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Abstract 
  

In the big picture of smart grids, the wide deployment of smart meters and the development 

of information and communication technology (ICT) are bound to make vast and 

increasing quantities of data accessible. Accordingly, data-driven analysis has the potential 

to revolutionize how the modern power grid is modeled, monitored, and controlled. 

 

    The expected tremendous growth of power systems needed to integrate renewable 

sources, transportation, and storage significantly increases the system complexity and 

poses challenges on the security and reliability of the power supply. The potential for 

instability caused by oscillations is one of the key concerns. Conventional power system 

stabilizers (CPSSs) are widely utilized in modern power systems to provide supplementary 

damping torque via the excitation system. The parameters of CPSS are determined based 

on a small set of linearized models around specific operating conditions. This leads to the 

concern that the damping effects of CPSSs may degrade under a highly dynamic operating 

environment. The dependency of CPSSs on accurate modeling of the power system is 

another critical problem since the high-accuracy modeling task is made progressively more 

challenging in the increasingly distributed power system resources. 

 

    This dissertation proposes a data-driven control framework, referred to as ESO-

Koopman-MPC (EKM), and presents a novel power system oscillation damping controller 

design based on this structure. The system dynamics are extracted from the measurements 
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of the system observables and applied to the synthesis of control actions in an equation-

free manner without requiring explicit knowledge about the underlying power network. 

Dynamic mode decomposition with control (DMDc), based on the Koopman operator 

theory, connects the collected data to the analysis and control of the underlying nonlinear 

dynamical system. The discrepancy between the model identified by DMDc and the real 

plant is labeled as a total disturbance, estimated in real-time by an extended state observer 

(ESO), and mitigated via a linear MPC, assuming the total disturbance to be constant in 

the prediction horizon.  

 

    The design of the power system oscillation damping controller considers two control 

strategies, (1) integration of automatic voltage regulator (AVR) and PSS, and (2) only PSS. 

The data-driven damping controllers are illustrated on a single machine infinite bus system 

(SMIB), Kundur two-area system, and IEEE 39-bus system, with performances compared 

with the CPSSs. The simulation results verify the enhanced oscillation damping 

performances and voltage regulation abilities of the data-driven controllers. 

 

 

 

 

  



iii 
 
 

 

 

 

  

Believe in our unbending striving 

Believe in our youth that can conquer death 

Believe in the Future: believe in Life. 

                                                                            ---- Shizhi, 1968 
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Chapter 1  

 

Introduction 
 

With the rapid development of the smart grid, the embedded information layer into the 

power network produces a massive amount of data, including measurements of the system 

observables and the control actions for generation, transmission, storage, and analysis in a 

fast and comprehensive way. In other words, modern power system technology comes into 

a big data era. The access to large quantities of data and the remarkable progress of 

information and communication technology (ICT) provides a new vision for power system 

monitoring and control.  

 

In our work, a data-driven control framework is proposed and applied in the power 

system oscillations damping. The control framework involves, 

• the dynamical system identification,  

• online disturbance estimation, and 

• a model predictive control (MPC) structure.  

Different from the conventional workflow of controller design, the novel framework is in 

an “equation-free” manner and has the ability of online learning and self-adaption. For 
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cases where exact modeling is challenging, big data motivates the paradigm shift from a 

“model-based” to a “data-driven” perspective.  

 

1.1 Research Background: The Big Data Era of Power Systems 
 

The deployment of ICT in power systems makes an abundant source of information 

accessible, which covers the data from the process of electricity generation, transmission, 

distribution, and consumption. The data include electrical information from distribution 

stations, transmission lines, measurement devices, as well as non-electrical information 

such as regional economic management data, meteorological and marketing data, as shown 

in Figure 1-1.  

 

 

Figure 1 - 1 Data Sources and Analytics in Smart Grids  

 

1.1.1 Data Collection Devices in Power Systems 
 

The data in power systems are collected and transmitted by smart meters to provide 

information to utility companies, independent system operators (ISO), and consumers. The 
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measurements include the bus voltage, feeder current, power factor, active/reactive power 

flow, energy consumption over a period and total harmonic distortion, etc.  

 

Smart meters involve but are not limited to the following list: 

• Advanced Metering Infrastructure (AMI): AMI integrates smart meters, data 

management, and communication to provide bidirectional communication between the 

supply and demand side.  

• Phasor Measurement Unit (PMU): PMUs provide real-time measurements in a 

sample rate of 30~60 samples/sec of multiple remote spots with global time 

synchronization.  

• Wide Area Monitoring System (WAMS): WAMS is an application server to manage 

the information of distributed PMUs.  

• Remote Terminal Unit (RTU): RTU is a microprocessor-based device that can 

transmit telemetry data.  

• Supervisory Control and Data Acquisition (SCADA): SCADA provides system 

monitoring and emergency alarms. 

• Intelligent Electronic Device (IED): IED monitors and records status changes in the 

substation and outgoing feeders.  

 

1.1.2 The Characteristics of Big Data in Power Systems 
 

The characteristics of the big data in power systems are in accordance with the universal 

5V big data model [1], 

(a) Volume: The widespread application of smart meters and advanced sensor technology 

provide a considerable amount of data.  
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(b) Velocity: With the increasing sampling frequency of smart meters, the speed of data 

generation is growing. Table 1-1 demonstrates the amount of data from smart meters in a 

year under various collection frequencies, assuming 1 million devices and a 5 KB record 

per collection [2]. 

 

Table 1-1 Data Volume in Different Sampling Rates 

Collection Frequency 1/day 1/h 1/30 min 1/15 min 

Records Collected 365 million 8.75 billion 17.52 billion 35.04 billion 

Volume of Data 1.82 TB 730 TB 1460 TB 2920 TB 

 

(c) Variety: The diversity of data types in power systems is reflected in formats and 

dimensions; see Figure 1-1.  

(d) Veracity: Veracity refers to the messiness or trustworthiness of data. The power system 

is tightly coupled with the ICT layer, forming a cyber-physical system (CPS).  

Measurements may contain errors and noises due to the imperfections in devices or 

mistakes in data transmission, i.e., communication delay [3], packet drop, etc.  

(e) Value: The larger the data volume is, the lower the density of valuable information 

contained is.  

 

1.2 Perspective Shift: Data-Driven Controller Design 
 

As displayed in Figure 1-1, data-driven applications in power systems are developed by 

extracting valuable information from measurements, such as fault detection [4, 5, 6], 

predictive maintenance/condition-based maintenance and alarm [7, 8], transient stability 

analysis [9, 10, 11], state estimation [12], power quality monitoring [13], topology 
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identification [14], renewable energy and load forecasting [15, 16] and other areas such as 

load profiling, load disaggregation, non-technical loss detection; see [2] for a review.  

 

This dissertation focuses on developing a data-driven control framework without any 

pre-knowledge about the underlying dynamics. If any known dynamics that partially 

describe the process to be controlled exist, the proposed data-driven framework has an 

interface to incorporate and leverage such pre-knowledge. The overall data-driven 

controller design workflow is shown in Figure 1-2. 

 

 

 

Figure 1 - 2 Workflow of Data-Driven Controller Design 

 

1.2.1 Motivations of Data-Driven Controller Design 
 

With a large-scale power system as an example, the dynamical system is intrinsically high-

dimensional, nonlinear, and time-varying. We summarize three key factors that motivate 

the novel data-driven controller design in power system applications.  

A. Power System Modeling Challenges  

The following list draws out the main modeling challenges of power systems [17], 
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• Penetration of Renewable Energy Sources (RESs): The outputs of RESs are uncertain 

and intermittent.  

• Distributed Generation Sources (DGS): DGSs are connected to distribution networks, 

right down to the level of individual homes, which results in two-way power flows that 

pose challenges to the operation of local networks. 

• Component (particularly load) Variations 

• Undocumented Alternations/Obsoleteness 

• Models Existing only in the Form of Tabulated Data or Computer Code: A typical 

example is the application of advanced control and automation. 

• Demand Response by Consumers: The consumers are offered increased flexibility to 

use smart appliances, for example, to align more closely with the output from 

intermittent RESs.  

• Inter-Dependency of the Power Network and the ICT Infrastructure: The conventional 

modeling pays far more attention to the power grid than the communication network.  

 

B. Bia Data in Power System 

The big data era of power systems discussed in the last section provides large quantities of 

data, which is the backbone of data-driven technologies. 

 

C. Development of Data-Driven Analytics 

The history of data-driven discovery can be dated back to Johannes Kepler and Isaac 

Newton. The theoretical underpinnings of the celestial mechanics were developed based 

on a combination of empirical data-driven and analytical approaches. Data science is not 

replacing mathematical modeling but instead an augmenting tool in real applications.  
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The data science concept is dominated by two distinct outlooks: the machine learning 

community and the statistical learning community. From the viewpoint of controller design, 

the goal is to leverage the broad techniques to infer and compute models from observations. 

The identified model is expected to describe the measured dynamics accurately and can be 

generalized qualitatively and quantitively to the unmeasured parts in a wide working range. 

 

1.2.2 Procedures of Data-Driven Controller Design 
 

As shown in Figure 1-2, procedures of the data-driven controller design are, 

 

Step 1: Dynamical Data Acquisition 

Dynamical data in this dissertation is from numerical simulation of detailed power system 

models in Simulink. Short-time disturbances that are easy to be implemented in practice 

are exerted on the dynamical system to excite transients, and dynamical data is collected 

in the post-disturbance period. The measured variables are limited to observables available 

in the power system monitoring system.  

 

Step 2: Dynamical System Identification  

The dynamical system identification from the collected data depicts how the system states 

evolve and the impact of the forced controls on the system outputs, especially those target 

variables that we are interested in. The Koopman operator-based approach, dynamic mode 

decomposition with control (DMDc) introduced in Chapter 2, is applied in our work at this 

step. The quality and accuracy of the identified system are verified in terms of the system 

trajectory prediction performance.  
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Step 3: Controller Design 

The approach of controller design depends on the format of the identified dynamical system. 

Owing to the linearity of the Koopman operator, the system identified by DMDc is linear 

and thus allows mature linear design techniques to be applied in highly nonlinear and 

complicated processes underlying.  

 

Step 4: Control Performance Test and Analysis 

The control performances of the data-driven oscillation damping controller and the model-

based conventional power system stabilizer (CPSS) are compared on various test platforms, 

recommended by IEEE Task Force, in this dissertation.  

 

1.3 Contributions 
 

The contributions of this dissertation are summarized as: 

 

• Proposed a Data-Driven Control Framework 

This dissertation proposed a completely data-driven control framework, referred to as 

Extended State Observer-Koopman-Model Predictive Control (EKM); see Chapter 4. This 

control framework contains system dynamics extraction from the collected data, model-

plant mismatch estimation and self-compensation by the extended state observer (ESO), 

and controller design in the MPC architecture. The control framework is not fixed, and the 

three basic components (1) Koopman operator-based system identifications, (2) ESO, and 

(3) MPC can be replaced by other appropriate techniques. For example, the controller 

design can follow the linear quadratic regulator (LQR), fuzzy-logic control, or other 

schemes.  
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• Introduced ESO to Realize Online Disturbance Estimation 

The dynamical system identified from the collected data generally has prediction deviation 

from the true dynamics. The model-plant mismatch may derive from the limitations of 

identification approaches, data homogeneity, sensor noises, or the underlying system 

variations (parameter, external disturbance, etc.). An ESO is introduced to estimate the 

discrepancy between the identified model and the real plant from the system inputs and 

outputs measurements. The dynamics learned by DMDc are incorporated into the ESO 

design to reduce the estimation burden; see 3.4.2 Multi-Channel ESO.  

 

The estimated discrepancy is then used to adaptively update the predictive model in the 

MPC structure in a real-time manner. The discrepancy is assumed to be constant in the 

MPC prediction horizon and compensated accordingly.  

 

• Designed Data-Driven Power System Oscillation Damping Controllers 

Power system oscillation damping controllers are designed following the proposed data-

driven control framework, ESO-Koopman-MPC. To the best of our knowledge, this is the 

first time that a data-driven controller design is applied to the power system oscillation 

damping. The design takes some practical considerations into account, i.e., observables 

selection, dynamical data collection, control strategies of integration of automatic voltage 

regulator (AVR) & PSS and only PSS, etc. The data-driven damping controller is compared 

with CPSS on different-scale platforms. The damping effects of critical oscillatory modes 

and the terminal voltage regulation abilities of the EKM-based controllers are superior 

under various scenarios.  

 

    This dissertation has a conference paper [18] published and a journal paper still under 

peer-review [19]. Besides, the author also has publications [3, 20] on the power system 
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frequency control considering the communication delays, where active disturbance 

rejection control (ADRC) is applied to the automatic generation control (AGC). The core 

component, ESO, in ADRC inspires the estimation of the model-plant mismatch in this 

dissertation.  

 

1.4 Work Outline 
 

The remainder of this dissertation is organized as follows:  

• Chapter 2 provides basics about the Koopman operator theory and two commonly used 

numerical approximation methods: Arnoldi-type method and dynamic mode 

decomposition with control (DMDc). 

• Chapter 3 introduces ESO in both the nonlinear and linear format. Multi-channel ESO 

is proposed leveraging the dynamics identified by the DMDc to reduce the estimation 

burden in a linear form. 

• Chapter 4 reviews the MPC theory first and proposes the ESO-Koopman-MPC (EKM) 

control framework. The online algorithm of EKM is presented in the last subsection.  

• Chapter 5 describes the formulation of a data-driven oscillation damping controller 

with two control strategies considered: (1) integration of AVR and PSS; (2) only PSS. 

Simulation results of data-driven controllers on platforms of different scales are 

displayed and compared with CPSSs.  At the end of this chapter, some discussions 

about ESO and the characteristics of the control framework are presented. 

• Chapter 6 summarizes this dissertation and points out some directions to be explored 

in the future.   
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Chapter 2 

 

Koopman Operator Theory 
 

Past decades have witnessed significant advances and achievements in the development of 

the nonlinear dynamical system theory. Despite the intense research activity at a theoretical 

level, nonlinear system theory and control techniques have not been applied to real-world 

applications as much as hoped. In contrast, linear control theory still prevails the industrial 

processes since it provides a systematic framework that is often easy to be implemented. 

The gap between the theory and the practice generally results in suboptimal control to 

nonlinear problems and might not meet the growing demand for higher control 

performances or improved accuracy.  

 

Additionally, the increasing complexity and diversity of the dynamical systems make 

the classical system modeling and the corresponding model-based control not amenable. 

However, these dynamical systems generate large quantities of data, motivating the 

development of innovative data-driven methods in nonlinear control theory. The Koopman 

operator introduced in this chapter offers a promising way to address the challenges 

mentioned above. 

 

 In this chapter, an overview of the Koopman operator in the context of dynamical 

systems and control theory is provided first, involving the basic definitions, properties, and 
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spectral analysis. Then, numerical methods to obtain approximations of the Koopman 

operator on a finite-dimensional basis are presented, and we mainly focus on two widely 

used algorithms: Arnoldi-type method and dynamic mode decomposition (DMD) with 

control (DMDc). 

 

2.1 Data-Driven Viewpoint and the Koopman Operator 
 

Koopman operator can be traced back to the seminal works by Koopman and von Neumann 

in the 1930s [21, 22]. This operator-theoretic perspective showed that nonlinear dynamical 

systems associated with Hamiltonian flows could be analyzed with an infinite-dimensional 

linear operator on the Hilbert space of observable functions. Although this composition 

operator has attracted considerable interest in statistical mechanics, its dual transfer 

operator, the Perron-Frobenius operator, has predominated in nonlinear systems theory for 

a long time.  

 

Until the middle 2000s, the Koopman operator theory was revisited by Mezic in [23], 

and since then, Koopman analysis has been at the focus of recent data-driven efforts to 

characterize complex systems. Numerical approximation methods are proposed to compute 

the spectrum of the Koopman operator from data. In addition, the Koopman operator 

approach has been successfully applied to a wealth of real-world problems ranging from 

fluids dynamics, power grids, epidemiology to financial markets; the reader is referred for 

an extensive review in [24]. Overall, the Koopman operator theory is quite appealing to 

develop data-driven control schemes in the big data era.  
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2.1.1 Definition and Properties of the Koopman Operator 
 

Koopman operator can be defined in both discrete-time systems (nonlinear dynamic map) 

and continuous-time systems (semigroups of flow maps).  

• Discrete-time Dynamical Systems 

Consider a discrete-time dynamical system represented as 

                                                      
1 ( ),   k kx T x k+ =                                                           (2-1) 

where n

kx  M is the state sampled at 
kt k t=  with sampling time t , and 

:T →M M is the nonlinear dynamic map. The system is typically described by its orbits 

0 0{ ( )}k

kT x 

=
, where 

0x  stands for the initial condition.  

