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Abstract of “Classification and Regression Framework for Characterizing Contaminant

Source Zone”

In this thesis we develop two machine-learning frameworks for estimating quantitative

metrics characterizing subsurface zones of chemically contaminated soil focusing on prob-

lems involving Dense Non-Aqueous Phase Liquid (DNAPL). Source zone characterization,

a necessary first step in the development of the remediation strategy, is challenging due to

practical constraints associated with the data available for processing. We first propose a

set of geometric features which are based on morphological image processing operations.

These features are used for both the classification work in Chapter 3 and the regression

approach developed in Chapter 4. Second, we propose a classification framework as our

initial solution. Specifically, we quantize each metric into a number of intervals and employ

machine learning methods to determine the interval containing the metric. A classification

scheme based on an iterative algorithm of Linear Discriminant Analysis (LDA) and Spectral

Clustering (SC) is used to determine feature-based clusters that are associated with metric

intervals.

Furthermore, we propose a regression framework focusing on the use of manifold regres-

sion techniques. We use manifold methods for jointly representing labeled training data

comprised of metrics as well as features. We then propose a new integrated approach to

the problems of (a) robustly embedding test data into the manifold and (b) constructing a

regression function for metrics estimation. The utility of the approach is enhanced by the
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explicit incorporation of a physical constraint associated with the metrics into the prob-

lem formulation. Results based upon simulated data using Sequential Gaussian Simulation

(SGS) method demonstrate the potential effectiveness of the manifold regression approaches

as well as significant improvement in performance relative to the case where the algorithmic

components are designed serially. At last, we apply our manifold regression algorithms to

a new simulated data set whose the hydraulic conductivity fields were built by Transition

Probability Markov Chain (TP/MC) model. In TP/MC data the full concentration data

are available for training, but the test data are sparsely sampled from 25 ports. The modi-

fications of our manifold regression algorithms to process the sparse data are proposed and

the results show the efficacy of our approaches.
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Chapter 1

Introduction

1.1 Source Zone Characterization

Remediation and restoration of sites contaminated by hazardous Dense Non-Aqueous Phase

Liquid (DNAPL) such as trichloroethylene (TCE) and perchloroethylene (PCE) are impor-

tant problems, primarily because of the persistence of these substances in the subsurface

and the danger they pose to drinking water aquifers [66]. A critical component in the plan-

ning of a remediation approach and the monitoring of the cleanup effort is characterizing

the source zone [38] i.e., the region of the subsurface in which contaminant mass is located.

The problem of source zone characterization is complicated by the fact that the distribution

of contaminant is determined to a large extent by the spatial variability in hydraulic con-

ductivity, which is typically modeled as a random process whose statistics may be known

for a given site but whose specific spatial distribution is certainly not known [19]. After the

contaminants are accidentally released, their distribution in the subsurface is determined

by the physics of flow and transport through porous media [1]. They are entrapped above

2
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low hydraulic conductivity regions with high saturation or in high hydraulic conductivity

regions with low saturation by capillary force.

Christ et al.’s paper [22] indicates that a detailed description of the subsurface may

be unnecessary for remediation planning. Indeed, the authors in [22] demonstrated that

knowledge of a single metric, the ratio of volume occupied by ganglia (regions of contaminant

saturation below the residual saturation level Sr) to that of pools (regions above Sr) could

be used to predict remediation performance using a simplified model of subsurface flow. The

motivation behind the use of ganglia to pool ratio (GTP) is that ganglia and pool regions

exhibit distinctly different mass flux discharge behavior. In general, ganglia regions produce

high concentration contaminant flux signals and are dissolved very quickly; whereas pool

regions produce lower concentration but sustained signals.

