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ABSTRACT: 

Estimation of time series of monthly streamflows at ungauged locations is of 

paramount importance to many hydrologic projects and applications.  This project 

uses leave-one-out experiments to assess the relative performance of a few 

traditional, regional, hydrostatistical prediction techniques at minimally-impacted 

streamflow gauges across the United States.  This project considers four 

traditional flow-transfer techniques: drainage-area ratios (DA), standardization by 

mean (SM), maintenance of variance extension (MOVE) and the use of flow 

duration curves (QPPQ).  Under idealized conditions, all methods significantly 

outperformed the drainage-area ratio (DA).  However, when the flow-transfer 

techniques were combined with regional regression methods the relative 

performances were significantly degraded.  A weighting scheme is introduced, 

combining the advantages of DA with the improved performance of MOVE or 

SM.  This so-called weighted average (WAve) offers significant advantages over 

the traditional drainage area ratio techniques. 
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EXECUTIVE SUMMARY 

Estimation of time series of monthly streamflows at ungauged locations is 

of paramount importance to many hydrologic projects and applications, ranging 

from hydropower and water supply to irrigation scheduling and development 

planning.  In fact, prediction in ungauged basins (PUB) has been one of the 

leading initiatives of the International Association for the Hydrological Sciences 

(IAHS) over the past decade.  The PUB initiative recognizes the pressing need to 

understand the availability of our water resources, especially in regions with 

developing populations and high vulnerability to climate change. 

There exists a wide range of both process-based and regional, 

hydrostatistical approaches for estimating streamflows at ungauged locations, 

though few comparisons among such approaches exist.  This project uses leave-

one-out experiments to assess the relative performance of a few traditional, 

regional, hydrostatistical prediction techniques at over 1000 minimally-impacted 

Hydro-Climatic Data Network streamflow gages across the United States.  The 

PUB problem can be broken into three distinct steps: (1) the selection of an index 

gauge, (2) characterization of the streamflow record at ungauged location and (3) 

transfer of streamflow information from the gauged to the ungauged site. This 

study disregards step one and almost exclusively considers step three. 

Four different flow-transfer techniques were considered here: drainage-

area ratios (DA), standardization by mean (SM), maintenance of variance 

extension (MOVE) and the use of flow duration curves (QPPQ).  Under idealized 

conditions, when perfect information is assumed in step two, all methods 
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significantly outperformed the drainage-area ratio (DA) method in terms of bias 

and Nash-Sutcliffe Efficiency.  Across the US, a variant of MOVE, the top 

performer, outperformed DA at more than 86% of sites.  However, when the 

flow-transfer techniques in step three were combined with regional regression 

methods for estimating streamflow moments in step two, very different results 

were obtained.  In general, the application of steps two and three in tandem no 

longer led to superior performance, with the DA method performing best at over 

50% of sites in the United States. 

Evidence suggests that the performance of flow-transfer techniques is 

significantly influenced by the under- or over-lying hydroclimatology of the 

region.  With this in mind, a weighting scheme based on long-term climate 

statistics and the relationship between the site and index site is introduced, 

combining the advantages of DA with the improved performance of MOVE or 

SM.  This so-called weighted averaging (WAve) technique is found to outperform 

DA methods at 60% of sites across the United States.  By considering overall and 

monthly performance, it is shown that WAve offers significant advantages over 

the traditional drainage area ratio methods in almost all regions of the United 

States.   

These results are quite promising and may represent an important step 

forward in the PUB dilemma.  Further research is suggested, allowing for the 

contribution of groundwater to streamflow, the application of streamflow 

estimates to real-world projects and the use of remote sensing data to augment 

hydrostatistical methods of time series estimation. 



 

 3 

I. INTRODUCTION 

Freshwater is the most important natural resource in the world.  It is 

essential to each person on a day-to-day basis and is extremely influential in 

nearly all fields, from politics to science (Sivapalan 2003).  Yet, despite a long 

history of research, there remains a wide range of uncertainty associated with 

estimating, predicting and forecasting the quantity and quality of this mighty 

resource across space and time.  In truth, the scientific community has a rather 

poor understanding of the processes associated with runoff generated from 

rainfall: the question of where water goes when it rains has yet to be fully 

understood (Sivaplan et al. 2003). 

With the importance of freshwater resources in mind, it becomes clear that 

understanding the quantity of water or water resources in space and time is 

perhaps the most important problem confronting the hydrological sciences today.  

Before one can begin to understand, predict and transform the quality and use of 

freshwater, one must first completely understand the amount of water present and 

available (Sivapalan et al. 2003).  Accordingly, prediction of time series of 

streamflow at ungauged locations is one of the grand challenges facing hydrologic 

scientists today (Sivapalan 2003).  Time series of flows are of supreme 

importance in a wide range of water-related projects, from irrigation scheduling 

and water supply planning to hydropower development and flood mapping.  

Beyond real-world applications, time series of flows are extremely important for 

the calibration and validation of rainfall-runoff models and more complicated 

models of streamflow. 
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Some regions of the world, like North America, have extensive 

streamflow gauge networks, while other, often poorer regions have much more 

scantily-gauged networks (Sivapalan et al. 2003).   Additionally, in many of the 

well-gauged regions natural flow measurements are confounded by human 

development in the watershed (Sivapalan 2003).  Therefore, within each network 

of stream gauges there exists a smaller subset of minimally-impacted gauges that 

can provide a time series of flows that can be used to transfer information to 

nearby ungauged locations.  It is these naturalized flows that are most valuable to 

the water-related projects including understanding floods of given exceedance 

probabilities, mean annual water yields, reliability of water supply, crop yields, 

and soil moisture patterns needed for irrigation scheduling (Sivapalan et al. 2003). 

Understanding natural streamflows is therefore essential to human 

development in ungauged basins (Sivapalan 2003).  Furthermore, the natural 

streamflow regimes are being drastically affected by human development, land 

use change and global climate change; the stationarity of hydrologic science has 

dissolved (Wagener et al. 2004; Milly et al. 2008).  It is further troubling that the 

places with the least-developed gauge networks are those same places where 

human development is having the greatest impact on natural flow regimes and the 

need for freshwater is most poignant (Sivapalan et al. 2003).  All of these aspects 

sum up to a truly grand challenge. 

It is the purpose of this thesis to increase our understanding and ability to 

estimate natural streamflow time series in ungauged basins.  There are a wide 

range of models for predicting streamflows, from empirical models, to lumped 
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models and on to distributed models and statistical regionalizations (Sivapalan et 

al. 2003).  Yet, little attention has been paid to the relative performance of all of 

these techniques (Asquith et al. 2006).  This report will examine a number of 

statistical regionalization techniques in the context of predicting monthly 

streamflow time series.  This work, in the context of the greater hydrological 

sciences, sets the stage with a new methodology for assessing and evaluating 

predictive methods for streamflow. 

In 2003, the International Association for the Hydrological Sciences 

(IAHS) launched an initiative focused on Prediction in Ungauged Basins (PUB).  

The PUB initiative is aimed at engaging the scientific community in a cohesive 

effort to advance the understanding and prediction capability of hydrologic 

parameters in ungauged basins (Sivapalan et al. 2003).  By defining ungauged 

basins as those that lack sufficient length or quality of recorded data, prediction is 

understood to include reconstruction of past events, prediction of future and 

passed magnitudes and forecasting, the coupling of certain magnitudes with 

particular points in time (Sivapalan et al. 2003). 

This project falls within the heart of the PUB initiative.  This exercise will 

address Target One, which proposed to “examine and improve existing models in 

terms of their ability to predict in ungauged basins through appropriate measures 

of uncertainty” (Sivapalan et al. 2003).  Furthermore, this project also directly 

addresses Theme Three, to “advance the [scientific understanding] from the 

application of existing models through uncertainty analyses and model 

diagnostics” (Sivapalan et al. 2003).  In particular, this project will explore the 
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performance and predictive capability of regional, statistical methods, much as 

Hirsch did in 1979. 

As has been observed, there are many techniques for estimating 

streamflow at ungauged basins.  Such techniques involve different levels of 

complexity, data availability and applicability.  Generally, these techniques fall 

into two separate categories: process-based models, which use deterministic 

relationships to build a process-based model of an individual watershed and scale 

upwards; and hydrostatistical models, which use regional statistics of gauged 

streamflows to predict nearby ungauged streamflows.  Within these groups exist 

several techniques: standardization, extrapolation, measurements by remote 

sensing and a whole range of climate-based models (Sivapalan et al. 2003). 

The problem of estimating streamflow in ungauged basins with regional, 

hydrostatistical methods can be understood to consist of three distinct steps.  In 

order, these steps are (1) the selection of an index gauge, (2) characterization of 

the streamflow record at the ungauged site and (3) the transfer of streamflow 

infromation from the gauged to the ungauged site.  Books could be written about 

each of these steps, but this report focuses on both Steps Two and Three, with 

greatest attention given to Step Three. 

Here Step One is ignored, and the implications of and the process by 

which an index gauge is selected are not addressed.   In lieu of a more complete 

assessment of Step one, the most common approach, that of choosing the nearest 

gauge to a site of interest as the index gauge, is used in all experiments.  Though 

this method is suggested by the work of Emerson et al. (2005), Asquith et al. 
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(2006) and Mohamoud (2008), and many others, recent publications have found 

other, more-valuable criteria for selecting index gauges.  Achfield and Vogel 

(2010), for example, found that estimating the correlation between streamflow 

records is a strong metric for hydrologic similarity between an index gauge and a 

site of interest.  Furthermore, they found that the closest gauge is often not the 

gauge that exhibits the strongest correlation with streamflows at the ungauged 

site. 

This thesis is organized as follows: First, Chapter Two summarizes the 

general methods and datasets used. Then, in Chapter Three, considering Step 

Three, a number of flow-transfer techniques are assessed in an idealized sense, 

meaning that the moments of the streamflow record, usually estimated in Step 

Two, are instead assumed to be known.  Jack-knife, or leave-one-out experiments 

are performed assuming the streamflow moments and other parameters are known 

a priori from Step Two, with perfect foresight.  These idealized exercises allow 

one to assess the performance of flow-transfer techniques without confounding 

the analyses with uncertainty from techniques used to characterize the record at 

the ungauged site. 

Chapter Four briefly considers Step Two, characterizing the streamflow 

record at the ungauged site.  Here several methods are evaluated for their ability 

to estimate moments at ungauged sites.  As the second step is not the focus of this 

report, only regional regression methods are considered as a possible technique 

for record characterization.  Thus Chapter Four focuses on understanding the 

uncertainty associated with methods for record characterization alone.  
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In Chapter Five, the real-world application of the prediction of monthly 

streamflows in ungauged basins is assessed using leave-one-out experiments, 

combining regional characterization (Step Two) with the flow transfer techniques 

considered in Step Three.  This chapter demonstrates that the uncertainty 

introduced by regional characterization severely hampers the performance of the 

streamflow transfer methods considered.  Thus it is demonstrated, perhaps for the 

first time, why the drainage-area ratio method has become the default prediction 

technique. 

Chapter Six, the crux of this project, introduces a weighting method that 

combines and improves upon the estimates of previous methods.  It is shown that 

simple selection criteria based on hydroclimatic conditions can be used to weight 

the estimates of each prediction method appropriately and generally improve on 

the DA method with only the simplest of additional climatic inputs.  In essence, 

this technique combines the advantages of the DA method with the added value of 

regional hydrostatistical methods. 

This thesis concludes with a recommendation for predicting streamflows 

in ungauged basins based on the hydrostatistical weighting procedure.  Of course, 

the door for further research is left wide open with suggestions for future 

promising ideas. 
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II. DATA SOURCES AND GENERALIZED METHODS 

This chapter considers a few general topics that will be used in each of the 

subsequent chapters.  These topics include a summary of the data being used and 

an overview of general method and terms.  Outlining these terms now will reduce 

the need for repeating them in each chapter.  After describing the sources for all 

of the data being used, a brief description is provided for each of several different 

methods that will be used on several occasions throughout this thesis.  These 

methods represent, in a general form, the tools used to generate, analyze and 

evaluate all of the results and streamflow estimation techniques. 

 

DATA SOURCES 

In order to reasonably evaluate several different techniques for estimating 

streamflow at ungauged sites, it is necessary to have some level of truth with 

which to compare the estimates.  This was achieved by using gauged data from 

minimally-impacted sites and conducting leave-one-out or jack-knife 

experiments, which are described in more detail below.  The streamflow data 

comes from the US Geological Survey’s Hydroclimatic Data Network (HCDN; 

Slack et al. 1993).  This dataset, which can be compiled monthly, is a collection 

of streamflow measurements from gauges that exhibit little or no anthropogenic 

impacts.  The network contains more than 1500 gauges across the United States, 

though only around 1,300 were used here because only those sites could be 

coupled with reliable climate data for the same watershed over the period of 

record. 
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It is well known that long-term climate statistics are strongly connected 

with regional streamflow moments (Vogel et al. 1999).  Accordingly, climate 

time series that are spatially and temporally representative of the watersheds 

defined by the HCDN streamflow gages are needed.  Indexed by HCDN basins, 

such spatially aggregated climate data was compiled using automated GIS 

methods and made available by Vogel and Sankarasubramanian (2005).  Their 

database includes a coincident time series of monthly climate variables, including 

temperature, precipitation and potential evapotranspiration, from 1951 through 

1990 for about 1,300 sites from the HCDN streamflow database.  The estimates of 

climate are based largely on the PRISM system defined by Daly et al. (1994 and 

1997), which were spatially interpolated over each of the 1300 HCDN watershed 

boundaries.  Further information about the hydrology of each site was garnered 

from the watershed characteristics database developed by Kroll et al. (2004). 

The analysis and characterization of streamflow patterns and moments 

was conducted on a regional basis.  Each basin of the HCDN is contained with 

one of the 18 2-digit HUCs of the United States (Figure 2.1).  To enable an 

effective summary of the results three meta-regions of the US were employed: the 

East, Midwest and West.  Respectively, these consist of two-digit HUCs one 

through six, seven through twelve and thirteen through eighteen.  This analysis 

does not consider regions outside of the continental, conterminous United States 

of America. 
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A COMPENDIUM OF GENERALIZED METHODS 

Leave-One-Out or Jack-Knife Experiments 

 Leave-one-out or jack-knife experiments are a way to test different 

estimation procedures.  This allows one to treat a gauged site as an ungauged site 

and quantify the performance of each prediction method.  In practice, one site is 

blinded, meaning that the data from that site is ignored or removed for the 

moment so that the blinded site becomes the ungauged site of interest.  The 

estimation and flow transfer techniques are then developed with the remaining 

data only.  Once the methodology has been calibrated at the remaining sites, any 

input data from the blinded site can now be used to generate results at the 

ungauged or blinded site.  The result is a fully estimated flow series at the blinded 

site that can be directly compared with observed values.  This process can then be 

replicated for every site in the database, leading to a full sample of performance 

metrics across any region. The results mimic the application of the proposed 

methodology at an ungauged site and reflect the performance of the methodology 

under realistic conditions. 

 

Nash-Sutcliffe Efficiency 

The Nash-Sutcliffe efficiency is a commonly used performance metric for 

assessing the ability of models to accurately represent observations.  This statistic 

is commonly used in the hydrological sciences and will be used here to assess the 

performance of each method in a leave-one-out exercise.  The Nash-Sutcliffe 

model efficiency, NSE, is given as 

ܧܵܰ ൌ 1 െ
∑ ሺ௑೔ି௑෠೔ሻమ
ಿ
೔సభ

∑ ሺ௑೔ି௑തሻమ
ಿ
೔సభ

         (2.1) 



 

 12 

where ෠ܺ is the modeled estimate of X for a time series of length N.  Better 

prediction methods will cause NSE to approach unity.  The Nash-Sutcliffe 

efficiency, in terms of streamflow, can be calculated overall or on a monthly 

basis.  The NSE is preferred over the correlation coefficient and other measures 

because it accounts for bias in addition to the correlation between the observations 

and predictions.  For example, a negative value of NSE reflects situations in 

which the bias in the predictions is so great that the mean value would be a better 

prediction than the model, itself.  For unbiased model estimates, NSE reduces to 

the product moment correlation coefficient. 

 

Percent Bias 

The percent bias of a leave-one-out method, calculated across all estimates 

or monthly, is a measure of how close, on average, a given estimation procedure 

is to the true values.  The percent bias, B, of an estimate is given as 

ܤ ൌ 100 כ ሺ
௠೉ି௠೉෡

௠೉
ሻ         (2.2) 

where m is the arithmetic mean of the subscript variable and ෠ܺ is the modeled 

estimate of X.  In this case, if a method overestimates the observation, the bias 

will be negative, while an underestimating method will exhibit positive bias.  An 

unbiased method will exhibit both a narrow range of bias and a median value near 

zero across all of the leave-one-out experiments. 

 

Relative Efficiency 

Judging the relative efficiency of two methods is a technique borrowed 

from traditional statistics.  Relative efficiency quantifies the relative performance 
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of two estimators by assessing the ratio of their variances using 

݁ሺ ଵܺ, ܺଶሻ ൌ
ாሾሺ௑మିఏሻమሿ

ாሾሺ௑భିఏሻమሿ
        (2.3) 

where X1 and X2 are estimators of θ.  A relative efficiency greater than one 

indicates that the estimator X1 has lower variance than the estimator X2, in which 

case X1 is said to be more efficient than X2.  In such a case, X1 holds an advantage 

over X2.  Ratios similar to relative efficiency can also be used to compare one 

method over another in terms of NSE or bias.  When considering the ratio in 

terms of NSE values, the true value would be one, while X1 and X2 would become 

the NSEs of two separate methods.  Similarly, when considering the ratio in terms 

of bias the true value would be zero, while X1 and X2 would become the biases of 

two separate methods. 

 

Handling of Outliers 

When testing numerous methods over a wide range of sites and data it can 

be difficult to ensure the quality of data and the absence of discontinuities.  

Furthermore, extreme results can severely affect the performance measures 

indicated above, disrupting their distributions and thus their credibility.  To avoid 

this, a decision was made to exclude outliers from the analysis so that each 

method could be judged equal.  In all the exercises that follow the outliers that are 

beyond 1.5 times the inter-quartile range were ignored.  This metric is common 

for removing outliers in elementary statistics.  After outliers had been removed 

from the performance statistics of NSE and bias summarized across all the leave-
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one-out experiments, the relative efficiency and second-order performance 

metrics of the varying methods can be appropriately evaluated. 

 

The Aridity Index 

In this study, the aridity index is found to be an important explanatory 

hydroclimatic variable.  The aridity ratio is defined as the ratio of the average 

precipitation to the average potential evapotranspiration.  The aridity index is a 

common measure of the “wetness” of a particular site and can be defined on a 

monthly or annual basis.  It combines the climate signals of precipitation, 

temperature and global position into a single measure.  It will be shown that this 

measure becomes very important in classifying, understanding and improving the 

performance of the various methods considered here. 
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III. TRADITIONAL STREAMFLOW TRANSFER TECHNIQUES 

When estimating monthly streamflows at ungauged locations, uncertainty 

can be introduced at any of the three steps indicated above.  As one of the 

motivations for this research is to understand the nature and origin of some of this 

error, this chapter attempts to consider Step Three independent of the choice of 

methods used in Steps One and Two.  The goal is to evaluate the performance of 

various existing methods for the transfer of streamflows from a gauged to an 

ungauged site.  By conducting leave-one-out experiments where Steps One and 

Two have no additional impact on the analysis because moments are known 

explicitly, one can understand the intrinsic uncertainty that is native to each of 

several flow-transfer techniques considered in Step Three. 

Four types of flow transfer techniques are considered.  These include 

standardizing flows by drainage area, the most common method, standardizing 

flows by mean flows, standardizing with a maintenance of variance extension 

(MOVE) and the use of flow duration curves (FDC).  Each method is described 

below.  Several variants are considered for each type, with the best being 

identified with an analysis of Nash-Sutcliffe and relative efficiencies.  These four 

classes of methods are then compared against each other and each is than 

evaluated against the most common drainage area ratio technique. 

 

STANDARDIZING FLOWS BY DRAINAGE AREA 

Standardizing monthly flows by drainage area is one of the most 

commonly used hydrostatistical techniques for transferring streamflow 
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information from one site to another (Asquith et al. 2006).  It is mentioned in 

nearly every introductory hydrology textbook, as well as a variety of handbooks 

(Stedinger et al., 18.54).  Commonly referred to as the drainage area ratio (DA) 

technique, it is perhaps the most widely used method for estimating streamflow 

time series in ungauged basins (Archfield and Vogel 2010).  Surprisingly, this 

method has rarely been compared with other more rigorous methods that require 

more inputs.  Such is the goal of this thesis. 

The use of DA is appealing because it requires no additional information 

other than the streamflows at an index site and the drainage areas of the index and 

ungauged sites, making it the easiest possible method that one could consider.  

Thus the DA method does not require Step Two.  The DA method is often 

selected simply because other methods are too complicated, require too much data 

or have yet to be developed for regions of interest (Emerson et al. 2005).  In 

essence, the DA method is simply the method of choice by default. 

Not surprisingly, the lack of streamflow characterization in Step Two 

implies that the selection of an index gauge becomes that much more important 

for DA methods (Asquith et al. 2006).  In the DA method the index site transfers 

information about both the timing and the magnitude of the streamflows, while in 

other techniques that require streamflow characterization (Step Two), the index 

gauge transfers the timing of flows and relative, standardized flow magnitudes for 

DA techniques.  It is for this reason that much attention has been given to the 

selection of an index gauge in the field of hydrology.  Asquith et al. (2006) found 

that the performance of generalized DA methods was closely linked with the 
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separation distance between two sites and the logarithm of the ratio of their 

drainage areas. 

