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The brain is constantly working and adapting to the environments that we find

ourselves in, why shouldnt the tasks that we perform adapt as well? Brain computer

interfaces have been used to assist people with disabilities as well as to provide passive

information in order to simplify tasks for a user. This experiment sought to utilize

an fNIRS-based BCI in a learning environment. The interface tested was aimed to

improve learning speed and accuracy. Specifically, this study focused on learning a piece

of music on the piano. The BCI used cognitive load measurements in order to adjust

the difficulty of music presented to participants in real time. Our findings showed that

participants improved in objective performance measures and reported a better learning

and understanding of the music when learning with the BCI as opposed to the control

condition. These findings suggest that a passive BCI measuring cognitive load can be

effectively used to improve learning for beginner pianists and that managing cognitive

load in a learning environment can have performance benefits.
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Chapter 1

Introduction

The power of the human brain is greatly underestimated and for the large part still

a mystery. We are constantly processing information and are often unaware of it. In

the emerging field of brain computer interfaces, we are getting closer to harnessing the

information from these unconscious processes and applying it to tasks in our everyday

lives. If we can measure someones brain activity then why not apply that technology

to the task they are focusing on? With adaptive brain computer interfaces there are

possibilities to increase performance, multitasking, and efficiency.

Every brain is unique and the tools we have to measure brain activity are still lim-

ited in effectiveness and accessibility. However, recent developments have improved our

abilities to monitor and assess how hard the brain is working. With this in mind, we

should consider how this activity can be used and balanced by different interfaces that

take advantage of data produced by the brain.

For those of us who are musicians, we know that learning an instrument takes many

years of practice. Furthermore, we know that even after learning to play an instrument

reading music can be another source of difficulty. Even for those us who dont play an

instrument, it is hard to process how written music is transformed in to the songs and

sounds that we hear. If only there was some way to assist in learning to read a piece of

music that didn’t make the musician work any harder and that could even facilitate the

process. What if we could use our brains to somehow augment learning music? In this

1
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paper I will propose a system for accomplishing such a goal as well as outline the design

and results of an experiment that was run to test the effectiveness of such an approach.

As a musician and scientist, the intersection between the two has always been of

great interest to me. For this project, I spearheaded all of the musical data acquisition

and analysis using a combination of manual and automatic assessment that tested my

abilities as an engineer, researcher, and musician. Chapter 4 is where I outline my largest

contributions to this project.

The motivation for this project was largely driven by Yuksel et al.’s previous work

[1] measuring cognitive workload in pianists during musical improvisation. We wanted

to adapt this project to apply to an objective measure of cognitive workload to learning.

More generally, we sought to use cognitive workload as a variable in a learning domain

as there are very few examples of this in existing literature. Ultimately our goal was to

use a passive measurement of cognitive load to improve learning in a musical context.



Chapter 2

Related Work

2.1 BCI Background

In a technologically diverse and ever expanding society, there is increasing opportu-

nity to use more advanced ways to interact with the world around us. One emerging

available method is the use of Brain Computer Interfaces (BCI). These interfaces have

been used in many ways [2] and the passive method of BCI implementation has become

more popular in HCI research in recent years.

Prior to the idea of passive input, BCIs were used for explicit controlling systems for

individuals who may have been paralyzed or otherwise impaired and had to use brain

activity to control their surroundings. For healthy users this is usually not a very useful

method of interaction as there is usually a serious training period and it is often slower

than normal methods of input or interaction.

The goal of a passive BCI is to provide some sort of feedback or control to a program

or system where the user does not actively try to alter their brain activity in order to

receive some response. As opposed to measuring brain activity that a user is attempting

to control, the BCI gathers data about the user’s overall cognitive state. From this data,

some parameter of a system can be altered based on certain “mental states” determined

by the researcher.

3
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There are many different methods of measuring brain activity for BCIs. The most

commonly used methods are Electroencephalography (EEG) which measures electri-

cal activity produced by the brain and functional Near Infrared Spectroscopy (fNIRS)

which measures changes of oxygenated hemoglobin in blood due to brain activity. These

are most commonly used because they have fairly good temporal resolution which is

important when you are trying to control something in real time simply by thinking.

Most real-time BCIs can measure brain activity fairly accurately in both the temporal

and spatial dimension. However, what does it mean when we see higher activation in the

frontal lobe or an increased response in the P300 wave? Do these things show that we

are cognitively overloaded/overwhelmed or that we are ’in the zone’ and focusing well

and efficiently? This is one of the biggest issues the BCI field is facing; what exactly

are we seeing in the brain and how can we use it? This problem is pervasive and has

not been solved, in this study we are focused on the measurement of a user’s cognitive

load and the prefrontal cortex has been shown to be linked to complex problem solving

and multitasking. Since the fNIRS method reliably measures activation in this cortex

we can posit that higher activation in this level means a higher load in problem solving

and generally higher level cognitive processes and use this in our BCI.

2.2 Cognitive Load Theory

In this study, our BCI is designed to measure a user’s brain activity and adjust

parameters based on this data. In designing a BCI, it is important to identify not only

what activity is being measured in the brain but how it relates to the task at hand.

Those in the HCI field often refer to a “cognitive load” of participants. It is important

to understand cognitive load with respect to this paper.

Cognitive load can mean many things but for the purpose of this paper will use the

term as defined in what is known as Cognitive Load Theory (CLT) [3]. The theory

consists of developing efficient uses of people’s limited ability to process information

in order to improve their learning. The key processes that make up CLT are working

memory, acquired knowledge in long term memory, and learning [4]. When asked to learn
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new information, there are a number of factors that affect the efficiency and success of

learning. First is working memory; there is only so much information that we can

store. Second is previous knowledge of the information stored in long term memory.

According to CLT, with enough prior knowledge of the presented information, one can

better organize information in working memory. This, in theory, means the individual

has a lower cognitive load, easier learning, and improved performance.

Since this study focuses on piano, let’s use that as an example. For a skilled musician

and pianist, seeing a page of sheet music for the first time will require some work and

concentration to learn and play. But since they have prior knowledge of how to read

music, they can more easily group the notes in their learning process. Compare this to a

novice pianist with very little previous knowledge about reading music; they would likely

have a harder time learning the piece and need to pay more attention to each individual

piece of information. CLT tells us that the skilled pianist actually groups some of this

information in a way so that the working memory is only doing the bare minimum

whereas the novice does most of the processing in working memory [5]. Presumably, the

novice will have a higher cognitive load while learning the piece than the skilled pianist.

It is clear to see that CLT is relevant in many contexts that have to do with learning

or performance. Other work has been done with multitasking [6] and preference [7] and

has shown fNIRS to be a reliable and effective measurement of cognitive load [8].

2.3 Applications to Learning

Most research conducted on cognitive load is in easily quantifiable, discrete contexts.

Music is a very creative medium with little standardization. Creating an effective BCI

for musicians required certain considerations based on past work.

The central assumption of theories such as CLT [3] and Baddeley’s working memory

model [9] is that the human system for processing higher-level information is finite.

This limited cognitive capacity affects the learning of new tasks, where a learner can

experience cognitive overload, in which the required cognitive processes exceeds the

learner’s available, finite cognitive capacity [10]. Cognitive overload is a central challenge
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when designing systems for learners because any kind of meaningful learning requires

cognitive processing beyond learners’ cognitive capacity [10].

During training tasks for the learner, part-task selection approaches have been used

as segments or simplifications of the whole-task to aid users [11]. Dynamic task selection

has been found to be superior to static task selection [12] as the training task can be

adjusted to the cognitive state of the learner. However, most intelligent tutoring systems

(ITS) do not take learner cognitive workload into account when adapting the selection

of tasks, focusing instead on performance measures. Salden et al. [12] used cognitive

workload as reported subjectively by learners in addition to performance measures to

dynamically adapt learner training tasks but concluded that further work was needed

in this area. Paas et al. [13] has also brought up the need to use cognitive workload

as a measurement for learner training tasks and suggested brain sensing as possible

alternative to subjective ratings by the learner.

In this work, we present an objective way of measuring cognitive workload using brain

sensing, in a dynamic, part-task approach, and compare it with a control condition.

2.4 Music Applications of BCIs

While other BCIs aim to assist a user in some way or to make a task easier, musical

BCIs have, for the most part, been aimed towards composition and performance; geared

towards creative applications as opposed to practical ones [14–16]). What makes music

such an interesting media to use with a BCI is its expressiveness and possibility to

change at any time. Other performance tasks traditionally used with BCIs tend to be

more discrete and do not allow for as much variation as playing an instrument does. For

this reason, the musical BCI field is mostly focused on composition and manipulation

of music in real time with brain data.

