
On the computational complexity of equivalence relations under

kernel reductions

Jeffrey Finkelstein

August 17, 2010

Abstract

In this paper we analyze the notion of kernel reductions among equivalence problems, as defined in
Fortnow and Grochow. We first examine what kernel reductions look like, practically, among feasible
equivalence problems. We next provide some evidence that the restriction of a polynomial time kernel
reduction is not on the time complexity of the reduction, but on the number of equivalence classes in
the equivalence relations being reduced. We then examine the graph isomorphism problem and problems
equivalent to it under polynomial time many-one reductions, and find that of these problems the ones
which are equivalence problems are in fact equivalent to the graph isomorphism problem under polynomial
time kernel reductions.

1 Introduction

Problems of determining equivalence of objects abound in theoretical computer science and have widespread
applications in a more practical setting. Indeed, one of the most well-studied open problems in computer
science is determining the computational complexity of the graph isomorphism problem (GI). If P 6= NP,
then GI is a candidate for P\NP.

A recent paper by Fortnow and Grochow [FG09] defines a new kind of reduction among equivalence
relations, a kernel reduction, which may be more natural than the usual many-one reduction for problems
of determining equivalence. They suggest considering polynomial time kernel reductions for equivalence
problems in P, but in section 3 we will provide some evidence that allowing a polynomial time kernel
reduction among equivalence relations for which membership can be decided in polynomial time may be too
powerful. The main result to this effect is Theorem 3.22, in which we show that the problem of computing
a polynomial time kernel reduction among feasible equivalence problems can, under certain conditions, be
reduced to the problem of computing representatives of equivalence classes for each respective equivalence
relation.

In section 4 we attempt to determine whether there exist any equivalence problems which are complete
under polynomial time kernel reductions, and what they look like. We also analyze the class of equiva-
lence problems which are equivalent under polynomial time many-one reductions to the graph isomorphism
problem. Every known reduction that we have found among equivalence problems in NP and the graph
isomorphism problem are in fact kernel reductions.

We show in Lemma 2.13 that a kernel reduction implies a many-one reduction. One of our goals in
this paper is to gain some intuition as to whether the two kinds of reductions are different. However, in
section 5 we describe our difficulties in determining whether a many-one reduction implies a kernel reduction
or whether they are different.

BY:© C© Copyright 2010 Jeffrey Finkelstein. Except where otherwise noted, this
work is licensed under http://creativecommons.org/licenses/by-sa/3.0/

1

2 Preliminaries

Definition 2.1. Let Σ = {0, 1}. Then Σ∗ is the set of all strings consisting of elements of Σ. In particular,
Σ∗ is the set of all binary strings.

Definition 2.2. A subset of Σ∗ is called a language.

Since we wish to consider only sets whose members are binary strings, in order to define sets of pairs of
binary strings we need to make use of a pairing function, 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗. For example, consider the
pairing function defined as follows: 〈x, y〉 duplicates each bit in x and y to produce x̂ and ŷ, respectively, then
outputs x̂01ŷ. For example, the pair (0110, 1100) can be encoded as 〈0110, 1100〉 = 001111000111110000.

For tuples of arbitrary fixed length we define the encoding inductively using the pairing function. For
example, the triple (x, y, z) can be encoded as 〈x, y, z〉 = 〈〈x, y〉, z〉, and so on for tuples with a greater
number of elements.

For a more thorough treatment of languages, alphabets, encodings, pairing functions, etc., see [BDG95].

Definition 2.3. P is the class of languages for which membership can be decided by a Turing machine
running in deterministic polynomial time.

NP is the class of languages for which membership can be decided by a Turing machine running in
non-deterministic polynomial time.

NP can alternately be defined as the class of languages for which membership can be verified by a Turing
machine running in deterministic polynomial time.

The equivalence of these two definitions of the complexity class NP can be found, for example, in [Sip06].

Definition 2.4. Let S, T be sets, let S′ ⊆ S, and let f : S′ → T be a function. Then f is called a partial
function from S to T . If S′ = S then f is called a total function from S to T .

Definition 2.5. FP is the class of total functions computable by a Turing machine running in polynomial
time. Specifically, f : N→ N is in FP if there exists a Turing machine which, on input n, halts with f(n) on
its tape.

Definition 2.6. Let A,B be languages. We say A polynomial time, many-one reduces to B if ∃f ∈ FP :
∀w ∈ Σ∗, w ∈ A ⇐⇒ f(w) ∈ B. We denote this by A ≤p

m B.
We say A is polynomial time, many-one equivalent to B if A ≤p

m B and B ≤p
m A. We denote this by

A ≡p
m B.

Definition 2.7. If a language A is in NP and ∀B ∈ NP, B ≤p
m A, then we say A is NP-complete, A is

complete under ≤p
m reductions in NP, or A is ≤p

m-complete.

Definition 2.8. Let U be a set. Let R ⊆ U × U . Then R is an equivalence relation on U if the following
conditions hold:

i. (reflexivity) ∀x ∈ U , (x, x) ∈ R

ii. (symmetry) ∀x, y ∈ U , if (x, y) ∈ R then (y, x) ∈ R

iii. (transitivity) ∀x, y, z ∈ U , if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R

If (x, y) ∈ R, we say x relates to y or x is equivalent to y under R. We denote this by x ∼R y or x ∼ y.

Note that an equivalence relation is a generalization of the idea of equality; whereas every object is equal
to itself and only itself, many objects can be equivalent with respect to some equivalence relation.

Definition 2.9. Let U be a set, let R be an equivalence relation on U , let x ∈ U . The equivalence class of
x is [x]R = {y ∈ U |(x, y) ∈ R}. When the context is clear, we sometimes omit the subscript, and just write
[x].

2

For all equivalence relations on a set U , each element of U is in exactly one equivalence class and
U =

⋃
x∈U [x], so the equivalence classes of an equivalence relation provide a partition of U .

In [FG09], Fortnow and Grochow give a formal definition of a new class of languages: the class of
equivalence problems which can be decided in polynomial time. They also provide a natural reduction for
languages in this complexity class. We provide the definition, along with its generalization in NP, here.

Definition 2.10. PEq is the class of equivalence relations for which membership can be decided by a Turing
machine running in deterministic polynomial time.

NPEq is the class of equivalence relations for which membership can be decided by a Turing machine
running in non-deterministic polynomial time.

NPEq can alternately be defined as the class of equivalence relations for which membership can be verified
by a Turing machine running in deterministic polynomial time.

Technically, an equivalence relation on Σ∗ is a set of pairs of binary strings, but PEq and NPEq are
classes of languages, which are sets of binary strings (not pairs). We use the pairing function discussed
above to encode pairs of binary strings in an equivalence relation (that is, the binary strings which relate)
as single binary strings. For example an equivalence relation R ⊆ Σ∗ × Σ∗ can be encoded as a language
LR = {〈x, y〉|(x, y) ∈ R}. Then we can discuss membership of LR in complexity classes such as PEq or NPEq,
etc. Throughout this paper, we will abuse these formalities and use the convention that an equivalence
relation is defined as its corresponding encoding described here, so that we may simply consider equivalence
relations as members of complexity classes, and consider reductions among them.

We explicitly show here the containments among P, NP, PEq, and NPEq.

Lemma 2.11.

i. P ⊆ NP

ii. PEq ⊆ NPEq

iii. PEq (P

iv. NPEq (NP

Proof. Any language which can be decided in deterministic polynomial time can be verified in deterministic
polynomial time, by deciding whether the input is in the language, thus P ⊆ NP. The same argument
applies to equivalence problems, so PEq ⊆ NPEq. PEq ⊆ P and NPEq ⊆ NP follows immediately from the
definitions. A language in P which is not an equivalence relation is MAJORITY = {w| the number of ones

in w is greater than |w|2 }, so PEq (P. In fact, if MAJORITY ∈ C, where C is any complexity class, then
CEq6= C. MAJORITY ∈ P ⊆ NP, therefore NPEq (NP.

Definition 2.12. Let R and S be equivalence relations on Σ∗. We say R kernel reduces to S if ∃f : Σ∗ →
Σ∗ : ∀x, y ∈ Σ∗, 〈x, y〉 ∈ R ⇐⇒ 〈f(x), f(y)〉 ∈ S. We denote this by R ≤ker S.

We say R is kernel equivalent to S if R ≤ker S and S ≤ker R. We denote this by R ≡ker S.
If f ∈ FP, then we say R polynomial time kernel reduces to S, and use the notation R ≤p

ker S and
R ≡p

ker S.

Note the difference between a kernel reduction and a many-one reduction: a kernel reduction maps
〈x, y〉 ∈ R to 〈f(x), f(y)〉 ∈ S, whereas a many-one reduction maps 〈x, y〉 ∈ R to f(〈x, y〉) ∈ S, for some
polynomial time computable function f . Informally, a function which computes a many-one reduction has
access to both x and y, but a function which computes a kernel reduction has access to only one of x and y
at a time. Because the many-one reduction seems to be at least as powerful as the kernel reduction, we can
prove the following lemma, which is essential for proving Theorem 4.22.

Lemma 2.13. Let R,S be equivalence relations on Σ∗. If R ≤p
ker S then R ≤p

m S.

3

Proof. Since R ≤p
ker S, ∃f ∈ FP : ∀x, y ∈ Σ∗, 〈x, y〉 ∈ R ⇐⇒ 〈f(x), f(y)〉 ∈ S. Define g ∈ FP by

g(〈x, y〉) = 〈f(x), f(y)〉. Therefore R ≤p
m S by g.