GTP has been shown to be valuable in studies of simplified models that relate reduction

in down-gradient contaminant concentration to the level of mass removal during remedi-

ation. In [21], the authors presented a predictive upscaled model where the source zone

architecture exponent is a function of GTP. In [22], the authors improved the predictive

capability of the model in [21] by separating the contributions from ganglia and pool dom-

inated domains to the dissolved phase, incorporating evolution of pool fraction (fp) as a

surrogate of GTP (fp is the percentage of the source zone mass incorporated in pools) 1, and

accounting for the initial fraction of the concentration eluting from pools region. Therefore

source zone architecture metrics (GTP or fp) and information about distinct ganglia and

pools region are key to predict remediation performance. The determination of GTP or

1Unfortunately, because GTP can assume values from zero to infinity, we have found it difficult to stably
estimate from down-gradient concentration data. On the other hand pool fraction, which is bounded between
zero and one, has proven easier to estimate and is easily related to GTP as GTP= (1 − fp)/fp.



4

Figure 1.1: The source zone plotted in 3D is modeled as being composed of two parts:
“pools” for which the saturation exceeds 0.15 and “ganglia” for which the saturation is
lower than 0.15. Flow through the source zone gives the down-gradient concentration data
in 2D.

pool fraction, from typically available field data was not considered in [22].

As illustrated in Figure 1.1 and motivated by the ideas in [22] here we address a broader

problem of simultaneously estimating a number of metrics describing the source zone based

upon observations at a single instant in time of down-gradient DNAPL concentration col-

lected across a transect oriented perpendicular to the flow. Of specific concern to us are

pool fraction, fp; the mass of DNAPL in the source zone occupied by pools, Mp; and the

mass of DNAPL in the source zone occupied by ganglia, Mg.

Determination of these metrics is complicated due to the fact that our uncertainty

regarding the subsurface encompasses more than the distribution of contaminant. Most

notably, the hydraulic conductivity is also typically not known with high precision [22]. In

practice, hydrological scientists possess only soft information concerning the statistics of this

quantity. Given the availability of high quality computational models for subsurface flow

and transport, we consider the use of machine learning methods for metrics determination
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[6, 47]. In more details, given a statistical model of the conductivity along with numerical

models for both DNAPL entrapment and subsequent flow and transport, the idea here is

to simulate a large number of conductivity fields, spill scenarios, and observations of down-

gradient concentration from which one can then infer a mapping from concentration data

to the metrics.

1.2 Background on approach for processing

1.2.1 Introduction

Based on the discussion in Section 1.1, the problem of interest is the determination of metrics

including pool fraction (fp), mass of DNAPL in pools (Mp) and mass of DNAPL in ganglia

(Mg) from observations of a single down-gradient DNAPL concentration image. One could,

for example, use an inverse problem approach [4] in which the observed concentration image

in conjunction with a flow and transport model is employed in an attempt to estimate both

the conductivity and the three-dimensional saturation distribution from which the metrics

could then be computed. The severely ill-posed and nonlinear nature of this approach makes

it a rather unattractive option and it is impossible to reconstruct the source zone only based

on the concentration data sampled at down-gradient [3]. Moreover, as indicated above, we

do not seek the full map of saturation but rather are concerned only with determining

several quantities, (i.e., fp,Mp,Mg). Thus a full-blown inversion approach with all of it

attendant difficulties is really not warranted.

An alternate approach that does not require full knowledge of subsurface quantities such

as hydraulic conductivity is to make use of methods from the field of machine learning [6].
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Here it is important to make a distinction between the data that are used to learn this

mapping, also known as training data, and testing data that are not associated with the

learning process which are used to determine the accuracy of the algorithm. In the training

stage, we use the data/metric pairs to learn the mapping, while in the testing stage we use

independent data from training data set to evaluate the accuracy of the approach. In this

work, both the training and testing data are drawn from simulations. In practice, however,

the testing data would come from observations taken in the field.

Additionally, we note that while the training process can be quite computationally

intensive, it is performed entirely off-line. The testing procedure, that is, the processing of

real data, is quite efficient. For classification approach, as we discuss later in Section 3.3,

processing is accomplished using the well known k-nearest-neighbor algorithm [23] which

requires only O(Nlog(N)) for searching k-nearest-neighbors, N is the number of training

data. For regression approach, the computational complexity is O(N) for calculating the

manifold coordinates of testing data which is discussed in Section 4.2.

