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Abstract
A three dimensional viscous finite element model is presented in this paper for the analysis of the
acoustic fluid structure interaction systems including, but not limited to, the cochlear-based
transducers. The model consists of a three dimensional viscous acoustic fluid medium interacting
with a two dimensional flat structure domain. The fluid field is governed by the linearized Navier-
Stokes equation with the fluid displacements and the pressure chosen as independent variables. The
mixed displacement/pressure based formulation is used in the fluid field in order to alleviate the
locking in the nearly incompressible fluid. The structure is modeled as a Mindlin plate with or without
residual stress. The Hinton-Huang’s 9-noded Lagrangian plate element is chosen in order to be
compatible with 27/4 u/p fluid elements. The results from the full 3d FEM model are in good
agreement with experimental results and other FEM results including Beltman’s thin film
viscoacoustic element [2] and two and half dimensional inviscid elements [21]. Although it is
computationally expensive, it provides a benchmark solution for other numerical models or
approximations to compare to besides experiments and it is capable of modeling any irregular
geometries and material properties while other numerical models may not be applicable.

1 Introduction
This paper deals with numerical modeling of three dimensional fluid structure interaction
problems using the finite element method (FEM). Modeling fluid structure interaction involves
the analysis of the fluid domain, the structure domain and the coupling between these two
domains. While the structure domain is generally described in a displacement formulation,
there are a number of FEM formulations available for modeling the fluid field depending on
the properties of the fluid. The fluid can usually be categorized into two different groups: the
fluid flow and the acoustic fluid with small particle motions. For a general fluid flow problem,
a full Navier-Stokes equation is required to model the fluid field, while for the acoustic fluid,
the fluid is often assumed to be linear and inviscid so that the fluid formulation can be greatly
simplified. However, in a wide range of structural acoustic problems, the viscous effect plays
an important role, especially in the system with a thin fluid layer such as the trapped fluid
hydromechanical cochlear model [25]. In these circumstances, the fluid viscosity is non-
negligible and should be included in the acoustic fluid model. In this paper, we aim at
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developing a three dimensional FEM formulation for the analysis of the viscous acoustic fluid
coupled with a flexible boundary.

The commonly used fluid formulations include the pressure formulation [21], the potential
formulation [7,18], the displacement formulation [15,11] and the combination of some of them
[23,1]. Choosing a scalar variable such as pressure for the fluid field significantly reduces the
problem size compared to the displacement formulation. For a transient analysis, it is well
known that the pressure formulation results in a nonsymmetric matrix. The nonsymmetry of
the matrix can be removed using the velocity potential formulation or the pressure-
displacement potential formulation on the expense of an added damping matrix [7]. One
significant disadvantage of the pressure or potential formulation is that they are developed for
inviscid fluid only. The displacement formulation can model a viscous fluid, and the coupling
condition at the fluid structure interface can be easily implemented. However, the displacement
formulation in the frequency analysis suffers from the presence of the non-zero frequency
modes with no physical meaning (i.e. spurious modes [15]), and it locks in the frequency
analysis of a solid vibrating in a nearly incompressible fluid [19]. Recently we also found that
the displacement formulation locks in the analysis of a nearly incompressible fluid interacting
with a flexible boundary [26]. Many researchers have proposed improved formulations to solve
this problem (a complete review on this matter can be found in [1]) among which a
displacement/pressure based mixed formulation, developed by Bathe [1], has been
demonstrated to have no spurious modes with the selection of the proper elements. It is also
proven to be effective in the analysis of incompressible or nearly incompressible media. For a
three dimensional problem, the mixed formulation has four degrees of freedom per node in the
fluid element, thus a higher computational burden compared with the displacement based
formulation. However, for a nearly incompressible fluid, the pressure degrees of freedom can
be condensed out in the element level, resulting in the same matrix size as in the displacement
based formulation.

The viscous effect can also be included in the fluid model approximately under certain
assumptions. Beltman et al. [2] presented a viscothermal acoustic finite element model for
acousto-elastic problems with thin layers. The model assumes that the pressure is constant
across the layer thickness so that three dimensional formulation is collapsed to two
dimensional. Beltman’s model is only applicable when the viscous boundary layer thickness
is comparable to the thickness of the layer. Bossart et al. [5] developed a hybrid numerical and
analytical solution for thermo-viscous fluids, in which a modified acoustic boundary condition
is derived to account for the fluid viscosity using a boundary layer theory. The pressure
formulation is used in this model since the viscous boundary condition is written in terms of
pressure and its derivatives only. A similar nondimensionalized acoustic boundary condition
was proposed by Holmes and Cole in 1984 [13], although it was not implemented in the FEM
model. These modified boundary conditions were constructed under the assumption that the
viscous boundary layer thickness is small compared to the dimension of the domain. To
simulate the frequency response of a coupled fluid structure system, the boundary layer
thickness could vary from big (at low frequencies) to small (at high frequencies) compared to
the dimension of the system. Currently the viscous approximations only work at two extreme
cases but are not applicable to the problems with intermediate boundary layer thickness
although it greatly simplifies the FEM formulation.

