Galilean Principles of “Local” Motion

In the absence of air resistance, bodies descending from rest

1. In vertical descent acquire equal increments of speed
in equal increments of time.

2. Acquire the same speed in descending from the same
height regardless of their weight or shape.

3. Acquire the same speed in falling from a given height
whether falling vertically or along an inclined plane.

4. Acquire a speed in descending from any given height
which is just sufficient to raise them to that height.

What experimental evidence did Galileo and those in the
decade following him provide in support of each of these
principles; and how telling was that evidence in showing
whether each holds merely to high approximation or exactly?



Galilean Principles and Evidence for Them

Descent in the absence of air resistance the same for all bodies,
regardless of weight, shape, and density

1. Qualitative experiments falsifying Aristotle
2. Qualitative experiments in different media
3. Qualitative experiments on paired pendulums

Descent in the absence of air resistance is a uniformly accelerated
motion, so that Av o At and As « (Af)

1. Galileo’s experiments on shallow inclined planes
2. Riccioli’s experiments on direct vertical fall
3. (Challenged somewhat by Mersenne’s experiments)

The same speed is acquired in descent from rest from the same
height in the absence of air resistance, whether the descent be
directly vertical or along an inclined plane of any angle

1. Comparison of Galileo’s results for different angles of

inclined planes: Ay o sin a

The speed acquired in descent from any given height in the absence
of air resistance is just sufficient to raise the body back to that

height

1. Qualitative experiments with pendulums



Problems with Experiments in Mechanics

1. Elapsed times were short (e.g. <5 sec) making any result
highly sensitive to small errors in time measurements

2. There was no direct way to measure velocities, yet many
central claims concerned them

3. Experiments needed at least to control for, if not minimize,
resistance effects, yet the only ways acknowledged for doing
this were to employ very heavy bodies and keep speeds low

Upshot: Discrepancies between theory and experimental results
were ambiguous: (1) insufficient control of “external” effects,
(2) measurement error; (3) inadequate theory; but then so too
ambiguous was the absence of discrepancies.



Galileo’s Approach

¢ Develop a mathematical theory from hypotheses that
appear reasonable and mathematically tractable

* Derive some “striking” predictions within that theory, like
the 1, 3, 5, ... pattern, among others

Predictions that are prima facie counterintuitive

Predictions that involve qualitative contrasts

¢ Design experiments to test the striking predictions, hoping
at the very least that the results do not clearly falsify them
(limited effects of air resistance notwithstanding)

“One finds in this subject a kind of demonstration which does not
carry with it so high a degree of certainty as that employed in geo-
metry; and which differs distinctly from the method employed by
geometers in that they prove their propositions by well-established
and incontrovertible principles, while here principles are tested by
the inferences which are derivable from them. The nature of the
subject permits of no other treatment. It is possible, however, in this
way to establish a probability which is little short of certainty. This
is the case when the consequences of the assumed principles are in
perfect accord with the observed phenomena, and especially when
these verifications are numerous; but above all when one employs
the hypothesis to predict new phenomena and finds his expectations
realized.”

Christiaan Huygens, 1690



A Further Example of a Striking Result

Prop. VI. If, from the highest or lowest point of a vertical circle,
any inclined planes whatever are drawn to its circumference, the
times of descent along these planes will be equal.
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Corol. 1. From this it is deduced that the times of descent from all
chords drawn from the terminals C and D are equal to one another.

Corol. I1. 1t is also deduced that if from the same points there
descend a vertical and an inclined plane, over which descents are
made in equal times, they are |inscribable] in a semicircle of which

the diameter is vertical.



The Structure of “Day 3”

Propositions I — II1: fundamental results

Propositions IV — IX: comparisons involving inclined planes

Propositions X — XXVI: initial speeds and diverting motion from
one plane to another, culminating in the Scholium to Prop.
XXII

Propositions XXVII -XXXI: minimum time trajectories

Propositions XXXII — XXXVII: time comparisons along different
paths, culminating in the Scholium to Prop. XXXVI

21 theorems, 16 problems, where latter require solving for an
unknown quantity (geometric magnitude), given other quantities,
using purely geometrical methods (compass and rules)



Scholium to Prop. XXIII

And we may then deduce that if, in the above diagram, afier
descent through the inclined plane AC, there is diversion along a
horizontal line such as CT, the space through which the moveable
will next be moved, in a time equal to that of descent through AC,
would be exactly double the space AC....

It may also be noted that whatever degree of speed is found in the
moveable, this is by its nature indelibly impressed on it when
external causes of acceleration or retardation are removed, which
occurs only on the horizontal plane; for on declining planes there
is a cause of more acceleration, and on rising planes, of retarda-
tion. From this it likewise follows that motion in the horizontal is
also eternal, since if it is indeed equable it is not weakened or
remitted, much less removed.



Scholium to Prop. XXIII

From this we may therefore reasonably assert that if descent is
made through some inclined plane, after which there follows
reflection through some rising plane, the moveable ascends, by the
impetus received, all the way to the same altitude or height from
the horizontal. Thus if the descent is along AB, the moveable is
carried along the diverted plane BC to the horizontal ACD; and
not only if the inclinations of the planes are equal, but also if they
are unequal, as is plane BD. For it was assumed earlier that the
degrees of speed acquired over unequally inclined planes are
equal whenever the planes are of the same height above the hori-
zontal. But if the same inclination exists for planes EB and BD,
descent through EB suffices to impel the moveable along plane BD
all the way to D, as such an impulse is made on account of the
received impetus of speed at point B; and there is the same
impetus at B whether the moveable descends through AB or
through EB. It follows that the moveable is pushed out likewise
along BD after descent along AB or along EB.



