to the androgen levels present within the host’s serum.
20

 For this 

reason, male mice develop LNCaP tumors more rapidly and at a higher frequency 

than female mice, which explains the lack of tumor growth in half of the cohort 

receiving the same 3.0×10
6 

cell inoculation in the first study.  

The female mice that received inoculations of 3.0×10
6 

and 1.5×10
6 

cells 

but did not develop tumors still had measurable increases in PSA within their 

serum, which means that eventually a tumor might have developed if they were 

allowed to sit for a longer period of time. However, the inoculation concentration 

was so high that SiMoA would not be necessary for the measurements if a tumor 

did develop since these samples were already above the LOD of standard ELISA. 

Despite the high concentrations of PSA in these mice, the experiment did provide 

valuable insight for the design of future experiments. For example, after only two 

weeks, the serum from the female mouse that was inoculated with 1.5×10
6 

cells 
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had a PSA concentration of 5.88±0.65 pg/mL which is 17 times less than the 

standard ELISA LOD of 100 pg/mL, but is still almost 100 times greater than the 

SiMoA LOD calculated for that day (0.06 pg/mL). This feat was accomplished 

while only using half of the inoculum of cells recommended to cause tumors to 

form after a period of eight weeks. Even though this mouse did not form a tumor, 

the ability to track PSA within this mouse at concentrations below the LOD of 

traditional ELISA was an important stepping stone towards the overall goal.  

It was also established that, using male NOD/SCID mice, SiMoA can be 

used to measure PSA in mice as soon as 3 days after inoculation with 1×10
6
 

LNCaP cells. Despite the fact that tumors also did not grow in this model, a 

general increase in PSA concentration was measured over time for 19 days while 

still maintaining concentrations below the LOD of standard ELISA. The volume 

of serum used in this and the previous time course study was extremely limited, 

approximately 30-50 μL of serum per sample. This required dilutions to 5-10% 

for replicate measurements and would have simply been impossible for standard 

ELISA, which typically requires volumes upwards of 100 μL. SiMoA therefore 

demonstrated its ability to use low volumes of precious samples and still make 

accurate and sensitive measurements beyond the capabilities of traditional 

methods. In addition, studies using luc-LNCaP cells and bioluminescence 

imaging demonstrated that the tumors grown in the mice did not metastasize after 

long periods of time. 

In the case of mice inoculated with 100k LNCaP cells, the PSA 

concentration after one week ranged from 0.04 to 2.25 pg/mL, levels much lower 
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than the detection capabilities of conventional ELISA. In comparison, mice 

inoculated with only 10k LNCaP cells resulted in even lower PSA concentrations, 

which were at or below the SiMoA LOD after week one. However, by week two, 

PSA measurements for the 10k cohort surpassed the SiMoA LOD with obtained 

values of 0.20±0.09 pg/mL, while those in the 100k cohort yielded values of 

1.71±0.37 pg/mL after two weeks. The first samples with PSA concentrations 

high enough to be measured by conventional ELISA were collected eight weeks 

after inoculation; once palpable tumors formed. Although different mice were 

used for each measurement, the increasing trends of PSA concentration over the 

short time courses of these experiments within the majority of samples show that 

it is possible to monitor tumor markers during the initial stages of tumor 

formation in low volumes of serum using SiMoA. This sensitivity should enable 

the ability to detect the earliest stages of cancer, before palpable or visible tumors 

are detectable. Due to the limited number of cells used for inoculation, PSA was 

not detectable in all mouse replicates for either the 10k or the 100k model.  

Injecting mice with lower cell inoculums leads to issues regarding clonal 

heterogeneity, where the likelihood of having cancer stem cells or clones that can 

form tumors is reduced. The presence of low numbers of cancer stem cells is also 

the likely reason why only two of the 100k mice developed tumors. This process 

has been described previously using LNCaP cells in the work of Wan and 

coworkers.
21

 In addition, all mice are biologically unique and variations are 

expected between individuals. 
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The PSA concentrations that were detected in mice after tumor formation 

seemed to reasonably correlate with the number of cells used for inoculation in 

each mouse cohort. However, the PSA concentrations do not scale as may be 

expected (i.e. the concentration of PSA from mice with 100k tumors was not 10x 

higher than the 10k tumors). This result may be due to the fact that the tumors 

were encapsulated, thus hindering the secretion of PSA from the tumors into the 

bloodstream. Also, the presence of varying amounts of necrotic cells within the 

tumors could also result in different secretion rates of PSA. A larger sample size 

will be needed to further investigate this correlation. 

The data presented here also demonstrate that, by utilizing SiMoA, 

significantly fewer LNCaP cells are required for PSA to be detected in serum. 

This methodology can be particularly useful when examining the growth of 

tumors in mice over time and at lower cell concentrations, where high cell 

concentrations were previously required. The technique could thus be utilized for 

models to study early tumor development, either for primary tumors or for relapse 

after treatment in more complex models. In addition, biomarker levels can 

potentially be monitored after chemotherapy to ascertain the efficacy of treatment.  

This work represents a proof-of-concept study using PSA; however, this work can 

easily be extended to use any other protein biomarker or cell line of interest, 

which would further advance the field of cancer diagnostics and early detection.  

Through the creation of a low cell inoculum mouse model, the work 

outlined in this chapter successfully demonstrated that SiMoA can be used to 

measure the biomarker PSA within the serum of mice that ultimately developed 
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palpable tumors. The sensitive detection of circulating protein biomarkers can not 

only enable earlier detection of disease, but can also unmask the body’s unique 

underlying chemistry and offer more dynamic information that imaging 

techniques are incapable of providing. This work shows significant promise for 

the use of SiMoA in the field of oncology and early cancer detection as a non-

invasive approach to early tumor detection.  

 

3.4 Materials and Methods 

The human prostate cancer cell line LNCaP (ATCC CRL-1740) was 

provided by Dr. Charlotte Kuperwasser at Tufts Medical School. Cells were 

grown in RPMI 1640 media (Gibco) containing 10% fetal bovine serum and 1% 

antibiotic/antimycotic (Gibco). LNCaP cells were grown at 37°C with 5% 

CO2 and were passaged for less than 3 weeks. The cells tested negative for 

mycoplasma (MilliPROBE; Millipore) and were authenticated by 

ATCC/Promega. 

  For injections, LNCaP cells were trypsinized (0.05%; Gibco) and counted 

using trypan blue to identify viable cells. Cells were resuspended in 50% v/v in 

Matrigel (BD Biosciences) and RPMI culture media for injections.  

For initial time course mouse studies, eight week old NOD/SCID (Jackson 

Laboratories) mice were anesthetized with isofluorane, and 30ul of resuspended 

LNCaP cells were subcutaneously injected in a 1:3 ratio of matrigel to 

media.  Approximately 100ul of blood was drawn from the submandibular vein 

and collected into SST Microtainer tubes (Becton Dixon and Co, Franklin Lakes 
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NJ). At end stage, mice were anesthetized isofluorane and blood was drawn via 

cardiac puncture followed by euthanasia by C02 asphyxiation. For 100k and 10k 

mouse studies, eight week old male NOD/SCID were subcutaneously injected 

with 100 μL of resuspended cells. Mice were given food and water ad 

libitum.  Whole blood was collected from mice under terminal anesthesia via 

cardiac puncture and transferred to SST Microtainer tubes. The care of animals 

and all animal procedures were conducted in accordance with a protocol approved 

by the Tufts University Institutional Animal Care and Use Committee (IACUC).  

Whole blood samples were allowed to clot on ice for 10 min. followed by 

centrifugation at 1,500 × g for 10 min at 4°C. Serum was removed and 

immediately snap frozen.  All serum samples were stored at -80°C prior to use. In 

initial studies using female and male mice with inoculations of 3.0, 1.5, and 

4.0×10
6 

cells, samples were diluted to final concentrations of either 5 or 10% 

serum in 5 mM EDTA/PBS with 10 g/mL TruBlock.   For SiMoA analysis, serum 

samples were diluted to a final concentration of 25% serum in PSA Diluent 

(Quanterix Corp.) before being loaded onto an automated HD-1 analyzer 

(Quanterix Corp.). Serum from healthy male mice was used as control and was 

also diluted to 25% in PSA diluent and treated similarly. Tumor tissue was 

preserved in formalin and sections were stained with hematoxylin and eosin 

(H&E) and prostate specific antigen (PSA; Tufts Histology Core).  

Due to restrictions imposed by the Tufts University IACUC, the maximum 

volume of whole blood that can be drawn from the NOD/SCID mice used is 7.5% 

of the animal’s total circulating blood, which is equivalent to ~82-105 μL per 
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week. From this volume of whole blood, the maximum volume of serum obtained 

is at most 50 μL, which is equivalent to the dead volume of the plates used for 

these experiments. Due to these limitations, multiple mice were sacrificed per 

time point in order to obtain biological replicates and still obtain valuable 

information. 

Luc-LNCaP cells were constructed as follows. Lentiviral particles were 

generated by co-transfection of the pLenti-PGKV5LucNeo construct (Addgene) 

with pCMV-VSVG, expressing the vesicular stomatitis virus glycoprotein and the 

packaging construct pCMVΔR8.2Δvpr into 293T cells with FuGENE 6 

transfection reagent (Promega). Lentivirus-containing supernatant from the 

transfected 293T cells was filtered through a 0.45μm syringe filter and used to 

directly infect subconfluent LNCaP cells in the presence of 5μg/mL protamine 

sulfate (Sigma). LNCaP-luc cells with lentiviral integration were selected with 

750 μg/mL hygromycin.   

