
 

 

USING NEAR INFRARED SPECTROSCOPY TO STUDY STATIC AND 

DYNAMIC HEMOGLOBIN CONTRAST ASSOCIATED WITH BREAST 

CANCER 

 

A dissertation submitted by 

Nishanth Krishnamurthy 

 

In partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

in 

BIOMEDICAL ENGINEERING 

TUFTS UNIVERSITY 

May 2018 

 

Advisor: 

Sergio Fantini, Ph.D., Department of Biomedical Engineering, Tufts University 

 

Committee Members: 

Irene Georgakoudi, Ph.D., Department of Biomedical Engineering, Tufts University 

Shuchin Aeron, Ph.D., Department of Electrical Engineering, Tufts University 

Xavier Intes, Ph.D., Department of Biomedical Engineering, Rensselaer Polytechnic 

Institute 

 



ii 

 

Abstract 

Near-infrared spectroscopy (NIRS) of the breast exploits the inherent contrast of tumors 

due to increased hemoglobin absorption of light relative to healthy tissue. Optical imaging 

has been used to identify, characterize and monitor breast cancer non-invasively. This work 

first describes a new instrument for diffuse optical mammography in parallel plate 

geometry that operates over a broad spectral range of 600 – 1000 nm, features a scan time 

of 1 – 2 min, and allows for dynamic measurements at a selected region of interest. 

Furthermore, this new instrument is capable of depth discrimination of optical 

inhomogeneities embedded in the examined tissue by using multiple off-axis detection 

fibers.  

 Second, we report on an optical mammography study on eight patients with breast 

cancer who underwent neoadjuvant chemotherapy to identify biomarkers that indicate the 

patient’s degree of response. We found that both the total hemoglobin concentration and 

hemoglobin oxygen saturation (SO2) decreased by a greater amount in responders than in 

non-responders during therapy. This result applied to both cancerous and healthy breasts, 

but the discrimination of responders and non-responders was more significant with SO2 

measurements in the cancerous breast. We developed a cumulative response index that 

achieved 100% sensitivity and 100% specificity in characterizing response half way 

through chemotherapy.  

 Lastly, induced arterial blood pressure oscillations result in peripheral 

hemodynamic oscillations that provide information about local changes in blood flow and 

blood volume. We first report on a comparison of two protocols to induce cerebral 

hemodynamic oscillations, paced breathing and cyclic inflation of pneumatic thigh-cuffs. 
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These two protocols induce systemic mean arterial pressure oscillations of similar 

magnitude but show varied response in the dynamics of cerebral oxy- and deoxy-

hemoglobin concentrations. This variability may be due to altered physiological states 

under the paced breathing protocol, or anatomical differences between subjects. We then 

report on an initial attempt at inducing hemodynamic oscillations using pneumatic thigh-

cuffs in patients undergoing neoadjuvant chemotherapy. We found that in one patient with 

complete data, we were unable to distinguish changes in the hemodynamics between 

healthy and cancerous breasts. Ultimately, a more robust measurement protocol is needed 

to ensure that oscillations driven by mean arterial pressure are reliably induced in the 

breast. To advance NIRS into clinical practice, larger studies, with standardized equipment 

need to be performed to establish its value for individual patients.   
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Motivation 

Breast cancer is the most common cancer in women and the second leading cause of death 

in many countries. Early diagnosis of breast cancer is critical to favorable prognosis. As 

such, identifying diagnostic methods that have high sensitivity and specificity are crucial 

for advancing the treatment of this disease. X-ray mammography is the clinical standard 

for breast cancer screening despite tissue density providing poor sensitivity to breast cancer 

in younger women and despite the requirement for ionizing radiation which may have 

carcinogenic effects affording a limited measurement frequency. Furthermore, false-

positive rates in X-ray mammograms can be as high as 50% requiring additional testing at 

a financial cost to health care institutions and an emotional cost to the patients1,2. Optical 

measurements using near-infrared light have been proposed as a cost-effective, non-

ionizing, and non-invasive imaging solution to detect breast cancer over the last 20 years.3 

Optically, breast cancer measurements have typically focused on the detection of 

hemoglobin content in tissue. It has been consistently reported that breast cancer is 

associated with locally elevated levels of hemoglobin in tissue.4–7  

Achieving the full clinical potential of near infrared spectroscopy for breast cancer 

detection hinges on the identification of information content from optical measurements 

for effective cancer detection and/or monitoring of response to therapy. However, the 

limited specificity of hemoglobin and the oxygen saturation of hemoglobin in breast cancer 

alone has prevented their adoption as robust diagnostic parameters thus far.8,9 Accordingly, 

the goal of this work is to maximize the information content achievable in a non-invasive 

optical measurement of the breast, and to develop techniques that can extract 

physiologically relevant parameters that serve as biomarkers for breast cancer monitoring.   
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Dissertation outline 

The work in this dissertation describes various approaches to applying near-infrared 

spectroscopy. The first chapter discusses light-tissue interactions and goes on to introduce 

existing clinical techniques being used to monitor breast cancer and the information gap 

that near-infrared spectroscopy (NIRS) can fill. Chapter 2 outlines the development and 

testing of an optical mammography instrument that can collect five-dimensional (three 

spatial, temporal, and spectral) information. Chapter 3 describes the use of static optical 

mammograms taken during each chemotherapy session to monitor the response of breast 

cancer patients. While static optical mammograms can provide information about spatial 

changes over time, they lack the functional information to better understand the source of 

these changes. In Chapter 4, we discuss the variability associated with two protocols for 

inducing systemic hemodynamic oscillations and measure those oscillations in the brain. 

In previous studies our group has shown that induced oscillations measured in the healthy 

breast do not provide the hemodynamic signature of interest, namely a phase difference 

between oxy- and deoxy-hemoglobin. As such, we chose to first understand the variability 

in this phase relationship in healthy subjects in the brain, where we have previously 

reported the importance of this measurement. We hypothesized that due to the altered 

vasculature function in breast cancer we could identify differences in the hemodynamics 

between healthy and cancerous breast, that resemble the phase relationship we see in the 

brain which is indicative of changes in blood flow. In Chapter 5 the initial measurements 

of hemodynamic oscillations in the breast on patients undergoing neoadjuvant 

chemotherapy are described. Finally, this dissertation concludes with a summary of the 

findings reported and a description of potential future directions based on this work. 



 

 

Chapter 1: Background on near infrared 

spectroscopy and breast cancer imaging 

1.1. Light-tissue interactions 

Near-infrared spectroscopy (NIRS) when applied to biological tissues, is an optical 

technique that utilizes safe levels of radiation in the wavelength region 650 – 1000 nm. 

Near-infrared light experiences two physical processes when interacting with biological 

tissues. The first one is absorption, defined by the absorption coefficient (μa with units of 

cm−1) which describes the inverse mean pathlength of photons before they are absorbed by 

chromophores in the tissue and translated into heat energy. Using near-infrared light allows 

for a larger penetration depth for optical techniques due to the relatively low absorption for 

this wavelength range. The absorption coefficient is defined by the sum of the individual 

absorption from each chromophore that exists in the optical path and ranges from 

0.01 – 0.15 cm−1 for healthy biological tissues (Figure 1.1). The major chromophores in 

the near-infrared window include oxy- and deoxy-hemoglobin, and in smaller proportion 

water and lipids. This makes NIRS particularly sensitive to hemoglobin concentrations and 

hemodynamics.  

The second process experienced by photons inside tissues is scattering, which is 

defined by the reduced scattering coefficient (μsʹ), describing the inverse mean pathlength 

of photons before they lose information regarding their initial direction. The reduced 

scattering coefficient is typically one to two orders of magnitude greater than the absorption 

coefficient (typically between 2 and 20 cm−1), such that light scattering events dominate in 

most biological tissues. The consequence of the much larger reduced scattering 

characteristics of biological tissues is that the near-infrared light injected into the tissue 
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rapidly becomes a diffuse photon density wave, which then traverses the tissue. This poses 

an intrinsic limitation to the spatial resolution (~5 mm) of NIRS for optical imaging 

purposes.  

 
Figure 1.1: Absorption contributions from each chromophore based on typical 

concentrations in the human breast. Total tissue absorption is based on the sum of the four 

individual contributions.  

  

Absolute hemoglobin concentrations (as well as water and lipids concentrations) 

can be directly derived from the absorption spectra seen in Figure 1.1. However, the strong 

diffusion of light in tissue and the effects of both optical coefficients (i.e. μa and μsʹ) on 

light propagation requires a light transport model to separate them uniquely. Furthermore, 

different geometries, tissue layers, or arrangements of source and detector affect the 

accurate recovery of these optical coefficients. A more comprehensive review of the types 

of instruments capable of recovering optical measurements of hemoglobin, water, and lipid 

concentrations is presented in section 2.1. 
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1.2. Breast cancer anatomy, and treatment 

Breast tissue extends from the collarbone, to lower ribs, sternum (breastbone) and armpit. 

The breast is primarily comprised of fatty and fibroglandular tissue. Each breast contains 

15-20 glands called lobes, where milk is produced in women who are breastfeeding. These 

lobes are connected to the nipple by 6-8 tubes called ducts which carry milk to the nipple. 

The breast and armpit also contain lymph nodes and vessels carrying lymph fluid and white 

blood cells, which are part of the immune system. Much of the rest of the breast is fatty 

tissue.  

In the case of breast cancer, there are two types: lobular carcinoma in situ and ductal 

carcinoma in situ. Typically in situ cancers are treated with a lumpectomy or mastectomy 

followed by radiation therapy, and generally have favorable prognoses when diagnosed early. 

However, the majority of breast cancer diagnoses are invasive ductal carcinoma, followed by 

invasive lobular carcinoma when the cancer has spread beyond the ducts or lobes respectively. 

Inflammatory breast cancer, which is rarer, is diagnosed when cancer cells have been identified 

in the lymph vessels in the skin. When breast cancer is identified, typically from X-ray images, 

biopsies are taken to identify the type and grade of the cancer. Typically, lymph nodes are also 

imaged and a biopsy may be performed to see if cancer cells have spread to the nodes. When 

cancer is found in the lymph nodes, chemotherapy treatment is often recommended, followed 

by surgery and radiation therapy as well.  

1.3. Imaging and diagnosis of breast cancer 

1.3.1. X-ray mammography 

The current clinical methods for breast cancer screening are palpation and x-ray mammography 

performed on asymptomatic population. Although palpation can give a rough estimate about 

the existence of any suspicious masses in the breast, it is far less commonly used than x-ray 
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mammography. Women with average risk of breast cancer are recommended to have annual 

screening after age 45.10 X-ray mammograms produce images by transmitting low dose 

(~0.7 mSv) ionizing radiation through compressed breast tissue. X-rays are sensitive to 

variations in tissue density, where dense fibroglandular tissue is more attenuating 

compared to adipose tissue. Full field digital mammography has recently replaced 

traditional film-screen mammography due to the flexibility allowed through digital 

manipulation of X-rays to enhance features of suspicious lesions. X-ray mammography is 

of greatest advantage due to its ability to detect micro-calcifications which often are the 

earliest signs of malignancy. However, mammograms have high false-positive rates and 

limited sensitivity in patients with dense breasts, typically younger women.10 If X-rays fail 

to provide a conclusive diagnosis, ultrasound or MRI images may be required.  

1.3.2. Ultrasound 

Breast ultrasound is invaluable in characterizing masses as cystic or solid. It is the only 

modality employed during lactation and pregnancy and in painful conditions where 

mammographic compression is not possible. It is also valuable for evaluation of the post 

surgical and irradiated breast. Ultrasound uses sound waves (7-13 MHz) to estimate the 

location and shape of masses by identifying the refractive index mismatch at the interface 

of the lesions. Ultrasound does not use ionizing radiation and is associated with little 

discomfort when compared to X-ray mammography. It has, in recent years, been used as 

an adjunct technique to X-ray mammography to improve sensitivity especially in patients 

with radiographically dense breasts.11 However, ultrasound is not sensitive to small 

microcalcifications that are early indicators of breast cancer making it unsuitable as a 

screening or diagnostic tool.  
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1.3.3. Magnetic resonance imaging 

Magnetic resonance imaging (MRI) scans are typically performed after an early stage 

diagnosis (stage I or II) of breast cancer to identify any additional foci of cancer and to 

assist in surgery.10 Breast MRI has had a growing popularity for the past decade due to its high 

sensitivities to tissue abnormality due to its high spatial resolution to reveal the detailed 

structures of the interior of the breast.12 It is primarily performed to probe the areas which do 

not offer clear images in mammography or ultrasonography. It is typically conducted only 

when no confident diagnostics is reached after mammography or ultrasound, or to evaluate the 

efficacy of the tumor removal surgery or chemotherapy treatment. MRI provides 

morphological and kinetic information about suspicious breast lesions. Appropriate staging of 

the disease for patients diagnosed with breast cancer relies on knowledge of the size of the 

tumor, which can be obtained from an MRI also. However, MRIs are significantly more 

expensive limiting their practicality as a screening tool.  

1.3.4. Optical imaging of breast cancer 

Cutler13 was the first to show how transillumination of the female breast using 

visible light could help defining the position of a lesion, particularly in cases of the bleeding 

nipple. He pointed out the limitations of the technique notably the inability of the method 

at that stage to distinguish benign from malignant disease. The development of mammary 

radiography soon after and its ability to distinguish microcalcifications appears to have 

limited the development of diaphanography as a means of diagnosing breast cancer at the 

time. By the 1970s, concern surrounding the effects of repeated X-ray exposure, as well as 

the minimal specificity of X-ray mammography for patients with dense breasts led to 

renewed interest in diaphanography since it used non-ionizing radiation.14 A number of 

researchers showed promising results towards the capability of light-scanning 
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mammography to detect breast cancer.15–17 Although they were able to identify regions of 

contrast due to the increased optical absorption of cancerous tissue, light-scanning was 

deemed inferior to X-ray mammography in terms of its sensitivity to breast cancer.18,19 In 

the 1990s, analytical models to describe near-infrared light propagation in tissues,20–22 

combined with sophisticated instrumentation for data collection and rigorous methods of 

data analysis, led to the development of more advanced near-infrared spectroscopy (NIRS) 

and diffuse optical tomography (DOT) systems aimed at detecting, diagnosing, and 

monitoring breast cancer.8,23–34 

Near-infrared spectroscopy and DOT of the breast take advantage of the intrinsic 

optical contrast provided by the tissue concentrations of oxyhemoglobin, 

deoxyhemoglobin, water, and lipids ([HbO2], [Hb], [water], and [lipids], respectively). The 

ratio of oxyhemoglobin to total hemoglobin concentration ([HbT]) yields the oxygen 

saturation of hemoglobin, which is a measure of the balance of oxygen supply and oxygen 

utilization in tissue. Localized changes in the concentration and oxygen saturation of 

hemoglobin in breast tissue have been linked to angiogenic developments and perturbations 

to the tissue metabolic rate associated with the development of breast 

cancer.9,24,25,27,29,31,35,36 Additionally, localized changes in [water] and [lipids] can be 

indicative of structural modifications in the tissue associated with changes in cellularity 

and fibrous tissue content. These changes have also been shown to be indicative of tumor 

development.8,9,25,27,29,35,36 Optical methods of breast cancer evaluation show promise due 

to the opportunity to evaluate both structural and functional changes associated with breast 

cancer simultaneously.  
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Chapter 2: Imaging system design 

2.1. Background 

2.1.1. Differences between time-domain, frequency-domain, and continuous-wave 

systems. 

Near-infrared spectroscopy and DOT systems can be classified as continuous-wave 

(CW)8,23,24,29, time-domain (TD)25,35, and frequency domain (FD)23,27 based on the 

temporal characteristics of the light source and optical detection systems. Absolute 

measurements of [HbO2], [Hb], [water], and [lipids] are dependent on the accurate recovery 

of the tissue absorption coefficient (μa), which in turn requires the determination of the 

tissue reduced scattering coefficient (μs′). Time-domain and FD systems have the capability 

to measure μa and μs′ simultaneously, but usually feature limited spectral sampling 

(10 wavelengths). Theoretically, to measure the concentrations of four chromophores 

([HbO2], [Hb], [water], and [lipids]), one only needs measurements at four wavelengths 

that feature sets of extinction coefficients of the four chromophores that are linearly 

independent. However, because of random and systematic experimental errors, accurate 

measurements of μa and μs′ benefit from greater spectral sampling both in terms of the 

number of wavelengths and the wavelength range. In this regard, TD systems may take 

advantage of super-continuum lasers30,31 to achieve broadband spectral collection. 

However, TD systems often require longer acquisition times to provide accurate 

measurements of the temporal point spread function, and each wavelength requires an 

individual photon counting system increasing the complexity and cost of achieving high 

spectral sampling rates. 
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Systems based on CW light inherently have less information content than TD or 

FD systems and are unable to measure the absorption and scattering properties of tissue 

separately.37 However, CW systems generally provide higher spectral sampling 

(100 wavelengths over the full spectral range of interest) with a standard spectrograph 

and CCD camera system. Spectral sampling at wavelengths longer than 900 nm can 

provide greater sensitivity to [lipids] and [water] as a result of their absorption peaks at 930 

and 970 nm, respectively.31 The inability of CW systems to independently measure the 

reduced scattering coefficient requires some kind of assumption about the scattering 

properties of breast tissue. For example, one may perform FD measurements at a set of 

wavelengths and obtain a reduced scattering spectrum by interpolation,29 or a scattering 

spectrum may be assumed on the basis of measurements reported in the literature for breast 

tissue.8  

2.1.2.  Recovering tomographic information and temporal dynamics   

The spatial information of NIRS and DOT images yields the distribution of tissue 

chromophores within breast tissue. Such spatial distributions relate the location of breast 

lesions to associated perturbations to the concentration and oxygen saturation of 

hemoglobin, or to perturbations in water and lipid content. Full 3D spatial information is 

desirable to accurately identify the location and extent of breast lesions. Approaches to 3D 

imaging can be grouped into tomographic reconstructions32,38 and depth discrimination 

methods in planar scanning systems.23,31,35 Diffuse optical tomography systems use a 

number of source-detector pairs (typically 32 – 64 pairs)24,33 placed around the breast or in 

a parallel-plate geometry32,39 to solve the inverse imaging problem in 3D.22 While DOT 

systems offer full 3D spatial reconstructions, the task is complex, has high demands on 
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data collection and computational routines, and suffers from the ill-posed nature of the 

inverse imaging problem in the diffusion regime. Planar scanning systems may use a single 

source-detector pair that is scanned to create a 2D projection image of the breast in a 

transmission geometry,8,31,35 or may employ parallel planar detection by a lens-coupled 

CCD camera.32 Scanning systems typically provide a fine spatial sampling (1 cm−1) to 

identify detailed superficial structures, such as blood vessels, within the breast.23,35,40 Depth 

discrimination can be obtained from multiple projections realized by offset detectors that 

are not collinear with the optical illumination.41–43 Compared to a full tomographic 

reconstruction, this approach to depth discrimination is more straightforward and 

potentially robust. However, it is not capable of resolving multiple structures in depth, and 

it provides a coarser depth assessment than tomographic approaches based on a complete 

optical data set around the breast. 

Temporal information, as collected with dynamic optical measurements of breast 

tissue, can broaden the scope of optical mammography to include intrinsic hemodynamic 

features and hemodynamic responses to external stimuli or perturbations. Recently, 

research groups have been exploring the possibility that induced changes of [HbO2] and 

[Hb] within the breast may be used to discriminate healthy and cancerous tissue. Different 

methods of dynamic breast compression34,44 or regulated respiration33,45,46 have been 

shown to cause optically measurable hemodynamic fluctuations in breast tissue. Manual 

compression of the breast induces an increase in the interstitial fluid pressure which can 

cause a decrease in blood content of up to 20% in healthy subjects.44 Similarly, regulating 

respiration by either paced breathing or breath-holding induces systemic changes in blood 

pressure that result in changes in blood content that can range from 5-10% in healthy 
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subjects.33,46 It has been reported that differences in the measured magnitude of this change 

and in the associated washout rate are indicative of differences in the vasculature of 

healthy and cancerous tissue.33,44,46,47 To measure these changes, systems with acquisition 

rates on the order of 1 Hz are required since the relevant frequency band of tissue 

hemodynamics is generally limited to frequencies below the heart rate (~1 Hz). Since the 

characteristic times of induced hemodynamics may be on the order of a few seconds, a 

sampling frequency of 0.5 – 1 Hz is sufficient in most cases. Hand-held probes48,49 

generally provide the highest temporal resolution (>10 Hz) and have the flexibility to 

measure different locations on the breast. However, concurrent measurements, which are 

required to make comparative analyses of multiple locations on the breast, require multiple 

probes with unknown calibration factors related to individual probe-tissue coupling and 

pressure. Depending on the number of source-detector pairs, tomographic systems are 

limited in their temporal resolution (<1 Hz) but benefit in being able to provide detailed 

spatial maps of optical properties over time. However, recently, Flexman et al. have 

developed a tomographic system capable of 3D reconstructions at sampling frequencies 

up to 2 Hz depending on the number of wavelengths and source-detector pairs used.  