Within the machine learning context, the ideal situation would be to determine a regres-

sion function that produces a single, point estimate of metric from concentration observation

[39]. Our initial investigation into this idea however leads us first to consider a “relaxed”

version of the problem. Rather than using regression methods to determine a specific esti-

mate of metric, we quantize each metric (e.g., for pool fraction, the interval between zero

and one) into a number of intervals and employ machine learning classification methods to

determine the interval containing the metric for a given datum x by using the concentration
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image and metric pairs. Take the estimation of pool fraction as an example.

f̂p = C(x) =



C1 f̂p ∈ [0, B1)

C2 f̂p ∈ [B1, B2]

C3 f̂p ∈ (B2, 1]

(1.1)

The function C is the classifier, it gives one of labels C1, C2 or C3 to the datum x, each label

represents an interval of pool fraction (e.g. the class C1 means the pool fraction is between

0 and B1). The B1 and B2 are the boundaries between classes.

Building on what we learned from the classification effort, we next turn our attention to

the more challenging problem of generating point estimates of the three metrics of interest.

That is, take the pool fraction as an example,

f̂p = f(x) (1.2)

where f is the regression function. Here, a far more sophisticated set of tools from the

machine learning literature is required to successfully solve this regression problem.

Within the machine learning literature, it is common practice to extract from data a

reduced set of features to which one applies any of a number of algorithms for classification

or regression [70]. In addition to employing well-studied features related to the statistics

of the data (or linear transformation of the data), in Section 3.1, we describe a new set

of geometric features, the structure of which is driven by the underlying physics of the

problem. This feature extraction method is an image processing method regardless of

learning procedure and gives more predictive information to estimate the metrics in both
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classification and regression framework, therefore the geometric feature extraction method

is used throughout.

1.2.2 Classification Approach

As discussed above, the classification task is a relaxed version of our problem, however it

still brings with it a number of challenges that we address in this work. In Figure 1.2 we

illustrate the manner in which the feature vectors extracted from training and testing data

interact to determine pool fraction. For ease of visualization, we assume that the feature

set is two-dimensional. The “+”’s indicate the feature vectors associated with the training

data while the “ ◦ ” is the feature vector extracted from a testing data set. Associated

with each class is an interval of pool fraction. Our approach to data processing amounts

to looking at all the “+”’s in a neighborhood of the “ ◦ ” and choosing that pool fraction

interval associated with the majority of the neighbors; nothing more than the well-known

k-nearest-neighbor method for classification [23].

The difficulty here is that a priori the number of intervals and their boundaries are not

known. Ideally, the features would naturally cluster into groups associated with disjoint

intervals as shown in Figure 1.2, in which case interval determination would be trivial.

Reality is a good deal less ordered however. While “high” and “low” pool fraction features

do tend to cluster, outside of the extremes, clearly defined grouping are absent. Thus, we

have here a clustering problem in which we seek to develop clusters in feature space that

ultimately provide high accuracy in terms of metrics classification.



9

Figure 1.2: An illustration of classification using k-nearest-neighbor algorithm. We illustrate
the feature space in two dimensions (r1, r2),“+”’s indicate the training data and “ ◦ ”
indicates the test data. The number on the up-right corner of each “+” shows the class
label, which is corresponding to an interval of fp value.

Figure 1.3: An illustration of closeness condition for linear regression function.
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1.2.3 Regression Approach

In the regression framework, we utilize a Bayesian method for training the regression func-

tions because it not only gives the estimate of each test datum, but also an associated

confidence interval.