 To generate tumors, 1x10
6
 LNCaP-luc cells were injected subcutaneously 

in 100 μl of a 1:1 mixture of Matrigel and cell growth media into male 8 week old 

NOD/SCID mice.  Control mice were injected with 100 μl of a 1:1 mixture of 

Matrigel and cell growth media only.  When the tumors reached a diameter of 1 

cm (after 8 weeks), all mice received a 100 μl intraperitoneal injection of 15 

mg/mL luciferin.  Five minutes after treatment, luminescence was quantified 

using an IVIS 200 Imager (Perkin Elmer).  Bioluminescence was analyzed using 

Living Image software (Caliper Life Sciences).  
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SiMoA PSA Assay 

All single molecule measurements were taken using a HD-1 Analyzer 

(Quanterix Corp.). All HD-1 consumables, including wash buffers, sample 

diluent, assay discs, 96-well plates, sealing oil, cuvettes, and PSA reagents, were 

purchased from Quanterix Corp. The SiMoA platform has been described 

previously in the literature and in Chapter 2. 
9, 22

 The PSA SiMoA assay consists 

of three-steps: 1) 15 minute target incubation with capture beads 2) 5 minute 

incubation with detection antibody, and 3) 5 minute SBG incubation.  
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4.1 Introduction 

It has been demonstrated that the early detection of breast cancer is 

correlated to both improved patient survival and improved prognosis.
1-3

 

Mammography is not an ideal method for breast cancer screening and early 

detection because it is not specific enough to distinguish between the benign and 

malignant masses it detects and it still misses approximately 20% of breast 

cancers.
4, 5

 In addition, the process for determining whether or not a tumor found 

via mammography screening often requires a follow-up biopsy to determine 

malignancy, which is invasive. Testing protein biomarkers in serum offers a 

significantly less invasive method for early detection screening and monitoring; 

however, the only biomarkers recommended for analysis in blood for clinical use 

in breast cancer patients are CA 15-3, CA 27.29, and CEA.
6
 Two of the most 

important features of a sensitive biomarker are that it must be both specific and 

selective for cancer, ideally for a specific type of tumor. Unfortunately, due to an 

inherent lack of specificity and sensitivity associated with these biomarkers, they 

are useful primarily for monitoring only the later stages of disease and not for 

detection of primary disease or relapse.
7-10

  

This chapter describes the use of highly sensitive SiMoA technology to 

develop a panel of three breast cancer biomarkers that can be measured in serum 

at extremely low concentrations. Our hypothesis is that breast cancers at the 

earliest stages consist of tumors or small groups of cancerous cells that are not 

detectable by mammography or other methodologies, release specific proteins 

into the bloodstream that would only be detectable by an ultra-sensitive method.
11
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The design of SiMoA assays for such protein biomarkers may enable the 

detection of early stage cancer. By studying multiple biomarkers in a panel, a 

signature can be extrapolated from the resulting responses, which can be 

correlated to the patient’s disease state. The ability to measure the concentration 

of breast cancer biomarkers within serum at levels below the concentrations 

detectable by traditional ELISA may allow for both earlier detection and disease 

relapse monitoring in a non-invasive manner, reducing or eliminating the reliance 

on mammography for screening. In addition, since more information regarding 

the chemistry and biology of the cancer can be obtained from a protein signature, 

this methodology may also improve prediction of patient outcome as well as 

therapeutic efficacy by gaining the ability to monitor a patient’s response to 

treatment. Through biomarker selection, assay development, and the testing of 

both healthy and breast cancer patient serum, this preliminary work demonstrates 

the significant potential for SiMoA in the field of early breast cancer diagnostics.  

This work specifically focuses on the development of three biomarkers: 

ERα, PR, and cyclin-dependent kinase inhibitor 2D (CDKN2D). This chapter 

explains the role of these biomarkers in breast cancer and describes the 

development of their respective SiMoA assays. First, each marker is assessed 

individually and comparisons are made in both healthy and breast cancer samples. 

Next, the development of a supervised classification model is described that uses 

the response of all three biomarkers as well as patient age as input variables for 

the accurate prediction of early stage cancer from healthy donors.  
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4.2 Biomarker Selection 

   The first goal of this project was to select protein biomarkers that are 

specific for breast cancer and are secreted into the blood stream so that a simple 

blood test can be implemented.  Other criteria used were that the expression level 

of the biomarker changes in the early stages of cancer, the biomarker is not 

detectable in high levels in healthy serum, and that antibodies are readily 

available to create the SiMoA assay. A list of approximately 25 different 

biomarkers was established through consultation with experts in the field. 

Although some biomarkers may be indicative of multiple different types of 

cancer, the use of a biomarker panel should provide sufficient specificity.
12

 From 

the list of 25 established biomarkers for this study, this work describes the 

successful development and implementation of three biomarkers: ERα, PR, which 

were recommended by Dr. Marsha Moses (Harvard Medical School/Boston 

Children’s Hospital), and CDKN2D, which was suggested by Dr. Akhilesh 

Pandey (Johns Hopkins University School of Medicine). The importance of these 

three biomarkers in the body as well as in breast cancer is described below. 

 

4.2.1 Estrogen Receptor-α  

Estrogens are steroid hormones that are vital to many biological processes 

in the human body.
10, 

17β-estradiol (E2) is the most abundant estrogen and is vital 

for the regulation, development, differentiation, and maintenance of male and 

female sexual and reproductive functions.
13-15

  E2 also plays important regulatory 

roles in the cardiovascular, musculoskeletal, immune, and central nervous 



90 
 

systems.
13-15

 ERα is a nuclear receptor (NR) that is partially responsible for 

mediation of the biological functions of estrogens and estrogen-like molecules.
16

 

NRs regulate gene transcription by either directly binding to specific DNA 

regulatory sequences or by interacting with co-activator and/or co-repressor 

proteins to regulate the activity of the RNA polymerase complex.
17

 It has been 

demonstrated that both E2 and ERα play a role in the development of breast 

cancer.
18

 One hypothesis behind their role in breast cancer is that upon binding of 

E2 to ERα, the proliferation of mammary cells is stimulated. This process thus 

increases the number of target cells within the tissue. Increases in both cell 

division and DNA synthesis can lead to a higher risk of replication errors and 

possibly mutations.
16

 

 

4.2.2 Progesterone Receptor 

Also a steroid hormone, progesterone plays both a central and diverse role 

in various functions related to female reproduction, including ovulation, 

neurobehavioral expression associated with sexual responsiveness, and the 

development of the uterus and mammary glands.
17, 19

 PRs are NRs that interact 

with progesterone to mediate its physiological effects. Studies have shown that 

progesterone promotes the growth and progression of mammary tumors and may 

be associated with proliferation, apoptosis, and differentiation.
19

 Studies have 

demonstrated that in the mammary glands of healthy individuals, cells that 

express PRs are segregated from proliferating cells; however, this separation is 
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lost in breast tumor cells. It is believed that this change in PR expression may 

contribute to the abnormal growth of breast cancer cells.
17

 

 

4.2.3 Cyclin-dependent kinase inhibitor 2D 

CDKN2D, which is also known as p19-INK4D, is an inhibitor of cyclin-

dependent kinases (INK4). Members of the INK4 family bind to cyclin dependent 

kinases 4 and 6 (CDK4/6) and inhibit their kinase activity by effectively blocking 

CDK4/6 from interacting with cyclin D.
20

 This process stops cells from entering 

the S phase of the cell cycle, which is when DNA is replicated. CDKN2D also 

plays a vital role in inducing G1 phase cell cycle arrest during cellular stress as 

well as in the DNA damage response pathway.
20

 In addition to their roles in cell 

cycle regulation, INK4 proteins have also been associated with apopotosis, DNA 

repair, senescence, and multistep oncogenesis.
21

 In this regard, CDKN2D has 

been correlated with the proliferation of several different cancers, including breast 

cancer.
22

 

 

4.3 Assay Development 

 SiMoA assays were developed for ERα, PR, and CDKN2D by first 

biotinylating and coupling several antibodies for each biomarker. Pre-biotinylated 

detection antibodies were also tested. Different combinations of the capture and 

detector reagents were screened by performing calibrations with high 

concentrations of target on a microplate reader. Once an antibody pair was 

established using this method, the assays were transferred to the HD-1 analyzer 



92 
 

and were optimized by testing different assay step procedures (e.g. 3 step vs. 2 

step), trying multiple concentrations of detector and SβG, and by modifying 

buffers used in the protocol. The final assay conditions for each biomarker are 

listed in the Material and Methods section below. Representative calibration 

curves for each biomarker are in shown in Figure 4.1.  

 

Figure 4.1 Representative SiMoA calibration curves for ERα, PR, and CDKN2D. 

LODs for these assays are 0.18, 0.22 and 0.12 pg/mL, respectively. 

 

The resulting SiMoA LODs for each biomarker, the lowest available 

commercial LODs, and the relative fold improvement are presented in Table 4.1. 
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The LOD for the only commercial sandwich ELISA kit for human CDKN2D that 

was found is reported in Table 4.1; however, this kit is currently discontinued by 

the vendor (AntibodiesONLINE, ABIN812390) and thus it is possible that there 

are in fact no commercially available kits that can be purchased for this 

biomarker. Literature searches also did not find any sandwich ELISA data for this 

biomarker; therefor the information for the discontinued kit is used for 

comparisons within this chapter. The reported commercial ELISA kits for ERα 

and PR were both offered from R&D Systems (DYC5715-5 and DYC5415-5, 

respectively). In comparison to the best available commercial kits, SiMoA for 

ERα, PR, and CDKN2D was 56, 87, and 75 times more sensitive. 

 

Table 4.1 Summary of SiMoA LODs compared to commercially available ELISA 

kits. Values are converted to molarity using the molecular weight of the 

appropriate standard. *The commercial kit for CDKN2D is no longer available 

and thus SiMoA may be the only ELISA assay for this biomarker. 

 

Biomarker 

Commercial ELISA 

LOD SiMoA LOD 

Fold 

Improvement 

(based on 

pg/mL) 

  pg/mL pM pg/mL fM   

PR 15.6 0.16 0.18 1.82 87x 

ERα 12.5 0.18 0.22 3.32 56x 

CDKN2D 9.76* 0.55 0.12 7.42 75x* 

 

   

4.4 Individual Biomarker Testing in Healthy and Patient Serum 

Once the SiMoA assays were developed and optimized, serum samples 

from both healthy donors and breast cancer patients were tested for each 

biomarker. A total of 54 breast cancer and 36 healthy samples were purchased 
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from BioreclamationIVT and used for analysis. Information regarding patient age, 

cancer stage, and molecular subtype for all samples used within this chapter can 

be found in the Appendix (Table A1).  

Due to sample volume constraints, not all of the samples were tested for 

each biomarker. The responses of each biomarker were first compared to see if 

there was a difference in the responses between healthy samples and all breast 

cancer samples. In addition, the breast cancer samples were separated by stage, 

such that earlier stage samples (I-II) could be compared to later stage samples 

(III-IV). Figure 4.2 shows box plots with this analysis for ERα, PR, and 

CDKN2D. In these plots, all points that gave a response are represented and the 

number of samples analyzed is indicated. In order to assess the data, statistical 

comparisons were made using a two-tailed Mann-Whitney U test (Figure 4.2d).
23

 

From this analysis, tests using ERα and CDKN2D were able to differentiate 

between the groups containing all healthy and all breast cancer samples, with p 

values of   0.042 and 0.003, respectively, where p < 0.05 is significant. In 

addition, CDKN2D was also able to differentiate between healthy and stage I-II 

samples, with a p value of 0.003. None of the biomarkers were able to 

differentiate between stage I-II and stage III-IV breast cancer or between healthy 

and stage III-IV breast cancer. PR was not able to differentiate between any of the 

groups. From this analysis, ERα and CDKN2D are the most useful biomarkers in 

this panel. 
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Figure 4.2 Box plots showing the response of a) ERα, b) PR, and c) CDKN2D in 

healthy and different stage breast cancer serum samples. Breast cancer samples 

are divided into groups of stage I-II and stage III-IV cancer. Sample numbers are 

indicated under each plot. Y scale axis is logarithmic after the break. d) 

Calculated p values for all data via two-tailed Mann-Whitney U test. Values in 

grey are statistically different from each other. 