2.1.3. Main features of the instrument presented here 

We have previously reported an optical mammography instrument based on a CW, planar 

tandem scan of a collinear source-detector pair (wavelength range: 650 – 850 nm) to 

generate 2D snapshots of chromophore maps in breast cancer patients.8 We report here the 

development of a new CW breast scanning system (wavelength range 650 – 1000 nm) 

using one source and four detector optical fibers (one collinear and three off-axis with 

respect to the source fiber) with high spectral (~2.5 nm−1), spatial (25 cm−2), and temporal 
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(~10 – 20 Hz) sampling rates. With respect to our previous instrument, the extended 

spectral range allows for a higher sensitivity to [water] and [lipids], the off-axis detection 

scheme allows for depth sensitivity and 3D imaging, and the temporal resolution (at a 

stationary location) allows for hemodynamic measurements. Here, we demonstrate the 3D 

capabilities of this new instrument by imaging a tissue-like optical phantom containing 

absorbing structures, and the dynamic measurement capabilities by assessing physiological 

hemodynamics in healthy volunteers. We also discuss the relevance of implementing these 

advanced spectral, spatial, and temporal methods in a consolidated system, and how it can 

enhance the detection and monitoring of breast cancer in a clinical setting. 

2.2. Methods 

2.2.1. System for scanning optical mammography 

 

Figure 2.1: A) Block diagram of the optical mammography instrument for spectral imaging 

of the human breast. The emission of a quartz-tungsten-halogen (QTH) lamp is spectrally 
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filtered from 340 – 1130 nm and light is delivered to the breast through an optical fiber for 

illumination. B) A four-legged detector fiber is arranged in a transmission geometry with 

the fibers oriented in the x-y plane. The offset between each fiber and D0 was set at 

δD = 20 mm. C) The 2 ⨉ 1 mm2 rectangular arrangement of each detection fiber bundle 

into a single ferrule spanning 6.4 mm in height. The spectrograph spatially resolves light 

of different wavelengths from each fiber simultaneously onto a 26.8 ⨉ 8 mm2 

charge-coupled device (CCD) chip which acquires four spectra (wavelength range: 

650 – 1000 nm), corresponding to the four detection fibers, at each source position. 

 

The emission of a quartz-tungsten-halogen (QTH) lamp (Model No. 66635, Newport 

Instruments, Irvine, CA) was band pass filtered by a spectral filter (Model YSC1100, Asahi 

Spectra USA, Torrance, CA) to a 340 – 1130 nm spectral bandwidth. The illumination light 

was delivered to the breast or optical phantom using a 2.5 mm diameter optical fiber bundle 

with a maximum illumination power exiting the fiber of 350 mW. The source-fiber was 

mounted onto a 2D scanning slide controlled by stepper motors (Model 

XN10-0180-E02-71, Velmex, Bloomfield, NY). The end of the fiber was separated from 

the breast by a 6.5 mm thick, clear, polycarbonate plate. Although light-channeling is a 

concern with illumination through clear polycarbonate plates, in a transmission geometry 

the effects of light channeling on our measurements are minimal due to the large 

source-detector distance and strong attenuation of light in tissue. The source fiber 

numerical aperture (NA) was 0.55, which resulted in a spot diameter on the breast of about 

11 mm, and a maximum radiant exposure of ~250 mJ/cm2. With a 16 mm/s scan speed, the 

maximum illumination time at any given location on the breast (pixel resident time) was 

~690 ms, for which the maximum permissible exposure of skin to near-infrared light is 

~1 J/cm2 while the fiber was scanned (ANSI Z136.1-2007). Typically, measurements were 

done using an illumination power of ~100 mW (yielding a radiant intensity at the tissue of 

~75 mJ/cm2). However, for subjects with larger breasts (requiring >6 cm plate separation) 

the ability to increase the power level allowed us to maintain a suitable signal to noise ratio 
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(SNR). For static measurements (no scanning), where the pixel resident time of the fiber 

could be as long as 10 min, the maximum permissible exposure was limited to a radiant 

intensity of 0.2 W/cm2 (ANSI Z136.1-2007). For these measurements, we had to ensure 

that the power exiting the fiber was less than 190 mW. In cases where it was desirable to 

increase the SNR, we had the capability to increase the integration time since our temporal 

sampling rate (~10 – 20 Hz) was greater than the required temporal resolution of 1 Hz for 

physiological hemodynamics. 

The breast or phantom was placed between the two polycarbonate plates attached 

to the scanning slide housing (Figure 2.1A). The transmitted light was collected by four 

2.5 mm diameter detector optical fibers with an NA of 0.22 which were arranged in a ‘T’ 

pattern (Figure 2.1B), and mounted onto another 2D scanning slide. The smaller acceptance 

angle of the detector fibers provided a smaller spot diameter at the breast (~3 mm) allowing 

for finer spatial sampling in our images. The ‘T’ pattern for the detectors maximized the 

size of the imaged area for which depth information was collected. The source and detector 

fibers were scanned in tandem such that the central detector fiber (D0) remains collinear 

with the source fiber during the scan. The three off-axis detector fibers were offset in the 

positive and negative x-direction (D+x and D−x respectively) and in the positive y-direction 

(D+y). The offset distances of D+x and D−x in the x-direction (D+x and D−x respectively) 

and D+y in the y-direction (D+y) were set to the same value D = 20 mm with respect to 

the location of D0 (the collinear detector). To obtain depth information for structures 

oriented in multiple directions, we have previously shown that two orthogonally offset 

detectors, are sufficient.40 The arrangement of the detector fibers with two offset detector 

locations along the x-direction ensured that one of the off-axis fibers offset in the 
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x-direction would remain within the x-y projection of the imaged tissue, thus providing 

depth information at the edges of the breast. Ideally, a fifth offset detector fiber in the 

negative y-direction would maximize the depth information in both spatial dimensions. 

However, to maximize the imaged area, we omitted this fiber to allow D0 to scan as close 

to the chest wall as possible. The four detector fibers were joined into a single ferrule with 

four 2 ⨉ 1 mm2 rectangular areas corresponding to each of the detector fibers (Figure 

2.1C). The four rectangular fiber ends were vertically distributed over 6.4 mm on the end 

of the ferrule with 0.8 mm spacing on either side of each fiber which resulted in a total 

vertical dimension of 8 mm. These 8 mm corresponded to the height of the charge-coupled 

device (CCD) chip within the camera (Model Pixis400, Princeton Instruments, Princeton, 

NJ). The ferrule was placed at the entrance slit of the spectrograph (Model SP-150, 

Princeton Instruments, Princeton, NJ) which contains an internal shutter with an actuation 

time of 8 ms. The light from the four fibers was spectrally dispersed by a 300 G/mm grating 

blazed at 830 nm resulting in a dispersion of 18.7 nm/mm. 

The cooled, 16-bit CCD camera was attached at the exit port of the spectrograph 

and acquired four spectra, corresponding to the four detection fibers, simultaneously. The 

sensitivity of the CCD was 1 electron per analog-to-digital (A/D) count with a 2 MHz A/D 

conversion rate. The CCD was made up of a 1340 ⨉ 400 pixel2 array with 20 ⨉ 20 μm2 

pixels (resulting in a 26.2 ⨉ 8 mm CCD chip). The lateral dimension of the CCD was used 

for spectral sampling whereas the longitudinal dimension was used for the spatial sampling 

of the four detection fibers. The resulting spectral sampling rate was ~2.5 nm−1, and the 

measured spectral range was 580 – 1081 nm based on a center wavelength of 830 nm. The 

optical signal below 650 nm is strongly attenuated by the absorption of hemoglobin in 
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breast tissue, and the signal at wavelengths longer than 1000 nm was restricted by the lower 

quantum efficiency (30%) of the CCD. Consequently, only the wavelength range 

650 – 1000 nm was used in this work. The spectral resolution of the system was limited by 

the slit width; to achieve the highest signal-to-noise ratio we maximized the detected 

intensity by using a slit width of 2 mm, which resulted in a spectral resolution of ~50 nm. 

The broad spectral features of hemoglobin, water, and lipids limit the requirement for high 

spectral resolution in NIRS of the breast. Considering the limited requirement for spectral 

resolution, the spectral sampling provided by this camera was more than necessary. 

However, it was chosen because it provided a quantum efficiency above 90% for light in 

the wavelength range 650-900 nm and above 30% up to 1000 nm which was necessary for 

robust measurements of [water] and [lipids]. Additionally, we found that laterally binning 

the CCD chip only marginally improved our acquisition rate and SNR at the cost of 

reducing our dynamic range. Consequently, we maintained the full spectral sampling rate 

of the CCD chip in our data collection scheme.  

Control of the stepper motors and CCD, as well as data collection, was done with 

LabVIEW (National Instruments, Austin, TX). Scanning started close to the chest wall 

moving continuously in the +x-direction at a speed of 16 mm/s. The scanner was stopped 

automatically by the software at the edge of the breast when the tissue thickness was 

reduced by approximately 20 mm and the transmitted intensity exceeded the dynamic 

range of our CCD and saturated it. At that point, the scanner moved 2 mm in the 

+y-direction and started scanning in the −x-direction. With an exposure time (including the 

8 ms shutter actuation) of 100 ms and a readout rate of 28 ms, spectra were acquired every 

128 ms resulting in a pixel size of ~2 mm along the x-direction. When the length of a 
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scanned line was less than 10 mm (5 pixels) the data acquisition was stopped and the fibers 

returned to their starting position. The typical scanning time for a 100 mm ⨉ 100 mm area 

was about 6 min. Our method of raster-scanning optical fiber bundles to create spectral 

images of the transmitted intensity requires a balance of scan speed, spatial sampling rate, 

and signal to noise ratio (SNR). Increasing the scan speed, while maintaining the spatial 

sampling rate along the scanning direction, requires a reduction of the exposure time per 

pixel. This would result in an inherently lower signal and SNR. A spatial map of intensity 

at 830 nm was updated during the scan for real-time display in the graphical user interface. 

Data collection on phantoms took place in a dark room to prevent leakage of room light 

into the optical detector, whereas in the case of breast measurements we found that the 

subject’s body provided some shielding of room light to allow for dim illumination in the 

room. 

2.2.2. Achieving depth sensitivity 

2.2.2.1. Approach to depth discrimination 

It was previously shown that an off-axis detection scheme provides information regarding 

the depth, zobj, of an inhomogeneity embedded within a turbid slab of thickness d0.
40,41 To 

obtain this information, one combines data from the on-axis detector, D0, and a detector 

offset, by a distance D, in the x-y plane. The location of a given inhomogeneity will appear 

shifted (along the direction of the detector offset) between the transmission intensity 

images of the on-axis and off-axis detectors. The magnitude of this shift, Δ, can be 

normalized to D yielding  = Δ/D,40 where  is a dimensionless parameter that is related 

to the normalized depth, zobj/d0. Furthermore, to achieve depth sensitivity for linear 

structures along x, we included an off-axis detector D+y (offset along the positive 
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y-direction). By measuring the parameter  and the thickness of the medium, d0, the depth 

of an absorbing structure can be found for any pair of detectors using a calibration curve 

relating  to zobj/d0. For example, for the detector D+x, +x = Δ+x/D+x, where Δ+x is the 

measured spatial shift along the positive x-direction between the structure in the image 

generated by D+x and the one generated by D0, and D+x is the detector offset in the 

+x-direction. Similarly, −x, and +y can be recovered using the spatial shifts measured 

from detectors D−x and D+y, respectively. It was previously shown that this calibration 

curve is weakly dependent on the background optical properties of the medium and on the 

source-detector separation.40,41 Also, depth reconstruction using this method is not affected 

by the contrast between the structure and the background medium because it is based on 

the spatial offset of intensity minima. As a result, for our experiments, we use simple black 

inclusions of varying shapes to show the capabilities of our instrument and this technique. 

2.2.2.2. Comparison of theoretical and experimental depth calibration curve 

A first-order perturbation approach within diffusion theory in an infinite slab geometry was 

used to derive the depth calibration curve, henceforth called the “depth curve”, which 

translates measured values of α into the corresponding values of zobj/d0. In the diffusion 

based calculations, a single highly absorbing (effectively black) perturbation with a volume 

of 8 mm3 is embedded in a turbid infinite slab with optical properties μa ~ 0.04 cm−1 and 

μs′ ~ 9 cm−1 and thickness d0 = 60 mm. Perturbation theory was used to generate 1D line 

scans with two detection optical fibers separated by D = 20 mm. The calculations were 

carried out for depths of the inhomogeneity, zobj, in the range 4 – 56 mm. 

We also acquired an experimental depth curve in order to assess the discrepancy 

between an experimental measurement of the depth curve in a slab geometry with finite 
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boundaries and the theoretical depth curve derived from diffusion theory in an infinite slab 

geometry. For this, we used two wedge-shaped silicone phantoms (labeled “1” and “2” in 

Figure 2.2A) with optical properties μa ~ 0.04 cm−1 and μs′ ~ 9 cm−1 at 690 nm, which are 

combined into a rectangular block that allows for a thin inclusion to be inserted between 

the two phantoms. A transparency sheet with a single 7.5 mm wide black line was printed 

and used as an inclusion between these two pieces. For this experiment, two separate scans 

were performed: the first scan with a single detector collinear to the source (D0), and the 

second scan with a single detector offset by D = 20 mm (D+x) (Figure 2.2B). The detector 

offset was chosen as a compromise between the depth sensitivity and the size of the imaged 

area. Increasing D would increase our depth sensitivity, however the area imaged by both 

detectors would decrease. We found that, given our spatial sampling rate, a 20 mm detector 

offset provided good depth sensitivity. Each scanned line along the x-direction sampled the 

depth-varying inclusion at a unique depth. The spatial sampling rate of our data (0.5 mm−1) 

was increased to 2 mm−1 by 2D spline interpolation after low-pass filtering with a 2D 

moving average to reduce the intensity noise-level. The inherently low spatial resolution 

afforded in diffuse optics allows interpolation to provide a finer spatial grid that mimics 

collecting data with a higher spatial sampling rate. Using this data interpolation, the shift 

in location of an inclusion between the images collected with the collinear and offset 

detectors (D0 and D+x) can be measured with greater precision. That is, if the true intensity 

minimum associated with a structure were to occur between two sampled points in the 

intensity image, interpolation provides a better measure of the shift in location. If the true 

minimum is sampled exactly by a pixel in the intensity image, interpolation does not affect 

the measured depth. The depth of the inclusion at each x-line was associated to a 
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corresponding value +x by dividing the measured shift (Δ+x) by the detector offset 

D+x = 20 mm. By relating the measured value of +x to the known value of zobj/d0 a depth 

curve was created. 

 

Figure 2.2: Description of the tissue-like phantom to experimentally derive the relationship 

between  and zobj/d0. (A) Lateral view of the combined phantom. A black strip 7.5 mm 

wide is printed on a transparency sheet and is used as an optical inclusion between the two 

halves (labeled 1 and 2) of the phantom. The inclusion is imaged from depths ranging from 

8-50 mm. (B) Front view of the same phantom depicting the location of the inclusion and 

the source (S), collinear detector (D0) and off-axis detector (D+x), which is offset by 

D+x = 20 mm. The optical properties of the phantom at 690 nm are μa ~ 0.04 cm−1 and 

μs′ ~ 9 cm−1. 

2.2.2.3. Performance test on a breast-shaped phantom 

We have previously presented the depth recovery method in an infinite-medium geometry, 

where boundary effects are absent,40 and we have presented the case of a semi-infinite slab 

geometry in the previous section. To address the capability of our instrument to perform 

depth measurements in a geometry that is more representative of a real breast, we designed 

a breast-shaped optical phantom made of silicone (μa ~ 0.04 cm−1, μs′ ~ 9 cm−1 at 690 nm) 

depicted in Figure 2.2. 
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Figure 2.3: Drawing of breast shaped optical phantom. (A) Top view of two inclusions 

placed on the phantom. The grey circle is black tape placed between the two solid halves 

of the phantom (z1 = 29 mm) and the solid black line is a 3 mm wide strip of black tape 

placed over the top of the phantom (z2 = 0 mm). (B) A lateral view of the phantom depicting 

the two halves. The total thickness of the phantom is d0 = 60 mm. The optical properties of 

the phantom at 690 nm are μa ~ 0.04 cm−1, μs′ ~ 9 cm−1. 

The phantom has a semi-circular projection with a diameter of 140 mm. A 70 mm diameter 

portion of the phantom (outlined by a dashed semi-circle in Figure 2.3A) is of uniform 

thickness to resemble the portion of the breast in contact with the polycarbonate plates. A 

17 mm diameter circle of black tape was placed between the two halves of the phantom 

(z1 = 29 mm) to mimic a deeply embedded tumor. A 3 mm wide strip of black tape was 

placed along the surface of the top half of the phantom (z2 = 0 mm) to mimic a superficial 

blood vessel. The phantom was imaged using a detector offset of D = 20 mm for all three 

directions (+x, −x, and, +y), recovering intensity images from D+x, D−x, and D+y 

simultaneously over the wavelength range 650-1000 nm. The same low-pass filter and 

interpolation used in Section 2.2.2.2 were applied to the intensity images recovered 

simultaneously from the four detectors. Since this method is largely insensitive to the 

absorption and scattering properties of the background medium,40,41 and since we used a 

black absorber, we maximized the contrast-to-noise ratio by using the integrated spectrum 

of the transmitted intensity at each pixel. 
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To account for the shape-based edge effects associated with the variable slab 

thickness, a normalization was applied using information from the intensity image at 

912 nm. At 912 nm, the absorption of silicone has a peak and subsequently the background 

absorption from the phantom is the highest. At this wavelength, we minimize the contrast 

of the two black structures, and spatial variations in the intensity are dominated by 

fluctuations associated with the shape of the phantom. We divided the integrated intensity 

image by the one recovered at 912 nm, as a method of removing changes in intensity 

resulting from changes in thickness. The resulting image was then normalized to its 

maximum value creating a normalized intensity image at each detector. We represent these 

images taken from D0, D+x, D−x, and D+y with the matrices of normalized, interpolated 

intensity data N0, N+x, N−x, and N+y, respectively, where N0(x0,y0) represents the normalized 

intensity value taken from D0 at source location (x0,y0). We observe that we have previously 

presented an alternative method for tissue thickness correction for breast measurements in 

vivo, which is based on data collected at an optimal wavelength of 925 nm.17 

The location of the circle and stripe structures in the on- and off-axis images need 

to be identified to measure their corresponding spatial shifts between images taken from 

different detectors. To do this, regions of interest (ROIs) (or submatrices) within N0 were 

first defined for the circle (ncirc,0) and stripe (nstripe,0) as templates to identify similar regions 

in off-axis images. Here, the location of ncirc,0 was defined by the location of its first 

element (at the top-left of the ROI). Meaning, if ncirc,0(1,1) = N0(x1,y1) then the location of 

ncirc,0 is (x1,y1) . To define ncirc,0, the center of the circle inhomogeneity was identified by a 

local minimum in N0, and it was used to define the center of a 17 mm (34 pixel) square 

region. The ROI for the stripe, nstripe,0, was defined by finding minima along N0(x, 36) and 
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N0(x, 0), where 36 and 0 were the y location in mm of the top and bottom of the stripe, 

respectively. These two points identified the center locations of the stripe along the 

x-direction and were used as the top-left and bottom-right corners for the rectangular 

22 ⨉ 36 mm2 (44 ⨉ 72 pixel2) ROI, nstripe,0. 

The 2D cross-correlations were calculated between ncirc,0 or nstripe,0 and ROIs of the 

same size taken from N+x, N−x, and N+y to identify the location of the inhomogeneities in 

each off-axis image. For N0 and N+x a registered ROI for the circle, ncirc,+x, was identified 

by shifting ncirc,0 pixel by pixel over the offset image in the –x-direction up to a distance of 

D+x. to maximize the value of the 2D cross-correlation between ncirc,0 and the offset ROIs 

of equal size in N+x. Then the magnitude of the shift for the circle between N0 and N+x, 

Δ+x,1, is defined as the difference in location between ncirc,+x and ncirc,0. Since the shift should 

only occur along the offset direction, only the magnitude of the difference in x locations 

between ncirc,+x and ncirc,0 is considered for Δ+x,1. Similarly, regions in the other off-axis 

images for the circle ncirc,−x and ncirc,+y, and the regions for the stripe, nstripe,+x, nstripe,−x, and 

nstripe,+y can be identified to calculate their respective shifts, Δ−x,1 and Δ+y,1 for the circle, 

and  Δ+x,2, Δ−x,2, and Δ+y,2 for the stripe. The maximum of the 2D cross-correlations between 

template ROIs and ROIs within the off-axis images were found using the normxcorr2 

function in MATLAB (R2012a, Mathworks, Natick, MA). The recovered shifts were then 

normalized by D to obtain +x,1, −x,1, +y,1 as the normalized shifts for the circle in each 

direction (+x,−x, and +y, respectively), and +x,2, −x,2, +y,2 for the stripe in each direction. 

The theoretically derived depth curve described in Section 2.2.2.2 was used as a look-up 

table to assign a depth to each α value. The measured depth from all three directions for 

the circle, z1,meas, and the stripe, z2,meas, are reported in Section 2.3.2. 
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2.2.3. Dynamic spectroscopy on the finger 

To determine the capability of our imaging system to measure physiological 

hemodynamics, we measured the arterial pulsation at the distal phalanx of the index finger 

of a 24 year old, male, healthy volunteer. The Tufts University Institutional Review Board 

approved the experimental protocol, and the subject provided written informed consent 

prior to the experiment. Transmitted intensity spectra were collected at 20 Hz for 60 s 

resulting in 1200 spectra. Only a single source-detector pair was used to collect data 

through the finger with the polycarbonate plates removed. The source-detector separation 

was 1.5 cm. From the raw intensity data, I(λ,t), we calculated the relative intensity changes, 

ΔI(λ,t)/I0(λ) , where I0(λ) is the average intensity at each wavelength over time, and 

ΔI(λ,t) = I(λ,t) – I0(λ).  

