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Abstract. We discuss the physiological metrics that can be measured with 
electroencephalography (EEG) and functional near infrared spectroscopy 
(fNIRs). We address the functional and practical limitations of each device, and 
technical issues to be mindful of when combining the devices. We also present 
machine learning methods that can be used on concurrent recordings of EEG 
and fNIRs data.  We discuss an experiment that combines fNIRs and EEG to 
measure a range of user states that are of interest in HCI.  While our fNIRS 
machine learning results showed promise for the measurement of workload 
states in HCI, our EEG results indicate that more research must be done in 
order to combine these two devices in practice.  
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1 Introduction 

Current research in human computer interaction (HCI) explores the measurement of 
computer users’ brain activity in an attempt to increase the effectiveness of usability 
testing and to create adaptive user interfaces.  By measuring users’ mental states 
objectively, and in real time, usability experts use information about users’ mental 
workload (WL) as an additional metric during usability studies. Designers of adaptive 
systems hope to use this  information as passive input, providing the system with 
reliable, real time information about the user’s state, so that the system can adapt and 
make the human-computer interaction as flawless as possible. 
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Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRs) are 
popular, non-invasive, brain imaging techniques. Unlike other brain devices which 
require subjects to lie in restricted positions (fMRI), or to drink hazardous materials 
(PET), EEG and fNIRs can non-invasively measure users’ brain activity in real 
working conditions [1].  This makes EEG and fNIRs appropriate choices for brain 
measurement in HCI. The majority of brain measurement research in HCI uses EEG 
to measure users’ states while a smaller body of research uses fNIRs. Only a handful 
of researchers have explored the combination of the two devices to measure brain 
function [2-5]. This is unfortunate, as combining the two devices can provide 
complementary information about different physiological responses to brain function 
and compensate for practical and functional limitations of each measurement 
technology. 

EEG and fNIRS measure different physiological responses to mental state changes. 
EEG measures the electrical potentials caused by neurons firing during brain activity.  
fNIRs measures blood volume and oxygenation changes, reflecting hemodynamic 
responses to brain activity. Therefore, combining EEG and fNIRS can provide 
information about both the neural activations and the subsequent oxygenation and 
blood flow changes in the brain. Additionally, each device has functional and 
practical limitations that make it difficult to acquire a range of user states in real 
world settings. We discuss these benefits and pitfalls in detail in the next section, and 
we show how combining the devices allows us to compensate for the measurement 
pitfalls that either device has on its own.   

This paper has three primary contributions to the HCI realm. First, the paper is 
intended as a useful guide for researchers interested in combining fNIRs and EEG. 
We discuss the physiological metrics that EEG and fNIRs can measure, the functional 
and practical limitations of each device, and technical issues to be mindful of when 
combining the devices. Second, we present simple machine learning methods that can 
be used on concurrent recordings of EEG and fNIRs data.  Third, we describe results 
from an experiment using concurrent recordings of EEG and fNIRs. 

The rest of this paper proceeds as follows: First, we discuss background literature 
about EEG and fNIRs. Next we present an experiment designed to elicit varying 
levels of working memory load on subjects. We then describe the machine learning 
techniques that we implemented to analyze the experiment data. After describing the 
results of our data analysis, we discuss our concluding thoughts and extensions for 
future work. 
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2 Background and Relevant Literature 

2.1 Electroencephalography  

EEG is the most studied non-invasive brain imaging device due to its fine temporal 
resolution, ease of use, and low set-up cost.  EEG uses electrodes placed on the scalp 
to measure and record the electrical potential caused by neurons firing in the brain 
during brain activity. These measurements vary predictably in response to changing 
levels of cognitive stimuli [6]. Additionally, EEG benefits from high temporal 
resolution, enabling it to measure changes in cognitive activity on the millisecond 
scale. Therefore, EEG measurements are continuously reflective of a participant's 
cognitive states [7]. However, there are some significant limitations to EEG signals. 
EEG has low spatial resolution (about 10 cm) [7] , making it difficult to make precise 
measurements about the area of the brain being activated.  EEG is also susceptible to 
motion artifacts, such as blinking and movement. These actions create artifacts or 
noise in the data which is, in some cases, stronger than the signal from the neural 
activity [7]. Noise is also introduced into the EEG signal from electrical interference 
and the subjects’ breathing and heartbeat.  Despite these limitations, EEG is a 
promising tool for the continuous measurement of cognitive states.  Lee and Tan used 
a simple and inexpensive EEG system (~$1,500) to differentiate between various 
users’ states that have relevance within the HCI domain [8]. They helped to bridge the 
gap between  brain imaging research and the field of HCI, by providing detailed 
information about the nature of the EEG signal, its potential within the HCI field, 
preprocessing methods, and machine learning techniques for the EEG signal [8].  In a 
later paper, Grimes et al provided an overview of the pragmatics and practicality of 
using EEG for classification of users’ working memory load [9]. They classified two 
working memory (WM) states with up to 99% accuracy, and four WM states with up 
to 88% accuracy. They discuss possible applications of EEG memory load 
measurements as additional metrics for usability testing, and as an additional input to 
adaptive systems [9].  EEG has also been used in more realistic experimental settings 
that apply to the military domain.  For example, ‘smart’ EEG helmets have been 
designed to monitor pilots’ mental state while in the air [10]. Other experiments have 
used portable EEG systems that  monitor soldiers’ mental WL while completing 
realistic training scenarios [11]. 