 

Next, each biomarker was assessed for its ability to differentiate between 

breast cancer samples of different molecular subtypes. Using the same sample 

data but organized by subtype, Figure 4.3 shows box plots comparing the 

responses of ERα, PR, and CDKN2D in healthy, luminal breast cancer, and 

TNBC, serum. This analysis was performed similarly to that in Figure 4.2 where 

all data points were included in the plots and were then assessed via a two-tailed 

Mann-Whitney U test (Figure 4.3d). From the plots and the p values, it seems 

that only CDKN2D is able to differentiate between healthy and luminal samples, 
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with a p value of 0.005. CDKN2D and ERα are moderate at differentiating 

between healthy and TNBC, with p values of 0.069 and 0.058, but they are not 

statistically relevant. Similarly to the classification of stages, PR performed 

poorly on all accounts and it seems as though ERα and CDKN2D provide the 

most discriminatory power individually. 

 

Figure 4.3 Box plots showing the response of a) ERα, b) PR, and c) CDKN2D in 

healthy and different molecular subtype breast cancer samples. Sample numbers 

are indicated under each plot. Y scale axis is logarithmic after the break. d) 

Calculated p values for all data via two-tailed Mann-Whitney U test. Values in 

grey are statistically different from each other. 

 

 Additionally, once all three biomarkers were assessed individually, they 

were studied simultaneously to determine if the response fingerprint of all three 
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biomarkers would result in a more useful assay capable of distinguishing between 

healthy and cancer patients. In order to accomplish this task, more complex 

statistical analysis is required to compare the response patterns. The next section 

contains a short introduction and description of the multivariate techniques 

utilized in this chapter to accomplish this task. 

 

4.5 Multivariate Analysis  

Numerous multivariate statistical methods and algorithms exist for the 

purpose of processing and interpreting complex data sets. Statistical methods can 

be categorized as either unsupervised or supervised learning methods. 

Unsupervised methods do not include a response variable, that is, they do not 

know the identity of each assigned sample.
24

 In contrast, supervised statistical 

methods have known response variables, enabling cross validating the acquired 

results. Once a supervised model is calibrated with datasets with known response 

variables, unknown samples can be tested using the model for prediction.  

A commonly used supervised method is partial least squares-discriminant 

analysis (PLS-DA). Partial least squares (PLS) is a supervised multivariate 

regression method for the analysis of collinear data.
25

 PLS extracts underlying 

structures within datasets, known as latent variables (LVs), that maximize the 

covariance between the variables (e.g. biomarker response, age) (X) and a 

response variable (Y). In PLS-DA, Y is categorical and expresses the class 

membership of the statistical units. In general, PLS-DA is used to sharpen the 
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separation between groups of observations. To achieve this goal, LVs are rotated 

to establish maximum separation among classes.
26

 

PLS-DA has been used extensively in metabolomics studies, where the 

existence of complex datasets containing analytes with varying correlation criteria 

make data analysis challenging using other multivariate analysis techniques.
27

 

PLS-DA has also been used in studies for the determination of useful biomarkers 

and diagnostic factors for breast cancer,
28-30

 colorectal cancer
31, 32

, glioma 

disease,
33

 and pancreatic cancer.
34

 In the following work, PLS-DA models are 

calculated using the responses of the three biomarkers as well as patient age as 

inputs to discriminate between healthy and breast cancer serum samples. 

 

4.6 Calculation of PLS-DA Models for Predicting Breast Cancer  

When creating a multivariate method that utilizes multiple inputs, it is 

ideal to have information from each input for every sample in order to create a 

robust model.  As previously mentioned, due to sample volume constraints, not all 

samples were tested using each biomarker and thus some data points were missing 

in the panel. One plan to limit the number of samples with missing data was to 

test multiple samples at the same time. In order to achieve this task, dye encoded 

beads were coupled to capture antibodies to attempt multiplex assays.  

Unfortunately, the calibration curves produced using these beads had higher 

background and therefore increased detection limits. Multiplex beads were not 

available when the majority of initial samples were tested for ERα and PR, so for 
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consistency and to achieve the highest sensitivity possible, all samples were tested 

using a ‘single-plex’ method.  

In order to build PLS-DA models, data imputation was necessary to 

estimate the missing values. Data imputation uses the existing dataset to estimate 

missing values by assigning a value that statistically resembles the existing data. 

This process is achieved by assembling statistical models (e.g. Principal 

Component analysis) for each proposed “new value” iteratively until the final 

model containing the “new value” resembles the original model with the missing 

value.  Data imputation was utilized as implemented in the PLS_toolbox 7.9.4.  

Although data imputation was necessary due to sample availability 

constraints in the described work, future work will include more data points so 

that data imputation will not be necessary. In addition, all samples that yielded 

responses below the assay LODs were assigned a value of half the reported LOD 

of the corresponding assay. This was done so that the influence of each tested 

sample could be considered in the model without significantly biasing the results. 

A total of four inputs were used to create the PLS-DA model: age, [ERα], [PR], 

and [CDKN2D]. Age was used because as discussed in Chapter 1, breast cancer 

risk increases with age. Age is also an ideal variable since it is easily obtained 

information that can be added into the model for all samples. Models were created 

without using age as an input and the overall accuracy was slightly lower (See 

Appendix Figure A1). In order to avoid calibration bias, each model was cross-

validated to have a better estimate of the classification error. Cross-validation is a 

common technique in statistical learning and consists on dividing the dataset into 
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several equal portions.
26

 These portions are then used to split the dataset between 

a calibration set and a testing, or validation, set. In the present work, an n-5 split 

was used, which results in 80% of the data being used for calibration and 20% for 

validation. This process is repeated several times until the entire dataset has been 

used for validation. Initial PLS-DA models showed seven samples with high Q 

residuals and T
2 

values over the 95% confidence limits, which indicates that these 

samples are outliers from the entire dataset.
26

 These samples were excluded from 

the remaining analysis.  

The PLS-DA model was first calibrated to discriminate between healthy 

and all available breast cancer samples. This model, (Model 1), was calibrated 

using data from a total of 31 healthy donors ranging in age from 22-73 and 44 

breast cancer patients ranging in age from 36-84. The breast cancer samples were 

a mixture of both luminal and TNBC subtypes and ranged from stages I-IV.  

Figure 4.4 shows the resulting receiver operating characteristic (ROC) curves 

from Model 1. ROC curves are commonly used for describing the utility of a 

diagnostic test. ROC curves plot the sensitivity, or true positive rate, against 1-

specificity, or false positive rate, of a test. The area under the curve (AUC) is a 

measure of the sensitivity of the test, where 1 is a perfect test and 0.5 is a failed 

test.
35

 Cross validation (CV) was performed as described in the Materials and 

Methods section. The ROC curves for healthy and breast cancer serum samples 

both had AUC values of 0.90 with similar CV AUC values of 0.88, which 

indicates that Model 1 is sensitive. The model was able to correctly identify 90% 

of the healthy samples and 75% of the breast cancer samples. The overall 
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accuracy of a PLS-DA model can be calculated by dividing the number of 

correctly assigned samples over the total number of samples in the model. For 

Model 1, the overall accuracy was 81%. The precision of a model can also be 

described. This value relates to the fraction of correctly assigned samples in a 

class, e.g. healthy, divided by the total number of samples that were assigned to 

that class in the model. The precision of Model 1 was 72% and 92% for healthy 

and cancer, respectively. From the above results, it appears that Model 1 is 

capable of distinguishing healthy serum samples from breast cancer samples of 

any stage from both luminal and TNBC subtypes. 

 

Figure 4.4 ROC curves from PLS-DA analysis of ERα, PR, and CDKN2D in a) 

healthy and b) stage I-IV breast cancer serum. Estimated values from calibration 

are shown in blue and cross validated values in green. The red circles indicate the 

threshold values (standard and cross-validated) determined by the PLS-DA model 

on the calibration data. 

  

 Next, a second PLS-DA model (Model 2) was calibrated using data 

collected from both healthy and early stage breast cancer serum samples to see if 

early stage cancer could be accurately and precisely predicted. For this 

calibration, data from the same cohort of healthy samples used in Method 1 were 
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used as well as data from 31 breast cancer serum samples that were reported as 

either stage I or stage II. The breast cancer samples were a mixture of both 

luminal and TNBC subtypes and patient ages ranged from 36-84. The resulting 

ROC curves from this analysis are shown in Figure 4.5. The AUC for both 

healthy and breast cancer samples stages I-II was 0.91 with a CV AUC of 0.89. 

The true positive rates for healthy and stage I-II breast cancer for this model were 

87% and 80%, respectively. The precision of Model 2 was 86% for healthy 

samples and 80% for breast cancer. The overall accuracy of Model 2 was 84%; 

slightly better than Model 1.  

 

Figure 4.5 ROC curves from PLS-DA analysis of ERα, PR, and CDKN2D in a) 

healthy and b) stage I-II breast cancer serum. c) Tabulated statistics for Model 2. 

Estimated values from calibration are shown in blue and cross validated values in 

green. The red circles indicate the threshold values (standard and cross-validated) 

determined by the PLS-DA model on the calibration data. 

 

 

 

 Next, a model was developed to discriminate between healthy serum, early 

stage, and later stage breast cancer. To calibrate this model (Model 3), data from 

the same healthy cohort was used along with the data from the same group of 
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stage I-II samples. In addition, data from 14 stage III-IV breast cancer samples 

was used. The resulting ROC curves from this analysis are shown in Figure 4.6. 

The AUC values for healthy, stage I-II, and stage III-V were 0.89 (CV = 0.88), 

0.78 (CV = 0.76) and 0.69 (CV = 0.63), respectively. Compared to Model 2, the 

true positive rate for predicting healthy samples and stage I-II samples decreased 

from 87% to 81% and 80% to 70%, respectively. The precision also decreased for 

stage I-II samples, falling from 86% to 62% compared to Model 2, but increased 

by 4% for healthy patients to 86%. Model 3 proved to be both imprecise and 

inaccurate at predicting stage III-IV cancers, with values of 0% for both. Of the 

14 samples in this cohort, ten were assigned as stage I-II and four were assigned 

as healthy. Due to the inability to correctly assign later stage samples, the overall 

accuracy of Model 3 was 45%. Model 3 again reiterates that PLS-DA using the 

given variables of age and [ERα], [PR], and [CDKN2D] in serum is capable of 

predicting breast cancer, especially earlier stage breast cancer, but may not be 

able to distinguish between earlier and later stage cancers. Larger sample sizes are 

required to further assess this model. 