In this work, a fully coupled three dimensional FEM formulation is derived for the analysis of
acoustic fluid structure interaction problems. The fluid is viscous and nearly incompressible.
The fluid displacements are very small therefore a linear response can be assumed. The
structure has a flat surface and is modeled as a plate with or without residual stress. The
displacement pressure based mixed formulation is used to model the fluid field to avoid the
locking behavior and to suppress the spurious modes. The coupling condition at the interface
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is such that the normal velocity and force are continuous but the tangential velocities are
negligible. A similar 3d coupled FEM model was developed by Figueroa et al. [8] to simulate
the blood flow in the arteries. This study differs from Figueroa’s work in the coupling condition
at the fluid structure interface, the structural model and the elements used both in the structure
and fluid domains. This model could also find its application in the modeling of the cochlea
and cochlear-based transducers. There has been extensive research carried out over the last
sixty years attempting to understand the functioning of the cochlea through experiments and
mathematical models. A conventional view of the cochlear mechanics can be found in [6]
including experimental results and basic modeling techniques. Recent efforts in the cochlear
modeling has been focused on developing a physiologically realistic model of the cochlea and
numerical methods have become more propular due to their ability to deal with complicated
structures. Giverlberg and Bunn [10] developed a full three dimensional model of the curved
cochlea using immersed boundary method [3]. The fluid is modeled as viscous and
incompressible using nonlinear Navier-Stokes equation. Their model shows the promise of
large scale computational modeling applicable to study the cochlear mechanics, however, the
computational cost is very high compared to other 3d models. Parthasarathi, et al [21] proposed
an inviscid fluid structure coupled cochlea model using the pressure forumlation. In their
model, the fluid domain is meshed in 2d and a finite number of fluid modes is used in the third
dimension. The nature of this formulation (i.e. the modal solution in one direction) limits its
application in the viscous fluid medium. Two different groups [9,4] used the commerical FEM
software package ANSYS to study the passive cochlear mechanics, in which Böhnke and
Arnold [4] developed a three dimensional fluid structure interaction system with a curved
cochlear duct. The fluid is considered inviscid and compressible. Gan et al [9] built a 3d FEM
model of the ear incorporated the ear canal, the middle ear and the straightened cochlea. A
more rapid solution can be obtained by a semi-analytic method known as Wentzel-Kramers-
Brillouin (WKB) method [16,17,22,24]. Most WKB models in the cochlear mechanics only
consider the first wave number in their solutions, which may not capture the complete response
of the cochlea [24]. Lim and Steele [17] extended the WKB model to include the fluid viscosity.
Although the duct height and width can be slowly-varying in their model, it is still difficult to
model a duct with any sudden change in the geometry, which is often seen in the cochlear-
based transducers [26].

The organization of this paper is as follows. First we introduce the strong and weak forms for
fluid domain, structure domain and the coupling between them. We then specify the
interpolations used for fluid and structural elements, and the formulations of the element
stiffness matrix. Finally, the results from the 3d FEM model are given in comparison to
experimental results and other FEM model results, followed by the conclusions.

2 Finite Element Framework
Fig. 1 shows a typical geometry of interior structural acoustics problem where the viscous
compressible fluid is bounded by solid walls, part of which is occupied by a flat flexible
structure. The rigid boundary is denoted as Γg and the flexible boundary is denoted as Γp. The
governing equations for fluid domain and structure domain are discussed next.

2.1 Fluid Domain
Assume that the fluid is viscous and compressible, the motion of the fluid is governed by,

(1)
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(2)

(3)

where ρf is the fluid density and v is the fluid velocity vector with three components. β is the
compressibility of the fluid (β = 1/ρf c2). Eqn. 1 is the conservation of the mass equation, Eqn.
2 is the definition of the compressibility and Eqn. 3 is the conservation of momentum equation
(i.e. Navier-Stokes equation). The nonlinear convection term v · ∇v in the Navier-Stokes
equation can be neglected for the acoustic fluid when the fluid velocity is small compared to
the dimensions of the model therefore the linearized time harmonic Navier-Stokes equation
takes the form,

(4)

Here we restrict our solution to be steady state with an assumed ejωt dependence. u is the fluid
displacement and we have v = ∂u/∂t = jωu.

Replacing ρf by P using the constitutive equation (Eqn. 2), the conservation of the mass
equation (Eqn. 1) can be written as,

(5)

This equation is reduced to

(6)

when the fluid is incompressible (β = 0). Note that we can substitute Eqn. 5 into Eqn. 4 to
cancel out the pressure P so that the linearized Navier-Stokes equation is written only in terms
of the fluid displacements. This substitution will lead to the pure displacement based
formulation since the only variable in the equation is the fluid displacement. As Bathe [1]
pointed out, the pure displacement based formulation tends to lock for a nearly incompressible
fluid. To alleviate the locking and improve the accuracy, we can use a mixed formulation in
which the pressure and displacement are treated as two independent variables and interpolated
independently.

The boundary conditions for the fluid domain can be written as,

(7)
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where the subscripts 1 and 2 denote the tangential components of the fluid displacements and
3 denotes normal component. w is the out-of-plane displacement of the structure. At the fluid
structure interface Γp, the boundary condition u1 = u2 = 0 can be relaxed to allow non-zero in-
plane displacements if they are non-negligible. Eqns. 4, 5 and 7 complete the strong form of
the fluid governing equations and boundary conditions.