To test the ability of our instrument to perform physiological hemodynamic 

measurements over the entire spectral range, we estimated the spectral shape of the change 

in the tissue absorption coefficient, Δμa(λ), using the modified Beer-Lambert law:50 

where DPF(λ) is the differential pathlength factor and d is the geometrical source-detector 

distance. The DPF, which is defined as the ratio between the mean path length of detected 

photons in the scattering media and d, was assumed to be time-independent. The average 

heart rate was measured by taking the Fourier transform of ΔI/I0(λ, t) and identifying the 

peak in the Fourier spectrum around ~1 Hz. We measured the amplitude of the oscillations 

in ΔI/I0(λ) at the heart rate, |ΔI/I0|HR(λ), by integrating the Fourier coefficients around the 

peak pulsation frequency (1.16 – 1.33 Hz) at each wavelength. Assuming that the changes 

in attenuation are dominated by changes in the volume of arterial blood in tissue, we can 

Δ𝐼

𝐼0
(λ, 𝑡) = −Δμ𝑎(𝜆, 𝑡) ∙ 𝐷𝑃𝐹(λ) ∙ 𝑑  (2.1) 
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omit the contributions of changes in blood flow, [lipids], and [water] to relate |ΔI/I0|HR(λ) 

directly to the change in tissue absorption due to arterial pulsation, Δμa|HR(λ). Since we 

were only interested in recovering the arterial saturation, we only needed the spectral shape 

of Δμa|HR(λ) to within a factor. Accordingly, we used a DPF spectrum normalized to its 

value at 790 nm measured by Kohl et al.51 We solved for Δμa|HR(λ) from Equation (2.1) 

using this normalized spectrum of the DPF, the measured values of |ΔI/I0|HR(λ), and d. We 

then normalized Δμa|HR(λ) to its value at 790 nm and fit it with the known absorption 

spectra of hemoglobin also normalized to 790 nm (which depend only upon the saturation 

of hemoglobin) to recover the arterial saturation.  

2.2.4. Dynamic spectroscopy on the breast 

We tested the sensitivity of our system to physiological dynamics induced by systemic 

changes in blood pressure, and acquired time-resolved spectra in the breast. One healthy 

female subject (24 years old) participated in the study. The Tufts University Institutional 

Review Board approved the experimental protocol, and the subject provided written 

informed consent prior to the experiment.  The subject’s breast was placed between the 

scanning plates of the optical mammography system and gently compressed to keep the 

breast stationary. Pneumatic thigh cuffs were wrapped around both of the subject’s legs 

and inflated using an automatic cuff inflation systemic (E-20 rapid Cuff Inflation System, 

D. E. Hokanson, Inc., Bellevue, WA) to induce systemic changes in arterial blood pressure. 

Intensity spectra from 650 – 1000 nm were recovered at 5 Hz with the fibers positioned in 

the center of the breast close to the chest wall to mitigate boundary effects.  

Baseline measurements, during which the subject is at rest and the thigh cuffs are 

deflated, were recorded for two minutes. To induce cyclic changes in blood pressure at a 
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given frequency, the thigh cuffs were then periodically inflated (to a pressure of 

200 mmHg) and deflated at a frequency of 0.05 Hz for a total time of two minutes. Slow 

temporal drifts in the data were removed by detrending the intensity data with a third-order 

polynomial. The plate separation was d = 52 mm. The modified Beer-Lambert law 

Equation (2.1)50 was used to obtain time traces of the absorption changes, the changes in 

tissue concentrations of hemoglobin, Δ[HbO2], Δ[Hb], and Δ[HbT] by the following 

relationship:     

Δμ𝑎(λ) =  Δ[HbO2] ∙  εHbO2
(λ) +  Δ[Hb] ∙  εHb(λ)   (2.2) 

where, εHbO2
(λ) and εHb(λ) are the molar extinction coefficients of oxy- and 

deoxyhemoglobin, respectively. The coefficients εHbO2
(λ) and εHb(λ)52 and the wavelength 

dependence of the DPF51 are known from the literature, and an absolute value of the DPF 

was chosen at 700 nm to be 75. Using relative intensity data from 700 – 970 nm (where the 

wavelength dependence of the DPF was defined51), Δμa(λ) was calculated from 

Equation (2.1) The magnitude of Δ[HbO2], Δ[Hb] and subsequently Δ[HbT] were obtained 

from Equation (2.2) in the least squares sense using the linsolve function in MATLAB. 
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2.3. Results 

2.3.1. Signal-to-noise characterization on a tissue-like phantom 

 

Figure 2.4: Results of SNR measurement on an optical phantom. The SNR2 shows a linear 

dependence on the number of detected CCD counts. With a 2 MHz A/D rate and a gain 

setting of 3, the CCD sensitivity is about 1 e−/count. The symbols refer to data taken at 

830 nm over exposure times ranging from 0-500 ms. The thickness of the phantom was 

60 mm while its optical properties at 690 nm were μa ~ 0.04 cm−1, μs′ ~ 9 cm−1
. 

 

We measured the SNR of the transmitted intensity over the spectral band of interest 

(650 – 1000 nm) by using a rectangular optical phantom made of silicone that mimics the 

optical properties of breast tissue (d0 = 60 mm, μa ~ 0.04 cm−1, μs′ ~ 9 cm−1 at 690 nm). 

Using a 90 mW illumination power we measured the SNR2 as a function of the resulting 

signal by adjusting the CCD exposure time (Figure 2.4). The SNR2 as a function of optical 

signal detected by the CCD at 830 nm for the on-axis fiber is reported in Figure 2.4. The 

measured SNR2 is linearly dependent on the optical signal detected by the CCD for all four 

fibers which is indicative of noise dominated by the statistical variation of photons arriving 

at the detector, also termed shot noise (which follows a Poisson distribution). At the 
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exposure time of 100 ms the SNR for the intensity measurements on the optical phantom 

ranged from 67 – 130 (equivalent to less than 1.5% intensity noise) over the wavelength 

range 650 – 1000 nm. 

2.3.2. Depth Discrimination 

2.3.2.1. Experimental validation of the depth curve 

 

Figure 2.5: Comparison between measured (crosses) (see the experimental setup in Fig. 2) 

and theoretically calculated (solid line) depth curve. The theoretical depth curve is obtained 

by using a first order perturbation within diffusion theory using an infinite slab with 

experimental parameters similar to the experimental setup - d0 = 60 mm and background 

optical properties at 690 nm of μa =0.04 cm−1 and μs′ = 9.0 cm−1.  

 

We experimentally measured a depth curve and compared it to a theoretical depth curve 

obtained using diffusion theory (Figure 2.5). We measured the depth of an inclusion for 

depths ranging from zobj = 8 – 50 mm (zobj/d0 = 0.13 – 0.83) resulting in Δ+x = 1.5 – 18 mm 

(+x = 0.08 – 0.89). The measured depth curve closely approximates the theoretical curve 

with a discrepancy in Δ+x to within 0.5 mm, which is equivalent to the size of one 

interpolated pixel. The average discrepancy in Δ+x of 0.28 ± 0.13 mm 
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(+x = 0.014 ± 0.006). The only exceptions, where the discrepancy in Δ+x is greater than 

0.5 mm, occur when the fibers are scanned to within 2.5 cm of the phantom’s edge, where 

the maximum discrepancy in Δ+x is 0.8 mm. We attribute this larger error to shifts in the 

intensity minima due to edge effects resulting from light leakage through the side of the 

phantom. Accordingly, we use the theoretical depth curve for the rest of this work.  

The accuracy with which a depth can be assigned to a given inhomogeneity using 

this method is dependent on the accurate estimation of . The measured values of  depend 

on the pixel width, k, and the detector offset D, and are consequently discretized into N 

‘bins’ where N is the nearest integer value of D/k. For example, in the case of this 

experiment, k = 0.5 mm and D = 20 mm, so  is discretized into 40 bins. Since the 

relationship between  and zobj/d0 is non-linear, the estimation of depth will inherently have 

an error that depends non-linearly on the depth, and each ‘bin’ will correspond to a different 

accuracy based on the z-location of the inhomogeneity. However, by dividing d0 by N, we 

obtain an estimate of the average bin width in z, d0/N = 1.5 mm. This value is an 

approximate measure of the accuracy with which a depth can be assigned to a given 

inhomogeneity within these experimental parameters. Note that by changing d0, k, or D, 

the accuracy of the depth measurement is altered. In a clinical setting, we do not have 

control over d0, however k and D are adjustable system parameters. Ideally, a larger value 

of D would improve our measurement accuracy, but we chose D = 20 mm to maximize 

the area around the edges of the breast from which depth information can be recovered. 

The value of k can be decreased through further interpolation, but this provides minimal 

improvements in accuracy due to the physical limitation of the source and detector fiber 

diameters and the spatial resolution afforded in diffuse imaging. 
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2.3.2.2.  Recovery of depth on a breast shaped phantom 

We tested the depth discrimination capabilities of our system using a silicone optical 

phantom designed to simulate the shape and optical properties of the human breast. The 

depth of two optical inclusions, a circle (z1 = 29 mm) resembling a tumor and a black stripe 

(z2 = 0 mm) resembling a superficial blood vessel (Figure 2.3) were recovered using 

information from D0, and the three offset detectors, D+x, D−x, and D+y (Figure 2.6).  

 

Figure 2.6: Experimental result of depth recovery for the circle and single black stripe in a 

breast shaped phantom. Interpolated normalized intensity images for the four detectors are 

shown. The solid boxes represent the template ROI (ncirc,0 for the circle and nstripe,0 for the 

black stripe) selected from the D0 image, and the dashed boxes represent the registered 

ROIs in the off-axis images where the circle and stripe structures were found. The shift in 

the ROI of the circle for N+x was Δ+x,1 = 10 mm ± 0.5 mm associated with a recovered 

depth of z1,meas = 30 ± 1 mm where the exact depth was 29 mm. The shift in the ROI of the 

stripe was Δ+x,2 = 0 ± 0.5 mm associated with a recovered depth of z2,meas = 0 ± 5.6 mm 

where the exact depth is 0 mm. 
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The registered ROI, ncirc,+x, and the template ROI, ncirc,0, had a 2D cross correlation 

value of 0.95. The shift between the two ROIs was Δ+x,1 = 10 ± 0.5 mm translating to a 

depth of z1, meas = 30 ± 1 mm where the actual depth was z1 = 29 mm. The registered ROIs 

for both the circle and the stripe in all images were always representative of unique 

maxima. Meaning, in N+x (as well as the other images), no other regions exist that had 2D 

cross-correlations with ncirc,0 equal to or greater than 0.95. For N−x and N+y the recovered 

shifts Δ-x,1, and Δ+y,1 were also 10 ± 0.5 mm. Similarly, the shift measured between nstripe,+x 

and nstripe,0 was Δ+x,2 = 0 ± 0.5 mm. The same shift was measured for all three directions 

associated with a recovered depth of z2, meas = 0 ± 5.6 mm where the actual depth was z2 = 0 

mm. The errors are defined by assuming a one-pixel inaccuracy in the measurement of the 

shifts and translating that error to the depth based on the depth curve. The 2D cross-

correlations between template and registered ROIs were always at least 0.95. The 

discrepancy between the actual depth of each object and the measured depth of each object 

is within the previously defined measurement error of ~1.5 mm.  

2.3.3. Dynamic spectroscopy on the finger 

We tested the temporal sensitivity of our imaging system by measuring the arterial 

pulsation in the subject’s index finger over the course of 60 s. In Figure 2.7A the relative 

intensity changes ΔI/I0 over time at 820 nm are observed for a time period of 10 s. At a 

20 Hz acquisition rate, each individual pulse over the entire wavelength range 

(650 – 1000 nm) is visualized.  
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Figure 2.7: Measurement of arterial pulsation and normalized hemoglobin absorption 

coefficient in the index finger of a human subject. (A) Relative intensity changes over 10 s 

at 820 nm. (B) Magnitude of Fourier coefficients of ΔI/I0 over the 60 s acquisition at 

820 nm. (C) Change in the absorption coefficient normalized to 790 nm recovered from 

the magnitude of the Fourier components. The dashed line represents the normalized 

absorption of total hemoglobin with an oxygen saturation of 97%. 

 

The Fourier spectrum has a clear peak at 1.27 Hz corresponding to a heart rate of 76 bpm 

(Figure 2.7B). The FWHM of the peak is ~0.1 Hz, corresponding to a width of 6 bpm, 

which is comparable to the normal fluctuations in the heart rate over a period of 60 s. 

We use the magnitude of the peak in the Fourier spectra surrounding the heart rate 

at each wavelength, |ΔI/I0|HR(λ), to calculate the change in the tissue absorption coefficient 

due to arterial pulsation, Δμa|HR(λ) (Figure 2.7C). We recovered a 97% oxygen saturation 

of hemoglobin by fitting Δμa|HR(λ) with the molar extinction spectrum of hemoglobin with 

oxygen saturation as the fitting parameter. The average discrepancy between the curves 

(Figure 2.7C) is 0.9% with the largest errors (~7%) observed at the extremes of the 

measured spectral range where the error in the measured wavelength dependence of the 

DPF is the largest.51 
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2.3.4. Dynamic spectroscopy in the breast. 

 

Figure 2.8: Measurement of changes in Δ[HbO2], Δ[Hb], and Δ[HbT] in a single location 

of the breast as a result of induced oscillations from pneumatic thigh cuffs. Shaded areas 

indicate the periods when the cuffs are fully inflated to 200 mmHg, and white areas indicate 

the periods when the cuffs are deflated. Each inflation cycle lasts 20 s, with the cuffs 

inflated for ~10 s and deflated for ~10 s. 

 

Figure 2.8 shows measurements of Δ[HbO2], Δ[Hb], and Δ[HbT] in the breast of a healthy 

subject induced by the cyclic inflation of a pneumatic thigh cuff as described in 

Section II.D. Periods of cuff inflation are shaded in Figure 2.8. Inflation of the cuffs 

induced an increase by ~0.5 – 1 μM in Δ[HbO2] and an increase by ~0.1 – 0.2 μM in 

Δ[Hb]. Based on typical values of hemoglobin concentration in breast tissue (15 – 30 μM), 

this is indicative of approximately a 2 – 8% fluctuation in total hemoglobin content. The 

oscillations of Δ[HbO2], Δ[Hb], and Δ[HbT] are all in phase with each other and with the 

cuff inflation, suggesting that the observed changes are associated with a blood volume 

oscillation induced by the change in blood pressure.53  

2.4. Discussion 

We have reported an instrument for optical mammography that can measure broadband 

spectral data (wavelength range: 650 – 1000 nm) with high spatial sampling (25 cm−2) and 
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recover the depth of embedded absorbing structures to within 1 mm. We also showed that 

this system has the capability to resolve temporal dynamics with an acquisition rate as high 

as 20 Hz, as demonstrated by measuring induced hemodynamics in the breast. The spectral 

information provided by this method allows for the generation of 2D concentration maps 

of the major absorbing chromophores in breast tissue (deoxyhemoglobin, oxyhemoglobin, 

lipids, and water).8 Furthermore, we apply this spectral information to recover the arterial 

saturation of a healthy volunteer from dynamic measurements taken on his finger. We 

observe that while the absolute value of the DPF is strongly dependent on the value of the 

reduced scattering coefficient (as determined by the tissue architecture, cellular density, 

etc.) and the absorption coefficient (as determined by vascularization, blood volume, etc.), 

the spectral shape of the DPF is mostly determined by the wavelength dependence of the 

scattering and absorption coefficients. Such wavelength dependence, being related to the 

cellular size distribution and hemoglobin saturation, respectively, is comparable in various 

soft tissues under rest conditions, and this justifies the application of the cerebral DPF 

wavelength dependence to finger tissue. In the remainder of this work, we focused on the 

depth information realized through an off-axis detection scheme, and the dynamic 

information obtained through measuring intensity spectra at a single location. 

This instrument is capable of identifying the depth of specific inhomogeneities 

observed in a 2D projection with a single scan of four detection fibers simultaneously. By 

spatially multiplexing detection fibers into a large CCD chip, this instrument can assess 

depth without requiring additional scans for each offset direction, and, more importantly, 

this method avoids patient movement between scans and does not require calibration 

measurements. The accuracy of the depth assessment is mostly affected by the detector 
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offset δD. A larger detector offset can improve the accuracy of the depth assessment, but 

it would also increase the source-detector distance and reduce the SNR accordingly. 

Furthermore, a large offset may introduce artifacts close to the edges of the breast where 

inhomogeneities may not appear in all detector images.  

We reported here a method to apply this technique to a breast-shaped phantom 

using cross-correlation to validate its efficacy in a curved, slab geometry (Figure 2.6). In 

the simplest case, the location and size of absorbing structures are known a priori, and the 

structures of interest are separated by a distance greater than δD. Here, the cross-correlation 

serves as an accurate measure of the spatial offset of different structures. The average 

reported error of 1.5 mm in depth assessment is associated with the discretization of the 

depth look-up table due to the physical dimensions of our source-detector setup and the 

experimental parameters. In the simple case of a single structure or multiple structures 

separated by a distance greater than δD, the accurate pairing of spatial locations is a simple 

task, and the error associated with it is ignored. However, in a real breast, the complex 

network of blood vessels and the intrinsic tissue heterogeneity complicates the depth 

discrimination method. 

The main challenge in extending this method to the real breast is eliminating the 

requirement for a priori information. Kainerstorfer et al.40 have detailed a robust algorithm 

where a window-based registration is done by pairing ROIs that are smaller than δD 

surrounding vessel-like structures. Additionally, this method uses a spatial second 

derivative to improve the contrast of absorbing structures in the case where intensity 

minima are ambiguous. This method does not rely on a priori information. However, the 

challenge in applying this window method to spherical objects is that if the optical footprint 
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of the object is larger than δD, identifying an accurate minimum could still be ambiguous. 

Although increasing the window size may avoid this issue, a larger window may 

encompass more than one structure at multiple depths where assigning Δ to the appropriate 

structures becomes difficult. This method can still be a valuable tool, since presumably 

even if only a portion of the object is encompassed by the window, the same portion would 

exist in the offset image. However, the error when using this registration method on a dense 

array of unknown structures (as is the case in the human breast) needs to be further 

investigated. It is likely that although we can achieve an error in our depth assessment of 

~1.5 mm in ideal conditions, the additional error associated with measuring Δ in a more 

complex case will reduce the accuracy of these measurements. Different approaches to 

generate images with selective depth sensitivity from additional off-axis information are 

based on phased-array43 or tomosynthesis42 schemes. These methods generate 2D images 

with selective sensitivity at different depths without a priori knowledge of the location or 

shape of the detected inhomogeneities. In this way, the location of detected lesions can be 

assessed in 3D. 

The coarse depth resolution provided by our method and alternative methods based 

on limited off-axis information42,43 makes them unsuitable to generate detailed 3D spatial 

maps comparable to full 3D reconstructions. However, the depth information they provide 

is still valuable and effectively complements the 2D spatial information of projection 

images. The depth information can improve the instrument’s sensitivity to spatial changes 

in chromophore concentrations by allowing for a more accurate implementation of a 

perturbation based diffusion model.26 Additionally, depth information regarding detected 
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blood vessels can determine whether they are superficially located, or are larger feeding 

vessels that present high contrast near a breast tumor. 

Dynamic measurements done on the breast show the sensitivity of our instrument 

to induced changes in hemodynamics. A challenge with inducing hemodynamic changes 

is to separate direct mechanical effects of the stimulus from the hemodynamic response of 

interest. In cases where breast compression is applied using the measurement hardware 

(e.g., scanning plates or a hand-held probe), careful consideration is required to ensure 

changes in detector contact from the applied pressure to the tissue do not affect the 

measurement. Additionally, when the patient is required to regulate their own respiration, 

such as with the Valsalva maneuver, patient compliance can become an issue. To visualize 

similar controllable hemodynamics in the breast, we induced systemic blood pressure 

changes with cuffs around the thighs. In this way, we provide a hemodynamic stimulus that 

requires no effort from the patient, and is completely independent of the measurement 

hardware. It can induce changes in total hemoglobin content of a similar magnitude to those 

obtained using manual compression or regulated respiration while minimizing artifacts. 

Furthermore, our multiplexed detection system can be easily adapted to measure multiple 

regions of interest (such as healthy and cancerous tissue) simultaneously.  Defining an ROI 

for dynamic measurements is another challenge when studying breast cancer patients. For 

the purpose of detecting cancer signatures in the temporal data, an initial 2D spatial map 

can be obtained to identify suspicious locations for further hemodynamic study. This 

combination of measurement schemes can provide additional specificity when static 

optical imaging is insufficient to differentiate breast cancer. In the case of monitoring 
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neoadjuvant chemotherapy, the cancer location is known a priori and can be used to define 

ROIs for dynamic measurements. 

This system incorporates robust methods to recover 5D (three spatial, spectral, and 

temporal) information in a practical fashion for application in a clinical setting. While FD 

and TD systems can recover spectral information with multiple light sources and detectors, 

achieving high spectral sampling (<10 nm) grossly increases these systems’ complexity. 

However, CW systems lack the capability to recover unique absorption and scattering 

properties and an assumption about scattering must be used. This assumption affects the 

absolute values of [Hb], [HbO2], [water], and [lipids], measured, but the spatial variability 

in the concentration of these parameters is still robust. Additionally, the parallel plate 

geometry is ideal for recovering spatial information without manually sampling fixed 

locations of the breast as would be required with hand-held probes.27,54 While not only is 

this extremely time-consuming using a hand-held probe, it is also prone to motion artifacts 

and measurement variability due to user error. More importantly, since the entire breast is 

imaged, multiple images can be co-registered to measure changes in tissue properties over 

time allowing for studies that monitor neoadjuvant chemotherapy patients. However, 

parallel-plate measurements suffer when tumors are situated close to the chest wall. 