 



104 
 

 

Figure 4.6 ROC curves from PLS-DA analysis of ERα, PR, and CDKN2D in a) 

healthy serum, b) stage I-II breast cancer serum and c) stage III-IV breast cancer 

serum. Estimated values from calibration are shown in blue and cross validated 

values in green. The red circles indicate the threshold values (standard and cross-

validated) determined by the PLS-DA model on the calibration data. 

  

 

In addition to the presence or stage of cancer, another important factor in 

breast cancer diagnostics is the determination of breast cancer subtype. Different 

molecular subtypes of breast cancer have very different treatment plans and thus 

the ability to distinguish which type of cancer a patient has could aid in patient 

care. Since only serum samples from patients with luminal and TNBC were 

available, only these two subtypes were investigated in this study. A total of 30 

luminal and 14 TNBC serum samples varying from stages I-IV were used to 
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calibrate the PLS-DA model (Model 4). (Figure 4.7). The AUCs from the 

resulting ROC curves were both 0.73 (CV = 0.65) and the true positive rates of 

the model were 63% and 78% for luminal and TNBC, respectively. Finally, the 

precision was 86% for luminal and 50% for TNBC and the overall accuracy of 

Model 4 was 68%. These results suggest that Model 4 is moderately proficient at 

distinguishing these two subtypes, but more samples should be tested and possibly 

more variables introduced (i.e. more biomarkers) to create a more robust model. 

 

Figure 4.7 ROC curves from PLS-DA analysis of ERα, PR, and CDKN2D in a) 

luminal and b) TNBC. Estimated values from calibration are shown in blue and 

cross validated values in green. The red circles indicate the threshold values 

(standard and cross-validated) determined by the PLS-DA model on the 

calibration data. 

 

 

 

 To summarize the results of the developed models, Table 4.2 lists the 

description and results from each model.  From this table it is clear that both 

Models 1 and 2 perform the best.  Model 2 performs slightly better, and this result 

is favorable since the overall goal of this study was to test a biomarker panel to 

achieve early detection with SiMoA. The following section describes further 
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analysis using Model 2 to determine the impact of each biomarker within this 

model.  

 

Table 4.2 Summary of results for all four PLS-DA models  

 

 
Description Precision 

True 

Positives  

AUC 

(CV) 

Number 

of 

samples 

Overall 

Accuracy 

Model 

1 

Healthy 72% 90% 0.88 31 

81% BC Stage I-

IV 92% 75% 0.88 44 

Model 

2 

Healthy 82% 87% 0.89 31 

84%  BC Stage I-

II 86% 80% 0.89 30 

Model 

3 

Healthy 86% 81 0.88 31 

45% 
BC Stage I-

II 62% 70% 0.76 30 

BC Stage 

III-IV 0% 0% 0.63 14 

Model 

4 

TNBC 50% 78% 0.65 14 
68% 

Luminal 86% 63% 0.65 30 

 

In order to determine which variable has the most impact on Model 2, the 

accuracy of the model was assessed after different variables were removed. A 

total of 61 samples were used for different model calibrations: 30 stage I-II 

samples and 31 healthy samples. As previously mentioned, age was implemented 

as a factor in the PLS-DA model, thus a total of four variables exist: age, ERα, 

PR, and CDKN2D. Figure 4.8 shows the results of this analysis in both a table 

and a bar graph. First, all of the variables are kept in the model for comparison, so 

the accuracy is 84% as previously reported. In the model where only ERα is 

removed, the accuracy decreases to 77%. The accuracy decreases similarly when 

only CDKN2D is removed as well as when ERα and CDKN2D are removed 
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together. In the model where only PR is removed, the impact on accuracy is 

slightly less, dropping only to 82%. When only ERα and age are present, the 

accuracy drops to only 79%, and to 77% when only CDKN2D and age are 

present. These results suggest that ERα has the greatest impact on the model and 

that PR has the lowest impact; however, it is clear that the model performs best 

when all variables are included. 

Figure 4.8 PLS-DA models calibrated to determine the impact of each variable in 

Model 2. a) Table describing each model, the samples used and correctly 

assigned, and the resulting accuracy. b) Graphical depiction of each model. 

 

4.7 Discussion 

 This work presents the use of a sensitive protein biomarker panel 

consisting of ERα, PR, and CDKN2D to detect early stage breast cancer in serum 

using SiMoA technology. The SiMoA assays for each biomarker are more 

b. 

a. 
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sensitive than available commercial ELISA kits. Additionally, the only 

commercial ELISA kit for CDKN2D is discontinued, meaning that the SiMoA 

assay presented in this work may represent not only the most sensitive ELISA 

assay for this biomarker, but possibly the only one. The increased sensitivity 

gained through SiMoA was critical for this work since many of the analyzed 

samples were below the reported LODs of the most sensitive commercial ELISAs 

both when diluted and when the dilution factor was considered (see Appendix 

Figure A2). The ability to dilute samples and use small volumes but still achieve 

high sensitivity makes SiMoA ideal for studying precious banked samples or 

samples with low volume. Although the creation of SiMoA assays for these three 

biomarkers presents a significant improvement in sensitivity, some samples were 

still undetectable using SiMoA for both ERα and PR, so further improvements in 

these assays are desirable.  

Each biomarker was individually assessed to determine its ability to 

distinguish healthy samples from cancer samples. Both ERα and CDKN2D were 

able to statistically separate healthy and breast cancer samples. In addition, 

CDKN2D could differentiate between healthy and stage I-II breast cancer as well 

as between healthy and luminal type breast cancer. Surprisingly, PR alone was 

unable to distinguish between any of the samples.  

 Statistical models using PLS-DA were derived from data using both the 

responses from each biomarker and the age of each patient. Despite the low 

number of samples available, models were built for a total of four different 

situations: comparison of healthy vs. breast cancer, healthy vs. early stage (I-II), 
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healthy vs. early and late stage (III-IV), and luminal vs. TNBC. The developed 

models demonstrated that the use of ERα, PR, CDKN2D and age could be used to 

distinguish between both healthy and cancer samples as well as healthy and early 

stage breast cancer. The model used to distinguish between early stage breast 

cancer and healthy samples (Model 2) had a false positive rate of 20% and a false 

negative rate of 13%, which is comparable to the 8-10% false positive rate and 

~20% false negative rate from mammography testing.
4, 36

 Obtaining such similar 

false positive and false negative rates to the current gold standard from 

preliminary data is extremely promising for future work utilizing SiMoA as an 

early breast cancer detection method. 

   It was determined that both ERα and CDKN2D contributed the most to 

the early detection method, while PR contributed the least. ERα and PR are 

routinely used as tissue biomarkers for establishing breast cancer subtype upon 

diagnosis. Both ERα and PR have been studied in serum via qPCR as part of the 

OncotypeDxR biomarker panel,
37

 which is approved by the ASCO for predicting 

breast cancer risk. The bioactivity of ERα has also been studied in serum and has 

been shown to be related to increased breast cancer risk.
38

 To the best of our 

knowledge, CDKN2D has not been investigated in serum for breast cancer 

diagnostics, although it has been associated with breast cancer progression. This 

work demonstrates the first study in which SiMoA is used to detect early stage 

breast cancer. Although the results are preliminary, it is promising that the use of 

these three biomarkers along with patient age may offer the ability to non-

invasively screen patients for the early detection of breast cancer or to aid in the 
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diagnosis of women who have had abnormal mammograms and would like an 

alternative to biopsy.  

 

4.8 Future Directions 

Although this work presents very promising results, there is a significant 

amount of work that still needs to be performed. First, more samples need to be 

tested in order to further validate the models. All samples used in this study were 

purchased from Bioreclamation and all patients were already undergoing 

treatment, such as chemotherapy or hormone therapy, or had surgery. It is very 

important to obtain samples that are from patients who have not yet undergone 

therapy or surgery for early detection to eliminate or reduce confounding factors 

when attempting to create an accurate and robust model. Additionally, it would be 

interesting to see if the assays and statistical modeling approach proposed in the 

present work can determine the difference between patients who are healthy as 

well as those who have benign tumors, indolent tumors, and aggressive tumors.  

The addition of more biomarkers to the panel should also make it more 

robust. Although beyond the scope of this thesis, SiMoA assays have been 

developed for other biomarkers on the list by other Walt lab collaborators on this 

project, including cysteine-rich angiogenic inducer 61 (CYR-61), cancer antigen 

19-9 (CA19-9), disintegrin and metalloproteinase domain-containing protein 12 

(ADAM12), neural precursor cell expressed developmentally down-regulated 

protein 9 (NEDD9), and HER2. The addition of these and other assays yet to be 

established offers a significant opportunity for creating a sensitive and accurate 
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breast cancer panel using SiMoA and may strengthen faults in the current panel, 

such as the ability to differentiate between different stages and subtypes of breast 

cancer. The creation of a robust panel may one day enable early detection and 

may also allow the panel to be utilized for patient monitoring during therapy and 

remission to improve patient care and prevent relapse. 

 

4.9 Materials and Methods 

All serum samples were purchased from BioreclamationIVT. Serum 

samples were diluted by a factor of four in Sample Diluent that consisted of 10 

ug/mL TruBlock (Meridian Life Science, A66800H) 5 mM EDTA (Invitrogen, 

15575-020), and PBS (Sigma Aldrich, P5493-1L). All water used was Milli-Q 

water. All buffers are vacuum filter sterilized prior to use (VWR 28199-774). 

 

SiMoA Assays 

SiMoA assays were carried out using procedures and reagents described in 

Chapter 2 unless otherwise described below. 

CDKN2D capture antibody was purchased from LifeSpan Biosciences 

(LS-C37972) and detection antibody was purchased from Abnova (H00001032-

D01P). CDKN2D protein standard was purchased from OriGene (TB314065). 

(CDKN2D calibrators are prepared in 25% Newborn Calf Serum (Life 

Technologies, 16010-142), 0.01% Tween-20 (Sigma, P7949), 5 mM EDTA 

(Invitrogen, 15575-020), 0.15% ProClin300 (Sigma Aldrich, 48914-U), and PBS 

https://meridianlifescience.com/bioSpecs/A66800H.pdf
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(Sigma Aldrich, P5493-1L). 500 pM of SβG and 1 μg/mL of detector were used. 