Multiplying Eqns. 4 and 5 by the weighting functions (ū and P̄) and integrating over the fluid
volume Ω, we obtain the variational form,

(8)

and

(9)

Here nr is the unit outward normal. Using the fluid boundary conditions defined in Eqn. 7,
most of the boundary terms vanish except the normal displacement at the fluid structure
interface Γp3. The non-zero boundary term is,

(10)

with the substitution of r = 3, s = 3 and nr = ns = −1 in Eqn. 8. This term is related to the surface
traction t3 at z = 0. The relation can be established from the definition of the stress tensor in
the fluid,

(11)

Hence at z = 0, the stresses are,

(12)

after applying the boundary condition u1 = u2 = 0 in Eqn. 11.

Therefore Eqn. 10 can be written as,
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(13)

with the traction ti = Σj σijnj.

2.2 Structure Domain
In the structure domain, the most commonly used theories to model a plate are the classical
Poisson-Kirchhoff theory and Reissner-Mindlin plate theory. Interpolations of the Kirchhoff
plate requires C1 continuity, while the Mindlin plate requires only C0 continuity. In order to
be compatible with the fluid element which has only C0 continuity, the Mindlin plate is chosen
here for a straightforward implement of the coupling between the fluid and structure domains.

The main assumption for the Mindlin plate is that the normals to the midplane of the plate
remain straight during the deformation but they are not necessarily normal to the deformed
middle surface. With this assumption, the displacement components can be written as,

(14)

where θx and θy are the rotations of the normal to the plate middle surface and w is the plate
transverse displacement. Here we assume that the plate is located in the x − y plane. We denote

.

The bending strains and the shear strains can be computed from the displacement components
as follows,

(15)

The variation equation of the plate is obtained by substituting the strains into the principle of
virtual work, giving,

(16)

where f3 is the transverse loading per unit area, and Cb, Cs and M are defined as,

(17)
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for an orthotropic plate. Ex, Ey and Gxy are the Young’s moduli and shear modulus. νxy and
νyx are the Poisson’s ratios. ρp is the plate density and t is the plate thickness. k is a constant to
account for the actual nonuniformity of the shearing stress and k is usually taken to be 5/6
[1].

The boundary conditions for a simply-supported plate are: w = 0, θx and θy are free [14] at the
edges.

2.3 Coupling Between Two Domains
The coupling between the fluid and structure domains is realized through the forcing terms.
Since we have already neglected the in-plane displacements at the fluid structure interface, the
coupling occurs only in the normal direction. We know that the surface traction acting on the
fluid due to the interaction with the structure is equal and opposite to the pressure loading on
the structure by the fluid, i.e. t3 = −f3, and the continuity in the normal velocity at the interface
gives u3 = w. Using these two equations, we have

(18)

Hence the final form of the variational equations for the coupled system, if written in terms of
the displacement components and pressure, is,

(19)

along with Eqn. 9.

If the residual stress in the structure is non-negligible compared to the bending effect, we should
also include the tension effect in the structure governing equation. Assume that the tensions in
the structure are Tx and Ty (they are not necessary to be the same), the third equation in Eqn.
19 is changed to,

(20)

We can see from the above equation that the structure degrees of freedom are only coupled to
the fluid displacement in the z direction, and the coupling only affects the fluid elements at the
fluid structure interface. There are two approaches to deal with the coupling effects in the FEM
discretization. The first one is to construct the fluid element at the fluid structure interface
separately so that its stiffness matrix can include the contribution from the structure besides
those from the fluid. The second one is to construct a coupling element at the interface to
include only the coupling effect from the structure so that the fluid element at the interface is
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the same as those in the domain. The second approach is used in this work and the main
advantage for constructing a coupling element is that the fluid element at the interface does
not change with the mechanics of the structure. If the structure governing equation or the
coupling mechanics is changed, we only need to generate a new coupling element. Next we
will cover the basics for constructing the fluid element, the structure element and the coupling
element.

3 The Choices of Elements
Selecting the proper elements is essential to achieve accurate and converged results in the FEM
formulation. In the fluid domain, we choose to use a 27/4 u/p mixed element [1] in which the
displacement interpolation is tri-quadratic while the pressure is linearly interpolated. In the
structure domain, the 9-noded Hinton-Huang’s element is used in order to be compatible with
fluid element. The description of each element is detailed next.

3.1 Fluid Elements
In the displacement/pressure based mixed formulation, we interpolate not only the
displacement but also the pressure. Since the pressure has the same order as the volume strain,
its interpolation should be of lower order than the displacement. The simplest possible fluid
element is a 8-noded brick element in which the displacement is linearly interpolated and the
pressure is constant inside the element. This element is denoted as 8/1 u/p element and has
been shown to be reasonably good, according to Bathe [1]. However, it does not satisfy the
inf-sup condition, a criterion to determine whether an element is stable and convergent [1], and
also exhibits a spurious mode for a specific mesh with certain boundary conditions. The 8/1 u/
p element is actually equivalent to a 8-noded pure displacement based element with reduced
integration on the compressibility term [14], which exhibits locking behavior at low
frequencies for the example problem shown in this paper (see Sec. 5 for more details).