Proposition 30

Drop the vertical BD from a point B in the horizontal line AC, in
which take any point C; and in the vertical, take a distance BE
equal to the distance BC, drawing CE, I say that of all inclined
planes from point C to the vertical [BD], CE is that along which
descent will be made to the vertical [BD] in the shortest time of

all.

Le. let a be the angle the plane makes with the horizon — e.g. angle
BCF. Let d be the distance along the horizontal from the apex of
the inclined plane to the vertical, and s the length of the inclined
plane. Then

s=1/2 (a-sina) t* and d=s-cosa
so that

d = 1/2 (a-sina-cosa)t?
Given d, therefore t is least when the expression in parenthesis is a
maximum, which is when o is 45 degrees.



Proposition 36 and Scholium

Let the circumference CBD be no more than one quadrant of the
verticle circle with its lowest point at C, to which is raised the
plane CD; and let two planes be deflected from the ends D and C
to some point B taken on the circumference; I say that the time of
descent through both the planes DB and BC is briefer than the
time of descent through DC alone.

B A

c

From the things demonstrated, it appears that one can deduce that
the swiftest movement of all from one terminus to the other is not
through the shortest line of all, which is the straightest line AC, but
through the circular arc.... Therefore descent is made in still
shorter time through the five AD-DE-EF-FG-GC than through the
four AD-DE-EF-FC. Hence motion between two selected points, A
and C, is finished more quickly, the more closely we approach the
circumference through inscribed polygons.

What has been explained for the quadrant happens also in arcs less
than the quadrant.



Sagredo’s Assessment of Day 3

It appears to me that we may grant that our Academician was
not boasting when, at the beginning of this treatise, he credited
himself with bringing to us a new science concerning a most
ancient subject. When I see with what ease and clarity, from a
single simple postulate, he deduces the demonstrations of so
many propositions, I marvel not a little that this kind of
material was left untouched by Archimedes, Apollonius, and
Euclid, and so many other illustrious mathematicians and
philosophers; especially seeing that many and thick volumes
have been written on motion.

What exactly has the mathematical theory of “natural”
motion in Day Three accomplished?

“Predictive” power: so much

“Explanatory” power: from so little

“Question-answering” power



On the Motion of Projectiles

We have considered properties existing in equable motion, and
those in naturally accelerated motion over inclined planes of
whatever slope. In the studies on which I now enter, I shall try to
present certain leading essentials [symptomata] , and to establish
them by firm demonstrations, bearing on a moveable [Mobili]
when its motion is compounded from two movements; that is,
when it is moved equably and is also naturally accelerated. Of
this kind appear to be those which we speak of as projections, the
origin of which I lay down as follows.

I mentally conceive of some moveable projected on a horizontal
plane, all impediments being put aside. Now it is evident from
what has been said elsewhere at greater length that equable
motion on this plane would be perpetual if the plane were of
infinite extent; but if we assume it to be ended, and [situated] on
high, the moveable (which I conceive of as being endowed with
heaviness [gravitate]), driven to the end of this plane and going on
further, adds on to its previous equable and indelible motion that
downward tendency [propensionem] which it has from its own
heaviness. Thus there emerges a certain motion, compounded
from equable horizontal and from naturally accelerated down-
ward [motion], which I call “projection.” We shall demonstrate
some of its accidentia, of which the first is this:

Proposition 1, Theorem 1. When a projectile is carried in
motion compounded from equable horizontal and from
naturally accelerated downward [motions], it describes a
semiparabolic line in its movement.
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Sagredo: It cannot be denied that the reasoning is novel,
ingenious and conclusive, being argued ex supposition; that
is, by assuming that the transverse motion is kept always
equable, and that the natural downward [motion] likewise
maintains its tenor of always accelerating according to the
squared ratio of the times; also that such motions, or their
speeds, in mixing together do not alter, disturb, or impede
one another. In this way, the line of the projectile, continuing
its motion, will not degenerate into some other kind [of
curve]. But this seems to me impossible; for the axis of our
parabola is vertical, just as we assume the natural motion of
heavy bodies to be, and it goes to the end of the center of the
earth. Yet the parabolic line goes ever widening from its
axis, so that no projectile would ever end at the center [of the
earth], or if it did, as it seems it must, then the path of the
projectile would become transformed into some other line,
quite different from the parabolic.

Simplicio: To these difficulties I add some more. One is that
we assume the [initial] plane to be horizontal, which would
be neither rising nor falling, and to be a straight line — as if
every part of such a line could be at the same distance from
the center, which is not true. For as we move away from its
midpoint towards its extremities, this [line] departs ever
farther from the center [of the earth], and hence it is always
rising. One consequence of this is that it is impossible that
the motion is perpetuated, or even remains equable through
any distance; rather it would be always growing weaker.
Besides, in my opinion, it is impossible to remove the impedi-
ment of the medium so that this will not destroy the equabi-
lity of the transverse motion and the rule of acceleration for
falling heavy things. All these difficulties make it highly
improbable that anything demonstrated from such fickle
assumptions can ever be verified in actual experiments.



Salviati: All the difficulties and objections you advance are
so well founded that I deem it impossible to remove them.
For my part, I grant them all, as I believe our Author would
also concede them. I admit that the conclusions demonstra-
ted so in the abstract are altered in the concrete, and are so
falsified that horizontal [motion] is not equable; nor does
natural acceleration occur [exactly] in the ratio assumed; nor
is the line of the projectile parabolic, and so on. But on the
other hand, I ask you not to reject in our Author what other
very great men have assumed, despite its falsity. The
authority of Archimedes alone should satisfy everyone....