As an analog to polynomial time many-one completeness in NP, we define a similar notion of polynomial
time completeness under kernel reductions in NPEq.

Definition 2.14. An equivalence relation R is PEq-complete if R ∈ PEq and ∀S ∈ PEq, S ≤p
ker R.

An equivalence relation R is NPEq-complete if R ∈ NPEq and ∀S ∈ NPEq, S ≤p
ker R.

3 Kernel reductions among feasible equivalence problems

With these definitions in place, we can now define some examples of equivalence relations in PEq, feasible
equivalence problems.

Definition 3.1. The parity function, π : Σ∗ → {0, 1}, is defined by π(w) = 0 if the number of ones in w is
even, and π(w) = 1 if the number of ones in w is odd, for all w ∈ Σ∗.

Definition 3.2. Rpar = {〈x, y〉|π(x) = π(y)}

We use the subscript “par” to denote that pairs of binary strings in this equivalence relation have the
same parity.

Definition 3.3. The bitcount function, β : Σ∗ → N, is defined by β(w) equals the number of ones in w, for
all w ∈ Σ∗.

Definition 3.4. Rbc = {〈x, y〉|β(x) = β(y)}

We use the subscript “bc” to denote that pairs of binary strings in this equivalence relation have the same
bitcount.

Definition 3.5. Req = {〈x, y〉|x = y}

Req is called the equality relation.

Definition 3.6. The bitwise complement function, ·̄ : Σ∗ → Σ∗, is defined for all w ∈ Σ∗, where w =
w1w2 · · ·w|w|, by wi = 0 if wi = 1 and wi = 1 if wi = 0, for all i ≤ |w|.

Definition 3.7. Reqc = {〈x, y〉|x = y or x = ȳ}

We use the subscript “eqc” to denote that pairs of binary strings in this equivalence relation are either
equal or bitwise complements.

Definition 3.8. The exclusive or operation, ⊕ : Σ∗×Σ∗ → Σ∗ is defined for all x, y ∈ Σ∗, where |x| = |y| = n,
x = x1x2 · · ·xn and y = y1y2 · · · yn, by xi ⊕ yi = 0 if xi = yi and xi ⊕ yi = 1 if xi 6= yi, for all i ≤ n.

Definition 3.9. Let a ∈ Σ∗. Ra = {〈x, y〉|x = y or x⊕ y = a}

Note that Ra is a family of equivalence relations. Ra is a different relation for each fixed a ∈ Σ∗.
Notice the following equivalent definitions, where n = |x| = |y| = |a|: Req = {〈x, y〉|x ⊕ y = 0n},

Reqc = {〈x, y〉|x ⊕ y = 0n or x ⊕ y = 1n}, and Ra = {〈x, y〉|x ⊕ y = 0n or x ⊕ y = a}. From these we can
see that if a = 1n, then Ra = Reqc, and if a = 0n, then Ra = Req.

4

3.1 Containments and equivalence classes

Theorem 3.10. Req (Rbc (Rpar

Proof. Let 〈x, y,∈〉Req, so x = y. Then x has exactly the same number of ones as y (and the same number
of zeros, and in the same order), so 〈x, y〉 ∈ Rbc. Therefore, Req ⊂ Rbc.

Consider x = 1100 and y = 0101. Then 〈x, y〉 ∈ Rbc but 〈x, y〉 /∈ Req. Therefore Req 6= Rbc.
Let 〈x, y〉 ∈ Rbc, so x and y have the same number of ones. Let k be the number of ones in x, and l be

the number of ones in y. Then l = k, which implies l ≡ k (mod 2). Therefore x and y have the same parity,
so 〈x, y〉 ∈ Rpar. Therefore Rbc ⊂ Rpar.

Consider x = 1000 and y = 1011. Then 〈x, y〉 ∈ Rpar but 〈x, y〉 /∈ Rbc. Therefore Rbc 6= Rpar.

Theorem 3.11. Req (Reqc

Proof. Let 〈x, y〉 ∈ Req, so x = y. Then 〈x, y〉 satisfies the property specified in the definition of Reqc,
specifically that x = y, so 〈x, y〉 ∈ Reqc. Therefore Req ⊂ Reqc.

Consider x = 1000 and y = 0111. Then 〈x, y〉 ∈ Reqc but 〈x, y〉 /∈ Req. Therefore Req 6= Reqc.

Since membership in Rpar, Rbc, Req, Reqc, and Ra can be decided in polynomial time, they are all
members of PEq. Now we can examine kernel reductions between these members of PEq. Notice that in each
of the reductions in the next section, the more general equivalence relation reduces to the more restrictive
equivalence relation.

We will here point out that Rpar is the most general of the above equivalence relations, and it has only two
equivalence classes: [0] and [1]. The only equivalence relation which is more general is the trivial equivalence
relation in which all elements of Σ∗ relate to all other elements; Σ∗ itself is the only equivalence class of this
equivalence relation. The most restrictive equivalence relation then is the equality relation, Req, in which
each binary string is the sole element in its equivalence class. The other equivalence relations defined here
also have an infinite number of equivalence classes.

3.2 Reductions

We wish to provide some intuition that problems in PEq under polynomial time kernel reductions are
restricted not by the reductions themselves, but by the number of equivalence classes in the languages. This
point becomes somewhat clearer if we consider a kernel reduction from an equivalence relation with exactly
two equivalence classes (like Rpar) to an equivalence relation with at least two equivalence classes (like Req).
Since we are allowed polynomial time for the kernel reduction, we can simply decide whether a given word is
in one equivalence class or the other, then map it to a corresponding representative of an equivalence class
in the language to which we are reducing, depending in which of the two equivalence classes the given word
is a member.

Theorem 3.12. Let R,S ∈ PEq. Suppose R has exactly two equivalence classes, [a] and [b], and S has at
least two equivalence classes, including [j] and [k]. Given a, b, j, and k, R ≤p

ker S.

Proof. Since R ∈ PEq, there exists a Turing machine, MR, running in deterministic polynomial time such
that ∀x, y ∈ Σ∗, 〈x, y〉 ∈ R ⇐⇒ MR(〈x, y〉) accepts.

Construct machine M ∈ FP on input w ∈ Σ∗:

if MR(〈w, a〉) accepts then1

return j2

else3

return k4

Suppose 〈x, y〉 ∈ R, and without loss of generality, x, y ∈ [a]. Then M(x) = j and M(y) = j, so
〈M(x),M(y)〉 = 〈j, j〉 ∈ S.

5

Suppose 〈x, y〉 /∈ R, and without loss of generality, x ∈ [a] and y ∈ [b]. Then M(x) = j and M(y) = k.
Since equivalence classes form a partition, their intersection is empty, so (j, k) /∈ S. Thus 〈M(x),M(y)〉 /∈ S.

Therefore 〈x, y〉 ∈ R ⇐⇒ 〈M(x),M(y)〉 ∈ S, and hence R ≤p
ker S.

Corollary 3.13. Let S ∈ PEq be an equivalence relation with at least two equivalence classes, including [j]
and [k]. Given j and k, Rpar ≤p

ker S.

Proof. The two equivalence classes of Rpar are [0] and [1]. Use Theorem 3.12 to construct a kernel reduction
from Rpar to S.

Corollary 3.14. Rpar ≤p
ker Req

Proof. Two equivalence classes of Req are [0] and [1]. Use Corollary 3.13 to construct a kernel reduction
from Rpar to Req.

The kernel reductions we provide below from Rpar to Rbc and then to Req somewhat obfuscate this
“decide then map” process, but that is essentially what is happening when these reductions are composed.

Theorem 3.15. Rpar ≤p
ker Rbc

Proof. Construct M ∈ FP on input w ∈ Σ∗:

for i = 1 to |w| − 1 do1

if wi = 1 then2

for j = i+ 1 to |w| do3

if wj = 1 then4

write 0 to both wi and wj5

break6

Notice that this is the machine which finds pairs of ones and writes zeros in their place, one pair at a time.
Suppose 〈x, y〉 ∈ Rpar, so either x and y both have even parity or x and y both have odd parity.
If x and y both have even parity, x contains 2k ones and y contains 2l ones, for some k, l ∈ N. M(x) and

M(y) both output the string 0|x|, and since both M(x) and M(y) have a bitcount of zero, 〈M(x),M(y)〉 ∈
Rbc.

If x and y both have odd parity, x contains 2k + 1 ones and y contains 2l + 1 ones, for some k, l ∈ N.
M(x) and M(y) both output a string containing a single one, so both M(x) and M(y) have a bitcount of
one, 〈M(x),M(y)〉 ∈ Rbc.

Suppose 〈x, y〉 /∈ Rpar, so without loss of generality, x has even parity and y has odd parity. Then x
contains 2k ones and y contains 2l+ 1 ones, for some k, l ∈ N. Thus M(x) outputs the string 0|x| and M(y)
outputs the string containing a single one. Since the bitcount of M(x) is zero and the bitcount of M(y) is
one, 〈M(x),M(y)〉 /∈ Rbc.

Therefore 〈x, y〉 ∈ Rpar ⇐⇒ 〈M(x),M(y)〉 ∈ Rbc, so Rpar ≤p
ker Rbc.

Theorem 3.16. Rbc ≤p
ker Req

Proof. Construct M ∈ FP on input w ∈ Σ∗, where w = w1w2 · · ·w|w|:

Sort the bits of w1

i← 12

while wi = 0 do3

Write a blank at index i4

i← i+ 15

Notice that if w contains k ones, this machine outputs the string 1k.
Suppose 〈x, y〉 ∈ Rbc, so x and y have the same number of ones, say k. Thus M(x) = M(y) = 1k, so

〈M(x),M(y)〉 ∈ Req.