For purposes of estimation, we need to transform the feature vectors into a space such

that the distance between vectors in this new space is reflective of the distance between the

corresponding source zone metrics we seek to determine. If this condition is satisfied, when

the feature vector from a test data set is transformed into this space, the use of regression

for the metric based on the training data points close to the test data point is expected to

be accurate. As illustrated in Figure 1.3, we show the linear regression function t = wx

in one dimension, the x is the one dimensional feature of concentration data, the t is the

metric we want to estimate and w is the weight vector of regression function. The “×”

and “◦” represent the training datum and test datum respectively. Since the test datum x̃

is in the neighborhood of x1, x2 and x3, the estimation t̂ of test datum is similar to t1, t2

and t3. This requires the distribution of data in the feature space satisfies the closeness

condition (known more formally as a locality preserving property [9]), that is, raw data as

well as feature vectors which are close in a typical linear Euclidean sense have corresponding

metrics that are also close while data/feature vectors that are quite dissimilar correspond

to metrics that are different. To develop a deep sense for the ambiguity of the regression

problem, it is important to note that the closeness condition does not always hold in the

linear Euclidean space of the raw concentration image data where the Frobenius norm is

used to measure the distance between the concentration images, i.e., ‖ci − cj‖2F , or even
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Figure 1.4: Ambiguity of the metric estimation problem. Due to the differences in the
manner in which the contaminant was spilled into the subsurface, the pool masses associated
with similar concentration images (a) and (b) are quite different while the dissimilar images
(a) and (c) correspond to source zones with nearly the same mass in pools.

that of our geometric feature vectors proposed in Section 3.1 where the distance is given

by ‖xi − xj‖22. That is, raw data as well as feature vectors which are close in a typical

Euclidean sense may not have corresponding metrics that are also close while data/feature

vectors that are quite dissimilar may well correspond to metrics that are close. Therefore

we employ manifold dimension reduction method to find a manifold space where the data

with similar metrics will be located near-by.

As an example, consider the three concentration images and corresponding pool mass

metrics illustrated in Figure 1.4. In Table 1.1, the Euclidean distances between all three

pairs of image data and feature vectors are provided along with the distances computed

using the manifold ideas developed later in Section 4.1. While cases (a) and (c) have the

most similar pool masses 19.81 kg and 22.95 kg respectively, the raw concentration images

and the raw feature vectors would predict that (a) and (b) were most similar. Indeed, in

manifold space (a) and (c) are placed closest together. Moreover, pairs (a)/(b) and (b)/(c)

which have the large mass difference are also placed a large distance apart in manifold space.
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Magnitude of
Mass Difference (kg)

‖ci − cj‖2F ‖xi − xj‖22 ‖ri − rj‖22

Comparing (a) to (c) 3.14 1046 7.43 0.196

Comparing (a) to (b) 20.62 862 5.29 1.05

Comparing (b) to (c) 17.48 912 7.49 0.868

Table 1.1: The distance between the data corresponding to Figure 1.4 showing the ambiguity
in our data sets. The pool mass of datum (a) and (c) are almost the same, but the Euclidian
measurements of concentration image pixels and geometric feature vectors are large. After
nonlinear dimension reduction, (a) and (c) will be located near-by in the manifold space.

The manifold methods give the coordinates of training data directly given the fea-

ture/metric pairs, after which the regression functions are trained in this manifold space.

Therefore, in order to estimate the metrics for test data, we need to embed them (which

obviously will not include the associated metric values) in the same space as the training

data. A known challenge of these manifold methods is that lack of an explicit embedding

function for the processing of test data where the source zone metrics are not known [10].

As discussed in Section 1.3, we need to learn an embedding function; that is, a mapping

from geometric feature space to the manifold space, shown in Figure 1.7. We employ the

Spectral Regression (SR) method [12] to learn this embedding function, after which we can

embed the test data in the manifold where regression can then be performed.

In our work with SR method, we must contend with a different type of ambiguity

from the one motivating the use of manifold methods. Specifically, in some cases, data

sets corresponding to similar metrics can be quite different leading to large errors in the

embedding. To see this, consider the three concentration data in Figure 1.5 all with Mp

values around 1.03 kg. In cases (b) and (c) the peak concentration value is less than 15

mg/L, and the areas where signal is present are small and well localized. These are typical

for Mp in this range. Case (a) however is an outlier. The peak concentration about 100
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Figure 1.5: The outliers in data set, (a)-(c) have almost the same metric mass in pools,
but due to the different spill scenario, the concentration data is quite different. The peak
concentration values in (a) are more than 100 mg/L, but the concentration values in (b)
and (c) are less than 15 mg/L

mg/L is quite high and the morphology of the concentration image is quite different from

that of cases (b) and (c). The reason for these differences can be related to the specifics

of the spill scenarios that gave rise to the data. For case (a), the source zone was highly

dominated by ganglia that dissolved quite quickly yielding large concentration values in the

down-gradient transect even as the up-gradient source zone contains little mass in pools.