In general, the watershed of an index gauge should be hydrologically 

similar to the watershed of the ungauged site.  It is thought that hydrologic 

similarity will ensure well-behaved estimates.  For the DA method, many have 

argued that the ratio of drainage areas should approach unity between 

hydrologically similar basins (see the discussion in Emerson et al. 2005 and 

Asquith et al. 2006).  Here, the optimal selection of an index gauge has been left 

for further research – see Archfield and Vogel (2010) for recent innovations in the 

selection of an index gage.  Instead, the nearest streamflow gauge is always used, 

per the recommendations of Mohamoud (2008) and many others. 

In order to understand the performance of the simplified DA technique, it 

is important to consider two variants of this technique.  First is the more 

traditional approach, drainage area ratio in real space (DAR).  DAR assumes that 

the flow per unit area, or unit discharge, in real space, is equal across 

hydrologically similar basins.  That is, for any given month, 

ொ೉
஺೉
ൌ ொೊ

஺ೊ
           (3.1) 

for two sites, X and Y, with monthly streamflow Q and drainage area A.  

Traditionally, site X is considered the gauged site and site Y is the ungauged site.  

Accordingly, the flow at the ungauged site can be approximated simply using 

ܳ௒ ൌ ௒ܣ
ொ೉
஺೉

           (3.2) 

which can be applied to each month to create a time series of monthly flows. 
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Often times the logarithms of streamflows are better behaved than the 

flows in real space.  For this reason it is important to consider the log-space 

variation of the drainage area ratio (DAL).  DAL recognizes that one could 

standardize the logarithms of flows by the logarithm of the drainage areas such 

that, for any given month, 

୪୬ ሺொ೉ሻ

୪୬ ሺ஺೉ሻ
ൌ ୪୬ ሺொೊሻ

୪୬ ሺ஺ೊሻ
          (3.3) 

for the two sites X and Y.  This is an interesting conceptual framework because, 

with the change of base of logarithms, (3.3) can be rewritten as  

logAXሺܳ௑ሻ ൌ log AYሺܳ௒ሻ        (3.4). 

Solving equation (3.3) yields, 

ܳ௒ ൌ ܳ௑
ౢ౤ ሺಲೊሻ
ౢ౤ ሺಲ೉ሻ          (3.5) 

which allows for the streamflow at the ungauged site to be estimated directly, yet 

with a different functional form than the common result in (3.2). 

Having selected an index gauge, one may estimate the flows at a site and 

compare the resulting estimates with the known, gauged flows.  At each site an 

overall Nash-Sutcliffe Efficiency (NSE) and average bias (B) can be calculated 

for each method.   A summary of the range of NSEs and percent bias for DAR 

and DAL is presented in Figure 3.1.  DAR exhibits generally higher efficiency 

and lower bias than DAL.  For DAR, more than 75% of the sites yielded an NSE 

greater than 0.5, while, for DAL, many sites resulted in sub-zero NSEs.  While 

both methods have a median bias of zero, the range of percent bias associated 

with DAR was narrower than that associated with DAL.  Furthermore, the DAR’s 
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bias is generally symmetric about zero; DAL’s is skewed slightly downward.  

These boxplots provide strong evidence for the use of DAR over DAL. 

The previous figures represent the data nationally, but it is important to 

understand the performance of these methods across different hydroclimates.  

Instead of examining all 18 regions of the United States, it is useful to examine 

the results by three meta-regions: East, Midwest and West, as defined previously.  

The range of efficiency and bias for DAR and DAL in these meta-regions is 

presented in Figure 3.2.  In all regions, DAR performs better than DAL.  It is 

interesting to note that DAR performs very well in the East, but its performance 

degrades in the Midwest and West.  This is a large weakness in the DAR method 

that will be explored later.  The bias of DAR is better behaved than of DAL in all 

meta-regions.  Poor performance in the West could be due to the scarcer gage 

network, aridity and heterogeneous climates of that meta-region. 

While boxplots provide a very important understanding of the general 

behavior of each method, it is more important to understand the site-by-site 

behavior of each method.  This can be done by calculating the relative efficiency 

of each method’s NSE and bias.  Here, a relative efficiency greater than one 

suggests that DAR is a better estimator than DAL.  Nationally, DAR exhibited a 

relative efficiency of 4.5 for NSE and over 10 for bias.  These results were of 

similar magnitude across all meta-regions.  The advantage of DAR is most 

pronounced in the East, with a relative efficiency above 10 for both NSE and bias.  

DAR’s advantage in terms of both metrics decreases towards the west, though the 

relative efficiency is still well above unity in the West. 



 

 20 

Another valuable perspective is the comparison of the performance of 

each method at each site.  This can be quantified by observing the percentage of 

sites at which one method outperforms the other in terms of bias and NSE.  One 

would expect a stronger method to outperform another at more than 50% of sites.  

In the entire US, DAR yields a greater NSE than DAL at 77% of sites while 

resulting in a smaller bias at 83% of sites.  Across the meta-regions, these 

percentages exhibit a similar trend to that seen in the relative efficiencies.  In 

summary, DAR generally performs significantly better than DAL in all regions of 

the US, though especially in the East and less so in the Midwest and West. 

One major drawback of the DA techniques is that they do not explicitly 

account for monthly seasonality.  Some seasonality is transferred directly from the 

‘seasonal signal’ contained within the index gauge, but this varies by selection of 

the index gauge.  In order to begin to understand the seasonal impacts of the DA 

methods, it is useful to consider the monthly performance of each method rather 

than the annual performance summarized above. 

Figure 3.3 shows the ranges of NSE and bias for DAR and DAL in each 

month.  Both DAR and DAL exhibit an interesting trend in monthly NSEs: there 

is a slight decrease in NSE in the late summer and early fall months, which are 

generally the driest months.  Investigation of this decrease is left for further 

research.  On the whole, DAL performs poorly across almost all months, 

especially in terms of bias.  The bias of DAR is much more interesting.  There is a 

clear cyclical trend in the range.  In the summer months, the range of bias for 

DAR is quite small.  This range increases dramatically in the winter months.  This 
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variation in bias may be due to some hydroclimatic variation across months: 

differences in aridity indices or mean precipitation.  This will be discussed in 

more detail below. 

The monthly trend in the performance of DAR and DAL is repeated, to 

some degree, in each meta-region, as seen in Figures 3.4-3.6.  Between all the 

meta-regions, DAR performs best in the East.  The same cyclical trend of bias is 

seen in all three meta-regions.  Again, the slight drop in NSE does not seem to be 

connected to the percent bias.  Whereas the annual results suggested that annual 

bias was somehow linked to the hydroclimate of each meta-region, these results 

show that there exists a second trend in performance that is not tied to the meta-

region, but rather is linked to the monthly changes in climate. 

Considering the monthly relative efficiencies in the US and each meta-

region, the advantages of DAR over DAL are quite remarkable.  With a national 

average of 8.22, DAR has a relative efficiency well above unity for both NSE and 

bias in all months.  Comparing their at-site performance: DAR outperforms DAL 

at an average of 75% and 79% of all sites in the US for NSE and bias across all 

months.  This performance is the same in all meta-regions, except for a slight dip 

below 70% in the West.  Clearly, DAR is a significantly more attractive flow 

transfer method than DAL. 

While DAR appears to be an attractive method for standardizing flows by 

drainage area, there remains a concern that DAR does not account for differences 

in hydroclimatology.  The meta-regional ranges of bias and efficiency of DAR 

shows that the performance degrades westward.  This could be due to physical 
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differences between the meta-regions.  In an effort to understand this issue, it was 

hypothesized that the overall bias of DAR at a given site may be related to 

hydroclimatic characteristics of the index site and the ungauged site.  A number of 

possible regressors were considered, including the ratio of drainage areas, mean, 

standard deviation and coefficient of variation of flows and the ratio of aridity 

indices.  The correlation among these variables and the bias associated with the 

DAR method was measured with the non-parametric Kendall’s Tau rank 

correlation.  Kendall’s Tau is employed because it is nonparametric and only 

measures monotonic correlation without assuming an explicit functional 

relationship. 

Of all the regressors considered, only the ratio of aridity indices between 

the ungauged site and the index site yielded a significant (α = 0.05), albeit weak, 

Kendall’s Tau with a magnitude greater than 0.2.  With a Kendall’s Tau of 0.45, 

Figure 3.7 shows the relationship between bias and the ratio of aridity indices.   

The relationship in Figure 3.7 is weak, but the percent bias does seem to approach 

zero as the ratio of aridity indices approaches unity.  Breaking these aridity ratios 

apart by meta-region, one finds the range of the ratios expands westward.  While, 

in all regions the ratio of aridity indices has a mean of one, the standard deviation 

of these ratios goes from 0.06 in the East, to 0.14 in the Midwest and 0.25 in the 

West.  Clearly, the ratio of aridity indices is much more variable in the West than 

elsewhere.  The sites in the West are therefore much more heterogeneous in terms 

of hydroclimatology.  This pattern agrees with the pattern of bias seen earlier in 

Figure 3.2.  Of further interest is that the ratio of drainage areas showed little 
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correlation with either the Nash-Sutcliffe or bias of DAR.  It can be concluded, 

then, that the difference in drainage areas between the index and gauged site does 

not play a key role in determining the performance of the DAR method, though 

the difference in aridity ratio between the two sites, does play a slight role, with 

performance weakening as hydroclimatology becomes more variable between the 

two sites. 

Though much more research is needed, two conclusions can be drawn 

from this cursory examination of bias and hydroclimatology.  First, DAR, with 

the selection of the nearest gauge as the index gauge, is not a particularly robust 

method in regions with highly variable climates.  In addition, hydroclimatic 

variables may be useful in the selection of more appropriate index gauges, 

perhaps making the DAR a viable method in all regions.  This is a result that is 

analogous to results presented below for other flow transfer techniques. 

These results agree with the results of Emerson et al. (2005) in Minnesota 

and with those of Asquith et al. (2006) in Texas.  Emerson et al. (2005) found a 

distinct seasonal bias in the ratio of the drainage areas in Minnesota.  Both studies 

found that a regional parameterization of the generalized drainage area ratio could 

yield more promising results (Asquith et al. 2006).  Regressing streamflow 

against a combination of area, precipitation and other climate ratios, Emersion et 

al. (2005) showed that the ratio of drainage areas was indeed the most significant 

explanatory variable considered.  Though both of the above cited studies showed 

that regionalization and regression of streamflow and drainage area could produce 

coefficients of determination near 0.97 (Emerson et al. 2005), neither explored 
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how this coefficient related to the practical application of the DAR method as is 

shown here.  Left unanswered by those studies is what the bias and accuracy of a 

given method would be despite the high coefficient of determination. 

In Texas, Asquith et al. (2006) generalized the form of the DA method.  

They argued that the common usage of the DA method assumes that the exponent 

of the ratio of the drainage areas is unity.  They demonstrated that a more 

generalized DA technique would allow this parameter to vary.  This, of course, 

introduces some calibration into the DA method.  As the purpose of this study is 

to compare hydrostatistical methods against the most traditional technique, this 

project considers only the simplified and most commonly used version of the 

drainage area ratio.  Considering these simplified methods, it is shown that the 

best method for standardizing by drainage area is to use a ratio of real-space flows 

to drainage area. 

 

STANDARDIZING FLOWS BY MEAN STREAMFLOWS 

Standardizing streamflows by drainage area using the DAR method is 

appealing because of both its reasonable accuracy and simple application.  There 

is no need to characterize streamflows (Step Two) at the ungaged site and thus no 

further uncertainty associated with such characterization is introduced.  A slightly 

more complex technique for standardizing flows is the use of a mean flow.  If this 

mean flow can be estimated with some certainty, it may be that standardizing by 

the mean streamflow will capture the variability of flows and transfer additional 

hydrologic information that is not transferred by the ratio of drainage areas.  
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Standardization by the mean streamflow, which is common in hydrology and in 

flood frequency analysis, is termed the index flood method. 

As with the DA methods, there are a number different variations for 

standardizing by mean (SM).  First, one could consider either using a single 

annual mean to standardize flows or one could standardize streamflows using 

twelve individual monthly means.  One of the most significant drawbacks of the 

drainage area ratio method is that there is no implicit correction for seasonality.  

That is, the relationship between the streamflow at the ungauged site and the 

streamflow at the index site is constant, regardless of the time of year.  It was this 

fact that resulted in the seasonal trend associated with the bias of the DAR 

method.  Standardization of streamflows using twelve monthly means may correct 

for this seasonality. 

Just as the DAR technique considered the ratio of streamflow and drainage 

area in real space, the real-space SM methods (SMR) considers the ratio of 

streamflow and mean streamflow in real space.  Mathematically, 

ொ೉
ఓೂ೉

ൌ ொೊ
ఓೂೊ

          (3.6) 

for the ungauged site, Y, and the index gauge, X, where Q is the monthly flow at 

the subscripted site and µ is the mean of the subscript.  If the means are known, 

then the flow at the ungauged site can be estimated as 

ܳ௒ ൌ
ொ೉ఓೂೊ
ఓೂ೉

          (3.7) 

which is analogous to the estimation used in DAR, where now the ratio is of the 

mean streamflows instead of the drainage areas of the two sites.  When only a 

single, annual value of µ is used at each site, this SM technique will be called 
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annual, real-space standardization by mean (SM1R).  When standardization by 12 

monthly means is considered, the µ used for each site would change depending on 

which month is being estimated.  This method is termed the monthly, real-space 

standardization by mean (SM12R). 

The second consideration is whether to transfer flows in real or 

logarithmic space.  Many studies have shown that monthly flows in the US are 

approximately lognormal.  The logarithmic forms of SM (SML) consider the ratio 

of the logarithms of the monthly flows and their logarithmic means.  This is 

written as 

୪୬ ሺொ೉ሻ

ఓౢ౤ ሺೂ೉ሻ
ൌ ୪୬ ሺொೊሻ

ఓౢ౤ ሺೂೊሻ
          (3.8) 

with the same definitions from above.  Taking the logarithm of a monthly flow of 

zero can be avoided by solving the above equation as 

ܳ௒ ൌ ܳ௑

ఓౢ౤ ሺೂೊሻ ఓౢ౤ ሺೂ೉ሻ
൘

         (3.9) 

which enables one to estimate the flow at the ungauged site Y.  Again, if a single 

annual mean is used, then this method can be called the annual, log-space 

standardization by mean (SM1L).  If one uses twelve monthly means to correct 

for seasonality, this method will be called the monthly, log-space standardization 

by mean (SM12L). 

This method requires some record characterization at the ungauged site 

because, in practice, there is no way to know the mean streamflows at the 

ungauged site without such an augmentation procedure.  However, this analysis 

focuses primarily on flow transfer techniques (Step Three) with little attention 
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given to record characterization (Step Two) at this point.  Accordingly, 

maximum-likelihood estimators of mean and standard deviation of the monthly 

flows at the ungauged sites are used for the required moments, minimizing error 

introduced by the characterization procedure. Thus it is assumed for the moment, 

that the first moment of the monthly streamflows are known at the ungauged sites; 

this assumption is relaxed later on.  In the logarithmic case, the theory of the two-

parameter lognormal distribution is used to calculate the logarithmic moments 

from the moments in real space.  Again, the nearest gauge is used as the index 

gauge.  In this manner, minimal error is introduced through record 

characterization, thus the analysis focuses solely on the performance of the flow 

transfer techniques. 

The range of overall Nash-Sutcliffe Efficiency (NSE) and bias (B) 

associated with the SMR and SML methods is presented for the entire US in 

Figure 3.8.  The difference between the SMR and SML methods is quite 

dramatic: The SMR methods are much better behaved than the lognormal analogs.  

The NSEs of the SMR techniques are well above zero for almost all sites, while a 

large fraction of the sites exhibit an NSE less than zero for the SML methods.  

There is very little bias introduced in the SMR method, while the bias from SML 

is quite large, larger than the bias seen in DAR.  From this figure it is fair to 

conclude that the SML methods perform poorly and may be dropped from further 

consideration.  Accordingly, this analysis will continue by examining only the 

SMR techniques.  It may be that SML is in need of bias correction, but this will 

be considered later. 
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The SM12R method appears slightly more competitive than SM1R in 

terms of NSE, but the methods appear quite similar in terms of bias.  Both are 

much less biased than DAR.  The overall performance of each method can be 

considered by meta-region in Figure 3.9.  Here there is no westward trend like 

that seen in the DA methods, but it is clear than the SMR techniques are more 

accurate in the East and West.  Further research should explore the reason for 

poorer performance of SMR in the Midwest.  Again, the NSEs for SM12R appear 

to be slightly higher than those associated with SM1R.  The overall bias is nearly 

identical, regardless of method.  It is promising that the bias associated with SMR 

is less than half of the bias associated with DAR.  With DAR, bias was +/-50%, 

while here the bias is only +/- 10%.  This seems to indicate that, in terms of bias, 

there is little distinction between the two SMR methods considered here. 

The relative efficiency of SM1R to SM12R in terms of bias and NSE 

enables one to evaluate the relative performance of these methods, with a value 

greater than one indicating that SM12R is the more accurate technique, on 

average.  With a relative efficiency of 1.68 nationally, SM12R was the more 

efficient technique in terms of NSE.  Across all meta-regions, the relative 

efficiency did not drop below 1.5 for NSE.  The added value of SM12R over 

SM1R is greatest in the West, with a relative efficiency of 2.23.  This could be 

due to the extreme variations in hydroclimatology associated with Western basins, 

in which case the SM12R method corrects for more seasonality in 

hydroclimatology.  In terms of bias, nationally the relative efficiency was 1.00.  

Strictly speaking, SM1R is relatively less biased in all but the West, but all values 



 

 29 

of relative bias were extremely close to unity.  Accordingly, it may be worthwhile 

to use SM12R because of its added value to NSE and to disregard the marginal 

impact on bias. 

The conclusions are identical when comparing the methods site by site.  

Overall, SM12R exhibits a higher NSE than SM1R at 79% of sites in the US.  The 

percentage decreases slightly in the Midwest and increases in the West.  Again, 

this could be due to the seasonality of the West, but this must be examined 

further.  In terms of bias, SM12R outperforms SM1R at only 55% of sites.  This 

means that the bias is similar across techniques.  Overall, SM12R is therefore the 

preferred SMR technique. 

One of the main drawbacks of the DA technique was that there was no 

implicit correction for seasonality.  Because of this, the monthly bias of the DA 

methods displayed a strong seasonal trend.  The monthly performance of both 

SMR methods can be seen in Figure 3.10.  Only by looking at the monthly 

performance does the added value of the SM12R methods become apparent, in 

that it reduces the impact of seasonality on performance.  Both SMR techniques 

exhibit the same drop of efficiency in the late summer and early fall that was seen 

in the DA methods, but the efficiency remains high for all months.  The analysis 

of bias is much more interesting: SM1R, while the magnitude of bias is much 

smaller than DAR, still exhibits dramatic seasonality in the range of bias.  The 

SM12R method, by using twelve means correct for this trend in bias.  While the 

monthly bias of SM1R goes beyond +/- 50% at times, the monthly bias for 

SM12R rarely exceeds +/- 25%. 
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The conclusions are generally the same as above when compared by meta-

region, as shown in Figures 3.11-3.13.  What is interesting is the seasonal 

decrease in the NSE associated with SM1R and SM12R for each meta-region.  In 

the East and Midwest the decrease occurs in August and September, which is 

traditionally the driest time of the year.  In the West, this decrease occurs earlier 

in the summer, around July.  This may indicate that the decline in monthly 

efficiency is due in some part to the hydroclimatic seasonality. 

The monthly relative efficiencies of SM12R compared to SM1R give 

strong insight into their relative performance.  In all months, SM12R is relatively 

more efficient than SM1R, averaging a relative efficiency of 1.56 for NSE.  

Again, the added value was greatest in the West, where the relative efficiency was 

over 2.00 on average.  The added value of SM12R is especially remarkable for 

bias, with a national relative efficiency over 8.00 on average.  Correcting for 

seasonality vastly improves the overall performance of SMR, a fact that was not 

readily apparent when considering the overall bias of each method.  Because the 

aim is to create an accurate time series of monthly flows, this seasonal bias 

becomes extremely important. 

When considering at-site performance, SM12R continues to outperform 

SM1R.  In terms of NSE, SM12R outperforms SM1R at about 64% of sites in the 

US for each month.  In the West, this percentage increases to about 72% for each 

month, which highlights the effect of seasonality in the West.  In terms of bias, 

the comparison is even more definitive.  In the US, SM12R is less biased than 

SM1R at about 76% of sites in each month; 82% in the West.  This analysis 
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shows that of the SM techniques, SM12R is more attractive than SM1R when the 

monthly means are known a priori. 

As would be expected from the low level of overall bias, there was little 

correlation between bias and annual hydroclimatology.  The same regressors used 

for the DA methods were considered here, namely the ratios of aridity, drainage 

area and streamflow statistics.  Of all the significant correlations (α = 0.05), none 

had a Kendall’s Tau greater than 0.1.  When considering correlation with overall 

NSE, the overall NSE of SM12R exhibited a small but significant correlation (τ = 

-0.31) with the distance between the site and index gauge.  This relationship, seen 

in Figure 3.14, is fairly weak, but it seems to suggest that as the distance grows 

the NSE becomes more variable.  This may offer an attractive approach for 

selecting an index gauge for SM12R or other methods, similar to what Asquith et 

al. (2006) found for the drainage area ratio. 