Here I add that we may say that Archimedes and others
imagined themselves, in their theorizing, to be situated at
infinite distance from the center. In that case their said
assumptions would not be false, and hence their conclusions
were drawn with absolute proof. Then if we wish later to put
to use, for a finite distance [from the center], these conclu-
sions proved by supposing immense remoteness [therefrom]
we must remove from the demonstrated truth whatever is
significant in [the fact that] our distance from the center is
not really infinite, though it is such that it can be called
immense in comparison with the devices employed by us....
And these shots coming to end on the surface of the terres-
trial globe may alter in shape only insensibly, whereas that
shape is conceded to be enormously transformed in going to
end at the center....

Also that motion in the horizontal plane, all obstacles being
removed, ought to be equable and perpetual; but it will be
altered by the air, and finally stopped.



Salviati: Next, a more considerable disturbance arises from
the impediment of the medium; by reason of its multiple
varieties, this is incapable of being subjected to firm rules,
understood, and made into science. Considering merely the
impediment that the air makes to the motions in question
here, it will be found to disturb them all in an infinitude of
ways, according to the infinitely many ways that the shapes
of moveables vary, and their heaviness, and their speeds. As
to speed, the greater this is, the greater will be the opposition
made to it by the air, which will also impede bodies the more,
the less heavy they are....

No firm science can be given of such events [accidenti] of
heaviness, speeds, and shape, which are variable in infinitely
many ways. Here to deal with such matters scientifically, it is
necessary to abstract away from them. We must find and
demonstrate conclusions abstracted from the impediments,
in order to make use of them in practice under those
limitations that experience will teach us.... Indeed, in
projectiles that we find practicable, which are those of heavy
material and spherical shape, ... the deviations from exact
parabolic paths will be quite insensible.
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Sagredo: The theory of compounding these different
impetuses and of the quantity of impetus that results from
such mixing is so new to me as to leave no little confusion in
my mind. I speak not of the mixing of two equable move-
ments, one along the horizontal line and the other along the
vertical, even though unequal to one another; for as to this, I
quite understand that a motion results which is equal in the
square to both components of it. But I am confused by the
mixture of equable horizontal and naturally accelerated
vertical [motion].

Salviati: We can reason definitively about movements and
their speeds or impetuses (whether these are equable or
naturally accelerated) only if we first determine some
standard [misura] that we can use to measure such speeds, as
also some measure of time. As to the measure of time, we
already have universal agreement on hours, minutes,
seconds, etc.; and just as the measure of time is for us that
one in common use, accepted by everybody, so it is necessary
to assign some measure for speeds to be commonly under-
stood and accepted by all; that is, one that will be the same
for everyone.

As explained previously, the Author deemed suitable for such
a purpose the speed of naturally falling heavy bodies, of
which the growing speeds keep the same tenor everywhere in
the world. ... To determine and represent this unique
impetus and speed, our Author has found no better means
than to make use of the impetus acquired by the moveable in
a naturally accelerated motion. Any acquired momentum,
turned to equable motion, retains its limited speed precisely,
and it is such that in another time equal to that of the
descent, it will pass through exactly twice the distance of the
height from which fall took place.



Prerequisites for height of fall from rest to serve as a proxy for
purposes of representing and measuring velocity squared:

1. Speed acquired in descent from rest is proportional to the
time of descent — i.e. descent involves uniformly accelerated

motion.

2. The same speed is acquired in descent from rest from a
given height regardless of the path of descent — i.e. pathwise
independence of speed acquired.

3. All bodies acquire the same speed in descent from any given
height regardless of their weight, shape, composition, etc. —
i.e. the only variable that makes a difference to the speed
acquired is the height of descent.

In order for height to serve as a uniform, universal measure of velocity
squared, and not just a local measure:

4. The increments in speed acquired in equal times in direct
vertical fall are the same everywhere — e.g., the distance of
fall in the first second is the same everywhere on earth.



The Parabola

The locus of points equidistant from a point (the focus)
and a straight line (the directrix). Like the circle, up to
similarity there is but one parabola, with scaling factor
P = half the distance between the directrix and focus.




Galileo’s Parabola
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Proposition 5, Problem 2. In the axis of a given parabola
extended [upward], to find a high point from which a falling
body describes this same parabola [when deflected horizon-
tally at its vertex].

Let there be a parabola AB whose amplitude is HB and whose
axis is HE. We seek the sublimity from which a falling body,
being turned horizontally with the impetus acquired at A,
describes the said parabola. Draw of horizontal AG parallel to
BH, and putting AF equal to AH, draw the straight line FB
tangent to the parabola at B, which intersects the horizontal line
AG at G. Take AE, the third proportional to FA and AG; I say
that E is the high point sought, from which a body falling from
rest at E, and turned into the horizontal with the impetus
acquired at A, where there supervenes the impetus of fall to H [as
if] from rest at A, will describe the parabola AB....

Corollary. From this it follows that one half the base, or
amplitude, of a semiparabola (which is one-quarter the
amplitude of the whole parabola) is a mean proportional
between its altitude and the sublimity from which a falling
[body] would describe it.

That is, in modern form, the specific parabola is given by:



Proposition 7, Theorem 4. In projectiles by which semipara-
bolas of the same amplitude are described, less impetus is
required for the describing of one whose amplitude is double
its altitude than any other.

(2] »rz
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Let semiparabola BD be one whose amplitude CD is double its
altitude CB; and in the axis extended upward, take BA equal to
the altitude BC. Draw AD, which will be tangent to the semi-
parabola at D and will intersect the horizontal BE at E, while BE
will be equal to BC (or BA). It follows that this [curve] will be
described by a projectile whose equable horizontal impetus is that
of fall to C from rest at B. From this it is evident that the impetus
compounded from these and impinging on point D is as the
diagonal AE, equal in square to both [CD and DB]....