In cases (b) and (c) by contrast more DNAPL was entrapped above the low hydraulic

conductivity region to form pools, when the ganglia were flushed out, there is only pools

in the source zone, which gave little concentration in down-gradient transect. In order to

decrease the sensitivity of embedding function to outliers, the robust SR is proposed and

discussed in detail in Section 4.4.

1.3 Overview and contribution

Given a collection of down-gradient concentration data and metrics from the source zone,

we have developed machine learning algorithms to determine a mapping from data to metric
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Figure 1.6: The framework of our classification-based machine learning approach. The
geometric feature extraction is shared by both training and test stage, because it is an
image processing method regardless of training procedure.

such that when a new datum is made available, we are able to predict the associated metrics.

In classification framework, the classifier will give an interval of metric where the new datum

belongs to; in regression framework, the regression function will estimate one single number

for each metric.

1.3.1 Classification Framework

From the concentration data, the first two steps of training stage in Figure 1.6 are feature

extraction and dimensionality reduction. These processes are employed to obtain from

the raw data quantities that are, in some sense, more predictive of the metric than raw

concentration observations. In a bit more detail, learning a good classifier requires that the

size of the training set, N , be at least an order of magnitude larger than the dimensionality

of the variables we use for prediction. As discussed in Section 2.6.1, for our problem, we have

about N = 500 concentration images as the basis for training. Hence, we require at most

a few tens of quantities for estimating a source zone metric. As described in Section 3.1,

the geometric features that we have developed are based on the use of morphological signal
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processing methods. Ultimately, the number of such features is still over three hundreds.

Dimensionality reduction is used to further extract from this set those degrees of freedom

that are most relevant for solving the classification problem. We call these quantities reduced

features. We make use of an existing classification scheme based on a combination of Linear

Discriminant Analysis (LDA) [43] and Spectral Clustering (SC) [17] as the basis for our

approach to determine feature-based clusters that are associated with metric bins.

The problem here is that the LDA algorithm assumes that labeled data are available;

i.e. the bins into which the metric will be divided are known as a priori. As this is not the

case for our problem, we have developed an iterative method that both finds the reduced

dimension feature space and cluster the feature vector in this space.

The final two steps in training are clustering and discretization of metric which form

the basis for the classification algorithm that will be used to process data from outside the

training set. The clustering problem we have here seeks to partition the collection of reduced

features in a manner such that those that are close in reduced feature space correspond to

source zone metrics that are also close to one another. Then we discretized the continuous

metric into several bins according to the clusters in the reduced dimension feature space.

In the testing stage, we use independent concentration data from training to evaluate

the performance of classifier. Testing is a two-step process. First, the new concentration

datum is transformed into a reduced feature vector. Second, we look for the collection of

k points in reduced dimension feature space that are closest to test data. Based on this

collection we classify the testing data into one of the metric intervals.
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Figure 1.7: The framework of our regression-based machine learning approach. The geo-
metric feature extraction is shared by both training and test stages, because it is an image
processing method only applying to concentration images regardless of metrics information.

1.3.2 Regression Framework

The regression framework proposed in this work is designed to learn in a supervised man-

ner (i.e., given labeled training data generated by the models) three nonlinear Bayesian

regression functions to estimate the metrics of interest. The idea we propose is based upon

machine learning methods that have gathered much attention recently: manifold dimen-

sion reduction for obtaining low dimensional representations of high dimensional data and

Spectral Regression (SR) for embedding incomplete test data into the manifold.