One of the few applications that has a more practical impact is one done by Sourina,

Liu, and Nguyen in 2011 focusing on a real time music therapy BCI. By monitoring

the individuals’ brain signals, they assessed their emotional state and altered the music

they heard accordingly; not for creative reasons but rather to improve the therapy that
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was being provided to the individual [17]. This study is a great example of how brain

data can be used to passively change some musical parameters to benefit the user of the

BCI. However, the benefit is not affecting the user’s musical performance which is where

research in this area is very seriously lacking.

The first half of the experiment discussed in this paper, was carried out and verified

by Yuksel et al. [1] in the same lab with the same equipment and materials. The aim of

this previous study, like others in its field, was to create a BCI that augmented a user’s

piano performance by adding different musical elements to an improvisation; another

expressive interface named BRAAHMS. What was so novel about this experiment is that

the BCI utilized fNIRS as a measure of cognitive load and altered the type and amount of

musical additions based on how high and low the perceived cognitive load was. With this

system, pianists were improvising while musical harmonies determined by pilot studies

were added and removed based on user cognitive workload. Findings from this study

showed that users preferred the BCI system while improvising in comparison to two

control conditions because they felt more creative and that the system was responding

to them [1]. Following this study, we came up for the design of the study outlined in

this paper.

In the field of musical BCIs research has shown that EEG and fNIRS can both be used

for musical composition and altering music in real time. These applications, however, do

not give any direct benefit to the user other than an additional creative outlet. Following

the Yuksel study, we decided to apply a BCI to a learning context within music. Instead

of extending the expressive nature of music, we focused on a problem (learning written

music) and set to solve in using passive brain input. Instead of focusing on using passive

brain input to change or create the music the user is playing, our approach uses the brain

measurement to alter the music notation being displayed to the user. One of the largest

contributions from the BRAAHMS experiment was that it showed a clear distinction in

brain activity when users were playing something difficult versus something easy. Based

on this finding, we knew that it would be appropriate to use cognitive load measurements

as a measure of difficulty.

As opposed to simply monitoring a user’s cognitive load, our system, in theory, should
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help manage the cognitive load and prevent it from being too low or too high for extended

periods of time. By adjusting the music notation in real time, the difficulty of the piece

changes, thus affecting the user’s cognitive load. While monitoring cognitive load, we

can make predictions as to whether a user is ready for increased difficulty in music.

Based on the study by Yuksel et al. [1] and pilot experiments we targeted beginner

pianists in the hopes that this novel, adaptive BCI would improve learning accuracy,

speed, and level of enjoyment. With this assumption in mind we thought it important

to consider the applications of this study in the context of music education.

2.5 Music Education

There is seemingly endless research done on music education, especially with new

technologies and ways for students to interact with instruments and teachers to interact

with students. Much of the research in this field focuses on evaluating certain methods of

music education such as multimedia [18], augmented reality [19], or sonification feedback

[20]. In addition to these evaluation studies, work has been done to show long term effects

of music education and instrument proficiency on the brain [21, 22]. However, there is

little to no work done on how learning music is effecting the brain in real time or how

brain activity effects the way that music is learned.

Learning music, especially as a beginner, can be a daunting task that often requires

a great deal of concentration and mental effort. It is reasonable to assume that the

brain of someone learning a piece of music for the first time is working very hard. Of

course, this is something that music educators have always known, hence the plethora

of research in different methods of music education. While they may not admit to it

explicitly, teachers that come up with new methods of learning music are doing so in

order to make things easier; to reduce the cognitive load of their students.

One study of interest, although a bit outdated, is one run by R. Brown that compared

the hands apart and hands together methods, two methods of learning music that are

still in common practice today. Her findings showed that practicing and playing with

both hands together, as opposed to learning each part separately, was a more efficient
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method of learning music [23]. However, teachers still implement this method today

and even students who aren’t instructed to do so will follow this practice on their own

will. Why do we do this? Well perhaps it has to do with our brain. Performing a task

with one hand certainly seems like it would be less cognitively demanding than using

both hands. In the context of piano and music education, there hasn’t been any work

to see what the brain is doing while it learns which may give some explanations for the

effectiveness of certain practices and methods.

With our design we hope to fill some of the gaps in the music education literature.

Particularly with respect to how brain activity changes and effects the speed and accu-

racy of someone learning a piece of piano. We hope to show not only beneficial effects

from utilizing cognitive load measurements but also that there are noticeable changes

in activity which we will do by constantly measuring the brain through each task of our

experiment.



Chapter 3

Experimental Design

3.1 Research Goals

The primary goal of this experiment was to create and assess the effectiveness of

an fNIRS-based BCI to assist beginner pianists in learning to play pieces of music. We

theorized that altering the difficulty of the music based on measured cognitive load would

improve the speed and accuracy of participants performance after learning a piece. Thus,

our hypothesis was as follows:

• Hypothesis: We will observe better piano performances of pieces of music that

were learned by participants using our BCI, indicating that passive brain input

can be successfully used to improve learning music.

In the sections below I outline the materials and methods of the experiment, explain

the technology used, outline the considerations of BCI design and discuss the iterations

of the experiment.

10
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3.2 Materials

3.2.1 Music for Training Task

For the training task music was chosen with varied difficulties. Work was done

with a music faculty professor to choose pieces that would be considered difficult and

create pieces that were easy to play. We chose 15 easy pieces and 15 hard pieces for

participants to play on the piano for 30 seconds at a time. Figure 3.1 below shows some

brief examples.

Figure 3.1: Two measures from a hard piece (left) and an easy piece (right) used in
the training task)

Criteria for the ”easy” pieces:

• All notes were in C major (i.e. no sharps (]) or flats ([) in the key signature)

• Only whole notes were used ( ¯ ) (slow, long notes)

• There were no accidentals - no additional sharps, flats, or naturals (\) that were not

part of the key signature

• All notes were within a five note range (C to G) so that hand movement was minimal

• There were no dynamic changes (i.e. changes in volume of a note or stylistic execution)

Criteria for the ”difficult” pieces:

• All pieces were in a more difficult key signature (most pieces had a key signature of at

least 3 sharps or flats)

• Pieces contained accidentals

• Pieces contained mostly eighth ( ˇ “( ) and sixteenth notes ( ˇ “) ) (short, fast notes)

• Music required some moving of the hands but not too excessively

• Music included dynamic changes
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Figures B.2 and B.1 in section B.1 show full examples of an easy and a hard piece.

3.2.2 Music for Learning Task

For the learning task, two Bach chorales were chosen. These chorales were chosen

because of their similarity in style and difficulty. It can often times be hard to find

two different pieces of music that can objectively said to be similar in level of difficulty.

These chorales, however, were composed using the principles of musical counterpoint.

Counterpoint is a set of rules and guidelines that dictate how music can be composed.

It is a relationship between the voices of a piece that is interdependent harmonically

but independent in contour and rhythm. In other words, the two chorales that were

chosen are standardized based on this principle. So while they are different pieces of

music, they are similar enough so that the difficulty level is not noticeably different.

Both pieces were transposed to the same key and are the same length. Each piece also

has 4 voices bass, tenor, alto, and soprano. This allowed for an easy way to segment

the music in the BCI condition in order to progressively increase the difficulty. Due to

experimental constraints and skill level of participants, the pieces were slightly altered.

They were transposed into the same key (G Major) and the eighth notes were removed

so that it is rhythmically consistent. It is important to note that by removing some of

the notes, some minor counterpoint rules are no longer met. However, the underlying

structure and form of both pieces is still in tact. The pieces used in this study can be

found in section B.2.

3.3 Participants

For this experiment we recruited 18-25 year-olds that considered themselves to be

beginner piano players. We found participants through general advertisements for the

study as well as through the music department at Tufts University. We had 14 partic-

ipants ranging from age 19 to 21. There were 7 males and 7 females. All participants

were paid $20 for the first visit and an additional $20 for a next day follow-up.
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3.4 Methods

The first task that participants had to complete was a training task for our machine

learning model. This task consisted of 30 short sections of sheet music of varying diffi-

culties. The participants began with a 60 second baseline task during which they were

resting while a cross was on a screen. This allowed the system to learn what their base-

line brain activity was like. Following this, the pieces of music were randomly presented

to the participant with 30 second rest periods in between. A cross was again presented

on the screen during these rests. By the end of this task, the system constructed a

model of what a participant’s workload looks like while playing something difficult and

while playing something easy. This model is what was used for the next part of the

experiment. This task has been used in previous experiments.