 

Definition 2.1 Koopman Operator (Discrete-Time) For an arbitrary function of the states 

(observable) ( ) :g x →M , there exists an infinite-dimensional linear operator 
t  

acting on the space  of observable functions and advancing g  to the next time step, 

                                1( ) ( ) ( ),   gt k k kg x g T x g x + = =                                           (2-2) 

The Koopman operator embodies two main advantages. First, the Koopman operator 

provides a global description of nonlinear dynamical systems in terms of the evolution of 

observables. Second, the Koopman operator is a linear operator even though the underlying 

dynamical system is highly nonlinear, and the linearity is proved from the linearity of the 

composition operation, i.e., 

 

Linearity: Consider 1 2 1 2, , ,g g c c    

                1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2

( )( ) ( ) ( ) ( ) ( )
                           ( ) ( )

t k k k k

t k t k

c g c g x c g c g T x c g T x c g T x
c g x c g x



 

 + = + = +
=  + 

               (2-3) 
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However, unless the function space  is a finite set, the Koopman operator is generally 

infinite-dimensional, which makes the direct utilization of the Koopman operator 

unrealistic. Follow-up research efforts try to reduce the dimensionality by a finite-

dimensional projection of the Koopman operator onto appropriate eigenspace. 

 

• Continuous-time Dynamical Systems 

In this case, we consider a continuous-time dynamical system ( )x f x= , and : nf →M

is a vector field on the state space. The flow map :tF →M M  transforms the initial state 

to the state at time t + , i.e., 

                                                

0

0 0

, 0

( ) ( ( ))

t

t

t

x

F x x f x d x


 
=

= + =                                    (2-4) 

The one-parameter family of flow maps 
tF  generates the trajectory 0 0{ ( )}t

tF x 

= .  

 

Definition 2.2 Koopman Operator (Continuous-Time) For an arbitrary function of the 

states (observable) ( ) :g x →M , there exists a one-parameter semi-group of Koopman 

operators, denoted by 0{ }t

tU  , where each element in this semi-group satisfies 

 
0 0 0

( ) ( ) ( ),   gt t

t t t tU g x g F x g x += =                                    (2-5) 

The linearity of the Koopman operator in the continuous-time case is still valid. The semi-

group property of  0{ }t

tU   follows from the semi-group property of the flow map in 

autonomous dynamical systems, 

Semi-group property:  

                               
( ) ( ) ( ) ( )

               ( )

t s t s s t s t

s t

U U g x U g F x g F F x g F x
U g x

+

+

= = =
=

                    (2-6) 
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A schematic representation of the Koopman operator is shown in Figure 2-1. The 

Koopman operator viewpoint maps (lifts) the dynamics from the original state-space to the 

space of observables, where the evolution rule is linear. In other words, the discrete-time 

or continuous-time dynamical system modeling , , tT f F and the corresponding Koopman 

operators , t

tK U are different description formats of the same dynamics. The model-based 

, , tT f F are generally finite-dimensional but nonlinear, while the data-driven operators

, t

tK U  are infinite-dimensional but linear. 

 

 
Figure 2- 1 Schematics of the Koopman Operator 

 

    Other properties of the Koopman operator, e.g., positivity, contractivity, and duality, are 

elaborated in [24]. Besides, some specific characteristics of the Koopman operator may 

depend on the choice of the state function space  . For example, in measurement-

preserving dynamical systems, the Hilbert space of 
2L  functions with respect to the 

invariant measures is usually considered as the function space. In this case, the Koopman 

operator is unitary with 
*UU I= (the “U” notation comes from this unitary property).  
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     2.1.2 Spectral Analysis of the Koopman Operator 
 

As discussed in the last section, the Koopman operator is linear. Thus, it is natural to 

consider its eigenvalues and eigenfunctions since they reveal a linear explanation of how 

the system observables evolve.  

 

Definition 2.3 Eigenfunction and eigenvalue of the Koopman Operator 
tK
(Discrete-

time) A pair of eigenfunction ( ) {\ 0}j x  and eigenvalue 
j   of the Koopman 

operator 
tK
 associated with the discrete-time dynamic map T satisfies 

                                       
1( ) ( ) ( ) ( )t j k j k j k j j kK x T x x x     += = =                            (2-7) 

 

Example 2.1: Linear Time-Invariant System (Discrete-time)  

A LTI system is considered with the state map ( )T x Ax= , where A  is the system matrix 

with eigenvalues 
j  and left (column) eigenvectors 

jw  with T T

j j jw A w= . Therefore, 

( ) T

j jx w x =  and 
j  are a pair of eigenfunction and eigenvalue. The verification is as 

follows, 

                                  ( ) ( ) ( )T T

t j j j j j j jK x T x w Ax w x x     = = = =                           (2-8) 

Definition 2.4 Eigenfunction and eigenvalue of the Koopman Operator 
tU (Continuous-

time) The eigenfunction-eigenvalue pair of the continuous-time case associated with the 

flow map 
tF  is defined as follows  

( ) ( ) ( )jtt t

j j jU x F x e x


  = =                                            (2-9) 

The Koopman operator generally has infinite eigenvalue-eigenfunction pairs. First, we 

assume all eigenvalues form a point spectrum. For the discrete-time case, if 1 2,   are 

eigenfunctions of the Koopman operator tK whose eigenvalues are 1 2,  , then 1 2

1 2

c c   is 
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also an eigenfunction with the eigenvalue 1 2

1 2 1 2, ,
c c

c c    . Similarly, in the continuous-

time setting, eigenfunction 1 2

1 2

c c   has the corresponding eigenvalue 
1 1 2 2c c + . On the 

other side, the Koopman operator may also admit a continuous spectrum such as the 

pendulum dynamics and some chaotic systems [25]. 

 

Eigenfunctions of the Koopman operator are a set of crucial measurement functions that 

behave linearly in the time domain and provide the basis for Koopman mode 

decomposition (KMD). When the system dynamics are integrable and defined in a compact 

space, the infinite set of Koopman eigenfunctions provides a complete basis of the function 

space . Therefore, the Koopman mode expansion of g is expressed by 

                                                            
1

j j

j

g v 


=

=                                                                              (2-10) 

The coefficients 
jv  are the Koopman modes related to the observable g .  

In practice, the measurements of a dynamical system usually contain multiple 

observables. For example, we may have access to the time series of power generations and 

consumptions on several nodes in a specified power grid, or in the study of climate 

dynamics, there exist many recording stations of the atmospheric temperature at different 

locations around the globe. A vector-valued observable is denoted as  

                                                       

1

2

( )
( )

( )
  

( )

p

p

g x
g x

g x

g x

 
 

=  
 
 

                                                                (2-11) 

Koopman mode expansion is then applied on each element , 1,2,...,ig i p= , and we have 

1

j j

j

g v 


=

= . The vector jv  is the Koopman mode of the observable vector associated to 
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the eigenfunction j . The evolution of the vector-valued measurements for a discrete-time 

system is thus governed by 

                                        
1 1

( ) ( ) ( )k k k

t t j j j j j

j j

K g x K x v x v  
 

 

= =

= =                                 (2-12) 

Similarly, we have  

                                         
1 1

( ) ( ) ( )jtt t

j j j j

j j

U g x U x v e x v


 
 

= =

= =                                  (2-13) 

for continuous-time systems. Koopman mode 
jv  is the projections of the observable 

functions on the eigenfunction 
j . The expansions in (2-12) and (2-13) are referred to as 

the Koopman mode decomposition (KMD). The linear dynamics offer a global 

linearization of nonlinear systems with no approximation.  

 

The spectral analysis of the Koopman operator reveals characteristics of the underlying 

dynamics. Considering an example of the power network, the system instabilities can be 

connected to the Koopman eigenvalues growing in time, that is 0j   for continuous-time 

or | | 1j   for discrete-time. Besides, the entries of the Koopman mode 
jv  tell the relative 

amplitude of each node in terms of the unstable growth and hence predict which nodes are 

most susceptible to breakdown. 

 

Example 2.2 Nonlinear system with single fixed point and a slow manifold  

To further illustrate the concept of the Koopman operator and the Koopman linear 

expansion, we consider an example [26] with a single fixed point,  

                                                       1 1
2

2 2 1( )

x x

x x x




=

= −
                                                      (2-14) 
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For 0   , the system exhibits a slow attracting manifold given by 2

2 1x x= . System 

trajectories with randomly initialized states are shown in Figure 2-2, where 

1, 0.05 = − = − .  

 

Figure 2-2 States Trajectories of the Nonlinear System in Example 2.2 

 

The system measurements are assumed to be 2

1 2 1( ) [ , , ]g x x x x=  with a nonlinear 

augmented function (observable) 2

1x . In these coordinates, the dynamics of (2-14) becomes 

linear, shown below. 

                               
11

2

2 2 1
2

1 1 1

0 0
( ) ( ) 0 ( )

0 0 22 2

xxd
g x x x x g x

dt x x x

 
  



    
 = = − = −   

        

                   (2-15) 

The system matrix has left eigenvectors 
1 2 3

2
[0, ,1], [1,0,0], [0,0,1]

 
  



−
= − = =  and 

eigenvalues , , 2   . The eigenfunctions correspond to eigenvalues ,   are 

                                           2

2 1 1

2
,x x x 

 
 



−
= − + =                                              (2-16) 
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The evolution trajectories of the eigenfunctions in (2-16) are displayed in Figure 2-3, 

where the slow manifold becomes flat. All eigen-observables define a subspace that 

remains invariant under the Koopman operator. In other words, the system matrix in (2-15) 

represents a finite-dimensional approximation of the Koopman operator. The selection of 

observables, in this case, is very clever but is not always easy for an arbitrary dynamical 

system. Ref. [27] leverages neural networks to discover representations of the Koopman 

eigenfunctions from data. Actually, the nonlinear system (2-14) is one of few dynamical 

systems for which a closed and finite-dimensional Koopman approximation exists and can 

be found analytically. 

 

2.1.3 Koopman with Inputs and Control 
 

Although the Koopman operator was initially proposed to study autonomous dynamical 

systems, a generalization called Koopman with inputs and control (KIC) [60] is extended 

to handle complex systems with external inputs. In this section, a discrete-time case is 

studied, i.e.,  

                                                            1 ( , )k k kx f x u+ =                                                  (2-17) 

where m

ku   .  

 

We construct an augmented state space as the product of the original state space and 

the space of all control input sequences, 

       𝑥𝐴𝑢𝑔 = [
𝑥
𝒰

]                                                     (2-18) 

where 𝑥𝐴𝑢𝑔 ∈ 𝔐 × ℓ(Ν)  and ℓ(Ν)  stands for the space of all control sequence 

(𝑢𝑖)𝑖=0
∞ , 𝑢𝑖 ∈ Ν. The element in ℓ(Ν) is denoted as 𝒰. Therefore, the dynamics in (2-17) 

can be rewritten as 
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                                            𝑥𝑘+1
𝐴𝑢𝑔

= ℱ(𝑥𝑘
𝐴𝑢𝑔

): = [
𝑓(𝑥𝑘, 𝒰(0))

𝒮𝒰
]                                   (2-19) 

where 𝒮 is a left shift operator, i.e. (𝒮𝒰)(𝑖) = 𝒰(𝑖 + 1) , and 𝒰(0) is the first element in 

the control sequence 𝒰, [61]. Koopman operator is thus defined for the following skew 

product system, 

                                 (𝑓(𝑥,𝒰(0)), 𝒮𝒰):𝔐 × ℓ(Ν) → 𝔐 × ℓ(Ν)                             (2-20) 

as follows 

                                        𝒦∆𝑡𝑔(𝑥𝑘
𝐴𝑢𝑔

) = 𝑔 ∘ ℱ(𝑥𝑘
𝐴𝑢𝑔

) = 𝑔(𝑥𝑘+1
𝐴𝑢𝑔

)                                     (2-21)       

for any observable function 𝑔:𝔐 × ℓ(Ν) → ℂ defined on the augmented space.  

 

 

Figure 2- 3 Eigen-observables Trajectories of the Nonlinear System in Example 2.2 

In the context of KIC, the definition of eigenvalues, eigenfunctions and Koopman modes 

are similar to the case without external control. 
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2.2 Finite-Dimensional Approximation of the Koopman Operator 
 

The Koopman operator offers a global linearization viewpoint that has the potential to 

revolutionize how we analyze, predict, and control nonlinear dynamical systems. The 

traditional local linearization of nonlinear dynamics near fixed points or periodic orbits has 

long been employed, but its validness is questionable far away from the fixed points and 

periodic orbits.  

 

The main obstacle of the application of the Koopman operator is the infinite 

dimensionality. Several data-driven methods to approximate the spectral properties of the 

underlying dynamics have emerged to resolve this issue, and this research area keeps 

receiving great attention and working efforts. The numerical approximation methods can 

be generally classified into two types [24]:  

 

(1) Methods aiming to obtain a finite-dimensional matrix approximation of the 

Koopman operator such as (extended) dynamic mode decomposition (E)DMD, [28, 

29]. Recently, ref. [27, 30] leverages the power of deep learning to discover 

eigenfunctions or the invariant subspaces, releasing the typical EDMD from the 

cumbersome search of appropriate lifting functions.  

(2)  Methods based on generalized Laplace averages (GLA) [31, 32]. Such methods first 

seek an approximation of the Koopman eigenvalues and then use the projection 

theorem to obtain eigenfunctions and Koopman modes.  

 

    A summary of the development of numerical methods to approximate the Koopman 

operator can be found in [33]. This section introduces two commonly used numerical 

methods: Arnoldi-type algorithm and SVD-enhanced DMD (with control) algorithm.  
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2.2.1 Arnoldi-Type Method 
 

The Arnoldi-type algorithm presented in [34] constructs a companion matrix based on the 

observable data sampled along a trajectory of the system and attempts to approximate the 

Koopman operator, utilizing Krylov subspaces of the state-space. Suppose we have finite 

sampled snapshots of the dynamical system in (2-1)  

                                                      
0 1 1

 |    |         |
, ,..,

 |    |         |

p N

NZ z z z 

−

 
=  
  

                                       (2-22) 

where ( ) p

k kz g x=   is the kth snapshot of the states 
0( )k

kx T x= , and N is the total 

number of the collected snapshots. The Koopman modes (empirical Ritz vectors) and 

eigenvalues (empirical Ritz values) can be approximated following the procedures below. 

Arnoldi Algorithm: 

Step 1: Compute a constant vector 
0 1 2[ , ,..., ]T

Nc c c c −= such that for some pr  

satisfying 1{ }Nr span K −⊥ ,  

                                                        
1 1N Nr z K c− −= −                                                      (2-23) 

with the Krylov subspace defined as 

                                                          1 0 1 2: [ , ,.., ]N NK z z z− −=                                                     (2-24) 

The constant vector c  is computed by 

                                                        †

1 1N Nc K z− −=                                                            (2-25) 

where †

1NK −
 stands for the Moore-Penrose pseudoinverse of 

1NK −
. 

Step 2: Define the companion matrix 1NC −  as 
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0

1

1 2

2

0  0   0  c
1  0   0  c

: 0  1   0  c
       

0  0   1  c

N

N

C −

−

 
 
 =
 
 
 

                                                (2-26) 

The N-1 eigenvalues of 
1NC −
 are empirical Ritz values 

1 2 1, ,..., N   −
. 

Step 3: Define the Vandermonde matrix 𝔗 using 
1 2 1, ,..., N   −

  

                    𝔗 ≔

[
 
 
 

  1    𝜇1       𝜇1
2  ⋯ 𝜇1

𝑁−2

1    𝜇2       𝜇2
2 … 𝜇2

𝑁−2

⋮         ⋮         ⋮   ⋱ ⋮
    1     𝜇𝑁−1    𝜇𝑁−1

2    … 𝜇𝑁−1
𝑁−2  ]

 
 
 
∈ ℝ(𝑁−1)×(𝑁−1)                            (2-27) 

 

Step 4: Define the empirical Ritz vectors 𝒗̃𝑗 to be the columns of  𝑉 ≔ 𝐾𝑁−1𝔗
−1. Each 

column of  𝑉 is the projection of the measured snapshot onto the eigenspace spanned by 

the eigenfunction. Therefore, if 
j approximates the true eigenvalue of the Koopman 

operator, then 𝒗̃𝑗 is closely related to the Koopman mode and the eigenfunction.  

 

It is shown in [34] that if all empirical Ritz values 
1 2 1, ,..., N   −

 are nonzero and distinct, 

then the following decompositions of the data are obtained  

           𝑧𝑘 = ∑ 𝜇𝑗
𝑘𝑁−1

𝑗=1 𝒗̃𝑗 , 𝑘 = 0,1, …𝑁 − 2,    𝑧𝑁−1 = ∑ 𝜇𝑗
𝑁−1𝑁−1

𝑗=1 𝒗̃𝑗 + 𝒓                  (2-28) 

Comparing (2-28) with (2-12), the empirical Ritz values j  and vectors 𝒗̃𝑗  behave 

equivalently to the Koopman eigenvalues 
j  and the terms 

j jv . However, the sum is 

finite in (2-28) instead of the infinite sum in (2-12). If the data in (2-22) are generated by a 

continuous-time system with a sampling time t  (i.e., 
0( )k t

kx F x= ), then the continuous-

time eigenvalues are given by log( ) /j t  .  
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Arnoldi-type methods require the vector-valued measurements in a high dimension, at 

least satisfying 1p N − . To address the rank deficiency, a variant of the typical Arnoldi 

algorithm called the Prony-type method [35] (or Hankel DMD) is proposed using the time-

delay embedding techniques. The embedding of delay coordinates helps construct a “rich" 

feature space for the geometrical reconstruction of non-linear dynamical systems, which is 

justified by the Takens embedding theorem [36]. The delay-coordinate embedding can be 

applied to other data-driven approximation methods as well, for example, EDMD for input-

output dynamical systems [61].  