Corollary. From this it is clear that in reverse [direction]
through the semiparabola DB, the projectile from point D
requires less impetus than through any other having greater
or smaller elevation than semiparabola BD, which [elevation]
is according to the tangent AD and contains one-half a right
angle with the horizontal. Hence it follows that if projections
are made with the same impetus from point D, but according
to different elevations, the maximum projection, or ampli-
tude of semiparabola (or whole parabola) will be that corres-
ponding to the elevation of half a right angle. The others,
made according to larger or small angles, will be shorter [in
range].

That is, because:

a
tan 6, = —



Sagredo. The force of necessary demonstrations is full of marvel
and delight; and such are mathematical [demonstrations] alone. I
already knew, by trusting to the accounts of mny bombardiers,
that the maximum of all ranges of shots, for artillery pieces or
mortars — that is, that shot which takes the ball farthest — is the
one made at elevation of half a right angle, which they call “at the
sixth point of the [Tartaglia’s gunner’s] square.” But to
understand the reason for this phenomenon infinitely surpasses
the simple idea obtained from the statements of others, or even
from experience many times repeated.

Saviati. You say well. The knowledge of one single effect acquired
through its causes opens the mind to the understanding and cer-
tainty of other effects without need of recourse to experiments.
That is exactly what happens in the present instance ; for having
gained by demonstrative reasoning the certainty that the maxi-
mum of all ranges of shots is that of elevation at half a right angle,
the Author demonstrates to us something that has perhaps not
been observed through experiment; and this is that of the other
shots, those are equal [in range] to one another whose elevations
exceed or fall short of half a right angle by equal angles.

That is, because:

a
tan 6, = —
2p



[TABLE 1] [TABLE 2}

Amplitudes of semiparabolas  Altitudes of semiparabolas described with
described with the same initial the same initial speed.

speed.

Angle of " Angle of Angle of Angle of

Elevation Elevation Elevation Elevation
45° 10000 1° 3 46° 5173
46 9994 44° 2 13 47 5346
47 9976 43 3 28 48 5523
48 9945 42 4 50 49 5698
49 9902 41 5 76 50 5868
50 9848 40 6 108 Sl 6038
51 9782 39 7 150 52 6207
52 9704 38 8 194 53 6379
53 9612 37 9 245 54 6546
54 _ 9511 36 10 302 55 6710
55 9396 35 11 365 56 6873
56 9272 34 12 432 57 7033
57 9136 33 13 506 58 7190
58 8989 32 14 585 59 7348
59 8829 31 3] 670 60 7502
60 8659 30 16 760 61 7649
] © 8481 29 17 855 62 7796
62 8290 28 18 955 63 7939
63 8090: 27 19 1060 64 8078
64 - 7880 26 20 1170 65 8214
65 - 7660 25 21 1285 66 8346
66 7431 24 22 1402 67 8474
67 7191 23 23 1527 : 68 8597
68 6944 22 24 1685 69 8715
69 6692 21 25 1786 70 8830
70 6428 20 26 1922 " 8940
71 6157 19 27 2061 72 9045
72 5878 18 28 2204 73 9144
73 5592 17 29 2351 74 9240
74 5300 16 30 2499 75 9330
75 5000 15 31 2653 76 9415
76 4694 14 32 2810 77 9493
ry 4383 13 33 2967 78 9567
78 4067 12 34 3128 79 9636
79 3746 11 35 3289 80 9698
80 3420 10 36 3456 81 9758
8l 3090 9 37 3621 82 9806
82 2756 8 38 3793 83 9851
83 2419 7 39 3962 84 9890
84 2079 6 40 4132 - 85 9924
85 1736 5 41 4302 86 9951
86 1391 4 42 4477 87 9972
87 1044 3 43 4654 88 9987
88 698 2 44 4827 89 9998
89 349 1 45 5000 % 10000

Angle of
Elevation
l.)
2

CWE U s W

11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36
37
38
39

4
42
43

45

Altitude
87
175
262
349
437
525
614
702
192
881
972
1063
1154
1246
1339
1434
1529
1624
1722
1820
1919
2020
2123
2226
2332
2439
2547
2658
2772
2887
3008
3124
3247
31
3501
3633
3768
3906
4049
4196
4346
4502
4662
4828
5000

[TABLE 3)

" Giving the altitudes and sublimities of
namely 10000, computed for each degre

Sublimity
286533
142450

95802
71531
57142
47573
40716
35587
31565
28367
25720
23518
21701
20056
18663
17405
16355
15389
14522
13736
13024
12376
11778
11230
10722
10253
9814
9404 .
9020
8659
8336
B0OI
7699
7413
7141
6882
6635
6395
6174
5959
5752
5553
5362
5177
5000

Angle
N Elevat
’ 46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

of
ion

Altitude
5177
5363
5553
5752
5959
6174
6399
6635
6882
7141
7413
7699
8002
8332
8600
9020
9403
9813

10251
10722
11230
11779
12375
13025
13237
14521
15388
16354
17437
18660
20054
21657
23523
25723
28356
31569
35577
40222
47572
57150
71503
95405

143181

286499

infinity

parabolas of constant amplitude,
e of elevation.