Next was the learning task. In this task, the participants were given a piece of music

to learn as best they could within a given time frame of 15 minutes. They then repeated

this task with a different piece of music. In one condition, the music was presented as

it normally would be as if reading it off the page . The other condition utilized our BCI

to alter the music that they saw. The music (described in section 3.2.2) was presented

one voice at a time. The participants first saw a single line of music and more lines were

progressively added. Based on the model created in the first part of the experiment, the

system constantly makes predictions of whether the participants cognitive load is low or

high. If their cognitive load dropped below a certain threshold for a long enough period

of time then the music was made more difficult with the addition of another voice/line of

notes to the score that they are learning. At the end of each 15 minute learning period

participants were given a short minute-long rest and then asked to play once through

the piece they had just learned as best they could. Their performance was measured

using software outlined in chapter 4.

After completing the learning task, participants filled out questionnaires pertaining

to the pieces of music they had just learned. These questionnaires (seen in section C)

were very short and consisted of a self evaluation of different aspects of the learning task

and performance.
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Participants were given the option to come in for a follow up study within the fol-

lowing 2 days of the first experiment. For the follow up participants are asked to play

once through each piece in the same order that they learned them in the previous study.

This was done in order to measure any retention effects of the BCI system. In this study

there was no fNIRS device used and no training or learning phase, just a performance

task.

This was a balanced, within subjects design. All participants completed the training

task followed by both the normal and BCI condition of the learning task. The order of the

learning task alternated for each participant to account for the possibility of a learning

effect. Following the piano tasks, participants were asked to fill out questionnaires

about their preferences and performance and were interviewed about their experience.

The experimental set up can be seen in Figure 3.4.

3.5 Technology Used

3.5.1 fNIRS

We used a multichannel frequency domain Imagent fNIRS device from ISS Inc.

(Champaign, IL) for our data acquisition. Two probes were used to measure activ-

ity from both hemispheres of the prefrontal cortex of participants. The probes were

placed next to each other on the participant’s forehead. Each probe contains a detector

and four light sources with each one emitting near-infrared light at two wavelengths

(690 and 830 nm). With this set up we had sixteen data channels (2 probes x 4 source-

detector pairs x 2 wavelengths) (Figure 3.2). The source-detector distances ranged from

1.5 and 3.5 cm, and the sampling rate was 11.79 Hz. The signals were filtered for heart

rate, respiration, and movement artifacts using a third-degree polynomial filter and low-

pass elliptical filter. The fNIRS data was sent to another computer for processing by a

custom system created by the HCI lab for past experiments.
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Figure 3.2: fNIRS sensor with 5 light sources (only 4 sources were used for this study)

3.5.2 MATLAB and Imagent Computers

Training Task Modeling

For each user, we created a unique machine learning model based on their cognitive

activity. Raw fNIRS data in the form of light intensity values was sent from the Imagent

to a custom analysis system in MATLAB. During the music training task, the system

calculated a time series of change in light intensity compared to a baseline average of

that participant for each of the sixteen channels. For each music piece, markers were

sent to the system using a python socket to denote when the task started and finished as

well as what difficulty level the piece was. At the end of the trial, the system calculated

the mean and linear-regression slope for each of the channels, resulting in 32 features

(16 channels x 2 descriptive features) for each trial. It then fed these example trials

to LIBSVM, a support vector machine classification tool. LIBSVM takes in a set of

labeled training examples and creates a function using all of the features which can be

used to predict which set a new examples belongs to. Parameters were calculated for

each individual in order to optimize the model for each participant.

Learning Task Real Time Classification

While participants were learning, the machine learning model was making predictions

of their cognitive state. For each level of difficulty in the BCI condition, a threshold was

calculated based on data collected over a certain period of time. This threshold is what

determined whether a participant was cognitively prepared to move on to the next level

of difficulty. The system analyzed the last 30 seconds of real-time fNIRS data in order
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Figure 3.3: Lab computer setup from left to right: Bitwig MIDI acquisition, Matlab
and LIBSVM processing, fNIRS raw input to Imagent, Java experimental code

to calculate a prediction and confidence interval based on the model that was created in

LIBSVM during the training task. After enough predictions were gathered, the threshold

was set at the 75th percentile of confidence values for both high and low cognitive

workload classifications. The system was making predictions of the participant’s current

cognitive state. Then, once the threshold was set, the system was waiting for 65% of

the last 20 predictions to drop below the threshold. These parameters and design are

discussed below in section 3.6.1.

3.5.3 MIDI Keyboard and Bitwig

Participants completed tasks on a full-sized Yamaha keyboard with weighted keys.

The keyboard was transmitting MIDI data via USB to a computer running Bitwig

studio, a DAW that allows for MIDI recording and playback as well as visual displays

of recordings. Participants’ musical data was recorded with this equipment.
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Figure 3.4: A participant sitting at the keyboard wearing the fNIRS device and
reading music

3.6 Design Iterations and Pilot Studies

Prior to finalizing the parameters for the BCI and the music used in the learning task,

several interviews and pilot studies were conducted. These pilots allowed us to explore

the learning limitations of pianists, the effectiveness of our interface, and the feasibility

of our design. From this preliminary feedback and data we were able to successfully

create a BCI to assist pianists in learning music.

3.6.1 Pilot Studies

One of the first things that we needed to determine was what length of piece a pianist

could feasibly learn in a short period of time. We tested a variety of pieces with varying

lengths and difficulties. We also ran pilots giving participants different amounts of time

to learn the music. Based on preliminary feedback and data from our first round of pilot

studies, we determined that 4 measures of music with a mixture of quarter and eighth

notes was a reasonable amount of music to learn in 8 minutes. We ran a couple more

pilots with these parameters and uncovered an issue of varying skill levels of participants.

It became clear that some participants were much more skilled and had no trouble

completing what was, for them, a relatively simple task. However, many of our beginner
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pianists struggled to learn much of the music at all with these parameters. Also, in the

experimental condition we were not seeing much difference with intermediate/advanced

pianists but a small effect was present for beginners. Based on this we determined that

our system was more effective for those who were not very experienced on the piano.

This is likely because experienced players are very comfortable in their abilities to learn

music and have developed their own heuristics to do so, making our system irrelevant

or even obstructive to the way that they learn. This observation was supported by the

feedback of our pilot participants, discussed below.

Therefore, in our next iteration we eliminated eighth notes from the score so that it

consisted of only quarter notes. We also extended the time to 15 minutes for each piece.

These changes were made to accommodate beginner pianists. We started screening

participants with a questionnaire (seen in section C) in order to determine if they were

too skilled for our study. We ran a few pilots with this design but then discovered an

issue with our BCI parameters.

Originally, the machine that made predictions based on brain activity was using

an average value of the last 10 seconds or so of activity. Then, based on this value,

the machine would make the switch if the average was above the threshold. However,

we found that the switch was often happening much too soon or too late. We also

noticed that the threshold for a specific level was sometimes being calculated when the

participant wasn’t playing all of the notes present. This presented problems because a)

we wanted the threshold to be determined when a participant was playing or attempting

to play all of the notes at once and b) an average was not a good gauge of brain activity

over such a short period of time. We remedied these issues by doing the following. First,

we altered the system so that it was looking for 65% of the last 20 predictions to be above

the threshold in order to change. This parameter was narrowed in on through changes

in multiple pilots. Then, we implemented a trigger activated by the experimenter that

signalled when the participant had played at least a measure including all of the notes

present so that the threshold calculation was more appropriate for the given level.

With these parameters for the music stimuli and BCI we were finally confident in a

meaningful and effective system to be used for the final experiment. The data collected
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collected for this paper was made with this final iteration of the experiment.

3.6.2 Interviews

Through our pilots and experimental trials we gathered a large amount of vocal

feedback that led to some of the changes that we made and also confirmed our final

decisions. In order to accommodate the skill level of beginner pianists, the Bach chorales

did have to be altered which meant that the original counterpoint composition was no

longer intact. Because of this we were concerned that the pieces may no longer have been

comparable in difficulty. We asked pilot participants what they thought of the difficulty

of the pieces compared to each other. A few participants felt that the piece used in the

BCI condition was objectively easier so we asked them to elaborate and showed them

the pieces side-by-side. The following is a participant’s response when asked to explain

the differences in difficulty while examining the scores:

“I felt the second one [BCI] was easier...I was going to say that the second

one had more accidentals, but I guess not...Here it looks like there are bigger

gaps between ntoes...Maybe I’m just thinking that it [BCI] was easier, they’re

actually very similar.”

This was a common reaction when we asked people to explain the differences side-by-

side. Some people felt as though the BCI condition was an easier piece to play but then

could not justify why. The response above also comes from someone whose primary

instrument has been piano for the last 13 years and is majoring in music at school.