It is clear from this initial exploration that standardizing flows by mean 

flows could be a reliable method of flow prediction if those means are known a 

priori.  While standardizing by logarithmic means showed little promise, 

normalizing flows in real-space showed high values of NSE with minimal bias.  

In conclusion, of all the SM techniques, SM12R proved the most promising, 

though the distinction was small.  Still, SM1R may be useful in real-world 

applications because less record characterization is needed: estimating one mean 

is easier than estimating twelve.  This issue is considered in Chapter Five. 
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MAINTENANCE OF VARIANCE EXTENSION STANDARDIZATION 

So far the flow transfer techniques discussed have attempted to 

standardize streamflows with a single parameter, namely the drainage area or the 

mean.  Another commonly used method for transfer of streamflows is the 

Maintenance of Variance Extension (MOVE) method introduced by Hirsch 

(1979).  MOVE standardizes streamflows with two parameters: mean and 

standard deviation of flows. 

In 1979, Hirsch introduced a streamflow reconstruction technique he 

called a regional statistics method for estimating streamflow records at ungauged 

and shortly-gauged sites in Virginia.  For this method, Hirsch hypothesized that 

for each month, the standardized flows at a site of interest and an index site are 

approximately equal.  Here he uses a traditional standardization approach: 

ொ೉ିఓ೉
ఙ೉

ൌ ொೊିఓೊ
ఙೊ

          (3.10) 

where µ and σ are the mean and standard deviation of the flows at the subscripted 

site.  Note that this standardization produces a new standardized variable with 

mean zero and variance one, regardless of the probability distribution of the 

original flows.  This formulation allows for the estimation of monthly 

streamflows at the ungauged site, Y, as 

ܳ௒ ൌ ௒ߤ ൅ ௒ߪ
ொ೉ିఓ೉
ఙ೉

          (3.11) 

which is an algebraic manipulation of equation (3.10).  In testing this approach at 

two sites in Virginia, Hirsch concluded that this method was “distinctly superior 

to the drainage area ratio method” (1979). 
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Though Hirsch developed this method as a flow reconstruction technique 

for ungauged sites, it is rarely used as such.  Soon after it was introduced, Hirsch 

applied it a streamflow record extension technique (Hirsch 1982), in which the 

method is used to extend a short record, using information from a nearby longer 

streamflow record.  As such, there was no discussion of reconstruction at 

ungauged sites in the 1982 paper.  As in Hirsch (1979), Hirsch (1982) found that 

MOVE is a more attractive method than other techniques.  It is this second 

publication – where the technique is dubbed Maintenance of Variance Extension 

(MOVE) – that is cited in the literature most often.  It is perhaps an accident of 

publication order that MOVE has been so extensively used as a record extension 

technique and so rarely as a record reconstruction technique. 

In order to truly understand the power of the MOVE standardization as a 

record reconstruction technique it is important to consider four variants of the 

method analogous to those considered for the SM methods.  Firstly, MOVE can 

be considered in real space, as is shown in (3.11).  When this technique is applied 

with a single, annual mean and standard deviation, it will be called annual, real-

space MOVE (MOVE1R).  Additionally, it can be applied as Hirsch (1979) 

applied it: with twelve monthly means and standard deviations, a method that will 

be called the monthly, real-space MOVE (MOVE12R) here. 

In contrast to the real-space approach, the logarithmic approaches may 

prove more accurate because of the lognormal behavior of monthly streamflows.  

For this case one must work with the means and standard deviations of flows in 

log-space, which can be estimated from real-space statistics with the theory of the 
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two-parameter lognormal distribution.  The normalization of flows then becomes 

୪୬ ሺொ೉ሻିఓౢ౤ ሺೂ೉ሻ

ఙౢ౤ ሺೂ೉ሻ
ൌ

୪୬ ሺொೊሻିఓౢ౤ ሺೂೊሻ

ఙౢ౤ ሺೂೊሻ
        (3.12) 

with the same definitions as the equations above.  This can be solved to predict 

the ungauged flows at site Y as 

ܳ௒ ൌ ܳ௑

ఙౢ౤ ሺೂೊሻ ఙౢ౤ ሺೂ೉ሻ
൘

· exp ሺߤ୪୬ ሺொೊሻ െ ୪୬ ሺொ೉ሻߤ
ఙౢ౤ ሺೂೊሻ

ఙౢ౤ ሺೂ೉ሻ
ሻ     (3.13) 

which avoids the need to take a logarithm of any zero flows.  As before, this 

approach can be used with a single mean and standard deviation in an annual, log-

space MOVE (MOVE1L) approach or with twelve means and standard deviations 

in a monthly, log-space MOVE (MOVE12L). 

The reader will recall that this examination is only concerned with the 

third step of the ungauged-site problem: flow transfer techniques.   Again, the 

nearest site is used as an index gauge (Step One).  In practice this method would 

certainly require some record characterization (Step Two), but, as was done for 

SM, the at-site maximum likelihood estimators of the moments will be used to 

characterize the record.  In this way, the MOVE variants can be compared with 

each other and later compared against the other classes of flow transfer techniques 

considered earlier. 

As Hirsch found (1979), MOVE performs very well.  One will notice that 

the ranges of overall NSE and bias for the MOVE variants in Figure 3.15 are 

quite different than those same ranges for DA and SM.  Qualitatively, the monthly 

methods exhibit a better-behaved range of NSE than the annual methods.  The 

difference between real- and log-space is much less apparent; the methods appear 
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almost identical.  In terms of bias, all of the methods exhibit a percent bias of +/-

9% and there is little distinction between the methods.  None of the methods have 

a skewed percent bias, but the logarithmic techniques appear to have a slightly 

higher distribution of bias. 

The meta-regional range of NSEs in Figure 3.16 tells a similar story to the 

national NSE.  There is little distinction between real and logarithmic techniques, 

but the monthly techniques perform slightly better than the annual techniques.  

Looking meta-regionally enables one to evaluate the behavior of MOVE across 

hydroclimates: as with SM, there is a slight drop in performance in the Midwest.  

Furthermore, MOVE seems to perform best in the West.  In terms of bias, the 

pattern is the same in Figure 3.17 for MOVE.  The range of bias is slightly 

elongated in the Midwest.  The use of streamflow parameters, like mean and 

standard deviation in SM and MOVE, appears to favor the more heterogeneous 

hydroclimate of the West.  Where regions are very homogeneous, like in the East, 

all methods perform similarly. 

The relative efficiencies of all the MOVE methods in terms of NSE are 

presented in Table 3.1.  The entire US and each meta-region are represented by a 

single pane of the table.  In the table, a value greater than one indicates that the 

method on the vertical axis is more efficient than the one on the horizontal axis.  

If a row in a pane has three values greater than one, then the method indicated by 

that row on the vertical axis is relatively more efficient than all other methods.  

Table 3.2 is the same table for relative efficiency in terms of bias. 
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These relative efficiencies show that, for the entire US and all meta-

regions, MOVE12L dominates all other methods in terms of NSE.  These 

numbers confirm the conclusions of the boxplots, namely that the monthly 

techniques are far superior to the annual techniques, but there is little added-value 

between the logarithmic and real-space variants.  If there is any added-value, the 

logarithmic techniques hold a slight advantage over the real-space techniques, 

though the relative efficiency is close to unity.  Comparing the annual techniques, 

the relative efficiency is around 1.02, while for the monthly it is only 1.04.  When 

comparing monthly to annual, this relative efficiency increases to about 1.85 and 

the results are similar in all meta-regions.  The added-value of MOVE12L is most 

dramatic in the West, where the relative efficiencies are all greater than one. 

The comparison in terms of bias is much more nuanced.  Here, the most 

efficient method in terms of bias is the MOVE12R technique, but the advantage 

over MOVE12L is very slight.  This may be the result of a need for a bias 

correction in the logarithmic transformation.  The advantage of MOVE12R over 

MOVE12L is most apparent in the Midwest, which is to be expected, given the 

relatively wide bias distribution seen in the boxplots.  Still, all of the relative 

efficiencies are very near unity.  This seems to suggest that all methods are viable.  

It may be that the parsimony of the annual methods outweighs the added-value of 

the monthly techniques. This issue will be addressed in Chapter Five. 

Another way to think about the at-site comparisons is presented in Table 

3.3, which shows the percentage of sites where each method out performs all 

others.  NSE and bias are included with the US and all meta-regions.  If all 
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methods are equal, this percentage should be about 25% for all methods.  That is 

clearly not the case for NSE.  MOVE12L shows a much higher percentage 

performance.  In terms of NSE, MOVE12L outperforms all others at 59% of sites 

in the US.  Not surprisingly, MOVE12R has the second highest percentage.  For 

bias, the picture is somewhat different.  The annual methods come out ahead 

slightly more often, but the percentages are all relatively close to 25%.  This 

indicates that all MOVE methods are approximately equally competitive in terms 

of bias. 

The monthly NSEs of each MOVE variant are shown in Figure 3.18.  All 

of the variants show the characteristic decline in NSE that was seen in late 

summer and early autumn.  Overall, the monthly methods show a higher range of 

NSE and less of a decline in late summer.  The range of bias is shown in Figure 

3.19.  Not surprisingly, the annual methods of MOVE exhibit a high degree of 

seasonality in the bias.  Bias increases in the winter months and decreases in the 

summer months.  This trend, while still present, is much smaller and less dramatic 

in the monthly techniques.  The bias of the monthly methods remains within +/- 

25%, which may make the trend in this small degree of bias irrelevant. 

The trends of monthly NSEs in each meta-region, which can be seen in 

Figures 3.20-3.22, are very similar to those seen with the SM methods.  The 

monthly methods outperform the annual methods.  The best performance is in the 

West, while the Midwest has the worst.  What is most interesting, though, is the 

timing of the decrease in NSE.  In the Midwest and East this decline occurs in 

August and September.  In the West, the drop occurs earlier in the summer, 
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mainly in July.  Why this happens could be linked to the seasonality or monthly 

hydroclimate of the region.  It may be that this decrease coincides with the driest 

time of the year and the beginning or end of the water year.  Further research may 

discover a reason for this deficiency. 

The trend in monthly bias, as seen in Figures 3.23-3.25, is similar across 

all meta-regions.  The range of monthly bias is widest in the annual techniques of 

the Midwest and West, while the seasonal trend is surprisingly dramatic in the 

East.  In all cases, the bias of the monthly techniques shows very little seasonality.  

Again, it may be useful to examine the changes in monthly climate that may 

affect this behavior. 

The monthly relative efficiencies of these methods document the added-

value of MOVE12L.  In order not to inundate the reader with tables and figures, 

these monthly results have been condensed into Table 3.4.  This shows, for each 

statistic and meta-region, the average monthly relative efficiency of the other 

methods compared to MOVE12L.  A value greater than one indicates the 

MOVE12L is more efficient.  This table also includes the number of months 

where the indicated method has a relative efficiency less than one, or the number 

of months where MOVE12L is not relatively more efficient.  The average 

monthly relative efficiency is greater than one for all regions and methods in 

terms of NSE.  The relative efficiency drops to 1.05 in comparison with 

MOVE12R, which indicates the MOVE12R is nearly as efficient as MOVE12L.  

MOVE12L is more efficient in all months in the East, though 12R become more 

competitive as one moves westward; MOVE12R is more competitive than 
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MOVE12L half of the year in the West.  For bias, the comparison is more 

muddled: MOVE12L is significantly better than the annual techniques, but 

MOVE12R holds a distinct advantage over MOVE12L in ten months of the year.  

Still, the distinction is small as the relative efficiency is very close to unity. 

The percentage of sites at which each method outperforms all others in 

terms of NSE and bias in all meta-regions can be seen in Table 3.5.  These values 

are an average of the monthly percentages.  For NSE, MOVE12L outperforms all 

other methods at 39% of sites in the US.  This percentage is similar in all meta-

regions.  In all months, in all meta-regions, MVOE12L had a fraction greater than 

all others.  For bias, though, MOVE12L is less competitive.  Not surprisingly, the 

monthly techniques outperform the annual techniques in terms of monthly bias.  

The distinction between MOVE12R and MOVE12L is less fine.  By the numbers, 

MOVE12R is the least biased method most often.  Here, MOVE12L is not nearly 

as promising; MOVE12R categorically outperforms all other methods in all 

months.  This is misleading simply because the difference between the two is so 

small; consider again the boxplots. 

All of these comparisons involving the MOVE methods arrive at a single 

conclusion: monthly, log-space MOVE (MOVE12L) is, overall, the most 

attractive technique for transferring monthly streamflow information from an 

index gauge to an ungauged site.  If one is more concerned with the bias of an 

estimated series, then it might be useful to consider MOVE12R, though all 

monthly MOVE techniques are similarly biased overall.  The annual methods are 
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plagued by seasonality in the monthly bias, but this seasonality is corrected in 

monthly methods. 

Further research on MOVE should focus on the causes of bias.  Using a 

bias correction may improve the accuracy of monthly estimates.  As an initial 

study, the bias and efficiency of these methods was regressed with a number of 

hydroclimatic variables.  The distance, ratios of aridity, mean, standard deviation 

and coefficient of variation of streamflow, and analogous ratios in logarithmic 

space were considered as predictors of overall bias and efficiency.  Of all the 

significant (α = 0. 05) Kendall’s Tau, few exceeded 0.10.   

 

TRANSFERRING INFORMATION WITH FLOW DURATION CURVES 

A fourth class of flow transfer techniques involves the use of flow 

duration curves (FDC) or streamflow distributions to transfer relative flow timing.  

This technique was first developed by Fennessey (1994), who dubbed it QPPQ.  It 

was first published in the serial literature by Hughes and Smakhtin (1996).   It has 

since been used by a number of others in a number of different applications: See 

Archfield and Vogel (2010), Archfield et al. (2010) and Mohamoud (2008) 

among many others.  This method has the advantage of standardizing flows 

relative to an entire distribution rather than using only one or two parameters, as 

the previous three classes of methods did. 

The QPPQ method assumes that the relative level of a flow occurs in the 

same month between two hydrologically-similar watersheds.  That is, if, in month 

m, the index gauge experiences a flow that is exceeded 10% of the time, then, in 

that same month, the site of interest will experience a flow of a similar 
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exceedence probability.  Because the flow record is known at the index site, one 

can easily characterize the distribution of flows and sequence of exceedence 

probabilities.  At the site of interest, one must estimate the probability 

distribution.  Once this is done, for every month one recognizes the flow (Q) at an 

index site, determines the exceedence probability (P) at that site, transfers that 

probability to the distribution at the site of interest (P) and then calculates the 

estimated flow (Q) associated with that exceedence. 

The performance of this flow transfer method is highly contingent on the 

selection of an index gauge.  Of course, in this experiment, since Step One is held 

constant: the nearest gauge will be used as the index gauge.  Furthermore, this 

method requires that the flow duration curve (FDC) be estimated at the site of 

interest.  This process would fall under Step Two, record characterization, or 

estimation of an FDC at an ungauged site.  In an effort to introduce little error 

from Step Two, the “blinded” or Jack-knifed streamflow record from the 

ungauged site and the flow record from the index site are both used to create 

empirical FDCs for each site. Thus the following analyses assume that an 

empirical FDC is available at both the index and the ungauged site.  This 

assumption allows for the evaluation of the QPPQ transfer method, alone and 

apart from the ability to estimate an FDC at an ungauged site. 

The overall performance of QPPQ in the United States is summarized in 

Figure 3.26, and is quite good.  The Nash-Sutcliffe efficiencies are quite high, 

with more than 50% above 0.8 and 755 above 0.7.  Similarly, the percent bias is 

well behaved, being both symmetric around zero and narrowly banded between 
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+/- 8%.  The meta-regional performance is highlighted in Figure 3.27.  The 

pattern is similar to SM and MOVE: there is a distinct drop in NSE and expansion 

of bias in the Midwest.  Still, the method continues to perform well, with high 

NSE and well-behaved bias. 

The monthly performance of QPPQ in the US is shown in Figure 3.28.  

Again, there is a distinct seasonal trend in NSE and bias.  The NSE displays a 

characteristic drop off in August and September, while the bias takes on a wider 

range in winter months.  Considering these performances by meta-region, as in 

Figures 3.29-3.31, shows the same pattern that was seen with SM and MOVE.  

The seasonality of bias is strong in all regions.  The late-summer decline in NSE 

is greatest in the Midwest, while the West exhibits a characteristically earlier drop 

in NSE. 

It is difficult to judge the performance of QPPQ here because no variants 

are considered for comparison.  For now it is sufficient to observe that QPPQ 

method performs reasonably well.  Later, this method will be considered against 

the other classes and judged accordingly. 

 

A COMPARISON OF TRADITIONAL FLOW TRANSFER TECHNIQUES 

Having explored four different classes of flow transfer techniques, it is 

important to ask which method performs the best.  The above analysis found the 

best method from each class included the drainage area ratio in real-space (DAR), 

the monthly, real-space standardization by mean (SM12R), the monthly, 

lognormal MOVE (MOVE12L) and QPPQ.  Considering these four methods 

together will show that one of them is generally preferred over the others. 
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The reader will recall that this is merely a comparison of flow transfer 

techniques.  As such, this comparison is an idealized experiment that does not 

require streamflow characterization procedures (Step Two).  In practice, the 

record characterization process will introduce additional uncertainty that could 

change the relative performance of these methods.  This issue is addressed later in 

Chapter Five. 

The overall performance of the four methods in the United States is 

summarized in Figure 3.32.  This analysis assumes that one can characterize the 

streamflow record with a high degree of certainty in which case the SM, MOVE 

and QPPQ all behave more favorably than DAR in terms of NSE and bias.  

Compared to the other three methods, DAR yields a much lower range of NSE 

and a range of bias that is almost five times as large.  The meta-regional 

comparison of NSE and bias can be seen in Figures 3.33 and 3.34.  In all of the 

methods that require record characterization (SM, MOVE and QPPQ), 

performance degrades in the Midwest.  For DAR, it is the West that performs 

most poorly.  While all of the methods show high levels of NSE and well-behaved 

bias, it is interesting that the performance DAR is significantly below that of the 

others.  This is especially concerning, as DA methods are considered the most 

common flow transfer methods (Archfield and Vogel 2010). 

The previous figures provide some evidence that DAR is not the best flow 

transfer technique, but little can be said of the distinction between the other three.  

Table 3.6 summarizes the relative efficiency of NSE for the entire US and each 

meta-region.  (Recall that, within a pane, a row that contains three values greater 
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than one demonstrates that the method indicated by that row out performs all 

others.)  In all regions, it is the MOVE technique that provides some added-value 

over the other three methods.  On average, MOVE has a relative efficiency over 

2.00.  The advantage of MOVE is particularly strong in the West.  The distinction 

is much less fine in the consideration of bias, shown in Table 3.7.  Here, MOVE 

continues to hold a slight edge, but the comparison with SM and QPPQ is much 

closer.  For SM and MOVE, the distinction is almost irrelevant because the 

relative efficiency is so close to unity. 

When the methods are compared site-by-site, MOVE remains the best 

performer in terms of NSE, but SM appears most competitive in terms of bias.  

The percentage of sites where each method outperforms all others is presented in 

Table 3.8.  The MOVE method has the highest NSE at 59% of sites across the 

US.  The distinction between MOVE and the other methods is particularly strong 

in the West, where MOVE had the highest NSE at 68% of sites.  For bias, SM out 

performs MOVE, but the advantage is much smaller.  In the entire US, SM is less 

biased than all other methods at 38% of sites, while MOVE is the least-biased 

method at 31% of sites.  This narrow performance of bias can be understood by 

returning to the boxplots above.  One can see a clear distinction between SM, 

MOVE and QPPQ when it comes to NSE, but for bias the difference between the 

boxplots is much harder to see.  So, while the MOVE technique is the best 

method for overall NSE, any method other than DAR exhibits very low bias. 

As was mentioned above, it is important to consider the monthly 

performance of these methods in addition to the overall performance.  The 
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monthly performance of the four methods can be seen in Figures 3.35 and 3.36.  

Not surprisingly, the first figure, considering NSE, highlights the relative poor 

performance of DAR, but all methods show the late-summer drop-off in NSE.  

For bias, all of the methods have some degrees of cyclical seasonality, where the 

variability of bias increases in the winter months.  This seasonality is most 

dramatic for DAR and QPPQ, which do not explicitly correct for monthly 

variability.  Relatively, it appears that MOVE and SM exhibit the least monthly 

bias.  The meta-regional range of NSE for each method can be seen in Figures 

3.37-3.39.  It is extremely interesting that, for all methods, the decline in NSE is 

shifted earlier in the year for the West.  Regardless, it appears that the MOVE 

method is the strongest competitor in all meta-regions.  For bias, in Figures 3.40-

3.42, it is clear the DAR and QPPQ are not the best techniques. 

As the MOVE technique appears to be the most advantageous, Table 3.9 

summarizes the mean relative efficiency of NSE and bias across all months.  A 

value greater than one indicates the MOVE maintains some advantage over the 

other method.  Additionally, this table provides the number of months where 

MOVE is not the top performer.  In terms of NSE, MOVE outperforms all other 

methods in every month.  For bias, MOVE and SM are about on par.  The relative 

efficiency between MOVE and SM approaches unity in all regions, and SM is 

actually the better performer in half of the months. 

The average fraction of sites where each method is the least biased in a 

month is displayed in Table 3.10.  Again, MOVE holds a clear advantage in 

terms of NSE, but SM is the least-biased method.  For the entire US, SM 
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outperforms MOVE in all months.  This is strong evidence of for the use of 

MOVE, unless one is extremely concerned about precise bias.  Still, it should be 

noted that the difference between the bias of SM and MOVE is quite marginal. 