Motivated by the ideas in [30], our work focuses on the use of state-of-the-art ideas in

machine learning to construct regression functions for estimating the three metrics described

in the Section 1.1 (pool mass, ganglia mass, and fraction of mass in pools) from the down-

gradient observations. This process is comprised of a number of component steps that are

illustrated in Figure 1.7 and described in detail in Chapter 4. While the computational

models of entrapment and dissolution are certainly of use in generating data for building

this regression function, it is still the case that the computational burden of running these

models limits the size of the data sets available to us. More precisely, for our problem, the



17

size of a concentration image is about 3000 pixels while, N , the total number of such images

and associated known metrics in our all training data sets, is only about 2000. We must

first reduce the dimensionality of the data after which a suitable regression function can be

constructed.

Here we follow a two-step approach to reduce the dimensionality: feature extraction from

the concentration images followed by a low dimensional, manifold-based representation of

this feature set. The geometric feature sets are described in Section 3.1. As the dimension

of the resulting feature vectors is still well over 300, we employ manifold learning methods

to obtain a low dimensional manifold coordinate vector (the dimension will be four) for

training a regression function under a Bayesian approach.

Our use of manifold methods is motivated by more than just computational considera-

tions. The use of this machinery allows us to transform the feature vectors into a space such

that the distance between vectors in this new space is reflective of the distance between the

corresponding source zone metrics we seek to determine. If this condition is satisfied, when

the feature vector from a test data set is transformed into this space, the use of regression

for the metric based on the training data points close to the test data point in manifold

space is expected to be accurate.

A key challenge in the use of manifold methods for machine learning is the embedding of

test data. One method developed in the context of unsupervised problems is the Nyström

approach introduced in [10]. Recently, a review of manifold-learning-based feature extrac-

tion methods was provided in [46]. In [45] the authors adapted a force field intuition to

develop a nonlinear graph embedding framework after using spatial and spectral information

to compute the neighborhood graph. In [77] the authors first projected the hyper-spectral
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image into a low-dimensional space by minimum noise fraction, then built the dictionaries

for sparse coding the geometric features by using wavelet methods. For the supervised case

of interest in this work where we seek to embed test data (where labels are not known) into

a manifold constructed using knowledge of both the data and the labels, we built on the

Spectral Regression (SR) technique [12]. SR was designed to learn an embedding function

from any ambient space into a previously constructed manifold. Of particular interest here

is the case where the ambient space is comprised of the label-free observations.

After the test data are embedded within the manifold, Bayesian regression functions

are used to generate estimates of the source zone metrics. As explained in greater depth

in Section 1.2.3, the idea here is to take an estimate of the metric as an optimal linear

combination of the metrics associated with the training data embedded in the vicinity of

the test data within the manifold.

In summary, the goal of the manifold regression framework in the work is to construct re-

gression functions from a collection of concentration data and metrics pairs (c1, t1), (c2, t2),

· · · , (cN , tN ), where ci, i = 1, · · · , N denotes the concentration data and ti is the vector of

three metrics ti = [fp,Mp,Mg]i, and then given a new data c, we can estimate the metrics

vector t̂.

1.3.3 Contribution

The first contribution of our work is that we propose a set of geometric features, the structure

of which is motivated by the underlying physics of our problem. Through the observations

we find the shape and size of “blobs” in concentration image are closed related to the

estimation of metrics. We view the concentration images as the height maps and use a
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threshold operation to calculate the number of connected component and the percentage of

remaining area above the threshold. In Section 3.1, we show the geometric feature vector

can indicate the changes of metrics in source zone. Because the feature extraction method

is a kind of image processing methods not involving any learning procedure, it can be used

in both classification and regression framework.

In the classification framework, one contribution is an iterative algorithm to reduce

the dimensionality of feature vector by using Linear Discriminant Analysis (LDA) and to

cluster in the reduced feature space by Spectral Clustering (SC). The algorithm we describe

in Section 3.3 is, to the best of our knowledge, unique in machine learning applications.

SC method clusters the data located near-by into the same class, thus can give the initial

label to each data. Then using the data and the initial label pairs, LDA can find a reduced

dimensional space in which the distance between the data in the same class is as small as

possible, whereas the distance between each class is as large as possible. In this reduced

dimension space, SC updates the label of each data. This iterative algorithm will keep

updating the label information until the label of each data stays the same.