Tomographic systems with circular arrangements of detectors, especially those that 

perform measurements on the pendulous breast, provide more detailed spatial information 

without losing information close to the chest wall. However, the need for extensive 

calibration and matching fluids make implementing such techniques impractical, especially 

in a clinical setting.46 Furthermore, this system has the advantage of being able to provide 
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spatial information from static images, and dynamic information at a targeted location, 

which neither hand-held probes or tomographic systems are well suited for.  

 

2.5. Conclusions 

The instrument presented here highlights the advantage of diffuse optics to non-

invasively acquire both functional and structural information simultaneously to help 

diagnose and monitor breast cancer while limiting burden to the patient. We have 

demonstrated both the flexibility of this system to measure a number of relevant 

physiological parameters, and the simplicity with which the measurements are done. From 

an investigative standpoint this allows us to maximize the information we collect and use 

it to identify key physiological parameters that can translate to clinical diagnoses. 

Furthermore, the additional spatial information we collect can help improve our sensitivity 

to suspicious lesions.  
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Chapter 3: Monitoring neoadjuvant 

chemotherapy using near-infrared spectroscopy 

3.1. Background 

Neoadjuvant chemotherapy (NAC) is administered to patients prior to surgery in an effort 

to reduce the primary tumor size, whereas adjuvant chemotherapy is administered 

following surgery in an effort to reduce the risk of residual disease and cancer recurrence.  

A patient’s response to NAC may be assessed by physical exam or breast imaging (clinical 

response), or by histology post-surgery (pathologic response)55,56. Assessing response to 

neoadjuvant treatment is crucial, as a pathologic complete response (pCR), defined by 

having no residual carcinoma in the resected breast tissue and in axillary lymph nodes, has 

been associated with improved survival56–59. Strictly defined, pCR requires the absence of 

invasive tumor in the resected specimen, although some clinicians use the more restrictive 

requirement of no residual invasive or in situ disease57. Because of the better outcome 

associated with pCR, finding tools that can define the individual clinical response during 

the course of therapy and accurately predict pathologic response would be of great benefit.  

This is also true in patients with poor response to treatment, as early identification of this 

problem may allow the physician to alter the chemotherapy regimen to avoid disease 

progression and to identify a more effective chemotherapy option. 

3.1.1. Current imaging methods used to assess clinical response to NAC 

Imaging methods sensitive to functional tissue changes are being investigated for 

monitoring breast cancer patients’ response to neoadjuvant chemotherapy. Functional 

tumor changes are of particular interest due to the limitations of structural assessment of 

tumor response based on physical examination, ultrasound imaging, or mammography60. 
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Current imaging methods used to assess clinical response are via a decrease in the standard 

uptake value (SUV) of 18-fluorodeoxyglucose (18F-FDG) by positron emission 

tomography-computed tomography (PET/CT)61,62, or a decrease in tumor size by contrast-

enhanced magnetic resonance imaging (MRI)61,62.  Both of these methods, however, are 

expensive and invasive, as PET/CT requires injection of a radiopharmaceutical, and MRI 

requires injection of gadolinium-based contrast. Furthermore, the appropriate timing and 

frequency for assessing clinical response have not been established, and studies thus far 

have typically imaged at a single time point during therapy61,62. 

3.1.2. Optical methods being investigated to monitor clinical response to NAC 

Following initial case studies that first demonstrated using NIRS to study NAC36,54,63, 

several groups have investigated optical methods to assess response to treatment in patients 

with breast cancer undergoing neoadjuvant therapy. Studies aiming to predict therapeutic 

response early in the treatment have shown significant differences between responders and 

non-responders one day64 or one week65–68 after the start of therapy. Other studies report 

the response during the course of treatment, typically using 3-8 measurement time points, 

to determine if and when different therapeutic response levels can be distinguished during 

NAC69–79. The primary focus of these studies has been on the chromophore concentrations 

measured at the tumor location over time, but some work has also focused on exploring the 

correlation between baseline, pre-treatment optical measurements and the level of response 

to NAC71,77,80,81. 

Studies that used the baseline tumor properties (before chemotherapy starts) as the 

reference to which all sequential measurements (during chemotherapy) are compared have 

found significant differences between responders and non-responders one or four weeks 
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after the start of chemotherapy67,73 and after the first cycle of chemotherapy71,74,77.  In a 

study on ten patients, Soliman et al. reported that at four weeks into chemotherapy, 

responders have a significantly greater decrease in deoxyhemoglobin and oxyhemoglobin 

([Hb] and [HbO2], respectively), and scattering power compared to non-responders using 

tomographic reconstructions73. Adding an additional five patients to the analysis performed 

by Soliman et al., Falou et al. examined a total of fifteen patients and found significant 

differences between the response groups at week 1 by examining the average properties 

taken over the entire cancerous breast (as opposed to just the tumor volume as previously 

done) 67. Using the whole breast volume approach, [Hb] and [H2O] were found to be the 

best predictive parameters for distinguishing response to treatment, with both [Hb] and 

[H2O] increasing in responding patients and decreasing in non-responders67. Obtaining 

measurements using a handheld probe and applying tomographic reconstructions, Zhu et 

al. performed a study on thirty-two patients undergoing neoadjuvant chemotherapy and 

found that, after the first treatment cycle, the responding patients had a significantly larger 

decrease in total hemoglobin concentration ([HbT]) compared to non-responders71. Jiang 

et al. measured nineteen patients with a circular arrangement of optical fibers around the 

pendulous breast and found a significantly larger drop in [HbT] for pCR patients compared 

to an increase in [HbT] for incomplete responders within the first cycle of chemotherapy77. 

In another study on twenty-two patients using a parallel plate, planar geometry, Schaafsma 

et al. also found significant differences in response groups after the first cycle of 

chemotherapy, where responding patients showed a decrease in [HbO2] and non-

responders exhibited an increase in [HbO2] 
74. When monitoring patients throughout the 

duration of therapy, hemoglobin parameters seemed to best differentiate response groups. 
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In particular, a consistent response to NAC is a decrease in the concentration of hemoglobin 

(often separated into the two components of oxy- and deoxy-hemoglobin) at the tumor 

location36,54,63,65,66,68–75,77–79,82. 

3.2. Methods 

3.2.1. Optical imaging of patients with breast cancer 

This study was approved by the Institutional Review Board of the Tufts Medical Center, 

and it was also compliant with the Health Insurance Portability and Accountability Act. 

Any woman over the age of 21 who was diagnosed with invasive breast cancer and 

scheduled to undergo neoadjuvant chemotherapy was eligible for this study. All patients 

read and signed an informed consent before participating. Ten patients undergoing 

neoadjuvant chemotherapy were imaged in this study. The patients will be referred to as 

neoadjuvant chemotherapy patients using the acronym “NACP,” followed by an index 

number ranging from 1 to 10.  

Relevant information about each patient enrolled is shown in Table 3.1. Patient 

recruitment took place from September 2014 to December 2015. Optical mammograms 

were obtained on both breasts 2-27 days before the treatment began (baseline 

measurement) and each time the patient underwent a chemotherapy infusion (the frequency 

and number of infusions are detailed in Table 3.1). For each measurement session the right 

breast was always imaged first. Figure 3.1 shows the chemotherapy schedule (specifying 

the corresponding drugs administered) for all ten patients in the study. To compare the 

effects of treatment across patients, each infusion time point was converted from week No. 

to “percentage of therapy complete” to normalize for the length of treatment (which ranged 

from 18 to 22 weeks). The breast cancer subtypes in our study are also reported for all 
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patients in Table 2: (1) positive for human epidermal growth factor receptor 2 (HER2+), 

(2) positive for estrogen receptors (ER) and negative for HER2 (ER+/HER2-), (3) negative 

for ER, progesterone receptors (PR), and HER2 (triple-negative breast cancer, TNBC) 61. 

Four patients were premenopausal (NACP #1, 5, 7, 9), but chemotherapy caused a break 

in menstruation for all of them. 



 

 

Table 3.1: Patient details and treatment regimens. 

NACP 

# 
Ref. # 

Age 

(yr) 

Pre-treatment 

cancer size (cm) Cancer 

stage 

Cancer 

subtype 
Chemotherapy agent 

Infusion 

frequency 

(number) 

Treatment 

duration 

(weeks) 

Post-treatment 

cancer size 

(Hist.) (cm) 

NAC 

response 

MRI X-

ray 
Optical 

1 164 38 9.4 1.2 IIIC 
ER+/ 

HER2- 

Paclitaxel 
Weekly 

(12) 
31 6.0 NR (PR2) 

Capecitabine 
Bi-weekly 

(5) 

2 163 72 3.2 2.1 IIB TNBC 

Doxorubicin, 

Cyclophosphamide 

Bi-weekly 

(4) 
23 - R   (pCR) 

Paclitaxel 
Weekly 

(12) 

3 165 57 2.5 1.4 IIB 
ER+/ 

HER2- 

Doxorubicin, 

Cyclophosphamide 

Bi-weekly 

(4) 
22 0.9 R    (PR1) 

Paclitaxel 
Weekly 

(12) 

4 166 54 2.9 1.3 IIIA HER2+ 

Carboplatin, 

Docetaxel, 

Trastuzumab, 

Pertuzumab 

Every 3 

weeks (6) 
16 2.8 NR (PR2) 

5 167 46 4.4 3.7 IV HER2+ 

Carboplatin, 

Docetaxel, 

Trastuzumab, 

Pertuzumab 

Every 3 

weeks (6) 
17 - R    (pCR) 
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6 168 47 6.0 4.4 IIB TNBC 

Doxorubicin, 

Cyclophosphamide 

Bi-weekly 

(4) 

21 0.4 R    (PR1) Paclitaxel 

w/ Carboplatin 

(every 3rd) 

Weekly 

(11) 

7 169 44 7.0 3.5 IIIA 
ER+/ 

HER2- 

Doxorubicin, 

Cyclophosphamide 

Bi-weekly 

(4) 
16 0.6 R    (PR1) 

Paclitaxel 
Bi-weekly 

(4) 

8 170 74 Inflam. 2.6 IIIB 

ER+/ 

HER2- 

 

Doxorubicin, 

Cyclophosphamide 

Every 3 

weeks (4) 
20 1.7 R    (PR1) 

Paclitaxel Weekly (8) 

9 171 44 Inflam. 1.3 IIIB 

ER+/ 

HER2- 

 

Doxorubicin, 

Cyclophosphamide 

Bi-weekly 

(4) 
20 11.3 NR (PR2) 

Paclitaxel 
Weekly 

(12) 

10 1730 56 4.5 1.9 IIB HER2+ 

Carboplatin, 

Docetaxel, 

Trastuzumab, 

Pertuzumab 

Every 3 

weeks (6) 
17 - R         (pCR) 

Note - Ref #: progressive patient number; Age: age of patient at time of baseline scan; Pre-treatment cancer size: maximum tumor dimension 

pretreatment (one column reports the dimension from MRI or full-field digital mammography, one column reports the size of the tumor ROI from 

optical mammography), “Inflam” denotes inflammatory breast cancer; Cancer stage: initial clinical cancer stage; Cancer subtype: triple-negative 

breast cancer (TNBC), estrogen-receptor-positive/progesterone-receptor-negative (ER+/HER2-), and HER2+; Chemotherapy agent: chemotherapy 

drugs administered to patient; Infusion frequency (total number): how often infusions were performed (and total number of infusions); Duration of 

treatment: how long the patients underwent treatment (including breaks in therapy schedule); Post-treatment cancer size (Hist.): maximum tumor 

dimension post treatment from histology after surgical resection; Response level: individual patient’s response (R: responder showing either a 

pathologic complete response (pCR) [no remaining tumor] or partial response 1 (PR1) [tumor decreased by more than 50% in size]; NR: non-

responder showing partial response 2 (PR2) [tumor decreased by less than 50% in size]).



 

 

 
Figure 3.1: Patients chemotherapy schedules. Week one corresponds to the first infusion 

time point. The times of biopsy, infusions, surgery, and blood transfusions are indicated 

for all ten patients. The type of drug administered is also indicated by the color within the 

chemotherapy infusion open circles. The baseline optical mammograms (open triangles) 

were obtained 2–27 days before the treatment began. The overlapping baseline optical 

mammogram point and first infusion point for NACP # 6, 7, and 10 indicate that these 

occurred 2 days within one another. 

 

A continuous-wave optical mammography instrument was used to image the 

patients receiving neoadjuvant chemotherapy. This instrument is described in detail in our 

previous work8. Note that this instrument is a previous generation of the instrument 

described in Chapter 2:. Namely, it lacks the capability to resolve depth of optical 

inclusions, as well as has a lower spectral bandwidth and sensitivity. The main features of 

this instrument are described here. Either a xenon arc lamp (Model No. 6258; Newport 

Corporation, Irvine, CA, for NACP ## 1–5) or a quartz tungsten halogen lamp (Model No. 

66997; Newport Corporation, Irvine, CA, for NACP ## 6–10) served as the light source, 

with its optical emission spectrally filtered to pass the wavelength range 500 – 1,000 nm. 

An illumination optical fiber and a collection optical fiber scan collinearly in transmission 

geometry over two parallel polycarbonate plates that mildly compress the breast. The 
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detected light is spectrally dispersed by a spectrograph (Model No. SP-150; Princeton 

Instruments, Acton, MA) and measured by a cooled charge-coupled device (CCD) camera 

(Model No. DU420A-BR_DD; Andor Technology, South Windsor, CT). Transmission 

optical data through the breast were acquired spatially every 2 mm in the x and y directions 

and with a wavelength resolution of 8 nm over the spectral band of 650–850 nm. The time 

to scan one breast for each patient ranged from 3–10 min (average: 6 min) based on breast 

size. Each measurement session, including setup time and optical imaging of both breasts 

took 15–30 min.   

3.2.2. Lab parameters and response categories 

A complete blood count was obtained for every patient before each chemotherapy infusion 

and the hemoglobin concentration in blood (denoted at Hgb) was recorded. Since [HbT], 

the concentration of hemoglobin in tissue, is equal to the product of Hgb times the blood 

volume (i.e. the blood-to-tissue volume fraction), the Hgb data were used to translate [HbT] 

changes into blood volume changes. Specifically, the relative change in blood volume is 

given, to a good approximation, by the relative change in [HbT] minus the relative change 

in Hgb. This approach is important to separate the systemic effects of varying Hgb from 

the local effects of varying tissue vascularization on the measured [HbT] changes 54. The 

relative blood volume change with respect to the first chemotherapy infusion was 

determined for each patient throughout the course of treatment. 

The response categories used in this work were determined from the tumor size pre-

treatment (with imaging) and post-treatment (from the pathology report based on histology 

following surgical excision/mastectomy). The two response categories are as follows: 
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1) Responders (R): Under this category, we include those patients who show a 

pathologic complete response (pCR) or a partial response 1 (PR1) (defined as any 

remaining tumor that had decreased by more than 50% in the maximum dimension, 

regardless of nodal status). The patients in the pCR and PR1 categories are both 

considered to be associated with an improved prognosis and thus were grouped 

together in the R category. 

2) Non-responders (NR): Under this category, we include those patients who show a 

partial response 2 (PR2) (defined as any tumor that decreased by less than 50% in 

the maximum dimension, regardless of nodal status). This categorization, in 

agreement with Roblyer et al. 64, considers that patients whose tumor size decreased 

by less than 50% may have a less favorable prognosis. 

From a clinical point of view, it is desirable to identify poorly responding tumors early in 

the NAC treatment period to help make changes to treatment protocols and maximize the 

therapeutic effects. Accordingly, we aim to identify R and NR patients during therapy 

based on optically measured parameters over the course of NAC. 

It is worth pointing out that some ambiguity exists in the identification of 

responders and non-responders. First, the choice of 50% as the minimum reduction in 

tumor size for responders is somewhat arbitrary. Second, a classification solely based on 

tumor size may not properly take into account microscopic responses at the cellular level, 

as done by the five-point, Miller-Payne histological grading system83. This cellularity-

based grading system of pathologic response (ranging from 1: no response, to 5: complete 

pathologic response) was used in some optical studies. However, even this method leads 

to some ambiguity, as shown by different groupings of the Miller-Payne grades. Zhu et al. 
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considered grades 1 – 3 for non-responders and partial responders, and grades 4 – 5 for 

near-complete and complete responders71. By contrast, Schaafsma et al. considered grade 

1 for non-responder and grades 2 – 5 for (partial) responders74. In some cases, criteria based 

on residual tumor size and decrease in cellularity were combined in the categorization of 

complete response, good pathologic response, or minimal pathologic response. A breast 

response index for continuous-scale assessment of NAC response (from 0: “no response” 

to 1: “pCR of both breast and axilla”) was also introduced on the basis of a change in T 

stage before and after treatment84. Ultimately, the goal of any assessment tool of clinical 

response is to identify, as early as possible in the course of NAC treatment, those patients 

who will have a poor clinical outcome with the ongoing treatment regimen. The 

classification considered by us achieves this goal because the NR patients, as defined 

above, are those who have a less favorable prognosis, and for which a change in treatment 

may be beneficial. On the other hand, although the goal of pCR is always desired, a partial 

response which is close to pCR is also favorable, and thus both categories were considered 

as R patients. 

3.2.3. Data Processing 

A continuous-wave optical diffusion model for a homogeneous, infinite slab geometry was 

used to process the optical transmission spectra in the wavelength range 650 – 850 nm20 

and further details on the model implementation can be found in prior work8. Briefly, the 

model inputs at each pixel were the measured transmittance spectrum (over the full 

wavelength band 650 – 850 nm) and an estimate of the tissue thickness85. An inversion 

procedure based on the Levenberg-Marquardt method86 was applied to directly recover the 

concentrations of HbO2, Hb, water, and lipids by utilizing their known extinction spectra52. 
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Since only continuous-wave light was used, the scattering properties were not measured 

and were set in order to recover unique chromophore concentrations37. There have been a 

few studies that measured scattering properties, and mixed results have been reported on 

the scattering contrast featured by breast cancer9. Therefore, the scattering amplitude and 

power (μsʹ(λ0) and b, which represent the magnitude and the wavelength dependence of 

scattering, respectively) were fixed to values derived from results in the literature 

(μsʹ(λ0 = 670 nm) = 10.5 cm−1, b = 1)87. Two additional optical parameters being reported 

in this study are total hemoglobin concentration ([HbT]) and hemoglobin saturation (SO2). 

Hemoglobin saturation is the ratio of [HbO2] to [HbT], a quantity representative of the 

balance between oxygen supply and the oxidative metabolic rate in tissue. 

The initial tumor location was identified in the cranio-caudal view X-ray 

mammogram, and a rectangular region including the tumor location was considered in the 

baseline [Hb] optical mammogram. The tumor region of interest (ROI) was defined as the 

collection of pixels within the rectangular region having [Hb] values greater than 75% of 

the maximum [Hb] value within the rectangular region8. We found that the specific 

threshold value (75% in this study) used to define the tumor ROI does not have a significant 

impact on the results reported in this manuscript. The placement and size of the tumor ROI 

was kept consistent for all sequential optical mammograms, by maintaining the distance of 

the ROI from the proximal and lateral edges of the breast. For each measurement session 

over the course of neoadjuvant chemotherapy, we compute the value of the optical 

parameters at the tumor ROI and the associated errors as the average and standard 

deviation, respectively, over all the pixels within the tumor ROI defined above. 
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Due to the homogenous tissue model being applied in this work, we observe that 

the recovered chromophore concentrations in the cancerous region represent contributions 

from both the tumor and healthy surrounding tissue. Since the tumors of NAC patients are 

typically large, the tissue being measured within the tumor ROI is mostly representative of 

cancerous tissue at baseline and at the start of treatment. However, if the patient responds 

to the treatment and the tumor shrinks, healthy tissue will contribute more and more to our 

optical measurements in the tumor ROI during the course of neoadjuvant chemotherapy. 

This is an important aspect to keep in mind for the interpretation of our results. 

Two cases, NACP #1 and NACP #10, had to be discarded for technical reasons, 

since their tumor ROIs fell outside of the optical field of view in a number of imaging 

sessions as a result of the tumor proximity to the chest wall. We point out that even though 

the tumor sizes determined by MRI and X-ray mammography are quite large (9.4 cm for 

NACP #1, 4.5 cm for NACP #10), the size of the tumor ROI identified in the optical 

mammograms, on the basis of the optical contrast provided by [Hb], is significantly smaller 

(1.2 cm for NACP #1, 1.9 cm for NACP #10). 

The [H2O] and [lipid] data were found to not provide reliable longitudinal results, 

which is likely attributed to the spectral range of 650 – 850 nm not being highly sensitive 

to those chromophores. Specifically, we found that there was a lack of a consistent trend 

(decreasing or increasing) in the percent change of [H2O] and [lipid] from the baseline 

measurement for most patients. The frequency of the optical mammograms throughout the 

duration of therapy allows us to assess the variance and reliability of the observed trends 

in the optical parameters during neoadjuvant therapy. 
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3.2.4. Statistical analysis 

Because of the relatively small number of patients analyzed in this study (8 of the 10 

enrolled patients), we used a non-parametric Wilcoxon rank-sum test (with p<0.05 to 

indicate significance) to determine when responders (R) could be discriminated from non-

responders (NR) on the basis of optical parameters at the tumor ROI. The statistical 

analysis was performed with MATLAB (Mathworks, Natick, MA). Grouping together 

pCR and PR1 patients into the R category is in line with the primary goal of this work, 

which is to evaluate whether and when NR can be distinguished from R. However, further 

stratifying R into pCR and PR1 may be beneficial for better assessing those patients in need 

of treatment changes, and this option will be considered in future studies on larger patient 

populations. 