6

Suppose 〈x, y〉 /∈ Rbc, so x and y have a different number of ones. Suppose x has k ones and y has l ones,
for some k, l ∈ N, with k 6= l. Then M(x) = 1k and M(y) = 1l, so M(x) 6= M(y). Thus 〈M(x),M(y)〉 /∈ Req.

Therefore 〈x, y〉 ∈ Rbc ⇐⇒ 〈M(x),M(y)〉 ∈ Req, so Rbc ≤p
ker Req.

The equivalence relations Reqc, which is a generalization of Req, and Ra, which is a generalization of
Reqc, also reduce to equality.

Theorem 3.17. Reqc ≤p
ker Req

Proof. Construct machine M ∈ FP on input w ∈ Σ∗, where w = w1w2 · · ·w|w|:

if w1 = 0 then1

return w2

else3

return w̄4

Suppose 〈x, y〉 ∈ Reqc, so either x = y or x = ȳ. In the case that x = y, M(x) and M(y) produce the
same output. In the case that x = ȳ, then either x1 = 1 and y1 = 0 or x1 = 0 and y1 = 1. Consider
without loss of generality the case that x1 = 1 and y1 = 0. Then M(x) outputs x̄ and M(y) outputs y. Now
x̄ = ¯̄y = y, so M(x) = M(y). Therefore 〈M(x),M(y)〉 ∈ Req.

Suppose 〈x, y〉 /∈ Reqc, so x 6= y and x 6= ȳ.
In the case that x1 = 0 and y1 = 0, then M(x) = x and M(y) = y. Since x 6= y, then M(x) 6= M(y), so

〈M(x),M(y)〉 /∈ Req.
In the case that x1 = 0 and y1 = 1, then M(x) = x and M(y) = ȳ. Since x 6= ȳ, then M(x) 6= M(y), so

〈M(x),M(y)〉 /∈ Req.
In the case that x1 = 1 and y1 = 0, then M(x) = x̄ and M(y) = y. Since x 6= ȳ, then x̄ 6= ¯̄y = y, so

M(x) 6= M(y), and 〈M(x),M(y)〉 /∈ Req.
In the case that x1 = 1 and y1 = 1, then M(x) = x̄ and M(y) = ȳ. Since x 6= y, then x̄ 6= ȳ, so

M(x) 6= M(y), and 〈M(x),M(y)〉 /∈ Req.
Therefore 〈x, y〉 ∈ Reqc ⇐⇒ 〈M(x),M(y)〉 ∈ Req, so Reqc ≤p

ker Req.

Theorem 3.18. Let a ∈ Σ∗. Then Ra ≤p
ker Req.

Proof. Construct machine M ∈ FP on input w ∈ Σ∗, where |w| = |a| = n, w = w1w2 · · ·wn and a =
a1a2 · · · an:

s← ((a1, w1), (a2, w2), . . . , (an, wn))1

Perform a stable sort on s with each ai as the key, to obtain two subsequences, r and r′, where2

r = (ai, wi)|ai=0 and r′ = (aj , wj)|aj=0

Run the algorithm in Theorem 3.17 on the concatenation of each wj in r′ to obtain a new string c3

return the concatenation of each wi, in the order of r, with the string c4

Notice that informally this machine splits up the problem into two easier problems whose solutions are
known: the first problem is the problem of determining equality, the second problem is the problem of
determining either equality or bitwise complement.

Suppose 〈x, y〉 ∈ Ra, so either x = y or x ⊕ y = a. In the case that x = y, then M(x) and M(y)
output the same string, so M(x) = M(y), and hence 〈M(x),M(y)〉 ∈ Req. Now consider the case in which
x ⊕ y = a, which implies x ⊕ a = y and y ⊕ a = x. Then M(x) and M(y) will first rearrange the bits of
x and y, respectively, by stable sorting the bits of a. For all bits of a which are zero, the corresponding
bits of x and y are equal, by hypothesis. For all bits of a which are one, the corresponding bits of x and y
are complements of one another. Let ai be the leftmost bit of a which is one. In the case that xi = 1 and
yi = 0, then the algorithm from Theorem 3.17 will flip all the bits of x corresponding to bits of a which are
one. Since y and x were complements at these bits only, now M(x) = M(y), so 〈M(x),M(y)〉 ∈ Req. The
argument for the case that xi = 0 and yi = 1 is symmetric.

7

Suppose 〈x, y〉 /∈ Ra, so x 6= y and x ⊕ y 6= a. So ∃i, j ∈ {1, 2, . . . , |x|} : xi 6= yi and xj ⊕ yj 6= aj . Now
M(x) and M(y) will first rearrange the bits of x and y, respectively, by stable sorting the bits of a in step
2. Call these intermediate strings x′, y′ and a′, and the corresponding permutation of indices i and j to be
i′ and j′, respectively. Note that the value of a′j′ completely determines whether 〈M(x),M(y)〉 ∈ Req.

In the case that a′j′ = 0 then x′j′ ⊕ y′j′ 6= a′j′ =⇒ x′j′ ⊕ y′j′ 6= 0 =⇒ x′j′ 6= y′j′ and hence 〈M(x),M(y)〉 /∈
Req.

Consider the case in which a′j′ = 1. Let k be the index of the leftmost one bit in a, and the index of
its image after the stable sorting in step 2 k′. In the case that x′k′ = 1 then y′k′ = x′k′ ⊕ a′k′ = 1 ⊕ 1 = 0.
Since x′k′ = 1, step 3 in the above algorithm will invert each of the bits of x′ from index k′ to the end
of that string. Since y′k′ = 0, step 3 will leave y′ unchanged. Since x′j′ ⊕ y′j′ 6= a′j′ by assumption, then

x′j′⊕y′j′ 6= 1 =⇒ x′j′⊕y′j′ = 0 =⇒ x′j′ = y′j′ =⇒ x′j′ 6= y′j′ . Hence M(x) 6= M(y), so 〈M(x),M(y)〉 /∈ Req.
The argument for the case that x′k′ = 0 is symmetric.

Therefore 〈x, y〉 ∈ Ra ⇐⇒ 〈M(x),M(y)〉 ∈ Req, so Ra ≤p
ker Req.

It appears that all of these “bitwise” equivalence problems reduce under polynomial time kernel re-
ductions to the equality relation, Req, the most restrictive equivalence relation in PEq. However, there is
evidence[FG09] that the equality relation is not PEq-complete. We restate this evidence in the next section.

We now present theorems formalizing the intuition we have gained about reductions among equivalence
relations with different numbers of equivalence classes.

Theorem 3.19. Let R and S be equivalence relations on Σ∗. Suppose R has n equivalence classes and S
has m equivalence classes. If n > m then R �ker S (that is, R does not kernel reduce to S, regardless of any
time bound on the function computing the reduction).

Proof. Assume with the intention of producing a contradiction that R ≤ker S. Then ∃f : Σ∗ → Σ∗ : ∀x, y ∈
Σ∗, 〈x, y〉 ∈ R ⇐⇒ 〈f(x), f(y)〉 ∈ S.

Since R has n equivalence classes, each equivalence class is non-empty, and the equivalence classes parti-
tion R, then ∃r1, . . . , rn ∈ Σ∗ : R = [r1]R ∪ · · · ∪ [rn]R. Since each element of R is in exactly one equivalence
class, ∀i, j ≤ n, i = j ⇐⇒ 〈ri, rj〉 ∈ R ⇐⇒ 〈f(ri), f(rj)〉 ∈ S. Therefore the image of each ri is in some
equivalence class in S. Also, ∀i, j ≤ n, i 6= j ⇐⇒ 〈ri, rj〉 /∈ R ⇐⇒ 〈f(ri), f(rj)〉 /∈ S. Therefore, the
image of each ri does not relate to the image of any other rj , for i 6= j, and i, j ≤ n. Therefore each of the
equivalence classes [f(r1)]S , . . . , [f(rn)]S is disjoint, so S has at least n equivalence classes. But n > m. This
is a contradiction with the hypothesis that S has m equivalence classes.

Therefore R �p
ker S.

Corollary 3.20. Req �ker Rpar

Proof. Req has a (countably) infinite number of equivalence classes (one for each binary string). Rpar has
two equivalence classes. Therefore these equivalence classes meet the conditions of Theorem 3.19.

Our intuition now is that the problem of determining whether one equivalence relation kernel reduces
to another reduces to the problem of determining representatives of equivalence classes in both equivalence
relations.

Theorem 3.21. Let R,S be equivalence relations. Suppose R ∈ PEq. Suppose R has a finite number of
equivalence classes, n, and the number of equivalence classes of S is greater than or equal to n (possibly
countably infinite). Let REP (R) be a set of representatives of equivalence classes in R, and REP (S) be a
set of representatives of equivalence classes in S. If ∃f : REP (R) → REP (S) such that f ∈ FP and f is
injective, then R ≤p

ker S.

Proof. Since R ∈ PEq, ∃MR, a deterministic Turing machine running in polynomial time, such that 〈x, y〉 ∈
R ⇐⇒ MR(〈x, y〉) accepts. Construct M ∈ FP on input w ∈ Σ∗:

8

for ri ∈ REP (R) do1

if MR(〈w, ri〉) accepts then2

return f(ri)3

Notice that each w ∈ Σ∗ is in exactly one equivalence class in R, because the equivalence classes partition
Σ∗, so MR(〈w, ri〉) accepts exactly once when 〈w, ri〉 ∈ R.