When all is said and done, the most important comparison is an 

observation of how well each method outperforms the most common technique, 

the drainage area ratio.  Nationally, MOVE, which led all methods, had a greater 

NSE than DAR at 86% of sites and was less biased at 88% of sites.  Figure 3.43 

shows the fraction of sites where each method outperforms DAR by meta-region.  

When consider by meta-region, MOVE continued to outperform all other 

methods.  On average, MOVE had a greater monthly efficiency than DAR at 78% 

of sites, being less biased at 83%.  This trend was replicated across each meta-

region, though SM proved competitive in terms of bias, as in Figure 3.44. 

Of all the traditional techniques considered here, the best overall flow 

transfer technique is the monthly, lognormal variation of MOVE.  Of course, this 

is only true if minimal uncertainty is introduced through record characterization.  

That is to say, this analysis has only examined the third part of this problem of 

estimating monthly time series at ungauged sites.  In the next chapter, some 

consideration will be given to the methodology behind record characterization 

(Step Two) and then record characterization will be used to simulate a real-world 

application of the flow transfer techniques. 
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IV. REGIONAL REGRESSION AND RECORD CHARACTERIZATION 

In the previous analysis of flow transfer techniques, there was little 

consideration given to the characterization of streamflow records, or estimation of 

streamflow moments at the ungauged sites.  In an effort to reduce the introduction 

of uncertainty, at-site maximum likelihood estimators of the required streamflow 

moments were used to characterize the streamflow records.  This allowed for an 

equitable comparison of the various techniques.  In practice, however, it is not 

possible to use maximum-likelihood estimators at an ungauged site.  In this 

chapter, the issue of record characterization at the ungauged site is considered. 

Regional regression has often been used to estimate streamflow 

parameters for use in flow transfer techniques (Archfield et al. 2010; Hirsch 1979 

and Vogel et al. 1999).  In general these studies have focused on the prediction of 

annual streamflow moments analogous to those required in the 1R and 1L 

approaches discussed above.  Hirsch (1979) uses regional regressions that depend 

on a wide range of explanatory variables, some of which are not readily available 

in many regions across the globe.  In an effort to develop a method that may be 

applicable beyond the US, this effort extends the works of Vogel et al. (1999), 

hypothesizing that regressions able to predict monthly streamflow moments, can 

be developed from easily-accessible climate variables. 

Vogel et al. (1999) showed that the real-space mean and variance of 

streamflow could be estimated regionally based on drainage area combined with 

simple climate variables using multivariate regression.  Their regression equations 

were remarkably precise with R2 values usually well above 90% for most regions 
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of the US for estimation of both the mean and variance at ungauged sites.  This 

same approach can be extended to estimate monthly streamflow moments, 

whether they are real-space or lognormal moments. 

In the prediction of monthly streamflow moments there are at least two 

avenues to consider: predicting each monthly moment independently or predicting 

all means with a single equation.  The first approach develops a single, recursive 

equation for each month and initializes them with a thirteenth non-recursive 

equation.  The second recursive approach requires a single, equation to predict 

each moment.  This single, recursive relationship can then be initialized with the 

same non-recursive equation used above. 

The number of regression equations required for each will distinguish 

these two techniques.  The independent monthly regression approach uses thirteen 

equations, while the other uses only two.  In addition, each of these methods can 

be applied to estimate moments in real-space or moments in log-space; thus 

overall, there are four methods.  The ability of these methods to accurately predict 

streamflow moments will be summarized below.  Finally, a brief summary of the 

performance of the regressions from Vogel et al. (1999) will be shown.  Selecting 

the best techniques for record augmentation will allow for a true real-world 

coupling of streamflow record augmentation and flow transfer techniques which 

follows in Chapter Five.  Of course, the best technique is largely dependent on the 

flow transfer technique used: SM1R only requires equations from Vogel et al. 

(1999), while MOVE12L requires a set of 12 new regressions for estimation of 

each of the monthly mean and variances at the ungauged sites. 
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A general methodology will be used for comparing regression estimators, 

as was discussed earlier.  This assessment depends largely on leave-one-out or 

jack-knife experiments.  To summarize, a site of interest is selected and regional 

regressions are developed without any data from that site.  The regressions are 

then used to predict the streamflow parameters at that site.  The accuracy of those 

predictions is then assessed in terms of Nash-Sutcliffe efficiency (NSE) and bias.  

This process is then repeated for every site being considered. 

 

THE DEVELOPMENT OF REGIONAL REGRESSIONS WITH TWO EQUATIONS 

 The parsimony of the two-equation approach (Reg2) is attractive.  All else 

being equal, one would much prefer a solution of two-equations rather than 

thirteen.  For this reason, the two-equation approach will be developed first for 

real-space means.  The same techniques can be used for estimating real-space 

variances by changing the left-hand side of the equations. 

The main thought for this approach is simply that for each two-digit HUC 

region, r, there exists a function, f, such that the monthly mean flow, ߤொ೘,ೝ,೔
, for 

month m and site i can be related to watershed characteristics via  

ொ೘,ೝ,೔ߤ
ൌ ݂ሺܣ௜, ௉೘,ೝ,೔ߤ

, ௉ா்೘,ೝ,೔ߤ
, ೘,ೝ,೔்ߤ

, ௉೘,ೝ,೔ߪ
ଶ , ௉ா்೘,ೝ,೔ߪ

ଶ , ೘,ೝ,೔்ߪ
ଶ , ௠,௥,௜ܫܣ

ିଵ ሻ  (4.1) 

where ߤ௑೘,ೝ,೔
 and ߪ௑೘,ೝ,೔

ଶ are the mean value and variance of X, respectively, in 

month m, region r and at site i, and ܣ௜ is the drainage area associated with site i; P 

is precipitation, PET is potential evapotranspiration, T is temperature and AI is the 

aridity ratio.  The aridity ratio is defined as the ratio of average precipitation to the 

average potential evapotranspiration.  Some the variables included here may not 
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lead to significant improvements to the model and in such instances they will be 

excluded through the diagnostic model-building process outlined below. 

While the equation (4.2) may be plausible, not all hydrologic information 

can be transferred by climatic variables alone.  Here, it is argued that the inclusion 

of a flow lag of one month would carry over the majority of basin characteristics 

that cannot be captured by climate variables alone.  This causes (4.1) to become a 

recursive equation, R, such that 

ொ೘,ೝ,೔ߤ
ൌ ܴሺߤொ೘షభ,ೝ,೔

, ,௜ܣ ௉೘,ೝ,೔ߤ
, ௉ா்೘,ೝ,೔ߤ

, ೘,ೝ,೔்ߤ
, ௉೘,ೝ,೔ߪ

ଶ , ௉ா்೘,ೝ,೔ߪ
ଶ , ೘,ೝ,೔்ߪ

ଶ , ௠,௥,௜ܫܣ
ିଵ ሻ  

          (4.2) 

where all variables and notations are similar to (4.1).  It is possible to compute all 

monthly means with R alone, but the task becomes one of solving a system of 

recursive linear equations that may or may not be convergent.  However, to start 

the recursion in (4.2) one can consider an initializing equation, כܫ, such that 

ொೝ,೔ߤ ൌ ,௜ܣሺכܫ ௉ೝ,೔ߤ , ௉ா்ೝ,೔ߤ , ೝ,೔்ߤ , ௉ೝ,೔ߪ
ଶ , ௉ா்ೝ,೔ߪ

ଶ , ೝ,೔்ߪ
ଶ , ௠,௥,௜ܫܣ

ିଵ ሻ    (4.3) 

where כܫ is simply the best regression obtained for predicting the moment of 

streamflows across all months and ݉כ is the month with the best ‘at-site’ 

regression.  The equation כܫ is thus an initializing equation for R, allowing for the 

computation of all monthly means without the solving of a recursive equation. 

Analogous to the work of Vogel et al. (1999), the functional form of both 

R and כܫ is the multivariate “power law” model 

ொ೘,ೝ,೔ߤ̂
ൌ

݁ఉబߤொ೘షభ,ೝ,೔

ఉభ ௜ܣ
ఉమߤ௉೘,ೝ,೔

ఉయ ௉ா்೘,ೝ,೔ߤ

ఉర ೘,ೝ,೔்ߤ

ఉఱ ൫ߪ௉೘,ೝ,೔
ଶ ൯

ఉల൫ߪ௉ா்೘,ೝ,೔
ଶ ൯

ఉళ൫்ߪ೘,ೝ,೔
ଶ ൯

ఉఴ݁ఉవ஺ூ೘,ೝ,೔
షభ

 

          (4.4) 
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where the values of β are the coefficients fit for each region.  Similarly, כܫ can be 

written as 

ೝ,೔,כொ೘ߤ̂
ൌ

݁ఈబܣ௜
ఈభߤ௉೘כ,ೝ,೔

ఈమ ೝ,೔,כ௉ா்೘ߤ

ఈయ ೝ,೔,כ೘்ߤ

ఈర ሺߪ௉೘כ,ೝ,೔
ଶ ሻఈఱሺߪ௉ா்೘כ,ೝ,೔

ଶ ሻఈలሺ்ߪ೘כ,ೝ,೔
ଶ ሻఈళ݁ఈఴ஺ூ೘,ೝ,೔

షభ
  

          (4.5) 

where the values of α are the coefficients for the regression of month ݉כ, the 

identification of which will be explained in detail below.  When predicting a real-

space moment with a power-law model, it is necessary to correct for the bias 

introduced by the logarithmic transformation.  This bias is corrected by 

multiplying the (4.4) and (4.5) by the bias correction factor, BCF, 

ܨܥܤ ൌ ݁
഑೛
మ

మ          (4.6) 

where ߪ௣ଶ is the variance of the prediction errors associated with the regression 

developed.  The variance of prediction errors is the quotient of the prediction sum 

of squares and the degrees of freedom of the regression. 

Equations (4.4) and (4.5) present the functional relationship of monthly 

mean flows being considered here.  It remains only to illuminate how the 

coefficients of each function are selected.  In principle, simple linear regression 

techniques can be used to estimate the parameters of these functions with a 

logarithmic transformation.  In order to ensure that only significant variables are 

considered, the data will undergo a series of screenings before the parameters are 

appropriately estimated.  Here, this regression technique will be referred to as tri-

step regression. 
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As its name implies, tri-step regression uses a three-step regression 

diagnostic technique: two filters to remove insignificant coefficients or variables 

and one to estimate the values of the significant coefficients.  For all steps, a 5% 

significance level is used to evaluate the significance of estimated coefficients.  

First, all possible explanatory variables are considered using traditional stepwise 

regression.  This process identifies the insignificant variables, which are removed 

from the analysis at this stage.  Multivariate linear regression is then applied to 

the remaining variables and the most insignificant coefficient, is removed.  This 

step is repeated until all coefficients are significant.  Finally, with the final set of 

variables, weighted least-squares regression is used to estimate the values of each 

coefficient.  Each dependent observation is a sample moment, each with different 

record length, thus the length of the record used to estimate its moment weights 

the residuals associated with each ungauged site. 

Tri-step regression ensures that only significant variables are considered 

for estimating the monthly moments in a region.  The residuals of the final 

regression from this process are assessed for normality and homoscedasticity.  

With a calibrated recursive and initializing equation, R and כܫ respectively, for 

each region it is possible to estimate the streamflow moments in each month at an 

ungagged site from a number of elementary climate statistics.  The same 

methodology that was developed above for the estimation of streamflow means 

can be used to develop regressions for estimating monthly variances. 

For predicting the moments of the logarithms of streamflow at an 

ungauged site, the methodology is the same but the functional form of the 
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equations is slightly different.  For real-space statistics, the functional forms of 

(4.2) and (4.3) were power-law models.  With lognormal moments, the functional 

forms of (4.2) and (4.3) become linear summations of the logarithms of the 

independent variables, except for the aridity index, which remains in real-space.  

Despite this change in functional form, the coefficients of the equations can be 

estimated in the same fashion.  In this manner, the monthly lognormal streamflow 

moments can be reasonably estimated from elementary climate variables. 

It would prove extremely elegant if all the monthly moments could be 

estimated with only two equations per moment.  But before this fact is tested, it is 

important to develop the alternative method: that in which each month is 

regressed individually, resulting in thirteen equations.  Only once both approaches 

have been developed will one be able to determine the best approach for 

predicting streamflow moments.  

 

THE DEVELOPMENT OF REGIONAL REGRESSIONS WITH THIRTEEN 

EQUATIONS 

The second approach for regional regression of streamflow moments 

requires a few more regression equations per variable than Reg2.  Here, a 

recursive regression equation is developed for each month and then the 

initializing equation, which will prove identical to that used in Reg2, will be used 

to estimate the moment in the first month.  This results in thirteen equations; for 

the sake of clarity, this approach will be called Reg13.  While less parsimonious 

than Reg2, it may be that a single recursive equation cannot capture the true 

seasonality of streamflow moments and thus Reg13 may prove more accurate.  In 
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such a case, Reg13 would capture this seasonality explicitly, analogous to the 

distinction between annual and monthly flow transfer techniques, i.e. SM1R and 

SM12R. 

The development of a suite of thirteen equations to be used to estimate 

real-space means of streamflow is presented below.  As with Reg2, the process 

can be replicated for either mean or variance by changing that left-hand side of 

the equations.  For lognormal moments, the functional form of the equations will 

also be slightly altered, but the parameterization of the functions is the same.  The 

regression equations for real-space moments follow a power-law, as with 

equations (4.4) and (4.5); for lognormal moments the regressions take the form of 

a linear summation of the logarithms of the independent variables, except for the 

aridity indices, which remain in real-space.  It is also important to recognize that, 

when predicting real-space moments, each of thirteen equations has its own bias 

correction factor identical to the form presented in (4.6). 

Several explanatory climate variables were considered in each regression: 

the mean and variances of monthly precipitation, temperature and potential 

evapotranspiration and the monthly aridity ratio.  This means that for each month, 

m, in a region, r, there exists a unique equation 

ொ೘,ೝ,೔ߤ
ൌ ܴ௠ሺߤொ೘షభ,ೝ,೔

, ,௜ܣ ௉೘,ೝ,೔ߤ
, ௉ா்೘,ೝ,೔ߤ

, ೘,ೝ,೔்ߤ
, ௉೘,ೝ,೔ߪ

ଶ , ௉ா்೘,ೝ,೔ߪ
ଶ , ೘,ೝ,೔்ߪ

ଶ , ௠,௥,௜ܫܣ
ିଵ ሻ  

          (4.7) 

for the mean at a given site, i, where A is the drainage area, P, PET, and T are 

precipitation, potential evapotranspiration and temperature and AI is the aridity 

ratio.  The distinction between (4.7) and (4.2) is the index of (4.7).  Equation (4.7) 
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is exclusive to a given month, meaning that there are 12 versions of (4.7) per 

moment, while there is only one version of (4.2). 

Use of (4.7) assumes that an estimate of the mean streamflow is available 

from the previous month, which will not be true for the initial month, whichever 

month that may be.  A system of 12 recursive equations could be solved 

simultaneously, but this assumes that the solution is convergent, which may not 

be the case.  Instead, the initializing month and equation, as was introduced 

earlier, can be used to provide the moment of the first month.  Because the 

process is the same, the initializing equation for Reg13 will be identical to that 

developed for Reg2.  Using this equation to accurately estimate the mean for the 

initial month, ݉כ, makes it possible to use the recursive equation (4.7) to estimate 

the means of all the subsequent months, including a re-estimate of the initialized 

month.  To allow for the greatest level of accuracy, the process of estimating the 

means with recursive equations was conducted iteratively by repeatedly using the 

12 recursive equations until the final estimates were less than 0.01% different 

than the previous estimates. 

The coefficients of these thirteen equations can be fitted using the exact 

same technique that was used for Reg2: tri-step regression. Recall, tri-step 

regression ensures that only significant variables are considered for estimating the 

monthly means in a region.  The residuals of the resulting regressions are assessed 

for normality and homoscedasticity, and if those assumptions are not violated, the 

resulting model can be advocated for use. 
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RELATIVE PERFORMANCE OF REGIONAL REGRESSION METHODS 

The performance of each of the regional regression techniques presented 

above can be evaluated with a set of leave-one-out experiments.  As was 

explained earlier, a leave-one-out experiment blinds a single site, develops the 

regressions from data that does not include the blinded site and then uses those 

regressions to estimate the moments at the blinded site.  These estimated moments 

can then be compared against the maximum-likelihood moments calculated from 

the blinded flow record.  This process can be replicated for each individual site. 

From above, there are four methods to consider: Reg2 for predicting real-

space moments, Reg2 for predicting log-space moments, Reg13 for predicting 

real-space moments and Reg13 for predicting log-space moments.  Respectively, 

these can be abbreviated as Reg2R, Reg2L, Reg13R and Reg13L.  The overall 

performance, including NSE and bias, of these methods for predicting means and 

variances is presented in Figure 4.1.  From this presentation, it is clear that 

Reg13R provides the best overall estimates of mean, though Reg13L is less 

biased.  For both estimating the mean and variance, the Reg13 methods perform 

better than the Reg2 methods.  The choice between Reg2 and Reg13 can be solely 

based on the performance, but the choice between real-space and log-space 

techniques is dictated by the flow transfer technique. 

When using a 12R flow transfer technique like SM12R or MOVE12R, 

then the choice of which regression reduces to Reg2R versus Reg13R.  In all 

cases, the relative efficiency of Reg13R over Reg2R was well over one, indicating 

that Reg13R is a preferred to Reg2R for estimation of the real-space moments.  
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Reg13R predicted means more accurately than Reg2R at 86% of sites and was 

less biased at 60% of sites.  In terms of bias, Reg13R yielded a higher NSE at 

82% of sites and was less biased at 65% of sites in the US.  As could be surmised 

from the boxplots, Reg13R is the more attractive real-space regression technique. 

When using a 12L flow transfer technique, one cannot use a real-space 

regression technique.  Instead, one must distinguish between Reg2L and Reg13L.  

In terms of predicting log-space means, Reg13L had a relative efficiency of 3.1 

for NSE and 1.4 in terms of bias.  For variances the relative efficiencies are 1.4 

and 1.5, respectively.  This shows that Reg13L has a slight advantage over 

Reg2L.  At 83% of sites, Reg13L predicted the mean more accurately than 

Reg2L.  Reg13L was less biased at 59% of sites.  For variance, Reg13L 

outperformed at 74% and 61% of sites respectively.  Again, this is strong 

evidence that the Reg13 techniques are favored over the Reg2 techniques.  It 

should be noted, though, that the ability of either method to predict variances is 

quite weak. 

As will be discussed later, the error introduced by a monthly regression 

technique may outweigh the performance of the given flow transfer technique.  In 

such a case, a 1R flow transfer technique may outperform a 12R flow transfer 

technique.  If only a single, annual mean and variance is required, then the 

regressions of Vogel et al. (1999) can be used to predict real-space moments and, 

with the theory of a two-parameter lognormal distribution, the moments of the 

logarithms are easily estimated.  Vogel et al. (1999) provides the full development 

of these regressions.  Across the entire US, the Vogel et al. (1999) regressions 
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predicted annual means with an NSE of 0.9752 and a bias of 11%.  With an NSE 

of 0.6254 and a bias of 71%, the results are less accurate for variance.  Still, these 

regressions may prove useful in the next chapter.
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V. ESTIMATING STREAMFLOW IN UNGAUGED WATERSHEDS 

When one wishes to estimate time-series of monthly streamflows at 

ungauged sites in the real world, one must consider very carefully each of the 

three steps outlined above: (1) The selection of an index gauge, (2) the 

characterization of the streamflow record at the ungauged site and (3) flow 

transfer method.  Previous chapters have considered idealized experiments that 

were designed to shed light on Steps Two and Three individually.  Having 

documented the performance of several flow transfer techniques and explored 

possible methods for record characterization, it is appropriate to ask how these 

methods would truly perform at an ungauged site. 

The following experiments will be conducted so as to reflect real-world 

applications.  For each site, the three steps will be executed as if there is no 

information on the streamflow at the ungauged location.  The nearest gauge will 

continue to be used as the index gauge.  Record characterization will be executed 

with use of leave-one-out applications of monthly regression with thirteen 

equations (Reg13) or with the regressions for the mean and variance of 

streamflows from Vogel et al. (1999), as applicable.  Finally, the moments 

estimated in Step Two will be used with the different streamflow transfer 

methods.  The length of the estimated time series was the length of the 

overlapping records between the index gauge and the site of interest.  The 

accuracy of these estimates will then be estimated with Nash-Sutcliffe efficiencies 

(NSE) and overall bias (B).  All methods are compared with traditional drainage 

area approaches. 
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STANDARDIZING BY MEAN STREAMFLOW WITH REGIONAL REGRESSION 

Standardizing by mean streamflows was considered to be an attractive 

flow transfer technique because it required minimal record augmentation at the 

ungauged site and accounted some measure of seasonality.  It was previously 

shown that the real-space, monthly standardization (SM12R) held a slight 

advantage over the annual equivalent (SM1R).  Here, because the uncertainty of 

record characterization has been introduced, it is appropriate to reconsider both 

methods.  It may be that the added uncertainty characterizing the records with 

regional regression degrades the performance of SM12R. 

The national, overall performance of the SM methods with regional 

regression can be seen in Figure 5.1.  In general, the distributions of Nash-

Sutcliffe efficiencies are quite similar.  SM1R appears to exhibit slightly more 

upward bias, meaning the estimates are, on average, slightly less than the 

observed values.  As would be expected, the NSE associated with these estimates 

is less than the NSEs associated with the idealized application of SM in previous 

chapters.  Similarly, the bias here is dramatically more apparent here than with the 

idealized experiments. 

