Kepler's "Laws"

1. (The) planets describe elliptical trajectories about the Sun (or central body) at a focus
2. The radius vectors of (the) planets sweep out equal areas in equal times about the Sun (or central body)
3. The periods of (the) planets are in sesquialternate proportion to their mean distances from the Sun (or central body)
4. The distances of (the) planets from the Sun (or central body) vary as $a(1+e \cos E)$, where a is the mean distance, e is the eccentricity, and E is the "eccentric anomaly"
5. The trajectories defined by (the) planets are confined to single planes through the Sun (or central body) at a fixed inclination to the plane of the ecliptic

Keplerian Motion: Projectability

At least to high approximation, the five planets move along ellipses, sweeping out equal areas in equal times with respect to the (true) Sun located at a focus common to all, on planes passing through the Sun at fixed angles of inclination, in periods proportional to the $3 / 2$ power of their mean distances from the Sun.

Questions about this group of generalizations:

1. What grounds were there for extending - i.e. projecting - each of the generalizations beyond the five planets to support claims about:
a. Any ("possible") body orbiting the Sun?
b. Any body engaged in celestial orbital motion - e.g. Moon, satellites of planets?
c. Any celestial body moving within our planetary system - e.g. comets?
2. What grounds were there for concluding that the specific statement of each generalization was properly suited for any such projection?
3. What, if any, further qualifications - e.g. tacit ceteris paribus conditions - needed to be noted with each generalization before projecting it?