2.2.2 Dynamic Mode Decomposition with Control (DMDc) 
 

Dynamic mode decomposition (DMD) is a data-driven and equation-free approach that 

reconstructs the underlying dynamics of the nonlinear system from snapshot measurements 

alone in (2-22). The relationship between DMD and the Koopman operator theory is 

analyzed rigorously in [24].  

 

     Defining the lifted state ( ( )) ( ) qz g x x = =  and neglecting the projection from the 

infinite dimensional function space   to an q -dimensional linear space q  , the 

approximated linear lifted dynamics becomes 

                                                                       
1k kz Az+ =                                                                         (2-29) 

with T

tA K=  . Note that the lifting space typically has a much higher dimension than the 

dimension of the raw measurements ( q p ). The choice of the (nonlinear) lifting 

(dictionary) function   depends on the underlying dynamics.  
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    Example 2.2 demonstrates that with appropriate lifting functions (e.g. 

2

1 2 1( ) [ , , ]x x x x = ), a finite-dimensional ( 3q = ), closed, and invariant subspace can be 

found for the Koopman operator. However, for most general cases, the finite-dimensional 

linear space is actually an approximation, on which the Koopman operator is not strictly 

invariant. An illustrative example is the logistic map, given by 
1 (1 )k k kx x x+ = − , [26].  

The idea of lifting dynamics is consistent with the EDMD algorithm, and DMD 

corresponds to the particular selection of the lifting function ( ( )) ( )z g x g x z= = = . 

 

The extension of DMD to take the external forces (controls) into account is referred to 

as DMD with control (DMDc), deriving from KIC in subsection 2.1.3. Accordingly, the 

Koopman operator can be approximated in a finite-dimensional subspace spanned by the 

lifted functions ( ( ), ) ( , ) qz g x u x u = =  .  To obtain a linear dynamical system, lifting 

functions ( , )x u  have the following form, 

                                                      1 1{ ( ( ))} { }q m

j j j jg x u = =                                          (2-30) 

and the linear lifted dynamics thus become 

                                                            
1k k kz Az Bu+ = +                                              (2-31) 

with ,q q q mA B   . Same as the case of DMD, DMDc corresponds to 

( ( )) ( )jz g x g x z= = = . 

 

• Algorithms of DMDc 

The dynamical data preparation is shown conceptually in Figure 2-4, where the datasets of 

system observables and control inputs{ , , }Z Z U+  come from historical records, laboratory 

experiments, or numerical simulations. Unlike the Arnoldi-type methods, the data of 
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DMDc usually come from multiple trajectories, and there is no requirement of any 

temporal ordering in each single data matrix. The vector in the matrix Z +  satisfies 

( ( , ))k k kz g f x u+ = with ( ), , p

k k k kz g x z z+=  . The DMDc algorithm aims to compute the 

matrices ,A B  in (2-31). If p N (e.g., the global climate system and fluid flows), a 

reduced-order dynamical system is preferred. We present the DMDc algorithm considering 

two cases. 

 

➢ Case A: Low-dimensional observables ( p is relatively small) 

In this context, the matrices ,p p p mA B    are calculated directly in a least-square 

sense 

                                                           
,

min || ||F
A B

Z AZ BU+ − −                                                            (2-32) 

The symbol || ||F denotes the Frobenius norm of a matrix. The analytical solution to (2-32) 

is  

                                                                 †[ , ] [ ; ]A B Z Z U+=                                                               (2-33) 

An efficient and accurate way to find the pseudoinverse is the singular value decomposition 

(SVD). When p N , it is computationally beneficial to solve the normal equations, 

                                                                  

,

,
T T

V MG

Z Z Z
V Z G

U U U
+

=

     = =
          

                                          (2-34) 

where ( ) ( ) ( )[ , ], ,p p m p m p mM A B V G + +  +=   . The calculation burden of (2-34) has 

nothing related to N (the total number of snapshots in data matrices). 

 

 

 

 

 

 

 

 



28 
 

➢ Case B: High-dimensional observables ( p is relatively large) 

When the system measurement vector is of high dimension, a reduced-order dynamical 

system is sought to reduce the computational complexity when the identified system is 

exploited for predictions and spectral properties analysis. The algorithm of DMDc is 

outlined as follows, [37]. 

 

 

 

Figure 2- 4 Dynamical Data Collection and Organization in DMDc 

 

Reduced-Order DMDc 

Step 1: Collect and construct the data matrices 

Given the data matrices in Figure 2-4, stack matrices Z and U to get matrix [ ; ]Z U = . 

Step 2: Compute SVD of the input space matrix   

Compute SVD on   and approximate the input space as 
*U V    with truncation value 

t .  The selection of t  has a rich literature; notably, the Eckart-Young theorem is a rigorous 

and popular method [38]. 

Step 3: Compute SVD of the output space matrix Z +  
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Compute SVD on Z +  and approximate the output space as 
*ˆ ˆˆZ U V+    with truncation 

value r . 

Step 4: Compute the reduced-order dynamical system matrices.   

The reduced-order dynamical system is 
1

red red

k k kz Az Bu+ = +  with matrices defined as 

                                                     

* 1 *

1
* 1 *

2
*

ˆ ˆ ,
ˆ ,

ˆ

r r

r m

red

k k

A U Z V U U

B U Z V U

z U z

+ − 

+ − 

=  

=  

=

                                       (2-35) 

where * * * * *

1 2 1 2[ , ], ,N p N mU U U U U =   . 

Step 5: Perform eigenvalue decomposition on A  

The eigenvalue decomposition of the reduced-order system matrix is AW W=  . The 

eigenvalues of A  are also eigenvalues of the full order system matrix p pA  . 

Step 6: Compute the dynamic modes (eigenvectors) of the system matrix A  

The Exact DMD method [39] is utilized to calculate the eigenvectors   of p pA  ,  

                                               1 *

1
ˆZ V U UW + −=                                                            (2-36)  

If the eigenvalue 0  , then Eqn. (2-36) is utilized; else, ÛW = . Based on the reduced-

order dynamical system, the system trajectory prediction is depicted in Figure 2-5.  

 

 

Figure 2- 5 System Trajectory Prediction via the Reduced-Order System 
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Chapter 3 

  

Extended State Observer 
 

A dynamical system evolves by actively interacting with the external environment: being 

regulated by manipulated control input and exporting system outputs. The accessible inputs 

and outputs signals may represent direct measurements or partially contain indirect 

information about the system’s intrinsic states. A state observer or state estimator is a 

system that provides an estimation of the internal states asymptotically based on the real-

time measurements of the system inputs and outputs. If the dynamical system is observable, 

it is entirely possible to reconstruct system states, and thus advanced control techniques 

using state feedback are allowed. 

 

 

Extended state observer (ESO) was explicitly proposed by J. Han in his seminal work 

[40] to estimate the “total disturbance” in the context of active disturbance rejection 

control (ADRC). ESO treats all external disturbances, internal uncertainties, and even 

numerical calculation errors as a lumped disturbance and tries to estimate it as an extended 

state. ADRC utilizes the disturbance estimation by ESO to actively compensate the “total 

disturbance” and reduces the original dynamical system into a new format that is easy to 

control, e.g., the canonical form in ADRC cascaded-integrators system. 
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     3.1 Review of the State Observer                                                              
 

The information flow of the state observer is presented in Figure 3-1, where the system 

states are estimated relying on the measured control inputs and the system outputs. The 

system dynamics (if known) or any existing pre-knowledge should be incorporated into the 

state observer to release the estimation burden. This section briefly introduces the general 

state observer with known or unknown system dynamics, analyzes and compares the 

estimation error of linear and nonlinear state observer designs. 

 

 

Figure 3 - 1 Information Flow of the State Observer    

 

     3.1.1 State Observer with Known System Dynamics 
 

For a linear dynamical system with control, 

                                                     
x Ax Bu

y Cx

= +


=
                                                        (3-1) 

where 
nx R stands for system states; 

pu R represents the control input and qy R  is the 

system output; in general, ,q n p n  . The system matrix n nA R  , control matrix 

n pB R   and output matrix 
q nC R   are assumed to be known in advance.       

 

          A dynamical system is constructed with u and y  from (3-1) as the system input, 
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 ˆ( ) ( )  

ˆ

y
z Az Bu L y y A LC z L B

u

y Cz

  
= + + − = − +  

  


=

                      (3-2)            

where vector nz R is the estimation of 
nx R . System in (3-2) was originated by D. 

G.Luenberger [42] and is well-known as Luenberger observer. The observer corrects the 

estimation with feedback from the estimation error ( )ˆy y− , and n qL R   is the observer 

gain.  

 

     Define the estimation error as e x z= − , then we have 

     ( )e A LC e= −                                                            (3-3)  

The exponential convergence to the true state is guaranteed when ( )A LC−  is a Hurwitz 

(stable) matrix, with the convergence rate dependent on the observer gain L . The 

eigenvalues of ( )A LC−  can be placed arbitrarily when system (3-1) is observable. Next, 

we consider a nonlinear dynamical system with known dynamics 
1 2( , )f x x  and a control 

gain b , 

                                                             

1 2

2 1 2

1

( , )

x x

x f x x bu

y x

=


= +
 =

                                              (3-4) 

The corresponding state observer is designed in (3-5), 

                                                          

1 2 1

2 1 2 2

1

ˆ( )

ˆ( , ) ( )

ˆ

z z l y y

z f z z bu l y y

y z

= + −


= + + −
 =

                                  (3-5) 

Then the estimation error between (3-4) and (3-5) is shown in (3-6), 
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1 1 1 2 2 2

1 2 1 1

2 1 2 1 1 2 2 2 1

,

( , ) ( , )

e x z e x z

e e l e

e f x x f x e x e l e

= − = −


= −
 = − − − −

                               (3-6) 

If the known internal dynamics
1 2( , )f x x  is continuous and differentiable, using Taylor 

expansion, Eqn. (3-6) can be approximated to (3-7).  

                                              

1 1 1 2 2 2

1 2 1 1

2 1 2 2 1

1 2

,e x z e x z

e e l e

f f
e e e l e

x x


 = − = −


= −
  
  + −

 

                                             (3-7) 

When the partial derivatives 
1/f x   and 

2/f x   are bounded, there always exists a 

feedback gain 
1 2[ , ]L l l=  to make the system (3-7) stable. 

 

3.1.2 State Observer with Unknown System Dynamics 
 

The linear/nonlinear dynamical systems mentioned in the last section assume complete 

modeling. However, the internal dynamics 
1 2( , )f x x  in (3-4) generally involve the 

effects of uncertain noises and unpredicted intermittent disturbances, e.g., the intense 

penetration of renewable energy sources (RESs) in power systems. Therefore, the 

exact expression of 
1 2( , )f x x  is typically inaccessible in most practical applications. To 

this end, nonlinear feedback is applied to improve the estimation accuracy and computation 

efficiency confronting unknown dynamics f . A nonlinear state observer is designed as, 

                                                 

1 2 01 1

2 02 2

1

( )

( )

z z g e

z bu g e

e z y





= −


= −
 = −

                                                    (3-8) 

where 01 1( )g e  and 02 2 ( )g e  are nonlinear feedback functions satisfying 
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( ) 0, 1,2ieg e i = and 
01 02, 0   . When the nonlinear feedback functions are well-

selected, the state observer in (3-8) can estimate the states in (3-4) accurately regardless of 

various dynamics in f .  

 

Example 3.1: To illustrate the validness of (3-8), an autonomous dynamical system ( 0b = ) 

is considered with unknown nonlinear dynamics, 

                            
1 2 1 2

cos( )
( , , ) (1 ) (1 sin( )) ( ),

2 3

3
( ) (sin( ))

2

t t
f x x t x x w t

t
w t sign

= − + − + +

=

                         (3-9) 

The initial states are set as 
1 2(0) (0) 0x x= = , and the state observer is designed as  

                                        

1

1 2

2

1

100

200 ( , , )

| | ( ),  

( , , )
,                  

r

r

e z y

z z e

z fal e r bu

e sign e e

fal e r e
e








 −

= −


= −
 = − +

 


= 




                               (3-10) 

where ( , , )fal e r   is a commonly used nonlinear feedback function for anti-chattering in 

the discrete-time design. We set the Euler integration time step 0.01t s =  and 

, 0.5t r =  =  in (3-10). The estimation performance of the state observer is presented in 

Figure 3-2. The state observer is randomly initialized and can accurately track the true 

system states with almost negligible estimation error. Therefore, the state observer is 

largely independent of the system dynamics and, in this sense, Eqn. (3-10) fits in a wide 

range of different f . 
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Figure 3 - 2 Example 3.1: State Observer States Estimation 

 

3.1.3 Analysis of the State Observer Estimation Error 
 

To simplify the analysis of the estimation error in the nonlinear state observer, the unknown 

dynamics is assumed as a constant 0f w const = , then the estimation error considering 

(3-8) and (3-4) is  
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1 1 1 2 2 2

1 2 01 1

2 0 02 1

,

( , , )

e z x e z x

e e e

e w fal e r



 

= − = −


= −
 = − −

                                                (3-11) 

    When system (3-11) is in a steady state with 0, 0.5r = = , the estimation error 

boundaries are given as follows  

                                        2 20 0
1 2 01

02 02

| | ( ) ,| | ( )
w w

e e 
 

= =                                            (3-12) 

If the feedback gain 
02  satisfies 

02 0w , then the estimation error is limited at a 

relatively low level. Compared with linear error feedback ( ( )ig e e= ) where the estimation 

error is proportional to 0

02

| |
w


 , the state observer with nonlinear feedback has a greatly 

improved accuracy since 20 0

02 02

( )  | |
w w

 
with 

02 0w . As to more general cases of 

bounded 
1 2( , )f x x , ref. [41] elaborates a similar conclusion based on the Lyapunov theory; 

proof details are omitted here. 

 

3.2 Basics of Extended State Observer 
 

Last section demonstrates that the nonlinear state observer (3-8) can estimates the 

dynamical system (3-4) accurately with unknown dynamics 
1 2( , )f x x . Extended state 

observer (ESO) treats 1 2( , )f x x  as an extended state 3 1 2( , )x f x x=  and 3 ( )x t= , and tries 

to estimate it. This idea can be traced back to a high-gain observer with an augmented state 

variable used in [43]. With the introduction of the extended state, dynamical system (3-4) 

can be rewritten as 
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1 2

2 3

3

1

( )

x x

x x bu

x t

y x



=


= +


=
 =

                                                   (3-13) 

    Accordingly, ESO is designed as below (input gain b is assumed to be known) 

                                                 

1 2 01 1

2 3 02 2

3 03 3

1

( )

( )

( )

z z g e

z bu z g e

z g e

e z y







= −


= + −


= −
 = −

                                            (3-14) 

Numerical studies and industry applications since ESO was proposed have verified that 

with well-tuned functions ( ), 1,2,3ig e i =  and parameter 
01 02 03, ,    , ESO in (3-14) has 

satisfying adaptability, robustness, and estimation accuracies. Estimations of the system 

intrinsic states 
1 2[ ( ), ( )]x t x t and the extended state 

3 1 2( ) ( ( ), ( ))x t f x t x t=  are thus provided 

in a unified framework. The unknown dynamics 
1 2( ( ), ( ))f x t x t  may have other different 

formats, e.g., ( )f t  or 1 2( , , ( ))f x x t . However, no matter f  is continuous or 

discontinuous, time-invariant or time-varying, linear or nonlinear, ESO given by (3-14) 

can always work, and its design is thus independent of the detailed expression of f .  

 

    On the other side, it should be noted that ESO is never “model-free”. Any pre-knowledge 

or existing modeled dynamics should be made full use in (3-14), which will help release 

the estimation burden of ESO and increase the accuracy level. Besides, the control gain b  

does not need to be precisely known; experiments show that an approximation of b with 

even 50% relative error will not degrade the performance of ESO significantly. The 

estimated value of b is supposed as 0b  and the dynamics f  is split into two parts  

                                        0 1 2 1 1 2( , ) ( , , , ( ))f f x x f x x t t= +                                     (3-15) 
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with 
0 1 2( , )f x x  is known mathematical equation, representing the basic dynamics related 

to principal physical laws or other pre-existing knowledge about the system; 

1 1 2( , , , ( ))f x x t t  stands for all unmodeled dynamics, and ( )t  is the external noise or 

disturbance. Then ESO in (3-14) can be modified to incorporate 
0 1 2( , )f x x , 

   

1 2 01 1

2 0 0 1 2 3 02 2

3 03 3

1

( )

( , ) ( )

( )

z z g e

z b u f z z z g e

z g e

e z y







= −


= + + −


= −
 = −

                                 (3-16) 

where 
3 3 1 1 2 0( ) ( , , , ( )) ( ) ( )z x t f x x t t b b u t→ = + −  involves both the unmodeled dynamics 

and the effect of control gain estimation error. Nonlinear functions 
1

1
( , , ),

2i
fal e r r

−
=  are 

often used when choosing ( ), 1ig e i  and 
1( )g e e= . Although nonlinear function has 

higher efficiency, linear ESO ( ( )ig e e= ) avoids the time-consuming parameter tuning and 

makes an explicit connection with the concept of bandwidth, which will be covered in the 

next section. 

 

• Example 3.2: Take a second-order strongly nonlinear dynamical system in (3-17) as 

an example to illustrate the estimation performance of nonlinear ESO (NESO).   