When the overall performance is broken up by meta-region, as in Figure 

5.2, the degradation of performance and bias becomes immediately apparent.  As 

with the idealized experiment, the NSE is lowest in the Midwest, though the 

Midwest and West are quite similar here.  Not surprisingly, both methods perform 

well in the East.  The bias, on the other hand, tells a different story.  In both 

methods, the bias increases westward.  In the idealized example, bias was always 
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symmetric about zero and ranged from +/- 10%.  When the uncertainty of record 

characterization is introduced, the bias increases to a range of +/- 80%.  

Furthermore, the bias is no longer symmetric about zero.  Relatively, the 

breakdown by meta-region confirms that SM1R is outperforming SM12R in terms 

of NSE, though the bias is concerning. 

Overall and in all meta-regions, the relative efficiency of SM1R was 

greater than one in terms of NSE and bias.  For NSE, the relative efficiency was 

greatest in the East (1.45) and smallest in the Midwest (1.23).  Considering bias, 

the relative efficiency decreased westward from 1.78 in the East to 1.10 in the 

West.  Overall, SM1R had greater Nash-Sutcliffe efficiency than SM12R at 64% 

percent of sites in the US.  It was less biased at 54% of sites.  Interestingly, SM1R 

showed a greater NSE than SM12R at only 52% of sites in the West, compared to 

only 67% and 68% in the East and Midwest.  This shows that SM1R shows only a 

marginal advantage over SM12R in the West.  The comparison is less striking for 

bias: While both methods showed an inflated bias westward, the percentage of 

sites where SM1R was less biased remained at 55% in the East and Midwest.  In 

the West, SM1R only outperformed at 48% of sites. 

The monthly performance of these two methods, as seen in Figure 5.3, 

shows that both methods are plagued by seasonal variation in NSE and the range 

of bias.  As can be seen in Figures 5.4-5.6, this inaccuracy is minimal in the East 

and increases westward.  The seasonal trend was evident in the idealized 

consideration of both methods.  Interestingly, only SM1R showed a pronounced 

seasonal trend in the range of bias; here, SM12R also shows some seasonal 
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variation.  The seasonal variation arises from the error introduced by the record 

characterization method.  Interestingly, this uncertainty leads the range of bias in 

SM12R to exceed that seen in SM1R.  This would lead one to advocate for the 

use of SM1R, though one must also consider the median bias as well.  For SM1R 

the bias is slightly positive in all months in the Midwest and West; on the other 

hand, SM12R shows a bias that is symmetric about zero. 

When compared site-by-site, SM1R emerges as the most competitive 

method.  Across all the months the relative efficiency of SM1R over SM12R 

averaged about 1.53 for NSE.  From East to West this advantage increased from 

1.43 to 1.49 and 1.91.  The relative efficiency only dropped below unity in June 

nationally (0.9997) and in the Midwest (0.9868).  By month, SM1R showed a 

higher NSE than SM12R at more than 50% of the sites for all months, averaging 

59% nationally.  In the East this percentage dipped to 58% and increased elsewise 

to 61% in the Midwest and 57% in the West.  This reflects the increased 

advantage of SM1R in the Midwest and West. 

Site-by-site, monthly bias showed a similar trend to NSE.  The national, 

average monthly efficiency of SM1R over SM12R in terms of bias was 1.37.  The 

advantage was greatest in the East (1.62) and decreased westward to 1.44 and 

1.22.  This relative efficiency dropped below unity in June (0.92) nationally, once 

in the Midwest (June, 0.994), and twice in the West (May, 0.956; June, 0.795).  

Excepting June in the West, these values are all nearly unity, meaning that 

SM12R rarely provides an advantage over SM1R.  As with NSE, SM1R was less 

biased than SM12R at more than 50% of sites in all months, nationally averaging 
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57% of sites.  This average percentage fluctuated, but was generally constant 

across the three meta-regions.  The West was the only region where the 

percentage dipped below 50% in any months.  In May, June, July and September 

in the West this percentage dropped to an average of 49.5%.  These results show 

that, in terms of bias, both methods perform nearly equally, though SM1R holds a 

slight advantage. 

When records are characterized with regional regression, this analysis has 

shown that real-space annual standardizing by mean is a better flow transfer 

technique than the monthly parallel.  In fact, SM1R had a greater NSE than DAR 

at 48% of sites, while SM12R outperformed DAR at only 36% of sites nationally.  

There is some positive bias introduced monthly, but the bias remained generally 

smaller for SM1R compared to SM12R.  Both methods showed a clear relative 

deficiency in summer months.  The idealized results showed that this was a result 

of the flow transfer technique itself and not the coupling with regional regression.  

In future work it may be necessary to better understand the seasonal trend in NSE 

that spanned all flow transfer techniques. 

 

MAINTENANCE OF VARIANCE EXTENSION WITH REGIONAL REGRESSION 

Previously it was shown that using Hirsch’s (1979) maintenance of 

variance extension (MOVE) as a standardization and flow transfer technique was 

the most competitive idealized technique.  The difference between real-space and 

log-space MOVE methods was minimal, as was the difference between annual 

and monthly MOVE methods.  In the idealized examples, this comparison was 

conducted with maximum likelihood moment estimators.  Here, the record 
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characterization will be conducted in a real-world, practical sense with regional 

regression, as was done with SM above.  It is important to recognize that because 

MOVE uses two parameters for standardization, uncertainty is introduced through 

both the regression of means and the regression of variances.  Because of the 

uncertainty of regional regression, all MOVE methods will be considered anew.  

Those four methods are annual and monthly real-space methods (1R and 12R) and 

annual and monthly lognormal methods (1L and 12L). 

The overall Nash-Sutcliffe efficiencies of the four variants are presented in 

Figure 5.7 for the US and each meta-region.  From the first pane, it is clear that 

the monthly methods exhibit a higher trend in NSE.  Between the monthly 

methods, MOVE12R may have a greater magnitude, though MOVE12L has a 

slightly smaller range.  In both the East and West, MOVE12R maintains a slight 

advantage over MOVE12L, but in the advantages of MOVE12L are greatest in 

the Midwest.  There may be some regional difference associated with the 

Midwest that favors MOVE12L.  In all cases, these results are far inferior to those 

seen in the idealized experiments of Chapter Three, where the lower extremity of 

NSE was 0.5. 

The overall bias of each variant is presented in Figure 5.8.  For the entire 

US, the annual methods show a slight positive bias, while the bias of monthly 

method is nearly symmetrical about zero.  In general, MOVE12R exhibits the best 

behavior in terms of bias.  This result, though, varies across the meta-regions.  In 

the East, all the variants perform well, with a small range of bias that is 

symmetrical about zero.  In the Midwest, MOVE12R continues to yield well-
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behaved bias, while all other variants show a slight positive bias.  All variants are 

positively biased in the West.  As with NSE, these results reflect the uncertainty 

of regional regression, being strikingly different than the results of the idealized 

experiments.  In the idealized case, the bias ranged to +/- 8%, which is a nearly an 

order of magnitude lower than the +/- 70% seen here. 

Similar to Table 3.1, Table 5.1 reports the relative efficiencies of NSE for 

the four MOVE methods with regional regression.  Recall that, within a panel, a 

row with three values greater than zero indicates that the method on that row is 

superior to all others.  In terms of NSE, MOVE12L holds a significant advantage 

over all other methods.  Nationally, the relative advantage averages to 1.65.  The 

advantage is greatest in the East (2.09) and West (1.75), while it dips to 1.33 in 

the Midwest. 

The relative efficiencies of bias are presented in Table 5.2.  For bias, it is 

actually MOVE1R that provides the greatest advantage.  Nationally, the 

advantage of MOVE1R over all others averages 1.21 compared to MOVE12L’s 

advantage of 0.84.  MOVE12R is more competitive than MOVE12L, averaging 

0.97 nationally.  In general, the annual methods are relatively more efficient, in 

terms of bias, than the monthly methods.  Head-to-head, MOVE1R has a 1.19 

advantage over MOVE12R and a 1.32 advantage over MOVE12L.  MOVE1R 

provides the greatest advantage in the East and decreases westward.  These results 

show that MOVE1R is actually significantly less biased than other methods, on 

the average. 
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When considered site-by-site the advantage of MOVE12R in terms of 

NSE becomes quite apparent.  The percentage of sites where each method 

outperforms the others is presented in Table 5.3.  If all methods were performing 

equally, one would expect the percentage to be 25%.  Across the US, MOVE12R 

exhibited a greater NSE than all other methods at a 48% of sites.  In terms of bias, 

MOVE12R only outperformed at 31% of sites while MOVE1R outperformed at 

only 32% of sites.  While this is strong evidence for the equality of the two 

methods, it is useful to consider the methods compared against each other: 

MOVE1R was less biased than MOVE12R at 56% of sites, nationally.  When 

considering bias, the annual and monthly real-space methods perform similarly.  

MOVE12R, on the other hand, provides a significant advantage over MOVE12L 

in terms of overall bias. 

The monthly performance of each method highlights the varying affect of 

seasonality on each of the methods.  The NSEs are summarized in Figure 5.9.  

These NSEs are starkly inferior to those seen in the idealized experiments with 

MOVE.  The annual methods are characterized by lower NSEs and a steady 

decline in efficiency from January through to an increase from August onward.  

This trend is much different than the late-winter and late-summer deficiencies that 

characterized the idealized results and presents their selves more dramatically in 

these monthly results.  The range of NSEs is smaller for the annual methods, but 

the median efficiencies are greater for monthly methods. 

Considering monthly bias, as in Figure 5.10, shows the reason for the new 

trend in annual results.  While both the monthly and annual results show some 
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distinct seasonality of bias, the two are quite different.  As would be expected 

when using a single mean instead of twelve, the annual methods tend to 

overestimate flows in the fall and winter, while under estimating flows in the 

summer.  The monthly methods, on the other hand, show a varying range of bias, 

but the bias remains symmetrical about zero.  On average, there are no months 

where the monthly methods over- or under-estimate the streamflows.  For this 

reason, it appears the monthly methods are the best technique for accurately 

predicting streamflow time series. 

The same patterns observed nationally replicated themselves in varying 

degrees across the three meta-regions.  The NSEs are generally highest in the East 

and degrade westward, as can be seen in Figures 5.11-5.13.  As shown in Figures 

5.14-5.16, bias is most extreme in the West and Midwest.  Interestingly, in the 

Midwest, even MOVE12L starts to show some positive bias.  This may support 

the monthly, real-space technique over the lognormal one. 

From an analysis of the monthly NSE and bias, the choice for the best 

MOVE method is between the monthly methods.  From Tables 5.1 and 5.2, one 

may recall that MOVE12L showed a relative advantage of 1.11 for NSE and 0.90 

for bias against MOVE12R.  Monthly, MOVE12L showed an average advantage 

of 1.07 in terms of NSE.  Nationally, MOVE12L showed a relative efficiency less 

than one in only four months.  In the East the advantage was 1.10 and was less 

than one in only two months.  In the West, though, the relative efficiency dropped 

below one in eight months and averaged 0.98.  But, when the methods are 

compared on a site-by-site basis, MOVE12L shows a greater NSE at more than 
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50% of sites, nationally, for six months, averaging 50%.  Across all meta-regions 

the average remained above 50%, except in the West where is dipped to 47%.  

MOVE12L did not exceed 50% in three in half of the years in the East and 

Midwest.  These results show that MOVE12L is a strong flow-transfer method, 

though it may not be the strongest in the Midwest.  In future research, it may be 

useful to consider any hydroclimatic reasons for the varying performance of each 

method. 

The distinction between MOVE12R and MOVE12L is less clear in terms 

of bias.  The average monthly advantage of MOVE12L is 1.04 nationally and dips 

below one in five months of the year.  The advantage is relatively constant across 

meta-regions, dipping to 1.00 in the West.  Site-by-site, MOVE12L is less biased 

than MOVE12L at more than 50% of sites in only two months.  Nationally, 

MOVE12L outperforms MOVE12R at 48% of sites on average.  This percentage 

ranges from 50% in the East to 48% in the Midwest and 43% in the West.  

Though there is little competitive advantage, the site-by-site results show that 

MOVE12R remains the most competitive method for providing unbiased flow 

time series. 

After all the methods have been considered, it is actually the monthly, 

lognormal variant of MOVE that, when coupled with regional regression, 

provides the best MOVE flow-transfer technique.  In the idealized results, it was 

argued that MOVE12L was the best method as it significantly outperformed 

MOVE12R.  Here, though the uncertainty introduced by regional regression 

degraded the accuracy of MOVE12L, MOVE12L outperforms DAR at 36% of 
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sites while MOVE12R outperforms at only 33%.  By this metric, MOVE12L is 

the best regionally-characterized MOVE flow transfer technique. 

One may also wonder that the annual results faired so poorly, while they 

were quite successful when standardizing by mean.  Looking back at the results 

from the analysis of regional regression, the source of uncertainty comes from the 

estimates of variance.  Vogel et al. (1999) estimated means with a high degree of 

certainty, but the estimation of bias, despite the high regression statistics they 

reported, showed an NSE of 0.62 with a 71% bias.  Furthermore, the regional 

regression methods predicted variances with a much lower efficiency than means 

across the board, though the real-space regressions predicted variance more 

accurately than the lognormal regressions.  This uncertainty of variance is clearly 

propagated through the flow-transfer technique.  It is no surprise then, that the 

monthly, lognormal method was degraded to a point that the real-space method 

was nearly as competitive.  Further study into how to better predict variances of 

streamflow may improve the performance of other methods. 

 

COMPARING REAL-WORLD APPLICATIONS OF ESTIMATING 

STREAMFLOW IN UNGAUGED BASINS 

When regional regression is fused with flow transfer techniques the 

performance of those methods is considerably degraded.  Uncertainty from 

regional regressions is carried through the flow transfer techniques and results in a 

less accurate time series of estimated flows.  However, one may wonder if these 

estimation techniques, though inferior to the idealized results, outperform simpler 

traditional techniques.  In this section, the two best methods, SM1R and 
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MOVE12L will be compared against the drainage area ratio.  The results 

document that the additional uncertainty introduced by the regional regression 

techniques may not be worth the effort. 

The range of overall Nash-Sutcliffe Efficiency for the entire United States 

and each meta-region shows that these three methods are very similar.  As can be 

seen in Figure 5.17, SM1R and DAR perform almost identically, with MOVE12L 

falling just below those, when considering the entire US.  In the East, SM1R 

shows a slightly smaller range of NSE than DAR.  This is true across all meta-

regions, though the medians remain fairly similar.  From this single figure, it is 

hard to draw any definite conclusion.  SM1R seems to offer some advantage, 

though the advantage is slight. 

Considering the relative efficiencies of SM1R and MOVE12L to DAR, it 

is clear that there is some advantage to SM1R.  SM1R showed a relative 

efficiency of 1.35 for the entire US in terms of NSE.  This advantage was lowest 

in the Midwest (1.16) and greatest in the West (1.66).    On the other hand, 

MOVE12L showed little added-value with a relative efficiency of only 1.05.  This 

suggests that SM1R is the stronger of the two methods.  Although relative 

efficiencies are useful for understanding the general picture, one should focus 

more on the site-by-site comparison.  SM1R exhibited a greater NSE than DAR at 

48% of sites in the US, compared to only 36% for MOVE12L.  For SM1R this 

percentage reached a high of 51% in the East.  MOVE12L maximized at 43% in 

the West.  Clearly, SM1R holds a strong advantage over MOVE12L, but neither 

technique provides significant value beyond DAR. 
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When considering bias, as in Figure 5.18, the deficiencies of both 

regionally-characterized methods become immediately apparent.  In the US on the 

whole and in the Midwest and West, both methods show a slight positive bias.  

MOVE12L only shows a positive bias in the East.  However, the DAR method 

shows symmetrical bias across all meta-regions.  This is an important indicator 

that regional regression methods may not be a substantial improvement over the 

DAR method. 

Not surprisingly, neither SM1R nor MOVE12L shows a significant 

advantage in terms of the relative efficiency for bias.  For the entire US those 

efficiencies were 0.96 and 0.72, respectively.  Interestingly, both regional 

regression methods showed an advantage in the East, with relative efficiencies of 

1.91 and 1.03.  Again, these relative efficiencies only report an average 

advantage.  Site-by-site SM1R was less biased than DAR at 48% of sites, while 

MOVE12L was less biased at only 43% of sites in the US.  Outside of the East, 

these percentages drop to an average of 39% for each method.  Again, these 

results do not reflect a vast, systematic improvement over DAR.  In fact, neither 

method is able to outperform DAR. 

The meta-regional percentage of sites where each method outperforms 

DAR is shown in Figure 5.19.  From this figure, it is clear the SM1R holds an 

advantage over MOVE12L in relation to DAR, but neither method significantly 

improves on DAR.  In the East and West, SM1R achieves a better NSE than DAR 

at just barely 50% of sites nationally.  Considering overall performance metrics, 

neither regionally-characterized method is worth the added effort. 
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As for the monthly performance, the range of national, monthly NSE for 

each method is shown in Figure 5.20.  It is promising that SM1R is almost 

indistinguishable from DAR.  MOVE12L is clearly inferior to DAR in most 

months.  Across all months, SM1R showed an average relative efficiency of 1.29 

with no months having a relative efficiency below one.  Site-by-site, SM1R had a 

greater NSE at 49% of sites on average, a fraction that dropped below 50% in 

seven months.  MOVE12L had an average relative efficiency of only 0.79 with a 

greater NSE at only 41%. 

When one considers the bias of these methods in Figure 5.21, a 

concerning trend arises in the bias of the regionally parameterized methods.  In all 

months, both demonstrate a clearly positive median bias, a trend that increases 

westward.  DAR maintains symmetric bias, but there is a seasonal trend to the 

range.  Interestingly, SM1R maintained an average monthly relative efficiency of 

1.09 while MOVE12L demonstrated an average of 0.81.  In four months, the 

relative efficiency of SM1R dropped below unity.  Site-by-site, SM1R was less 

biased than DAR at 47% of sites in the US, while MOVE12L was less biased at 

only 44% of sites. 

Figure 5.22 shows the average monthly percentage of sites where each 

method outperforms DAR in each meta-region.  This presentation reaches the 

same conclusion as the overall results: namely that neither method results in a 

significant improvement over DAR.  The relative performance is worst in the 

Midwest, where both methods displayed a percentage of sites uniformly below 
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50% for all months.  MOVE12L was always under 50%, regardless of month or 

meta-region.  SM1R performed well in the East, but only marginally. 

When all analyses are taken into account, neither SM1R nor MOVE12R, 

coupled with regional regression, provides any sizeable advantage over DAR.  In 

both cases, one would estimate flows more accurately by using DAR rather than 

using regional regression with a more complicated flow-transfer technique.  It 

may be that another technique for record characterization could improve the 

performance of the regionally-characterized flow transfer methods.  For now it is 

sufficient to recognize that these methods provide no advantage over the simple 

and traditional DAR technique.  Compared to each other, it is SM1R that is more 

promising, but neither is more attractive than the parsimonious drainage area 

ratio. 
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VI. WEIGHTED FLOW TRANSFER TECHNIQUES 

The previous chapter showed that the combination of regional regression 

and traditional flow-transfer techniques did not provide a significant advantage 

over the drainage-area ratio (DAR) method.  The use of regional regression for 

flow characterization at the ungauged site combined with flow-transfer methods 

did not generally outperform DAR because of the uncertainty introduced by the 

regional regression methods.  Still, the methods using regional record 

characterization performed best at some sites, while DAR performed best at 

others.  Additionally, the idealized experiments showed that the performance of 

some flow transfer methods could be linked to hydroclimatic conditions in the 

region and at the site of interest.  Combining these two discoveries, it may be 

possible to predict which method will perform best at a given site based on the 

hydroclimatic conditions of that site. 

If one can estimate the relative performance of DAR and a method using 

regional characterization, it would be possible to develop a weighted estimate that 

combines the benefits of both methods.  Such a weighted estimator combines the 

relative stability of the drainage-area approach, which relies on no record 

characterization, with the added accuracy of regionally-characterized methods 

like standardizing by mean (SM) or the maintenance of variance extension 

(MOVE).  This can be achieved by considering the weighted average of the two 

competing techniques such that the estimated streamflow, Q, is  

෠ܳ ൌ ߱ ෠ܳௌெ ൅ ሺ1 െ ߱ሻ ෠ܳ஽஺ோ       (6.1) 

where the subscripts dictate the method used to estimate each flow and ω denotes 
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a weight between zero and one that is based on the relative performance of the 

two methods and the hydroclimatic conditions at the site of interest.  Equation 

(6.1) can be replicated for a weighted averaging of MOVE by replacing ෠ܳௌெ with 

෠ܳெை௏ா.  This technique can provide a favorable weighting of the two techniques 

that maximizes the advantages of each method while minimizing the 

disadvantages of each technique. 

This chapter will explore the development, application and performance of 

such a weighting technique.  First, the development of and estimation of the 

weight, ω, will be presented.  Then, this approach will be applied in both an 

idealized and real-world context to both the SM and MOVE methods of 

estimating flow.  Finally, it will be shown that a weighted averaging of SM and 

MOVE provides the best technique for estimating monthly time series at 

ungauged sites, among all the methods tested. 