2.2 Functional Near Infrared Spectroscopy  

fNIRs has been introduced in the last two decades [12], and it is primarily used in the 
medical domain, and in research labs where the focus is to validate and re-design the 
device itself. fNIRs uses optical fibers placed on the scalp or forehead to send light in 
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the wavelength range of 650-850 nm into the head. A small percentage of this light 
migrates through the scalp, skull and brain cortex and eventually is collected by other 
optical fibers placed 2-3 cm away from the source fibers. In the near-infrared range 
the main tissue absorbers are oxy-and deoxy-hemoglobin, therefore any change in the 
concentration of these two chromophores (as during brain function) is reflected into 
intensity changes at the detector’s sites[12]. The spatial resolution in fNIRs is limited 
to approximately 5 mm. Researchers have shown that by placing the probes on a 
subject’s forehead, fNIRs provides an accurate measure of activity within the frontal 
lobe of the brain, which is responsible for many high order cognitive functions, such 
as memory and problem solving that make up mental WL  [1]. More specifically, 
there is a positive correlation between the increase of oxygenated blood and the 
increase in cognitive WL [1, 13]. These results are promising since fNIRs is portable, 
safe, less invasive than other imaging techniques, and has been implemented 
wirelessly, enabling use in real world settings [1]. However, fNIRs is not without its 
own limitations. Unlike PET or fMRI, fNIRs can not measure deep brain structures 
and it is primarily placed on the forehead, as hair can introduce noise into the signal. 
fNIRs is also limited by its low temporal resolution, as it take several seconds to 
monitor blood in the brain. Since most research in fNIRs concerns validating the tool 
itself, the extensive applications conducted with brain imaging techniques such as 
EEG, have yet to be implemented with fNIRs.  Only a handful of researchers have 
paired the fNIRs data with machine learning techniques [14-17].  

2.3 Combining EEG and fNIRs 

A few researchers have explored concurrent recordings of EEG and fNIRS [2-5]. 
These researchers note the functional limitations of each device. By pairing the low 
spatial and high temporal resolution of EEG with the high spatial and low temporal 
resolution of fNIRs, it may be possible to overcome limitations of each measurement 
technology.  Not only do the two devices complement each other by improving on 
one another’s measurement pitfalls, but they also measure different physiological 
markers in the brain, providing further information about a user’s mental state than 
either device could achieve alone. EEG and fNIRs data were concurrently recorded in 
the DARPA Augmented Cognition Technical Integration Experiment, where 
participants were instructed to play Warship Commander, a task which involves 
monitoring a radar screen for airplanes and then responding to their presence [2]. 
Researchers collected fNIRs and EEG data, in addition to several other types of 
physical and mental measurements in an attempt to compare sensor technologies [2].  
Another instance in which fNIRS and EEG were used concurrently is a study 
conducted by Salvatori et al [5]. Due to the novel nature of this research, Salvatori’s 
study was primarily interested in the logistics of combining the two devices and 
emphasis was placed on issues such as data synchronization and sensor placement.  
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Participants in the study were asked to watch a computer screen that displayed an 
alternating white and black checkerboard pattern[5]. Savran et al took concurrent 
recordings of EEG and fNIRS data while subjects viewed images from the 
International Affective Picture System (IAPS) [4]. They described the creation of a 
database to hold EEG and fNIRs data, and they discussed issues in data 
synchronization and sensor placement. Researchers combining EEG and fNIRs look 
at the concurrent data separately, and  while some initial ideas for concurrent data 
analysis have been discussed [4], research to date has not taken the next step of 
actually combining EEG and fNIRS data during data analysis. To the best of our 
knowledge, we are the first to attempt classification of concurrent recordings of EEG 
and fNIRs data with machine learning. 