Suppose 〈x, y〉 ∈ R, so 〈x, ri〉 ∈ R and 〈y, ri〉 ∈ R for some ri ∈ REP (R). Then M(x) outputs f(ri) and
M(y) outputs f(ri). Since 〈f(ri), f(ri)〉 ∈ S, then 〈M(x),M(y)〉 ∈ S.

Suppose 〈x, y〉 /∈ R. So ∃ri, rj ∈ REP (R), with ri 6= rj , such that 〈x, ri〉 ∈ R and 〈y, rj〉 ∈ R. Then
M(x) outputs f(ri) and M(y) outputs f(rj). Since f is injective, ri 6= rj =⇒ f(ri) 6= f(rj). Since f(ri)
and f(rj) are distinct elements in REP (S), they are representatives of two distinct equivalence classes.
Since every element of S is in exactly one equivalence class, and since [f(ri)] 6= [f(rj)], it follows that
〈f(ri), f(rj)〉 = 〈M(x),M(y)〉 /∈ S.

Therefore 〈x, y〉 ∈ R ⇐⇒ 〈M(x),M(y)〉 ∈ S, so R ≤p
ker S.

Theorem 3.22. Let R,S be equivalence relations. Suppose R ∈ PEq. Suppose R has a finite number
of equivalence classes, n, and the number of equivalence classes of S is greater than or equal to n (possibly
countably infinite). If ∃ER, ES ∈ FP and ∃i, j ∈ Σ∗ such that ER on input i outputs the encoding of REP (R)
and ES on input j outputs the encoding of at least n elements of REP (S), then R ≤p

ker S.

Proof. We compute the kernel reduction using the following procedure.
Run ER on input i to produce the encoding of REP (R). The output of this machine is 〈r1, r2, . . . , rn〉,

where r1, . . . , rn are representatives of the equivalence classes in R.
Run ES on input j to produce the encoding of at least n elements of REP (S). The length of the output

of ES on input j is bounded by some polynomial in the length of j, say p(|j|). Since p(|j|) is finite, then the
number of elements of REP (S) which ES outputs when run on input j must be finite. Call this number m.
By hypothesis m ≥ n. So the output of this function is 〈s1, s2, . . . , sm〉, where s1, . . . , sm are representatives
of m equivalence classes in S.

Define f ∈ FP by f(r`) = s`, for all ` ≤ n. We now wish to show that f is injective. Suppose r`, rq ∈ R
and r` 6= rq. Then f(r`) = s` and f(rq) = sq. Since each element in the encoding of m elements of REP (S)
which is output by ES on input j is unique (as each representative is in its own equivalence class), s` 6= sq,
and hence f(r`) 6= f(rq). Therefore f is injective.

The function f now satisfies the conditions in the hypothesis of Theorem 3.21, so the result follows.

3.3 Complete invariants

Definition 3.23. Let R be an equivalence relation on A, and let f : A→ A. Then f is a complete invariant
for R if (x, y) ∈ R if and only if f(x) = f(y).

Definition 3.24. Ker(FP) = {L|L is an equivalence relation on Σ∗ with a complete invariant in FP}

Lemma 3.25. Ker(FP) ⊆ PEq

Proof. Let R ∈ Ker(FP). Then by definition ∃f ∈ FP : 〈x, y〉 ∈ R ⇐⇒ f(x) = f(y). To decide membership
of 〈x, y〉 ∈ R, use f to decide whether f(x) = f(y). This is true if and only if 〈x, y〉 ∈ R. Therefore
membership in R can be decided in polynomial time, hence Ker(FP) ⊆ PEq.

For the sake of clarity, we provide a proof of the following claim made by Fortnow and Grochow:

Theorem 3.26. Ker(FP) = PEq if and only if Req is PEq-complete.

Proof. For the forward direction, suppose Ker(FP) = PEq. Let S ∈ PEq = Ker(FP), so ∃f ∈ FP : 〈x, y〉 ∈
S ⇐⇒ f(x) = f(y) ⇐⇒ 〈f(x), f(y)〉 ∈ Req ⇐⇒ S ≤p

ker Req. Thus Req is PEq-complete.
Conversely, suppose Req is PEq-complete. Then ∀S ∈ PEq, ∃f ∈ FP : 〈x, y〉 ∈ S ⇐⇒ 〈f(x), f(y)〉 ∈

Req ⇐⇒ f(x) = f(y). Thus f is a complete invariant for S computable in polynomial time. Thus
S ∈ Ker(FP), and hence PEq ⊆ Ker(FP). By Lemma 3.25, Ker(FP) ⊆ PEq, therefore PEq = Ker(FP).

9

Fortnow and Grochow provide evidence that Req is not PEq-complete, by showing that if Ker(FP) = PEq
then UP ⊆ BQP [FG09]. To separate PEq from Ker(FP), we need to exhibit an equivalence problem for which
membership can be decided in polynomial time, but no polynomial time algorithm exists for computing a
complete invariant, or equivalently, no reduction to the equality relation exists. Two such candidates iden-
tified by Fortnow and Grochow are the Boolean function congruence problem and the subgroup equivalence
problem.

3.4 Completeness

It would appear that proving some language PEq-complete should be easier than proving, for example, P-
completeness directly, because the kernel reduction allows us a polynomial time computable function, even in
the set of equivalence problems decidable in polynomial time, whereas proofs for P-completeness under many-
one reductions allow only logarithmic space. This means we are allowed to examine the entire computation
history of the machine which decides any language in PEq (for example, as the tableau of the deterministic
polynomial time machine). And from our examination of reductions among feasible equivalence problems,
we can see that some reductions seem to solve the problem to be reduced first. This provides some intuition
that polynomial time kernel reductions for problems in PEq may be too powerful. Again, the real restriction
here is on the number of equivalence classes in each language.

4 Kernel reductions among intractable problems

4.1 The graph isomorphism problem

An equivalence problem of particular importance is the graph isomorphism problem. Although it is in NP,
it is not known to be NP-complete and it is not known to be in P. It is therefore a candidate for NP\P (if
P 6= NP). Since it is an equivalence problem in NP, it is a member of NPEq, so it may be of particular value
to study kernel reductions to and from the graph isomorphism problem.

Definition 4.1. Let V be a finite set, let E be a collection of subsets of V of size exactly 2. Then G = (V,E)
is called an undirected graph. Elements of V are called vertices, and elements of E are called edges.

If instead E ⊆ V × V , then G = (V,E) is a directed graph.

Definition 4.2. Let G1 = (V1, E1) and G2 = (V2, E2) be undirected graphs. Then G1 is isomorphic to G2

if ∃φ : V1 → V2 : {u, v} ∈ E1 ⇐⇒ {φ(u), φ(v)} ∈ E2 and φ is a bijection.
If G1 = (V1, E1) and G2 = (V2, E2) are directed graphs, then G1 is isomorphic to G2 if ∃φ : V1 → V2 :

(u, v) ∈ E1 ⇐⇒ (φ(u), φ(v)) ∈ E2 and φ is a bijection.

Intuitively, the bijection φ is a relabeling of vertices of G1 which preserves adjacency in G2.

Definition 4.3. Let GI = {〈G1, G2〉|G1 and G2 are undirected graphs and G1 is isomorphic to G2}.
Deciding membership in GI is the graph isomorphism problem.

Let DirGI = {〈G1, G2〉|G1 and G2 are directed graphs and G1 is isomorphic to G2}. Deciding member-
ship in DirGI is the directed graph isomorphism problem.

4.2 Kernel reductions to graph isomorphism

We begin by examining kernel reductions from the PEq equivalence relations defined above to the graph
isomorphism problem. The reductions should intuitively be easy because the graph isomorphism problem is
(seemingly) of greater complexity. We examine these upward reductions in order to gain some intuition that
a kernel reduction makes sense, practically.

Theorem 4.4. Rpar ≤p
ker GI

10

Proof. Construct M ∈ FP on input w ∈ Σ∗:

Vw ← {vp, vo}1

Ew ← {}2

for i = 1 to |w| do3

if wi = 1 then4

if {vo, vp} ∈ Ew then5

add {vo, vp} to Ew6

else7

remove {vo, vp} from Ew8

return Gw = (Vw, Ew)9

Suppose 〈x, y〉 ∈ Rpar, so either x and y both have even parity or x and y both have odd parity.
If x and y both have even parity, x contains 2k ones and y contains 2l ones, for some k, l ∈ N. Since 2k is

even, machine M on input x adds then removes the edge {vo, vp} to and from Ex an equal number of times.
Similarly for M on input y. Therefore M(x) outputs Gx = (Vx, Ex), where Vx = {vo, vp} and Ex = {},
and M(y) outputs Gy = (Vy, Ey), where Vy = {vo, vp} and Ey = {}. Then Gx is isomorphic to Gy by the
identity function, I : Vx → Vy, defined by I(v) = v,∀v ∈ Vx.

If x and y both have odd parity, x contains 2k + 1 ones and y contains 2l + 1 ones, for some k, l ∈ N.
Since 2k + 1 is odd, machine M on input x adds edge {vo, vp} to Ex one more time than it removes the
edge. Similarly for M on input y. Therefore M(x) outputs Gx = (Vx, Ex), where Vx = {vo, vp} and
Ex = {{vo, vp}}, and M(y) outputs Gy = (Vy, Ey), where Vy = {vo, vp} and Ey = {{vo, vp}}. Then Gx is
isomorphic to Gy by the identity function, I : Vx → Vy, defined by I(v) = v,∀v ∈ Vx.