3.3. Results 

3.3.1. Patient Measurements 

Representative breast images for a R (pCR) patient (NACP #5) are shown in Figure 3.2, 

which shows the full-field digital mammogram, the axial contrast-enhanced subtraction 

MRI image and the optical maps of [HbT] and SO2 throughout NAC treatment. The outer 

1 cm of the breast map is cut in the optical images due to the confounding contributions of 

edge effects in the optical data collected in the proximity of the breast edge. The rectangular 

region containing the tumor is shown in the X-ray image. The corresponding area is also 

shown in the optical mammograms at week 0 (dotted line) together with the tumor ROI 

(solid line) obtained from the [Hb] map as described in the methods section. 
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Figure 3.2: Left breast images for NACP #5, an R (pCR) patient. In all images, the left side 

of each image is lateral (L) and the right side of each image is medial (M). The craniocaudal 

full-field digital mammogram (top left) depicts an irregular, partially spiculated mass 

(white box) located in the left breast corresponding to the patient’s biopsy-proven 

malignancy, prior to treatment. The MRI axial contrast-enhanced subtraction image (top 

right) demonstrates a 4.4 cm irregular mass with additional areas of non-mass enhancement 

extending to the nipple and laterally. The optical [HbT] and SO2 maps obtained throughout 

NAC show the progressive decrease of [HbT] and SO2 at the cancerous region (identified 

at week 0 by the solid line within the dashed rectangle corresponding to the location of the 

mass visible in the X-ray image). Subsequent surgical specimen (not shown) revealed a 

pCR. 
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The decrease in [HbT] and SO2 throughout the course of chemotherapy within the 

tumor ROI is apparent in Figure 3.2. The decrease in [HbT] at the tumor ROI during 

treatment is expected for a responder, since breast cancer has a greater [HbT] than 

surrounding healthy tissue9,29,88. However, the decrease in SO2 at the tumor ROI may be 

somewhat surprising, especially considering our previous report of a lower SO2 in breast 

cancer compared to healthy tissue8. As we will further discuss in the discussion section, a 

longitudinal study during NAC treatment must take into proper consideration the systemic 

effects of therapy. 

We computed the mean value and standard error of the percent change from the 

baseline measurement (i.e. from before the start of NAC) for [Hb], [HbO2], [HbT], and 

SO2 at the tumor region of interest for each response group. The average percent changes 

over five binned temporal windows in the normalized time axis (defined in the materials 

and methods section) are reported in Table 3.2, which shows the response category in the 

first column, the five binned temporal windows in the second column, and the response to 

therapy at the tumor ROI in the third to sixth columns. From the definitions of [HbT] 

([Hb]+[HbO2]) and SO2 ([HbO2]/[HbT]), it follows that the relative change in [HbT] is a 

weighted average of the relative changes in [HbO2] and [Hb] with weights given by the 

baseline values of SO2 and (1−SO2), respectively. Each bin is identified by the center point 

of its time interval (10%, 30%, 50%, 70%, or 90%) and the bounds of each bin are shown. 

The single parenthesis indicates the percentage therapy complete that is not included in the 

bin, whereas the bracket represents the percentage point that is included in the bin. Given 
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the duration of NAC in this study (18 – 22 weeks), the 10% bin corresponds to 

approximately the first 4 weeks of treatment. 

Table 3.2: Summary of the means and standard errors of relative changes in [Hb], [HbO2], 

[HbT], and SO2 at the tumor region of interest from baseline over 5 binned time windows 

for each response category. Beneath the response category, the number of patients in each 

group (n) is also provided. 

  Response to therapy at the tumor ROI 

(% change from baseline) 

Group 
Percent therapy 

complete 
[Hb] [HbO2] [HbT] SO2 

Responders          

(n = 6) 

10 (0, 20] −2 ± 8 −6 ± 7 −5 ± 7 −2 ± 1 

30 (20, 40] −13 ± 7 −36 ± 6 −28 ± 6 −12 ± 3 

50 (40, 60] −4 ± 5 −52 ± 5 −35 ± 4 −27 ± 4 

70 (60, 80] −4 ± 6 −56 ± 5 −38 ± 4 −32 ± 4 

90 (80, 100] 4 ± 7 −52 ± 4 −36 ± 4 −26 ± 4 

Non-responders  

(n = 2) 

10 (0, 20] −9 ± 7 −9 ± 7 −9 ± 7 0 ± 1 

30 (20, 40] 1 ± 4 −5 ± 4 −3 ± 4 −2 ± 0 

50 (40, 60] 1 ± 5 −3 ± 1 −2 ± 2 −1 ± 1 

70 (60, 80] 0 ± 11 −15 ± 12 −10 ± 12 −6 ± 2 

90 (80, 100] 23 ± 12 3 ± 15 10 ± 14 −8 ± 3 

 

Group results and the individual patient data of the percent change from baseline 

for the [HbT] in the tumor ROI are shown in Figure 3.3. Figure 3.3 shows a decreasing 

[HbT] in R’s compared to a relatively constant [HbT] in NR’s. To translate these changes 

in hemoglobin concentration into changes in blood volume fraction, one needs to take into 
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account the fact that the hematocrit, thus the hemoglobin concentration in blood, is also 

affected by NAC. 

 
Figure 3.3: (a) Trends of [HbT] at the tumor ROI for both response categories at a group 

level (the error bars represent the standard error). The threshold dashed line represents the 

weighted average of the mean percent changes of [HbT] for the R and NR groups using the 

inverse of the standard error as the weights.. This line is used for assessing patient response 

and is discussed in relation to the cumulative response index. The individual patient data 

throughout therapy are shown in (b) for responders and (c) for non-responders, along with 

the corresponding group average line. 

 

The average relative change throughout treatment in [HbT], hemoglobin 

concentration in blood, and blood volume fraction for both breasts for all eight patients is 

shown in Figure 3.4. It is apparent from Figure 3.4 that, during NAC, the concentration of 

hemoglobin in blood (Hgb) decreases in all patients, both R’s and NR’s suggesting a 

systemic response to treatment by all subjects. By calibrating the [HbT] changes by the 

Hgb changes, it can be seen that blood volume features an initial decrease after the start of 

NAC and then stays relatively constant in patients classified as R, whereas it increases in 
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patients classified as NR. Whereas for the healthy breast both R and NR patients respond 

similarly for [HbT] and BV.  

 
Figure 3.4: Average change in blood volume, [HbT], and hemoglobin concentration in 

blood (Hgb) relative to the first infusion throughout chemotherapy for responders and non-

responders in the cancerous and healthy breast. All patients show a similar systemic 

decrease in Hgb during NAC, but blood volume fraction in breast tissue decreases in 

responders and increases in non-responders. In the healthy breast [HbT] decreases and BV 

remains constant.  
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To provide an indication of how perfusion and metabolic demand may be altered 

in cancerous breasts with varying levels of response, the tumor region SO2 changes are 

shown on a group level and for each individual patient in Figure 3.5. Figure 3.5 conveys 

that the SO2 decrease in the cancerous region scales with the level of response, with 

responding patients featuring a larger SO2 decrease compared to the non-responding 

patients.  

 
Figure 3.5: (a) Trends of SO2 at the tumor ROI for both response categories at a group level 

(the error bars represent the standard error). The threshold dashed line represents the 

weighted average of the mean percent changes of SO2 for the R and NR groups using the 

inverse of the standard error as the weights. This line is used for assessing patient response 

and is discussed in relation to the cumulative response index. The individual patient data 

throughout therapy are shown in (b) for responders and (c) for non-responders, along with 

the corresponding group average line. 

 

A non-parametric Wilcoxon rank-sum test was applied at all considered therapy 

complete time windows to determine if there was a significant difference between the 

observed changes in the [Hb], [HbO2], [HbT], and SO2 of the tumor ROIs for responding 

and non-responding patients. The p values for this statistical test are reported in Table 3.3 
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and show that [HbO2], [HbT], and SO2 achieve a statistically significant discrimination 

(p ≤ 0.05) of the R and NR groups at therapy midpoint and beyond. A p value of 0.06, 

marginally greater than the significance level, was observed at the 20 – 40% therapy 

complete window for [HbO2], [HbT], and SO2. 

Table 3.3: Predictive values of the NAC response assessment based on changes from 

baseline (p values) and CRI (sensitivity and specificity) from [HbT], SO2, [Hb], and 

[HbO2] measurements at the tumor ROI for each time bin. 

% Therapy 

Complete 

% Change from Baseline Cumulative Response Index (CRI) 

[HbT] SO2 [Hb] [HbO2] [HbT] SO2 [Hb] [HbO2] 

p value p value p value p value Sens/Spec Sens/Spec Sens/Spec Sens/Spec 

10 (0, 20] 0.9 0.8 0.6 1 0.33/1 0.5/0.5 0.33/0.5 0.5/0.5 

30 (20, 40] 0.06 0.06 0.2 0.06 0.67/0.5 0.83/1 0.67/0.5 0.83/1 

50 (40, 60] 0.01 0.01 0.46 0.01 0.83/1 1/1 0.67/0 0.83/1 

70 (60, 80] 0.05 0.002 0.6 0.02 0.83/1 1/1 0.67/0.5 1/1 

90 (80, 100] 0.01 0.01 0.14 0.004 1/0.5 1/1 0.5/0.5 1/1 

 

3.3.2. Cumulative Response Index 

In an effort to move beyond a group analysis to assess individual patient response to NAC, 

we introduce a cumulative response index (CRI) at a single patient level. This CRI is 

calculated at each therapy session on the basis of the optical mammograms recorded at that 

session and all previous sessions, and thus it takes advantage of the cumulative information 

collected with optical mammography during the course of treatment. The CRI serves as an 

individual indicator for how the patient is responding and can take values between -1 (no 

response) and +1 (complete response). The CRI can be defined for any measured 

parameters of the tumor ROI ([Hb], [HbO2], [HbT], SO2, etc.). Here, to illustrate the CRI 

concept, we define the CRI in terms of SO2. To start, we compute a threshold value for 
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therapy response at each % therapy complete time window by taking the weighted average 

of the mean percent change of SO2 for the R and NR group results, with weights given by 

the inverse of the standard error. In the case of SO2, the R group and NR group results are 

reported in Figure 3.5 by the solid line and dashed line, respectively. Then, a linear 

interpolation is performed to create an SO2 threshold line over the entire therapy period. 

This threshold line is taken to represent the boundary that separates SO2 changes in 

responding and non-responding tumors. For each measurement session i, one can compute 

the difference di, as the threshold value of SO2 minus the percent change of SO2 at that 

particular time point (percentage of therapy complete). The standard deviation associated 

with di is denoted as σ(di) and refers to the standard deviation across all pixels within the 

tumor ROI for the i-th imaging session. Subsequently, the CRI at the n-th session is defined 

as follows: 

 
CRI(𝑛) =  

∑
𝑑𝑖

𝜎(𝑑𝑖)
𝑛
𝑖=1

∑
|𝑑𝑖|

𝜎(𝑑𝑖)
𝑛
𝑖=1

 
(3.1) 

The normalization factor in the denominator of the right-hand-side of Eq. (3.1) limits the 

CRI values to the range [-1, +1]. When the SO2 at a tumor ROI falls above the threshold 

line, its contribution to the CRI is negative, whereas when it falls below the threshold line 

its contribution to the CRI is positive. Therefore, positive CRI values are associated with 

responders, and negative CRI values are associated with non-responders. 
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Figure 3.6: Cumulative response index (CRI), based on SO2 at the tumor ROI, for each 

individual patient throughout the course of neoadjuvant chemotherapy. The CRI can take 

values between -1 (poor response) and +1 (good response). 

 

 The SO2 cumulative response index was found for each patient. Figure 3.6 shows 

each patient’s SO2 CRI, and Table 3.3 reports the sensitivity and specificity for response 

classification achieved at different time points during therapy using the CRI associated 

with [Hb], [HbO2], [HbT], or SO2. The sensitivity and specificity were calculated by 

considering positive and negative values of the CRIs to represent R and NR, respectively 

(in other words, we have considered a threshold value of 0 to categorize R (positive CRI) 

and NR (negative CRI)). Of course, one may chose a different CRI threshold value or 

define a different threshold line during the course of treatment, and build a receiver 

operating characteristic (ROC) curve. However, given the limited patient population, the 

point of this study is to illustrate our proposed approach to the assessment of individual 

response to neoadjuvant therapy, a point that is made by the results reported in Figure 3.6 

and Table 3.3. 
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 Table 3.3 shows that the SO2 CRI achieved the best NAC assessment results, with 

sensitivity/specificity of 83%/100% after 20% therapy complete, and 100%/100% after 

40% therapy complete. Comparable results were achieved with [HbO2] and [HbT], but they 

were marginally worse than the SO2 results in this study. 

3.4. Discussion 

3.4.1. [HbT] response to neoadjuvant chemotherapy at the tumor ROI 

A consistent result reported in the literature is the decrease of [HbT] at the tumor location 

during the course of NAC for patients who respond to therapy. In partial responders or non-

responders, the tumor [HbT] was found to decrease by a smaller amount than in responders, 

or to remain either constant or increase slightly during NAC. Specifically, within the first 

four weeks of NAC, studies that included both responders and non-responders found that 

the [HbT] at the tumor location decreased by as much as 60%65,71,72,74,75,77,78, whereas non-

responders (or partial responders) showed a lesser decrease73, no change65,71,75,78, or an 

increase72,74,77 in [HbT] at the tumor location. In this study, we confirmed this result, having 

observed a reduction in [HbT] of about 30% in the tumor ROI for responding patients as 

opposed to a non-significant change in non-responding patients in the course of therapy 

(starting at 20% of therapy, i.e. about 4 weeks into NAC) (see Table 3.2). 

Changes in tissue [HbT] are the result of either or both of two factors: a change in 

tissue vascularization (i.e. in the blood volume ratio) or a change in the concentration of 

hemoglobin in blood (i.e. in hematocrit). On the basis of Figure 3.4, our results in 

responders are assigned to a combination of both factors - a reduction (by about 15%) in 

the tumor vascular density, which has been previously reported75, and a systemic decrease 

(by about 20%) in the hemoglobin concentration in blood (Hgb), resulting from NAC89. 
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Because a comparable systemic decrease in Hgb was observed in responders and non-

responders, our [HbT] results indicate that the tumors in non-responders feature an 

increased vascularization during the course of NAC (see Figure 3.4). 

It is important to note that, in the case of patients who respond well to treatment, 

the tumor ROI contains more and more non-cancerous tissue during the course of 

treatment. Therefore, the decrease in [HbT] observed during NAC in responding patients 

represents NAC-induced changes in cancerous tissue (early in NAC) as well as in healthy 

tissue (later in NAC). By contrast, in the case of non-responders, for whom the tumor ROI 

always contains a significant amount of cancerous tissue, the [HbT] evolution during NAC 

is mostly representative of changes in cancerous tissue. 

Because of the systemic effects of NAC as a result of the systemic decrease in Hgb, 

one would expect a systemic decrease in [HbT] throughout the body, and in particular in 

the contralateral, healthy breast (as also reported in 54,64,90). We similarly observed a 

reduction in [HbT] in the contralateral, healthy breast, to a different extent in responders 

and non-responders, suggesting that systemic effects of NAC in peripheral tissue may also 

be indicative of the level of therapeutic response. 

3.4.2. SO2 response to neoadjuvant chemotherapy at the tumor ROI 

It is somewhat surprising that among all the published studies only a few have reported 

results of the evolution of tumor SO2 during the course of NAC. For example, the two 

pioneering case studies reported a tumor-to-normal SO2 ratio of about 0.9 throughout NAC 

with an increase to 1.4 after the end of NAC54 and a decrease in the tumor SO2 after the 5th 

NAC cycle from ~81% to ~60%63. Alternatively, groups have reported that elevated levels 

of baseline SO2 may be a good indicator of chemotherapy response.79,91 In part, this paucity 
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of SO2 data in optical NAC studies may be due to the fact that an inconsistency in NIRS 

investigations remains regarding how SO2 in breast cancer compares to SO2 in healthy 

tissue. Some studies have reported that the increased metabolic demand from tumor tissue 

results in an observed decrease in SO2 within tumors.4,23 Whereas others have found no 

significant difference in the SO2 of cancerous and healthy tissue.29,87,92,93 In these cases it 

is possible that SO2 may be comparable to (or even greater than) that of healthy tissue when 

the oxygen supply exceeds the oxidative metabolic needs of the tumor because of increased 

blood flow. Additionally, the selection of the reference tissue as the healthy control to 

which the tumor region is compared against is not consistent across studies. Depending on 

the tumor size and the heterogeneity of the healthy tissue, the choice of reference area may 

impact the level of SO2 contrast.8 Previously, we reported a decrease in SO2 in the tumor 

region with respect to the surrounding healthy tissue, and use the same analysis methods 

for the data acquired for each imaging session presented here.8  

Based on our previous results, one would expect that due to chemotherapy response 

when tumor tissue is replaced with healthy tissue an increase in SO2 over time would be 

observed. However, as noted at the end of the previous section, the combination of systemic 

and local effects of NAC may introduce new physiological and metabolic processes that 

differentiate responders and non-responders. In fact, in this study we found that the oxygen 

saturation of hemoglobin at the tumor ROI was the quantity most strongly associated with 

the level of patient response to neoadjuvant chemotherapy. Surprisingly, at the tumor ROI, 

we observed a stronger decrease of SO2 in responders (about −10% at 20 – 40% therapy 

complete, and about −30% throughout the rest of NAC) than in non-responders (a decrease 

of a few percent, significant only toward the end of NAC) (see Table 3.2). Furthermore, 
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the SO2 CRI achieved the best sensitivity and specificity for patient response assessment 

(see Table 3.3). 

The physiological sources of decrease in tissue SO2 are: (1) a decrease in tissue 

vascularization, associated with a regression of angiogenesis, (2) a decrease in blood flow, 

which reflects the local gradient in blood pressure as well as the compliance, reactivity 

(dilation/constriction), and architecture of the vasculature, and (3) an increase in the tissue 

metabolic rate of oxygen which relates to cellular metabolism. While breast cancer is 

typically associated with angiogenesis, perturbations to cellular metabolism and tissue 

perfusion, the specific angiogenic, metabolic, and perfusion responses to chemotherapy are 

not fully understood or characterized. 

From a technical point of view, optical measurements of SO2 are typically found to 

be robust since they rely on assessing concentration ratios ([HbO2]/[HbT]) rather than 

absolute concentrations. To test the qualitative accuracy of our homogeneous tissue model 

approach, we have generated forward data for an inhomogeneous medium using a 

perturbation approach in diffusion theory.94 When we set the SO2 of the localized 

perturbation to be either lower or higher than that of the background medium, the recovered 

SO2 value (using the homogeneous tissue model reported here) is always qualitatively 

correct, i.e. it accurately reflects the direction (higher or lower) of the localized SO2 change 

from the background. 

Results obtained using PET/CT techniques indicate a decrease in cellular 

metabolism when tumors respond to treatment due to the reduction in the absolute number 

of cancerous cells and in their proliferative activity.61,95 These results may appear to 

contradict our findings of decreasing SO2 in responders. However, one needs to recall that 
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cellular metabolism is only one factor affecting the hemoglobin saturation within the tumor 

location. Tissue perfusion is another critical factor, as it affects the rate of oxygen delivery 

to tissue. Using contrast enhanced MRI or [15O]-water PET imaging, responding tumors 

have been found to show a significantly stronger decrease in perfusion compared to poorer 

responding tumors96–99. Therefore, our finding of a greater decrease of SO2 in the tumor 

ROI of responding patients is consistent with a dominant effect of the reduction in blood 

flow vs. the reduction in cellular metabolism. 

We stress again that chemotherapy is not a localized treatment, and it will also 

impact the healthy tissue being measured in the optical mammograms. The direction of the 

response in the SO2 of cancerous and healthy tissue depends on the relative magnitude of 

the changes in blood flow, oxygen consumption, and blood volume during treatment. The 

chemotherapy effects on the SO2 of healthy tissue were observed in the contralateral, 

healthy breast, which showed stronger decreases (~45% in responders, and ~15% in 

non-responders, after midpoint) than the tumor ROI in the cancerous breast.  

This finding provides insight into how the healthy tissue responds to chemotherapy, 

and it explains the apparent inconsistency between the observed decrease of SO2 in the 

tumor ROI of responders, and the previously reported lower SO2 of cancerous tissue with 

respect to the surrounding healthy tissue (by −5 ± 1%)8. In fact, one should expect 

responding tumors to feature an SO2 value that approaches the SO2 value of healthy tissue. 

In the absence of any systemic effects, this means that responding tumors should feature 

an increase in SO2 during the course of NAC. However, in the presence of systemic effects 

that lower the SO2 of healthy tissue to levels below the baseline SO2 of cancerous tissue, 

responding tumors should indeed feature a decrease in SO2. In fact, these systemic effects 
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are observable in the healthy breast and are also capable of discriminating responders and 

non-responders but are less effective than when considering changes in the cancerous 

breast (Figure 3.7). 

 
Figure 3.7: Sensitivity (top panel) and specificity (bottom panel) for identification of 

responders and non-responders on the basis of the SO2 CRI for the cancerous breast (filled 

circles) and the healthy breast (open circles). 