3 Experiment 

3.1 Equipment  

The fNIRs device used in this study is an OxyplexTS (ISS Inc. Champagne, IL) 
frequency-domain tissue spectrometer with two optical probes. Each probe has a 
detector and four light sources (Fig. 1c). Each light source emits near infrared light at 
two separate wavelengths (690nm and 830nm) which are pulsed intermittently in 
time.  This results in 2 probes x 4 light sources x 2 wavelengths = 16 light readings at 
each timepoint (sampled at 50Hz). Electroencephalograms were collected using 32-
channel caps.  

 

 

Fig. 1. a) A subject wears fNIRs/EEG setup. b) electrode placement c) fNIRs sensors 

Electrodes were arranged according to the International 10-20 system (1b).  The EEG 
was amplified using an SA Bioamplifier (SA Instruments, San Diego Ca.) with a 
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bandpass of .01 and 40 Hz.  The computer sampled at a rate of 200 Hz. The fNIRs 
probes were placed on subjects’ forehead using an athletic headband, leaving room 
for the electrode cap to fit on their heads (1a). 

3.2 Experiment Tasks 

Our experiment had three conditions (Fig. 2). In each condition, users viewed rows of 
randomly generated red and blue planes moving down a screen. 

 

Fig. 2. The three experiment conditions are low WL (a), high WL (b) and random WL (c).  

Users kept track of the total number of red and blue planes that they had seen, and 
after 60 seconds, they were prompted to give the total count.  While the figure below 
shows 2 rows of planes in each condition, in reality, only one row of planes was on 
the screen at any given time. In the first condition (Figure 2a) subjects made WM 
updates based on the two planes that were in each row. In the second condition (2b) 
subjects viewed six planes per row, and in the final condition (2c), subjects viewed 
randomly generated rows of two or six planes. We based our WL conditions on the 
fact that set size has been used to manipulate WM for decades.  We will refer to these 
conditions as the low WL (2 planes per row), random WL (2 or 6 planes per row), and 
high WL (6 planes per row) conditions. 

3.3 Task Events and Synchronization 

Events were automatically generated and logged each time that one of the 60 second 
long tasks began or ended. Ideally, the EEG and fNIRs data acquisition would be 
synchronized in time, and any events recorded throughout the experiment would be 
logged in the concurrently recorded EEG and fNIRs acquisition systems [4, 5]. Due to 
hardware limitations, an approximation was made.  The EEG and fNIRs acquisition 
systems were set to start at the same time via two button presses (one for the fNIRs 
acquisition system and one for the EEG system). Each event was logged directly into 
the fNIRs acquisition system, which sampled at 50Hz, and added to the EEG data 
after the experiment ended.  
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3.4 Experiment Methodology 

Four right handed, undergraduate students at Tufts completed this experiment (3 
women, 1 male).  Subjects were instructed to keep movement to a minimum, and to 
count the number of red and blue planes that they saw during each 60 second task 
period. After each task ended, they verbally gave their answers. Subjects rested for 20 
seconds between each task.  We used a randomized block design with 8 trials, 
resulting in 24 tasks. 

4 Results and Analysis  

4.1 Performance Results 

We calculated subjects’ performance (whether they said the correct number of 
red/blue planes) on the three experiment conditions.  WM load increased as the 
number of planes per row increased, and subjects’ performance on each of the 
experiment conditions reflected this increase in WL. Subjects had the highest 
accuracy for the tasks that involved 2 planes per row (low WL). They had the lowest 
accuracy on tasks with 6 planes per row (high WL), and their accuracy on the random 
WL condition was always between the accuracy on the high and low WL conditions. 