Suppose 〈x, y〉 /∈ Rpar, so without loss of generality, x has even parity and y has odd parity. Then x
contains 2k ones and y contains 2l + 1 ones, for some k, l ∈ N. Since 2k is even, machine M on input x
adds then removes the edge {vo, vp} to and from Ex an equal number of times. Since 2l+ 1 is odd, machine
M on input y adds edge {vo, vp} to Ey one more time than it removes the edge. Therefore M(x) outputs
Gx = (Vx, Ex), where Vx = {vo, vp} and Ex = {}, and M(y) outputs Gy = (Vy, Ey), where Vy = {vo, vp}
and Ey = {{vo, vp}}. Since {vo, vp} ∈ Ey but {vo, vp} /∈ Ex, so no bijection exists between Vx and Vy which
preserves edges. Therefore, Gx is not isomorphic to Gy so 〈M(x),M(y)〉 /∈ GI.

Therefore 〈x, y〉 ∈ Rpar ⇐⇒ 〈M(x),M(y)〉 ∈ GI, so Rpar ≤p
ker GI.

Theorem 4.5. Rbc ≤p
ker GI

Proof. Construct M ∈ FP on input w ∈ Σ∗:

Vw ← {v1, v2, . . . , v|w|, vzero, vone,0, vone,1, vone,2}1

Ew ← {{vone,0, vone,1}, {vone,1, vone,2}, {vone,2, vone,0}}2

for i = 1 to |w| do3

if wi = 1 then4

add {vi, vone,0} to Ew5

else6

add {vi, vzero} to Ew7

return Gw = (Vw, Ew)8

Suppose 〈x, y〉 ∈ Rbc, so x and y have the same number of ones, say k ∈ N. Assume |x| = |y| = n, so both
x and y have n − k zeros. Define Ew,1 = {{vi, vone,0}|i ∈ {1, 2, . . . , n}, wi = 1} and Ew,0 = {{vi, vzero}|i ∈
{1, 2, . . . , n}, wi = 0}, so Ex = Ex,1 ∪Ex,0 and Ey = Ey,1 ∪Ey,0 by construction. Define Vw,b = {vi|wi = b},
so Vx = Vx,1 ∪ Vx,0 and Vy = Vy,1 ∪ Vy,0. Note that |Vx,1| = |Vy,1| = k and |Vx,0| = |Vy,0| = n − k.
Since |Vx,1| = |Vy,1| = k, there exists a bijection between them, call it φ1 : Vx,1 → Vy,1. Similarly, since

11

|Vx,0| = |Vy,0| = k, there exists a bijection between them, call it φ0 : Vx,0 → Vy,0. Define φ : Vx → Vy by

φ(v) =

φ0(v) if v = vi andxi = 1, for some i ∈ {1, . . . , n}
φ1(v) if v = vi andxi = 0, for some i ∈ {1, . . . , n}
v if v ∈ {vzero, vone,0, vone,1, vone,2}

for all v ∈ Vx. Notice that each vi “corresponds” to a single xi, because each xi can be either a one or a
zero, exclusively.

Since the only edges in Ex are the edges {vi, vone,0} when xi = 1 and {vi, vzero} when xi = 0, then

(vi, vone,0) ∈ Ex ⇐⇒ (φ(vi), φ(vone,0)) = (φ1(vi), vone,0) ∈ Ey

and
(vi, vzero) ∈ Ex ⇐⇒ (φ(vi), φ(vzero)) = (φ0(vi), vzero) ∈ Ey

Therefore φ describes a graph isomorphism, so G1 is isomorphic to G2.
Suppose 〈x, y〉 /∈ Rbc, so x and y have a different number of ones. Let k be the number of ones in x, and

l be the number of ones in y, with k 6= l. Suppose without loss of generality that k > l. Define Ew,0 and
Ew,1 as above. Now |Ex,1| = k and |Ey,1| = l. Since k > l, Ex,1 has at least one more edge adjacent to
the triangle created by the vertices {vone,0, vone,1, vone,2} than does Ey,1. Thus no possible bijection exists
between Vx and Vy which preserves all edges. Thus Gx is not isomorphic to Gy, so 〈M(x),M(y)〉 /∈ GI.

Therefore 〈x, y〉 ∈ Rbc ⇐⇒ 〈M(x),M(y)〉 ∈ GI, so Rbc ≤p
ker GI.

Unlike the reductions from Rpar and Rbc to GI, in the reductions from Req, Reqc, and Ra to GI the
order of bits in each string x and y is significant. As such, it may be easier to create kernel reductions from
these equivalence relations to the directed graph isomorphism problem, which we can prove equivalent under
kernel reductions to the graph isomorphism problem.

Lemma 4.6 ([KST93] and [Mil77]). GI ≡p
ker DirGI

Proof. To show GI ≤p
ker DirGI, replace each edge in the undirected graph with a pair of complementary

edges in a directed graph with same set of vertices.
To show DirGI ≤p

ker GI, replace each edge in the directed graph with a set of vertices and edges that
enforces an ordering between the original pair of vertices adjacent in the directed graph. In [Mil77], for
example, when given vertices x and y with directed edge (x, y), the author adds the vertices {v1, v2, . . ., v7}
with undirected edges {{x, v1}, {v1, v4}, {v4, y}, {v1, v2}, {v2, v3}, {v4, v5}, {v5, v6}, {v6, v7}}.

From Lemma 4.6, we can use a kernel reduction to the directed graph isomorphism problem to show that
a language kernel reduces to the undirected graph isomorphism problem, as in the following theorems.

Theorem 4.7. Req ≤p
ker DirGI

Proof. Construct machine M ∈ FP on input w ∈ Σ∗:

Vw ← {v1, v2, . . . , v|w|}1

Ew ← {(v1, v2), (v2, v3), . . . , (v|w|−1, v|w|)} // directed edges2

for i = 1 to |w| do3

if wi = 1 then4

add vertex v′i to Vw5

add directed edge (vi, v
′
i) to Ew6

return Gw = (Vw, Ew)7

Notice that this machine constructs a “spine” of vertices, with an extra vertex v′i and directed edge (vi, v
′
i)

adjacent to the spine whenever wi is a one, ∀i ∈ {1, 2, . . . , |w|}.
Suppose 〈x, y〉 ∈ Req, so x = y. Then M(x) and M(y) produce the same graph, so Gx is isomorphic to

Gy by the identity mapping. Therefore 〈M(x),M(y)〉 ∈ DirGI.

12

Suppose 〈x, y〉 /∈ Req, so x 6= y. Suppose |x| = |y| = n. Run M on input x to yield Gx = (Vx, Ex),
and run M on input y to yield Gy = (Vy, Ey). Since the graphs are directed, the “spine” created by the
vertices {v1, v2, . . . , vn} and the edges {(v1, v2), (v2, v3), . . . , (vn−1, vn)} must correspond in both Gx and Gy.
Let i be the index of the first bit at which x and y differ. Suppose without loss of generality that xi = 1
and yi = 0. Then v′i ∈ Vx and (vi, v

′
i) ∈ Ex, but v′i /∈ Vy so (vi, v

′
i) /∈ Ey. Assume with the intention of

producing a contradiction that a bijection exists between Vx and Vy which satisfies the conditions for a graph
isomorphism. Since vertices along the “spine” of the Vx must map to vertices along the “spine” of Vy, and
specifically vi in Vx must map to vi in Vy, (vi, v

′
i) ∈ Ex implies (vi, v

′
i) ∈ Ey. But (vi, v

′
i) /∈ Ey because

yi = 0. This is a contradiction. Therefore no such mapping exists, so Gx is not isomorphic to Gy, and hence
〈M(x),M(y)〉 /∈ DirGI.

Therefore 〈x, y〉 ∈ Req ⇐⇒ 〈M(x),M(y)〉 ∈ DirGI, so Req ≤p
ker DirGI.

Corollary 4.8. Req ≤p
ker GI

Proof. Follows directly from Theorem 4.7 and Lemma 4.6.

Theorem 4.9. Reqc ≤p
ker DirGI

Proof. Construct machine M ∈ FP on input w ∈ Σ∗:

Vw ← {v1, v2, . . . , v|w|, vzero, vone}1

Ew ← {(v1, v2), (v2, v3), . . . , (v|w|−1, v|w|)} // directed edges2

for i = 1 to |w| do3

if wi = 1 then4

add directed edge (vi, vone) to Ew5

else6

add directed edge (vi, vzero) to Ew7

return Gw = (Vw, Ew)8

Notice that this machine, as in the machine in the proof of Theorem 4.7, creates a “spine” representing each
bit of word w.

Suppose 〈x, y〉 ∈ Reqc, so either x = y or x = ȳ.
In the case that x = y, M(x) and M(y) output exactly the same graph, so Gx is isomorphic to Gy, and

hence 〈M(x),M(y)〉 ∈ DirGI.
In the case that x = ȳ, define φ : Vx → Vy by

φ(v) =

v if v = vi, for some i ∈ {1, 2, . . . , |x|}
vzero if v = vone

vone if v = vzero

for all v ∈ Vx. Notice that φ maps each vi ∈ Vx to the corresponding vi ∈ Vy, and maps vzero ∈ Vx to
vone ∈ Vy and vone ∈ Vx to vzero ∈ Vy. Then ∀i ∈ {1, 2, . . . , |x|}, xi = 0 ⇐⇒ y = 1, so (vi, vzero) ∈ Ex ⇐⇒
(φ(vi), φ(vzero)) = (vi, vone) ∈ Ey. Similarly, xi = 1 ⇐⇒ y = 0, so (vi, vone) ∈ Ex ⇐⇒ (φ(vi), φ(vone)) ∈
Ey ⇐⇒ (vi, vzero) ∈ Ey. The rest of the edges in Ex map directly to the corresponding edges in Ey by
(vi−1, vi) 7→ (φ(vi−1), φ(vi)) = (vi−1, vi), ∀i ∈ {2, 3, . . . , |x|}. Therefore, φ describes an isomorphism between
Gx and Gy, so 〈M(x),M(y)〉 ∈ DirGI.