 

DEVELOPING A WEIGHTED ESTIMATOR FOR STREAMFLOW ESTIMATION 

The weight, ω, presented in equation (6.1) is based on the relative 

efficiency of the two competing methods.  Thus the weight can only be known 

explicitly in an idealized experiment analogous to those presented in Chapter 

Three.  In a real-world application, it would be necessary to estimate that 

relationship.  Here, all notations will be presented as if combining DAR and SM; 

the process is the same with MOVE. 

The basis of the weight is the relative efficiency of DAR and SM methods.  

Earlier, the overall relative efficiency of the Nash-Sutcliffe efficiencies (NSEs) 

was used as a performance metric.  As can be seen in Chapter Two, this relied on 
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an average across all sites in the numerator and denominator.  As the concern is 

now only with a single site, the average is no longer relevant and the relative 

efficiency, r, is given as 

ݎ ൌ ሺேௌாವಲିଵሻమ

ሺேௌாೄಾିଵሻమ
         (6.2). 

The relative efficiency, r, in (6.2) will be greater than one if SM provides a 

greater NSE than DA.   

The relative efficiency r can be converted into a weight bounded by 0 and 

1 by considering the form of Langmuir equation.  This approach is similar to that 

used by McGarity (2008) to develop a different weighting scheme in optimizing 

for best-management practices.  With this formulation, the optimizing weight is 

߱ ൌ ௥

ଵା௥
          (6.3). 

Small values of ω indicate that DAR performed better than SM at the given site.  

Accordingly, the streamflow estimates in (6.1) would favor the estimated from 

DAR.  As the relative efficiency approaches unity, indicating that both methods 

perform similarly, this weight approaches 0.5, weighting both techniques equally. 

The commonly-used logistic link function can be applied to estimate the 

weight, w, as a function of the distance between the ungauged and index sites (d) 

and the drainage area, average annual aridity index, mean precipitation, potential 

evapotranspiration and temperature of the ungauged and index site.  This function 

ensures that the weight, w, can only vary between zero and one.  Here, the logistic 

link function is given by 

ݓ ൌ ଵ

ଵା௘షሺഁబశഁభ೉భశഁమ೉మశڮశഁ೙೉೙ሻ
       (6.4), 

where ଵܺ, ܺଶ, … , ܺ௡ are the prediction variables listed above.  This equation can 



 

 77 

be transformed into a linear regression through the transformation 

ln ቀ ௪

ଵି௪
ቁ ൌ ଴ߚ ൅ ଵߚ ଵܺ ൅ ଶܺଶߚ ൅ ൅ڮ  .௡ܺ௡      (6.5)ߚ

With some algebraic manipulation, it can be shown that  

݈݊ ቀ ௪

ଵି௪
ቁ ൌ ln ሺݎሻ         (6.6). 

Thus, tri-step regression (see Chapter Four) can be used with the calibration data 

to develop an equation for estimating the weights within a certain region.  Initial 

results showed that the most-promising functional form of (6.5) was a linear sum 

of logarithms rather than real-space predictors. 

In the next couple of sections, this weighted method is applied to the SM 

and MOVE techniques.  In each case, the results with a known weight from the 

leave-one-out application of the regionally-characterized methods will be 

contrasted with a leave-one-out estimated weight.  In the case that no definite 

equation can be calibrated to estimate a weight, an arithmetic mean will be used 

instead, weighting each estimate equally and setting the weight equal to 0.5.  

These weights can then be used in (6.1) to estimate flows at an ungauged site; this 

approach will be abbreviated as Weighted Averaging (WAve). 

 

A WEIGHTED COMBINATION OF DRAINAGE-AREA RATIOS AND 

STANDARDIZATION BY MEAN 

The first implementation of WAve couples the SM and DA methods.  

Recall that the real-space annual (SM1R) and monthly (SM12R) methods were 

the most competitive, though neither provided much advantage over the drainage 

area ratio in real space (DAR) when combined with regional regression.  The 
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better of the two techniques, SM1R, exhibited a greater overall Nash-Sutcliffe 

efficiency (NSE) at 48% of sites in the US, being less biased at only 48% of sites.  

Weighting the performance of either SM method in combination with DA should 

improve overall performance relative to the strict use of the DA method. 

Considering the estimates from DAR and SM with a known, idealized 

weight based on the calculated relative efficiency of the two methods will 

demonstrate that this method will indeed provide a significant added value over 

its component parts.  That is, rather than estimating the weight, one can calculate 

it directly as if it were known a priori.  The ranges of overall NSE and bias for 

DAR, SM1R, SM12R, WAve(SM1R) and WAve(SM12R) with idealized weights 

are presented in Figure 6.1. 

As can be seen by comparing the boxplots, the weighted estimate based on 

DAR and SM1R demonstrates significant advantages over both DAR and SM1R, 

alone.  For NSE, WAve(SM1R) demonstrated a relative efficiency to DAR of 

1.90 and 1.41 to SM1R, overall.  Site-by-site, WAve(SM1R) exhibited a greater 

NSE than DAR and SM1R at 63% and 67% if all sites in the US.  In terms of 

bias, the respective relative efficiencies were even more dramatic – 2.51 and 2.63 

– with WAve(SM1R) producing less overall bias at 63% and 69% of sites in the 

US.  In this idealized context, WAve is a much better flow transfer technique than 

the standalone version of SM1R. 

The story is similar for the weighted average of the real-space, monthly 

implementation of SM, WAve(SM12R).  Again, the boxplots show that 

WAve(SM12R) has greater NSEs and a smaller range of bias than both DAR and 
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SM12R.  In terms of NSE and bias, the relative efficiency of WAve(SM12R) was 

greater than 2.00 against DAR and SM12R.  WAve(SM12R) had a greater NSE 

than than DAR at 65% of sites in the US and was less-biased at 63%.  Against 

SM12R, WAve(SM12R) was less biased at 64% of sites and held a greater NSE 

at 81% of sites. 

These results demonstrate the advantage of WAve over DA.  If the 

optimal weights are known explicitly, the weighted-average approach intelligently 

favors the strongest competitor.  Therefore, WAve significantly outperforms the 

traditional drainage-area technique as well as a regionally-characterized flow 

transfer technique.  Below, the performance of WAve with a weight estimated 

from regional hydroclimatology is evaluated.  The WAve(SM1R) and 

WAve(SM12R) are then contrasted so as to select the most advantageous method. 

The overall performance of WAve(SM) with estimated weights is 

presented in Figure 6.2.  WAve(SM1R), with an estimated weight, had a greater 

overall NSE than DAR at 58% of sites in the US and was less biased at 59% of 

sites.  Versus SM1R, WAve(SM1R) performed better at 64% and 67% of sites in 

the US.  As is shown in Figure 6.3, these percentages are above 50% in all meta-

regions.  The fact that WAve(SM1R) has a greater relative advantage against 

DAR in the East and SM1R in the Midwest and West shows the effectiveness of 

the weighted technique.  Here WAve(SM1R) vastly improves over DAR in the 

East while significantly improving over SM1R in the other regions.  The relative 

efficiencies of WAve(SM1R) against DAR and SM1R were all greater than 1.10 
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for NSE and bias in all meta-regions except for one.  In the East, the relative 

efficiency against SM1R was only 0.98 for NSE. 

With an average monthly relative efficiency of 1.44, WAve(SM1R) has a 

greater NSE than DAR at 57% of sites in the United States.  In all months, the 

relative efficiency was greater than one and WAve(SM1R) outperformed at more 

than 50% of sites.  The same is true in terms of bias, where the relative efficiency 

was 1.43 and WAve(SM1R) was less biased at 55% of sites on average.  This is 

strong evidence that WAve(SM1R) is a significantly better flow-estimating 

technique.  Versus SM1R, WAve(SM1R) resulted in a greater NSE at 59% of 

sites on average with an average monthly relative efficiency of 1.13.  While the 

fraction of sites in the US where the weighted technique had a greater NSE than 

SM1R never dropped below 50%, the relative efficiency was below one in three 

months.  In terms of bias, WAve(SM1R) outperformed SM1R at 61% of sites on 

average, with an average monthly relative efficiency of 1.35.   

The average monthly percentage of sites where WAve(SM1R) 

outperforms DAR and SM1R can be seen by meta-region in Figure 6.4.  From 

this figure it is clear that WAve(SM1R) holds a slight advantage over both of its 

component parts in the three meta-regions.  Still, against DAR, this percentage 

dropped below 50% in one month in the Midwest for NSE and bias.  Against 

SM1R, the East was the most competitive meta-region: the percentage of sites fell 

below 50% in three months for NSE and four for bias.  Indeed, the relative 

efficiency of NSE against SM1R was less than one in five months in the East and 

the relative efficiency of bias was less than one in six months.  This is because 
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SM1R was relatively strong technique in the Eastern region.  Therefore, the added 

value is small in the East, though it is significant overall. 

WAve(SM12R) was also able to significantly outperform its component 

parts.  Overall this technique had a greater NSE than DAR at 58% of sites, with a 

relative efficiency of 1.58.  In terms of bias the percentage was 60%, with a 

relative efficiency of 1.40.  Against SM12R, WAve(SM12R) had a greater NSE at 

74% of sites and was less biased at 61% of sites.  The performance of 

WAve(SM12R) varied widely by meta-region, as can be seen in Figure 6.5.  In 

the left panel, the fraction of sites where WAve(SM12R) outperforms DAR is just 

over 51% in the Midwest.  This is because of coupling of SM12R’s poor 

performance and DAR’s relatively stable performance.  As a result, weight was 

able to vastly improve upon SM12R, but the gap between the two components 

was too large to significantly surpass DAR as well.  In the right panel, the relative 

performance against bias is fairly stable. 

On average, WAve(SM12R) had a greater monthly NSE than DAR and 

SM12R at 55% and 58% of sites nationally.  Nationally, this percentage was 

never less than 50% against DAR or SM12R.  In terms of bias, WAve(SM12R) 

was less biased at 64% and 63% of sites, a percentage that was again uniformly 

greater than 50%.  Figure 6.6 shows the average monthly site-by-site 

performance in the three meta-regions.  The pattern is similar to that seen overall.  

The relative performance of WAve(SM12R) and DAR is most degraded in the 

Midwest.  This indicates that WAve(SM12R) behaves very similar to  DAR in the 
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Midwest but still holds a slight advantage.  Taken as a whole, WAve(SM12R) 

does appear to succeed beyond its component parts. 

Both WAve methods presented above significantly outperform their 

component parts, but, looking at the right-hand side of each panel in Figure 6.2, 

both perform quite similarly overall.  In the idealized sense, WAve(SM12R) was 

the better, but, when weights are estimated, it is actually WAve(SM1R) that 

appears superior.  Overall, WAve(SM1R) had a greater NSE at 52% of sites and 

was less biased at the same percentage.  While these percentages favor 

WAve(SM1R), the relative efficiency is about 1.03 for NSE, indicating that both 

methods are about on par, while it is merely 0.82 for bias.  This shows that 

WAve(SM1R) while performing slightly better is somewhat plagued by bias. 

Considering monthly performance, the range for both WAve(SMR) 

methods is shown in Figure 6.7.  The first stark change from the SMR methods 

alone is the dampening of the positive bias seen in SM1R.  Here, the influence of 

DAR causes the monthly bias to be slightly more symmetrical about zero.  The 

seasonal variation of range in bias remains with WAve(SM1R) and is introduced 

by DAR into WAve(SM12R).  The trend in NSE is similar to the trend seen in the 

idealized implementation of flow transfer methods in Chapter Three.  Site-by-site, 

WAve(SM1R) had a greater monthly NSE at 51% of sites and was less biased at 

only 48% of sites on average.  The percentage was below 50% nationally in three 

months for NSE and ten for bias.  While this number is large, the percentage of 

outperformers indicates how similar the methods truly are. 
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These percentages were fairly consistent across all meta-regions, though 

Figure 6.8 shows the introduction of positive bias for WAve(SM1R) in the West.  

Still, WAve(SM12R) shows a season trend in the median bias, but is always less 

than the median of WAve(SM1R).  It seems that if one is concerned with bias 

over NSE, then one should be cautious in the application of WAve(SM1R).  The 

hazard of underestimating flows could easily be imagined by considering the 

development of flood-frequency maps with erroneous data. 

This analysis reinforces the similarity of the performance of both methods.  

Both Wave(SMR) weighted estimators are improvements over the individual 

estimators upon which they are based, but it is WAve(SM12R) that offers the 

strongest competitive advantage overall.  WAve(SM12R) avoids the systematic 

positive bias that appears with Wave(SM1R) in the West.  Still, both methods are 

on par with each other.  Site-by-site the advantage against each other is only 50-

50; thus both methods are comparable. 

 

A WEIGHTED COMBINATION OF DRAINAGE-AREA RATIOS AND 

MAINTENANCE OF VARIANCE EXTENSION 

The same technique that was used to develop a weighted estimator based 

on DAR and SMR can be used to merge the performance of DAR and monthly 

standardizations with the maintenance of variance extension.  Recall that the two 

most attractive regionally-characterized variants of MOVE were the real-space 

and log-space, monthly variants MOVE12R and MOVE12L.  On a site-by-site 

basis, MOVE12R outperformed MOVE12L, but, compared to DAR, MOVE12L 

had a greater NSE at 36% of sites, with MOVE12R was greater at only 33% of 
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sites.  In either case, regional-parameterization degraded the performance of 

MOVE such that DAR was the most competitive method.  Weighting each 

approach should intelligently select the better performing method; this can be 

judged in the same manner as the combination of DAR and SMR. 

The idealized performance of the WAve(MOVE) can be assessed by 

considering the combination of DAR and MOVE with the optimal weight 

calculated directly from the component Nash-Sutcliffe efficiencies (NSEs) as if 

they were known a priori.  The range of performance of the components and the 

weighted techniques are presented in Figure 6.9.  Clearly the weighted techniques 

provide an improved range of NSE, but the affect on bias is most remarkable.  

The range and magnitude of bias is greatly reduced in the weighted techniques. 

With an idealized weight, WAve(MOVE12R) had a greater overall NSE 

than DAR and MOVE12R at 66% and 85% of sites, respectively.  For bias, 

WAve(MOVE12R) outperformed at 63% and 68% of sites.  This is a marked 

improvement that clearly demonstrates the added-value of intelligently weighting 

the methods.  WAve(MOVE12L) had a greater overall NSE at 68% and 83% of 

sites and was generally less biased at 62% and 66%.  From these numbers and the 

boxplot, one can conclude that WAve(MOVE12L) is the better weighted 

technique if the weight is known explicitly.  In the real world, this relative 

performance will depend on largely on one’s ability to accurately estimate the 

weight. 

Figure 6.10 displays the overall performance of WAve(MOVE) when the 

weights are estimated from regional hydroclimatic data.  WAve(MOVE) 



 

 85 

continues to display an added advantage over the components, but the advantage 

is not as striking as that seen in the idealized case.  This is to be expected due to 

the uncertainty introduced by estimating the optimizing weight.  Below, 

WAve(MOVE12R) will be rigorously compared with its component parts.  The 

WAve(MOVE12L) will be considered analogously.  Finally, WAve(MOVE12R) 

and WAve(MOVE12L) will be contrasted directly. 

With estimated weights, WAve(MOVE12R) continued to showed a 

marked improvement over DAR and MOVE12R with regional regression.  

WAve(SM12R) had a greater overall NSE than DAR and MOVE12R at 56% and 

78% of sites respectively.  Similarly, it was less biased at 60% and 65% of sites 

nationally.  In terms of relative efficiency, WAve(MOVE12R) always exhibited 

an efficiency greater than 1.28, indicating significant added value.  The 

percentage of sites where WAve(MOVE12R) outperformed varied only slightly 

across the three meta-regions, as can be seen in Figure 6.11.  The relative 

performance of WAve(MOVE12R) against DAR dipped dramatically in the 

Midwest, but remained above 50%.  As with WAve(SMR), this is due to the 

extreme difference between regionally-parameterized methods and DAR in the 

Midwest. 

The average monthly relative performance of WAve(MOVE12R) is 

presented in Figure 6.12.  These results are quite similar to the overall relative 

performance.  On average, WAve(MOVE12R) had a greater monthly NSE than 

DAR at 55% of sites nationally and was less biased at 58%.  Against MOVE12R, 

WAve improved at 68% and 63% of sites.  In no months were any of these 
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national percentages below 50%.  On average, this performance was consistently 

above 50% in all meta-regions.  As would be expected from the initial results, the 

relative performance of WAve(MOVE12R) against DAR in terms of NSE was 

slightly degraded in the Midwest.  There, the percentage of outperforming sites 

was below 50% in five months.  Though remarkable, closer examination revealed 

that the deficient months remained competitive at about 48%. 

This comparison shows that WAve(MOVE12R) behaves significantly 

better than its component estimators, even when the weight must be estimated 

from hydroclimatic variables.  Some weakness remains in the Midwest, but 

WAve(MOVE12R) maintains a slight advantage there.  One will note that 

WAve(MOVE12R) exhibits a slightly positive median bias overall (recall Figure 

6.10), but both the median and range is smaller than that associated with the 

regionally-parameterized edition of MOVE12R. 

WAve(MOVE12L) also demonstrated a significant advantage over DAR 

and MOVE12L.  WAve(MOVE12L) had a greater overall NSE than DAR at 60% 

of sites nationally and was less biased at 58%.  Compared to MOVE12L, those 

percentages were 77% and 64%.  This relative performance was significant across 

the three meta-regions, as is shown in Figure 6.13.  It should be noted that the 

deficiency against DAR in the Midwest is less drastic here than as was the case 

with WAve(MOVE12R), though the general trends were quite similar. 

When considered monthly, WAve(MOVE12L) had a greater NSE than 

DAR and MOVE12L at 56% and 67% of sites on average.  The bias was smaller 

at 58% and 64% of sites nationally, on average.  As Figure 6.14 demonstrates, 
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this relative performance was again robust across the three meta-regions.  Of all 

the comparisons, the average percentage fell below 50% in only a single month 

and was only for the comparison of bias against DAR.  This is strong evidence 

that WAve(MOVE12L) corrects for the monthly deficiency seen in the 

comparison between DAR and WAve(MOVE12R).  The percentage of sites 

where WAve(MOVE12L) showed a smaller NSE never dropped below 50%, but 

for WAve(MOVE12R) it was below 50% in five months in the Midwest. 

Both WAve(MOVE) methods are strongly competitive, but one must 

wonder which is the strongest method.  Tete-a-tete, WAve(MOVE12L) had a 

greater overall NSE at 52% of sites, while it was less biased at only 49% of sites.  

Indeed, it was only in the West that WAve(MOVE12R) had a greater percentage 

of higher NSEs and lower bias.  These comparisons are so close to 50% that it is 

clear that both methods are extremely competitive.  Again, it may be a coin toss.  

Figure 6.15 summarizes the monthly performance of each WAve(MOVE) 

technique.  On average, WAve(MOVE12L) had a greater monthly NSE at 51% of 

sites while being less biased at only 49%.  In all cases the statistics were 

extremely similar.  It should be noted, though, that both methods exhibited a 

tendency towards underestimation in the West, as can be seen in the comparison 

of monthly bias in Figure 6.16. 

Though WAve(MOVE12R) and WAve(MOVE12L) are both strong flow 

transfer techniques, WAve(MOVE12L) seems to have the greatest advantage over 

the traditional DAR technique.  WAve(MOVE12L) had a greater overall NSE at 

60% of sites compared to only 59% for WAve(MOVE12R).  Yes, the difference 
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is small, but it is consistent across all meta-regions and months.  As with 

WAve(SM) one should seriously consider the application and caveats before 

choosing one method over another.  As this analysis is concerned with the 

strongest overall method, WAve(MOVE12L) must be advocated for any general 

usage. 

 

COMPARING TWO WEIGHTED COMBINATION METHODS 

Having considered a number of variants for weighting results, it is 

important to now consider which one is superior to the other.  WAve(SM12R), 

which will be referred to as WAve1 here, offered significant improvements over 

DAR but was hampered by a slight seasonal trend of median bias in the West.  

WAve(MOVE12L), or WAve2, was also very strong, if not stronger, but was 

limited by even larger bias in the West.  As it is important to understand the 

relative performance of these methods, they will be compared with each other and 

with the standard drainage area ratio technique here. 

First, it is interesting to take note of the strongest WAve techniques 

relative to the idealized flow-transfer techniques of Chapter Three.  In the 

idealized experiments, it was shown that SM12R was the strongest flow-transfer 

technique.  When regional regression was incorporated, SM1R took the 

advantage, but WAve returned SM12R to prominence.  This gives strong 

evidence to the ability of intelligently-weight averaging to correct for some level 

of uncertainty introduced by the regional parameterization.  While MOVE12L 

was consistently the best technique, the story is similar in terms of relative 

performance: WAve(MOVE12L) corrects for some uncertainty, bringing the 
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results nearer to the idealized case than with the regionally-parameterized 

MOVE12L. 

The range of overall NSE for DAR, Wave1 and WAve2 are shown 

nationally and by meta-region in Figure 6.17.  WAve1 and WAve2 are almost 

identical nationally.  Furthermore, both weighted techniques are superior to DAR.  

In the East, WAve2 holds a slight edge, but WAve1 has the advantage in other 

regions.  Figure 6.18 shows the range of bias for all of the methods.  Here, both 

methods are even less distinguishable.  Overall, WAve1 seems to have a smaller 

range.  In the East, WAve2 shows a slightly smaller range.  All of the methods are 

nearly identical in the Midwest, but both weighted techniques show a slightly 

positive median bias in the West. 