This is a good indication that our adjustments and alterations to the music did not

compromise the comparable difficulty of the pieces.

When determining our specific parameters, we actually ran participants with multiple

parameters in our pilots. We got feedback from participants about the timings and

eventually set our final parameters. The following is a response from a participant who

ran through the BCI condition with several different threshold parameters, with the last

time being our final parameters. This participant was asked to comment on the timings

of the changes.
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“The last time [with final parameters] was like perfect timing where I was

getting really comfortable with it and then it would get more difficult so it

kept me on my toes. The last time was really good timings.

Responses and reactions like this are what led us to our final parameters and gave

justification for the threshold determination process as well as how we triggered the BCI

based on this threshold. The above response came from a beginner pianist with only 2

months of experience which was a good representation of the skill level that we targeted

in our study.

In addition to finalizing the parameters through pilots, we also observed that partici-

pants needed time before they could play each level with both hands. Some participants

also commented on this such as:

“Sometimes I would switch back and forth between right and left and just

practice one line at a time. I was more comfortable with the right hand by

the time that it changed.”

From these comments and further discussion we realized that our system was correct

in determining when to change levels but was unaware that the user had only learned

that level with one hand, hence it was switching between difficulty levels too quickly. In

order to make sure the system was responding to the cognitive load of a participant when

playing all of the notes we determined that a trigger was necessary to indicate when a

participant had been playing all of the notes in the music for at least a measure. The

experimenter sent a message to the system by means of key press when the participant

had played all notes of each level for one measure. This can be implemented with

automation but as it was not within the scope of this study, was implemented in Wizard-

of-Oz fashion.
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Musical Data Analysis

4.1 Overview

In this experiment there is a variety of software used during trials as well as for

data collection and analysis. When the experiment was being run, MATLAB and Java

code was used to process and utilize the fNIRS signals in order to control the adaptive

condition of the experiment. Music software along with Python code was then used to

record and analyze participants performances. I will be focusing on the Music software

and Python code as it was one of my main contributions to the design and execution of

the study. I will also outline the manual assessment method that was used to measure

accuracy in performance.

One of the biggest challenges in this study was determining the best way to assess

how well a piece of music has been learned. There is score-following software that exists

that tries to take on this task, but we found that no existing method provided us with

all of the information that we were looking for so a decision was made to create our own

method of performance analysis based on other research in this area.

21
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4.2 Musical Assesment

Performance assessment of many kinds can be found in a wide range of research. For

this study, we were faced with the task of assessing musical performance on the piano.

Standards for assessing musical performance are not well established and are often done

through judgements based on a certain criteria [24]. However, it has been shown that

there are problems with assessing the quality of musical performance through judgement

based systems [25]. For the purposes of this experiment we needed a reliable measure of

how well someone learned a piece of music. Instead of relying on subjective judgements,

we decided to focus on quantifiable data the notes themselves. This led to the research

of score following software as an evaluative measure of performance.

Score following is, in itself, a very dense and widely studied field. Only in the past

decade or so have there been dependable programs that follow along as people play pi-

ano. The difficulty with score following is creating a reliable algorithm that handles the

non-deterministic nature of musical performance. The software for score following appli-

cations must make predictions about where a person currently is in the music and what

they will do next. It also has to take errors and mistakes into account which becomes

very difficult to program. When designing this study we considered the possibility of

creating our own, basic score follower but quickly found through research that it would

be outside the scope of this project. From this research we gathered information on the

different ways that score following software assesses performance.

As mentioned above, there are no standardized ways to assess musical performance

so we looked to score following for information on quantifying a users performance. In

our research we found that score followers classify events (a user playing a note) in a

number of ways. There are incorrect events, extra events, and correct events. Most

simply, correct events occur when a user hits a note at the correct time. An incorrect

event occurs when a user hits the wrong note while also playing correct notes. Extra

events occur when notes are played unnecessarily such as repeating notes to correct

oneself or mistakenly hitting the keyboard [26]. With these parameters in mind we were

able to devise a system for measuring piano accuracy.
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One factor that consistently came up in our research was tempo. Many score followers

use a fixed tempo to better follow the users because this makes each note time dependent.

For our experiment we didnt want to force any participants to adhere to a specific time

because this might affect the accuracy. Since we were measuring how well someone

learned a piece of music and not how well they could follow our parameters we allowed

them to play at their own pace. We didnt want to ignore tempo completely so timing

data was recorded of their performance allowing us to measure their average tempo and

how consistently they played at this tempo.

One last factor of assessment that we used was dynamics which was measured by

looking at the average velocities (how hard or soft a participant played) for different

sections of the music. This was just an additional measure to see how closely the

participants were following and learning the piece. By combining accuracy, tempo, and

dynamics measurements we could confidently create a profile of the users performance

with objective data that could be quantified and analyzed for significant results. This

was accomplished using a variety of different software tools described below.

4.3 Assessment Software

4.3.1 Python Library

In order to gather and analyze accurate MIDI data from participants, an external

Python library called Pygame was used. This library provided a simple way to select and

iterate through different MIDI inputs and outputs, parse raw MIDI data, and manipulate

this data quickly and easily. The midi module of the library was used in some of the

accuracy and tempo measurements. This library makes use of the MIDI ports of the

system computer that the code is being run on and parses data using polling methods

to gather the data as it is passed through the MIDI ports. It is simple to specify other

parameters such as which MIDI port to poll, how long or short the buffer should be,

and how many events to read in from the buffer at any one time. Once a MIDI event is

read, the library makes it easy to access all data in the MIDI specification.
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4.3.2 Bitwig Studio

In order to gather participant data in a graphical representation and record their

performance, a MIDI sequencer was used. After researching various options from various

developers, we decided on Bitwig studio. This software is very robust and has many

features that are outside the scope of this experiment but included some great tools for

analysis.

The first positive feature of this application is the interface. Not only is it a clean

design but it is also very easy and intuitive to use. Due to the characteristics of the

interface, all of the tasks that we performed using this software were simple and straight-

forward. The other useful thing about the interface was the clear graphical representa-

tion of participants performances. This graphical representation allowed for easy, precise

accuracy measurements. The interface also made it easy to mark, in real time, specific

points of a participants performance to easily recognize important areas later during

analysis. Another useful feature of this program is the option and simplicity of routing

an instrument to a MIDI output. Since some of the analysis was done using a Python

script, routing the participants performance to a MIDI output meant that the Python

script did not have to run in real time as we could essentially recreate the performance

using Bitwig and a virtual MIDI driver (described below). One last useful feature of this

software was the velocity measurement features. This function of the software allowed

us to look at groupings of notes to examine the mean and distribution of the velocities

in order to assess how well participants followed the dynamics of the piece.

4.3.3 LoopBe1 Virtual MIDI Driver

In order to analyze performances after the fact, a virtual MIDI driver was used called

LoopBe1. This driver allowed us to send MIDI output from Bitwig (described above)

and receive input in the Python program. The program needs a MIDI input in order

to analyze the data. In order to avoid using unnecessary MIDI instruments to route

the data, this driver was installed. Essentially, the data it receives from Bitwig is the

same as a participant playing the piano. The driver then does the same thing the

keyboard normally does by sending the data somewhere else. The difference is that this
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all happens internally so that the data can be played and processed in the same place.

Another benefit to this driver is that all analysis can be done offline and after the fact.

So if a parameter in the code needs to be changed, the recorded data can be run through

the program as many times as needed.

4.3.4 Design and Implementation

All of the code and software mentioned above was used together to create a profile

of each participant’s performance to assess how effectively they learned the given piece

of music. First, Bitwig is used to record the MIDI data in real time. With this data,

MIDI is sent to a python program using LoopBe1 which then analyzes the timings and

makes a count of each note played.

The Python code (seen in section A.1) gathers raw MIDI data using the pygame

module. For each byte of data the program records what type of MIDI message it is,

what the MIDI note is, and the timestamp of the data. When a message comes in, the

program checks to see if it is a ’note-on’ or ’note-off’ message. If it’s a note-on message

then the timestamp is stored in an array. However, if the timestamp is within 150ms

of the previous one that was recorded it is ignored because this means that the notes

were essentially played simultaneously. This timing threshold was determined using data

from pilot studies by manipulating this value to find an appropriate time frame. The

timestamp is only needed for each beat that a participant plays, not every single note.

The note-off timestamps and MIDI note numbers are also stored.