Considering a higher-order displacement interpolation such as tri-quadratic interpolation
(corresponding to a 27-noded element for the displacement), the pressure interpolation has
several choices including a constant, linear or trilinear interpolations. The study [1] shows that
the element with tri-quadratic displacement and linear pressure gives the best overall
performance among these choices and it is named as 27/4 u/p mixed element since the pressure
interpolation has 4 unknowns: P = p0 + p1x + p2y + p3z.

To obtain the governing finite element equations for the fluid, here we will show the
formulation of the stiffness matrix for one single element. Assembling the global matrix from
the element matrix can be performed in a standard manner. For a 27/4 u/p element, we assume
that the displacement and pressure interpolations are,

(21)

with

(22)
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where  to  are the shaping functions for a 27-noded trilinear element and û is the nodal
displacement vector. The superscript and subscript in  denote the nodal number and the
displacement component, respectively (e.g.,  is the fluid displacement in the x direction at
node 2). P̂ is the unknown pressure vector. Note that P̂ does not correspond to any nodal
pressure. Using this interpolation, the pressure is continuous inside the element but
discontinuous across the element. Substituting the interpolations into the fluid variational
equation (Eqn. 19), we can obtain the element stiffness matrix,

(23)

where

(24)

and

(25)

The expression for  can be obtained from the fluid governing equation directly and is
omitted here. Since the pressure degrees of the freedom P̂ are only pertain to one element, we
can solve the pressure unknowns using the second equation in Eqn. 23,

(26)

substituting this equation into the first equation in Eqn. 23, we obtain the new element stiffness
matrix which is only related to the nodal displacement:

(27)

so that the pressure degrees of freedom are condensed out on the element level. Note this
stiffness matrix is different from the one in the pure displacement based formulation although
the unknowns in the final equation are both nodal displacements. The pressure unknowns are
canceled out in the weak form and the pressure is interpolated independently. The forcing term
in the fluid variational equation will be considered in the next section in the coupling elements.

4 Structural/Coupling Element
Similar to the fluid element, the pure displacement based plate elements tend to be overly
constrained and exhibit a strong artificial stiffening in the thin plate limit. To alleviate the effect
of shear locking in the plate element, different interpolations are used for the bending and shear
strains. In order to be compatible with three dimensional 27-noded fluid element, the structural
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element should have 9 nodes with bilinear interpolation for the transverse displacement. There
are two groups of 9-noded structural elements shown to be efficient and reliable with a mixed
interpolation for bending and shear strains: MITC9 element (MITC stands for mixed
interpolation of tensorial components) [1] and Hinton-Huang’s 9-noded plate element [12].
Unfortunately the MITC9 element uses a serendipity type interpolation for transverse
displacement (8 nodes for the displacement and 9 nodes for section rotations) which makes it
incompatible with the fluid element. In this paper, we use Hinton-Huang’s Lagrangian element
for the coupled analysis.

Following the general methodology proposed by Onate et al. [20] for deriving Hinton and
Huang’s plate element, the shear strains are interpolated independently with the following
form,

(28)

and they were written in terms of ξ and η in the natural coordinates: ξ ∈ [−1, 1] and η ∈ [−1,
1] (see Fig. 2). The Cartesian shear strains are related to natural shear strains via Jacobian
matrix J. The unknowns a1 to a6 and b1 to b6 are solved by strongly enforcing

(29)

at 12 sampling points shown in Fig. 2 (6 sampling points for γξ and 6 for γη). This will generate
12 equations to solve for the coefficients a1 to a6 and b1 to b6 so that the element shear strains
can be expressed in terms of (w, θξ, θη) at those 12 points, which are again related to the nodal
displacements and no more unknowns are introduced for shear strains in the element stiffness
matrix.

Therefore the final element stiffness matrix for the 9-noded Mindlin plate element is,

(30)

and

(31)

where Bb and B̄s are plate bending and shear stiffness matrices, respectively. Note that Bb can
be directly computed from Eqn. 16 but B̄s is calculated from the different interpolation
introduced above.

For a thin plate, we can assume that the in-plane displacements are small and the fluid and the
structure are coupled at the plate midplane. The continuity of the displacements at the interface
gives
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(32)

Note that at the structure midplane, the in-plane displacements are zero but the rotations θx and
θy are not necessarily zero (see Eqn. 14).

Normally for fluid structure interaction problems, the coupling between fluid and structure
domains can be easily implemented with the displacement formulation and the stiffness
contribution from the structure can be directly added to the fluid stiffness matrix at the
corresponding nodes at the interface. However, this is not the case in our problem since there
is no direct coupling between (u1,u2) and (θx, θy) at the interface. We need to construct a new
element which can couple the structural degrees of freedom (w, θx, θy) to the fluid degrees of
freedom (u1, u2, u3) at the interface and also account for the plate stiffness contribution in the
variational equation (Eqn. 19). The coupling element has 18 nodes with 9 structural nodes on
the bottom plane (numbered 1–9) and 9 fluid nodes on the top (numbered 10–18), as shown in
Fig. 3. Since all the nodes are located at the plate midplane and the element has zero thickness,
node 1 and node 10 have exactly the same coordinates, so do node 2 and node 11, and etc. The
degrees of freedom for the bottom nodes are (θx, θy) and (u1, u2, u3) for the top nodes. Note
that the bottom nodes only have two degrees of freedom instead of three in the plate element,
because at the interface we have u3 = w so only one of them needs to be included in the element.
The nodal degrees of freedom for one single coupling element is,