Site-by-site, WAve1 had greater NSE than DAR at 58% of sites and was 

less biased at 60%.  WAve2, on the other hand, had a greater NSE than DAR at 

60% of sites and was less biased at 58% of sites nationally.  Clearly this is a very 

tight comparison.  Figure 6.19 shows that WAve1 holds an advantage in the 

West, but WAve2 has the edge in terms of NSE in the East and Midwest.  Site-by-

site, WAve2 has a greater NSE than WAve1 at 52% of sites, a percentage that is 

above 50% in all meta-regions except the West.  WAve1 holds the advantage in 

terms of bias in all meta-regions except the East. 

When considered monthly, WAve1 has a greater monthly NSE than DAR 

at 55% of sites on average, while WAve2 outperforms DAR at 56% of sites on 

average.  In terms of bias, both outperform DAR at 58% on average.  Meta-

regionally, both WAve1 and WAve2 similarly outperform DAR, as is shown in 
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Figure 6.20.  It is nearly impossible to select which method is the better weighted 

technique.  The two methods are equally valuable. 

The monthly range of NSE is shown nationally for all three methods in 

Figure 6.21; Figure 6.22 shows the range of bias.  Again, both methods are 

nearly identical, but consider the bias associated with WAve2 in Figure 6.18.  It 

may be that WAve1 offers slightly less bias.  Furthermore, Figure 6.23 shows the 

range of monthly bias in the West for each method.  The positive median bias is 

apparent in all methods, but is most dramatic in WAve2.  In the future, a bias 

correction may be able to correct for this, but for now it is enough to slightly 

favor WAve1 over WAve2. 

The weighted averaging of the real-space drainage area ratio (DAR) and 

the real-space, monthly standardization (SM12R) with regional regression is a 

robust method for estimating monthly time series of streamflows at ungauged 

sites in the United States.  This analysis has shown that this technique has a 

competitive advantage over the simple, traditional approach of using a drainage 

area ratio.  As with all methods, there are a number of caveats associated with this 

technique.  Without summarizing the entire study, it is sufficient to say that one 

should always look at the regional and monthly performance of a method in the 

region of interest before advocating any single technique. 
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VII. AN EXTENSION: HYBRID FLOW TRANSFER TECHNIQUES 

Until this point, this exploration has only considered traditional techniques 

for estimating monthly streamflow time-series and linear combinations of those 

methods.  It was shown that, though regionally-characterized, traditional methods 

were unable to significantly outperform the simplest flow-transfer tool, the real-

space drainage area ratio (DAR), a weighted combination of those methods 

provided significant added value.  Of course, linear combinations are only a first 

order exploration of combining the benefits of traditional methods.  In this 

chapter, a brief extension of this work will be considered for further research. 

As none of the traditional methods, when combined with regional 

parameterization, provided a significant advantage over the DAR method, it may 

be that these methods do not capture the true functional form of the relationship 

between streamflow time-series in hydrologically similar basins.  If the functional 

form was known explicitly, an idealized application of that form would achieve 

extremely high Nash-Sutcliffe values across all sites; as in an earlier chapter, 

where it was seen that the idealized standardization by mean and the 

standardization with maintenance of variance were both closer to the functional 

form than DAR. 

The exploration of functional forms is worth an entire report of its own 

and is not the true focus of this report, but some preliminary results are presented 

here.  A number of combinations of DA and SM were tested in an idealized case 

and only the combination of the logarithmic drainage area ratio (DAL) and the 

real-space standardization by mean (SMR).  Similarly, the combination of DAL 
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and the lognormal standardization with the maintenance of variance extension 

(MOVEL) was the only combination of DA and MOVE that was found to be 

viable.  In the following sections the potential of these methods will be presented 

and some additional functional forms will be theorized.  Though this analysis is 

incomplete, it provides an interesting point from which to move forward. 

 

FUNCTIONAL-FORM COMBINATIONS OF DRAINAGE AREA RATIOS AND 

STANDARDIZATION BY MEAN 

One can easily imagine a wide range of functional forms that combine the 

benefits of drainage area ratios and standardization by mean.  The first part of the 

Appendix shows a number of equations for the fusion of DA and SM.  Idealized, 

initial results showed that, of these methods, only the combination of DAL and 

SMR was promising in any way. 

The combination of DAL and SMR theorizes that, between two 

hydrologically similar basins, the relationship of streamflows can be described as 

୪୬ ሺ
ೂ೉
ഋ೉

ሻ

୪୬ ሺ஺೉ሻ
ൌ

  ୪୬ ሺ
ೂೊ
ഋೊ
ሻ

୪୬ ሺ஺ೊሻ
         (7.1) 

where Q is flow and A is drainage area at the subscripted sites X and Y.  Clearly, 

this method requires some parameterization of streamflows at the ungauged site.  

Here, this was accomplished with regional regression, as outlined above.  The 

functional form in (7.1) leads to two variants of DALSMR: an annual and a 

monthly variant. 

The ranges of overall Nash-Sutcliffe efficiencies (NSEs) for both the 

annual (DALSM1R) and monthly variants (DALSM12R) are presented with DAR 
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in Figure 7.1.  Nationally, both methods are very similar, yet both appear inferior 

to DAR.  In the Midwest, DALSM12L distinguishes itself above the others, but 

the difference is only marginal.  A consideration of bias in presented in Figure 

7.2.  As would be expected, the annual technique displays some non-zero bias 

nationally.  This bias increases westward.  DALSM12R, on the other hand, 

displays non-zero median bias only in the West.  In all regions, neither range 

outperforms DAR.   

Compared to DAR, neither the DALSM1R nor DALSM12R offered a 

significant site-by-site improvement.  With a relative efficiency of 0.82, 

DALSM1R exhibited a greater overall NSE at only37% of sites.  Still worse, 

DALSM12R had a relative efficiency of 0.85, outperforming DAR at only 31% of 

sites.  In terms of bias, both methods outperformed DAR at about 44% of sites, 

though DALSM1R had a much great relative efficiency (0.85) compared to 

DALSM12R (0.69).  This poor relative performance replicates itself meta-

regionally, as is shown in Figure 7.3.  Only in the East does one method seem to 

offer some marginal advantage over DAR.  Elsewise, the functional-form 

combinations are not an improvement on DAR. 

The monthly performance of each method is briefly summarized in terms 

of NSE in Figure 7.4 and bias in Figure 7.5.  For the NSE, neither method 

displays an alarming trend dissimilar form DAR, but DALSM12R appears 

slightly inferior in most months.  For bias, it is DALSM1R that is most 

worrisome.  The annual method continues to display a distinct positive bias, 
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though it is not huge.  The monthly method is more symmetrical about zero, but 

the range is still greater than that seen with DAR. 

On average, DALSM1R had a greater monthly NSE than DAR at 41% of 

sites, while DALSM12R outperformed at only 38% of sites.  In all the months, 

this percentage was never greater than 50%.  At 44% outperformance for each 

method, the story for bias was similar except in the East and West.  These results 

can be seen in Figure 7.6.  In the East, DALSM1R was less biased at nearly 50% 

of sites on average.  In the West, it was DALSM12R that thrived, with less 

monthly bias at half of the sites on average.  In both case, the percentage of sites 

with less monthly bias exceeded 50% for about half of the year. 

Compared to each other, DALSM1R actually provided greater overall 

NSEs than DALSM12R at 52% of sites.  It was less biased at 49%.  These results 

show that the two methods are extremely similar, but, on the basis of NSE, 

DALSM1R holds a slight advantage.  Still, DALSM1R is plagued by some 

positive bias.  Furthermore, neither was a significant improvement over DAR.  

This suggests that this functional-form combination of DA and SM is not a 

promising combination.  Further work along this path may lead to a more 

promising result. 

 

FUNCTIONAL-FORM COMBINATIONS OF DRAINAGE AREA RATIOS AND 

MAINTENANCE OF VARIANCE EXTENSION 

Another functional-form combination to consider is the fusion of drainage 

area ratios and the maintenance of variance extension standardization.  Three 

potential combinations of these methods are presented in the second part of the 
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Appendix.  Of those approaches, only one, the combination of DAL and MOVEL 

was found to have any potential. 

The combination of DAL and MOVEL can be described in two parts.  

First consider the standardization with MOVEL, S, 

୪ܵ୬ ሺொ೉ሻ ൌ
୪୬ሺொ೉ሻିఓౢ౤ ሺೂ೉ሻ

ఙౢ౤ ሺೂ೉ሻ
        (7.2) 

where Q is flow at the subscripted site.  The combination of DAL and MOVEL 

can be summarized as, 

୪୬ ሺௌౢ౤ ሺೂ೉ሻሻ

୪୬ ሺ஺೉ሻ
ൌ

୪୬ ሺௌౢ౤ ሺೂೊሻሻ

୪୬ ሺ஺ೊሻ
        (7.3) 

where A is the drainage area of the subscripted site.  Again, this method requires 

regional parameterization, which means that one can also consider both the annual 

and monthly variants.  These will both be explored below. 

From the overall range of NSEs for both methods presented in Figure 7.7 

it is clear that the annual technique, DALMOVE1L does not perform well relative 

to DAR.  This is true across all meta-regions.  DALMOVE12L, on the other hand, 

seems somewhat competitive, especially in the West.  When examining bias in 

Figure 7.8, the deficiency of the monthly method becomes more apparent, though 

the annual method is also far from reassuring.  The annual technique displays a 

clear, uniform positive bias.  The monthly variant only displays positivity 

westward, but also exhibits a much greater range of bias. 

Against DAR, DALMOVE1R exhibited a greater overall NSE at only 

18% of sites, with a relative efficiency of 0.57.   DALMOVE12L was slightly 

more competitive with a relative efficiency of 0.72 and an outperformance rate of 

29%.  Clearly there is little advantage for NSE in either of these methods.  For 



 

 96 

bias the relative performance improves slightly: DALMOVE1L was less biased at 

47% of sites nationally, and DALMOVE12L was less biased at 39% of sites.  

This same trend can be seen across the meta-regions in Figure 7.9.  Again, this is 

strong evidence that neither method is incredibly useful. 

Figures 7.10 and 7.11 show the monthly range of overall NSE and bias 

for each combination method.  DALMOVE12L appears in line with DAR, though 

it is slightly inferior.  The performance of DALMOVE1L is alarmingly poor.  The 

trend of NSE is vastly different than the trend seen in the other methods and the 

ranges are far lower.  For bias, DALMOVE1L exhibits a seasonal trend in the 

median and the range of bias. 

On average, DALMOVE1L had a greater monthly NSE than DAR at 24% 

of sites, while DALMOVE12L outperformed at more than 35% of sites on 

average.  Still, these percentages never exceeded 50% in any month.  The story is 

nearly identical for monthly bias.  Additionally, this pattern does not change from 

the East to Midwest and West, as is seen in Figure 7.12. 

It almost goes without saying that DALMOVE12L is significantly better 

than DALMOVE1L.  Still, the monthly method had a greater overall NSE than 

the annual method at over 75% of sites in the US.  It was less biased at 45% of 

sites.  Still, DALMOVE12L was not an improvement over DAR.  As before, 

some additional exploration here may find a more valuable functional form. 

 

COMPARING TWO FUNCTIONAL-FORM COMBINATION METHODS 

Taking the two functional-form combinations, DALSM1R and 

DALMOVE12L, it is clear that neither offers a significant improvement over 
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DAR.  As such, neither is really worth much further consideration.  Still, in the 

interest of seeding further research, it is useful to consider which technique is 

better than the other.  For ease, these methods will be referred to as DASM and 

DAMOVE here. 

Combining the range of overall NSE and bias for each method on several 

figures, as in Figures 7.13 and 7.14, it is clear the DASM appears to have a slight 

advantage over DAMOVE.  The NSE of DAMOVE is more widely distributed 

than the others nationally and in the Midwest.  It becomes slightly more 

competitive in the East and West.  The range of bias for DAMOVE is always 

greater than the others.  Furthermore, both methods exhibit a strong positive bias 

westward.  In all cases, neither vastly improves upon DAR. 

Recall that DAMOVE had a greater NSE than DAR at only 28% and 

DASM improved at 37% of sites.  This alone suggests that DASM is the more 

promising method.  For bias, DASM outperforms at 40%, while DAMOVE 

outperformed at only 35%.  This relative comparison was replicated across each 

meta-region, as in Figure 7.15.  In all meta-regions and statistics, DASM has an 

edge over DAMOVE, yet it is only for bias in the East that DASM is an 

improvement on DAR. 

 The monthly range of performance, in Figures 7.16 and 7.17, the 

distinction between the two methods is less apparent.  For NSE, both are strong, 

though DASM is closer to the performance of DAR.  But, in terms of bias, DASM 

is strongly positive while DAMOVE remains relatively symmetric about zero.  

Considering the average monthly percentage of sites where each method 
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outperforms DAR, DASM continues to hold a slight edge, both nationally and in 

each meta-region (Figure 7.18). 

After all, the need for further research is strikingly clear in the case of new 

functional forms.  Of the two contrasted here, it is DASM that performs better 

than DAMOVE on the merit of NSEs.  Still, this technique has yet to be 

developed to the point that it provides a significant advantage over traditional, 

more parsimonious efforts such as the use of DAR.  From here, future research 

should delve into bias correction and the development of novel functional forms 

of the relationship between streamflows in hydrologically similar basins. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

Through a myriad of different experiments, this thesis has demonstrated a 

number of important conclusions regarding the methods for estimation of time 

series of monthly streamflows at ungauged sites.  Perhaps most importantly, this 

work introduces a unique methodology for assessing and evaluating techniques 

for hydrologic prediction in ungauged basins that can be extended to assess many 

other new ideas for transferring streamflows.  This thesis only examined a small 

set of regional, hydrostatistical methods; one could easily imagine continuing the 

research by applying a similar methodology to evaluate a host of other promising 

transfer methods. 

In summary, this thesis first considered four different classes of flow-

transfer techniques: the drainage-area ratio (DA), standardization by means (SM), 

maintenance of variance extension (MOVE) and the use of flow duration curves 

(QPPQ).  In an idealized sense, when streamflow moments at the ungauged site 

are assumed known a priori, it was shown that DA is not favored over the other 

methods.  In such instances, all other methods demonstrated a significant site-by-

site improvement over DA, but among the many methods evaluated, it was the 

monthly, log-space variant of MOVE that was the most successful.  MOVE12L 

had a greater Nash-Sutcliffe efficiency than DAR at over 86% of sites in the 

United States.  All methods were also significantly less biased at a large 

percentage of sites as well. 

When regional regression was introduced to characterize ungauged 

streamflows by estimating moments and to simulate the real-world prediction in 
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ungauged basins (PUB), the results of the hydrostatistical techniques were 

markedly degraded.  In that case, neither SM nor MOVE offered a greater NSE at 

more than 50% of sites in the US.  Furthermore, both methods exhibited a much 

greater amount of bias than the traditional DA method.  This degraded 

performance was related to the uncertainty introduced through regional 

characterization.  Alternative methods of record characterization may improve 

future comparisons. 

It was noted that the performance of different methods was closely related 

to a wide range of hydroclimatic variables.  It was hypothesized and demonstrated 

that a weighted estimator could be developed to blend the advantages of 

hydrostatistical and traditional methods.  These weighted or WAve methods were 

able to outperform DA at about 60% of sites in the United States.  This method 

was generally invariant to the region being considered, showing WAve to be a 

generally robust approach.  Though WAve was unable to match the results of the 

idealized cases, it does show that blending of methods may be an attractive 

approach for estimation at ungauged sites,  

Overall, the results of this thesis are promising, but this research is far 

from complete.  While this thesis does advance the scientific understanding of 

PUB, it also provides a methodology for evaluating other techniques.  There are 

many new techniques to be considered, as was hinted at in the functional-form 

extensions considered.  By following the methods of this paper, one can 

reasonably evaluate any method.  In addition, it is important to consider the 

drawbacks of current techniques. 
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RECOMMENDATIONS: 

Current modeling techniques rely on two basic assumptions: the past is a 

reasonable guide to future and that models developed in gauged basins can be 

applied in ungauged basins (Sivapalan et al. 2003).  Here, the second point is 

rather intractable, but, on the first point, this is analogous to observing that most 

methods rely on the stationarity of hydrologic statistics (Sivapalan et al. 2003).  If 

the world is no longer stationary, this dependence becomes increasingly troubling 

(Milly et al. 2008).  As hydrostatistical methods rely on the past so heavily, it 

remains to be seen if they can accurately describe the future.  Hirsch (1982) 

showed that MOVE could be used for extending records, which is an idealized 

case of predicting the future.  Further research should consider a more extensive 

testing of this very question. 

One possible extension of this current work is an exploration into 

improvements associated with the traditional hydrostatistical techniques.  For 

example, it may be possible to derive a bias correction factor that significantly 

improves the performance of the logarithmic DA or the log-space SM methods.  

Similarly, Emerson et al. (2005) and Asquith et al. (2006) showed that a more-

advanced calibration of DA might prove quite valuable.  Furthermore, it may be 

possible to improve Step Two, regional characterization of streamflow records, to 

improve these hydrostatistical methods.  While this may prove useful, it gives rise 

to a whole range of improvements and new methods. 
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The logical next step would be to consider how hydrostatistical methods 

perform relative to other techniques, from generalized DA techniques to statistical 

regression and process-based models.   In this pursuit one could followed the 

methods outlined here: consider the idealized case and then consider a leave-one-

out rendition of the real world.  This will advance the cause of PUB in that it will 

give a quantifiable demonstration of the relative performance of these methods. 

Another area of research would be to consider the implication of using 

estimated streamflow data in real-world decision making processes.  That is, how 

does a syndicated streamflow record affect the decision making process in the 

development of hydropower, irrigation scheduling or even flood mapping.  

Throughout the paper, results were quoted in terms of Nash-Sutcliffe efficiencies 

and Emerson et al. (2005) cite coefficients of determination, but what does an 

NSE of 0.70 really mean?  This could be examined by using leave-one-out 

experiments: one could develop a flood frequency map with the observed flow 

record at an HCDN site and then repeat that exercise with an estimated record 

with a given NSE.  What would be the difference between those maps?  What are 

the policy implications? 

The final and most-promising realm of further research involves the use of 

remote-sensing data.  Lakshmi (2004) observed that remote sensing data could be 

used to develop hydroclimatic variables across a wide range of ungauged sites.  

While it has often been thought that remote sensing could be used to directly 

estimate hydrologic responses such as streamflow, this is merely in development 

and has not been extensively vetted.  Alternatively, it may be possible to use 
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remote sensing to more accurately develop information about other hydroclimatic 

variables. 

In one case, the lengthy remote sensing record of precipitation, vegetation 

or even temperature may be useful tool for understanding the wetness of an 

ungauged site.  One could then develop a sort of “wetness indicator” for the 

ungauged basin.  Then, similar to the work of Smakhtin and Masse (2000), one 

could map the wetness indicator back to the streamflow values.  This technique 

would limit the need for an index gage, which could reduce uncertainty. 

Another use of remote sensing would be to estimate long-term streamflow 

statistics.  While it may prove difficult to estimate the time series of streamflows 

at an ungauged site via remote sensing, one may be able to more accurately 

understand the moments of that streamflow through long-term remote sensing.  If 

those moments could be known with extreme accuracy, then the case of 

streamflow transfer devolves into the idealized case presented above, which had 

quite promising results. 

Furthermore, the use of remote sensing may be able to give some insight 

into the contribution of groundwater flows to surface water flows.  For this 

project, little attention was given to groundwater.  In essence, the groundwater 

basin was assumed to be identical to the topographic drainage basin.  This may 

not always be the case.  It may be that the hydrostatistical methods presented 

above perform poorly in basins dominated by groundwater flows.  Remotely 

sensed data may a better understanding of the range of groundwater flow around 
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an ungauged site so that one could adjust climatic inputs to more accurately 

estimate long-term flow parameters and behavior. 

After all has been postulated and examined, the most important 

consideration is the time scale of the streamflow record desired.  This project 

examined only monthly time series of streamflows.  More and more studies are 

demanding daily data and daily records.  The evaluation process presented here 

may arrive at a different conclusion when considering daily flows. 