Sublimity

4828
4662
4502
4345
4196
4048
3906
3765
3632
3500
iBn
3247
3123
3004
2887
2771
2658
2547
2438
2331
2226
2122
2020
1919
1819
1721
1624
1528
1433
1339
1246
1154
1062
972
881
792
702
613
525
437
349
262
174
‘87
[zero)
1



Calibrating Galileo’s Tables

1. For a given initial velocity (i.e. charge, cannonball, and
cannon), measure the range for a 45° angle: actual-range,;

2. For all other angles, multiply the value in the amplitude
vs. angle table divided by 10000 by acfual-range,;

i.e.
theoretical range,

predicted range, = X actual range

theoretical range,

where
actual range,; = theoretical range 5 — resist loss ,

Therefore, to the extent that resist-lossy is proportional to
theoretical-ranges, so that the fraction of the theoretical
range that is lost to air resistance is always proportional to
the range that would occur in the absence of air resistance,
predicted-range, will match actual-range,

In other words, Galileo’s tables, as formulated in terms of
ratios and then “calibrated,” can yield more accurate
predictions than if they had been formulated in terms of
calculated ranges in the absence of air resistance — a
standard engineering technique that serves to compensate
for, and hence suppress, intractable sources of discrepancy

Question: Suppose that the predicted ranges had agreed with
observation to a reasonably high degree — i.e. suppose the
tables had “worked” in practice; to what extent would that
have provided evidence for Galileo’s theory of projectile
motion in the absence of air resistance?
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Galileo’s "Ski-Jump" Experiment

Folio 116v

Fourth Day, Prop. 5, Corol.: Hence it follows that half the base, or amplitude, of the semi-parabola is a mean
proportional between its altitude and the sublimity from which a falling body will describe this parabola.

ie. a=2|p)
sublimity altitude mean theoretical Galileo’s % difference
P h proportional a measured a
300 828 498 996 800 19.7
600 828 705 1410 1172 16.9
800 828 814 1628 1328 18.4
828 828 828 1656 1340 19.1
1000 828 910 1820 1500 17.6

With p from rolling sphere in a groove of width = 4/9 diameter of sphere, % difference should be 18.3.
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e electronic version provides precise connections with cross-references.) Many fo-
lioSare filled with computations. A number of folios, 80, 81r, 86ar, 87, 90r, 91v, 102,
107,\11, 113r, 114v, 1151, 116v, 117, 152r, and 175v among them, contain diagrams
that suggest studies of motion. The abbreviations r and v stand for “recto”
and “verso”, the “front” and “back” of the sheet in question. (In the listing just given,
if neither \nor v appears, then both sides of the sheet are relevant.) Some of these fo-
lios are geoketric explorations of the parabola and some are records of experiments.
The historiandwho have studied them consider it “well substantiated by the evidence”
(watermarks, fox example) that they stem from the later Paduan period 1604-1610. For
example, see Najdor [20, p. 366].

The present article will focus on 81r, 114v and 116v. Each of these folios gives
evidence of an expeNment in which Galileo has placed an inclined plane on a table,
lets a ball roll down thd, plane, and records quantitative data about the ball’s flight from
the table’s edge to the figor. Salviati informs us on the third day of the Discorsi that
Galieo repeated some of hjs experiments “a full hundréd times.” Thus it would seem
that each recorded measurelgent represents a cluster of trials. The general conclusions
of Drake [12, 27, 32, 36, 37]\Drake-MacLachlan [16), Naylor [13, 18, 19, 20, 25, 26,
28], and Hill [33, 35] — these are\the historians who have studied them most thoroughly —
are in agreement: . .

Drake [32, p- 4] uses folios 81Aand 114v to conclude that Galileo is a “skilled ex-
perimentalist capable of holding his Yesults within a variance of four units ... ”” The unit
referred to here is Galileo’s punto, owbint”, a unit of length slightly less than one
millimeter.

Naylor [18, pp. 168-169], reflecting aout 81r, speaks of “indications that Galileo
carried out meticulous, thorough-going stuies of the form of projectile motion” and
suggests that “Galileo had a striking talent fof combining a mathematical approach to
nature with a considerable mathematical techmique. The simplicity and power of this
particular form of experiment is quite remarkablé”

Hill [35, p. 666] comments that “worksheets 811\ 14v, and 116vreveal an impressive
experimental program, ingenious in structure, ambitigus in concept, eminently success-
ful in execution. This series of procedures enabled Galfleo to provide powerful, perhaps
empirically decisive, evidence for both the new speed la¥ and the parabolic trajectory.”

It is a fact that Galileo’s record of the experiments onthese folios omits important
details, in reference to both the descriptive and numerical elgments. Thus, an important
ingredient in the studies of these folios has been the careful\feconstruction of the ex-
periments from the information that Galileo does supply. Thesareconstructions ~ both
actual and mathematical — become an important part of the evidensg. The numerical data
that they generate is carefully compared with the analogous data frym Galileo’s record.
These comparisons are used to inform the authors’ comments aboui\{he plausibility of
their reconstructions and the validity of their analyses of the experimehts. Unfortunate-
ly, in terms of particulars (for example, the inclination of the inclined plape and release
heights of the balls), these reconstructions as well as the conclusions drawn from them
— specifically as to the purpose and precision of the experiments — differ wigely.

. This state of affairs calls for a sober re-examination of these folios. What
his insights about motion did Galileo put to the test? How precise were his expers
What conclusions can legitimately and compellingly be drawn from Galileo’s ¥¢cord

The Pendulum Swings Again 345

7 Is there indeed convincing evidence that they were successful? The answer
to these questioms-is-the purpose of the discussion that follows. The focus will be on
the folios themselves (rather construction of the experiments) and on related
aspects of the Discorsi. The folios 116v, 81r, amt-4-1dy and all the information on thern
are reproduced below. The originals can be studied at either HT tim-e gites listed ahave.
The organization of the calculations on 116v and 1 14v into rectangular “frames s
the practice of the websites.