                               

1 2

2

1

(sin(0.05 )) ( ) ( )

( ) 1.5 0.5 (sin(0.03 )), ( ) cos(0.02 )

x x

x sign t b t u t

b t sign t u t t

y x

=


= +


= + =
 =

                (3-17) 

In this case, the control gain b  is time-varying and approximated as a constant 0 1.5b =  in 

the designed ESO, 
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1 1

1 2 01

2 0 3 02

3 03 1

, ( ,0.5, ), ( ,0.25, )

( )

e z y fe fal e fe fal e

z z e

z b u t z fe

z fe

 







= − = =


= −


= + −
 = −

                 (3-18) 

where the extended state is 
3( ) 0.5 (sin(0.03 ))cos(0.02 ) (sin(0.05 ))x t sign t t sign t= + . The 

numerical simulation results of (3-18) are displayed in Figure 3-3, where the system states, 

as well as the extended state are estimated accurately. Therefore, ESO inherits the power 

of the conventional state observer and embodies the benefit of identifying system unknown 

dynamics in real-time based on the system input and output measurements. The 

convergence of various high gain NESOs can be found in [44], where a group of nonlinear 

systems with uncertainties are considered.  

 

To be sure, disturbance estimation and cancellation have been studied over the past 

years, and many solutions are proposed, such as the unknown input observer (UIO) [45, 

46] and the disturbance observer (DOB) [47, 48]. These observers both rely on an exact 

mathematical system model and behave sensitively to the observer gains. In this regard, 

ESO is quite different, escaping from the sufferings of burdensome modeling procedures 

and combining the estimation power of a UIO with the tuning simplicity of a DOB [49]. 

 

The ability of ESO to extract “total disturbance” from the system input and output 

measurements lies in the fact that the “total disturbance” has influences on the system 

output. The system measurements are believed to contain information about the “total 

disturbance” (acceleration) in turn. For disturbances not affecting the system output, there 

is no need to take them into consideration when designing controllers. In the framework of 

ADRC, the lumped disturbance, estimated by ESO, is then compensated in the input 

channel, which reduces the system dynamics to a disturbance-free form. 
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Figure 3 - 3 Example 3.2: Estimation performance of NESO  

(
01 02 030.01 , 10, 41, 66t s    = = = = ) 

 

3.3 Linear Extended State Observer (LESO) 
 

Unfortunately, although huge applications of NESO have been carried out in engineering 

applications [50~52], the choice of the nonlinear feedback functions ( )ig e  is essentially 

experiential. To apply ESO conveniently in practice, Gao proposed the linear extended 

state observer (LESO) in [53] to avoid the cumbersome parameter tuning and built an 

explicit connection with the concept of bandwidth. This section gives an overview of LESO 

and its primary design guidelines.  

 

    Revisiting the second-order dynamical system with the “total disturbance” 1 2( , )f x x  in 

(3-4) and its equivalent format in (3-13), we reorganize the system representation to a state-

space model 
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x Ax Bu E
y Cx

= + +
=

                                                     (3-19) 

     where 

                                
0  1  0 0 0
0  0  1 , , 0 , [1  0  0]
0  0  0 0 1

A B b E C
     

= = = =     
          

                             (3-20) 

The extended state vector
1 2 3[ , , ]Tx x x x=  has the extended state 

3x  involved, which stands 

for the lumped disturbance. The linear ESO in (3-20) is constructed with the feedback 

functions ( ) , 1,2,3ig e e i= =  so that a LESO is formulated as 

                                                 
ˆ( )

ˆ
z Az Bu L y y
y Cz
= + + −
=

                                             (3-21) 

The correction terms, ˆ( )il y y− , are used to accommodate the unknown initial states, the 

uncertainties in parameters, and the disturbances. Vector L  can be obtained using the pole 

placement technique,  

                                                      01 02 03, ,
T

L   =                                                 (3-22) 

 

Several key points of the LESO in (3-21) are listed below, 

• Stability: 

Define e x z= − , then subtracting (3-21) from (3-19) yields,  

                                                    
ee A e E= +                                                        (3-23) 

with 
01

02

03

-   1  0
-   0  1
-   0  0

eA A LC




 
= − =  

  

. LESO is bounded-input bounded-output (BIBO) stable if 

the roots of the characteristic polynomial of eA  

                                        
3 2

01 02 03s  + s  + s + esI A   − =                                            (3-24) 

are all on the left half plane (LPH) and   is bounded, as claimed in Lemma 3.1 and 
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followed by proof [54]. 

 

Lemma 3.1  If 
eA is a Hurwitz (stable) matrix with a suitable observer gain L  and the 

lumped disturbance 
1 2( , )f x x or

1 2( , , , ( ))f x x t t  is differentiable on t  with /f t =   , 

then the estimation error e  is bounded for any bounded d E= . Moreover, the boundary 

of  e  satisfies
2 2|| || 2 || ||Te P d= , where P is the unique solution of the Lyapunov equation 

T

e eA P PA I+ = − with I being an identity matrix. 

Proof: When 
eA is a Hurwitz (stable) matrix, suppose 

TV e Pe=  as a Lyapunov function, 

where P  is the unique solution to the Lyapunov equation T T

e eA P P A Q+ = −  and Q  is a 

positive definite matrix. Then, 

1 1 1 1 1 1

2 2 2 2 2 22 ( )( ) ( )( )T T T T T T T T T TV d Pe e Qe e Q d PQ e Q d PQ d PQ d PQ
− − − −

= − = − − − +   (3-25) 

Therefore, when  

       
1 1 1 1 1

2 2 2 2 2
2 2 2 2|| || || ||  or || || 2 || ||T T T T Te Q d PQ d PQ e Q d PQ

− − −

−                         (3-26) 

we have 0V  . For Q I= ,   

                                      2 2|| || 2 || || 0Te P d V →                                                    (3-27) 

so V decreases as long as (3-27) is satisfied. After entering steady state, 
2|| ||e is bounded 

by 
22 || ||TP d .                                                                                                                Q.E.D. 

     

Assign the poles of (3-24) at 0− , then 
3

0( )esI A s − = + , and accordingly, 

                            2 3

01 0 02 0 03 0=3 , =3 ,     =                                             (3-28) 

where 0  denotes the bandwidth of the linear extended state observer (LESO). 
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• Tuning (Optimization) of the bandwidth
0  

With the LESO parameterization linked with the concept of bandwidth, the tuning of LESO 

becomes straightforward with clear physical meaning. In general, the faster the LESO 

tracking speed is, the sooner the disturbance is observed and compensated by the controller. 

That is, the observer bandwidth 
0  should be increased as much as allowed by the 

hardware and software limitations. 

 

• Limitations of LESO 

(1) Sensor noises: The observer bandwidth is limited by the ubiquitous sensor noises 

in practical applications. The observer bandwidth 
0  is selected to make sure there 

is no significant oscillation in the estimations. 

(2) Sampling rate: The observer bandwidth 
0  is also limited by the sampling rate 

since the operation of LESO is subject to the sampling delay. 

 

LESO functions in the inner loop of the overall control architecture to cancel out the 

uncertainties and reduces the dynamical system under control to be disturbance-free. To 

this end, LESO generally works faster than the outer-loop controller. Therefore, the 

bandwidth of LESO is often higher than the controller, and a suggested thumb ratio is  

     0 3 ~ 5 c =                                                         (3-29) 

where c  is the control loop bandwidth, determined by the transient response        

requirements, especially the specifications on the settling time.  

 

• Example 3.3: Consider a motion control testbed in [53] with a mathematical model 

verified in the hardware test as 

        1.41 23.2 23.2dy y T u= − + +                                     (3-30) 
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where y  denotes the output position, u  is the control voltage sent to the power amplifier 

to drive the motor, and 
dT  is the torque disturbance. The control gain used in LESO is 

40b = instead of the exact value 
0 23.2b = . So the lumped disturbance is 

1.41 23.2 16.8df y T u y f bu= − + − → = + .  

 

    The torque disturbance 
dT  considered in this case is random in [-0.02, 0.02] and the 

system input is 

    ( ) (sin(2* / ))u t sign t =                                             (3-31) 

with 0.15 = . Supposing the sample rate 1t ms = and integrating by Euler method, the 

estimation performance of LESO with bandwidth 
0 40rad/sec =  is exhibited in Figure 3-

4. The position 
1x , motion speed 

2x  and the lumped disturbance f  are tracked accurately.  

 

3.4 Discrete Implementation of the Extended State Observer  
 

A continuous-time dynamical model (3-19) is usually discretized by Euler approximation 

or zero order hold (ZOH). The discrete-time model corresponding to (3-19) is 

( 1) ( ) ( ) ( )
( ) ( )

d d d

d

x k A x k B u k E k
y k C x k

+ = + +
=

                                     (3-32) 

where k  denotes a discrete time instant skT , and sT  is the sampling rate. , , ,d d d dA B C E  

are discrete-time system matrices. Then the discrete-ESO (DESO) for (3-32) is  

                                          
ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

d d d

d

x k A x k B u k L y k y k

y k C x k

+ = + + −

=
          (3-33) 

    Estimator (3-33) is a predictive estimator since the current estimation error ˆ( ) ( )y k y k−  

is used to update the subsequent state estimation ˆ( 1)x k + . The feedback vector dL  is 
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adjusted by placing the eigenvalues of the error dynamical matrix ( )d d dA L C−  at a single 

location 0 sT
e

 −
= , where 

0  is the bandwidth of the continuous-ESO (CESO), 

 3det( ( )) ( )d d dzI A L C z − − = −                                    (3-34) 

 

 

Figure 3 - 4 Example 3.3 Estimation Performance of LESO 

 

        Applying the Euler approximation, system matrices in (3-32) are presented below, 

          
1  T   0 0 0
0  1   T , , 0 , [1,0,0]
0  0   1 0

s

d s d s d d

s

A B bT E C
T

     
= = = =     
         

                          (3-35) 

then the feedback gain vector 
1 2 3[ , , ]T

dL l l l= has the following values 

                                
2 3

1 2 3 2

3( 1) (1 )
3 3 , ,

s s

l l l
T T

 


− −
= − = =                                     (3-36) 

    In addition, ZOH provides a more accurate approximation of the continuous-time system 

discretization with matrices given as, 
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2
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1

00

1  T   T / 2
0  1    T ,

! 0  0    1

/ 2
,

( 1)! 0

[1,0,0]

s

k k
s s

AT s
d s

k

T k k
s

A s
d s

k

d

A T
A e

k

T bA T
B e d B B T b

k

C

 



=

+

=

 
 = = =
 
 

 
 = = =

+  
 

=



                                (3-37) 

and the feedback gain vector 
1 2 3[ , , ]T

dL l l l= becomes 

                 
2 3

1 2 3 2

( 1) ( 5) ( 1)
3 3 , ,

2 s s

l l l
T T

  


− + − −
= − = =                               (3-38) 

 

3.4.1 Current Discrete ESO 
  

The realization of DESO in a new form: current discrete estimator, is proposed in [49], 

and it helps to maintain stable operation at a low sampling rate. The discrete predictive 

estimator in (3-33) has at least one sample delay since the current estimation error comes 

to effect until the next time instant. Instead, the current discrete estimator avoids this delay 

by using the present estimation error to update the current estimated states. In this way, the 

strict requirement of sampling rate is relaxed.  

 

    By defining the feedback vector dL in (3-33) as d d cL A L= with the subscript “c” 

representing “current”, the update equation in (3-33) is reduced to 

                                                       
ˆ( 1) ( ) ( )

ˆ ˆ( ) ( ) ( ( ) ( ))

d d

c

x k A x k B u k

x k x k L y k y k

+ = +

= + −
                                       (3-39) 

where ( )x k  includes a correction of the current time update. When the sampling rate is 

low, the correction item significantly reduces the time delay and enhances the stability of 

a closed-loop system [49]. The current discrete estimator can be rewritten as 

  
ˆ ˆ( 1) ( ) ( ) [ , ][ ( ), ( )] ,

ˆ: ( ) ( ) ( ) ( )

T

d d d d d

c d c

x k A L C x k B L u k y k

output x k I L C x k L y k

+ = − +

= − +
                        (3-40) 
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The only difference from the predictive estimator is the output, as shown in Figure 3-5.  

 

 

 

Figure 3 - 5 Block Diagram of Discrete ESO (DESO) 

 

3.4.2 Multi-Channel ESO 
 

Owing to the standard system format of pure chaining integrators in ADRC, the system 

matrix A  (continuous-time) or 
dA  (discrete-time) is upper-triangular. The determination 

of the feedback gain vector L or 
dL is thus made easy when placing all eigenvalues of 

( )A LC−  or ( )d d dA L C− at a single location 
0−  or 0 sT

e
−

. However, for a general case of 

the discrete-time system matrix 
dA , the calculation of 

dL  is not that straightforward. 

 

    The “states” of a discrete dynamical model identified by DMDc refers to accessible 

measurements. In this regard, the model is fully observable. To leverage this property, we 

come up with a design referred to as multi-channel ESO to estimate the model-plant 

mismatch. A linear dynamical system identified by DMDc with compensation has the 

format of (3-41), 

    ( 1) ( ) ( ) ( )x k Ax k Bu k d k+ = + +                                       (3-41) 

where ( ) nx k R  denotes the system measurements (functions of states) at the sampling 

instance of skT ; ( ) nd k R is a vector representing the modeling error, which can be time-

invariant or time-varying and needs to be estimated on line; and ( ) mu k R  is the system 

input. The matrices n nA R   and n mB R   are computed by DMDc.  
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    The system in (3-41) is naturally decomposed into n  parallel channels (subsystems), 

and the , 1,2,...,thq q n=  channel (state) has dynamics as follows. 

             
1,

( 1) ( ) ( ) ( ) ( ) ( )
c c

n

q qq q qj j qj j qj j q

j j q j S j S

x k A x k A x k B u k B u k d k
=   

+ = + + + +                 (3-42) 

where ( )qx k  is the thq  element of x  at time 
skT  , and 

cS  represents the set of the indexes 

of adjustable control inputs. Other control vector elements ,j cu j S are usually given 

references supervised by upper layers in a hierarchical control architecture. Without loss 

of generality, we assume only the last element 
mu  is tunable, and the lumped disturbance 

is defined as 

   
1

1, 1

( ) ( )
n m

kq qj j qj j

j j q j

f A x k B u k
−

=  =

= +                                       (3-43) 

The variable 
kqf  has known dynamics, involving couplings with other channels ,jx j q , 

and the influences of un-adjustable control inputs. Since ( )x k  and ( )u k are accessible, 
kqf  

in (3-43) can be calculated accordingly based on the real-time measurements. Substituting 

(3-43) into (3-42), the thq channel dynamics becomes 

    ( 1) ( ) ( ) ( )q qq q qm m kq qx k A x k B u k f d k+ = + + +                              (3-44) 

We set the extended state vector as [ , ]q q qx x d=  containing the model-plant discrepancy 

qd , and (3-44) can be rewritten in a state-space form. 

           
( 1) ( ) ( ) ( ),

( ) ( )

q q m kq q

q q

x k Ax k Bu k Ff D d k

y k Cx k

+ = + + + 

=
                        (3-45) 

       where  
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1 1 0
, , , , [1 0]

1 0 10 0

( 1) ( ) ( )

qq qm

q q q

A B
A B F D C

d k d k d k

      
= = = = =      

      

+ = + 

                   (3-46) 

The corresponding LESO is designed as 

                
ˆ( 1) ( ) ( ) ( ( ) ( ))

ˆ ( ) ( )

q q m kq q q

q q

z k Az k Bu k Ff L y k y k

y k Cz k

+ = + + + −

=
                (3-47)   

Eqn. (3-47) is a second-order LESO with 
qz  as the estimation of 

qx . When the dynamical 

error matrix 
eA A LC= −  is stable, the estimation error of LESO (3-47) is bounded when 

the total disturbance variation 
qd  is bounded, which is often the case in real applications. 

Suppose all eigenvalues of 
eA  are located at 

0 0(0 1)    with   

             2

0det( ( )) ( )I A LC − − = −                                           (3-48) 

then 
1 2[ , ]TL l l=  with 2

1 0 2 01 2 , ( 1)qql A l= + −  =  − . 

    In this way, the disturbance (model-plant mismatch) vector 
nd R  is estimated by n 

second-order LESOs for each channel (subsystem) in parallel, referred to as multi-channel 

LESO. The effects of couplings from other channels and the control signals are aggregated 

together and calculated using the system measurements approximately. Such a design fully 

leverages the real-time information and the system’s dynamics identified via DMDc, which 

helps to reduce the computation burden and relax the requirement of high bandwidth in 

LESOs. The tuning of each second-order LESO is only relevant to the parameter 0 , and 

clear physical meanings behind are used as basic guidelines. 
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Chapter 4  

 

Extended State Observer-Koopman-

Model Predictive Control 
 

This chapter presents a data-driven control framework named Extended State Observer-

Koopman-Model Predictive Control (ESO-Koopman-MPC, EKM) for the controller 

design in (nonlinear) complicated dynamical systems. Indicated by the name, the proposed 

control framework consists of three critical steps as follows: 

 

• Step 1: Identify a dynamical model from experimental, historical, or simulation data 

based on the Koopman operator theory, e.g., DMDc; see Chapter 2. 