(33)

With the use of the new element, at the interface we have fluid element which is the same as
the ones in the domain and also a zero-thickness coupling element with top 9 nodes the same
as fluid nodes and bottom 9 nodes for plate rotations. The third equation in Eqn. 19 shows that
the deformation of the structure is coupled to the fluid domain as a boundary condition and the
coupling only occurs between θx, θy and u3 (i.e. w). The coupling element stiffness matrix

 is just an expansion of the stiffness matrix for structural elements with extra zeros at the
rows and columns related to u1 and u2,

(34)

with

(35)
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(36)

(37)

where kij is the (i, j)th component of the plate element stiffness matrix Ke (see Eqn. 30). We
can see that in the coupling element stiffness matrix, θx and θy are not coupled to u1 and u2,
because the coupling element is constructed on the plate midplane and the in-plane
displacements for the fluid and structure are all zero at the interface. As an alternative, Figueroa
et al. [8] proposed a different coupling element in which they neglect the variations of the
structure in-plane displacements across the thickness so that the coupling conditions at the
interface can be written as

(38)

and this slightly modifies the variational statement in Eqn. 19.

5 Results and Discussion
In this section, some specific results for three dimensional FEM computations of fluid-structure
interaction are given using the formulation described in this paper. These results are compared
to experimental results for steady state vibration of microscale fluid-structure systems as well
as to computational results achieved using two lower dimensional finite element schemes.

Both of the lower dimensional finite element schemes include full fluid-structure coupling.
The first of these was described by Parthasarathi, et al [21]. It is an inviscid, harmonic, pressure-
based model that uses a full fluid mesh for pressure in two dimensions, but a finite number of
inviscid fluid modes in the third dimension. A single structural cross-mode shape is used, and
the structural motion is fully meshed in one dimension only. We refer to this as 2.5d FEM. The
second two dimensional scheme is a thin-film viscoacoustic model taken from the work of
Beltman, et al [2]. This approach uses a two dimensional mesh for both the fluid and structural
vibration, but assumes that the fluid film is very thin, resulting in a single pressure dependent
variable for the fluid. Fluid viscosity is included in Beltman’s model.

The 3d FEM model described in this paper can be used in many acoustic fluid structure
interaction problems in which the linearized Navier-Stokes equation is applicable. For an
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example of the capabilities, we choose to compare our model results to the fluid-structure
traveling waves in hydromechanical cochlear models. The authors have designed, built and
tested a number of such models. Fig. 4 shows the typical geometry of the cochlear-based
transducers. The fluid-filled cochlear duct is idealized as a single rectangular fluid filled duct.
A flexible structure, which mimics the flexible basilar membrane (BM) in the cochlea, occupies
part of the bottom wall. The width of this membrane structure varies along the length of the
duct. The acoustic input to the system is applied through another rectangular flexible membrane
on the bottom wall, which we refer to as the ”input membrane”. All other walls of the duct are
considered to be rigid. We define the coordinate axes as follows: The x axis extends
longitudinally along the duct length. The y axis is oriented across the width of the membrane,
thus the membrane lies in the x-y plane. The z axis is normal to the membrane, that is, it defines
the height of the duct. The geometry is symmetric about the x-z plane, thus only half of the
geometry is modeled with symmetry boundary conditions specified on y = 0. The geometric
and material properties used in the example problems are given in Fig. 5 and Table 1.

The fluid chamber is micromachined from glass and anodically bonded to a thick silicon die
which supports the membrane structures. The basilar membrane is a composite structure
composed of a 300 nm thick stoichiometric silicon nitride thin film etched into parallel beams
overlayed with a 1.4 μm thick polyimide layer (PI2737 from HD Microsystems, Parlin, NJ).
This results in a tensioned orthotropic structure with a tension of approximately 240 N/m in
the y direction and 30 N/m in the x direction, as determined by wafer curvature measurements
on the unpatterned films. The basilar membrane structure is 30 mm long, and tapers
exponentially in width from 0.14 mm to 1.82 mm, as shown in Fig. 5. The input membrane is
a rectangle, 1.1 mm by 2.1 mm. The fluid duct is filled with silicone oil with a viscosity of 5
cSt and a density of 911 kg/m3. Fluid-structure traveling waves and structural vibration are
excited by exposing the input membrane to air borne sound delivered by a tweeter.
Measurement of the vibration response of the basilar membrane is carried out at steady state
using a microscale scanning laser vibrometer and a lock-in amplifier.