A 2-step assay was used on the HD-1 with incubations of 35 and 5 minutes. 

ERα capture and detection antibodies and protein standard were purchased 

in a kit from R&D systems (DYC5715-5). The detection antibody was 

prebiotinylated. Both the protein standard and detection antibody were 

resuspended in 1% bovine serum albumin (BSA) (Millipore 82-045-1) and PBS. 

Calibrators were also diluted in 1% BSA and PBS. A 2-step assay was used on the 

HD-1 with incubations of 35 and 5 minutes. 

PR capture and detection antibodies and protein standard were purchased 

in a kit from R&D systems (DYC5415-5). The detection antibody was 

prebiotinylated. Both the protein standard and detection antibody were 

resuspended in 1% BSA and PBS. Calibrators were also diluted in 1% BSA and 

PBS. A 2-step assay was used on the HD-1 with incubations of 35 and 5 minutes. 

 

Data Analysis 

Box plot analysis was performed in OriginPro 9.1 (OriginLab). PLS-DA 

was performed in Matlab R2014a (The Mathworks, Inc.) using PLS_Toolbox 

7.9.4 (Eigenvector Research). For each PLS-DA model, 80% of the data was 

randomly used to build a calibration and the remaining 20% was used for cross 

validation. Iterations of this process were repeated until each data point was used, 

and then the entire process was repeated a total of four times. Due to sample 

volume constraints, not all samples were tested using each biomarker and thus 

some data points were missing in the panel. In order to build PLS-DA models, 

http://www.rndsystems.com/Products/DYC5715-5
http://www.rndsystems.com/Products/DYC5415-5
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data imputation was implemented via PLS_toolbox 7.9.4. HD-1 data analysis was 

performed using the HD-1 Analyzer (Quanterix Corp.). Assay LODs were 

calculated by extrapolating the three standard deviations from the blank after 

fitting to a 4-PL regression.  
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Protein Counting in Single Cancer Cells 
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5.1 Introduction 

The cell is the basic unit of biology and protein expression drives cellular 

function. In order to fully understand how cell heterogeneity affects population 

behavior and biological function, it is essential to study protein expression within 

single cells. Previous chapters have focused on traditional uses of SiMoA for 

applications in early cancer detection. This chapter describes the importance of 

single cell analysis and single molecule protein detection within single cells. Also 

discussed is the adaptation of the SiMoA platform to enable single cell studies. 

Finally, I describe how the single cell SiMoA platform is used to study the 

distribution of PSA expression within single cells from two related cancer cell 

lines. Using this single molecule counting method to count the proteins in single 

cells enables the quantification of phenotypic responses with single cell 

resolution, which is evidenced by our ability to track a 30-fold difference in PSA 

concentration between two cell lines as a result of genetic drift. Single cell SiMoA 

introduces a straightforward process that is capable of detecting both high and low 

protein expression levels in single cells. This technique could be vital for 

understanding fundamental biology, such as molecular mechanisms, pathways, 

and cell heterogeneity and may eventually enable both earlier disease detection 

and targeted therapy.
1
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5.1.1 Motivation for Single Cell Studies 

Cellular processes are stochastic and gene expression can vary widely 

between individual cells, spanning several orders of magnitude.
2-4

 Cell 

development and activity are dictated by protein expression. Changes in protein 

concentration can affect the cell phenotype, resulting in dramatic consequences 

for processes such as cell growth, metabolism, and disease progression.
1, 5, 6

 Most 

studies of cellular biochemistry are based on bulk measurements of many cells 

and such ensemble experiments can only yield averages that may not be indicative 

of the actual population distributions present at the single cell level, as 

summarized by DiCarlo et al. in Figure 5.1.
7, 8

 For example, single-cell time-

responses can be used to study the dynamics of how genetically identical cells 

respond to stimuli over time. As depicted in Figure 5.1a, if only a few cells 

respond strongly to an applied stimulus and bulk techniques are used, then the 

resulting bulk average gene expression of the population masks the response from 

the cells of interest (Figure 5.1a).
8
 In addition, cell populations that demonstrate 

out-of-phase dynamics (Figure 5.1b) or respond to stimuli via bimodal 

expression (Figure 5.1c) will provide uninformative bulk averages.
8
 Another 

important example where bulk measurements mask single cell characteristics is 

gene expression studies containing rare cell populations (Figure 5.1d).
8
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Figure 5.1 Description of bulk averaging vs. single cell analysis in gene 

expression. a) Bulk averaging of rate measurements mask the difference in 

amplitude between the desired cells of interest and the majority population. b 

Gene expression information from cells exhibiting out-of-phase dynamics is 

averaged in overall bulk populations. Bulk end-point assays do not accurately 

represent subpopulations within both c) multimodal distributions and  d)  rare cell 

populations (Reprinted with permission from Reference 8). 

 

It is well known that the protein expression of a specific gene varies from 

cell to cell.
2
 In addition to the above examples, single cell analysis also enables 

the ability to track protein expression in single cells to study cellular functions 

and pathways. However, this feat requires methodologies sensitive enough to 

detect low numbers of protein molecules with a wide dynamic range to 

distinguish unique cells and quantify population distributions;
1
 endeavors that are 

not possible using traditional ensemble methodologies.
8
 There have been 

numerous single cell studies that measure mRNA using the transcriptome as a 

surrogate for the proteome.
9-11

 While these measurements are useful, others have 
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shown that the amount of mRNA does not correlate with the amount of protein 

expressed.
4
 The genome provides a map for protein synthesis, but knowing the 

genome or the transcriptome does not directly correlate with knowing the 

proteome due to the stochastic nature of biological processes and other factors, 

such as the cellular microenvironment.
4, 12

 Studying protein expression at the 

single cell level can yield insight regarding cellular functions and pathways, 

enabling the study of cell-to-cell variations and stochasticity.
13, 14

 Therefore, in 

order to truly understand the complexities of many biological processes, protein 

expression must be characterized at the single cell level. The following section 

describes current progress in the field of single cell proteomic studies. 

 

5.1.2 Current Technologies for Single Cell Proteomic Studies 

Flow cytometry is an extremely high throughput technique that is most 

commonly used for protein analysis in single cells.
1
 This technique utilizes 

fluorescently labeled antibodies to label and then simultaneously detect as many 

as 18 different proteins.
15-18

 The invention of Fluorescence-Activated Cell Sorting 

(FACS),
19

 a type of flow cytometry that analyzes and separates cells from 

heterogeneous cell mixtures based on differential fluorescent labeling, has made a 

significant impact on the field of single cell analysis. The throughput of flow 

cytometers and cell sorters is high – up to thousands of single cells per second.
18

 

Although flow cytometry has laid much of the groundwork for single cell protein 

analysis due to its high throughput and multiplexing capabilities,
8
 the resulting 
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signals from each cell represents the total fluorescence for each label used to 

identify the cell. Furthermore, no temporal information can be obtained.  

Western blots, another common method for protein quantification, have recently 

been adapted for single cell analysis.
20

 Single-cell Western blots (scWesterns) 

enable the simultaneous analysis of approximately 2,000 individual cells in less 

than 4 hours by implementing a 30-μm-thick photoactive polyacrylamide gel 

patterned with thousands of 20 × 30 μm (w×d) wells.
20

 Although this technique 

has vastly improved upon both traditional Western blotting and other recent 

advances, such as microfluidic Western blotting
21

, the resulting blots in 

scWesterns are quantified based on the bulk fluorescence response for the protein 

in question from each cell. These techniques acquire the total fluorescence 

response for the protein in question for each interrogated cell. As opposed to 

integrating the protein concentration from single cells, the ability to count single 

protein molecules ithin single cells would further strengthen the ability to study 

basic cellular functions as well as more complex cellular systems.  

 

5.1.3 Single Molecule Protein Detection in Single Cells 

Recent advances in single molecule and single cell detection have pushed 

the boundaries of both biological and chemical detection limits. Several studies 

have successfully overcome experimental limitations in sensitivities to achieve 

single molecule protein detection at the single cell level.
13, 14, 22-24

 However, many 

of the aforementioned single cell single molecule protein analysis methods 
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involve complicated experimental designs, require external cellular stimulation, 

genetic modification, sample amplification, and/or arduous algorithms
13, 14, 22, 23

. 

A few notable and recent advances in the field of single molecule protein 

detection in single cells are described below.  

Xie et al. notably reported the quantification of both protein and mRNA 

within single E.coli cells.
4
 This work noted the lack of correlation between the 

number of protein and mRNA molecules for any given gene, underscoring the 

importance of protein analysis.
4
 The assay was performed in a microfluidic device 

where the protein copy number is obtained via fluorescence imaging of YFP-

fusion library strains. Fluorescence in situ hybridization (FISH) was used to 

measure single molecule mRNA expression.
4
 Despite the groundbreaking impact 

this work has had on the field, the requirement to create genetically modified 

fusion libraries makes it impractical for clinical studies and difficult to implement 

into other assay designs. 

Zare and coworkers presented a microfluidic chip capable of counting 

proteins at low copy numbers within single cells.
13, 25

 This methodology involves 

trapping individual cells using a system of valves followed by flowing lysis buffer 

and a subsequent labeling reagent. A custom optical set-up was used to count the 

number of fluorescent bursts generated as molecules flowed through a small 

detection volume. Despite the authors’ achievement of obtaining low protein 

counts from single cells, a complicated algorithm is required to compensate for 

false negatives in samples containing too many molecules per frame. In addition, 

the described technique is only able to analyze up to three cells at a time due to 
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the chip design, making it extremely low throughput.  Finally, this method 

requires genetic modification for non-fluorescent samples.  

Klug has recently used two different single molecule techniques for 

quantifying proteins in single cells. The first method involves incorporating a 

microfluidic microarray with TIRF detection. The platform functions within the 

mass sensing regime such that the majority of analyte is detected, enabling a 

detection limit of 21 molecules while maintaining a dynamic range greater than 

three orders of magnitude.
22

 Although this detection limit is impressive, the 

microfluidic device requires nanoliter sized volumes, which requires complicated 

preparation. Unfortunately, the use of these devices is not high throughput. 

Isolation of single cells is performed via optical trapping, which further 

complicates the set-up. In addition, imaging on the chip occurs via a ‘detect and 

bleach method’ where the fluorescent signal from the sample is detected and 

followed by subsequent photobleaching until all of the molecules present in the 

sample are counted.  This methodology is time consuming and requires 

complicated downstream data analysis to reduce bias. 