• Step 2: The utilization of an appropriate observer to estimate the mismatch between 

the identified model and the real plant. The multi-channel ESO proposed in Section 

3.4.2 is applied to estimate the modeling error and increase the accuracy of the data-

driven modeling. The observer is highly independent of the mathematical model but 

only relies on the system input and output measurements. 

• Step 3: Controller design based on model predictive control (MPC). The compensated 

model after Step 1&2 has an enhanced prediction ability and is embedded into the MPC 

structure. The overall control framework is purely data-driven and does not require any 

procedures of modeling. 
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4.1 Model Predictive Control 
 

While the idea of MPC can be traced back to the 1960s [55], interest in this field started 

to surge until the 1980s. Since then, MPC has been applied in process industries spanning 

from chemical plants, oil refineries, power systems to aerospace engineering.  Ref [56] 

summaries more than 4500 applications of MPC so far. 

 

4.1.1 Basic Theory of MPC 
 

MPC generally refers to a class of algorithms that compute a sequence of manipulated 

variables to optimize the future behavior of a plant while satisfying a set of constraints. 

The prediction of the underlying dynamical system relies on the predictive model, often 

obtained by system identification or direct mathematical modeling. The principle of MPC 

is graphically described in Figure 4-1. 

 

At the current time 
kt , the MPC solves an optimization problem over a finite prediction 

horizon [ , ]k k p st t N T+  with respect to an objective function such that the predicted system 

output can optimally track the given reference, and the states and control input constraints 

are complied. The solution to the optimization problem at each step is a sequence of control 

inputs over a finite horizon [ , ]k k c st t N T+  (
c pN N ). For an ideal case where there is no 

uncertain disturbance and the dynamical model used for prediction is absolutely accurate, 

the control sequence obtained at kt  can be applied for all times kt t  when the control 

horizon is infinite cN =  .  

 

However, due to the external disturbances, the model-plant discrepancy, and the finite 

prediction horizon 
pN , the true system trajectory may deviate from the prediction. To 
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incorporate the system feedback, only the first element in the optimal sequence is applied, 

and until the next time step 
k st T+ , the entire calculation is repeated. The prediction horizon 

is kept being shifted forward, and for this reason, MPC is a receding or moving horizon 

control mechanism. 

 

 

Figure 4 - 1 Discrete MPC Scheme 

 

 

In general, MPC is classified by the predictive model into linear MPC (LMPC) and 

nonlinear MPC (NMPC). LMPC refers to a family of MPC where linear models are used 

to predict the system dynamics, and linear constraints on the states and inputs [57] are 

considered. Conversely, NMPC uses nonlinear models for predictions and/or considers a 

non-quadratic cost function with nonlinear constraints. The nonlinear model may have the 

form of an empirical data fit (e.g., artificial neural networks) or a high-fidelity dynamic 

model based on fundamental mass and energy balances.  

 

 

 

 



53 
 

4.1.2 Mathematical Formulation of MPC 
 

• Nonlinear MPC  

The optimization problem to be solved at time 
kt  is usually formulated as, 

ˆmin ( ( ), ( ))

k p s

k

t N T

u
t

F x u d  

+

                                         (4-1) 

subject to 

 ˆ ˆ ˆ( ) ( ( ), ( )),   ( ) ( )k kx f x u x t x t  = =                                      (4-2a) 

                                             
min max( ) ,   [ , ]k k c su u u t t N T     +                                    (4-2b) 

  ( ) ( ),   [ , ]k c s k c s k p su u t N T t N T t N T = +   + +                             (4-2c) 

    
min max

ˆ( ) ( ) ( ),   [ , ]k k p sx x x t t N T       +                               (4-2d) 

where x̂  denotes the predicted states and ( )kx t  is the true measurements at 
kt ;u stands for 

a sequence of control inputs, which are optimization variables of (4-1).  

 

    Eqn. (4-1) represents the objective function; Eqn. (4-2a) is a dynamical system model 

whose states are initialized by the measurements of the current states; Eqn. (4-2b~4-2c) are 

the magnitude limitations on the control variable u . When 
c pN N , the control inputs 

outside the control horizon are assumed to be unchanged after 
k ct N T+ ; Eqn. (4-2d) 

indicates the states constraints within the prediction horizon. The optimization problem is 

parameterized by the current states ( )kx t .  

 

When the dynamical model (4-2a) is nonlinear, the corresponding NMPC optimization 

problem is not necessarily convex, which poses challenges on both the solution stability 

and convergence time. The numerical solvers are typically based on direct optimal control 

methods using Newton-type optimization schemes [58], which exploits the fact that 



54 
 

consecutive optimal control problems are similar. This property allows initializing the 

Newton-type methods efficiently by a shifted guess from the last optimal solution. Thus, 

considerable amounts of computation time are saved. Another case to utilize the similarity 

of subsequent problems is never attempting to iterate until the convergence of the 

optimization problem. Instead, only a few iterations are conducted towards the solution of 

the current NMPC problem before proceeding to the next one [59].  

 

However, the stability and optimality of NMPC are still open questions. The applications 

of NMPC are limited to the processes of low sampling rates. 

 

• Linear MPC 

Considering the proposed control framework ESO-Koopman-MPC, a LMPC is formulated 

since the dynamical model identified based on the Koopman operator theory is guaranteed 

to be linear. The discrete format of LMPC is presented as below,  

                                  
1

0 0
ˆmin (( ) , ( ) )p p

i

N N

i i i i
u

J u x
−

= =                                                  (4-3) 

subject to 

 
1

ˆ ˆ ,   0,1,..., 1i i i px Ax Bu i N+ = + = −                                       (4-4a)   

ˆ ,   0,1,..., 1i i i i i pE x Fu b i N+  = −                                         (4-4b)    

ˆ
p p pN N NE x b                                                                         (4-4c) 

parameter                          0
ˆ ( )kx x t=                                                                             (4-4d) 

where 
p cN N=  and the objective function in (4-3) is often a convex quadratic 

programming problem involving the tracking performances and the control efforts, 
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1

0 0

1

0

ˆ ˆ ˆ ˆ(( ) , ( ) )

ˆ ˆ ˆ                                     + ( )

p p

p p p p p

p

N N T T

i i i i N N N N N

N

T T T T

i i i i i i i i i i

i

J u x x Q x q x

x Q x u R u q x r u

−

= =

−

=

= +

+ + +
                (4-5) 

with n n

iQ R  and m m

iR R   being positive semidefinite matrices. The matrices cn n

iE R




and cn m

iF R


  as well as the vector cn

ib R define the state and control input constraints, 

and 
cn  is the number of linear constraints. The optimization problem at time 

kt  is 

parameterized by the current measurement ( )kx t . If 
1*

0( ) pN

i iu
−

=
is the optimal solution to (4-

3~4-5), the feedback controller is  

*

0( ( ))kx t u =                                                  (4-6) 

 

4.1.3 Dense Form of Linear MPC 
 

We assume the matrices n nA R  and n mB R   are identified by DMDc, and n  is the 

number of available measurements. For some cases like epidemiology, neuroscience, and 

video processing [60], the dimension of the optimization problem of LMPC is quite high. 

In this subsection, it is clarified that the computational complexity of solving the LMPC 

problem (4-3~4-5) can be rendered independent of the dimension of the measurements n , 

[61]. This is achieved by reorganizing the problem into the so-called dense form,  

      0
ˆmin

mN p

T T T

U R

U HU h U x GU


+ +                                            (4-7) 

subject to 

        0
ˆLU Mx c+                                                                (4-8a) 

parameter                                       0
ˆ ( )kx x t=                                                               (4-8b) 

where pmN
U R is the column concatenation of the control sequence 
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,   0,1,..., 1m

i pu R i N = − ; p pmN mN
H R


 is a positive-semidefinite matrix and the other 

vectors and matrices involve pmN
h R , pn mN

G R


 ,
( 1)p c pN n mN

L R
+ 

 , 
( 1)p cN n n

M R
+ 

  and 

( 1)p cN n
c R

+
 .     

 

    The matrices and vectors in (4-7~4-8) are defined below, 

         

( 1) ( 1)

0 1

0 1 1

( 1) ( 1)

0 1

( , ,..., ) ,   

( , ..., )

( , ,..., )

p p

p

p p

p

p c p

p

N n N n

N

N m N m

N

N n N n

N

Q diag Q Q Q R

R diag R R R R

E diag E E E R

+  +



−

+  +

= 

= 

= 

                                       (4-9a) 

                   

( 1)2

1

0

0        0     0

           0     0

,                  0

               

          

   0      

p p p p

p p

n n n m n m n m

n m n m

nN nN N n N m

n m

N N

I

A B

A A R B AB B R

A A B AB B

F

F

   

 

 + 



−

  
  
  
  =  = 
  
  
  

   

=

1

( 1)

1

   0

0             0

                 

0      0        

0      0         0

p c p

p

N n N m

N

F

R

F

+ 

−

 
 
 
 
 
 
 
 

                  (4-9b) 

                                  ,     2p pN m N mT TH B QB R R G A QB


= +  =                                          (4-9c) 

                           
( 1)

0 1 1 0 1[ , , ] ,     [ , , ]p p

p p

N m N nT T T T T T T T

N Nr r r r R q q q q R
+

−=  =                    (4-9d) 

                                  
( 1)

0 1,     [ , , ] p c

p

N nT T T T T

Nh r B q c b b b R
+

= + =                                      (4-9e) 

,     L F EB M EA= + =                                                                     (4-9f) 

    The optimization is over pN m
U R  and the dense form is derived from the “sparse form” 

in (4-3~4-5) by solving the predictions ˆ
ix  explicitly and concatenating the point-wise-in-

time stage costs and the constraints. Notice that the sizes of matrices ,H L  and vectors ,h c  
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are independent of the dimension of ( )kx t . Hence, the computational burden of the online 

optimization problem is comparable to solving a standard LMPC on the same prediction 

horizon 
pN and the same dimension of the control inputs m , but has nothing to do with 

the states order n . Importantly, all these matrices and vectors in (4-9) are fixed and can be 

precomputed offline before deploying the controller (with exception of the inexpensive 

matrix-vector multiplications 
0

ˆTx G  and 
0

ˆMx ), [61].  

 

4.2 ESO-Koopman-MPC  
 

Recently, several works have been conducted to integrate ESO into the design of MPC.  

• Ref. [62] proposed an MPC solution, assisted by ESO for the common rail pressure 

control in gasoline engines, where the discrepancy of the model from the real plant is 

estimated by ESO and then mitigated in the MPC structure. The “total disturbance” is 

assumed to be constant in the prediction horizon. 

• The internal and external disturbances in a direct-drive permanent magnet 

synchronous generator (PMSG)-based wind energy conversion system (WECS) are 

attenuated with ESO in [63]. The ESO-based MPC approach realized a maximum 

power point tracking strategy with the system parameter variations and uncertain wind 

speeds considered.  

• Ref. [64] deals with the tracking problem of a quadrotor helicopter with wind 

disturbances by an ESO-based MPC, and ref. [65] applied the same design in the case 

of a tractor-trailer vehicle suffering from inaccessible system states and uncertain 

disturbances.  

• The convergence of the ESO estimation errors and stability of the ESO-based MPC are 
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proved when the disturbance is time-varying in [66]. 

 

 

4.2.1 Schematics of ESO-Koopman-MPC 
 

As mentioned in Section 3.4.2, the discrepancy between the model identified by DMDc 

and the real plant is estimated by multi-channel ESO, which is assumed as a constant in 

the LMPC prediction horizon. The embedding of the ESO-compensated Koopman theory-

based system identification into the MPC structure formulates ESO-Koopman-MPC 

(EKM). ESO-Koopman-MPC (EKM) is completely data-driven with no mathematical 

modeling procedures or any requirement of pre-knowledge about the studied system (pre-

knowledge (if exists) should be exploited in the system identification and ESO design). 

The schematics of the overall EKM is presented in Figure 4-2.  

 

    The model-plant discrepancy 
kd  in the predictive model keeps being updated adaptively 

at each control step by the multi-channel ESO. The estimated model-plant mismatch is 

assumed to be constant in the MPC prediction horizon, and the MPC problem is 

parameterized by the real-time measurement ( )kx t . Notice that, crucially, the MPC 

problem formulated is a quadratic programming problem owing to an appropriate objective 

function, linear constraints on the inputs and states, and most importantly, the linear 

dynamical model identified based on the Koopman theory even if the underlying process 

is highly nonlinear. Since the quadratic programming problem is convex, rapid numerical 

solvers are thus allowed to realize real-time implementations.
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Figure 4 - 2 Schematics of ESO-Koopman-MPC 
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4.2.2 ESO-Koopman-MPC Online Algorithm 
 

The algorithm of ESO-Koopman-MPC is summarized as follows.  

Algorithm: ESO-Koopman-MPC 

Require: A, B identified via DMDc from the collected data, bandwidth 
0  of the   

multi-channel ESOs 

Initialize: Set the time index 0k = ; 

     Initialize the state vectors of the multi-channel ESOs (0), 1,2,...,qz q n=  

While the control process is not terminated Do 

• Obtain the system measurements ( )kx t  and the related references; 

• Solve the LMPC optimization problem (4-3~4-5) online with measured

( )kx t  and the disturbance vector ( )d k estimated by multi-channel 

ESOs to achieve an optimal control sequence 
1*

0( ) pN

i iu
−

=
; 

• Apply the first element in the optimal sequence *

0u  to the underlying 

dynamical system; 

• Estimate ( 1)d k +  based on *

0u  and ( )kx t  by Eqn. (3-47); 

• Update 1k k + ; 

End 

 

* For cases where the sampling rate is low, DESO of current discrete estimator form 

in 3.4.1 can be utilized to improve the estimation accuracy and enhance the control 

stability.                                                                             
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Chapter 5  

 

Data-Driven Controller Design for 

Power System Oscillation Damping 
 

The expected tremendous growth of power systems needed to integrate renewable sources 

and storage significantly increases the system complexity and poses challenges on the 

security and reliability of the power supply. A major root cause of large-scale power system 

blackouts is poorly damped or unstable electromechanical oscillations, which are inherent 

to the interconnected power systems [67]. Generator excitation control is one of the most 

effective measures widely applied to enhance system stability. Indeed, due to multiple 

factors including but not limited to the rapid expansion of the power grid, the adoption of 

new transmission technology, the high share of intermittent and uncertain renewable 

energy sources (RESs) [68], the provision of adequate damping remains a vital research 

challenge [69, 70].  

 

    Particularly, automatic voltage regulator (AVR) and power system stabilizer (PSS) 

have been extensively used as generator excitation controllers to enhance the power system 

oscillations damping in the power system industry. These conventional controllers are 

usually based on local linearization of a detailed dynamic model of the power grid. This 

method is perhaps suitable for small and moderate scale power systems but is impractical 
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for modern bulk power systems, especially when the operating conditions vary with the 

system configuration and the load levels in a complex manner [71, 72].  

 

To this end, this chapter proposed a completely data-driven power system oscillation 

damping controller design based on the ESO-Koopman-MPC framework in the last 

chapter. The system dynamics are extracted from measurements of the observables and 

applied to the synthesis of control actions in an equation-free manner without requiring 

explicit knowledge about the underlying power network. 

 

Two damping control strategies are explored, viewing different components of the 

system as the entity to be controlled:  

• Integration of AVR and PSS 

• Only PSS 

The performances of the novel data-driven damping controllers are compared with the 

conventional model-based AVR and PSS on multiple test platforms, e.g., single machine 

infinite bus system (SMIB), Kundur two-area system, and IEEE-39 bus system. The 

simulation results verify the enhanced oscillation damping performances and voltage 

regulation abilities of the data-driven controllers. 

 

5.1 Power System Oscillations  
 

The modern power grids across the world are growing tremendously fast to cater to the 

increasing power needs of massive consumers, which results in the interconnections of 

multiple existing and newly developed power networks. The concerns regarding the power 

oscillation instabilities are more pronounced in the interconnected power networks [73]. If 

the power system oscillations are not tackled appropriately, the oscillations may turn 
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toward large-area voltage collapse and even cause blackouts like the western system 

coordinating council blackout [74] and the US-Canada blackout [75], etc. 

 

Commonly observed and analyzed power system oscillations are defined in [79], and 

Figure 5-1 displays a typical example of ambient, transient, and forced responses.  

• Ambient Response: The response of the system to small random changes such as load 

variations.  

• Transient Response: The response of the system when a sudden disturbance occurs. 

• Forced Response: The response associated with an external input or a malfunctioning 

apparatus.  

 

To make it clear, the type of oscillatory response studied in this chapter is the transient 

response. In the rest of this section, we first summarize the major causes of the power 

oscillations and present a classification of transient oscillations commonly observed. 

Secondly, the conventional power oscillations damping (POD) approach, deployment of 

local power system stabilizers (PSSs), is illustrated with different types of PSSs. Finally, 

the shortcomings of the conventional PSSs (CPSSs) are analyzed, and a brief literature 

review is given to summarize the techniques to improve the performances of CPSSs. 