Aecliive for Hi'-ﬂfﬂ/; v‘F ﬁxa}j@cﬁgg,gg%—

3. The experiment of folio 116v

The statement punti 828 altezza della tavola tells us that Galileo recorded distances
in units he calls puni (that is to say “points”) and that he had a table 828 punti high.
There is agreement among the historians already mentioned (based on evidence from
folio 166r) that one punto is equal to approximately 0.94 millimeters. The diagram to-
gether with the computations on the folio confirm that he placed an inclined plane on
the table, fixed an angle of inclination, and released a ball (likely of bronze) from the
respective heights h of

300, 600, 800, 828, and 1000

punti above the horizontal table top. Galileo might have made use of a curved deflector
to provide a smooth transition for the ball from the inclined plane to the horizontal table.
His sketch on folio 175v shows that he considered such deflectors. After a short run on
the table, the ball flew off to land on a horizontal floor. Galileo measured the respective
distances from the point of impact of the ball to the base of the table (the point direcily
below the start of the ball’s flight) and recorded these on the folio as

800, 1172, 1328, 1340, and 1500 (a)

punti. These are the experimental values that correspond to the various heights of release
listed above.

3A. Understanding the folio

We now turn to the analysis of the experiment as well as the computations that
Galileo carried out. Consider the ball in its initial position on the inclined plane. Let

h = the height of the ball above the table, and
d = the distance from the ball to the bottom of the inclined plane.

Now release the ball and let

t = the time it takes for the ball to descend to the bottom of the plane,
v = the speed of the ball at time ¢. This is also the speed of the ball at the beginning
of its fall from the table. Finally, let
R = the distance from the point of impact of the ball to the point on the floor
precisely below the starting point of the ball’s flight.

3!
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Folio 116v (size of original: 306 by 207 mm)

At the time of the experiment — before the end of the Paduan period in 1610 Galileo
had discovered, or at least wrestled with, all essential aspects of his program on motion

as ontlined in Sect. 1 above. In particular, he was in a position to put to the test the
proportion

PP
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as well as the square law
d o t? (i)

(deduced from (i) in Proposition II. Theorem II of the Discorsi). From his principle
of inertia he could assume that the horizontal component of the velocity is constant
throughout the ball’s flight and hence equal to v. (Given the relatively small velocities,
distances and times, Galileo could safely assume that air resistance would not play a
significant role. See {19, p. 408}.) In reference to the vertical component of the ball’s
flight, Galileo knew that the time of fall of the horizontally projected ball from the table
to the floor is independent of its starting velocity v. So'this time is equal to the time fp
that it takes for a ball to fall vertically from rest through the height of the table. Notice
that these observations rely on the principle of superposition. Galileo can conclude that

Rxv (iii)

with #o the constant of proportionality. By similar triangles (the angle of inclinztion of
the inclined plane is fixed) & o 4. After putting the above proportions together, Galilso
has

hocd o t* o v? o R? . @iv)

Therefore, R? o h. So, if releases of the ball at the heights of k¢ and h above the table
result in points of impact at the respective distances of Rg and R from the foot of the
table, then

R* &

Rk »
0

1t is this relationship that the experiment recorded on folio 1 16v is designed to confirm.

Galileo’s next step is to insert the values hp = 300 and Ry = 800 from the experi-

ment. By doing so, he in effect determines, or at least approximates, the constants of

proportionality that link R? and h, or equivalently, R and +/h. The equation

800
R=—=h . (vi)
/300
captures what he does. It remains for Galileo to compute R for h successively equal to
600, 800, 828, and 1000, and to compare the resulting values with the measurements
for R that were provided — see (a) — by the experiment. The successive values for R that
Galileo computes are (in punti)

—, 1131, 1306, 1330, and 1460 . (b)

The — refers to the value R = 800 that was used along with the corresponding h =300
to obtain (vi).

Galileo records these numbers on the folio with the phrase doveria esser (or sim-
ply doveria) meaning “ought to be.” He also includes his calculations. For exam-
ple, the calculation for o = 600 is carried out in frame CO1. Galileo first computes



-~ v £y d. AXADIIN

R? = 800800600 _ 1600 - 800 = 1280000 and calculates R = +/1280000 = 1131. For
b = 800, this is done in C06. For & = 1000, the computation can be seen in frames C09
and C08. In C09, Galileo computes 1000 x 800 == 800000 and divides this result by
300 to get 2666. In CO8, he multiplies the more accurate value 2667 of this computation
(the actual value is 2666%) by 800 to get 2133600. This is R2.To get R, he calculates
~/2133600 = 1460. The computation in frame C10 is analogous to that of COl and
suggests that Galileo also considered a table height of 820 punti. Note that some of the
computations are only approximations and that the computation /1344800 = 115 in
frame C10 is incomplete. In the course of computing the square root of a number, Galileo
crosses the digits of the number out. In the rendition of the folio above these numbers
are entered in a lighter shade.

Galileo compares his experimental values (a) to his theoretical values (b) and re-
cords the respective differences of 41, 22, 10, and 40 punti using the abbreviation dria
for differentia. The fact that the theoretical values fall short of the experimental values
(from about 1 to 4 centimeters) seems contrary to expectation. After all, the experimental
values are subject to the retarding effects of the imperfections in Galileo’s experimental
setup, whereas the theoretical values are not. The explanation is provided by the fact
that Galileo’s theory, as captured by equation (vi), depends on one data point from the
experiment, We will see, in particular, that the measured distance of 800 punti (corre-
sponding to the height of 300 punti) falls short of the predicted mark. So the constant
—j% is too small, and thus all of Galileo’s computed values are too small as well.

We turn next to the question of the precision of the experiment of folio 116v. We will
test the accuracy of the experimental values (a) against the predictions of elementary
mechanics. (Galileo’s theory can’t be used because it depends on his experiment.) We
will only outline these matters here. The details are available in many texts, for example,
in Chap. 9.3 of the basic calculus text [42].2 Note that the analysis that follows goes far
beyond what Galileo was familiar with.