In the second study by Klug and coworkers, they describe the first 

implementation of single molecule protein detection in single cells within 

droplets.
24

  In this study, they used a simple device to dispense droplets onto 

coverslips spotted with a specific antibody via a micro-contact arrayer. Single 

cells were loaded into the droplets via micromanipulation followed by optical 

lysis. The number of proteins bound to the antibody spot was then monitored over 

time via single molecule TIRF microscopy. This technique was only sufficient at 
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quantifying protein copy numbers from 10
6
 to 10

8
, meaning that lower abundant 

proteins could not be measured using this technique.   

The above techniques and methodologies briefly describe the advances in 

the field of single molecule proteomic studies in single cells. However, as 

mentioned, there are several shortcomings in terms of throughput, design 

limitations, and sensitivity. Therefore, there is a need for a robust platform that 

can sensitively analyze protein content within single cells. The following section 

describes the implementation of the previously described SiMoA platform for 

single cell analysis in an effort to overcome these disadvantages. 

 

5.2 Development of Single Cell SiMoA Platform 

This section demonstrates that SiMoA technology can be employed to 

fully quantify protein expression in single prostate cancer cells. This approach, 

based on single molecule counting techniques, is straightforward and 

ultrasensitive – eliminating time-consuming microchip assembly and any reliance 

on complicated algorithms, amplification steps, external stimulation, or genetic 

engineering, all of which can introduce bias. Previous work has shown that 

SiMoA can dramatically improve detection limits compared to traditional 

ELISA
26

, exhibit a wide dynamic range
27

, and enable multiplexed protein 

analysis
28

, making SiMoA an attractive technology for single cell protein studies.  

In order to modify the SiMoA process for single cell analysis, cells first 

needed to be isolated. Cell isolation was performed using standard laboratory 
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equipment and no expensive or intricate set-ups were required. Since LNCaP cells 

are adherent, cells were first suspended in media and washed 3x in DPBS via 

centrifugation. The cells were then counted and diluted to a concentration of ~2 x 

10
3
 cells/mL in DPBS. Cells were isolated by transferring 1 µL of the washed cell 

solution into the cap of a flat, optically clear PCR tube (Figure 5.2a). The 

presence of only one cell inside of the droplet was visually validated using a 

microscope. Representative images of an isolated cell are shown in Figures 5.2b-

c. Once it was verified that only a single cell was present, the bottom of the PCR 

tube was placed on the cap for either immediate use or storage. It is important to 

note that no labeling was necessary to visualize the individual cells.  

 

Figure 5.2 Single cell isolation. a) Photograph of 1 μL droplet inside optically 

clear PCR cap. Scale bar is 5 mm. Representative bright field images of a single 

LNCaPB cell inside a 1 μL droplet visualized at b) 10× and c) 5× magnification. 

Scale bars are 50 μm. 

 

a. 

b. c. 
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Lysis was performed by adding 64 µL of lysis buffer to the PCR tubes 

containing isolated cells. The lysate was then transferred to a 96-well PCR plate 

containing 75 µL of diluent for a total assay volume of 140 µL. As described in 

Chapter 2, the HD-1 analyzer is a fully automated system and once all reagents 

are loaded and the experiment is programmed, the instrument completes the entire 

single molecule analysis process. Figure 5.3 outlines the single cell SiMoA 

process. First, single cells are isolated as described above. The cell lysate sample 

is then incubated with capture beads, biotinylated detection antibody, and SBG 

with wash cycles occurring between each step. The beads are then resuspended in 

RGP and loaded onto the SiMoA disc arrays, sealed with oil, and imaged. 

 

Figure 5.3 Experimental scheme for single cell SiMoA analysis. Cells were 

isolated manually by visual inspection under a microscope. The cells were then 

lysed and loaded into the SiMoA HD-1 analyzer, which performed the subsequent 

incubations with capture beads, detection antibody, and enzyme conjugate. After 

forming the enzyme-labeled immunocomplex on the beads, enzyme substrate was 

added, the beads were loaded into an array of wells, and the wells were sealed for 

imaging. (Figure by Stephanie R. Walter) 

. 

In the following study, SiMoA is employed to determine PSA expression 

in single LNCaP cells. A representative PSA calibration curve is shown in Figure 
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5.4. The LOD for PSA in this assay was 0.0043 ± 0.0022 pg/mL, which equates to 

~12,000 PSA molecules in 140 μL.  

 

 

Figure 5.4 PSA calibration curve. a) SiMoA calibration curve for PSA plotted on 

a log-log scale. Error bars are contained within data points and represent n=3 

measurements. The assay LOD of 0.0043 ± 0.0022 pg/mL was calculated by 

extrapolating the background PSA concentration plus 3 standard deviations of the 

background using a 4-parameter logistic fit. b) Tabulated values for typical PSA 

calibration curve. 

 

5.3 Counting PSA molecules in LNCaP Cells 

In this proof-of-concept study, PSA is quantified in two related prostate 

cancer cell lines: a low passage LNCaP cell line (LNCaPA) and an over sub-

cultured LNCaP cell line that has undergone genetic drift (LNCaPB). These two 

LNCaP cell lines represent models for high and low protein expression, both of 

which are easily detected using SiMoA and require minimal sample preparation. 

Previous research has demonstrated that highly cultured LNCaP cells secrete 

significantly altered concentrations of PSA
29

. Using SiMoA, we measure the 

impact of genetic drift on protein expression at the single cell level and show that 

a. b. 
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LNCaPB cells have significantly depressed PSA expression compared to LNCaPA. 

These results indicate that genetic instability in cancer cells affect protein 

expression, and by extension, cancer progression, and also highlight the necessity 

of cell culture authentication. Importantly, we establish SiMoA as a unique and 

facile approach to count protein molecules with single cell resolution and 

statistics not previously possible to reveal unbiased phenotypic information. 

 

5.3.1 Cell Line Verification 

 LNCaPA was purchased directly from ATCC, while LNCaPB was obtained 

through a collaborator. The authenticity of LNCaPA was certified by ATCC upon 

purchase. Short tandem repeat (STR) profiling of LNCaPB was carried out using 

the Promega Cell Line Authentication Sample Collection Kit. The STR profiles, 

compared in Table 5.1, show that LNCaPB exhibits an 88% match to LNCaPA. 

The apparent 12% genetic drift in LNCaPB is attributed to the extensive sub-

culturing of this cell line and the genetic instability of cancer cells
29

. In the 

following sections, we quantify how a 12% genetic drift in highly sub-cultured 

cells alters the PSA expression in single cells.  
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Table 5.1. STR Profile Comparison of LNCaPA and LNCaPB cells 

Loci LNCaPA LNCaPB 

D5S818 11, 12 11, 12 

D13S317 10, 12 10, 13 

D7S820 9.1,10.3 8, 8.1, 9, 9.1 

D16S539 11 11,12 

vWA 16, 18 16,18 

THO1 9 9 

AMEL X,Y X, Y 

TPOX 8, 9 8, 9 

CSF1PO 10, 11 10, 12 

% match to ATCC 

cat# CRL-1740 
100 88 

 

 

5.3.2 SiMoA Analysis and Comparison of PSA in Single LNCaPA and 

LNCaPB Cells 

The PSA content of a total of 124 individual LNCaPA and 68 LNCaPB 

cells were measured using the SiMoA platform. Figure 5.5 presents a dot plot 

that illustrates the range in the number of PSA molecules detected in individual 

cells from both the LNCaPA and LNCaPB cell lines. In both cell lines, the number 

of PSA molecules spans over two orders of magnitude, reflecting the large degree 

of cell-to-cell variability within the same homogeneous population. The number 

of PSA molecules observed in single LNCaPA cells ranged from 4.34 × 10
4 

– 1.52 
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× 10
7
, with a mean of 2.15 × 10

6 
molecules per cell. In contrast, the LNCaPB cells 

ranged from 7.71 × 10
3
-1.19 × 10

6 
molecules, with a mean of 7.04 × 10

4
 

molecules per cell. These numbers equate to an average PSA concentration per 

cell of 1.79 µM (53.7 µg/mL) and 0.0585 µM (1.76 µg/mL) for LNCaPA and 

LNCaPB, respectfully, assuming a cell volume of 2 pL.   

A previous study by Pinzani and coworkers using immuno-qPCR and 

LNCaP cells (diluted to approximately 1 cell/tube) determined the median number 

of PSA molecules within a single LNCaP cell to be approximately 3.3 × 10
6
 with 

a range of 2.3 × 10
6
 to 4.3 × 10

6
; however, their sample size was very low with n 

= 5
30

. Our results from the LNCaPA cell line agree well with these numbers, but 

our sample size is significantly higher (n=124), yielding better statistics from the 

high-throughput capabilities of SiMoA. The average PSA concentration for the 

LNCaPB cell line is significantly lower than what Pinzani et al. determined, but 

this discrepancy can be attributed to the extensive subculturing of this cell line. 

Figure 5.5 also shows the histogram analysis comparing the distribution 

of PSA expression across both cell lines. Interestingly, we observe two distinct 

populations of PSA expression with minimal overlap between the LNCaPA and 

LNCaPB cell lines. The vast difference in PSA content between LNCaPA and 

LNCaPB cell lines illustrates how crucial cell line verification is, and how genetic 

drift can greatly alter cellular biology and experimental results. Although the two 

cell lines are closely related, we measure over a 30-fold difference in PSA protein 

expression. The sensitivity of SiMoA allows for single molecule protein counting 
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in single cells over a wide range of protein concentrations with minimum sample 

handling. 

 

Figure 5.5 Single cell/single molecule analysis of PSA in LNCaPA and LNCaPB 

cells. (Left) Dot plot showing the number of molecules reported in all individual 

LNCaPA and LNCaPB cells. The average of each population is represented with a 

bar. (Right) Histograms illustrating the log-normal distribution of PSA molecules 

in individual LNCaPA (grey) and LNCaPB (blue) cells.  

 

5.3.3 SiMoA Analysis of PSA in Bulk Cells 

For comparison with our single cell analysis, we analyzed low numbers of 

LNCaP cells to obtain ensemble averages of PSA. In these bulk experiments, cell 

suspensions were washed, counted, and diluted via serial dilutions to 

concentrations of 1x10
4
, 5x10

3
, 2.5x10

3
, and 1x10

3 
cells/mL; 10 µL from each 

prepared concentration (corresponding to 100, 50, 25, and 10 cells, respectively) 

was lysed and analyzed using SiMoA. Figure 5.6 shows the average PSA 

concentration observed for eight replicates containing low cell numbers of 



132 
 

LNCaPA and LNCaPB cells. As expected, PSA concentration increases linearly 

with increasing cell numbers for both LNCaPA and LNCaPB (Figure 5.7 R
2
 = 

0.968 and 0.986, respectively).  