 

5.1.1 Major Causes of Power System Transient Oscillations 
 

Due to the requirements of stable and reliable operation, power system oscillations and 

transient stabilities are extensively studied recently. Here, we summarized a list of major 

causes of the power system transient oscillations from related literature, 

 

• The wide deployment of rapid-responding, high-gain voltage regulator (AVR) and 

excitation systems in the automatic control of the generator terminal voltage.  
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The fast-acting exciters pose a negative damping effect on the rotor oscillations induced by 

small disturbances such as random load variations [76]. 

 

 

Figure 5 - 1 Example of Ambient, Transient, and Forced Responses  

 

• Interconnections of subsystems with the transmission of bulk power by weak tie-lines. 

The modern power network has large regional grids with different types of flexible and 

variable loads, generally distant from the generation resources. These regional grids are 

interconnected by long transmission lines with limited transmission capacity. A tie-line is 

termed “weak” if 
 maxtie riP P  [77], where 

 maxtieP  represents the maximum real power to 

be transmitted via the line and riP  is the per unit base value for all powers. 

• The increasing integration of RESs in power systems.  

The increasing growth of RESs like solar photovoltaic (PV), onshore wind, hydropower, 

etc., in power networks, leads to a reduction of the system’s inertia, which degrades the 

transient stability and worsens the undamped small signal stability [78]. 

• Sudden disturbances such as a short-circuit fault, transmission line tripping, generator 

tripping, or significant load variations.  

Transient oscillations are excited by emergency events and die out over short-time 
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intervals. Events like faults and trips on transmission lines, sudden losses of generation, 

and significant load variations, can cause transients visible at the transmission level.  

 

5.1.2 Classification of the Power Transient Oscillations 
 

Small signal stability can be used to describe the oscillatory modes related to the excitation 

system. These oscillations are damped as much as possible to achieve a stable and reliable 

operation. Depending on the oscillation frequency [80], transient power oscillations are 

classified into four types. 

 

I. Local machine/Unit system oscillation [0.7-3.0Hz] 

This type of oscillation refers to the case when one or more synchronous generators in a 

specific power station swing together against the rest of the power system or the load 

center. This oscillatory mode may induce severe results in power plants with high loads 

and reactance tie-lines. CPSS is recommended to deal with local mode oscillations.  

 

II. Inter/Wide-area oscillation [0.1-0.7Hz] 

Inter/wide-area oscillations occur when a group of generators in a single area swing against 

a second group of generators located in another area. To damp wide-area oscillations, it is 

necessary to apply a reliable control and monitoring system, such as PSSs, to guarantee the 

stability of large-scale power networks [81]. 

 

III. Inter-unit/Plant oscillation [1.5-3Hz] 

When two or more synchronous machines in the same generation plant or the nearby plants 

swing against each other, the oscillation mode is called the inter-unit/plant oscillation, 

whose damping relies on the PSS re-tuning.  
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IV. Torsional oscillation [> 5Hz or > 10Hz] 

Torsional oscillation usually occurs in steam-driven systems. The oscillatory mode takes 

place within rotating elements of the generation unit, such as synchronous machines, 

turbine stages, or rotating exciters mounted on the same shaft. The frequency is usually 

higher than 10 Hz for turbines with 3600 rpm and about 5 Hz for those with 1800 rpm [78]. 

Multi-band PSSs (MB-PSSs) are generally applied to damp the torsional oscillations. 

  

5.1.3 Structure of Conventional PSSs 
 

CPSSs are mostly single-loop local controllers, which use the rotor speed deviation (  ), 

frequency, electrical power (
eP ) or a combination of these locally available variables as 

the input signal. The objective of PSS is to provide additional damping torque by 

generating a supplementary control signal for the excitation system. The control diagram 

of a single generator with PSS is depicted in Figure 5-2. The input signal of CPSS depends 

on the type of PSS, and the output of the PSS is used to regulate the reference fed into 

AVR. The parameters of the lead-lag compensators in PSS are determined based on a small 

set of linearized models around critical operating conditions. 

 

CPSSs, proposed in the 1960s, are generally designed with the phase compensation 

techniques in the frequency domain and implemented by washout (high-pass) filter and a 

series of lead-lad compensators. In this subsection, several widely used CPSSs structures 

are presented and explained. 
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Figure 5 - 2 Control Diagram of a Single Generator  

 

• Classical Single Input PSS  

The input of single-input PSS can be the rotor speed, frequency signal, or the acceleration 

power, with the block diagram displayed in Figure 5-3. The rotor speed signal is inherently 

sensitive to torsional oscillations, so a torsional filter is utilized, or an average speed is used 

when more than one operating unit exits. The frequency signal is less sensitive to torsional 

oscillations but is prone to noises. Besides, acceleration power 
a m eP P P = −   (difference 

of the mechanical power and the electrical power) is another option of the input signal and 

has the advantage of minimum lead compensation requirements.  

 

 

Figure 5 - 3 Block Diagram of Single Input-PSS 

 

    The wash-out block acts as a high-pass filter and works to eliminate steady-state bias in 

the input signal since PSS is expected to only respond to transient variations. The two lead-

lag compensators are used to provide a phase lead for the input signal in the frequency 

range of interest so that the output of PSS is in phase with the rotor speed change.  
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• Integral of Accelerating Power-based Stabilizer  

Single-input PSS has many limitations. Instead, a structure called IEEE PSS2B [82] is 

proposed with two inputs: rotor speed   and the electrical power 
eP ,  shown in Figure 

5-4. Three lead-lag compensators are used in this design, and thus the parameters contain 

six independent time constants.  

 

Figure 5 - 4 IEEE PSS2B Structure  

 

• Multi-Band PSS (MB-PSS) 

The main limitation of the single-input and dual-input PSSs mentioned above is the 

incapability to deal with a wide range of critical frequencies. Multi-Band PSS (MB-PSS) 

is proposed to solve this problem, and as its name indicates, MB-PSS structure is based on 

multiple working bands (see Figure 5-5) of (i) low-frequency band; (ii) intermediate-

frequency band; (iii) high-frequency band.  

 

A representative example of MB-PSS is IEEE PSS4B [82], where the input signal of 

the high-frequency band is the electrical power 
eP . PSS4B provides an additional degree 

of freedom to achieve robustness and optimal tuning over frequencies of interest but at 

the expense of a cumbersome tuning process.  

 

5.1.4 Shortcomings of CPSSs and Recent Developments 
 

The parameters of CPSSs are chosen to provide adequate damping of all critical modes 
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under various operating conditions (e.g., full load conditions, weak AC system). The 

parameters are determined based on a small set of linearized models around these operating 

conditions. However, emerging power systems tend to operate over a wide range of 

conditions, with the system configuration, parameters, and load levels varying in a complex 

and uncertain manner. This leads to the concern that the damping effects of CPSSs may 

degrade under such a highly dynamic operating environment. 

 

 

Figure 5 - 5 MB-PSS Conceptual Representation 

 

To improve the adaptability of CPSSs, many techniques are proposed to refine the design 

or parameters turning, such as neural networks [83, 84, 85], fuzzy logic [86], intelligent 

optimization algorithms (e.g., simulated annealing, genetic algorithm, evolutionary 

programming, particle swarm optimization and tabu search) [87, 88, 89, 90, 91] and 

synergetic control theory [92]. For more studies using nonlinear techniques and variable 

control, the reader is referred for an extensive review in [78]. 

 

The majority of the previous advanced designs assume an available mathematical model 

of the system under control. However, the high-accuracy modeling task is made 

progressively more challenging in the industrial practice with the high share of renewable 
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energy resources (RESs), undocumented alternations of components, and models existing 

only in the form of tabulated data or computer code (see Chapter 1). The development of 

ICT in power systems makes vast quantities of data accessible; accordingly, data-driven 

analysis has the potential to revolutionize how the modern power grid is modeled, 

monitored, and controlled. Therefore, our proposition, the pure data-driven ESO-

Koopman-MPC control framework, has great potential to be applied in the power system 

oscillations damping controller design. 

 

5.2 Oscillation Damping Control Strategies and Data Collection   
 

This section presents two control strategies of the oscillation damping controller design 

and illustrates the dynamical data collection procedures to prepare for the data-driven 

model identifications.  

 

5.2.1 Two Control Strategies: Integration of AVR&PSS and PSS 
 

The purpose of this dissertation is to find an effective and efficient control algorithm to 

regulate the generators voltages and damp out long-time persistent electromechanical 

oscillations in power systems. As depicted in Figure 5-2, AVR maintains the excitation 

field fdE  in the rotor windings to keep the terminal voltage 
tV  at the reference set-point

refV . PSS generates a supplementary signal pssV  to provide additional damping torque to 

the rotor. In practice, both fdE  and pssV  have upper and lower limits.  

 

    For simplicity, the typical exciter dynamics in (5-1) are ignored, with the output of AVR 

RV  being equal to the excitation field fdE .  
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                                                      (5-1) 

    The single generator dynamical system with local control can be expressed by a set of 

differential-algebraic equations (DAEs) in (5-2).  

   
( , , , )

0 ( , , , )
x f x u v

h x u v



=
=

                                                     (5-2) 

where x  consists of states of the generator and the primary regulators; u  is the system 

inputs; v  stands for algebraic variables and   represents system parameters. For the 

oscillation damping controller design, we consider the accessible measurements 

(observables) as                                             

( ) [ , , , , ]T

t t tz g x V P Q = =                                                   (5-3) 

where ( )rad  is the rotor angle of the generator; ( / )rad s  is the rotor speed deviation;                  

( )tV pu  is the generator terminal voltage; ( ), ( )t tP pu Q pu are the terminal active and 

reactive power respectively. Note that the rotor angle typically cannot be measured 

directly but can be estimated from local measurements [93]. A most recent work [94] 

contains not only an effective algorithm for estimation of the generator angle  , but also 

quantifies its performance under faults and for significant machine parameter mismatches. 

 

To achieve a linear controlled system in the standard format of DMDc, the control 

variables in Figure 5-2 need to be specified and measured for the data-driven controller 

design. Two different control strategies shown in Figure 5-6 and Figure 5-7 are considered, 

viewing different components of the dynamical system as an entity to be controlled. The 

dynamical system under control is shadowed colorfully. 
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• Figure 5-6: Integration of AVR and PSS (EKM AVR & PSS) 

System input: [ , ]T

ref fdu P E= ;  

• Figure 5-7: Only PSS (EKM PSS) 

System input: [ , , ]T

ref ref pssu P V V=  

* EKM stands for ESO-Koopman-MPC 

where refP  is the active power reference for the turbine governor. 

 

Figure 5 - 6 Oscillation Damping Controller of Integrated AVR & PSS 

 

  

Figure 5 - 7 Oscillation Damping Controller of Only PSS 

 

    Among all the control variables in the two design strategies, only fdE  and pssV  are 
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tunable while refP  and refV  are supervised by secondary controls, which is beyond the 

scope of our work. For the integration of AVR and PSS in Figure 5-6, the controller 

generates the excitation field fdE  directly; thus, the system under control is the generator 

equipped with the mechanical power governor. As to the design of the control strategy of 

only PSS in Figure 5-7, both AVR and the turbine governor are assumed to be installed by 

default, and their dynamics are part of the controlled system. 

 

5.2.2 The Dynamical Data Collection Procedures 
 

To illustrate the data collection procedures, we consider the example of a single machine 

infinite bus system (SMIB) in Figure 5-8, where the synchronous machine applied is model 

1.1 in [76] with the field circuit and one equivalent damper on the q-axis. Magnetic 

saturation is either neglected or considered by using saturated values of the mutual 

inductances. In most cases, the saturation effects are generally negligible when conducting 

dynamic simulations. 

 

    The synchronous machine equations are as follows, 
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where all symbols in (5-4) are summarized in Table 5-1, and 
B

m

B

S
 



−
=  is the rotor 

speed deviation in pu; generally, the initial operating speed is equal to the nominal speed, 
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so 
0 0mS = . The electrical torque is expressed in terms of the state variables '

dE , '

qE  and 

non-state variables ,d qi i , 

 

 

Figure 5 - 8 Block Diagram of Single Machine Infinite Bus (SMIB) System  

 

' ' ' '( )e d d q q d q d qT E i E i x x i i= + + −                                               (5-5) 

where non-state variables ,d qi i  can be obtained by combining the stator algebraic 

equations and the external network equations. It is assumed that the external network 

connecting the synchronous machine to the infinite bus is linear two-port, and all loads are 

of constant impedance type. Ignoring the stator transients and rotor speed variations, the 

direct and quadratic-axis currents can be solved by the following nonlinear equations, 
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where ( )R Iz jz+  is the input impedance of the external network viewed from the generator 

terminal with the infinite bus shorted; 1 2( )h jh+  is the voltage gain at the generator 
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terminal with the armature open; other variables can be found in Table 5-1. 

 

Table 5-1 List of Synchronous Machine Symbols 

B                    Base angular frequency (rad/s) 

D                     Mechanical damping coefficient of the generator (pu) 

H            Inertial constant (sec) 

mT , eT                  Mechanical and electrical torque (pu)  

'

dE , '

qE                     Transient electro-motive force (EMF) in the quadratic/direct axis (pu) 

  '

0qT , '

0dT             Quadratic/direct-axis open-circuit transient time constant (sec) 

  ,d qi i                   Direct/quadratic-axis components of the armature current (pu)  

 ,d qx x                       Direct/quadratic-axis components of the synchronous reactance (pu) 

 
' ',d qx x                      Direct/quadratic-axis components of the transient reactance (pu) 

 aR                          Armature resistance (pu) 

 bE                            Infinite bus voltage (pu, 1.0bE = ) 

 

The excitation system of the SMIB is a static exciter with a single time constant, 

represented as, 

                                         max min

1
[ ( ) ],     6,  6R

A in t R fd fd

A

dV
K V V V E E

dt T
= − − = = −                (5-7) 

with the input in ref pssV V V= + . The PSS employed in SMIB is a  -PSS with one lead-lag 

compensator, and all parameters of this case can be found in the Appendix. SMIB 

Parameters Table. The system diagram of the SMIB is shown in Figure 5-9. 
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Figure 5 - 9 SMIB System Diagram 

 

    The steady-state operating conditions of the studied SMIB are determined by the loading 

status: transmitted active and reactive power ,t tP Q  [76]. To collect the system dynamics 

in a wide operating range, 100 initial settings of the power loadings are randomly selected 

from [0.2,1.2], [ 0.2,0.2]t tP Q  −  (pu). After the system enters steady state, a short-term 

pulse disturbance is exerted on refV  and measurements in (5-3) together with the control 

signals for two different control strategies are sampled in 2 sec post-disturbance in a 

sampling rate of 1/25sT = , as shown in Figure 5-10. In the case of SMIB, the voltage 

reference disturbance lasts for 10 cycles ( 50Bf Hz= ) and for each loading status, we apply

[ 0.02, 0.04, 0.06]refV     respectively. Therefore, 600 trajectories with different initial 

conditions and disturbances are acquired and organized to be the measurement matrix 

5 30000Z R   and the control input matrix 2 30000U R   (EKM AVR & PSS) or 3 30000U R 

(EKM PSS) on which DMDc is implemented. The matrix column dimension 30000 is the 

number of snapshots of the dynamical system. 

 

The collected representative trajectories are displayed in Figure 5-11. Since the SMIB 

model considered does not include a prime mover, the mechanical torque mT  is sampled 

instead of the power reference refP  due to the incomplete modeling. The data acquisition 

procedures can be extended to multi-machine systems on each generation unit, e.g., Kundur 
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two-area system and IEEE 39-bus system in a straightforward way. Different from SMIB, 

the initial conditions of the multi-machine system are derived from randomly selected 

power reference [0.2,1.2]refP   and the voltage reference [0.9,1.1]refV   for each 

synchronous machine to generate trajectories over a wide range of operating conditions. 

The hyperparameters for the data collection on various test benchmarks are contained in 

Table 5-2.  The disturbance to trigger the system dynamics is not limited to refV  variations, 

as multiple fault scenarios like three-phase faults, load sheddings, and topological network 

changes are also optional. 

 

Note that on the stage of data acquisition, it does not matter which type of CPSS or AVR 

is utilized, and any pssV  or fdE  would work. Even randomly generated control signals are 

effective as long as the dynamics of the system under control are excited [61]. Actually, 

DMDc is learning the (open-loop) system dynamics, but not the control actions when 

collecting dynamical data. 

 

 

Figure 5 - 10 Data Collection under Voltage Reference Disturbances 
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Figure 5 - 11 Collected Dynamical Trajectories of SMIB 

 

5.3 Prediction Ability of the Identified Model   
 

The collected dynamical data is divided into a training set (90%, 540 trajectories) and a 

test set (10%, 60 trajectories). Applying DMDc on the training set, a discrete-time linear 

model of the underlying complicated, nonlinear, and high-dimensional system is obtained. 

To check the prediction ability of the identified linear model, it is first utilized to predict 

the trajectories in the test set. We mainly focus on the prediction accuracies on the rotor 

speed deviation   and the terminal voltage tV , since they are essential variables 

involved in the MPC objective function of the proposed EKM-based damping controllers. 