Once all of this information has been recorded and stored, the program then makes

a few calculations. First, by using the total time the person took to play the piece and

the number of beats that they played, it calculates the tempo as if the person had been

playing with perfectly consistent gaps between each beat. It then looks at the amount

of time between each beat and compares it to what the time gap should be based on

the calculated tempo. This gives a way to evaluate how consistently people played to

a certain tempo. A separate program (seen in section A.2) was run on the timing data

in order to calculate the variance of each participant’s tempo by condition. This code

parsed a text file with the timing data and output a CSV file to be used in statistical
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analysis software. These calculations can be seen in detail in the code included in the

appendix.

Once these calculations have been made, a file is produced including the following:

• a list of all notes played

• a list of all of the timings for each beat

• the number of beats played, the total time the performance took

• the average gap between notes

• the average tempo (in BPM)

• the range of gaps between notes (minimum and maximum gaps)

• the average variance of the note gaps

• the number of each note played (i.e. a list of how many times a given note was

played)

• the total number of notes played

Some of this data is not used in this paper but is all likely to be used in future

analysis of this experiment. In addition to this data gathered through python MIDI

analysis, we needed some way to assess accuracy. As mentioned above, research led us

to the conclusion that a score-following algorithm would not only be difficult to create

but also not the best measure of performance without a very sophisticated algorithm

that would be outside the scope of this program to create. So in order to make these

assessments a manual analysis method was used in combination with the data gathered

using the python code.

4.4 Manual Assessment Methods

Bitwig Studio provides a useful piano roll display of notes that have been played.

Instead of listening to the performances to determine how well participants performed,
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the graphic representation was used and compared against a perfectly accurate perfor-

mance generated using the MIDI file from the notation of each piece. With the visual

representations side by side, I was able to analyze the performance in terms of errors and

accuracy. Figure 4.1 shows an example of the layout for manual assessment. I analyzed

each performance by hand with the aid of video and audio data.

Figure 4.1: Visual comparison between user generated data (top) and data generated
from MIDI files of the original score (bottom)
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There were three events that were marked on these graphical displays:

• Correct notes

• Incorrect notes

• Extra notes

As a musician and pianist I was able to make distinctions between these notes when ana-

lyzing the performances. Having played piano for 16 years, I have a good understanding

of how people play and make mistakes when performing a piece. Having also taught

piano, I am familiar with common ways that pianists correct themselves while playing

something that they are unfamiliar with. Using this visual representation in conjunction

with video and audio data I was able to determine where mistakes were made and what

types of mistakes they were.

A common mistake that many participants made was playing a correct note and

then repeating the entire chord immediately while simultaneously trying to correct their

original mistake. This can be difficult to assess in the visual representation because a

determination needs to be made about which notes are repeats with corrections and

which ones are unnecessary repeats. This is where video comes in handy to make these

determinations. Another issue that comes up is when participants start over from the

beginning after playing a few notes. In these cases I have to decide which notes to

count as extra and which ones to mark in terms of correct or incorrect. Again this is

determined on a case by case basis.

Once correct, incorrect, and extra notes have been marked on the graphical repre-

sentation the next thing to be recorded is errors. An error is a temporal event that

includes either an extra or incorrect note. However, only one error is recorded for any

temporal grouping of notes that includes any number of incorrect or extra notes. This

data parameter was included to avoid over-penalizing participants who tended to repeat

notes frequently. So with this measure, 4 extra notes that occurred simultaneously were

also recorded as one temporal error. In section D an annotated example of this manual

assessment method is outlined.
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4.5 Challenges

There were many challenges that I faced when designing data collection for this

project. The biggest difficulties came in the first stages of the experiment when we

were still considering the creation of a custom score-following software. It took a few

iterations of code and music stimuli before this final method was settled on.

In designing a score-following software in the early stages of this project I came upon

the issue of parsing a piano performance in comparison to another. This difficulty was

largely due to the fact that measuring a piano performance needs a non-deterministic

algorithm to assess accuracy and keep track of where a participant is in the score. One

possibility that I explored was gathering temporally related notes into small data arrays

and comparing all permutations of these notes to a pre-recorded data from the score

generated MIDI file. This method was effective in measuring incorrect notes. However,

it would only give an accurate measure if a user did not play any extra notes because

then the comparison algorithm had different sized data arrays to analyze which was not

a problem addressed in the code.

After exploring these score-following options and conducting more research, we de-

cided that accuracy measurements could be more easily and reliably measured by hand.

So this left timing and tempo data to be recorded programmatically. One issue faced

when processing MIDI data for tempo measurements was determining the best way to

not only measure an average tempo but also assess the consistency of a performance.

At first, individual variations were averaged together but, after consulting with individ-

uals more familiar with statistical analyses, this was determined to be a poor measure

of consistency. The final method of consistency measurement was done by finding an

individuals variance in gaps between notes (using the MIDI timing list produced) for

each condition, and then comparing the variances from the two conditions against each

other.

One last difficulty faced was consistency in the manual analysis. As I was the only

one working on these analyses I had to stay as unbiased and consistent as possible.

I was able to establish a consistent scoring process through analyzing all of the pilot
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study data. Then, once the experimental data was being collected I needed to make

sure that my assessments were reliable. To do so, I would randomly mark performances

that I had previous recorded without knowing what my original judgements were. These

repetitions showed little to no variation from the original results that I had scored.

4.6 Future Designs for Musical Analysis

Working on this project, especially in musical analysis, has been very educational and

encouraging for possible future work. As mentioned before, score following is a problem

outside the scope of this project and could be a separate thesis. After manipulating

MIDI data for accuracy and tempo measurements, I think that spending more time

creating MIDI parsing software could prove very useful.

In future versions of this experiment, I would improve both the Python code and

the manual analysis. For the Python improvements, I would add in a confidence buffer

to determine if notes are happening simultaneously or quickly after one another. This

would improve the accuracy of the number of beats measurement. I would also calculate

variance for each condition in the code so this statistical analysis would not have to be

done after the fact. This would save a considerable amount of time. As for the manual

analysis, I would develop some way to overlay the participant’s performance with the

score generated MIDI data instead of a side by side comparison in order to make these

comparisons quicker. I would also develop some simple marking software to make these

note judgements so that the values of correct notes, incorrect notes, extra notes, and

errors didn’t have to be tallied by hand.

Overall, I was very satisfied with the software and manual methods used for data

acquisition and I am confident in the reliability and validity of the results.
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Results

5.1 Musical Analysis

Results from statistical analyses of the musical data showed multiple significant ef-

fects, suggesting that the BCI was successful in helping beginner pianists learn a piece

of music. Prior to running any significance testing we used a Shapiro-Wilk test to check

each condition for normal distributions. Both the BCI and normal condition needed to

have a normal distribution in order to perform parametric testing. The results of this

testing can be found in table 5.1. From these results we found that the only depen-

dent variables with normal distributions in both conditions were total notes played and

percentage of notes played correctly.

Once normality tests were run, we ran tests to look for statistical significance. Since

this was a within-subjects design we used paired tests to look for an effect of condition

(Normal or BCI) on each of our dependent measures. The means and standard errors of

each measurement can be found in table 5.2. We ran a Wilcoxon Signed-rank test on all

non-parametric data (not normally distributed) which included the number of correct

notes, number of incorrect notes, number of extra notes, number of beats, number of

errors, percentage of beats that include errors, total time played, mean gap between

notes, and average BPM. Results of these tests can be found in table 5.3. For the

normally distributed data, which included the total notes played and percentage of

31
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Normal BCI

Measurement W p W p

Number of correct notes 0.9208 0.09022 0.9029 0.03976
Number of incorrect notes 0.874 0.01135 0.8759 0.0123
Number of extra notes 0.7904 0.0004698 0.8105 0.0009553
Total notes played 0.9451 0.2739 0.9398 0.2157
Percentage of notes played correctly 0.9815 0.9447 0.9335 0.1621
Number of beats 0.8478 0.003892 0.872 0.01041
Number of errors 0.9239 0.1038 0.9089 0.05225
Percentage of beats that include errors 0.9653 0.6283 0.9016 0.03754
Total time played 0.7945 0.0005413 0.803 0.0007305
Mean gap between notes 0.8893 0.02178 0.7409 9.33 × 10−5

Average BPM 0.9315 0.1473 0.9 0.03506
Tempo variance 0.7656 0.0001517 0.822 0.00113

Table 5.1: Results from Shapiro-Wilk tests for each parameter by condition. Normal
distributions marked in bold.

notes played correctly, we ran paired t-tests. The results of these tests can be seen in

table 5.4.

Using the music data from all trials, including the performances from the follow-up

studies, we saw a significant effect of condition on the number of incorrect notes (W =

15.5, p < 0.01), the percentage of notes played correctly (t(20) = 2.6506, p < 0.05), the

number of errors (W = 7, p < 0.01), the percentage of beats that include errors (W =

22, p < 0.01) and the total time played (W = 43, p < 0.05). These results suggest that

the BCI condition was a better system of learning music which is consistent with our

original hypothesis.