4.2 Data Preprocessing and Machine Learning Analysis 

As brain activity differs widely on a person to person basis, we run all analyses 
separately for each subject. We developed machine learning techniques to classify the 
EEG and fNIRs data from the experiment. Our analysis is not intended to compare 
the two techniques of brain measurement or the machine learning techniques.  

fNIRs:  Each experiment lasted about 35 minutes, with fNIRs data recorded every .02 
seconds. We recorded 16 channel readings at each timepoint, where we refer to the 
readings of one source detector pair at one wavelength, as one channel. We first 
normalize the intensity data in each channel by their own baseline values. We then 
apply a moving average band pass filter to each channel (saving frequency values 
between .1 and .01 Hz) and we use the modified Beer-Lambert Law[12] to convert 
our light intensity data to measures of the change in oxygenated hemoglobin (HbO) 
and deoxygenated hemoglobin (Hb) concentrations in the brain. This results in eight 
readings of HbO and eight readings of Hb data at each timepoint in the experiment. 
To choose the best HbO and Hb channels for classification we use the techniques 
described in [14].We implemented a weighted k-nearest-neighbor classifier (k=3) 
with a distance metric computed with Symbolic Aggregate Approximation (SAX). 
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SAX creates a symbolic approximation of time series data, allowing for 
dimensionality reduction. For a review of SAX, see [18].   

EEG: We implemented signal processing and feature generation schemes that have 
been used with EEG data previously [8]. We split the continuous EEG data into small 
overlapping windows and we took a Fourier transform of the data in each window.  
We chose a window size of 2 seconds, with windows overlapping every second. For 
each window, we compute the magnitude and phase of the signal and the spectral 
power of the signal in the delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), beta-low (12-
20Hz), beta-high (20-30Hz), and gamma (30-50Hz) frequency bands.   We also 
compute the coherence and cross spectrum between each channel for each frequency 
band in each window. This results in over 6,200 features for each instance. We use 
blocked cross validation to select our most relevant attributes for classification. We 
use an information gain heuristic followed by Weka’s CfsSubsetEval function to 
choose the features that best predict the class label in the training data. We then apply 
a Naïve Bayes classifier to data. 

4.3 Classifying Working Memory Load  

We attempted to classify each 60 second long period of time when subjects were 
completing one of the 3 conditions described in Fig 2.  We classified these conditions 
with our fNIRs data, and with our EEG data.  Classification results are depicted in 
Table 1. We looked at our ability to classify low and high WL, low and random WL, 
random and high WL, and low, random, and high WL. When using just the fNIRs 
data for analysis, we see that we achieved promising accuracy for each subject. 
However, with the exception of subject 1, the EEG data yields nearly random 
accuracy. It is promising that the fNIRs classification yielded accuracy as high as 
82% distinguishing two WL classes and up to 50% for distinguishing three WL 
classes. 

Table 1. Classification accuracy on just fNIRs data (unshaded) and just EEG data (shaded 
columns) for the three conditions in Fig 4.  S1 = subject 1, etc.  

 random 
v. low  

random 
v. low  

random 
v .high  

random 
v. high  

low v. 
high  

low v. 
high  

low v. 
random 
v. high  

low v 
random 
v. high  

s1 57% 63% 64% 75% 61% 69% 45% 42% 

s2 53% 56% 53% 69% 51% 69% 34% 46% 

s3 50% 82% 52% 69% 49% 75% 33% 50% 

s4 52% 78% 50% 65% 52% 75% 34% 46% 
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4.4 Analysis of Results 

There are many possible explanations for the low EEG classification accuracy in this 
experiment. Our ability to accurately measure users’ states depends on a number of 
factors.  Any changes in the placement of the fNIRs and EEG sensors on subjects, 
changes in the analysis techniques applied to the brain data, or changes in the 
experiment tasks could result in higher or lower classification accuracy of fNIRs or 
EEG brain data.  It is possible that the chosen task elicited brain activity primarily in 
the prefrontal cortex, which was dominated by the fNIRs sensors. It is also possible 
that the fNIRs light sources introduced noise into the EEG signal that was difficult to 
remove [4]. Therefore, the EEG sensors may not have been able to pick up the 
resulting brain activity.  

5 Conclusion and Future Work 

In this paper, we discussed the physiological metrics that EEG and fNIRs can 
measure, the functional and practical limitations of each device, and technical issues 
to be mindful of when combining the devices. We presented machine learning 
methods that can be used on EEG and fNIRs data.  We presented an experiment 
designed to combine fNIRs and EEG to measure three user states.  While the EEG 
results were low, we demonstrated the ability of fNIRs to classify mental WL states. 
fNIRs is a relatively new device, and it holds great potential for the HCI domain. 
Future work will explore factors that may have contributed to the low EEG results. It 
is possible that EEG and fNIRS can best complement eachother when subjects 
complete tasks that activate more than just the prefrontal cortex. It is apparent that 
EEG and fNIRs, when combined, have the potential to acquire complementary 
information about user states. However, more research is needed to achieve this goal.   
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