Then, the identified model is further tested to predict trajectories under new disturbances 

different from those on the data collection stage. 
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Table 5-2 Data Collection Settings 

        SMIB        Kundur Two-Area      IEEE-39 Bus  

# of Initial Conditions      100        100              100 

Base Frequency      50Hz      60Hz             60Hz 

Disturbance refV    [ 0.02, 0.04, 0.06]           [ 0.02, 0.04, 0.06]        [ 0.05, 0.10, 0.15]    

Duration of refV          10 Cycles   12 Cycles                            12 Cycles 

Sample Rate                     25/sec       30/sec                                 30/sec 

Post-disturbance                       2 sec                                       5 sec                                    5 sec 

Sample Duration 

 

 

5.3.1 Prediction Performances in SMIB 
 

The mean absolute multi-step prediction error (MAE) of the terminal voltage 
tV   and the 

speed deviation   across all test trajectories of SMIB are displayed in Figure 5-12, where 

the two control strategies demonstrate acceptable prediction accuracies. Although the 

prediction error is accumulated with prediction steps, relatively accurate predictions in a 

limited number of steps are solid enough to allow the application of MPC. Besides, the 

control strategy of integrating AVR and PSS enjoys a better prediction accuracy than the 

strategy of just the PSS. One possible reason is that the dynamical system studied by the 

PSS control strategy is more complicated since AVR is involved. To illustrate the 

dynamical prediction clearly, one trajectory from the test set is randomly picked, and multi-

step predicted trajectories from some specified starting points are displayed in Figure 5-13. 
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Figure 5 - 12 Mean Absolute Multi-Step Prediction Error of 
tV  and   in SMIB 

 

 

Figure 5 - 13 Prediction Performance (Test Set) of the Identified Models in SMIB 

 

As shown in Figure 5-13, the identified linear models based on the two control strategies 

can both track the true trajectory well. Starting with a snapshot of measurements in (5-3), 

the identified model is assumed to keep receiving real-time control inputs and achieves 

consecutive predictions of the future measurements. The control strategy integrating AVR 

and PSS has a much lower prediction error on the speed deviation   and the terminal 

voltage tV  compared to only PSS, which is consistent with the graphical statistical 

conclusion in Figure 5-12. To further investigate the prediction ability of the identified 
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model, new study cases with disturbances not involved in the training and test set are 

checked carefully. Here, we consider four scenarios listed below with the same initial 

condition in Appendix. SMIB Parameters Table, marked as “Test Initial Condition”. 

 

• Test Scenario 1: Step increase of the voltage reference refV  by 0.05 pu at t = 1s, 

• Test Scenario 2: Step increase of the mechanical torque 
mT  by 0.1 pu at t = 1s, 

• Test Scenario 3: Step increase of 
bE  by 0.1 pu at t =1s (

bE  is the infinite bus voltage), 

• Test Scenario 4: Three-phase fault at the sending end of one of transmission lines (two 

parallel transmission lines shown in Figure 5-9), followed by clearing at the end of 4 

cycles (The faulted line connecting bus 1 and 2 is tripped) at t = 1s. 

 

The prediction performances of the identified model under the test scenarios mentioned 

above are shown in Figure 5-14 to Figure 5-17, respectively. The predicted trajectories of 

the two control strategies under different disturbances are checked and compared. Same as 

before, the control strategy integrating AVR and PSS enjoys a much better prediction 

accuracy than the strategy of only PSS, especially for the transient dynamics. The 

prediction horizon is 25pN = , and two control strategies considered here show acceptable 

prediction accuracies in the first few steps, which supports the combination with MPC.  

 

    Secondly, the first two scenarios (Figure 5-14, Figure 5-15) are examples of variations 

of external system inputs (reference), refV  and mT , but the system dynamics remain 

unchanged; while for scenarios in Figure 5-16 and 5-17, the system dynamics are different 

from that at the stage of data collection. For example, in scenario 4, the external network 

topology is altered after the faulted line is tripped. We believe that the active and reactive 

power tP  , tQ  can capture the influence of the external network on the controlled generator 
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to some extent. To summarize, the model identified with refV pulse disturbances, has 

acceptable prediction ability even when it is extended to various test cases.  

 

 

Figure 5 - 14 Prediction of Scenario 1: Voltage Reference Step Change 

 

 
Figure 5 - 15 Prediction of Scenario 2: Mechanical Torque Step Change 
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Figure 5 - 16 Prediction of Scenario 3: Infinite Bus Voltage Step Change 

 

 

 

Figure 5 - 17 Prediction of Scenario 4: Three-phase Fault at One Transmission Line 

 

    On the other hand, the modeling error, which results in the deviation of the predicted 

trajectory from the true value, may degrade the transient dynamics and cause offset of 

reference tracking. To address the inevitable modeling inaccuracy, multi-channel ESO is 

embedded to estimate the mismatch from real-time system input and output measurements. 
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(see Chapter 3)   

 

5.3.2 Prediction Performances on Multi-Machine Benchmarks 
 

In addition to the SMIB system, the data collection and model identification are also 

conducted on multi-machine benchmarks: Kundur two-area system and IEEE 39 bus 

system. The modeling of the generation unit with local control is quite detailed and 

practical with a complete tandem-compound steam prime mover system, IEEE type-1 

synchronous machine voltage regulator, and different types of CPSSs in the simulation 

environment of Simulink [95], [96]. The data collection hyperparameter settings are 

contained in Table 5-2.   

 

• Kundur Two-Area System 

Kundur two-area system was specifically designed to study low-frequency 

electromechanical oscillations in interconnected power systems. Two fully symmetrical 

areas linked together by two 230 kV lines of 220 km length, and each area is equipped with 

two identical round rotor generators rated 20 kV/900 MVA. The synchronous machines in 

the two regions have identical parameters, except for the generator inertias [69]. The load 

is represented as constant impedances and split between the areas so that area 1 is exporting 

413MW to area 2, which makes the system somewhat stressed. The system diagram is 

displayed in Figure 5-18. The normal operating status for all generators is assumed as, 

]0.77 7[ 81.  0,1 ..0,1 7.0,1. 70 77 0 77 689 0.798889 0.7 777] [ 8,ref refV P= =                    (5-8) 

When collecting dynamical data, all generators are equipped with  -PSS, whose 

parameters can be found in [95]. Taking G1 as an example, its power and voltage references 

are randomly selected with ,1 ,1[0.2,1.2], [0.9,1.1]ref refP V   while the other generators 
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remain the initial settings in (5-8). In this case, G4 is chosen as the rotor angle reference. 

Same as before, the system model is identified based on the training set (90% data) and 

then verified on the test set (10% data). The average prediction error of G1 on the test set 

is demonstrated in Figure 5-19.   

 

 

Figure 5 - 18 Diagram of Kundur Two-Area System 

 

    Compared with the prediction performances in Figure 5-12, the prediction accuracies of 

the two control strategies in Kundur two-area system do not display a significant difference. 

However, the prediction accuracies of 
tV  and   are comparable to the case of SMIB. 

Again, one trajectory from the test set is chosen to illustrate the multi-step trajectory 

tracking performance of the identified models, shown in Figure 5-20 ( 30pN = ). The 

control strategy integrating AVR and PSS displays a better trajectory tracking accuracy, 

especially for the transient process, and both control strategies enjoy great tracking 

performances when the system becomes steady. The identified models display acceptable 

prediction accuracies at least for the first few steps. 
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Figure 5 - 19 Mean Absolute Multi-Step Prediction Error on 
tV  and   of G1  

in Kundur Two-Area System 

 

 

Figure 5 - 20 Multi-Step Trajectory Prediction of G1 in Kundur Two-Area System 

 

• IEEE-39 Bus System 

IEEE 39-bus system, commonly known as “the 10-machine New England Power System”, 

has been extensively employed in the oscillation damping control studies. It consists of 10 

generators and 39 buses, where G1 is an area-equivalent model representing the New York 

system to which the New England system is connected. The diagram of the system is shown 
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in Figure 5-21. The data acquisition procedures are implemented on G2 and G7 

individually. The area-equivalent generator G1 is picked as the rotor angle reference. When 

collecting data, all generators are supplied with a multiband-PSS (MB-PSS) with typical 

settings. The parameters of generators, AVRs,  -PSSs, loads and other components can 

be found in [97]. 

 

 

Figure 5 - 21 Diagram of IEEE-39 Bus Network  

 

    The linear model identified by DMDc from the training set is exploited to predict one 

trajectory randomly picked from the test set of G2 and G7 respectively, see Figure 5-22 

and 5-23. The predictions of the speed deviation   and the terminal voltage tV  of the 

two generators are quite accurate and mostly within the error bar range, +/-5% for   and 

+/-0.2% for tV . The modeling error may be larger when the identified model is applied to 

predict trajectories suffering other disturbances. Therefore, the proposed multi-channel 
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ESO is necessary to estimate the mismatch, which is then mitigated in the design of MPC-

based damping controllers.   

 

5.4 Data-Driven Oscillation Damping Controller Design  
 

Revisiting the data-driven control framework in Chapter 4, the schematics of ESO-

Koopman-MPC (EKM) is demonstrated in Figure 5-24. The control target of the oscillation 

damping controller in power systems involves two performance indexes:  

(1) regulating the generator terminal voltage to refV , and 

(2) the damping effect on the rotor speed deviation  .  

 

    Embedding the identified linear model by DMDc into the MPC structure, with the 

model-plant discrepancy or other uncertain disturbances (external forces or internal 

variations) estimated by a multi-channel ESO, the optimization problem of the novel power 

system oscillation damping controller is formulated as 
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where ˆ
ref   =  − , ˆ

t refV V V = −  denotes the rotor speed deviation and the terminal 

voltage tracking error respectively; the control input vector iu  involves the given 

(unchangeable) references and adjustable control variables depending on the control 

strategy; iu represents the adjustable variable fdE  or pssV  which is the optimization 
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variable in (5-9). The system measurements in (5.3) at time 
kt  are represented by  

0
ˆ ( ( ))kz g x t= , which are functions of the system states.   

 

 

Figure 5 - 22 Multi-Step Trajectory Prediction of G2 in IEEE-39 Bus System 

 

 

Figure 5 - 23 Multi-Step Trajectory Prediction of G7 in IEEE-39 Bus System 

 

The cost function in (5-9) aims to damp the rotor speed oscillations and regulate the 
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terminal voltage to the given reference refV  in the meanwhile. However, there exists a 

tradeoff between the two targets: strong damping of the rotor oscillations often makes the 

regulation time of the terminal voltage long; on the contrary, fast-tracking of the reference 

voltage brings significant oscillations to the rotor speed. In the proposed oscillation 

damping controller design, the two indexes are balanced by a weighted sum with penalty 

weights , VQ Q  and R  for the speed oscillations, voltage error, and control efforts, 

respectively. The optimization problem at each time step is convex quadratic since the 

system predictor in (5-10) is linear, allowing rapid solvers and thus making real-time 

control implementable. The speed deviation reference ref  is set as 0 when the system 

works under a normal condition with appropriate frequency control; or ref  can be 

selected as the center of inertia (COI) frequency in a large-scale power system. The 

compensation variable 
id  is taken as constant in the prediction horizon of MPC. At each 

time step, 
0d  is estimated by the multi-channel LESO according to the input and output 

from the last step. 

 

5.5 Case Studies of the EKM-based Oscillation Damping 

Controllers   
 

The proposed oscillation damping controller based on ESO-Koopman-MPC has been 

applied to SMIB, Kundur two-area system, and IEEE 39-bus system. Various scenarios are 

tested to compare the control performances of EKM-based controllers with CPSSs. The 

parameters of the proposed EKM-based controllers can be found in Appendix. EKM-based 

Damping Controller Parameters.  
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Figure 5 - 24 Schema of ESO-Koopman-MPC  

 

 

5.5.1 Test Cases in SMIB: Simulation Results and Analysis 
 

First, the control performances of the EKM-based damping controllers in terms of the two 

considered control strategies (EKM AVR&PSS and EKM PSS) are compared with the 

model-based CPSSs (  -PSS) in SMIB system. The dynamical trajectory without PSS is 

also presented as a comparison reference. All simulation results are shown from Figure 5-

25 to Figure 5-28 for the test scenarios listed in subsection 5.3.1. 

 

 

Figure 5 - 25 Voltage Reference Step Increase of 0.05 pu 
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Figure 5 - 26 Mechanical Torque Step Increase of 0.1 pu 

 

In Figure 5-25, EKM-based controllers yield better damping effects on the rotor speed 

with smaller oscillation amplitude. In addition, EKM-based controllers outperform CPSS 

on the terminal voltage regulation with no overshoots and zero tracking error, while CPSS 

displays a non-negligible offset before and after the voltage reference step change. Figure 

5-26 corresponds to the case of mechanical torque 
mT  step increase of 0.1 pu at 1t s= . 

EKM-based controllers damp the rotor oscillations effectively with shorter settling time 

and regulate the terminal voltage with no steady-state offset and zero-undershoot.  

 

 

Figure 5 - 27 Infinite Bus Voltage Step Increase of 0.1 pu 
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Figure 5 - 28 Three-phase Fault at One Transmission Line 

 

Then, Figure 5-27 shows the control dynamics when a step increase of 0.1 pu occurs on 

the infinite bus voltage 
bE . EKM-based damping controllers remain acceptable damping 

abilities, comparable to the CPSS. As to the terminal voltage regulation, EKM-based AVR 

& PSS has a smooth trajectory that restores the terminal voltage to the reference with no 

undershoot, no offset, and relatively short settling time. However, jittering exits for the 

control strategy of only PSS in the transient process. A possible solution is to apply 

magnitude limitations on the variation of the adjustable control signal pssV .  

 

The test case of the three-phase fault in Figure 5-28 is a more severe disturbance, and 

we can observe that EKM-based AVR & PSS has a significantly better damping 

performance than CPSS. In addition, the terminal voltage dynamics of EKM-based AVR 

& PSS show a larger drop at the first oscillation cycle while it can still restore the voltage 

to refV  in a shorter settling time and zero offset (CPSS tV  offset: 0.0046 (pu)). The 

performance of EKM-based PSS is almost equivalent to CPSS because of the output limits 

on PSS. Consequently, the integration of AVR and PSS possesses more control flexibility 

since it is only subject to the AVR output limitations.  
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    A more challenging event is illustrated in Figure 5-29 where we assume a mid-station at 

the middle point of the transmission lines, and a three-phase fault occurs at the sending end 

of one of the two transmission lines. The faulted line between the sending end and the mid-

station is tripped after 10 cycles. In this scenario, only EKM-based integration of AVR and 

PSS can maintain the synchronism and stabilize the dynamical system. Besides, the 

terminal voltage can be restored to the reference value within 5 sec by the EKM-based 

AVR & PSS. On the other hand, CPSS and EKM-based PSS are not able to resume the 

system to the normal operation, and they have similar dynamics on the rotor speed as well 

as the terminal voltage, which is probably due to the strict magnitude limitations on the 

supplementary signal pssV . Therefore, the EKM-based AVR & PSS has an enhanced 

damping ability to guarantee the reliable operation of power networks, especially when 

suffering severe disturbances. 

 

 

Figure 5 - 29 Three-Phase Fault with Mid-Station 

 

5.5.2 Test Cases in Kundur Two-Area System: Simulation Results and Analysis 
 

In this case, no frequency control is considered, and ref  is chosen as the rotor speed 

deviation of the reference generator (G4). G1 is equipped with EKM-based oscillation 
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damping controllers, while other generators have  -PSSs installed. The performances 

under various disturbances are compared with different kinds of CPSSs: multi-band PSS 

(MB-PSS),  -PSS, and the acceleration power PSS (
aP -PSS); see subsection 5.1.3 for 

details.  

 

Due to the symmetric structure, local oscillatory modes of the two areas have very close 

frequency (1.12Hz and 1.16Hz, respectively), and an inter-area mode of lower frequency 

(0.64Hz) is also observable in the tie-line transmitted active power. Well-designed PSSs 

are expected to effectively provide simultaneous damping on both the inter-area and local 

electromechanical oscillation modes. Four test cases are designed to study and compare the 

damping performances of the model-based and data-driven controller designs, which are 

listed below. The simulation results are presented in Figure 5-30 to Figure 5-33. 

 

• Scenario 1: Voltage reference step increase on G1 (0.96 pu to 1.06 pu) 

• Scenario 2: Voltage reference pulse change lasting for 12 cycles (magnitude randomly 

chosen in [-0.2, 0.2] pu) on G1 

• Scenario 3: Three-phase fault occurred at the middle-point of one transmission line 

(bus 11 in Figure 5-18) and is cleared after 12 cycles. The faulted transmission line is 

tripped 8 cycles after the fault. 

• Scenario 4: Load change lasting for 0.2s at area 1 (+10% of the original PQ load) 

 

    It is observed in Figure 5-30 that EKM-based AVR & PSS and PSS can damp out both 

the local and inter-area oscillations effectively. The data-driven oscillation damping 

controllers are superior to the model-based CPSSs with significantly damped oscillations 

and fewer fluctuation cycles on the rotor speed dynamics and the transmitted active power. 
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The generator terminal voltage can also be regulated well with almost no offset and no 

overshoot in a much shorter settling time than all CPSSs. Accordingly, EKM-based 

controller well solves the contradiction between the fast regulation and overshoot.  

 

    Fig. 5-31 corresponds to scenario 2 with a voltage reference pulse change 0.16629 pu) 

lasting for 12 cycles on G1. All CPSSs can restore the system in a short settling time while 

EKM-based AVR & PSS enjoys better performances with remarkably damped oscillations 

on both the local and inter-area oscillatory modes. Again, the terminal voltage is 

appropriately regulated back to the nominal value, and EKM-based AVR & PSS has the 

smallest overshoot. On the other hand, EKM-based PSS shows better damping effects on 

rotor speed oscillations than all CPSSs and almost equivalent performance on the tie-line 

active power to the best-performing CPSS (
aP -PSS). 