Normal BCI

Measurement Mean Standard Error Mean Standard Error

Number of correct notes 44.238 2.697 46.667 3.235
Number of incorrect notes 7.476 1.251 4.809 1.039
Number of extra notes 17.524 3.818 14.667 3.435
Total notes played 69.238 6.022 66.143 5.701
Percentage of notes played correctly 67.595 3.188 74.052 3.663
Number of beats 21.667 1.119 20.667 1.031
Number of errors 11.095 1.421 8.238 1.318
Percentage of beats that include errors 48.576 4.353 37.509 5.157
Total time played 61.038 9.045 52.408 7.596
Mean gap between notes 2.727 0.302 2.492 0.328
Average BPM 27.619 2.865 30.429 2.645
Tempo variance 3052737.344 181704.489 2040288.312 104574.041

Table 5.2: Means and Standard Errors of measurements by condition

Looking at table 5.2, there are clear trends in favor of the BCI condition in some

metrics that did not show significant results. We thought that this may be affected by
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Measurement W Z p effect size

Number of correct notes 132.5 -1.481 0.1355 –
Number of incorrect notes 15.5 2.904 0.004042 0.448
Number of extra notes 76.5 0.679 0.4686 –
Number of beats 71.5 0.924 0.353 –
Number of errors 7 3.371 0.00169 0.521
Percentage of beats that include errors 22 3.249 0.0005102 0.501
Total time played 43 2.519 0.01013 0.389
Mean gap between notes 69 1.616 0.1111 –
Average BPM 128 -1.797 0.06673 –
Tempo variance 261 1.315 0.1982 –

Table 5.3: Results from Wilcoxon Signed-rank test. Significant results shown in bold.

Measurement t df p mean of differences

Total notes played -0.8393 20 0.4112 -3.095238
Percentage of notes played correctly 2.6506 20 0.01535 6.457143

Table 5.4: Results from paired t-tests. Significant results shown in bold.

the fact we included data from the follow-up trials aimed to measure retention of the

pieces. With this in mind, we also ran statistical tests on the data without the results

from the follow up studies. From these analyses, in addition to seeing significant effects

in the other measurements again, we also saw a significant effect of condition on the

mean gap between notes (W = 18, p < 0.05) and average BPM (W = 63, p < 0.05)

(table 5.5). This suggests that while participants seem to be learning the pieces better

in the BCI condition, this effect may not be as prevalent during follow up trials for all

of the measurements. A visual representation of all results can be found in figures 5.1

and 5.2.

Measurement W p

Number of correct notes 78.5 0.1086
Number of incorrect notes 10 0.0247
Number of extra notes 39.5 0.7005
Number of beats 38.5 1
Number of errors 5 0.008438
Percentage of beats that include errors 1 0.0002441
Total time played 18 0.02954
Mean gap between notes 18 0.02954
Average BPM 63 0.00862

Table 5.5: Results from Wilcoxon Signed-rank test when data from follow-up trials
are excluded. Significant results shown in bold.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Results of musical data measures showing within group comparisons
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(a) (b)

(c) (d)

(e)

Figure 5.2: Continued results of musical data measures showing within group com-
parisons
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5.2 Questionnaire results

In addition to the musical data, we examined data gathered from questionnaires

filled out by participants after completing the experiment. These questionnaires can

be seen in full in section C. Responses were recorded on a Likert scale with statements

that participants rated from 0 to 20, with 0 meaning that statement was not true for the

participant at all and 20 meaning it was very true. This data is all self-reported but shows

noticeable differences between conditions. Mean comparisons can be seen in figure 5.3

with noticeable differences in how easy participants felt it was to learn (figure 5.3a),

how well they felt they mastered a piece (figure 5.3c), and how correctly they felt they

played the piece (figure 5.3d). While they weren’t all signifivant, all questions showed

responses favoring the BCI condition which is consistent with our hypothesis that the

BCI helped people learn better.

In addition to filling out the questionnaire about each of the pieces that they learn,

participants were asked to choose their favorite of the two systems. Out of our 14

participants, 9 preferred the BCI system and 5 preferred the normal system of learning

music. We thought that these responses would show a higher number of individuals

who preferred the BCI condition based on the musical data and questionnaire results.

However, table 5.6 shows that among those who preferred the normal condition, they

performed better in the BCI condition in all dependent measures. To investigate this

result and the effectiveness of our BCI as a learning tool, we looked to participant

feedback in interviews.



Results 37

Normal BCI

Measurement Mean Standard Error Mean Standard Error

Number of correct notes 43.375 2.735 44.625 3.546
Number of incorrect notes 5.625 1.056 4.875 1.296
Number of extra notes 19.25 4.979 6.875 1.849
Total notes played 68.25 7.395 56.375 4.901
Percentage of notes played correctly 69.263 3.762 82 3.507
Number of beats 22 1.335 17.75 0.477
Number of errors 10.25 1.673 5.875 1.337
Percentage of beats that include errors 42.625 4.815 30.425 6.071
Total time played 71.524 13.323 56.869 10.586
Mean gap between notes 2.923 0.384 2.989 0.472
Average BPM 26.75 2.827 29.125 3.298

Table 5.6: Means and Standard Errors of measurements by condition of participants
who rated the normal condition as their favorite system of learning
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(a) (b)

(c) (d)

(e)

Figure 5.3: Results of follow-up questionnaire responses for BCI (green) and normal
(blue) conditions.
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5.3 Interview Responses

Because our system was such a novel interface, we were interested in what it did

effectively and what the design flaws were. We could not extract this information from

any of our musical data or self-report responses so we relied on a fairly in depth follow

up interview with users of the system. The main questions we were interested in were

why participants preferred the system that they indicated and what they thought of the

BCI condition and its parameters.

5.3.1 Timing Parameters of BCI condition

The goal of the BCI was to change the level of difficulty at a time when the par-

ticipant’s workload was low enough to handle more information and a higher level of

difficulty. When participants were asked about the timings of these changes, which were

controlled entirely by the system, their feedback was generally positive:

“I thought it was good timings because by the time I learned, it gave me

enough time to learn the individual lines, one by one.”

“I thought they were good times for changes, all of them.”

“Having a timing system can be jarring, you should only add new things when

you know that the person has completed the existing part, but these timings

were fine.”

One participant even seemed convinced that the experimenters were triggering the

changes:

“I wasn’t sure if you were controlling it or not because when it was added

was a pretty appropriate time for me to add on to a part. Especially because

in the beginning, one line, for me at least, is very easy to sight read so just

getting that melody in my head and figuring out fingering for that one line
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and then adding on to it very quickly afterwards was helpful. I felt the timing

was pretty good. I wasn’t sure if it was timed or if you were like, oh she’s

done with this part, so add on to the second part.”

From these results we were able to confirm our assumption that the parameters set

based on numerous pilot studies were effective and supported our original hypothesis.

Some participants were not completely satisfied with the timings but in cases like these

comments were similar to phrases like this:

“Sometimes I wouldn’t notice it would change until I would look at the screen,

it was a little confusing when I would look up. Yeah, it changed when I had

learnt pretty much what I could learn before it changed, it was enough time

to learn it,”

or

“I thought they [the timings] were pretty good I think it seemed pretty good

overall, the only thing would be the first one was a lot easier to learn because

there was only one line, but it wasn’t that bad,”

which are not completely negative. Overall, there were no standalone or overtly negative

comments about the timings of when the BCI system determined it was appropriate to

increase difficulty. It is clear that participants felt like the changes were happening at

an appropriate time which implies that we able to successfully measure cognitive load

and manage it by altering the difficulty of a given stimulus.

5.3.2 BCI Feedback

The majority of participants preferred the BCI condition to the normal condition

and participants on average felt like they had learned and played the BCI piece better

(figure 5.3) so we asked them what they thought about it. Many participants felt

that breaking up the music was a helpful method of learning and gave them a better

understanding of the piece:
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“It seemed easier to learn and even thought the score changed it made me

learn piece by piece, it progressed from more simple to more complex so I

liked that.”

“I felt like I was able to better understand what each part was doing, instead

of trying to take it by chunks. the way the piece was presented made it seem

easier, because I was able to break it up maybe that made it easier for me,

even though it wasn’t actually easier.”

“It was easier to learn because it came in parts they gave me one line and

then they added another note on each hand so that was easier instead of just

having to do it all at once. And I think that way I caught the melody more

so it was easier to remember that.”