Furthermore, such decrease should be lower than that of healthy tissue, simply 

because of the lower baseline value of SO2 in cancerous vs. healthy tissue. This is what we 

observed in our study and shows the importance of systemic effects of NAC in the 

interpretation of optical mammography data. Systemic effects of neoadjuvant 

chemotherapy should also be taken into account when considering tumor-to-normal (T/N) 

ratios, and whether the choice for a reference tissue should be a tissue area in the cancerous 

breast or in the contralateral breast. 

3.4.3. Limitations of the study and future directions 

The results reported in this work are limited by the small sample size of patients that we 

were able to enroll in the study. Because of the small sample size, the cumulative response 
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index (CRI) was calculated on the basis of a threshold line computed from data collected 

on the same patients that were then classified with this method. In a larger study, the 

robustness of this method would be tested by only using a subset of the patient data to 

generate the criteria used to classify the rest of the patients. However, the results reported 

here do show the potential of optical mammography to discriminate responders and non-

responders on an individual basis during the NAC regimen. 

The limited statistical significance achievable with a small sample size is further 

exacerbated by the heterogeneous patient population, in terms of both the prescribed 

chemotherapy agents and the NAC duration and infusion frequency. However, we observe 

that optical mammography is sensitive to the end result of vascular, hemodynamic, and 

metabolic perturbations, regardless of the biological mechanisms that are responsible for 

them. Furthermore, the relatively large number of optical measurements reported in this 

study throughout treatment (ranging from a minimum of 7 to a maximum of 18, mean 

number: 12) shows their robustness as reflected by their progressive trends during NAC. 

Of course, optical mammograms can in principle be performed on a regular weekly or 

biweekly schedule, independent of the NAC infusion schedule, thus providing a more 

regular and temporally refined monitoring of NAC response. 

A key assumption of our approach is that the optical scattering properties of tissue 

are kept constant. This means that any changes in tissue scattering that may occur during 

chemotherapy are not considered. To test how changes in the scattering properties may 

impact the recovered chromophore concentrations and their corresponding trends 

throughout treatment, NACP #5 data at baseline, midpoint and end of therapy, were used 

with different set values of the reduced scattering coefficient and its wavelength 
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dependence. There are limited tumor scattering parameters reported in neoadjuvant 

chemotherapy monitoring studies to guide our selection. The trend in scattering power (i.e. 

the wavelength dependence of scattering) considered by us was based on the percent 

changes at 4 weeks and pre-surgery reported by Soliman et al. 73. The scattering amplitude 

(i.e. the absolute value of scattering) was then set to decrease by 10% at the therapy 

midpoint and by another 10% at the end of therapy. By fixing these decreasing scattering 

values, the trends in NACP #5 [Hb], [HbO2], [HbT], and SO2 were found to be all in the 

same direction, with magnitudes within one standard deviation of each point, compared to 

when the scattering parameters were fixed to the same value throughout therapy. Therefore, 

chemotherapy induced scattering property responses are unlikely to affect the chromophore 

concentration trends observed in this work. 

The cancer-to-healthy-tissue contrast in the chromophore concentrations at baseline 

were examined to determine if the level of NAC response could be predicted before 

treatment began. This contrast measure was calculated at baseline in two different ways, 

as the difference between the average chromophore concentration at the tumor ROI and 

either the one at the healthy background tissue in the same breast or at the symmetrical 

region in the contralateral breast. The tumor contrast measured at baseline, however, was 

not able to distinguish response groups for this patient population.  

With a larger sample size of patients, one may perform more refined statistical 

analyses, such as an ordinal logistic regression to determine which optical parameters at 

which time points are significantly different between R and NR groups. Additonally, a 

more stratified analysis of breast cancer subtypes, chemotherapy regimens, and response 

to therapy (i.e. partial vs. complete responders) may be performed. Since it has been 
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reported that pCR is a more relevant endpoint for TNBC and HER2+ cases, one could 

determine if there are certain optical parameters that may serve as better outcome predictors 

for a given subtype. 

3.5. Conclusions 

Ten breast cancer patients receiving neoadjuvant chemotherapy were imaged at each 

treatment time point using broadband, continuous-wave, optical mammography. For eight 

of these ten patients, the tumor ROI fell within the field of view of the optical 

mammograms throughout NAC and were analyzed for discrimination of responders and 

non-responders. The time evolutions of [HbT], [HbO2], and SO2 at the tumor ROI during 

the course of therapy have been found to correlate with pathologic response. A cumulative 

response index (CRI), which may be based on any tumor parameter, was developed to 

assess how individual patients respond throughout treatment. The best performance was 

obtained with the SO2 CRI which achieved a 100% sensitivity and specificity at therapy 

midpoint and beyond. 

To further confirm the clinical importance of early assessment of patient response 

to NAC, a published study reported a neoadjvuant chemotherapy trial where therapy was 

switched based on the initial clinical response as assessed by physical exam (palpation), 

ultrasound, and mammography at the end of the second NAC cycle100. By changing the 

therapy regimen for patients with a clinical poor response, the ER+/HER2− patients were 

found to have a significant improvement in disease free suvival100. A non-invasive, safe, 

and relatively simple imaging tool (like optical mammography) that can determine clinical 

response and also predict pathologic response can serve as a useful technique to assess the 

efficacy of NAC and allow for physicians to change treatment for non-responders. 
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Chapter 4: Protocols for inducing coherent 

hemodynamic oscillations 

4.1. Background 

Cerebral hemodynamics features spontaneous fluctuations over specific frequency bands 

associated with very-low-frequency oscillations (0.02 – 0.05 Hz)101, low-frequency 

oscillations (0.08 – 0.15)9, respiration (0.2 – 0.3 Hz)102, and heart beat (~1 Hz)103. 

Furthermore, induced oscillations have been used for studying cerebral autoregulation, a 

physiological mechanism that regulates cerebral vascular tone to maintain near-constant 

cerebral blood flow in response to fluctuations in arterial blood pressure.  Oscillations can 

be induced by a number of protocols, including paced breathing104, pneumatic thigh 

cuffs105, head-up-tilting106, squat-stand maneuvers107, and lower body negative pressure108.  

Cerebral autoregulation is the mechanism that maintains cerebral blood flow 

despite changes in blood pressure, such as those resulting from induced oscillations. 

Simultaneous measurements of mean arterial pressure and cerebral blood flow velocity in 

the middle cerebral artery (MCA) (which is proportional to cerebral blood flow if the 

MCA’s diameter remains constant) have been done, using finger plethysmography and 

trans-cranial doppler (TCD) respectively, to characterize cerebral autoregulation by a 

number of groups.109–112 Specifically, induced oscillations in mean arterial pressure (MAP) 

at targeted frequencies will cause oscillations in cerebral blood flow (CBF) where the faster 

recovery of CBF results in it leading MAP in phase. The magnitude of this phase difference 

can be tied to the effectiveness with which the brain can autoregulate blood flow.113 Diehl 

et al report that in healthy subjects performing a paced breathing protocol at 0.1 Hz CBF 

leads MAP by 70° whereas for subjects with arteriovenous malformations CBF leads MAP 
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by 27° on the affected side and 40° on the unaffected side.114 Claassen et al further 

characterized the relationship between CBF and MAP using a squat-stand maneuver at 

three frequencies (0.025, 0.5 and 0.1 Hz) and showed that the phase delay decreased as 

frequency increased (45° at 0.0250 Hz and 25° at 0.1 Hz).107 

While TCD is sensitive to changes in blood flow velocity in large vessels, NIRS 

can measure tissue concentrations of oxyhemoglobin and deoxyhemoglobin ([HbO2] and 

[Hb] respectively) resulting from microvascular perfusion. Additionally, NIRS can provide 

functional information regarding oxygen saturation and cerebral blood volume (CBV) 

which also pertain to the metabolic rate of oxygen and vessel compliance,  respectively.115 

A number of NIRS studies have reported phase measurements for both spontaneous and 

induced oscillations in [HbO2] and [Hb] as an alternative method to study cerebral 

autoregulation.  For clarity, we have translated the results of these studies in to the phase 

difference between oscillations in [Hb] minus oscillations in [HbO2], where a negative 

phase corresponds to oxyhemoglobin oscillations leading deoxyhemoglobin oscillations. 

Spontaneous oscillations were reported to have a phase relationship of -130° to −150° in 

the frequency range 0.05 – 0.08 Hz in infants116 and −303° at 0.1 Hz in adults at rest101 and 

−285° at 0.08 Hz in adults during deep sleep.117 Recently, Watanabe et al report phase 

relationships of −72° to −131° at 0.1 Hz as term, early- and late-preterm infants grow 

providing the capability to distinguish between neurovascular development stages.118 

Alternatively, induced oscillations either with paced breathing or cyclic occlusions using 

thigh cuffs have also shown a similar dynamic relationship between [Hb] and [HbO2]. 

Reinhard et al. reported phase differences between [Hb] and [HbO2] oscillations at 0.10 Hz 

paced breathing of −200° in healthy subjects, and −240° in patients with unilateral carotid 
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obstruction.104 Paced breathing at 0.07 – 0.25 Hz has been reported to have decreasing 

phase differences from −180° to −300° with increasing frequency.119 Tgavalekos et al 

reported phase differences ranging from −150° to −250° in the frequency range 

0.046 – 0.083 Hz in the healthy adult brain and phase differences close to 0° in the healthy 

breast over the same frequency range while using pneumatic thigh cuffs to induce 

oscillations.53 Additionally, Pierro et al induced oscillations using pneumatic thigh cuffs 

and reported phase differences of −180° to −300° in healthy subjects and those undergoing 

dialysis.120 The spectral relationship of these phase differences was translated into 

differences in the microvascular blood flow between the two populations using a novel 

hemodynamic model.120  

Coherent hemodynamics spectroscopy (CHS), is a method for studying 

hemodynamic physiological processes and tissue oxygen consumption in terms of the 

phases and amplitudes [Hb], [HbO2] and total-hemoglobin ([HbT]) concentrations at 

multiple frequencies of oscillations.121 The amplitude and phase of [Hb](t), [HbO2](t), 

[HbT](t) and MAP(t) oscillations over time, t, at angular frequency ω can be described with 

phasor notation: D(ω), O(ω), T(ω) and MAP(ω) respectively.122 By means of this 

hemodynamic model, the relative amplitudes of these phasors and their phase relationships 

can be related to physiological parameters such as blood flow and cerebral autoregulation. 

However, to take advantage of CHS, producing reliable and coherent oscillations in oxy-, 

deoxy-, total-hemoglobin and mean arterial pressure are critical. Many different protocols 

have been used to induce oscillations assuming that the hemodynamics are driven by 

changes in MAP and the resulting phasors, D, O, and T are all equivalent. No controlled 

comparison of multiple protocols has been done to better understand their hemodynamic 
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response. While squat-stand and head-up tilt maneuvers have been shown to produce 

reliable oscillations, they are prone to motion artifacts at higher frequencies. Lower body 

negative pressure provides a subject independent stimulus that may be suitable for CHS, 

however it requires significant equipment, and pressures that produce reliable oscillations 

are often uncomfortable for subjects making it clinically unpractical108. For this paper, we 

focus on the paced breathing and pneumatic thigh-cuff protocols. They allow oscillations 

to be induced at multiple targeted frequencies and are practical in their approach. The 

purpose of this work is to identify 1) whether one of these protocols is more effective at 

inducing oscillations, and 2) whether the induced oscillations result in the same 

characteristic phase relationships between D, O, T, and MAP. We also translate our results 

into an indirect measure of cerebral blood flow, CBF, using a hemodynamic model, and 

discuss the importance of using spectral information to apply CHS.  

4.2. Methods 

Eleven healthy subjects (age range: 23 to 53 years old) participated in the study. The Tufts 

University Institutional Review Board approved the experimental protocol, and the 

subjects provided written informed consent prior to the experiment. Figure 4.1 shows the 

experimental setup. 

4.2.1. NIRS measurements 

The NIRS measurements were performed with a frequency-domain commercial NIRS 

instrument (OxiplexTS, ISS Inc., Champaign, Illinois). Optical probes connected to the 

spectrometer delivered light at two wavelengths, 690 and 830 nm, at 8 source–detector 

distances from 5 – 40 mm in 5 mm increments. The brain probe was placed against the 
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right side of the subject’s forehead, to access tissue in the prefrontal cortex, and secured 

with a flexible headband.  

4.2.2. Inducing systemic blood pressure oscillations 

The experiment consisted of six two-minute periods of induced oscillations, three using the 

pneumatic thigh-cuffs followed by three using paced breathing. Between each two-minute 

period a one-minute baseline measurement was performed. Another three-minute baseline 

period was measured before and after the six periods of oscillations resulting in a total 

measurement time of 23 min.  

For the pneumatic thigh-cuff protocol, the thigh cuffs were wrapped around both 

of the subject’s thighs and connected to an automated cuff inflation system (E-20 Rapid 

Cuff Inflation System, D.E. Hokanson, Inc., Bellevue, Washington). The air pressure in 

the thigh cuffs was continuously monitored with a digital manometer (Series 626 Pressure 

Transmitter, Dwyer Instruments, Inc., Michigan City, Indiana). During each two-minute 

period the thigh-cuffs were inflated to 200 mmHg and deflated at a frequency of 0.1 Hz 

resulting in 12 oscillations for each period. Alternatively, for the paced breathing protocol, 

the subject was provided cues every 5 seconds to either inhale or exhale by the Prana Breath 

AndroidTM app resulting in a paced breathing regimen of 0.1 Hz for 12 oscillations as well. 

No further instructions regarding breathing depth or pace were provided. The rate and 

depth of breathing was recorded using a respiration belt containing a strain gauge wrapped 

around the subject’s chest. Continuous arterial blood pressure (ABP) was recorded with a 

beat-to-beat blood pressure monitoring system (NIBP100D, BIOPAC Systems, Inc., 

Goleta, California). Analog outputs of the ABP monitor, respiration belt, and thigh cuff 

pressure monitor were fed to auxiliary inputs of the NIRS instrument for concurrent 
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recordings with the NIRS data at 12.5 Hz for subjects 1 and 2 and 9.9 Hz for 

subjects  3 – 11. Mean arterial pressure (MAP) was calculated from the ABP signal and 

translated to a percent change in MAP by taking the average MAP signal from the baseline 

measurements as a reference. We introduce lowercase acronyms representing relative 

percent changes from baseline, where the percent change in MAP with respect to baseline 

is denoted as 𝑚𝑎𝑝(𝑡) =  
(𝑀𝐴𝑃(𝑡) − 𝑀𝐴𝑃0)

𝑀𝐴𝑃0
⁄   with the corresponding phasor 

map(ω).  

The subject was asked to remain still and refrain from speaking for the entire 

experiment to avoid any motion artifacts. We tested the effects of varying the subjects’ 

position on the amplitude of map and [HbT] oscillations. The positions tested were 

determined based on their feasibility in a clinical setting—namely seated, lying down, and 

lying down with either torso raised, or the legs raised to a 30° angle respective to the bed. 

We found that the relative body position had no effect on the amplitude of oscillations in 

map and [HbT]. Subsequently, we chose to perform experiments in a seated position as it 

provides the most comfortable experimental setup. 
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Figure 4.1: Experimental setup. Signals from the NIRS device, arterial blood pressure 

(ABP) monitor, thigh-cuffs, and respiration belt were recorded synchronously. 

Representative data for each measurement shown on the right for 0.1 Hz oscillations.  

4.2.3. Data analysis 

Data analysis and processing were performed with MATLAB® (Mathworks Inc., Natick, 

Massachusetts). We first use the initial 30 s of data to measure baseline concentrations of 

oxy-, deoxy-, and total hemoglobin ([HbO2]0, [Hb]0, and [HbT]0 respectively) using the 

multi-distance measurements from our optical probe, and assuming extinction coefficients 

for [HbO2] and [Hb] from the literature.123,124 We use [HbO2]0 and [HbT]0 to calculate the 

baseline hemoglobin saturation, S0 = [HbO2]0/[HbT]0, which is used in our calculation of 

cbf described later. Using the modified Beer–Lambert law (Eq. (2.1)), we translate the 

intensity time traces at the furthest source-detector distance (which is most sensitive to 

changes in the brain) into changes in the concentrations of oxy-hemoglobin (Δ[HbO2](t)), 

deoxy-hemoglobin (Δ[Hb](t)), and total-hemoglobin (Δ[HbT](t)) in units of μM.50 This 

time trace is used to measure the phasors O, D, and T.  
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To compare the capability of each protocol to drive cerebral hemodynamic 

oscillations with oscillations in MAP, we compare the magnitude of MAP oscillations to 

the magnitude of oscillations in cerebral blood volume (CBV) which is defined as liters of 

blood over liters of tissue. Since [HbT] is the measured concentration of total-hemoglobin 

in tissue, CBV is related to [HbT] by the concentration of hemoglobin in blood (~2300 

μM), or 𝑇 = 2300𝜇𝑀 ∙ CBV. In this comparison however, we wish to consider percent 

changes such that 𝑐𝑏𝑣(𝑡) =  
(𝑇(𝑡) − 𝑇0)

𝑇0
⁄  with its corresponding phasor cbv(ω) at 

0.1 Hz. 

Now we explain the procedure to extract phasors associated with oxy- deoxy- total 

hemoglobin and MAP oscillations which represent sinusoidal oscillations in each 

parameter at a specific frequency (in this case only 0.1 Hz). The time traces Δ[HbO2](t), 

Δ[Hb](t), Δ[HbT](t), map(t) were filtered with a narrow bandwidth, linear phase, Parks-

McClellan algorithm.125 The filter had a width of 0.01 Hz that was centered at 0.1 Hz. The 

Hilbert transform was applied to the bandpass-filtered signals in order to translate the time 

traces into phasors by using the instantaneous amplitude and phase at 0.1 Hz.126 The 

magnitudes of the phasors D(ω), O(ω), T(ω), cbv(ω) and map(ω) and the phase 

relationships, arg(D(ω))−arg(O(ω)) and arg(cbv(ω))−arg(map(ω)) were computed and 

averaged within the time ranges of the measurements for each period of induced 

oscillations. This method is well-suited to identify the instantaneous phase and amplitude 

relationship for oscillations at a single frequency. However, since we induce periods of 

oscillations that occur only for certain time-periods in our data, we are applying a stationary 

frequency domain analysis to a non-stationary signal. In this regard, the wavelet transform 

and short-time Fourier transform are non-stationary methods which more accurately 
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quantify the phase and amplitude associated only with those portions of the signal 

pertaining to the induced oscillations. Ultimately, when implementing such an analysis for 

the application of coherent hemodynamics spectroscopy, the wavelet transform is a non-

stationary method that provides the necessary frequency and time resolution to determine 

the relative phase and amplitude information needed. However, for these experiments we 

are only concerned with phase relationship associated with the two induced periods at one 

frequency, and such an exhaustive analysis technique is unnecessary. We used circular 

statistics for calculating the average phase and standard deviation between pairs of phasors. 

Figure 4.2 shows representative time traces for the different hemoglobin species, map, cbv, 

and cbf as well as their corresponding phasors for subject 4 during one period of paced 

breathing.  

 
Figure 4.2: Representative measurements from one period of induced oscillations during 

paced breathing.  a) Time traces for [HbO2], [Hb], and [HbT] and b) their corresponding 

phasors calculated by using the Hilbert transform. c) Time traces for cbf, cbv, and map and 

d) their corresponding phasors.  
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We note that while the phasors D(ω), O(ω), T(ω), cbv(ω) and map(ω) are measured 

directly , the cbf phasor requires assumptions on additional physiological parameters, such 

as the capillary and venous transit times, and the blood volume in the arterial 

compartment.127 The calculation of cbf is described in the next section.  

4.2.4. Hemodynamic model to calculate cerebral blood flow 

We have previously described the method of coherent hemodynamics spectroscopy 

(CHS)121 and the application of this dynamic model to calculate cbf(t) and its 

corresponding phasor cbf(ω).128 A representation of this calculation of cbf is shown by 

using vector math on phasors in Figure 4.3A. The dynamic model takes into account that 

the dynamics in the arterial, capillary, and venous compartments provide individual 

contributions to the overall dynamics of [HbO2] and [Hb]. Since we measure D, O, and T, 

we can first decompose O into volume and flow related components under the assumption 

that changes in the metabolic rate of oxygen consumption are negligible.127 As such, 

O = Ov + Of, where Ov and Of  are the phasors representing oscillations in oxy-hemoglobin 

that result from volume and flow oscillations respectively. To calculate cbf, we first set a 

value for Ov and determine Of  based on our measured value of O. We then use a frequency 

dependent complex transfer function to relate Of and cbf.128 The remainder of this section 

describes this method in further detail.  

The volume dependent component of O is described by the dilation and constriction 

of vessels in the different compartments. Where Ov becomes the sum of the weighted 

dynamic contributions of the arterial, venous, and capillary compartments to cbv.  