Fig. 6a shows the measured magnitude of structure displacement normalized to the driving
pressure from the input membrane at 4.2 kHz, 12 kHz and 35 kHz. These results have been
published previously in [25]. The corresponding model results calculated from the mixed 3d
FEM formulation are shown in Fig. 6b. For all three frequencies, the fluid domain is meshed
using 603 nodes in the length direction, 15 nodes in the width direction and 13 nodes in the
height direction. The basilar membrane is meshed using 501 × 7 uniform grid and the input
membrane is meshed using 43 × 11 uniform grid. The model correctly captures the location of
the maximum response and the wave decay after the peak as well as making a good prediction
of the magnitude of the response. Any discrepancies between the modeled and measured
response magnitude can be attributed to uncertainties in the driving pressure, which cannot be
measured exactly at the input membrane. There is also very good agreement between
experimental and FEM model results showing the phase of the structural vibration along the
membrane centerline (along the x-axis) at three frequencies, as shown in Fig. 7. Note that for
this system, the compliance of the BM is about two to three orders of magnitude lower than
that of the real cochlea [25], so that the bandwidth of the model shifts towards slightly ultrasonic
regime (4–35kHz).

For comparison, Fig. 8 shows the computational results from a pure displacement based 3d
finite element formulation. This inferior model uses an 8-noded brick element in the fluid
domain with trilinear interpolation for the displacement. The FEM mesh uses the same number
of the nodes as in the above example (which means that the number of the elements is doubled
in each direction). For the terms involving the fluid compressibility, a one point quadrature
rule is applied, while the other terms use 2×2×2 Gaussian quadrature. This selective reduced
integration scheme is used in an attempt to alleviate the element locking due to the nearly
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incompressible fluid. However, at the low frequencies such as 4.2 kHz, the pure displacement
based formulation still locks if compared with the results from the mixed FEM model in Fig.
6b. At 12 kHz, it predicts a smaller displacement magnitude than that of the mixed model and
the location of the peak is more towards the base of the duct. As mentioned earlier, this 8-noded
displacement based formulation is equivalent to an 8/1 displacement/pressure mixed
formulation and does not satisfy inf-sup condition, meaning the element is not stable. Although
it is very simple to implement and gives a good prediction of the response at some frequencies,
such as 35 kHz, the behavior of this formulation is not predictable as we do not know when it
will lock and produce meaningless results. In contrast, the 27/4 mixed 3d formulation described
in this paper gives excellent results at all frequencies although the computational cost is higher.

The convergence of the 3d mixed FEM model is discussed next. As an example, Fig. 9a shows
the structure displacement at 4.2kHz using four different meshes: the original mesh we used
in the Fig. 6, doubling the elements in the length, width and height direction respectively. Due
to the limitation of our current computational resources (maximum memory 64 gigabytes), it
is not feasible to have even more refined mesh without exceeding the memeory requirement.
However, the converged results in Fig. 9 suggests that the mesh resolution in the above example
is sufficient.

Fig. 10 shows the comparison of the structure displacement computed from the 2.5d FEM
[21] model and the 3d FEM model at 12 kHz (Fig. 10a) and 35 kHz (Fig. 10b), respectively.
For the 3d FEM model, the fluid domain is again meshed using 603 nodes in the x direction,
15 nodes in the y direction and 13 nodes in the z direction, the basilar membrane is meshed
using 501 × 7 uniform grid and the input membrane is meshed using 43 × 11 unform grid. For
the 2.5d FEM model, the fluid domain is meshed using 603 x nodes and 42 z nodes. 8 cross-
modes is used in the y direction. The structure has 501 nodes in the x direction with only one
cross-mode. The 2.5d FEM formulation uses the modal solution in the y direction with a
pressure formulation and therefore it only needs a two dimensional mesh in the x − z plane, a
big save in the computational cost but it can only model inviscid fluid, a major drawback. For
a fair comparison we must therefore set μ = 0 in the 3d FEM model and instead add structural
damping in an ad hoc fashion (η = 0.05) to reduce the reflections from the boundary. The results
in Fig. 10b show that there are strong standing waves formed at the end of the structure at
12kHz, indicating that the structure damping is still not high enough to supppress all the
reflections. The mesh resolution is about 11 nodes per wavelength at the place where the
wavelength is shortest. The results from the 2.5d FEM model are in a fairly good agreement
with 3d FEM results at both frequencies, although there are slight differences in the peak and
magnitude of the structure displacements. The discrepancy could be a result of the presence of
the higher cross-modes in the input membrane, as shown in Fig. 11. The width of the input
membrane is two times larger than its length, so we expect to see higher modes appearing first
in the width direction. At 35 kHz, Fig. 11b clearly shows that the displacement in the input
membrane has broken into higher cross-modes, although the slender-shaped BM is still
dominated by the first cross-mode (Fig. 12). It is, of course, possible for the BM to have higher
cross-modes at higher frequencies, and those modes will first appear at the wider end of the
structure.