Suppose 〈x, y〉 /∈ Reqc, so x 6= y and x 6= ȳ. Thus ∃i, j ∈ {1, 2, . . . , |x|}, i 6= j, such that xi = yi ∧ xj 6= yj .
Suppose without loss of generality that xi = yi = 0 and 0 = xj 6= yj = 1. Now xi = yi = 0 implies
(vi, vzero) ∈ Ex and (vi, vzero) ∈ Ey. Also, xj = 0 implies (vj , vzero) ∈ Ex and yj = 1 implies (vj , vone) ∈ Ey.
Assume, with the goal of producing a contradiction, that there exists a bijection, φ : Vx → Vy such that
(u, v) ∈ Ex ⇐⇒ (φ(u), φ(v)) ∈ Ey, ∀u, v ∈ Vx. Since φ must map vertices on the “spine” of Gx to
corresponding vertices in Gy, and since (vi, vzero) ∈ Ex, then (φ(vi), φ(vzero)) = (vi, φ(vzero)) must be in Ey.
The only edge of this form in Ey is (vi, vzero) so φ(vzero) = vzero. Since (vj , vzero) ∈ Ex, (φ(vj), φ(vzero)) =

13

(vj , vzero) ∈ Ey. But the only edge in Ey with source vertex vj is, by construction, (vj , vone). This is a
contradiction. Hence no such bijection exists, so Gx is not isomorphic to Gy, and 〈M(x),M(y)〉 /∈ DirGI.

Therefore 〈x, y〉 ∈ Reqc ⇐⇒ 〈M(x),M(y)〉 ∈ DirGI, so Reqc ≤p
ker DirGI.

Corollary 4.10. Reqc ≤p
ker GI

Proof. Follows directly from Theorem 4.9 and Lemma 4.6.

Theorem 4.11. ∀a ∈ Σ∗, Ra ≤p
ker DirGI

Proof. Let a ∈ Σ∗. Construct machine M ∈ FP on input w ∈ Σ∗ (let n = |w|):

Uw ← {v1, v2, . . . , vn}1

U ′w ← {v′1, v′2, . . . , v′n}2

Fw ← {(v1, v2), (v2, v3), . . . , (vn−1, vn)} // directed edges3

F ′w ← {(v′1, v′2), (v′2, v
′
3), . . . , (v′n−1, v

′
n)} // directed edges4

for i = 1 to n do5

if wi = 1 then6

add vertex ui to Uw7

add directed edge (vi, ui) to Fw8

if wi ⊕ ai = 1 then9

add vertex u′i to U ′w10

add directed edge (v′i, u
′
i) to F ′w11

Vw ← Uw ∪ U ′w12

Ew ← Fw ∪ F ′w13

return Gw = (Vw, Ew)14

Notice that for each input string w, this machine produces a graph which is the disjoint union of two distinct
graphs, one representing the bits of w and the other representing the bits of w ⊕ a.

Suppose 〈x, y〉 ∈ Ra, so either x = y or x⊕ y = a.
In the case that x = y, M(x) and M(y) output exactly the same graph, so Gx is isomorphic to Gy, and

hence 〈M(x),M(y)〉 ∈ DirGI.
Consider the case in which x 6= y, but x⊕ y = a. Define φ : Vx → Vy by

φ(v) =

v′i if v = vi for some i ∈ {1, 2, . . . , n}
vi if v = v′i for some i ∈ {1, 2, . . . , n}
u′i if v = ui for some i ∈ {1, 2, . . . , n}
ui if v = u′i for some i ∈ {1, 2, . . . , n}

If no ui exists or no u′i exists for some i ∈ {1, 2, . . . , n} then we don’t define φ for those values not in the
domain. φ maps each vi ∈ Vx to v′i ∈ Vy, so (vi, vi+1) ∈ Ex ⇐⇒ (φ(vi), φ(vi+1)) = (v′i, v

′
i+1) ∈ Ey,∀i ∈

{1, 2, . . . , n− 1}, and φ maps each v′i ∈ Vx to vi ∈ Vy, so (v′i, v
′
i+1) ∈ Ex ⇐⇒ (φ(v′i), φ(v′i+1)) = (vi, vi+1) ∈

Ey,∀i ∈ {1, 2, . . . , n− 1}.
Now for each i ∈ {1, 2, . . . , n} for which ui exists and is in Vx, (vi, ui) ∈ Ex by construction. This

occurs if and only if xi = 1, and since by hypothesis x ⊕ y = a ⇐⇒ y = x ⊕ a, yi = xi ⊕ ai. In the
case that ai = 0, then yi = xi ⊕ ai = 1 ⊕ 0 = 1. Since yi = 1 and yi ⊕ ai = 1 ⊕ 0 = 1, M(y) produces
graph Gy containing vertex u′i ∈ Vy and directed edge (v′i, u

′
i) ∈ Ey. Now φ(ui) = u′i is well-defined, and

(vi, ui) ∈ Ex ⇐⇒ (φ(vi), φ(ui)) = (v′i, u
′
i) ∈ Ey. In the case that ai = 1, then yi = xi ⊕ ai = 1 ⊕ 1 = 0.

Since yi = 0 and yi ⊕ ai = 0⊕ 1 = 1, M(y) produces graph Gy containing vertex u′i ∈ Vy and directed edge
(v′i, u

′
i) ∈ Ey. Now φ(ui) = u′i is well-defined, and (vi, ui) ∈ Ex ⇐⇒ (φ(vi), φ(ui)) = (v′i, u

′
i) ∈ Ey.

Now for each i ∈ {1, 2, . . . , n} for which u′i exists and is in Vx, (v′i, u
′
i) ∈ Ex by construction. This occurs

if and only if xi ⊕ ai = 1, and since by hypothesis x⊕ y = a ⇐⇒ y = x⊕ a, then yi = xi ⊕ ai = 1. Since
yi = 1, M(y) produces graph Gy containing vertex ui ∈ Vy and directed edge (vi, ui) ∈ Ey. Now φ(u′i) = ui

14

is well-defined, and (v′i, u
′
i) ∈ Ex ⇐⇒ (φ(v′i), φ(u′i)) = (vi, ui) ∈ Ey. Therefore φ describes an isomorphism

between graphs Gx and Gy, so 〈M(x),M(y)〉 ∈ DirGI.
Suppose 〈x, y〉 /∈ Ra, so x 6= y and x⊕ y 6= a. Thus ∃i, j ∈ {1, 2, . . . , n} : xi 6= yi and xj ⊕ yj 6= aj (with

the possibility that i = j). Because M(x) and M(y) both produce graphs which are the disjoint union of
two distinct subgraphs, (Ux, Fx) and (U ′x, F

′
x) in Gx and (Uy, Fy) and (U ′y, F

′
y) in Gy, if the graphs Gx and

Gy were isomorphic, the bijection between them must either map vertices of Ux to Uy and U ′x to U ′y or map
vertices of Ux to U ′y and U ′x to Uy. The only possible bijections must map either vi ∈ Ux to vi ∈ Uy and
v′i ∈ U ′x to v′i ∈ U ′y or vi ∈ Ux to v′i ∈ U ′y and v′i ∈ U ′x and vi ∈ Uy, ∀i ∈ {1, 2, . . . , n}, because of the chain of
directed edges between each vertex of adjacent index.

Assume without loss of generality that xi = 1 and yi = 0, which implies (vi, ui) ∈ Fx but (vi, ui) /∈ Fy.
Now φ cannot map vi ∈ Ux to vi ∈ Uy and v′i ∈ U ′x to v′i ∈ U ′y because (vi, ui) ∈ Fx but (vi, ui) /∈ Fy.

Assume φ describes a graph isomorphism which maps vj ∈ Ux to v′j ∈ U ′y and v′j ∈ U ′x to vj ∈ Uy. In
the case that xj = 0, yj = 0 and aj = 1, then yj ⊕ aj = 1, so (vj , uj) /∈ Fx but (v′j , u

′
j) ∈ F ′y. This is a

contradiction with the assumption that φ describes a graph isomorphism. In the case that xj = 1, yj = 1 and
aj = 1, then yj ⊕ aj = 0, so (vj , uj) ∈ Fx but (v′j , u

′
j) /∈ F ′y. This is a contradiction. In the case that xj = 0,

yj = 1, and aj = 0, then yj ⊕ aj = 1, so (vj , uj) /∈ Fx but (v′j , u
′
j) ∈ F ′y. This is a contradiction. In the case

that xj = 1, yj = 0, and aj = 0, then yj ⊕ aj = 0, so (vj , uj) ∈ Fx but (v′j , u
′
j) /∈ F ′y. This is a contradiction.

Therefore no such bijection φ exists. Therefore Gx is not isomorphic to Gy, thus 〈M(x),M(y)〉 /∈ DirGI.
Therefore 〈x, y〉 ∈ Ra ⇐⇒ 〈M(x),M(y)〉 ∈ DirGI, so Ra ≤p

ker DirGI.

Corollary 4.12. Ra ≤p
ker GI

Proof. Follows directly from Theorem 4.11 and Lemma 4.6.