For most individuals, this progressive method of learning was something that they both

enjoyed and was beneficial to their learning and understanding of the piece. What is

most interesting however is not the comments from those who preferred the BCI system,

but rather the feedback from participants who preferred the normal condition. In many

cases, even though they didn’t necessarily like the BCI system, they still acknowledged

that it had beneficial effects on their learning. The following comments come from

individuals who preferred the normal condition:

“The first piece was easier for me but it was hard learning it but playing it

was easier. And I don’t think I made as many mistakes.”

“The second one [BCI] shows up little by little and I practice little by little

so it helped me to learn better. I think it’s a better way to learn but it makes

me feel there’s too much coming up.”

Similar remarks were also made in the follow up studies:

“I thought it was interesting that the first piece I played today [normal] even

though I thought it was easier yesterday, I felt that playing it again today I
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didn’t remember it as well and I was basically sightreading it again and didn’t

really remember the fingering. Whereas the second one [BCI] since I played

it so many more times, broken up and together, it was still in the muscle

memory in my fingers and I was able to play it better, I didn’t stumble as

much.”

So even though some participants preferred the normal condition, the BCI system was

still a useful tool for learning music, often better than the normal condition. These

responses are consistent with the results in section 5.2 where those who preferred the

normal condition actually performed better.

5.3.3 Normal Condition Feedback

One of the most prevalent responses we got from participants about the normal

condition was that it was in some way overwhelming to have so much to learn at once:

“The first time [normal] it was kind of overwhelming to have all of the things

at the same time, so much so that I just ignored the bass part and only did

the right hand. I can’t really remember the first piece. I kinda gave up on

one of the parts.”

“The first way [normal] I tried to learn it measure by measure, which was

more daunting then trying to do a complete melodic thought and then add on

top of that.”

“It just surprised me that overall there were the same number of notes to

learn and it wasn’t like each hand had to handle more notes but it just felt

a lot harder to learn because it was coming all at once and it was alittle

more difficult to grasp what it was supposed to sound like and the underlying

melody.”

“The music came all at once, and I kind of got scared.”
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These responses of the normal condition being ”overwhelming” is consistent with our

findings that participants did not perform as well in our objective measurements of piano

performance.

5.3.4 Additional Feedback

In addition to all of the positive feedback to the BCI condition, there were some

recurring criticisms of the system. The most prevalent criticism we received was about

fingering positions on keys when trying to learn with the BCI system:

“I didn’t like the changing lines because I’d change the fingering, like I would

learn it one way and then it would switch it and I would have to change the

fingering.”

“I didn’t feel like I could confidently figure out the fingering for the parts, In

terms of actually mechanically playing the piece it was more difficult.”

Some of the participants felt that they had to re-learn where to put their fingers when

new voices were added to the music. This was a concern that we had early on in the

design but decided not to give fingering suggestions for each line. While giving fingering

positions would prevent users from needing to reposition their hands, we felt that it was

too much instruction in how to learn the piece. Our whole system is based on the idea

that you are still learning at your own pace with whatever methods you normally would

use. Part of learning a piece is figuring out appropriate positions of your fingers. Even

when learning a piece normally pianists tend to change fingerings until they find out

what works best. However, this would still be something that could be improved on in

future iterations.

5.4 fNIRS Results

In addition to showing improved performing and learning on the piano, we also set

out to show that our system is an effective measure of high and low cognitive load
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when playing piano. The BCI condition made changes based on brain activity dropping

below a certain threshold. Our system made predictions as to when this threshold was

reached based on the model created for each individual in the training task. In order

to obtain this data we ran the mean and slope of fNIRS data for each individual into

LIBSVM to create a profile of all of our participants. Figures 5.4 and 5.5 show the

data collected and averaged across all participants from the training task. Highlighted

graphs in these figures show the most significant channels; longest distance (3cm) from

the sensor. Figure 5.6 shows an average of brain activity in the training task for all

participants separated by hemisphere.

Figure 5.4: First 8 channels of averaged fNIRS measurements showing relative change
in optical intensity of all 14 participants across all trials of training task during the easy

(red) and hard (green) pieces
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Figure 5.5: Second 8 channels of averaged fNIRS measurements showing relative
change in optical intensity of all 14 participants across all trials of training task during

the easy (red) and hard (green) pieces

From these graphs we can see that there is a clear distinction between brain activity

in participants when playing difficult versus easy pieces. With this result we can be

confident that our models for cognitive load that were controlling the BCI condition

were making fairly accurate predictions as to the current cognitive state of the user.
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Figure 5.6: Average of relative change in Oxy-Hb in all participants. Showing differ-
ence in brain activity in each hemisphere during training task while playing easy (blue)

and hard (green) pieces
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Discussion

We believe that we have successfully created and evaluated a real-time musical BCI

which adapts to a user’s cognitive state and improves the learning of a piece of music

leading to increased performance accuracy and speed. We also believe that this is the

earliest example of a successful BCI that adapts to cognitive load in order to improve

learning. This is shown through our musical data measures, questionnaire results, and

interview responses. We argue that this system of learning is an improvement to the

traditional way of learning music.

In the musical data collected we saw that performances were better in both accuracy,

mistakes made, and tempo. The fact that all of these measures showed improvement

is a strong indication that the studied method of learning was helpful in learning the

piece better as a whole as opposed to simply improving speed. This can also be seen

in the feedback from the questionnaires and interviews; participants rated the piece in

the BCI condition easier to learn on average and also reported a better understanding

of the music and its structure in some cases.

Not only was it an effective interface in improving learning but the majority of par-

ticipants enjoyed learning more with the BCI and subjectively felt better about their

performances after learning with the BCI. Even though this was self-reported data it

is still significant to the effects of our system. Self-assessment has been shown to be

47
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a useful method in performance evaluation [27] so even as a subjective measure, these

responses give more support to our original hypothesis.

6.1 Implications

Shown to be successful, our system could theoretically be used in the context of

piano lessons in order for the student to have an improved learning experience and

better understanding of the pieces. Of course, this is not feasible due to the accessibility

and price of equipment similar to what was used in this experiment. More broadly,

this experiment could give music teachers and students better insight into how music is

learned and how to better report progress of learning.

What makes this system so interesting is not that it improves learning but that it

does so with a passive measurement of cognitive load. Essentially, it is a tutor that uses

introspection to adjust the difficulty of a given stimulus. Piano teachers cannot see how

hard their students are working or how difficult something might be without having the

student give self-reported information. Our system can measure students’ cognitive load

which would be a valuable tool for piano teachers and teachers in other domains.

A primary goal of music education is to shrink the gap between what what students

are capable of learning and what teachers want students to work on. Many interfaces,

multimedia platforms, and teaching methods have attempted to accomplish this by

providing tools for students to learn and be evaluated as they practice [18]. These

methods, however are still a reflection of self-reporting from students and judgements

made by teachers. Our system not only can improve the learning process and lead to

better performance but also does so without interruption from a teacher or the need for

the student to make a decision of when to increase difficulty.

It is clear that cognitive load is a relevant measure for learning processes and should be

taken into consideration even if it cannot always be directly measured. If piano teachers

were to pay more attention to cues or examples of cognitive overload [10] instead of

simply making judgements of how well they played a piece it could be beneficial to the

student cognitively as well as improve how well they learn a piece of music. In fact,
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I believe it would be beneficial if teachers in any domain paid more attention to the

cognitive demands of what students are learning and relied less on performance as a

measure of how well something is learned. Performing well on a test or playing a piece

of music well may not be a reflection of the quality of learning. For example, in our

experiment, among participants who showed smaller or no differences in performance in

the two conditions, they reported having a better ”understanding” of the music or they

at least felt that it was easier to learn in the BCI condition. This is likely because their

cognitive load was kept at a more manageable level on average.

In addition to the importance of cognitive workload in learning piano, this study

shows an interesting distinction between beginner and intermediate pianists. In our pilot

studies we found that intermediate/advanced pianists showed no differences between

conditions. When interviewed, these individuals mentioned that they didn’t like the BCI

condition and during the experiment there was very little time between the changes of

difficulty suggesting that their workload was lower in general throughout the experiment.

One possible reason the BCI condition was not as effective for more advanced pianists

is that with enough experience cognitive overload is less likely to occur and thus does

not need to be measured and adjusted for. As an advanced pianist I have experienced

this in that there are very few times that I feel overwhelmed or overload when reading

music for the first time. Perhaps our system could also be helpful in getting beginners

to this cognitively comfortable state with music earlier if they were to use this system

for a more extended period of time.

6.2 Future Work

The results of this study raise many questions and open the door for significant

meaningful future work in this field. Beyond the scope of this experiment there is

room for research in cognitive load musical BCIs, learning and cognitive load, and score

following and musical assessment.