Fig. 13 shows the structure displacement calculated from Beltman’s thin film viscothermal
acoustic model and the 3d FEM model at 12 kHz. For the 3d FEM model, the fluid domain is
meshed using 603 x nodes, 15 y nodes and 21 z nodes, and the basilar memebrane and the input
membrane are meshed using 501 × 7 and 43 × 11 uniform grid, respectively. In the Beltman’s
thin film model, only two dimensional mesh in the x − y plane is needed, and in this example,
the mesh is the same as that of the 3d FEM model in the x − y plane. As mentioned before,
Beltman’s model assumes that the pressure is constant across the height of the duct, and thus
it may only be applied to structural acoustic systems with thin gaps. The boundary layer
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thickness, , is required to be of the same magnitude or larger than the height of the
duct. In order to test the effects of violating this requirement, a model case with 474 μm high
duct is compared with the results for a 110 μm high duct. The results appear in Fig. 13. Fig.
13a shows an excellent agreement between Beltman’s model and 3d FEM model with the
smaller duct height, while in Fig. 12b, the Beltman’s model seems to provide less damping to
the system so that the displacement magnitude is higher. The inaccuracy in the displacement
prediction could be a result of the thin-film assumption, which may be violated for the larger-
height duct model.

To examine this question, we can compare the fluid displacements in the x or y directions in
the y = 0 plane between the 3d model and the thin film model. Based on Beltman’s assumption,
in the fluid domain the thin film model requires,

(39)

where the function A(z) does not depend on x. The function A(z) describes the variation of the
normalized ux in the height direction regardless of the x locations. Fig. 14a shows the
comparison of the normalized ux as a function of the height at 12 kHz between Beltman’s model
and the 3d FEM model at the y = 0 plane. Note here the displacement ux is normalized to the
first non-zero displacement point from the boundary z = 0 at each x location. At 12 kHz, the
ux in the 3d FEM model does not exactly follow the curve for the Beltman’s model (dashed
line) at different x locations, but the variation is small. However at 35 kHz, the ux curve is very
different from the dashed line, especially in the region left of the BM (x < 3mm) and some
portion in the BM (20mm < x < 35mm). Figs. 14b and 15b give a two-dimensional view of the
normalized ux as a function of the height and x location at 12 kHz and 35 kHz, respectively.
The in-plane displacement goes to zero at the top and bottom boundaries as we defined in the
boundary condition. Fig. 14a can be obtained by taking the slice cuts at different x locations
in Fig. 14b.

Another advantage of the full 3d FEM model is that it can model irregular geometries, while
all the other cochlear models including WKB model [16] and other FEM models described
here have certain limitations on the geometries. The WKB model requires that the input to the
system must be located at the wall x = 0 and the geometry of the duct is rectangular (the duct
height could be slowly varying [16]). The 2.5d model uses the modal solution in the y direction
and does not allow any abrupt variation in the width of the duct. Beltman’s model assumes a
constant pressure in the height direction, thus when some portion of the duct height changes,
we may need to break the fluid domain into constant height regions and apply continuity
conditions at the interface. Since the variation in the duct height or width may not be avoidable
in the device, having a FEM model which can deal with arbitrary 3d geometry is useful.

A second model case will now be presented for a hydromechanical cochlear model with a more
irregular geometry. The geometry and the dimension of the model are given in Fig. 16 and
described in more detail elsewhere [26]. The duct is taller (0.475 mm) at the places where the
input membrane and the BM are located and shallower (0.275 mm) elsewhere. The membranes
are isotropic, and made from a laminate of silicon nitride/doped polysilicon/silicon nitride
(0.1μm/1 μm/0.1 μm). The structure is still micromachined from silicon and glass and anodically
bonded together. Silicone oil is still used as the fluid medium. The estimated material properties
for the device are given in Table 2. Fig. 17a shows the computed BM displacement at 10kHz
for two different viscosities: μ =200 cSt and μ =20 cSt. The BM displacement exhibits steeper
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cutoff after the resonance peak for the higher viscosity, but the magnitude is smaller (10 dB
lower compared to 20 cSt case). In addition, the resonant peak appears more towards the narrow
end of the BM.

The normalized fluid displacement ux as a function of x and the height at y = 0 plane is shown
in Fig. 17b. The calculation was performed using 200 cSt fluid at 10kHz. For an irregular
geometry like this, it is clear that Beltman’s model can no longer be applied in the whole domain
due to the variation in the height at different x locations. The normalized ux shows a uniform
profile along the height direction in the regions where there are no membranes present (smaller
height regions in the figure). However, in the regions where the duct is deeper, there is
significant variation in the profile of the normalized ux. Thus Beltman’s thin film formulation
will no longer be a good approximation.

6 Summary
In this paper, a full three dimensional FEM model is introduced for fluid structure interaction
systems including but not limited to the cochlea or cochlear-based transducers. The Hinton-
Huang’s formulation to discretize the structure can be used to model a pure tensioned
membrane or a pure bending plate or both. Note that two rotational degrees of freedom (θx and
θy) need to be set zero at each structural node for a pure tensioned membrane model since the
membrane model only has one degree of freedom (w). The fluid element has three degrees of
freedom per node: the fluid displacements at x, y and z directions. The coupling at the fluid
structure interface is set such that the in-plane displacements are negligible and the out-of-
plane displacement is continuous. As a future work, we can also couple two struture rotational
degrees of freedom to the fluid in-plane displacements at the interface in order to fully
investigate the viscous boundary layer effect. Clearly this FEM model with a three dimensional
discretization and average three degrees of freedom per node has very high computational cost,
however, it provides a benchmark solution against which the accuracy of other approximation
methods such as Beltman’s FEM model [2,25] and 2.5d FEM model [21] can be assessed and
it can be used to model the fluid structure interaction systems when other FEM formulations
are not applicable.
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Figure 1.
Geometry of coupled fluid structure system.