4.3 Graph isomorphism and NPEq-completeness

One question we wish to address is whether there exist NPEq-complete problems (indeed, whether there
exist PEq-complete problems as well). While we can’t yet describe what an NPEq-complete problem looks
like, we know some NP-complete equivalence problems. We first define a complete graph and a clique.

Definition 4.13. Let Kn = (V,E) be an undirected graph such that |V | = n and ∀u, v ∈ V , with u 6= v,
{u, v} ∈ E. Then Kn is called the complete graph with n vertices.

Definition 4.14. Let G = (V,E) be an undirected graph. Then C ⊆ V is a clique if ∀u, v ∈ C, with u 6= v,
{u, v} ∈ E. In other words, the subgraph of G induced by C is a complete graph.

Definition 4.15. RKC = {〈〈G1, k1〉, 〈G2, k2〉〉|k1 = k2 and (G1
∼= G2 or (G1 has a clique of size k1 and G2

has a clique of size k2))}

Theorem 4.16. RKC is an equivalence relation on Σ∗.

Proof. To show that RKC is an equivalence relation, we must show that it is reflexive, symmetric, and
transitive.

Since G is isomorphic to G for all graphs G, 〈〈G, k〉, 〈G, k〉〉 ∈ RKC , for all k ∈ N, so RKC is reflexive.
To show that RKC is symmetric, suppose 〈〈G1, k1〉, 〈G2, k2〉〉 ∈ RKC . In the case that G1 is isomorphic

to G2, then G2 is isomorphic to G1 because the isomorphism relation is symmetric, so 〈〈G2, k2〉, 〈G1, k1〉〉 ∈
RKC . In the case that G1 has a clique of size k1 and G2 has a clique of size k2 and k1 = k2, then
〈〈G2, k2〉, 〈G1, k1〉〉 ∈ RKC because the logical conjunction operation is commutative over propositions.

To show that RKC is transitive, suppose 〈〈G1, k1〉, 〈G2, k2〉〉 ∈ RKC and 〈〈G2, k2〉, 〈G3, k3〉〉 ∈ RKC .
Since k1 = k2 and k2 = k3, then k1 = k3 by the transitivity of the equality relation. There are four possible
cases for the remaining properties.

In the case that G1 is isomorphic to G2 and G2 is isomorphic to G3, then G1 is isomorphic to G3 so
〈〈G1, k1〉, 〈G3, k3〉〉 ∈ RKC .

In the case that G1 is isomorphic to G2, G2 has a clique of size k2, G3 has a clique of size k3, then G1

has a clique of size k2 = k1, so 〈〈G1, k1〉, 〈G3, k3〉〉 ∈ RKC .

15

In the case that G1 has a clique of size k1, G2 has a clique of size k2, and G2 is isomorphic to G3, then
G3 has a clique of size k2 = k3, so 〈〈G1, k1〉, 〈G3, k3〉〉 ∈ RKC .

In the case that G1 has a clique of size k1, G2 has a clique of size k2, and G3 has a clique of size k3, then
〈〈G1, k1〉, 〈G3, k3〉〉 ∈ RKC .

Therefore RKC is reflexive, symmetric, and transitive, hence it is an equivalence relation.

Definition 4.17. CLIQUE = {〈G, k〉|G has a clique of size k}

Lemma 4.18. CLIQUE is NP-complete.

Proof. The proof is omitted; we refer the reader to [GJ79] for the reduction.

Lemma 4.19. RKC ∈ NP

Proof. Since GI ∈ NP, it has a deterministic polynomial time verifier, M1, which accepts on input 〈G1, G2, c〉,
where c is the isomorphism from vertices of G1 to vertices of G2.

Since CLIQUE ∈ NP, it has a deterministic polynomial time verifier, M2, which accepts on input
〈G, k, c〉, where c is the set of vertices in G which comprise a clique of size k.

To show that RKC ∈ NP, we construct a deterministic polynomial time verifier M for RKC . On input
〈〈G1, k1〉, 〈G2, k2〉, c〉:

If k1 6= k2, reject1

if c is the encoding of a mapping then2

Run M1 on input 〈G1, G2, c〉3

If M1 accepts, accept; otherwise reject4

if c = 〈c1, c2〉 is the encoding of two cliques then5

Run M2 on input 〈G1, k1, c1〉6

Run M2 on input 〈G2, k2, c2〉7

If M2 accepts on both inputs, accept; otherwise reject8

Machine M is a verifier for RKC , so RKC ∈ NP.

Corollary 4.20. RKC ∈ NPEq

Proof. Since RKC ∈ NP by Lemma 4.19 and RKC is an equivalence problem, then by Definition 2.10,
RKC ∈ NPEq.

Theorem 4.21. RKC is NP-complete.

Proof. Since RKC ∈ NP by Lemma 4.19, we need only show that RKC is NP-hard. To do this, we construct
a polynomial time many-one reduction from CLIQUE, which is NP-complete, to RKC .

Construct machine M ∈ FP on input 〈G, k〉 which outputs 〈〈G, k〉, 〈Kk, k〉〉, where Kk is the complete
graph with k vertices.

Suppose 〈G, k〉 ∈ CLIQUE, so G has a clique of size k. Then M(〈G, k〉) = 〈〈G, k〉, 〈Kk, k〉〉 ∈ RKC ,
because G has a clique of size k by hypothesis and Kk has a clique of size k by construction, specifically, the
set of all vertices in Kk.

Suppose 〈G, k〉 /∈ CLIQUE, so G does not have a clique of size k and M(〈G, k〉) = 〈〈G, k〉, 〈Kk, k〉〉. If
G were isomorphic to Kk, then it would have a clique of size k, specifically the set of all its vertices, but
this is a contradiction with the hypothesis so no such isomorphism exists. Although Kk certainly has a
clique of size k, specifically the set of all its vertices, G does not have a clique of size k by hypothesis, so
〈〈G, k〉, 〈Kk, k〉〉 /∈ RKC .

Therefore 〈G, k〉 ∈ CLIQUE ⇐⇒ M(〈G, k〉) ∈ RKC , so CLIQUE ≤p
m RKC , and hence RKC is

NP-complete.

16

So we have now shown that RKC ∈ NPC ∩ NPEq, where NPC is the set of all NP-complete languages.
With this fact we can show a relationship between completeness under kernel reductions and completeness
under many-one reductions in NPEq which follows from the fact that a kernel reduction implies a many-one
reduction.

Theorem 4.22. If an equivalence relation A is NPEq-complete, then A is NP-complete.

Proof. If A is NPEq-complete then RKC ≤p
ker A, since RKC ∈ NPEq by Corollary 4.20. By Lemma 2.13,

RKC ≤p
ker A =⇒ RKC ≤p

m A. Since RKC is NP-complete by Theorem 4.21, then A is NP-complete.

Of course, Theorem 4.22 is not all that useful if NPEq-complete problems do not exist. We wish to
give some evidence that RKC (or a language similar to it) may be NPEq-complete. We know that many
problems in NP, specifically many in NPEq, kernel reduce to the graph isomorphism problem (in the past,
the reductions have not explicitly been presented as kernel reductions, but we can retroactively identify the
techniques used as such). If we can show a polynomial time kernel reduction from the graph isomorphism
problem to RKC , then we have found many NPEq problems which reduce to RKC . Indeed, we defined RKC

in such a way to allow a kernel reduction from the graph isomorphism problem to be possible.

Theorem 4.23. GI ≤p
ker RKC

Proof. Construct machine f ∈ FP defined for all graphs G = (V,E) by f(G) = 〈G, |V |+ 1〉.
Let G1 = (V1, E1) and G2 = (V2, E2), and suppose 〈G1, G2〉 ∈ GI, so G1 is isomorphic to G2. This

implies |V1| = |V2| and thus |V1|+1 = |V2|+1. Now f(G1) = 〈G1, |V1|+1〉 and f(G2) = 〈G2, |V2|+1〉. Since
G1 is isomorphic to G2 and |V1|+ 1 = |V2|+ 1, then 〈〈G1, |V1|+ 1〉, 〈G2, |V2|+ 1〉〉 = 〈f(G1), f(G2)〉 ∈ RKC .

Suppose 〈G1, G2〉 /∈ GI, so G1 is not isomorphic to G2. Even in the case that |V1| = |V2|, G1 cannot have
a clique of size |V1|+ 1, and G2 cannot have a clique of size |V2|+ 1. Thus 〈〈G1, |V1|+ 1〉, 〈G2, |V2|+ 1〉〉 =
〈f(G1), f(G2)〉 /∈ RKC .

Therefore 〈G1, G2〉 ∈ GI ⇐⇒ 〈f(G1), f(G2)〉 ∈ RKC , so GI ≤p
ker RKC .

We constructed RKC in order to make this reduction easy, but there is in fact another well-known problem
in NPEq∩NPC. Garey and Johnson provide a single NP-complete equivalence problem: a databases problem
concerning the equivalence of tableaux.[GJ79] The original proof is a reduction from 3-SAT.[ASU79]

Reductions between the graph isomorphism problem and other equivalence problems in NPEq abound,
and though they have traditionally been presented as many-one reductions, they are in fact kernel reductions.
Zemlyachenko, Korneenko and Tyshkevich notice this in [ZKT85], and describe the kernel reductions in
the terminology of category theory as follows: Let C1 and C2 be concrete categories, let x, y be objects
in C1, let x′, y′ be objects in C2, let MorC1

(x, y) be the morphism between objects x and y in C1, let
MorC2(x′, y′) be the morphism between objects x′ and y′ in C2, and let f : C1 → C2 be a functor. Define
g : Mor(C1)→Mor(C2) by g(MorC1(x, y)) = MorC2(f(x), f(y)). If g is bijective then g is called a complete
embedding. If g is a complete embedding then we say the isomorphism problem for objects in category C1

reduces functorially to the isomorphism problem for objects in category C2.
Notice that in the above definition, if we let R = {〈x, y〉|x and y are objects of C1 and x is isomorphic

to y by MorC1
(x, y)} and S = {〈x, y〉|x and y are objects of C2 and x is isomorphic to y by MorC2

(x, y)},
then R ≤p

ker S by f , and R ≤p
m S by g, the many-one reduction induced by the kernel reduction f .