 

Figure 5.6 PSA in low numbers of LNCaP cells. Plot of PSA content in blank 

controls and low cell numbers of both LNCaPA (black) and LNCaPB (blue) cells. 

Cell numbers were estimated via serial dilution. 
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Figure 5.7 Linear fit of PSA content in blank controls and low cell counts of a) 

LNCaPA and b) LNCaPB cells. Cell numbers were estimated via serial dilution. 

Error bars represent the standard deviation from eight replicate measurements.  

 

Similar to our findings in single cells, we observe a 30-fold difference in 

the magnitude of PSA expression between LNCaPA and LNCaPB cells. Despite 

this agreement, we find that dilution-based measurements actually underestimate 

PSA expression compared to single cell studies. For dilution-based 

measurements, we observed an average value of 3.75 × 10
7
 PSA molecules for 

100 LNCaPA cells compared to 1.27 × 10
6
 PSA molecules in 100 LNCaPB cells. 

Based on these values, one would extrapolate that single LNCaPA cells contain 

3.75 × 10
5
 PSA molecules on average while single LNCaPB cells contain an 

average of 1.27 × 10
4
 molecules. However, single cell analysis (vide supra) 

returned average PSA values over five times higher for both cell lines. The likely 

cause of this discrepancy when measuring protein concentrations using dilution 

methodologies is that initial cell counts using hemocytometers may be inaccurate. 

a. b. 
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In addition, cells can stick to tubes and pipettes used in the dilution process, 

altering the cell count and introducing significant error when cell numbers are 

low. These experiments further illustrate the value of true single cell protein 

counts compared to concentrations extrapolated from bulk measurements.  

 

5.4 Discussion 

While advances in detecting nucleic acids in single cells have been 

prominent in the past several years, the work reported here focuses on advancing 

the important field of single molecule/single cell proteomics. The importance of 

single cell protein quantification cannot be overstated. Molecular mechanisms, 

pathways, and cell heterogeneity at the single cell level can be studied to 

potentially enable both earlier disease detection and targeted therapy by 

identifying rare cells in a population. Our technique employs a simple isolation 

scheme that requires only a standard microscope and a commercially available 

instrument, making it straightforward to translate the approach to other cell lines 

and proteins. In addition, since SiMoA is an ELISA based technique, there is no 

risk of bias arising from an amplification step, as is the case with techniques such 

as immuno-PCR.  

To our knowledge, this study represents the first example of protein 

quantification in single cells using a single molecule counting technology that 

does not require genetic engineering, fluorescent labeling, or microchip assembly. 

Advantageously, SiMoA is also commercially available and facilitates high 
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throughput single cell analysis. To showcase the power of single cell SiMoA 

technology, we used both a high and low passage prostate cancer cell line of the 

same origin. The LNCaPA and LNCaPB cell lines exhibited a 12% genetic 

difference according to STR profiling and represent high and low PSA expressing 

traits, respectively. The variations in PSA content between the LNCaPA and 

LNCaPB cells were measured at the single cell level and the averages between 

these cell lines were found to differ by 30-fold. The substantial decline in PSA 

production in the LNCaPB cell line due to this genetic variation has significant 

implications for the need to standardize cell lines across scientific studies. Our 

work demonstrates the range and sensitivity of SiMoA with its capability to count 

low numbers of protein molecules within individual cells. We have demonstrated 

that SiMoA can be applied to study molecules that are not highly abundant or that 

are down regulated within single cells. Single molecule single cell measurements 

enable the measurement of phenotypic/genetic processes and cellular responses 

with unprecedented sensitivity and statistics.  

Since many molecular pathways involve cascades of molecular events, 

monitoring multiple proteins simultaneously is necessary to gain a complete 

picture. Thus, multiplexed analysis over a wide dynamic range is particularly 

beneficial for single cell protein studies. Although beyond the scope of this work, 

SiMoA analysis can easily be multiplexed to investigate multiple proteins for 

cellular dynamics and correlation studies within individual cells. The SiMoA 

platform for single cell analysis can also be coupled with high throughput cell 

isolation techniques, such as ensemble-decision aliquot ranking (eDAR) 
31, 32

, to 
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concentrate and analyze rare cells, including circulating tumor cells (CTCs). 

Proteomic analysis of CTCs from clinical samples may be useful for early cancer 

detection, to identify the CTC phenotype and tissue of origin, and to guide 

therapy. In conclusion, the work described here represents a sensitive and robust 

system for the quantification of protein molecules in single cells using single 

molecule counting. This technique provides an important new tool for the field of 

single cell analysis. 

 

5.5 Materials and Methods 

Materials 

 The SiMoA HD-1 Analyzer, SiMoA consumables, and PSA assay kits (ref 

100683) were purchased from Quanterix Corporation. The PSA assay kit contains 

magnetic PSA capture beads, biotinylated PSA detection antibody, streptavidin-β-

galactosidase (SBG), and resorufin β-D-galactopyranoside (RGP). Free PSA 

antigen (J63000, 96% free, MW = 30 kDa) was purchased from BiosPacific and 

diluted in 1% BSA in 1x PBS for calibration standards. 

Cell Culture and Isolation 

LNCaPA cells were obtained from ATCC (CRL-1740). LNCaPB cells were 

generously donated by the Kuperwasser lab (Tufts University School of 

Medicine). All cells were cultured in RPMI-1640 medium (A10491-01, Life 

Technologies) with 10% fetal bovine serum (26140-079, Life Technologies). 
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Cultures were incubated at 37°C with 5% CO2. Medium replacement was carried 

out two to three times per week in a SterilGARD III Advance biosafety cabinet 

(SG403, The Baker Company). 

To isolate cells, culture plates were rinsed with 5 mL DPBS (14190-144, 

Life Technologies) and 3 mL of trypsin-EDTA (30-2101, ATCC) was added for 

4-5 minutes then pipette mixed with 7 mL of complete growth medium to inhibit 

trypsin and suspend the cells. Cell suspension was centrifuged for 5 min at 130 g. 

Supernatant was aspirated, then the cell pellet was resuspended in complete 

growth medium. Cells were stained with Trypan Blue solution (15250-061, Life 

Technologies), washed 3x in DPBS, counted, and diluted to a concentration of ~2 

x 10
3
 cells/mL in DPBS. Cells were isolated by transferring 1 µL of the washed 

cell solution into the cap of a flat, optically clear PCR tube and validating by eye 

the presence of only one cell inside of the droplet using a microscope. Cells were 

isolated as quickly as possible following washing steps to reduce any secreted 

PSA in the bulk cell solution. Isolated cells were lysed and analyzed the same day 

or stored in PCR tubes at -20°C until use. 

For bulk experiments, low cell number samples were prepared via serial 

dilutions. Cell suspensions were washed, counted with a hemocytometer, and 

diluted to concentrations of 1x10
4
, 5x10

3
, 2.5x10

3
, and 1x10

3 
cells/mL. 

Single Molecule Array Analysis 

Isolated single cells were lysed in PCR tubes with 64 µL Lysis Buffer 17 

(895943, R&D Systems). For dilution-based bulk samples containing low 
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numbers of cells, 10 µL from each prepared concentration (corresponding to 

approximately 100, 50, 25, or 10 cells) was lysed with 55 µL lysis buffer. Lysates 

were then transferred to a 96-well PCR plate (10011-228, VWR) and diluted with 

75 µL diluent (1% bovine serum albumin in 1x PBS). All samples and assay 

reagents (capture beads, detection antibody, SBG, and RGP) were loaded into the 

appropriate reagent bays in the HD-1 analyzer. 

All single molecule measurements were taken using a HD-1 Analyzer 

(Quanterix Corp.). All HD-1 consumables, including wash buffers, sample 

diluent, assay discs, 96-well plates, sealing oil, cuvettes, and PSA reagents, were 

purchased from Quanterix Corp. The SiMoA platform has been described 

previously in the literature and in Chapter 2.
26, 33

 The PSA SiMoA assay consists 

of three-steps: 1) 15 minute target incubation with capture beads 2) 5 minute 

incubation with detection antibody and 3) 5 minute incubation with SBG.  

Since PSA is a secreted protein, the following controls were made to 

account for any PSA that may have secreted into the cell solution after the 

washing steps. Controls were made by preparing a cell solution of 2 x 10
3
 

cells/mL which was left at room temperature for 30 minutes, centrifuging the 

solution for 5 minutes at 150 rcf to pellet the cells, and removing 1 uL of the 

supernatant to analyze via SiMoA under the same conditions employed for cell 

samples. On average, controls for background PSA in the cell suspension 

supernatant yielded levels of 0.042 ± 0.026 pg/mL PSA for the LNCaPA cell line 

(n=16) and 0.005 ± 0.005 pg/mL PSA for the LNCaPB cell line (n=11). 
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Chapter 6 

Towards The Development of a Breast Cancer 

Mouse Model for Early Disease Monitoring 
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6.1 Introduction 

 Chapter 3 discussed the development of a mouse model using PSA to 

track tumor progression in an LNCaP mouse model. Chapter 4 discussed the 

development of SiMoA assays for ERα, PR, and CDKN2D and their applications 

to developing a biomarker panel to distinguish healthy serum from breast cancer 

serum samples. Prior to testing the described biomarkers in human samples, an 

attempt was made to construct a mouse model to enable the tracking of breast 

cancer biomarkers in serum with disease progression. The development of mouse 

models helps gain valuable insight into the usefulness of biomarkers prior to their 

implementation in human studies, where samples are often limited.  This Chapter 

discusses the use of a mouse model to ascertain the utility of CDKN2D for the 

early detection of breast cancer. 

 

6.2 Cell Line Determination 

The first step in developing an appropriate breast cancer mouse xenograft 

model involves determining the appropriate breast cancer cell line to use for the 

study. This choice can typically be determined from the literature and by knowing 

what subtype of breast cancer typically overexpresses the biomarker of interest. In 

addition, to see if cells actively secrete the biomarker in question, cell media 

retrieved from active cell culture can also be measured. If the media contains the 

protein of interest, in this case CDKN2D, it may also be found in serum samples 

from mice inoculated with particular cell lines and will therefore give insight as to 

which cell line to use for further developing a breast cancer mouse model.  
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Cell media used in the active culture of two different breast cancer cell 

lines (MDA-MB 231 and T47D ) and one non-tumorigenic breast cell line (MCF 

10A) were obtained. Two cell lines were ER-/PR- (MDA-MB 231 and MCF 10A) 

while one was ER+/PR+ (T47D)
1
.  The results of the cell culture media test are 

shown below in Figure 6.1. As shown in the figure, the levels of MCF 10A were 

well above the 10 pg/mL LOD of standard ELISA (Antibodies-online, 

ABIN812390), while the concentration of MDA-MB 231 was below the ELISA 

LOD, at only 0.582 pg/mL. Since MCF10A is non-tumorigenic, only MDA-

MB231 was used for further development of a potential mouse model. 