This project has shown one hydrostatistical technique for estimating 

streamflow more reliably than with the drainage area ratio.  While it is a 

significant contribution to a project like IAHS’s PUB, it has revealed a number of 

pressing concerns and avenues of further research.  As the risk of sounding cliché, 

this project has merely opened a floodgate of PUB.  One can be sure that, as other 

methods are assessed in a similar fashion, attractive methods for predicting 

streamflow time series at ungauged sites, whether on a monthly or daily scale, 

will begin to emerge.  With sound estimates of streamflow, development in 

ungauged watershed can proceed intelligently, addressing the needs of both the 

natural and human populations. 
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APPENDIX 

A Collection of Functional Form Combinations: 

Variables: 

ܺ   (An arbitrary index site) 

ܻ   (An arbitrary ungauged site) 

 ௑   (Drainage area of the subscripted site)ܣ

ܳ௑   (Monthly streamflow of the subscripted site) 

 ொ೉   (Mean of the subscripted variable)ߤ

 ொ೉   (Standard deviation of the subscripted variable)ߪ

 

PART ONE: 

Combinations of Drainage Area Ratios and Standardizations by Mean 

 

i. Combining real-space drainage area ratios and real-space standardizations by 

mean: 

ொ೉
஺೉ఓೂ೉

ൌ ொೊ
஺ೊఓೂೊ

         (A.1) 

 

ii. Combining real-space drainage area ratios and lognormal standardizations by 

mean: 
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iii. Combining logarithmic drainage area ratios and real-space standardizations by 

mean: 

୪୬ ሺ
ೂ೉
ഋೂ೉

ሻ

୪୬ ሺ஺೉ሻ
ൌ

୪୬ ሺ
ೂೊ
ഋೂೊ

ሻ

୪୬ ሺ஺ೊሻ
         (A.3) 

 

iv. Combining logarithmic drainage area ratios and lognormal standardizations by 

mean: 

 Two Variations: 

୪୬ ሺொ೉ሻ

୪୬ ሺ஺೉ሻఓౢ౤ ሺೂ೉ሻ
ൌ ୪୬ ሺொೊሻ

୪୬ ሺ஺ೊሻఓౢ౤ ሺೂೊሻ
        (A.4) 

୪୬ ሺ
ౢ౤ ሺೂ೉ሻ
ഋౢ౤ ሺೂ೉ሻ

ሻ

୪୬ ሺ஺೉ሻ
ൌ

୪୬ ሺ
ౢ౤ ሺೂೊሻ
ഋౢ౤ ሺೂೊሻ

ሻ

୪୬ ሺ஺ೊሻ
        (A.5) 

 

PART TWO: 

Combinations of Drainage Area Ratios and Maintenance of Variance Extension 

Standardization 

 

Standardizations: 

Real-space MOVE: 

ܵ௑ ൌ
ொ೉ିఓೂ೉
ఙೂ೉

          (A.6) 

 

Lognormal MOVE: 

୪ܵ୬ ሺ௑ሻ ൌ
୪୬ ሺொ೉ሻିఓౢ౤ ሺೂ೉ሻ

ఙౢ౤ ሺೂ೉ሻ
        (A.7) 
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i. Combining real-space drainage area ratios and real-space MOVE: 

ௌ೉
஺೉
ൌ ௌೊ

஺ೊ
          (A.8) 

 

ii. Combining real-space drainage area ratios and lognormal MOVE: 

ௌౢ౤ ሺ೉ሻ
஺೉

ൌ
ௌౢ౤ ሺೊሻ
஺ೊ

          (A.9) 

 

iii. Combining logarithmic drainage area ratios and lognormal MOVE: 

ௌౢ౤ ሺ೉ሻ
୪୬ ሺ஺೉ሻ

ൌ
ௌౢ౤ ሺೊሻ
୪୬ ሺ஺ೊሻ

         (A.10) 
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TABLES 

CHAPTER THREE: 

 
Table 3. 1. The relative efficiencies of four variants of MOVE in terms of NSE across all meta-regions. 

US  East 

1R  1L  12R  12L  1R  1L  12R  12L 

1R     0.9806 0.5469 0.5249    0.9854  0.7144  0.6772

1L  1.0198     0.5578 0.5353 1.0149    0.7250  0.6873

12R  1.8284  1.7929    0.9597 1.3997 1.3792     0.9479

12L  1.9053  1.8682 1.0420    1.4767 1.4551  1.0550    

1R     0.9920 0.5415 0.5250    0.9476  0.4008  0.3800

1L  1.0080     0.5459 0.5293 1.0553    0.4230  0.4010

12R  1.8466  1.8319    0.9695 2.4948 2.3641     0.9481

12L  1.9046  1.8895 1.0314    2.6314 2.4935  1.0548    

1R  1L  12R  12L  1R  1L  12R  12L 

Midwest  West 

 
Table 3. 2. The relative efficiencies of four variants of MOVE in terms of bias across all meta-regions. 

US  East 

1R  1L  12R  12L  1R  1L  12R  12L 

1R     1.0556 0.8759 0.9445    1.0846  0.9926  1.0448

1L  0.9473     0.8297 0.8948 0.9220    0.9152  0.9632

12R  1.1417  1.2052    1.0784 1.0074 1.0927     1.0525

12L  1.0587  1.1176 0.9273    0.9572 1.0382  0.9501    

1R     0.9955 0.7780 0.8729    1.1231  0.9118  0.9540

1L  1.0046     0.7815 0.8769 0.8904    0.8119  0.8495

12R  1.2854  1.2795    1.1220 1.0967 1.2317     1.0463

12L  1.1456  1.1404 0.8913    1.0482 1.1772  0.9558    

1R  1L  12R  12L  1R  1L  12R  12L 

Midwest  West 
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Table 3. 3. Fraction of sites where each method outperforms all others. 

NSE  Bias 

1R  1L  12R  12L  1R  1L  12R  12L 

US  14.75  9.89 19.63 58.95 26.71 32.60  21.61  23.36

East  16.22  10.18 15.42 59.32 25.92 31.96  20.28  22.43

Midwest  17.38  13.14 22.39 53.94 25.69 32.17  25.63  24.65

West  9.57  5.67 22.64 63.64 28.92 34.05  19.72  23.51

 
Table 3. 4. Average relative monthly performance of three MOVE variants compared to MOVE12L. 

Meta‐
Region  Variant 

Efficiency  Bias 

Months where 
MOVE12L is 
not dominant  Average 

Months where 
MOVE12L is 
not dominant  Average 

US 

1R  0 1.8182 0 5.1555 

1L  0 1.7728 0 5.5986 

12R  2 1.0450 10 0.9643 

East 

1R  0 1.5305 0 3.9274 

1L  0 1.5145 0 4.0077 

12R  0 1.0483 10 0.9553 

Midwest 

1R  0 1.8063 0 4.8353 

1L  0 1.7662 0 5.1644 

12R  3 1.0437 9 0.9599 

West 

1R  0 2.6933 0 7.8882 

1L  0 2.5593 0 8.9333 

12R  6 1.0266 9 0.9788 

 
Table 3. 5. Average monthly fraction of sites where each variants outperforms all others. 

NSE  Bias 

1R  1L  12R  12L  1R  1L  12R  12L 

US  18.31  18.04 28.97 39.43 19.70 19.12  39.29  33.01

East  20.03  19.28 25.52 37.91 19.63 17.81  36.52  30.35

Midwest  21.11  20.10 29.48 37.20 21.53 22.70  41.64  32.34

West  12.71  13.92 33.14 43.80 17.54 16.91  40.87  37.51
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Table 3. 6. The relative efficiencies of four flow-transfer techniques in terms of NSE across all meta-
regions. 

US  East 

DA  SM  MOVE  QPPQ  DA  SM  MOVE  QPPQ 

DA     0.2820 0.1949 0.3548    0.3851  0.3253  0.4828

SM  3.5462     0.6913 1.2583 2.5967    0.8446  1.2538

MOVE  5.1301  1.4466    1.8203 3.0746 1.1840     1.4845

QPPQ  2.8183  0.7947 0.5494    2.0711 0.7976  0.6736    

DA     0.3694 0.2349 0.4134    0.1278  0.0817  0.2092

SM  2.7072     0.6359 1.1192 7.8275    0.6395  1.6376

MOVE  4.2572  1.5725    1.7600 12.2402 1.5637     2.5608

QPPQ  2.4188  0.8935 0.5682    4.7797 0.6106  0.3905    

DA  SM  MOVE  QPPQ  DA  SM  MOVE  QPPQ 

Midwest  West 

 
Table 3. 7. The relative efficiencies of four flow-transfer techniques in terms of bias across all meta-
regions. 

US  East 

DA  SM  MOVE  QPPQ  DA  SM  MOVE  QPPQ 

DA     0.0266 0.0255 0.0279    0.0358  0.0346  0.0358

SM  37.6431     0.9602 1.0518 27.9288    0.9665  0.9994

MOVE  39.2041  1.0415    1.0955 28.8981 1.0347     1.0341

QPPQ  35.7878  0.9507 0.9129    27.9446 1.0006  0.9670    

DA     0.0343 0.0320 0.0375    0.0145  0.0144  0.0154

SM  29.1175     0.9331 1.0925 68.9768    0.9936  1.0606

MOVE  31.2050  1.0717    1.1709 69.4208 1.0064     1.0674

QPPQ  26.6514  0.9153 0.8541    65.0343 0.9428  0.9368    

DA  SM  MOVE  QPPQ  DA  SM  MOVE  QPPQ 

Midwest  West 

 
Table 3. 8. Percentage of sites where each method outperforms all others. 

NSE  Bias 

DA  SM  MOVE  QPPQ  DA  SM  MOVE  QPPQ 

US  9.34  20.95  58.77 17.95 18.23 37.50  30.72  26.99

East  5.45  22.38  56.59 18.65 9.62 35.47  29.75  28.54

Midwest  19.68  21.32  53.03 18.79 32.80 40.00  31.34  21.99

West  0.95  18.57  67.71 15.95 12.23 38.11  31.58  29.58
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Table 3. 9. Average monthly relative efficiency of three methods compared to MOVE. 

Meta‐
Region  Variant 

Efficiency  Bias 

Months where 
MOVE12L is 
not dominant  Average 

Months where 
MOVE12L is 
not dominant  Average 

US 

DA  0 4.1292 0 19.5135 

SM  0 1.4857 6 1.0257 

QPPQ  0 1.6360 0 4.0154 

East 

DA  0 3.0413 0 14.4525 

SM  0 1.4015 6 1.0074 

QPPQ  0 1.4148 0 3.2431 

Midwest 

DA  0 3.6024 0 15.4185 

SM  0 1.4960 4 1.0338 

QPPQ  0 1.6192 0 3.9498 

West 

DA  0 9.6046 0 37.0189 

SM  0 1.7251 6 1.0288 

QPPQ  0 2.2801 0 5.3466 

 
Table 3. 10. Average monthly fraction of sites where each method outperforms all others. 

NSE  Bias 

DA  SM  MOVE  QPPQ  DA  SM  MOVE  QPPQ 

US  12.66  24.48  43.44 28.08 15.78 38.66  31.43  27.59

East  11.31  23.50  40.91 29.37 14.38 36.37  28.20  27.04

Midwest  18.03  24.01  40.70 29.82 21.48 40.34  30.61  28.14

West  7.24  26.30  49.88 24.22 9.62 40.26  36.86  27.89
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CHAPTER FIVE: 

Table 5. 1. Relative efficiencies in terms of NSE for four variants of MOVE with regional regression. 

US  East 

1R  1L  12R  12L  1R  1L  12R  12L 

1R     0.9300 0.5552 0.5034    0.8912  0.3681  0.3611

1L  1.0753     0.5970 0.5413 1.1221    0.4131  0.4052

12R  1.8011  1.6750    0.9067 2.7165 2.4210     0.9810

12L  1.9864  1.8473 1.1029    2.7690 2.4677  1.0193    

1R     0.9443 0.8493 0.7005    0.9479  0.4645  0.4584

1L  1.0589     0.8993 0.7418 1.0550    0.4900  0.4836

12R  1.1774  1.1119    0.8248 2.1531 2.0409     0.9869

12L  1.4275  1.3480 1.2124    2.1816 2.0679  1.0132    

1R  1L  12R  12L  1R  1L  12R  12L 

Midwest  West 

 
Table 5. 2. Relative efficiencies in terms of bias for four variants of MOVE with regional regression. 

US  East 

1R  1L  12R  12L  1R  1L  12R  12L 

1R     1.1310 1.1850 1.3155    1.1424  1.7854  1.8460

1L  0.8842     1.0478 1.1631 0.8753    1.5628  1.6158

12R  0.8439  0.9544    1.1101 0.5601 0.6399     1.0340

12L  0.7602  0.8597 0.9008    0.5417 0.6189  0.9672    

1R     1.1778 1.2167 1.3853    1.0916  1.0618  1.1837

1L  0.8491     1.0331 1.1762 0.9161    0.9727  1.0844

12R  0.8219  0.9680    1.1386 0.9418 1.0281     1.1148

12L  0.7218  0.8502 0.8783    0.8448 0.9222  0.8970    

1R  1L  12R  12L  1R  1L  12R  12L 

Midwest  West 

 
Table 5. 3. Percentage of sites where each variant of MOVE with regional regression outperforms all 
others. 

NSE  Bias 

1R  1L  12R  12L  1R  1L  12R  12L 

US  5.50  12.60  47.73 43.98 31.55 17.91  31.32  25.35

East  3.54  6.08  47.56 45.79 28.46 21.91  26.32  23.80

Midwest  8.38  18.44  42.52 43.42 32.21 15.81  33.54  26.17

West  4.58  14.88  55.40 41.46 35.93 13.97  37.44  27.05
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FIGURES 

CHAPTER TWO 

 
Figure 2. 1. Two-digit HUCs of the continental United States. 
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CHAPTER THREE 

 
Figure 3. 1: Summary of National, Overall Performance of Drainage Area Methods. 

 
Figure 3. 2: Summary of Performance of DA Methods by Meta-Region. 
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Figure 3. 3. Range of national monthly performance of DAR and DAL. 

 
Figure 3. 4. Range of monthly performance of DAR and DAL in the East. 
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Figure 3. 5. Range of monthly performance of DAR and DAL in the Midwest. 

 
Figure 3. 6. Range of monthly performance of DAR and DAL in the West. 
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Figure 3. 7. Correlation of the ratio of aridity to bias for DAR. 

 
Figure 3. 8. National, overall performance of SM methods. 
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Figure 3. 9. Overall performance of SM1R and SM12R by meta-region. 

 
Figure 3. 10. National, monthly performance of SM1R and SM12R. 



 

 121 

 
Figure 3. 11. Monthly performance of SM1R and SM12R in the East. 

 
Figure 3. 12. Monthly performance of SM1R and SM12R in the Midwest. 
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Figure 3. 13. Monthly performance of SM1R and SM12R in the West. 

 
Figure 3. 14. Correlation of distance to index gauge with Nash-Sutcliffe Efficiency. 
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Figure 3. 15. National, overall performance of MOVE variants. 

 
Figure 3. 16. Meta-regional range of NSE for four MOVE variants. 
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Figure 3. 17. Meta-regional range of bias for four MOVE variants. 

 
Figure 3. 18. National monthly range of NSE for four MOVE variants. 
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Figure 3. 19. National monthly range of bias for four MOVE variants. 

 
Figure 3. 20. Monthly range of NSE for four MOVE variants in the East. 
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Figure 3. 21. Monthly range of NSE for four MOVE variants in the Midwest. 

 
Figure 3. 22. Monthly range of NSE for four variants of MOVE in the West. 
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Figure 3. 23. Monthly range of bias for four variants of MOVE in the East. 

 
Figure 3. 24. Monthly range of bias for four MOVE variants in the Midwest. 
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Figure 3. 25. Monthly range of bias for four MOVE variants in the West. 

 
Figure 3. 26. National, overall performance of QPPQ. 
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Figure 3. 27. Meta-regional, overall performance of QPPQ. 

 
Figure 3. 28. National, monthly performance of QPPQ. 



 

 130 

 
Figure 3. 29. Monthly performance of QPPQ in the East. 

 
Figure 3. 30. Monthly performance of QPPQ in the Midwest. 
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Figure 3. 31. Monthly performance of QPPQ in the West. 

 
Figure 3. 32. National, overall performance of four flow-transfer techniques. 
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Figure 3. 33. Meta-regional range of NSE for four flow-transfer techniques. 

 
Figure 3. 34. Meta-regional range of bias for four flow-transfer techniques. 
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Figure 3. 35. National, monthly range of NSE for four flow-transfer techniques. 

 
Figure 3. 36. National, monthly range of bias for four flow-transfer techniques. 
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Figure 3. 37. Monthly range of NSE for four flow-transfer techniques in the East. 

 
Figure 3. 38. Monthly range of NSE for four flow-transfer techniques in the Midwest. 
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Figure 3. 39. Monthly range of NSE for four flow-transfer techniques in the West. 

 
Figure 3. 40. Monthly range of bias for four flow-transfer techniques in the East. 
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Figure 3. 41. Monthly range of bias for four flow-transfer techniques in the Midwest. 

 
Figure 3. 42. Monthly range of bias for four flow-transfer techniques in the West. 
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Figure 3. 43. Overall percentage of sites where each method outperforms DAR. 

 
Figure 3. 44. Monthly average percentage of sites where each method outperforms DAR. 
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CHAPTER FOUR 

 
Figure 4. 1: Range of National Performance of Four Regression Methods. 

 



 

 139 

CHAPTER FIVE 

 
Figure 5. 1. National, overall performance of SM with regional regression. 

 
Figure 5. 2. Meta-regional, overall performance of SM with regional regression. 
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Figure 5. 3. National, monthly performance of SM methods with regional regression by meta-region. 

 
Figure 5. 4. Monthly performance of SM methods with regional regression in the East. 
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Figure 5. 5. Monthly performance of SM methods with regional regression in the Midwest. 

 
Figure 5. 6. Monthly performance of SM methods with regional regression in the West. 
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Figure 5. 7. Overall range of NSE for four variants of MOVE with regional regression. 

 
Figure 5. 8. Overall range of bias for four variants of MVOE with regional regression. 
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Figure 5. 9. Range of monthly NSE for four variants of MOVE with regional regression. 

 
Figure 5. 10. Range of monthly bias for four variants of MOVE with regional regression. 



 

 144 

 
Figure 5. 11. Range of monthly NSE for four variants of MOVE with regional regression in the East. 

 
Figure 5. 12. Range of monthly NSE for four variants of MOVE with regional regression in the 

Midwest. 
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Figure 5. 13. Range of monthly NSE for four variants of MOVE with regional regression in the West. 

 
Figure 5. 14. Range of monthly bias for four variants of MOVE with regional regression in the East. 
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Figure 5. 15. Range of monthly bias for four variants of MOVE with regional regression in the 

Midwest. 

 
Figure 5. 16. Range of monthly bias for four variants of MOVE with regional regression in the West. 
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Figure 5. 17. Range of overall NSE for three flow-estimation techniques. 

 
Figure 5. 18. Range of overall bias for three flow-estimation techniques. 
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Figure 5. 19. Percentage of sites where each method outperforms DAR. 

 
Figure 5. 20. Monthly range of NSE for three flow-estimation techniques. 
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Figure 5. 21. Range of monthly bias of three flow-estimation techniques. 

 
Figure 5. 22. Average percentage of sites where each method outperforms DAR. 
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CHAPTER SIX 

 
Figure 6. 1. National, overall performance of WAve(SM) methods with idealized weights. 

 
Figure 6. 2. National, overall performance of WAve(SM) methods with estimated weights. 
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Figure 6. 3. Percentage of sites where WAve(SM1R) outperforms its component parts. 

 
Figure 6. 4. Average monthly percentage of sites where WAve(SM1R) outperforms its component 

parts. 
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Figure 6. 5. Overall percentage of sites where WAve(SM12R) outperforms its component parts. 

 
Figure 6. 6. Average monthly percentage of sites where WAve(SM12R) outperforms its component 

parts. 
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Figure 6. 7. Range of monthly performance for WAve(SM) techniques with estimated weights. 

 
Figure 6. 8. Range of monthly performance for WAve(SM) techniques in the West. 
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Figure 6. 9. National, overall performance of WAve(MOVE) methods with idealized weights. 

 
Figure 6. 10. National, overall performance of WAve(MOVE) with estimated weights. 
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Figure 6. 11. Overall percentage of sites where WAve(MOVE12R) outperforms its component parts. 

 
Figure 6. 12. Average monthly percentage of sites where WAve(MOVE12R) outperforms its 

component parts. 
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Figure 6. 13. Overall percentage of sites where WAve(MOVE12L) outperforms its component parts. 

 
Figure 6. 14. Average monthly percentage of sites where WAve(MOVE12L) outperforms its 

component parts. 
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Figure 6. 15. Range of monthly performance for WAve(MOVE) methods with estimated weights. 

 
Figure 6. 16. Range of monthly performance for WAve(MOVE) methods in the West. 
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Figure 6. 17. Overall range of NSE for DAR and WAve techniques. 

 
Figure 6. 18. Overall range of bias for DAR and WAve techniques. 
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Figure 6. 19. Overall percentage of sites where WAve methods outperform DAR. 

 
Figure 6. 20. Average monthly percentage of sites where WAve methods outperform DAR. 
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Figure 6. 21. Monthly range of NSE for DAR and WAve methods. 

 
Figure 6. 22. Monthly range of bias for DAR and WAve methods. 



 

 161 

 
Figure 6. 23. Monthly range of bias for DAR and WAve methods in the West. 
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CHAPTER SEVEN 

 
Figure 7. 1. Overall range of NSE for DAR and two combinations of DA and SM. 

 
Figure 7. 2. Overall range of bias for DAR and two combinations of DA and SM. 
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Figure 7. 3. Overall percentage of sites where DA-SM combinations outperform DAR. 

 
Figure 7. 4. Monthly range of NSE for DAR and two DA-SM combinations. 
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Figure 7. 5. Monthly range of bias for DAR and two DA-SM combinations. 

 
Figure 7. 6. Average monthly percentage of sites where DA-SM combinations outperform DAR. 
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Figure 7. 7. Overall range of NSE for DAR and two DA-MOVE combinations. 

 
Figure 7. 8. Overall range of bias for DAR and two DA-MOVE combinations. 
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Figure 7. 9. Overall percentage of sites where DA-MOVE combinations outperform DAR. 

 
Figure 7. 10. Range of monthly NSE for DAR and two DA-MOVE combinations. 
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Figure 7. 11. Range of monthly bias for DAR and two DA-MOVE combinations. 

 
Figure 7. 12. Average monthly percentage of sites where DA-MOVE combinations outperform DAR. 
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Figure 7. 13. Overall range of NSE for DAR and two combination methods. 

 
Figure 7. 14. Overall range of bias for DAR and two combination methods. 
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Figure 7. 15. Overall percentage of sites where combination methods outperform DAR. 

 
Figure 7. 16. Monthly range of NSE for DAR and two combination methods. 
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Figure 7. 17. Monthly range of bias for DAR and two combination methods. 

 
Figure 7. 18. Average monthly percentage of sites where combination methods outperform DAR. 

 