A functorial reduction as defined above is more restrictive than a kernel reduction, because it requires
that there exist a bijection between the isomorphisms of the two categories. The definition of a kernel
reduction does not demand this bijection, so a functorial reduction implies a kernel reduction.

In [ZKT85], the authors provide a survey of categories for which isomorphism problems are polynomial-
time functorially equivalent. For our purposes, this is a simply a listing of equivalence problems which are
polynomial time kernel equivalent to graph isomorphism. We have, in addition, provided some more recent
results on isomorphism of objects in other categories.

• directed graph isomorphism [Mil79]

• labeled tree isomorphism [Bab79]

17

• polar graph isomorphism [ZKT85]

• two-color graph isomorphism [ZKT85]

• finite model isomorphism [Mil79]

• color graph isomorphism [ZKT85, Mil77, Pul64]

• stable graph isomorphism [WL68]

• multigraph isomorphism [ZKT85]

• hypergraph isomorphism [ZKT85]

• k-uniform hypergraph isomorphism [ZKT85, HJ70]

• finite automaton isomorphism [Boo78]

• lattice isomorphism [Fru50]

• isomorphism of associative algebras of finite rank over a fixed algebraically closed field with a square
of the radical equal to zero and with a commutative factor with respect to the radical [Gri83]

• Markov decision process isomorphism [NR08]

• balanced incomplete block-scheme isomorphism [CC81]

• combinatorial isomorphism of convex polytopes represented by vertex-facet incidences [KS03]

• equivalence of Hadamard matrices [McK79]

We will consider the general class of problems equivalent to the graph isomorphism problem under
polynomial time kernel reductions by defining the following complexity class.

Definition 4.24. GIker = {A|A ≡p
ker GI}

All of the problems cited above fall in this class.

Lemma 4.25. GIker ⊂ NPEq

Proof. Let A ∈ GIker. Then A ≤p
ker GI and hence A ≤p

m GI. Since GI ∈ NP and NP is closed under
polynomial time many-one reductions, A ∈ NP. Since A is an equivalence problem by definition (only
equivalence problems can kernel reduce), then A ∈ NPEq. Therefore GIker ⊆ NPEq.

There is evidence that shows that the graph isomorphism problem is not NP-complete, specifically that it
is not NP-complete unless the polynomial time hierarchy collapses to the second level[Sch87]. If this is true,
then the following theorem about the complexity of all equivalence problems equivalent under polynomial
time kernel reductions to the graph isomorphism problems follows.

Theorem 4.26. If GI is not ≤p
m-complete in NP, then GIker (NPEq.

Proof. By Lemma 4.25, GIker ⊂ NPEq.
Assume with the intention of producing a contradiction that GIker = NPEq. Since every language A in

GIker polynomial time kernel reduces to GI, GI is complete under polynomial time kernel reductions in GIker.
Since GIker = NPEq, GI is complete under polynomial time kernel reductions in NPEq. By Theorem 4.22,
GI is ≤p

m-complete in NP. This is a contradiction with the hypothesis that GI is not ≤p
m-complete.

Intuitively, this means that if the graph isomorphism problem is not NP-complete, then there are equiv-
alence problems harder than the graph isomorphism problem in NP, unless P = NP.

The graph isomorphism problem has been (and continues to be) extensively studied. For more informa-
tion, see [KST93].

18

5 Kernel reductions vs. many-one reductions

Now we wish to address the question of whether kernel reductions are different from many-one reductions.
To show that they are in fact different, we need only exhibit two equivalence relations, R and S, such

that R ≤p
m S but R �p

ker S. Intuitively, this means that when 〈x, y〉 ∈ R, there is some information shared
between x and y which can not be separated from either. In other words, x can only be understood with
knowledge of y and y can only be understood with knowledge of x. In attempting to construct such a
relation, we have found that reflexivity, symmetry, and transitivity of a relation seem to provide a significant
obstacle to the possibility of sharing information between related elements.

To show that the two reductions are the same, we need to prove that a many-one reduction implies a
kernel reduction. Proving this seems even more difficult than proving the negation. A many-one reduction
gets access to both related elements, and using a many-one reduction to construct a kernel reduction would
require something like examining the machine which computes the many-one reduction and determining in
which states that machine is “using” which of the elements.

Still, we have no reason in particular to believe that a many-one reduction is different from a kernel
reduction.

6 Future work

We hope to extend the result in Theorem 3.22 to equivalence problems with an infinite number of equivalence
classes. In other words, we wish to answer the question of whether we can always compute a kernel reduction
among equivalence problems in PEq, if the reduction is allowed polynomial time.

We also hope to continue working on showing that a many-one reduction does not imply a kernel reduction
for equivalence problems, by finding two equivalence problems for which there is a many-one reduction but
not a kernel reduction. Perhaps Kolmogorov complexity or quantum entanglement of related members of an
equivalence relation holds the key to sharing information among related binary strings.

7 Acknowledgments

Thanks to Ben Hescott, Anselm Blumer, Mary Glaser and Sam Guyer for valuable input.

References

[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman, Equivalences among relational expressions, SIAM Journal
on Computing 8 (1979), no. 2, 218–246. 17

[Bab79] László Babai, Monte carlo algorithms in graph isomorphism testing, Tech. Report DMS 79-10,
Université de Montréal, 1979. 17

[BDG95] José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró, Structural complexity i, 2 ed., Springer-
Verlag, February 1995. 2

[Boo78] Kellogg S. Booth, Isomorphism testing for graphs, semigroups, and finite automata are polynomi-
ally equivalent problems, SIAM Journal on Computing 7 (1978), no. 3, 273–279. 18

[CC81] Marlene J. Colbourn and Charles J. Colbourn, Concerning the complexity of deciding isomorphism
of block designs, Discrete Applied Mathematics 3 (1981), no. 3, 155–162. 18

[FG09] Lance Fortnow and Joshua A. Grochow, Complexity classes of equivalence problems revisited, CoRR
abs/0907.4775 (2009). 1, 3, 8, 10

19

[Fru50] Robert Frucht, Lattices with a given abstract group of automorphisms, Canadian Journal of Math-
ematics 2 (1950), 417–419. 18

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of
np-completeness, W. H. Freeman and Company, New York, NY, 1979. 16, 17

[Gri83] D. Yu. Grigor’ev, Complexity of “wild” matrix problems and of isomorphism of algebras and graphs,
Journal of Mathematical Sciences 22 (1983), no. 3, 1285–1289. 18

[HJ70] Pavol Hell and Nes̆etr̆il Jaroslav, Graphs and k-societies, Canadian Mathematical Bulletin 13
(1970), 375–381. 18

[KS03] Volker Kaibel and Alexander Schwartz, On the complexity of polytope isomorphism problems,
Graphs and Combinatorics 19 (2003). 18

[KST93] J. Köbler, U. Schöning, and J. Torán, The graph isomorphism problem: its structural complexity,
Springer, 1993. 12, 18

[McK79] Brendan D. McKay, Hadamard equivalence via graph isomorphism, Discrete Mathematics 27
(1979), no. 2, 213–214. 18

[Mil77] Gary L. Miller, Graph isomorphism, general remarks, Proceedings of the ninth annual ACM sym-
posium on Theory of computing (New York, NY, USA), STOC ’77, ACM, 1977, pp. 143–150. 12,
18

[Mil79] Gary L. Miller, Graph isomorphism, general remarks, Journal of Computer and System Sciences
18 (1979), no. 2, 128–142. 17, 18

[NR08] Shravan Matthur Narayanamurthy and Balaraman Ravindran, On the hardness of finding symme-
tries in markov decision processes, ICML ’08: Proceedings of the 25th international conference on
Machine learning (New York, NY, USA), ACM, 2008, pp. 688–695. 18

[Pul64] A. Pultr, Concerning universal categories, Commentationes Mathematicae Universitatis Carolinae
5 (1964), no. 4, 227–239. 18

[Sch87] Uwe Schöning, Graph isomorphism is in the low hierarchy, Proceedings of the 4th Annual Sym-
posium on Theoretical Aspects of Computer Science (London, UK), STACS ’87, Springer-Verlag,
1987, pp. 114–124. 18

[Sip06] Michael Sipser, Introduction to the theory of computation, 2 ed., Thomson Course Technology,
2006. 2

[WL68] B. Weisfeiler and A. A. Lehman, Reduction of a graph to a canonical form and an algebra arising
during this reduction, Nauchno-Techn. Inform. 2 (1968), no. 9, 12–16. 18

[ZKT85] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich, Graph isomorphism problem, Journal
of Mathematical Sciences 29 (1985), no. 4, 1426–1481. 17, 18

20

	Introduction
	Preliminaries
	Kernel reductions among feasible equivalence problems
	Containments and equivalence classes
	Reductions
	Complete invariants
	Completeness

	Kernel reductions among intractable problems
	The graph isomorphism problem
	Kernel reductions to graph isomorphism
	Graph isomorphism and NPEq-completeness

	Kernel reductions vs. many-one reductions
	Future work
	Acknowledgments