Cheng et al. Page 18

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2010 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The positions of 12 sampling points in a 9-noded Mindlin plate element( )
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Figure 3.
Fluid element, structure element and coupling element at the fluid structure interface.
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Figure 4.
Geometry of coupled fluid structure system.
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Figure 5.
The dimension of the duct and the structure. The thickness of the structure is 0.32μm
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Figure 6.
The magnitude of structure displacement at three different frequencies. (a) The experimental
results [25] (b) The model results from the displacement/pressure mixed formulation which
uses the 27/4 u/p element for the fluid and the 9-noded Hinton-Huang’s element for the
structure. Note that due to optical constraints the entire basilar membrane is not imaged in the
experiments; the data starts at 4 mm from the narrow end of the device.
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Figure 7.
Comparison of the phase of structure displacement at three different frequencies between the
experimental results (dashed line) and the model results (solid line). The experimental data are
reference to the phase at 4 mm from the narrow end of the device.
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Figure 8.
The magnitude of structure displacement calculated from a pure displacement based
formulation with 8-noded fluid elements and selectively reduced integration scheme.
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Figure 9.
The magnitude of structure displacement at 4.2kHz calculated by mixed 3d FEM formulation
using four different meshes.
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Figure 10.
The comparison of the structure displacement calculated from 2.5d FEM model and 3d FEM
model using 27/4 u/p fluid element and Hinton-Huang’s structural element. (a) Response at 12
kHz. (b) Response at 35 kHz. Fluid is inviscid, and pure tensioned membrane model is used
for the structure with structural damping η = 0.05.
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Figure 11.
The two dimensional view of the displacement of the input membrane calculated from 3d FEM
model. (a) Response at 12 kHz. (b) Response at 35 kHz.
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Figure 12.
The two dimensional view of the BM displacement calculated from 2.5d FEM model and 3d
FEM model. (a) Response at 12 kHz. (b) Response at 35 kHz.
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Figure 13.
The comparison of the structure displacement between Beltman’s FEM model and 3d FEM
model using 27/4 u/p fluid element and Hinton-Huang’s structural element at 12 kHz. (a) Duct
height is 110 μm. (b) Duct height is 475 μm. In Beltman’s FEM model, 501×7 uniform grid is
used for plate. In 3d FEM, 501×7 uniform grid is used for the plate, and 603 x nodes, 15 y
nodes and 21 z nodes are used for the fluid.
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Figure 14.
(a) The comparison of the normalized ux as a function of x and z at the y = 0 plane between
Beltman’s model and the 3d FEM model for 110 μm-high duct. ux is normalized at z = 5.5 μm.
μ =5 cSt and f =12 kHz. Beltman’s model assume that the change of the normalized ux in the
height direction does not vary in x, therefore there is only one curve (dashed line) shown in the
figure. The 3d FEM results (solid line) show there are some variation in x, but the variation is
small in this case. (b) The two-dimensional view of the normalized ux as a function of x and
z at the y = 0 plane in the 3d FEM model.
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Figure 15.
(a) The comparison of the normalized ux as a function of x and z at the y = 0 plane between
Beltman’s model and the 3d FEM model using 27/4 u/p fluid element and Hinton-Huang’s
structural element for 475 μm-high duct. μ = 5cSt and f =12 kHz. ux is normalized at z = 23.75
μm. Beltman’s model assume that the change of the normalized ux in the height direction does
not vary in x, therefore there is only one curve (dashed line) shown in the figure. The 3d FEM
results (solid line) show the variation of the ux curves is large at some locations from dashed
line. (b) The two-dimensional view of the normalized ux as a function of x and z at the y = 0
plane in the 3d FEM model.
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Figure 16.
The dimension of the duct and the structure. The thickness of the structure is 0.32 μm
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Figure 17.
(a) The structural displacement at 10 kHz for two different viscosities: 200 cSt and 20 cSt. (b)
The profile of the normalized ux as a function of x and z at y = 0 plane. The computation was
done at 10 kHz for 200 cSt fluid.
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Table 1

Material properties for the example problem

Symbols Value Unit Physical Meaning

ρf 911 kg/m3 [fluid density]

c 1000 m/s [fluid wave speed]

μ 5 cSt [fluid viscosity]

ρp 3.6 × 10−3 kg/m2 [plate area density]

Ex 20 GPa [Young’s modulus in x]

Ey 160 GPa [Young’s modulus in y]

ν 0.3 [Poisson’s ratio]

Tx 30 N/m [tension in x]

Ty 240 N/m [tension in y]

η 0.01 [structural damping]
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Table 2

Material properties for the example problem

Symbols Value Unit Physical Meaning

ρf 950 kg/m3 [fluid density]

c 1000 m/s [fluid wave speed]

μ 200/20 cSt [fluid viscosity]

ρp 2.9 × 10−3 kg/m2 [plate area density]

Ex 160 GPa [Young’s modulus in x]

Ey 160 GPa [Young’s modulus in y]

ν 0.23 [Poisson’s ratio]

Tx 50 N/m [tension in x]

Ty 50 N/m [tension in y]
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