3B. The underlying mathematics

Return to the ball on the inclined plane and assume that it is perfectly homogeneous
and spherical. Let # = 0 be the instant at which it is released. For any time 7 > 0, let
£ (t) be the frictional force on the rolling ball (a priori it depends on ¢). This is the force
that rotates the ball. Assume that there is neither slippage (as the ball would experience
on a frictionless surface) nor any additional retardation of the motion down the plane
(as would be the case if the surface were “bumpy” or “sticky”). The connection between
the torque produced by the frictional force, the resulting angular acceleration of the ball,
and the ball’s index of inertia (this connection is provided by the rotational analogue of
force = mass x acceleration), leads to the'equation

£ = §mau>

2 My interest in the experiments of Galileo had its beginning in my efforts to develop appli-
cations of calculus with interesting historical connections for this book.

a2y
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where m is the mass of the ball and a(z) is its linear acceleration down the plane. By
Newton’s second law and the fact that the component of gravity down the plane is
F = mg sin B, where f is the angle of inclination of the plane, we get

2
ma(t) = F — f(t) = mgsinp — gma(t) s
and therefore,
5S¢ .
a(t) = 7g sinf .

This informs us in turn that the velocity of the ball at the bottom of the plane is v =

N %9 gh. (Alternatively, this equation can be established by using the law of conservation

of energy. See [17, pp. 398-399].) Combining this with one of the basic equations of
projectile motion and letting yo be the height of the table, provides the connection

/5
R=2 7yo\/l;

between the starting height h and the distance R from the point of impact of the ball to
the foot of the table. With the substitution yo = 828 this equation becomes

R =2,/%828«/E ) - (vii)

Plugging Galileo’s starting heights of 300, 600, 800, 828, and 1000 into Eq. (vil) for
h, we get the values (again in punti)

842, 1191, 1376, 1400, and 1538 (c)

for the corresponding distances R.

This model applies to the ideal situation: a perfectly round and homogeneous ball;
a path that is perfectly smooth and flat with no tilts other than the inclination ojf the
plane; a force of friction that rotates the ball without slippage but provides no additional
impedance; and a deflector that provides a perfectly smooth transition from the plane to
the table. In addition, to conform to the situation of the model, the table as weli as the
floor on which the ball impacts need to be perfectly horizontal. There is, of course, no
such perfection in the context of Galileo’s experimental setup. In sum, the expectation is
that the ball will land short of its theoretical target. A comparison of the lists of numbers
(a) and (c) confirms this. We know, of course, from the discussion on the third day of the
Discorsi, that Galileo is fully aware that his fundamental laws of motion apply only in
idealized situations and that any experimental or real situation will encounter “impedi-
ments.” Notice that the “bottom lines” of the analyses of Sects. 3A and 3B, namely the
equations (vi) and (vii), differ only in the value of the constant, and that % ~ 46.19

falls short of the correct value 2\/%‘- 828 ~ 48.64.

So far we have said nothing about the groove that guides the ball down the plane.
The description of an inclined plane experiment in the Discorsi [2, Crew-Salvio p. 171,
compare Drake p. 169] informs us that there was a channel “a little more than one finger
in breadth” cut into the inclined plane, and that “having made this groove very straight,
smooth, and polished, and having lined it with parchment, also as smooth and polished
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as possible, we rolled along it a hard, smooth, bronze ball ... " The fact that Galileo says
nothing specific about the groove presents a problem, because different configurations
of the cross-section require different theoretical explanations. We now let d be the di-
ameter of the ball and consider the most likely possibilities. If the cross-section of the
groove is a circular arc of radius greater than the radius % of the ball, then in the ideal
situation, the ball will roll on the bottom of the groove throughout its descent. "This is
a situation to which the mathematical model already described applies. Asssume next
that the groove has rectangular cross-section and let w > 0 be its width. If 4 < w, then
the ball is supported by the bottom of the groove and rolls entirely within the groove.
Again, the model already described applies. Butif d > w and the groove is deep enough,
then the rolling ball does not touch the bottom of the groove and is instead supported by
its two edges. In this case, the dynamics are different. The mathematical model of this
situation (obtained by an analysis similar to that ahove) provides the relationshiip

R=2 [—2 & (vii)

142, 4

5 d2—wl
This equation also applies to a groove with a cross-section in the shape of an isosceles
triangle, if w is taken to be the distance between the two points of contact of the ball with
the groove. Let yo = 828 punti be the height of the table. Because d—z‘i—zw—z > 1, the value
of equation (viii) is less than the value of equation (vii) for any 2 > 0. In particular,
the values for R that equation (viii) supplies for the respective starting heights 2 equal
to 300, 600, 800, 828, and 1000 are less ‘than the values (c) supplied by equation (vii).
Hence the values provided by equation (viii) will be closer to Galileo’s experimental

values (a).

Now to the comparison of Galileo’s experimental data against the predictions of the
theory. It follows from the analysis of the cross-section of the groove that the respective
differences between the experimental data (2) and the predictions (c) are the largest
possible. Therefore, in assessing the accuracy of the folio 116v experiment, these differ-
ences provide the worse case scenario. The differences are ~42 = 800 — 842, —19 =
1172 — 1191, —48 = 1328 — 1376, —60 = 1340 — 1400 and —38 = 1500 — 1538
punti. In terms of percentages, this amounts to —5.0%, —1.6%; —3.5%, —4.3%, and
—2.5%, respectively. What can be said about this discrepancy? While the inclined planes
used by Galileo seem no longer to exist, we do know — see [34] for example — that the
apparatus that Galileo used in other investigations was well crafted. The physicists Shea
and Wolf [17], considering the many sources of possible experimental error in the folio
116v experiment, regard the data generated by Galileo to fall “within acceptable limits
of experimental error” All indications are that this assessment is correct. For example,
Naylor- {13, pp. 109-111] reconstructed the folio 116v experiment with considerable
care (the cross-section of the groove was a circular arc of radius greater than %) and
obtained distance data very close to Galileo’s.