𝐎𝐯(𝜔) = 𝑆(𝑎)CBV0
(𝑎)

𝐜𝐛𝐯(𝑎)(𝜔) + Ƒ(𝑐)CBV0
(𝑐)〈𝑆(𝑐)〉𝐜𝐛𝐯(𝑐)(𝜔)

+ 𝑆(𝒗)CBV0
(𝑣)

𝐜𝐛𝐯(𝒗)(𝜔) 

(4.1) 
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We introduce the notations (a), (v), and (c) where these superscripts refer to the partial 

contributions to the base term from the arterial, venous and capillary compartment 

respectively. Here, cbv(a), cbv(v), and cbv(c)
 are the phasors representing the dynamic 

contributions to cbv from the arterial, venous and capillary compartments respectively, and 

their weights are the hemoglobin saturation of these compartments S(a)
, S

(v), and S(c)
 and the 

partial volumes of each compartment CBV0
(a)

 , CBV0
(v) and CBV0

(c) where 

CBV0 = CBV0
(a)

  + CBV0
(v) + CBV0

(c). The Fåhreus factor, Ƒ(𝑐), accounts for the ratio of 

hematocrit between the capillaries and larger vessels, however since capillary recruitment 

or dilation is unlikely we set cbv(c) = 0, eliminating this term.129–131 The arterial saturation 

for healthy subjects is fixed for our calculations at S(a) = 0.98. The oxygen saturation of 

hemoglobin decays exponentially along the capillary, and takes the following value at the 

end of the capillary 

𝑆(𝑣) = 𝑆(𝑎)𝑒−𝛼ȯ𝑡(𝑐)
                                                                          (4.2) 

where t(c) is the blood transit time in the capillaries and 𝛼ȯ is the rate of oxygen diffusion 

in the capillaries and is equal to 0.8.132 By fixing S(a), and CBV0
(a) we can take advantage 

of our measurement of the baseline hemoglobin saturation S0 to calculate CBV0
(v). Since 

S0 can also be broken down into its contributions from each compartment with similar 

weights: 

𝑆0 = 𝑆(𝑎) CBV0
(𝑎)

CBV0
+ 〈𝑆(𝑐)〉

CBV0
(𝑐)

CBV0
+ 𝑆(𝑣) CBV0

(𝑣)

CBV0
  (4.3) 

where 〈𝑆(𝑐)〉 is the average saturation in the capillary compartment given by: 

⟨S(c)⟩ = S(a) (
1−𝑒−𝛼�̇�𝑡(𝑐)

α�̇�𝑡(𝑐) )                                                                                                               (4.4) 

 From Eqs. (4.2-4):  
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CBV0
(𝑣)

=
𝑆0−𝑆(𝑎)[

CBV0
(𝑎)

CBV0
+(1−

CBV0
(𝑎)

CBV0
)(

1−𝑒−αȯ𝑡(𝑐)

αȯ𝑡(𝑐) )]

𝑆(𝑎)[𝑒−αȯ𝑡(𝑐)
−

1−𝑒−αȯ𝑡(𝑐)

α�̇�𝑡(𝑐) ]

CBV0  (4.5) 

For this study, we assume t(c) = 1 s53, CBV0
(a) =  0.007133 and cbv(a) = cbv(v) at which point 

we have fixed the value of Ov. Once Ov is fixed, and Of is the phasor difference of O and 

Ov where O is measured. From here cbf and Of are related by a frequency dependent 

complex transfer function: 

𝐎𝐟 = [Ƒ(𝑐)𝐶𝐵𝑉0
(𝑐)

(⟨𝑆(𝑐)⟩ − 𝑆(𝑣))𝐻𝑅𝐶−𝐿𝑃
(𝑐) (𝜔) + 𝐶𝐵𝑉0

(𝑣)
𝑆(𝑣)𝛼𝑡(𝑐)𝐻𝐺−𝐿𝑃

(𝑣) (𝜔)]𝐜𝐛𝐟  (4.6) 

Where the transfer function 𝐻𝑅𝐶−𝐿𝑃
(𝑐)  describes the RC low-pass filter behavior of the blood 

transit time in the capillary compartment and the transfer function 𝐻𝐺−𝐿𝑃
(𝑣)

 represents the 

Gaussian low-pass filter behavior in the venous compartment. These transfer functions are 

defined by t(c) and t(v), the blood transit time in the venous compartment, and define the 

frequency dependent phase relationship between cbf and Of. By setting values for t(c) = 1 s, 

S(a) = 0.98, CBV0
(a) = 0.007 and t(v) = 5.6 s 53, we fix this relationship. In practice, we have 

previously shown that by inducing oscillations at multiple frequencies we can apply the 

hemodynamic model using a spectroscopic approach to estimate values for t(c)
, t

(v) and the 

relative blood volume contributions between the different compartments.119 In which case 

we provide a direct quantitative measurement of the relationship between cbf and T which 

provides information about the efficacy of cerebral autoregulation. However, in this study, 

we only consider one frequency, 0.1 Hz, to have multiple repetitions in a single experiment 

to provide an intrasubject comparison of the paced breathing and thigh-cuff protocols. In 

Figure 4.3B–D, we describe how the phase relationship arg(cbf)−arg(T) changes as a 

function of the three set parameters, t(c)
, t

(v) and CBV0
(a) for Subject 4.  
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Figure 4.3: a) Phasor diagram of different hemoglobin species and their contributions from 

volume and flow oscillations for Subject 4. b) Phase difference between cbf and T as 

capillary transit time, t(c), changes. c) Phase difference between cbf and T as venous transit 

time, t(v), changes. d) Phase difference between cbf and T as partial contribution of the 

arterial compartment changes. The vertical dashed lines in (b-d) represent the values fixed 

for the calculations done in this study. The ranges for the values of t(c), t(v), and CBV0
(a) 

tested correspond to physiologically reasonable values. For reference the phase difference 

between cbf and map is 31 deg. represented by the horizontal dashed lines in (b) and (d). 

In healthy subjects, the presence of cerebral autoregulation is dictated by cbf leading map 

in phase. Subsequently, values of t(c) beyond 1.2 s where cbf lags map would suggest that 

this range of values for t(c) may be physiologically unreasonable. An increase in t(v) results 

in a longer delay time associated with the gaussian low pass filter relationship in the venous 

compartment (Eq. (4.6)). Subsequently we observe a larger phase difference between cbf 

and T. Similarly, one would expect increasing t(c) to produce a larger delay time in the RC 

low pass filter relationship in the capillary compartment and produce a similar trend in 

arg(cbf)−arg(T). However, it is important to consider that t(c) in this case also affects the 

venous and capillary contributions to CBV0 (Eq.(4.5)). The larger venous transit time 

(assumed 5.8 s here) is a larger component of the phase difference between cbf and T, by 
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increasing t(c) we also decrease CBV0
(v) and increase CBV0

(v) resulting in a smaller phase 

difference between cbf and T. Similarly, increasing CBV0
(a) results in larger CBV0

(v) and 

a larger phase difference between cbf and T.  It is important to note that the calculation of 

cbf is an indirect measure based on assumptions for t(c), t(v), and CBV0
(a). In this sense the 

variability in our calculated cbf between subjects will depend entirely on the variability 

between O, T, and S0, since these are the measured parameters that affect our calculation 

of Of . 

4.2.5. Statistical analyses 

Coherent hemodynamics spectroscopy relies on coherent oscillations between map and T. 

The underlying assumption is that when these oscillations exist with a high degree of 

coherence, the primary force driving oscillations in T is map and the dynamic model can 

describe the resulting relationship between O and D well. When oscillations are not 

coherent, the dynamic model does not completely describe T, and other drivers (such as 

localized vascular dynamics, effects of the superficial layers, or other artifacts) affect the 

oscillations we measure. In any practical application, it is unlikely that the dynamic model 

can fully describe all oscillations in T, so we have developed a methodology to test the 

coherence between oscillations based on their phase synchronization index (PSI).134 

Briefly, we assumed a null hypothesis that the two time traces, [HbT](t) and map(t), are 

completely random and have no phase synchronization.  We created a distribution for our 

null hypothesis using random numbers. Based on an α = 0.95, we identified a PSI threshold 

within this distribution for [HbT] and map, PSI[HbT],map. We calculate the PSI for each 

induced 2 minute period of oscillations, and only consider those oscillations passing the 

PSI threshold in our analyses. Although PSI[HbT],map serves as a sufficient measure to 
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identify coherent hemodynamic oscillations, to assess differences in arg(D)−arg(O), we 

note that oscillations in [Hb] are typically much smaller than oscillations in [HbO2] and 

[HbT]. Accordingly, we calculated the PSI threshold between oscillations of [Hb] and map, 

PSI[Hb],map as well to identify those oscillations where a comparison of arg(D)−arg(O) is 

relevant. In some cases, it is possible for PSI[HbT],map to be significant and PSI[Hb],map to be 

insignificant based on our PSI thresholds. In our comparison of the protocols capability to 

induce oscillations, we use the PSI threshold, PSI[HbT],map, and the amplitude ratio, 

|cbv|/|map|, as metrics to qualify whether one protocol is advantageous over the other. The 

number of periods that pass our PSI threshold indicates how robust our protocol is in its 

capability to induce hemodynamic oscillations, and |cbv|/|map| relates the magnitude of 

our measured NIRS oscillations to the driving oscillation in map using each protocol. 

Additionally, to understand the dynamic phase relationships arg(D)−arg(O), 

arg(cbf)−arg(map), arg(cbf)−arg(cbv), and arg(cbv)−arg(map) simultaneously with their 

corresponding amplitude ratios |D|/|O|, |cbf|/|map|, |cbf|/|cbv|, and |cbv|/|map| between 

protocols we create vectors that represent the phasor ratios of each pair of phasors. For 

each subject and protocol, we take an average value of the amplitude and phase of each 

phasor describing an induced period of oscillation that passed the PSI threshold PSI[HbT],map. 

We then define a vector, with an amplitude defined by the average of the amplitude ratios 

|D|/|O|, |cbf|/|map|, |cbf|/|cbv|, or |cbv|/|map| and an angle defined the circular average of 

the phase differences, arg(D)−arg(O), arg(cbf)−arg(map), arg(cbf)−arg(cbv), or 

arg(cbv)−arg(map) respectively. For the vector D/O, we also exclude periods that do not 

pass the PSI threshold PSI[Hb],map.  A vector, for example, representing the phasor ratio D/O 

has an amplitude described by the average of |D|/|O| during induced oscillations that meet 
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the PSI thresholds PSI[Hb],map and PSI[HbT],map for a specific subject and protocol. The angle 

of this vector is similarly described by the average of arg(D)−arg(O) for the relevant 

oscillations induced by each protocol for each subject.  

4.3. Results 

Table 4.1: # of Periods above PSI Threshold at α = 0.95  
PSI[Hb], map PSI[HbT], map 

Subject # Cuff PB Cuff PB 

1 1 1 2 3 

2 1 2 1 1 

3 2 1 3 3 

4 3 3 3 3 

5 2 1 3 3 

6 3 1 3 3 

7 1 2 3 3 

8 1 0 3 3 

9 1 0 3 1 

10 0 3 2 3 

11 1 2 1 2 

Success 48% 48% 82% 85% 

Cuff—thigh-cuff protocol; PB—paced breathing 

protocol; success - percent of total (33) periods that 

pass the PSI threshold  

 

We tested the capability of each protocol to induce coherent hemodynamic 

oscillations driven by oscillations in mean arterial pressure. For each subject we were able 

to induce coherent oscillations with both protocols. The success rate of each protocol for 

each subject is in Table 4.1. Out of a total 33 periods for each protocol across all 11 subjects 

we induced coherent oscillations based on the PSI threshold in 27 periods (82%) with the 

thigh-cuff protocol and 28 periods (85%) with the paced breathing protocol at 0.1 Hz. 

However, we found that measuring coherent oscillations in [Hb] was less robust. In both 

protocols only 16 (48%) of the total 33 periods produced oscillations that passed the PSI 

threshold. In these cases, oscillations in [Hb] were likely too small such that the filtered 

signal had random phase. More importantly, both protocols show the same success rate for 
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the PSI threshold between D and map across subjects, however between subjects the 

efficacy of each protocol varied. For example, we were able to induce oscillations in D for 

Subject 4 in all periods, however for subject 10, the paced breathing protocol was more 

effective, and vice versa for subject 6. It is important to note that a small |D|, does not 

indicate that coherent oscillations were not induced but rather that the oscillations were 

likely dominated by the arterial compartment.  

While the PSI between cbv and map provides a measure of coherence, |cbv|/|map|, 

indicates the relative amplitude of the oscillations. Although practically, larger oscillations 

in cbv provide more robust measurements, the relationship between cbv and map is also 

related to underlying physiological parameters such as vascular compliance.135 Figure 4.4 

shows the ratio of amplitudes between cbv and map. No subject showed a significant 

difference in |cbv|/|map| between the protocols. The group averages of |cbv|/|map| are 

0.20 ± 0.09 for the thigh-cuff protocol and 0.19 ± 0.10 for the paced breathing protocol. 

Additionally, we note that while there is a high degree of variability across subjects the 

differences in |cbv|/|map| between protocols is minimal within each measurement.  

The vectors shown in Figure 5, are defined by the average phasor ratios for each 

protocol and each relevant combination of measured or calculated parameters across all 

subjects.  
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Figure 4.4: Ratio of amplitudes of cbv and map. Error bars represent one standard 

deviation from the mean ratio of amplitudes among the included periods. Points that have 

no error bars represent cases when only one period passed the PSI threshold. The solid and 

dashed horizontal lines represent the mean value across all subjects for the thigh-cuff (Cuff) 

and paced breathing (PB) protocols respectively. 

 

 We found that the group average angle of cbv/map was the same for the two protocols 

(−43° and −44° for cuff and paced breathing respectively) meaning the timing of how map 

is translated into cbv is constant (Table 4.1). Typically, we expect map, our physiological 

driver, to lead cbv, and for most cases we see a consistent relationship. However, for 

subjects 2 and 11 we found an atypical result for the angle of cbv/map which was also 

different between the two protocols (Figure 4.5). For subject 11 we found that the paced 

breathing protocol produced a similar phase delay to the rest of the subjects (−50°) with 

cbv lagging map, however, for the cuff protocol we found that the angle of cbv/map was 

closer to 0°. For subject 2, we found that the paced breathing protocol resulted in cbv 

leading map by 35°. This suggests that either cbv leads map by ~1 s or map leads cbv by 

~9 s. We use |cbv|/|map| and the PSI threshold as measures to assess whether coherent 

oscillations were induced, while the relative phase and amplitude of D and O are the 

measured input parameters for the application of CHS. 
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Table 4.2: Average amplitude and phase of group averaged phasor ratios 
 

Cuff Paced Breathing 

D/O 0.2 ± 0.1 ∠ −210 ± 46 0.2 ± 0.1 ∠ −205 ± 45 

cbf/cbv 2.3 ± 1.8 ∠ 80 ± 20 2.5 ± 1.1 ∠ 71 ± 12 

cbf/map 0.28 ± 0.27 ∠ 29 ± 27 0.17 ± 0.14 ∠ 23 ± 23 

cbv/map 0.20 ± 0.09 ∠ −43 ± 41 0.19 ± 0.10 ∠ −44 ± 25 

 

For D/O, while the group averages between the two protocols is similar (−210° for cuff 

and −205° for paced breathing), there exists a larger variability in this parameter well 

described by the variability in the vectors shown in Figure 5. Additionally, we found that 

for subjects 5 and 6 the differences in the angle of D/O between protocols is 51° and 169° 

respectively while the differences for the remaining subjects are less than 30° (Figure 4.5). 

For subject 5 we found that the angle of D/O was more negative for the cuff, −209°, than 

for paced breathing, −159°..  For subject 6 we found that the opposite to be the case with 

the angle of D/O equal to −33° and −224° for the cuff and paced breathing protocols 

respectively.  In these cases, it’s possible that the different protocols induced subject 

dependent differences which resulted in the varied phase difference.  

Finally, cbf/cbv and cbf/map the phasor ratios associated with our calculated cbf 

parameter were the same for the two protocols. However, the variability in cbf between the 

two protocols is dependent on the relationship between O and T. Since the amplitude of 

D/O is typically small (0.2 for both protocols) the phase relationship, arg(O)−arg(T) is also 

small. Subsequently the resulting angle of Of varies little between subjects (Figure 4.3A). 

Since we assume the defining parameters of the transfer functions that relate Of to cbf the 

variability we see in the angle of cbf/cbv is artificially small without measured values of 

t(c)
, t

(v) and CBV0
(a) for each case. However, the assumptions of t(c)

, t
(v) and CBV0

(a) represent 
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physiologically reasonable values, and in healthy subjects, we expect cbf to lead map and 

similarly cbv which we reproduce correctly except for Subject 3. In this case we expect 

our assumptions underestimate t(v) and CBV0
(a) or overestimate t(c) since increasing t(v) or 

CBV0
(a) or decreasing t(c) would result in cbf leading map in this calculation (Figure 

4.3B-D).  

 



 

 



 

 

 

Figure 4.5: Phasor ratio vectors for D/O, cbf/cbv, cbf/map, and cbv/map for subjects 1-

11. The solid arrows represent the vectors for the cuff protocol, and the dashed arrows 

represent the vectors for the paced breathing protocol. The scale bars are unitless and define 

the magnitude of the amplitude ratio represented by the length of each vector. The angle of 

each vector is defined by the average phase relationship between the two phasors in each 

ratio. For subjects 8 and 9 no oscillations passed the PSI threshold for D and O with the 

paced breathing protocol, and for subject 10 no oscillations passed the PSI threshold for D 

and O for the cuff protocol.   

 

4.4. Discussion 

We have reported a comparison of two protocols, paced breathing and pneumatic thigh-

cuffs, performed on 11 subjects to induce coherent hemodynamic oscillations. We found 

that both protocols provide significant coherent cerebral hemodynamic oscillations with 

map as a driving oscillation. The benefit of these two protocols lies in their capability to 

induce oscillations at targeted frequencies in a clinical setting. In this work we consider 

only a single frequency, 0.1 Hz, however we have previously reported using thigh cuffs 

and paced breathing for multiple frequencies for the application of CHS.53,120 The values 

we measure for D/O coincide with the values reported in literature53,101,104,120, however, 

using the relationship between O and D directly can be challenging due to the high 

variability in this dynamic relationship. Likely the variability in D/O amongst healthy 

subjects is associated with the underlying mechanics of the vascular architecture for each 

subject. Herein lies the significance of using CHS. While we found that for subjects 5 and 

6 D/O was different for the two protocols, the difference may be explained by which 

compartment, arterial, venous, or capillary, contributes to the oscillations the most.121 More 

importantly, by taking measurements at multiple frequencies and applying CHS, we can 

measure values of t(c)
, t

(v) and CBV0
(a). Specifically, the model would explain a less negative 

phase angle by either an increase in autoregulation or an increase in t(c).136 The model 
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describes autoregulation based on a high-pass transfer function between map and cbf. In 

this sense, an increase autoregulation would indicate an increase in cbf suggesting the 

subject was in a hypercapnic state due to the slower than normal respiration rate. If t(c) were 

increased this would suggest smaller cbf suggesting the subject was in a hypocapnic state, 

potentially a result of deeper breathing during paced breathing. In our study, without 

measuring the end-tidal CO2 either scenario is possible, and controlling for this parameter 

in the future is necessary when using a paced breathing protocol. More critically, we note 

that the phase relationship between D and O is indicative of cerebrovascular function, but 

anatomical and physiological differences between subjects and protocols can limit its use 

as a direct biomarker for diseases. Using a model, such as CHS, allows for the interpretation 

of the relationship between these phasors to separate out anatomical differences between 

subjects, effects of different protocols, and more importantly clinically relevant parameters 

such as autoregulation or cerebral blood flow. 

For the purpose of inducing coherent hemodynamic oscillations, we suggest using 

thigh-cuffs over the paced breathing protocol since it does not require patients to adhere to 

the protocol. In our protocol, we record the depth of breathing over time during the paced 

breathing protocol and found that with minimal instruction the depth and time trace of 

paced breathing varied widely from subject to subject which could explain the varied phase 

relationship between subjects. We point out that end-tidal CO2 is a critical parameter to 

measure to control for changes in physiological states, however this would require 

additional instrumentation further complicating the paced breathing protocol. For the thigh 

cuffs, the only requirement is that the cuff pressure provide an arterial occlusion. For our 
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experiments we use a cuff pressure of ~200 mmHg which would induce arterial occlusions 

in any healthy subject.  

In two specific cases we found that cbv leads map. The relationship between cbv 

and map is indicative of CBF dynamics and cerebral autoregulation, with possible 

contributions from the transit time of blood through the microvasculature.135 For subject 

11, we found for the cuff protocol cbv and map are in phase. This would suggest that the 

cuff protocol produced oscillations that were dominated by the arterial compartment, 

however D/O had an angle of ~90° and had a larger magnitude than the paced breathing 

protocol. Whereas arterial blood would be dominated by oxy-hemoglobin oscillations 

resulting in smaller D/O which also would oscillate in phase. Additionally, for subject 2 

intuition would suggest that cbv cannot lead map by 1 s as the 35° phase difference 

suggests, since we consider map to be the driving oscillation in our system. Reinhard et al 

report cbv to lag map by −23 ± 35° suggesting that a positive phase relationship is possible. 

They also report phase differences as high as 60°, however no physiological explanation 

of these results are provided104. Outside of these two instances, the variability associated 

with the angle of cbv/map is −57 ± 16° for the cuff protocol and −61 ± 29° for the paced 

breathing protocol suggesting that a consistent relationship exists between cbv and map.  