In the field of musical BCI applications there is very little done that adapts to the

user’s cognitive load other than BRAAHMS [1] and this study. It would be interesting
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to look at other manipulations with this type of brain measurement. The musical output

was manipulated in the BRAAHMS study and the music notation was manipulated in

this study, so why not manipulate the musical interface itself? There have been examples

of software based instruments that can be changed and customized based on the need of

the user [28] but no work has been done on manipulating these interfaces in real time. By

measuring a user’s cognitive load we could theoretically add more inputs and controls

onto the instrument interface itself as their cognitive load drops. In theory someone

using a device like this would start by creating some simple melody and gradual build

up more controls and musical parameters to change as they become more comfortable

with the current interface. This could help performers add and remove parameters to

their interface more seamlessly without needing to dedicate energy to making decisions

of when things should change.

As far as learning is concerned, there is a great deal of research that acknowledges

cognitive load as an integral part to learning domains. However, much of this research

highlights the need for an evaluative system for measuring cognitive load. It has been

shown that fNIRS can do just this very effectively [1, 8]. It would be very interesting to

see how cognitive load changes in different domains. One interesting area for research

would be in more standard recall and memory tasks. It would be interesting to see if

using a similar system of presenting stimuli based on cognitive load in a progressive

manner would have the same benefits of performance on other tasks unrelated to music.

Perhaps this should be tested on other motor control pattern tasks. Music is definitely

a unique domain because reading music requires some amount of translation from visual

stimuli to motor control which is why research in other domains would be useful to

understand the benefits of measuring cognitive load in various learning environments.

Another area for study is score following and musical assessment measurements.

What I found most interesting when researching score following techniques and related

research is that there is not a standardized way to measure piano performance in a

quantitative evaluation context. There are many methods of teaching piano but no

definitive way to test the effectiveness of each with a standard measure. The reason

most score-following software is not useful for this context is because the most robust

of these programs are tempo dependent. They measure a user’s accuracy relative to
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a predetermined speed of playing. This does not allow for someone to play at their

own pace and gives no measurement of tempo consistency. Software that is not tempo

dependent usually will not move on in the score until the correct notes are played, which

forces the user to make corrections until they play correctly.

It is clear that this is an area for improvement in the domain of score following. There

is no program that measures a user’s accuracy, average speed, number of correct notes,

number of incorrect notes, and number of extra notes. Not only would a program like

this be useful in the context of research similar to this, but it could also be a helpful

tool for music teachers who want to assess their students’ progress in a more empirical

manner. Rather than just making judgements based on watching and listening, they

could augment their instruction with a systematic and consistent tool that provided

objective measures of performance while allowing the student to play at their own pace

with no interference in the way they play or read the music.

There are many implications of this research and a plethora of disciplines and designs

to explore. This project was an important first step in better understanding these

domains and provides valuable data and direction to any related work done in this field.
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Conclusion

In conclusion, we have successfully created a musical BCI that uses real-time fNIRS

input as a measurement of cognitive load. We applied this BCI to a learning task for

beginner pianists learning short pieces of music. We then ran an experiment evaluating

the effectiveness of this system and showed significant improvements in learning with

the BCI compared to a normal control. We affirmed our original hypothesis that using

a BCI that alters the difficulty of music in real-time based on cognitive load improves

performance and is a better learning experience for participants.

This study is a contribution to the HCI field in that it is one of the earliest to show

the benefits of monitoring and utilizing cognitive load in a learning environment as well

as being an innovation in music education practices and how musicians interact with

the music that they are learning. Our system not only helped improve performance,

enjoyment and ease of learning a piece of music but also provides an “introspective

tool” to music educators who are otherwise unable to justifiably determine the current

workload of their students. While it is unlikely that our system would be used in

anything other than an experimental context, it still provides great insight into the

effects of cognitive load on learning music and challenges traditional teaching methods.

The work done on the musical assessment portion of this project was also successful

in identifying and implementing methods of objectively evaluating piano performance.

The reported measurements and methods were substantive and provide a foundation
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for future work. Without these measurements, evaluation of our BCI would have been

much less rooted in quantitative data.

This study is an early step towards improved music education, improved learning

abilities based on cognitive load measurement, and better tools and methods of musical

assessment.
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Python Code

A.1 MIDI Input.py

import pygame

import pygame.midi

from pygame.locals import *

from collections import Counter

pygame.init()

pygame.fastevent.init()

event_get = pygame.fastevent.get

event_post = pygame.fastevent.post

pygame.display.set_caption("midi test")

screen = pygame.display.set_mode((400, 300), RESIZABLE, 32)

pygame.midi.init()

count = pygame.midi.get_count()

for i in range(0, count):

info = pygame.midi.get_device_info(i)

input_id = pygame.midi.get_default_input_id()

midi_in = pygame.midi.Input(1, 0)

print ("starting")

going = True

midi_list = []

time_list = []

tempo_list = []
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note_off_list = []

note_list = []

while going:

events = event_get()

for e in events:

if e.type in [QUIT]:

going = False

if e.type in [KEYDOWN]:

going = False

if midi_in.poll():

midi_events = midi_in.read(1)

note = midi_events[0][0][1]

time = midi_events[0][1]

if midi_events[0][0][2] != 0 and midi_events[0][0][0] != 128:

note_list.append(note)

if pygame.display.get_caption() != "midi working" :

pygame.display.set_caption("midi working")

if time_list and (time - time_list[-1]) < 150:

midi_list[-1].append(note)

else:

midi_list.append([note])

time_list.append(time)

else:

note_off_list.append(time)

midi_evs = pygame.midi.midis2events(midi_events,

midi_in.device_id)

for m_e in midi_evs:

print (m_e)

event_post( m_e )

print ("midi event list: ", midi_list)

print ("midi time list: ", time_list)

print ("midi tempo list: ", tempo_list)

print ("midi note list: ", note_list)

total_time = (note_off_list[-1] - time_list[0])

note_gap = total_time/len(time_list)

tempo = round(60/(note_gap/1000), 3)

note_confidence = []

notegap_total = 0
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for i in range(len(time_list)-1):

note_confidence.append(note_gap - (time_list[i+1] - time_list[i]))

notegap_total += (note_gap - (time_list[i+1] - time_list[i]))

notegap_min = min(note_confidence)

notegap_max = max(note_confidence)

notegap_total = notegap_total/len(time_list)

print("number of beats played: ", len(time_list))

print("total time: ", total_time)

print("note gap:", note_gap)

print("average tempo: ", tempo, " BPM")

print("note gap range: ", notegap_min, " to ", notegap_max, " ms")

print("average note variance: ", notegap_total, " ms")

print("number of each note played: ", Counter(note_list))

print("total notes played: ", len(note_list))

print ("exit button clicked.")
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A.2 variance.py

f = open(’variance.txt’)

f_new = open(’variance.csv’, ’w’)

for line in f.readlines():

participant = ’’

data = []

variance = []

i = 0

number = ’’

data_text = ’’

while line[i] != ’ ’:

participant += line[i]

i+=1

while i < len(line):

if line[i] != ’ ’ and line[i] != ’=’ and line[i] != ’[’:

number += line[i]

if line[i] == ’,’ or line[i] == ’]’:

data.append(int(number[0:(len(number)-1)]))

number = ’’

i+=1

for i in range(len(data)-1):

variance.append((data[i+1] - data[i]))

for i in range(len(variance)):

data_text += str(variance[i]) + ’,’

f_new.write(participant+’,’+data_text[0:(len(data_text)-1)]+’\n’)



Appendix B

Music Stimuli

B.1 Training Task

Figure B.1: Example of a ”difficult” piece used in training task

Figure B.2: Example of an ”easy” piece used in training task
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B.2 Learning Task

Figure B.3: Level 1 of score used in BCI condition in learning task

Figure B.4: Level 2 of score used in BCI condition in learning task

Figure B.5: Level 3 of score used in BCI condition in learning task

Figure B.6: Level 4 of score used in BCI condition in learning task
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Figure B.7: Score used in control condition in learning task



Appendix C

Questionnaires

C.1 Experiment Questionnaire

(to be inserted)
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C.2 Post Experiment Questionnaire

Figure C.1: Questionnaire given to participants after the learning task. Scale ranges
from 0 to 20.



Appendix D

Musical Assessment Example

D.1 Python readout

Figure D.1: Example of python code readout of a performance
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D.2 Manual assessment

Figure D.2: Annotated manual assessment of musical performance. Extra notes
circles, incorrect notes marked with ’X’, errors indicated with arrows
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