4. The experiment of folio 81r

There is a consensus among historians — see [18], [35], and [37, Chap. 8] - that folio
81r focusses its attention on the trajectories of balls that are propelled obliquely into

111G £ CAMUULULLL A YW ALLED S ELLL - s

pace after having descended down an inclined plane placed on a table. In important
Quntrast to folio 116v, the balls drop directly from the inclined plane and there is no
horizontal deflection. Each of the three curves on the folio corresponds to a certain fixed
anglé,of inclination of the plane and fixed starting height of the ball. In repeated trials
Galilcé\intercepts the flight of the ball with horizontal planes placed at different heights
and marks the points of impact. Evidently, he starts by placing the intercepting plane
at a distanee of 53 + 53 + 77% + 146 = 329% punti below the plane of the table and
“calibrates’g\g}xe three trajectories so that the the points of impact are at the respective
horizontal'distgnces 0f 250, 250+250 = 500, and 250+250+250 == 750 punti from the

N,

r 250 -‘zgcv)
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Folio 81r (size of original: 304 by 205 mm) X



Eight Galilean Principles

In the absence of a resisting medium:
. Direct vertical fall is a uniformly accelerated motion: s oc 7.

. The same speed is acquired from any given height whether in
direct fall or along an inclined plane.

. The speed acquired in descent from any height is exactly suffi-
cient to raise the object back to that height.

. Speed acquired from any given height is the same for all objects,
regardless of their weight (or shape).

. In the absence of impediments, motion along the horizontal
remains uniform (at least over distances small in comparison
with the radius of the Earth).

. The two components of motion of a body moving uniformly in
parallel with the horizontal and simultaneously falling vertically
remain independent of one another.

. A body projected horizontally describes, to high approximation,
a semi-parabola (at least over distances small in comparison with
the radius of the Earth), with its dimensions dictated by the
height from which the body’s initial horizontal speed would be
acquired naturally; and, by symmetry, a body that is projected
at an acute angle upwards describes a corresponding full para-
bola, with its dimensions dictated by the initial velocity and angle
of projection.

. The distance of fall from rest in the first second (i.e. g/2) is the
same at every location around the Earth.



Questions Raised by Galileo’s Theory of Local Motion

1, Do the four fundamental principles of fall in the absence of
a resisting medium — uniform acceleration, irrelevance of
weight, shape, etc., pathwise independence, and return to
height in ascent — hold exactly or only approximately, and if
the latter, in the mean or otherwise?

2. Given that parabolic projection does not hold exactly, even
in the absence of a resisting medium:

a. What is the true trajectory of a projectile near the
surface of the earth?

b. What would the continuing trajectory be if a body
were to continue to the center of the earth without
impediment or resistance?

¢. What is the trajectory in the presence of air
resistance?

3. Does a body really gain the same increments in velocity in
equal increments of time in vertical fall in the absence of air
resistance everywhere on the surface of the earth?

4. How far above the surface of the earth and below it does the
distance of vertical fall in the first second in the absence of
air resistance remain what it is at the surface?



Because I too, among so many others, have had the idea
to submit to the judgment of the public what I think not
only about the location and motion of this light but also
about its substance and its origin and because I believe I
have found an opinion which contains no obvious
contradictions and which, therefore, might be true, it
has been necessary for me, so that I might be sure of
myself, to go ahead slowly and await the return of this
star in the east after its separation from the Sun, and to
observe again very diligently what changes it might
have undergone both in its location as well as in its
visible brightness and the quality of its light; and
continuing my speculations about this marvel, I have
finally come to believe that I could know something
more than what ends in mere conjecture. And because
this fantasy of mine draws out, or rather puts forth, most
weighty consequences and conclusions, I have resolved
to change my lessons in one part of the discourse, which
I am now elaborating in regard to this material. (X, pp.
134-135, italics added)

Galileo (1605) on the Supernova of 1604



Beyond Mere Conjecture: Alternative Conceptions

1. A “science” seeking detailed agreement, within observa-
tional accuracy, between all of its predictions and the
results of experiments in which “external” confounding
effects have been suitably controlled.

Discrepancies: a source of continuing evidence

2. A “science” seeking agreement between its more striking
(mathematical) consequences and the results of select
experiments centered on unusual, distinctive phenomena
to a degree sufficient for it not to be clearly falsified.

Discrepancies: to be explained away

3. A “science” seeking, once it is suitably calibrated, suffi-
ciently good agreement with empirical phenomena of
interest for it to serve practical purposes — in prediction
primarily, but also in explanation.

Discrepancies: to be “swept under the rug”



Experiment in 7wo New Sciences

Galilean Innovations

1.

Because of the need to eliminate or at least to control
for real-world complexities, mere observation and
intervention in nature are not enough; experiments
need to be designed and developed, leading to their
often involving highly contrived situations that never
occur in nature,

Theory can and should play a large role in the design
of experiments, first in singling out situations in which
the results can be most telling, second in supplying
enhanced means for indirect measurement, and third
in providing justification for background assump-
tions.

Uses of Experiment

1.

To falsify opposing (e.g. Aristotelian) theoretical
claims

To justify initial conceptual assumptions (generally
by means of qualitative “cross-roads” experiments)

To confirm theory via successful salient predictions
(or more modestly, via failure to falsify)

(Mersenne and Riccioli: to measure the constants of a
theory, especially constants of proportionality)



ITEVEYN SHAPIN AND SIMON SCHAREFER

LEVIATHAN

AND THE

AIR-PUMP

HOREED, BOVEE, AND [HE EAPERIMENTAL LikE

“Establishing matters of fact did require immense
amounts of labour. Here we endeavor to recover this
labour for our historiographical purposes: to show the
inadequacy of the |historiographical]l method which
regards experimentally produced matters of fact as
self-evident and self-explanatory.” [p. 225, italics added]
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