 

 Figure 6.1 CDKN2D in breast cancer cell culture media. a) Bar graph of 

measured CDKN2D concentrations in MDA-MB 231, MCF 10A and T47D cell 

culture media. The LOD for standard ELISA is 10 pg/mL and is indicated on the 

graph. The assay LOD for CDKN2D was 0.16 pg/mL. b) Table showing 

concentrations of CDKN2D in each sample. 

 

 

Once it was determined that MDA-MB 231 cells would likely be useful 

for a cell model, serum samples from a previously established mouse model trial 

were obtained. These mouse models were constructed using both MDA-MB 231 

and SUM1315 cells. SUM1315, like MDA-MB 231, is also ER-/PR- and was 

a. b. 
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thought to also be a potential candidate cell line. No cell culture media was 

available from this cell line for the initial test.  

In the models used, 1×10
6
 SUM 1315 and MDA MB231 cells had been 

injected into both 4th mammary glands of 8 week old female NOD/SCID mice for 

a total inoculation of 2×10
6
 cells. Blood was collected from mice on a weekly 

basis starting two weeks post inoculation and continued until tumors in each 

mouse reached 1 cm in diameter (approximately 16 weeks). The first samples 

tested for CDKN2D were the samples collected after 16 weeks, which were 

endpoint samples. The rationale for this approach is that the endpoint samples 

would theoretically contain the highest concentration of CDKN2D. If CDKN2D 

was not detected in these samples, then the remaining time course samples could 

be used for testing other biomarkers. SiMoA analysis of CDKN2D in endpoint 

serum of two mice for both MDA MB231 and SUM1315 is shown in Figure 6.2. 

As shown in the bar graph, the measured concentrations of CDKN2D in MDA 

MB231 inoculated mice were significantly higher than the measured values of 

SUM1315 inoculated mice and both were above the LOD of standard ELISA. For 

this reason, only the time course samples from the SUM1315 mouse model were 

used in further experiments. 
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Figure 6.2 CDKN2D in MDA MB231 and SUM1315 mouse serum. a) Bar graph 

of measured CDKN2D concentrations in MDA-MB 231 and SUM1315 endpoint 

serum in two mice per cell line. The assay LOD for CDKN2D was 0.16 pg/mL. b) 

All values were well above the LOD for standard ELISA, which is 10 pg/mL and 

is indicated on the graph. Table showing concentrations of CDKN2D in each 

sample. 

 

 

6.3 SUM1315 Mouse Model 

Figure 6.3 shows results for CDKN2D in the serum of one mouse 

measured each week from 2-15 weeks after inoculation with 2×10
6
 SUM1315 

cells. As shown in the graph, all values of CDKN2D were well above the 

calculated SiMoA assay LOD and were all also well above the lowest 

commercially available CDKN2D ELISA LOD. Despite the fact that this mouse 

grew a tumor 1 cm in size, no increasing trend in CDKN2D is noticed in the 

serum over the course of 15 weeks.  
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Figure 6.3 CDKN2D in SUM1315 mouse model serum. a) Bar graph of 

measured CDKN2D concentrations in one mouse inoculated with 2×10
6
 

SUM1315 c. The assay LOD for CDKN2D was 0.16 pg/mL. All values were well 

above the LOD for standard ELISA, which is 10 pg/mL and is indicated on the 

graph. b) Table showing the concentration of CDKN2D in each sample. Error 

represents the standard deviations between triplicate measurements. 

 

 Despite the lack of a correlation in CDKN2D concentration with increased 

tumor growth, there is still an overall increase in CDKN2D in the tested mouse 

compared to healthy mice. The serum of three healthy female mice was collected 

and measured for the presence of CDKN2D as a negative control. Figure 6.4 

shows the results of this screening. While the overall levels are lower than what 

was shown in the mouse with tumor growth, they were still above the LOD of 

traditional ELISA.  
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Figure 6.4 CDKN2D in healthy mouse serum. a) Bar graph of measured 

CDKN2D concentrations in three healthy female mice. All values were well 

above the LOD for standard ELISA, which is 10 pg/mL and is indicated on the 

graph. b) Table showing the concentration of CDKN2D in each sample. Standard 

deviations represent the variation between triplicate measurements. 

 

 Since there was no marked increase in CDKN2D in the mouse studied 

over time and the healthy mice had levels of CDKN2D that were well above the 

limit of both SiMoA and traditional ELISA, no further attempts were made to use 

SUM1315 in a mouse xenograft model to study CDKN2D. The remaining mice 

from the time course trial can be used to study biomarkers for future studies, if 

necessary. Since one of the antibodies used in the SiMoA was a mouse 

monoclonal antibody, it is very likely that there was simply cross reactivity 

between the human CDKN2D protein produced from the tumor and the mouse 

CDKN2D present in the host. This cross reactivity is a likely reason for the high 

background observed in the healthy mice and could also mask the response from 
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the mouse with the tumor. Further studies investigating this biomarker were used 

in human serum, as described in Chapter 4. 

 

6.4 Materials and Methods 

Cell Culture  

Conditioned cell media was provided by Dr. Lisa Arendt in the 

Kuperwasser lab at Tufts Medical School. Cell media for the following cell lines 

were as follows: MDA-MB 231, DMEM+/- with 10% FBS; MCF10A, 

BME; T47D, DMEM+/- with 10% FBS. All media and serum components were 

purchased from Gibco. Media was removed from active cell culture during 

feeding, placed in a 15 mL centrifuge tube, and stored at -80°C until used. Media 

was not diluted prior to SiMoA analysis. 

 

Mouse Xenografts 

The human breast cancer cell line SUM1315 was generously donated from 

Dr. Stephen Ethier (Kramanos Institute, MI) and cultured in the laboratory of Dr. 

Charlotte Kuperwasser at Tufts Medical School. Cells were grown in Ham's F12 

media with 5% calf serum, 5 μg/ml insulin, and 10 ng/ml epidermal growth factor 

(all from Gibco) at 37°C with 5% CO2. NOD/SCID mice (Jackson Laboratories) 

were anesthetized with isofluorane, and 30 ul of 1x10
6
 SUM1315 cells were 

injected into the inguinal mammary glands in a 1:3 ratio of Matrigel (BD 

Biosciences) to media.  Approximately 100 μl of blood was drawn from the 

submandibular vein and collected into SST Microtainer tubes (Becton Dixon and 
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Co, Franklin Lakes NJ) weekly until tumors reached 1 cm in diameter.  At end 

stage, mice were anesthetized isofluorane and blood was drawn via cardiac 

puncture followed by euthanasia by C02 asphyxiation. The care of animals and all 

animal procedures were conducted in accordance with a protocol approved by the 

Tufts University Institutional Animal Care and Use Committee (IACUC).  

Whole blood samples were allowed to clot on ice for 10 min. followed by 

centrifugation at 1,500 × g for 10 min at 4°C. Serum was then removed and 

immediately snap frozen.  All serum samples were stored at -80°C prior to 

use.  For SiMoA analysis, serum samples were diluted by a factor of four in 5 mM 

EDTA/PBS with 10 μg/mL TruBlock (Meridian Life Science Inc.) before being 

loaded onto an automated HD-1 analyzer (Quanterix Corp.).  

 

SiMoA CDKN2D Assay 

All single molecule measurements were taken using a HD-1 Analyzer 

(Quanterix Corp.). All HD-1 consumables, including wash buffers, assay discs, 

96-well plates, sealing oil, and cuvettes were purchased from Quanterix Corp. 

CDKN2D capture and detection antibodies were purchased from LifeSpan 

Biosciences Inc. and Abnova, respectively. The beads and detector were coupled 

and biotinylated as previously described in Chapter 4. Calibrators were diluted in 

PBS containing 25% newborn calf serum (Life Technologies), 5 mM EDTA 

(Sigma Aldrich), 0.15% ProClin 300 (Sigma Aldrich) and 0.01% Tween-20 

(Sigma Aldrich).  The detector was diluted to 1 μg/mL in a 1% solution of BSA in 
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PBS. Streptavidin β-galactosidase (Quanterix) was diluted to a concentration of 

500 pM in SBG buffer (Quanterix). 
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 This appendix contains supplemental data and information pertaining specifically to 

Chapter 4. Table A1 contains information regarding all samples used in Chapter 4. 

 

Table A1 Sample ID, stage, patient age, and molecular subtype for all samples used within 

Chapter 4. 
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 In the final PLS-DA models described in Chapter 4, age was used as an input variable 

along with ERα, PR, and CDKN2D .  Two PLS-DA models were also made using both healthy 

vs. all breast cancer samples and healthy vs. stage I-II breast cancer samples without using age. 

These models are shown in Figure A1. The AUC for healthy vs. stage I-IV (Figure A1 b-c) was 

0.89 and the overall accuracy for this model was 80%. The AUC for healthy vs. stage I-II was 

0.90 and the overall accuracy was 84%. These results are very similar to the results described in 
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Chapter 4 where age was not used. The extra variable was used since it is well established that 

age is associated with breast cancer risk and it is an easy variable to add into a multivariate 

technique to potentially gain additional discriminatory power. In this situation, the addition of 

age to the model only made a very marginal difference.  

 

Figure A1 PLS-DA models without age. Two models are shown, with ROC curves from PLS-

DA analysis of ERα, PR, and CDKN2D without age in a) healthy vs. b) stage I-IV breast cancer 

and c) healthy vs. d) stage I-IV breast cancer. 
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All samples were diluted 1:4 in sample diluent and were run on the HD-1. Although some 

samples had concentrations of tested biomarker that were above the reported commercial ELISA 

LOD, many were below the ELISA LOD when diluted. Diluting samples is convenient for 

banked precious samples that are limited in volume. The actual concentration of each biomarker 

within the samples was also calculated based on the dilution factor. A significant number of 

samples remained below the LOD of standard ELISA for both ERα and PR, but were detected by 

SiMoA. In the case of CDKN2D, fewer samples were below the LOD of ELISA; however, the 

ELISA LOD reported is from a kit that is no longer available and thus essentially only SiMoA is 

able to detect all of these samples. Figure A2 shows the response from all data points for each 

biomarker with the respective ELISA and SiMoA LODs.  
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Figure A2 Response of all healthy and breast cancer samples for ERα, PR and CDKN2D. 

Samples were diluted 1:4 in sample diluent and both the raw values and the actual concentrations 

with the dilution factor taken into consideration are shown. SiMoA and ELISA LODs are 

indicated on the dotted lines. 
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