Understanding the relationship between cbv and map is important for the 

application and interpretation of CHS, however the primary concern is producing robust 

and repeatable measurements of D/O. In this regard, measuring T, and more importantly 

cbv, has proven to be robust. However, without sensitivity to D, measurements of the phase 

angle for D/O are not reliable. In our measurements we were sensitive to oscillations in D 

approximately 50% of the time. We attribute this to the fact that the oscillations are 
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dominated by arterial contributions where hemoglobin saturation is ~98%. While we show 

that both paced breathing and the thigh cuff protocols are similar in their capability to 

induce oscillations, the mechanism which translates oscillations in map to the oscillations 

we measure is still unclear. Paced breathing induces mechanically generated oscillations, 

where the respiration changes pleural pressure and ventricular loading resulting in 

oscillations in mean arterial pressure.104 Alternatively, the thigh cuffs are intended to 

provide a sudden increase in ABP when inflated by increasing the total systemic resistance, 

and the opposite when the cuffs are deflated.105 Subsequently, we would expect a larger 

venous contribution from the paced breathing protocol, however our results suggest the 

variability in D/O between subjects masks any discernable differences in the 

compartmental affects.  

4.5. Conclusions 

We have shown that paced breathing and cuff protocols are equally useful for inducing 

coherent hemodynamic oscillations. We found a consistent relationship between mean 

arterial pressure and cerebral blood volume, however oscillations in [Hb] and [HbO2] show 

varied response.  Outside of physiological differences that may result in varied responses 

to paced breathing and cuff protocols, spatial variability, contributions from the superficial 

layer, or the patient’s adherence to the protocol are some factors that could contribute to 

this variability. Careful consideration is required when interpreting the results of D/O 

between protocols or even subjects. We believe CHS can provide more robust information 

that is directly related to physiological changes which could be advantageous when 

applying these hemodynamic protocols in a clinical setting. A larger more comprehensive 
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study is required to understand the factors that contribute specifically to the variability in 

D/O.  
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Chapter 5: Coherent hemodynamics in breast 

cancer. 

5.1. Background 

As was discussed in Section 4.2.4, measurements of oxyhemoglobin ([HbO2]) and 

deoxyhemoglobin ([Hb]) concentrations can be translated into measurements of 

changes in blood flow. While the model presented in Section 4.2.4, was targeting a 

measurement of cerebral blood flow, the basis of coherent hemodynamics spectroscopy 

can be theoretically applied to any tissue that exhibits a measurable change in blood flow. 

For breast cancer detection, the physiological basis for using a change in blood flow as a 

source of contrast is derived from the different mechanical properties of cancerous tissue 

regions, and the functional disruption of tissue vasculature associated with cancer. Invasive 

breast cancers are associated with higher interstitial fluid pressure (IFP) than normal breast 

tissue137. The Young’s modulus of elasticity for soft tissue can range from 1 to 100 kPa, 

however breast cancers can be as much as 15 times stiffer.138 Ultrasound elastography has 

been shown to detect different tissue displacements in cancerous tissue as opposed to 

healthy tissue from externally applied pressure.139 The compromised vasculature from 

rapid angiogenesis typical of tumors, can also affect the blood flow and content in tumor 

tissues. For non-necrotic breast cancer tissue, blood flow has been reported to be greater 

than in post-menopausal normal breast tissue.140  The changes in mechanical properties, 

IFP, and vascular function of cancerous tissue can all affect blood flow, oxygen 

consumption, and blood content.9 Changes in these hemodynamic parameters in response 

to a physical challenge or externally applied pressure can reveal hemodynamic 

characteristics of healthy and cancerous tissue.  
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Specifically, blood flow as a hemodynamic parameter in breast cancer has been 

investigated previously by both diffuse optical methods and others. The use of positron 

emission tomography (PET) 141–143, color and power Doppler ultrasound144–146, MRI 96 as 

well as optical techniques such as diffuse correlation spectroscopy (DCS)66,147 have been 

employed. However, clinically the efficacy of ultrasound as a diagnostic technique has 

been ambiguous due to the lack of sensitivity to smaller blood vessels and lower signal to 

noise contrast.147 PET can use the speed of tracer uptake to evaluate relative tumor blood 

flow, and studies using PET have shown blood flow increases in malignant tumors. 

Similarly, dynamic contrast enhanced MRI can use the rate of contrast agent uptake to 

measure relative blood flow, and hemodynamic function.148 However, as is the case with 

PET, MRI has limitations due to the cost associated with large instrumentation and 

extensive clinical procedures requiring exogenous contrast agents. Diffuse correlation 

spectroscopy (DCS) monitors the temporal fluctuations of scattered light to indirectly infer 

information about the relative blood flow within the microvasculature. Groups have shown 

that the tumor tissue is associated with localized increases in blood flow 66,147 and that 

manual compression of the breast (~20 N of surface pressure) can induce relative decreases 

in blood flow up to 50%149. The challenge in applying DCS to the breast lies in the need 

for usable signal to noise ratios to employ a transmission geometry which is more sensitive 

to deeper set tumors. This makes the clinical application of this technique more 

challenging, however still feasible with additional detectors and longer integration times. 

Recently, diffuse optical methods have also been applied in efforts to study the 

dynamics of [HbO2] and [Hb]. Different methods of controlling the physical perturbation 

have been employed such as dynamic compression of the breast34,47, and paced breathing 
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similar to protocols in the brain.33,45,46  Manual compression of the breast by external force 

increases the interstitial fluid pressure subsequently decreasing the blood content in the 

breasts of healthy subjects by up to 20%.47 Regulating respiration or breath-holding can 

systemically alter the blood pressure to cause 5-10% fluctuation in hemoglobin content in 

healthy subjects.33 Tgavalekos et al. were able to induce hemodynamic oscillations in the 

breast using pneumatic thigh cuffs under the same protocol used in Chapter 4:, and found 

that oscillations in [HbO2] and [Hb] were in phase for healthy female subjects.53 However, 

the magnitude and temporal dynamics of induced changes have been related to differences 

in the vasculature between cancerous and healthy tissue.46,47,150,151  

In this pilot study, we monitor hemodynamics during neoadjuvant chemotherapy to 

identify coherent oscillations in [HbO2] and [Hb]. We performed bilateral measurements 

in a transmission geometry on the breast, before each chemotherapy infusion using 

pneumatic thigh-cuffs to induce coherent oscillations at targeted frequencies. Specifically, 

I report the phase relationship between Δ[Hb](t) and Δ[HbO2](t) over time, t, at the induced 

frequencies of oscillation for each chemotherapy infusion. While our original hypothesis 

was that stiffness in the breast tissue due to cancer would result in a measurable phase 

difference between Δ[Hb](t) and Δ[HbO2](t) (different from the relationship found in 

Figure 2.8 on the healthy breast), we find that Δ[Hb](t) and Δ[HbO2](t) oscillate in phase 

even in the cancerous breast. We also report on the challenges in performing these 

measurements with clinical constraints, as well as identify key information needed to 

further pursue this technique.  
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5.2. Methods 

5.2.1. Patient recruitment 

This study was approved by the Institutional Review Board of the Tufts Medical Center, 

and it was also compliant with the Health Insurance Portability and Accountability Act. 

Any woman over the age of 21 who was diagnosed with invasive breast cancer and 

scheduled to undergo neoadjuvant chemotherapy was eligible for this study. All patients 

read and signed an informed consent before participating. Three patients were enrolled in 

and followed in this study for the course of their chemotherapy. NACP#11 and #13 had 

incomplete data sets due to the patients’ schedules. However, the data presented for 

NACP#12 are representative of the data for all subjects and is complete. NACP#12 was a 

51 year old female and presented with a 10x7 cm invasive ductal and lobular carcinoma 

which had a triple negative receptor status in her left breast. The patient was treated with 

doxorubicin and cyclophosphamide bi-weekly for 8 weeks followed by weekly treatments 

of low-dose paclitaxel. Subsequently, we performed 14 optical measurements, one pre-

treatment measurement, and a measurement prior to each of 13 chemotherapy treatments. 

For week 12, the optical data were corrupted due to instrumentation failure, resulting in a 

total of 13 optical measurements presented here. She is classified as a non-responder per 

the definition in section 3.2.2 (tumor size reduced by < 50%).  

5.2.2. Dynamic, dual-breast NIRS system. 

The components of the system used here are identical to those described in Section 2.2.1. 

However, the configuration has been altered to allow for bilateral dynamic measurements. 

Rather than using the multiplexed detection system for off-axis detection to allow for depth 
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sensitivity, we use it to allow for simultaneous measurements of hemodynamics in both 

breasts at a single point. Following is a brief description of this setup. 

 A system block-diagram is presented in Figure 5.1. Light from a quartz-tungsten-

halogen (QTH) lamp (Model No. 66635, Newport Instruments, Irvine, CA) was band pass 

filtered by a spectral filter (Model YSC1100, Asahi Spectra USA, Torrance, CA) to a 

340 – 1130 nm spectral bandwidth and delivered to each breast by way of two 2.5 mm 

diameter source optical fiber bundles (S1 and S2). Two 6.5 mm thick polycarbonate plates 

slightly compress and stabilize both breasts. Two 2.5 mm diameter detector optical fiber 

bundles, D1 and D2 were placed coaxially to the source fibers S1 and S2, respectively. 

 
Figure 5.1: System block diagram. A quartz-tungsten-halogen (QTH) lamp is filtered to 

340 – 1130 nm and delivered to two source locations (S1 and S2) one for each breast. Two 

detector fibers (D1 and D2) placed coaxially to the sources collect the transmitted light and 

deliver it to a spectrograph where a CCD recovers the transmitted intensity from 

650 – 1000 nm for each fiber simultaneously. Each source-detector pair is adjustable, so 

they remain coaxial but can translate in the 2D measurement plane. 

 

Patients undergoing NAC typically have large (>2 cm) tumors providing significant 

contrast. A spatial intensity image from the source-detector pair measuring the cancerous 

breast was retrieved using the protocol described in section 2.2.1. However, rather than 
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using four fibers to achieve depth sensitivity only a single on-axis image was acquired. The 

poor spatial resolution of diffuse optics limits our capability to identify the tumor location 

with high accuracy, however the large tumors associated with NAC still afford sensitivity 

to the hemodynamics with an inaccurate probe placement. To place the source-detector 

pair used to measure the cancerous breast as accurately as possible, we used the location 

of the tumor identified in X-ray mammograms a priori.  Since cancer has higher blood 

content and subsequently higher absorption than the surrounding healthy tissue we use the 

intensity minimum in the corresponding quadrant of the intensity image as a guide to place 

the source-detector pair. The detector fibers were then coupled into a spectrograph and 

transmitted intensity data for each breast (650 – 1000 nm) were recorded at up to 5 Hz 

simultaneously using the same CCD camera (Model Pixis400, Princeton Instruments, 

Princeton, NJ).  

The transmitted intensity measurements over time were translated to Δ[Hb](t) and 

Δ[HbO2](t) using the modified Beer-Lambert law as described in section 2.2.4. The plate 

separation was adjusted to stabilize both breasts while limiting any mechanical 

compression resulting from the plates. To maintain the compression level between 

measurements the plate separation was kept constant through the course of chemotherapy 

for each patient. For NACP#11, due to the patients smaller breasts (plate 

separation = 40 mm) placing both breasts such that the detectors were sampling the same 

tissue region was challenging. Some measurements were contaminated with motion 

artifacts due to the plates not being able to stabilize the breast without significant 

compression. 
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5.2.3. Protocol for inducing coherent hemodynamics 

Similar to the protocol described in section 4.2.2, we induce systemic oscillations in mean 

arterial pressure using pneumatic thigh-cuffs on both legs. NACP#12 previously had a stent 

placed in her right calf, and only one thigh-cuff on the left leg was used as a precaution. In 

previous studies, we have found that single cuffs are sufficient to induce systemic 

oscillations, however the magnitude of oscillations in mean arterial pressure were smaller 

than with two cuffs. NACP#13 had previously been diagnosed with polio. While polio, 

primarily affects nerve function, the inability of the patient to bend her right leg led to, in 

some cases, motion of the cuff during inflation causing inconsistent pressure.  In this study 

to limit the time of the measurement and to test the hypothesis that we can see a phase 

difference between oscillations in [HbO2] and [Hb] we induce oscillations at a single 

frequency 0.059 Hz. This frequency was chosen because it was slow enough that 

the pump used in the clinical setting could refill and provide consistent pressure. 

Note that in a realistic application, a direct line of air pressure would eliminate this 

issue, but this was not available for these measurements.  

5.2.4. Data analysis 

The methods used for data analysis are described in section 4.2.3. Specifically, we use the 

Hilbert transform to derive the analytical signal at the induced frequency and extract the 

amplitude and phase of oscillations in ∆[HbO2] and ∆[Hb], as well as their phasors D and 

O. Additionally, since we do not have access to mean arterial pressure data during these 

measurements, we use the PSI based on D and O, PSID,O, to identify those induced 

oscillations that are coherent (as described in section 4.2.5). For each infusion time point 

we collect an optical measurement of arg(D)−arg(O) as well as |D|/|O|. 
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5.3. Results and Discussion 

The purpose of this study was to identify differences in the hemodynamics measured with 

NIRS associated with cancerous tissue versus healthy tissue. Ultimately, we found that no 

phase difference between [Hb] and [HbO2] was measured in the cancerous tissue, 

resembling the same hemodynamic features as the healthy tissue (Figure 5.2). Namely, no 

consistent trends were produced by using induced oscillations to measure hemodynamics.  

 
Figure 5.2: Phase relationship between D and O for NACP#12 at 0.059 Hz for the 

cancerous (closed circles) and healthy (open circles) breasts. The blue points represent 

those measurements that passed the PSI threshold. A total of 4 measurements for the 

cancerous breast and only 2 measurements for the healthy breast passed the PSI threshold 

during these experiments.  

 

The initial challenge in this study, as was reported also in Chapter 4:, is that the pneumatic 

thigh cuffs did not always produce robust oscillations. We found that only 4 out of 13 

measurements produced coherent oscillations that passed the PSI threshold for the 

cancerous breast and only 2 out of 13 oscillations passed the PSI threshold for the healthy 

breast. For this NACP#12 it is possible that using only one thigh cuff caused poor results, 

but the results from the other two subjects (even with incomplete data sets) were not 
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significantly better. Which points to the need for understanding the propagation of the 

mean arterial pressure signal that results from the thigh cuff oscillations. It is possible that 

the particularly low incidence of significant oscillations in the case of patients undergoing 

chemotherapy is a result of chemotherapy disrupting the vascular function to attack tumor 

growth. While one would think this would only affect the cancerous breast, we have 

previously shown (in Chapter 3) the significance of measurements done on the contralateral 

breast as chemotherapy has broad systemic effects.  

In Chapter 4: we point to the fact that inherent variability in our measurements of 

arg(D)−arg(O) between subjects can depend on varied physiological states and anatomical 

differences, but in the breast measurements we see little variability in that when 

arg(D)−arg(O) is synchronous there is no phase difference. Our interpretation of in phase 

oscillations between D and O, as reported in the healthy breast also, is that these 

oscillations result primarily due to blood volume changes.53 Our initial hypothesis was that 

the stiffer breast tissue resulting from breast cancer would result in limiting blood volume 

changes and result in measurable changes in blood flow. It is possible that when using the 

modified Beer-Lambert law, since we treat the measured tissue as a homogenous medium, 

we include large portions of both healthy and cancerous tissue. In this sense, while we 

could be sensitive to smaller oscillations in blood flow, they are still dominated by the 

surrounding oscillations in blood volume.  

5.4. Conclusions 

In this study we monitored NACPs using a dynamic breast imaging system adapted from 

the system designed in Chapter 2. The results show that in a transmission geometry using 

a single source-detector pair we were unable to measure a phase difference between [Hb] 
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and [HbO2] oscillations in the cancerous or healthy breast. More importantly, we 

realize that the measurements as done here were not particularly robust. We ran into 

clinical challenges that affected our protocol’s efficacy and need to be rectified if 

this question is to be better investigated. It is possible that using multiple source 

detector distances for each measurement could provide some depth information to 

separate out oscillations from healthy versus cancerous tissue.  
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Chapter 6: Summary and future directions 

6.1. Optical characteristics of breast cancer.  

Over the past 20 years, optical measurements of patients with breast cancer, and those 

undergoing neoadjuvant chemotherapy have been widely reported. Namely, a consistent 

increase in the concentration of total hemoglobin [HbT] has been reported by many groups 

irrespective of the imaging modalities, geometries, and instrument designs.3 The basis for 

an increase in total hemoglobin concentration in the presence of cancer is a result of 

accelerated angiogenesis—total blood volume in the cancer region increases from the 

growth of new vessels. Hemoglobin saturation (SO2), however, relates to the balance 

between tissue demand for oxygen dictated by metabolic rate, and the supply of oxygen 

determined by the blood flow.  

While [HbT] has been consistently reported to increase, hemoglobin saturation has 

been reported by numerous groups to increase, decrease, or stay the same. Some studies 

have reported decreased SO2 within tumors4,8, whereas others have found no significant 

difference in the SO2 of cancerous and healthy tissue.6,29,92,93 These discrepancies may rule 

out SO2 as a robust NIRS cancer biomarker. It is possible that different cancer types, 

stages, and locations may result in different SO2 contrasts measured with NIRS. Each of 

these factors, which differ across studies, may contribute to an inconsistent trend in how 

SO2 in all cancers compares to healthy tissue.  

 Additionally, groups have reported on the capability to of NIRS measurements to 

identify biomarkers associated with chemotherapy response. A consistently reported result 

is that the total concentration of hemoglobin in cancerous breast tissue, [HbT], decreases 

by a large amount (as much as 60%) in patients who respond to therapy, whereas it 
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decreases by a smaller amount, stays constant, or increases in patients who do not respond 

to therapy. It was also reported that systemic effects of neoadjuvant chemotherapy account 

for [HbT] changes in the healthy breast as well as in the cancerous breast. The application 

of NIRS in monitoring patients undergoing chemotherapy takes full advantage of the safe, 

non-invasive, and cost-effective nature of optical mammography. While, static changes in 

the absolute blood volume provide information about the structural changes associated with 

breast cancer, the dynamics of how these tissues function may provide more specific 

optical measurements. 

6.2. Developing NIRS as a clinical tool for breast cancer. 

Although groups have reproduced similar results showing that NIRS measurements can 

distinguish specific physiologically relevant changes associated with breast cancer, the 

clinical implementation of optical measurements is still not within reach. Changes in [HbT] 

and SO2 show that NIRS is capable of distinguishing changes on a group level, however 

the specificity required to either diagnose or characterize patients on an individual level 

has yet to be reported. We show an initial attempt at using NIRS to classify patients as 

responders or non-responders to chemotherapy using our CRI, however this is merely a 

proof-of-concept. In a real classification scheme a much larger data set is needed to have a 

training set and a test set for classification.  

 The challenge moving forward is collecting robust data on a large enough 

population to begin providing clinically useful conclusions.  Tromberg et al. report the first 

multi-center clinical trail using NIRS to monitor patient response to neoadjuvant 

chemotherapy. Tromberg et al. collected data on 60 subjects of which 34 were analyzed, 

and show that while their tumor optical index (TOI), a combination of the different optical 
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parameters measured, was sensitive to the changes associated with chemotherapy.79 This 

was the first study, where a standardized optical breast imaging platform was evaluated to 

characterize chemotherapy. While Tromberg et al. were successful in showing that NIRS 

is capable of characterizing the changes associated with chemotherapy treatment, they were 

unable to develop a diagnostic endpoint to determine if patients were complete responders. 

Similarly, Sajjadi et al recruit 30 patients undergoing neoadjuvant chemotherapy and show 

in 13 patients that the dynamic response to manual compression of the breast can 

distinguish responding and non-responding patients.151 While,  Sajjadi et al show they are 

sensitive to differences in tumor function based on their dynamics measured using NIRS. 

However, they were unable to individually characterize the response of each patient.  

Although NIRS has the capability to measure changes associated with cancer or 

even treatment with chemotherapy, the common issue associated with developing a robust 

clinical endpoint using NIRS is the practicality of its application. In each of the large 

studies reported above, nearly half of the subjects were discarded due to technical reasons. 

These reasons may be due to instrument malfunction, measurement time, patient 

compliance or poor quality of data.79,151 Since the number of patients undergoing 

neoadjuvant chemotherapy is small, completing large population based study is highly 

dependent on robust methods of data collection. Developing a high-fidelity system, that is 

well tested, and collects the relevant optical information with minimal intrusion to the 

clinical workflow of doctors, nurses, and the patient is critical to moving forward. Teng et 

al have recently developed a wearable optical probe that can conform to the tissue it 

measures and provide robust measurements of [Hb] or [HbO2] with minimal disruption to 

the patient.152 While this instrument has yet to be tested on the breast, instruments such as 
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this, address the more pressing issue of acquiring fast, reliable, and robust measurements 

which will improve patient and physician compliance with research studies.  The 

combination of being able to implement robust measurement schemes and avoid disrupting 

clinical workflow provides the basis to collect the large sample sizes needed to build a 

classification scheme based on optical parameters for chemotherapy response, or even for 

breast cancer diagnosis.  

6.3. Applying machine learning to optical data. 

As the capability to collect large data sets improve it is only logical to take into account 

the capabilities of machine learning and its advantages for understanding optical data in 

medicine. Machine learning is the study of computer algorithms which can learn complex 

relationships or patterns from empirical data and make accurate decisions.153 Machine 

learning algorithms identify complex patterns automatically and has been researched in 

applications on radiology data such as conventional radiographs, CT, MRI, and PET 

images.154 For optical data, while the relationship between hemoglobin changes and cancer 

changes are well understood in their functional relationship, differences in cancer subtype, 

treatment type, and patient history are not well understood. While we can be sure that 

changes in the concentration of hemoglobin in the breast is linked to changes in cancer, 

with large data sets a machine learning algorithm may provide more insight into specific 

trends associated with the many other variables we have access to.   
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