 

    The study scenario in Figure 5-32 is a three-phase fault at the middle point (110km) of 

one transmission line with the faulted line tripped after 8 cycles. Under such a severe 

disturbance, G1 will lose step with the rest of the network without the supplementary 

control of PSS. The EKM-based controllers can effectively damp out local 

electromechanical oscillations and have better damping performances on the transmitted 

active power than CPSSs. Additionally, EKM-based controllers can restore the terminal 

voltage to the desired value in a much shorter settling time than the CPSSs. Figure 5-33 

shows the test case with short-time load switching (12 cycles) at area 1. The load 

constituting the disturbance is 96.7MW/10MVAR/-18.7MVAR, about 10% of the original 

PQ load at the same spot. EKM-based controllers have better damping effects on the local 

and inter-area oscillations. The rotor speed deviation dynamics and transmitted active 

power at the tie-line are quite smooth with fewer fluctuations than CPSSs. Additionally, 
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EKM-based controllers can regulate the terminal voltage back to the nominal value. 

 

To summarize, for all considered test scenarios in the Kundur two-area system, the two 

oscillation damping control strategies based on EKM can damp local and inter-area mode 

oscillations more effectively than CPSSs. Besides, the terminal voltage regulation 

performances of EKM-based controllers are superior to the CPSSs with almost no 

overshoot, no steady-state offset as well as short transition time. 

 

5.5.3 Test Cases in IEEE-39 Bus System: Simulation Results and Analysis 
 

 

Same as the case of the Kundur two-area system, the speed deviation reference ref  

comes from the reference generator G1, which represents the New York power grid. 

Dynamical simulations are performed for the same test case in the report [97]: a three-

phase fault at bus 16 in Figure 5-21, cleared after 10 cycles. The EKM-based controllers 

are deployed at G2 and G7 simultaneously, and all other generators are equipped with the 

conventional  -PSSs. The simulation results are presented in Figure 5-34 and 5-35 for 

G2 and G7 individually.  

 

The simulation results demonstrate that EKM-based integration of AVR and PSS has 

notably improved damping effects on the rotor oscillations, observed in G2 and G7 with 

fewer oscillation cycles and smaller amplitudes, which makes the rotor speed dynamics 

much smoother compared to  -PSS. The damping performance of EKM-based PSS on 

the rotor speed is better than  -PSS in G7 while almost equivalent to CPSS in G2. All 

controllers can regulate the terminal voltages back to the nominal value, and EKM-based 

integration of AVR and PSS has the smallest overshoot and shortest settling time. 
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Figure 5 - 30 Kundur Two-Area System Scenario 1: Voltage Reference Step Increase on G1 

 

  

Figure 5 - 31 Kundur Two-Area System Scenario 2: Voltage Reference Pulse Change on G1
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Figure 5 - 32 Kundur Two-Area System Scenario 3: Three-phase Fault on One Transmission Line 

 

 

Figure 5 - 33 Kundur Two-Area System Scenario 4: Load Change at Area 1
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5.6 The Effects of Multi-Channel ESO 
 

The simulation studies in section 5.5 show that EKM-based controllers exhibit enhanced 

electromechanical oscillation damping ability compared with CPSSs on different 

platforms. Meanwhile, the voltage regulation dynamics display reduced or almost no 

overshoot and a shorter settling time. This section mainly studies the indispensability of 

the multi-channel ESO to remove the steady-state offsets, especially for the terminal 

voltage. The control performances with and without the assistance of a multi-channel ESO 

are presented, compared, and analyzed within a wide range of operating conditions.  

 

First, a test case in SMIB is presented in Figure 5-36, which corresponds to the test 

scenario 1 in subsection 5.3.1. The voltage regulation performances of the EKM-based 

oscillation damping controllers without the multi-channel ESO are displayed (compare 

with Figure 5-25). As discussed before, the linear model identified based on the control 

strategy of only PSS has a higher modeling error. Thus, the voltage regulation dynamics 

show an obvious steady-state offset when this low-accuracy model is used in the MPC 

structure directly without the compensation from the multi-channel ESO.  

 

To further analyze the function of multi-channel ESO, the real-time estimations of the 

modeling mismatch for the two considered control strategies are presented in Figure 5-37. 

The estimated values in all channels have rapid and significant variations when the 

disturbance ( refV  step change) occurs at 1t s= . For EKM AVR & PSS, the estimated 

modeling mismatches in different channels stay close to zero when the system becomes 

steady. Conversely, the ESO outputs for EKM PSS are relatively large (see channels 2~5). 

The estimated modeling error ˆ( )d t  by the multi-channel ESO is then involved in the MPC 

predictive model and mitigated by being assumed constant in the prediction horizon.  
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Figure 5 - 34 IEEE-39 Bus System G2: Three-phase Fault at Bus 16 

 

Figure 5 - 35 IEEE-39 Bus System G7: Three-phase Fault at Bus 16
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In the multi-machine test platforms, the effects of the multi-channel ESO are checked in 

a wide range of operating conditions. For example, 100 randomly generated initial 

conditions are applied for all generators with [0.1,1]refP   and [0.9,1.1]refV   in Kundur 

two-area system. Some of the operating conditions may be impractical, they are used to 

check the voltage regulation performance. The test settings are the same as those in 

subsection 5.5.2, and we focus on the terminal voltage steady-state offsets with and without 

a multi-channel ESO. The performances of CPSSs are provided as comparison references. 

The simulation results are exhibited in Figure 5-38. It is worth noting that the voltage 

offsets among different CPSSs are the same. 

 

 

Figure 5 - 36 Voltage Reference Step Increase of 0.05 pu without Multi-Channel ESO 

 

    Secondly, we use the IEEE 39-bus system as the test system where G2 and G7 are 

equipped with various controllers at the same time. 100 random experiments are performed 

where the active power and voltage references of G2-10 are randomly selected from 

[0.1,1]refP   and [0.9,1.1]refV  . The terminal voltage steady-state offsets of G2 and G7 

are statistically summarized in Figure 5-39 and 5-40. 
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Figure 5 - 37 Multi-Channel ESO Outputs of EKM AVR & PSS and EKM PSS  
 

 
 

Figure 5 - 38 Terminal Voltage Offsets of G1 in Kundur Two-Area System 
 

 

    According to statistical summaries in Figure 5-39 and 5-40, the model-plant mismatch 

between the (linear) model identified via DMDc and the true dynamical system is 

detrimental to the performance of MPC. The mismatch may induce non-negligible terminal 

voltage steady-state offsets or even cause instabilities (out of step cases in IEEE-39 bus 

system). With the assistance of the multi-channel ESO, online estimation of the 
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discrepancy keeps updating the identified model and makes it adaptive in a wide range of 

operating conditions. In this way, the accuracy of the predictive model in the MPC 

optimization problem (5-10) is improved, and the proposed EKM-based oscillation 

damping controllers achieve enhanced robustness and exhibit a feature not shared by 

various CPSSs: zero-offset regulation of the terminal voltage. 

 

 
 

Figure 5 - 39 Terminal Voltage Offsets of G2 in IEEE-39 Bus System  

 

 
 

Figure 5 - 40 Terminal Voltage Offsets of G7 in IEEE-39 Bus System 
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5.7 EKM Summary: Real-time Implementation and 

Characteristics  
 

In this section, we first evaluate the computational time required to solve the MPC 

optimization problem and ensure that the real-time implementations of the proposed 

damping controllers are allowed in practice. Secondly, some further analysis about the 

characteristics of the EKM-based oscillation damping controller design is performed.  

 

5.7.1 Computational Time of the MPC Optimization Problem 
 

One significant benefit of DMDc is the linearity of the identified model even when the 

underlying dynamical system is highly nonlinear, e.g., multi-machine power system 

networks. With a linear model embedded into the MPC structure and compensated by a 

multi-channel LESO, the optimization problem in (5-9, 5-10) is a (convex) quadratic 

programming problem, which is solved by an online active set strategy, qpOASES [98] in 

MATLAB R2020a, in our work. The simulations in this chapter are performed within the 

environment of Intel(R) Core(TM) i7-7700 CPU at 3.60 GHz with a 16 GB RAM and an 

×64-based processor running Windows 10 Enterprise. Considering the requirement of real-

time implementations, the computational time at each time step must be strictly limited, at 

least much smaller than the sampling period. The average computation time of the EKM-

based controllers required to evaluate the control input on different test platforms is shown 

in Table 5-3. Clearly, the control action evaluation time is far shorter than the MPC control 

sampling period, and thus the online implementation of EKM-based damping controllers 

is realizable. 
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Table 5-3 Average Calculation Time of Control Input 

Test Platform SMIB Kundur Two-Area IEEE – 39 Bus 

G2 G7 

Evaluation Time 0.84ms 0.80ms 1.95ms 1.98ms 

MPC Sampling Time 40ms 1/30s 1/30s 1/30s 

 

5.7.2 Characteristics of the EKM Control Framework  
 

• No Requirement of System Modeling 

A globally valid linear model is identified via DMDc from dynamical data without any 

mathematical modeling procedures of the studied system. On the stage of data collection, 

it does not matter which kind of CPSS is applied, even randomly generated fdE  or pssV can 

work. What DMDc learned is not the control actions but the system dynamics. However, 

pre-known dynamics (if exist) should be leveraged in the system identification and the 

design of multi-channel ESOs.  

 

• Distributed Architecture  

The design and operation of EKM-based controllers only depend on local measurements 

in (5-3), and a fully distributed architecture is formulated accordingly. The choice of 

system measurements is the foundation, and we believe the active and reactive power 

,t tP Q  capture the influence of the external network on the controlled generator to some 

extent. Therefore, the interplay among all distributed controllers, system variations, or 

occurrence of emergency events is manifested in the terminal power flow tP  and tQ . One 

indicative illustration of this property is the test case where a three-phase fault is cleared 

by tripping the faulted line. The system topology is changed afterward, but EKM-based 
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controllers still work properly even though the system dynamics are different from that on 

which the data acquisition is conducted. 

 

• Low-order Model  

The order of the linear model learned by DMDc is equal to the number of observables and 

has nothing to do with the original order of the underlying dynamical system. Generally, 

the number of observables is far smaller than the intrinsic dimension of the real system. 

Such a low-order linear system embedded in MPC helps to reduce the computational 

burden further. In this work, the data-driven linear model used in MPC is only 5-th order 

(Eqn. (5-3) has 5 local measurements) even when the system underlying is a much higher-

dimensional system, e.g., hundreds of dimensions for the IEEE-39 bus system.  

 

• Adaptability  

The predictive model in MPC keeps being adaptively updated by the compensation from 

the multi-channel ESO according to the real-time system inputs and outputs measurements. 

The accuracy of the predictive model is thus improved, and the robustness of the controller 

is enhanced, especially when emergency events happen. 
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Chapter 6  

 

Conclusion and Future Work 
 

The proposition of the smart grid and the development of internet and communication 

technology (ICT) herald a new era of big data in power systems. Data-driven discovery is 

now revolutionizing how we model, predict, and control this cyber-physical system (CPS). 

With the high share of renewable energy resources (RESs) and other unpredictable system 

variations, the power system modeling is made progressively more challenging in the 

industrial practice. Therefore, the model-based viewpoint of controller design is not 

amenable to such a nonlinear and high-dimensional dynamical system with multi-scale 

characteristics in time and space. The availability of vast and increasing quantities of data 

in modern power systems drives the control paradigm to data-driven approaches.  

 

This dissertation works to build a data-driven control framework and designs power 

system oscillation damping controllers based on the proposed framework, ESO-Koopman-

MPC (EKM). The control framework contains three key elements:  

(1) the system identification via dynamic mode decomposition with control (DMDc),  

(2) online estimation and compensation of the model-plant mismatch by the extended state 

observer (ESO) techniques, and  

(3) a linear model predictive control (MPC) structure.  
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DMDc is a numerical approximation of the Koopman operator, and the system dynamics 

are extracted from system observable measurements and the applied control actions. The 

identified model is guaranteed to be linear and has a global validness. The quality and 

correctness of the identified model are investigated in terms of the prediction accuracy of 

system trajectories. The inevitable deviation between the prediction and true trajectory may 

result in significant oscillations or non-zero steady-state offsets if the raw model is 

embedded into MPC directly. In the power system oscillation damping controller design, 

the model-plant discrepancy may induce the voltage regulation offsets or even instabilities.  

 

A component, referred to as multi-channel ESO, leveraging the identified dynamics via 

DMDc and the idea of standard ESO, is introduced to realize estimation of the model-plant 

mismatch in a real-time manner. The multi-channel ESO treats the discrepancy as an 

extended state and tries to estimate it based on the system inputs and outputs measurements. 

The estimated variable compensates the identified model, especially when external 

disturbances or any internal changes occur. The compensated model is incorporated into 

the MPC structure, and owing to the assistance of ESO, the predictive model keeps being 

adaptively updated according to the system measurements. Therefore, the prediction 

accuracy is improved, and the stability and dynamic performances of the data-driven 

controllers are enhanced.  

 

The EKM-based oscillation damping controller in power systems has two goals:  

(1) damping of long-time persisting oscillations in the rotor speed and power flows, and  

(2) regulation of the generator terminal voltage.  

 

Accordingly, two control strategies are considered in this dissertation:  

(1) integration of automatic voltage regulator (AVR) and power system stabilizer (PSS),  
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(2) only PSS.  

The control goals are realized in the objective function of MPC by a weighted sum. The 

proposed data-driven oscillation damping controller only relies on the local measurements, 

and in this sense, a fully distributed control architecture is formulated. Owing to the 

linearity of the Koopman operator, the MPC optimization is a (convex) quadratic 

programming problem and allows rapid solvers to be applied. Besides, the dimensionality 

of the identified system has nothing related to the underlying complicated dynamical 

system but is equal to the number of selected measurements. Overall, the convexity and 

low-dimension guarantee the reduced computational burden, control stability, and real-

time implementations.  

 

The proposed data-driven oscillation damping controller and the model-based 

conventional PSS (CPSS) are tested and compared on different-scale test platforms 

recommended by the IEEE Force, such as the single machine infinite bus system (SMIB), 

Kundur two-area system, and the IEEE-39 bus system. The simulation results verify that 

the data-driven controllers present enhanced oscillation damping effects in terms of 

multiple oscillation modes. The control strategy of integration of AVR and PSS shows 

superior damping performance to the strategy of just PSS since the integration of AVR and 

PSS has more control flexibility. On the other side, the terminal voltage regulation 

performances of the data-driven controllers are checked in a wide range of operating 

conditions. The simulation results demonstrate that the EKM-based controllers exhibit a 

feature not shared by CPSSs: zero-offset regulation of the terminal voltage. 

 

Finally, some directions for future work are listed below: 

• Perform tests on larger power systems and check the oscillation damping performances 
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when multiple generators are equipped with the EKM-based damping controllers 

simultaneously (competition effects).  

• Apply other Koopman approximation numerical methods when identification based on 

DMDc is not accurate enough, e.g., EDMDc, neural network-based EDMDc, etc. 

• Search minimal and optimal measurements set for the data-driven dynamics discovery. 

• Investigate other potential applications of the proposed control framework EKM. 
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Appendix 
 

Table Appendix-1 SMIB Parameters 

      Generator:  0.00327aR =      1.7572dx =         1.5845qx =        3.542H =            0D =  

    ' 0.4245dx =            
' 1.04qx =              '

0 6.66dT =         
'

0 0.44qT =  

      Transformer:         0.0tR =                0.1364tx =  

     Transmission Line: 0.08593lR =          0.8125lx =         0.1184cB =     (per circuit) 

     (The transmission line parameters are representative of a 400 kV, 400 km long line with  

     50% shunt compensation) 

     Excitation System:   400AK =              0.025AT =         ,max ,min6, 6fd fdE E= = −  

 -PSS:    15K =                   1 0.75T =            2 0.3T =           10wT =    

 ,max ,min0.05, 0.05pss pssV V= = −  

     Other Parameters:  0.13636thx =  (Thevenin’s impedance of the receiving end system) 

     Test Initial Condition:  1.0bE =       0.6tP =       0.02224tQ =       1.05tV =       21.65 =   

      

*  Terminal Voltage: 
tV 
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Table Appendix-2 EKM-based Damping Controller Parameters 

 Controller 
pN  Q  VQ  R  

cT  (sec) 0  

 

SMIB 

EKM-AP 10 15 500 0.001 1/25 0.6 

EKM-PSS 8 15 600 0.001 1/25 0.8 

 

Kundur Two-Area System 

EKM-AP 10 15 2000 0.001 1/30 0.8 

EKM-PSS 10 15 5000 0.01 1/30 0.8 

 

 

IEEE-39 Bus 

System 

 Gen 2 EKM-AP 27 20 2500 0.005 1/30 0.8 

EKM-PSS 27 25 4500 0.01 1/30 0.8 

Gen 7 EKM-AP 27 30 1500 0.005 1/30 0.8 

EKM-PSS 27 25 2500 0.01 1/30 0.8 

 

* EKM-AP : EKM-based Integration of AVR & PSS 

* EKM-PSS: EKM-based PSS
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