In the regression framework, one new contribution in this work is the development of

an integrated, variational formulation for the simultaneous determination of the Spectral

Regression (SR) embedding function and the associated Bayesian regression function. To

the best of our knowledge such an approach has not been considered in general or more

specifically within the context of geophysical applications. While one could certainly design

these two components separately, for the application driving the work in this thesis we have

found that jointly determining the embedding function (which determines the coordinates of

the test data in the manifold) and the regression function (which is driven by the coordinates
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of the training data in the neighborhood of the embedded test datum) can lead to substantial

improvement gains.

In constructing the variational problem defining the embedding and regression functions,

we have included a number of elements that we again believe are new. First, within the SR

context, only square error norms have been considered [12] for determining the embedding

function. As we demonstrate in Section 1.2.3, ambiguities associated with the data available

for application cause outlier problems in which test data may occasionally be embedded

within the manifold far from appropriate training data. To reduce the impact of these

outliers we develop a robust form of spectral regression.

A second novel component of the variational formulation is the use of a physical con-

straint to tie together the Bayesian regression functions for the three metrics of interest.

Specifically, pool fraction is the ratio of pool mass to the sum of pool mass and ganglia mass.

The results in Section 4.6.3 indicate that in cases when training data are scarce, enforcing

the physical relationship among the three quantities allows for close to the same level of

performance as in the data rich case. This is important since it means we have a method

for doing as well with less data which may be expensive to collect or time consuming to

simulate as we do when data are plentiful.

In summary, the work in this thesis contributes to the state of the art in a number of

areas. From an applications perspective, the machine learning methods of both classifi-

cation and manifold regression have not been considered to date for addressing problems

of contaminant source zone characterization. Here we demonstrate that these approaches

provide viable techniques for this problem. We have extended the machine learning meth-

ods for geophysical applications in a number of ways. For classification, we proposed an
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iterative algorithm to reduce the dimensionality of feature vector and cluster in the reduced

feature space. For manifold learning techniques, first, we incorporate the label informa-

tion directly in the objective function of Laplacian Eigenmaps, from which a single low

dimensional manifold is constructed for the determination of the three metrics of interest.

Second, by using the Huber norm rather than the L2 norm we obtain a robust formulation

of Spectral Regression. Third, we consider the specific physical constraint between three

regression tasks and force this constraint to regularize the manifold regression functions for

the three metrics. The experiments in Section 4.6.3 indicate precisely how these elements

of our algorithms combine to provide enhanced performance relative to the case where

one first constructs a manifold and then separately builds spectral regression functions for

embedding and Bayesian regression functions for metrics estimation.

1.4 Outline of thesis

The remainder of the thesis is organized as follows: In Chapter 2 we briefly summarize

the hydrological background and review the machine learning materials for classification,

regression, manifold learning, out-of-sample extension for manifold learning and the data

sets we used for training and testing the performance of our approaches. In Chapter 3,

we discuss in detail the classification framework and initial experimental results on a small

data set. In Chapter 4 we propose the manifold regression framework upon which our work

is based including Laplacian Eigenmaps, Spectral Regression, and Bayesian regression, the

experiments evaluate the efficacy of our regression framework. Then our robust version of

Spectral Regression is proposed, the third subject of this chapter is an integrated approach
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of embedding function learning and regression function learning, the experiments in this

chapter demonstrate the superior performance of our integrated approach. In Chapter 5,

we applied our manifold regression approaches to process the sparse data generated by 2D

model, experimental results of the methods are presented and analyzed. Finally, conclusions

and future work are the topics of Chapter 6.



Chapter 2

Background

2.1 Hydrological Model : Multi-phase Flow and Transport

Model

As discussed in the Section 1.1, the application motivating the technical developments in

this work is the characterization of subsurface zones contaminated by DNAPL such as TCE

and PCE used in a variety of economic activities from dry-cleaning to industrial degreasing

[81]. Once released in the subsurface, DNAPL tends to distribute themselves in one of

two ways: either as regions of relatively high saturation1 [51] known as pools that form

above the areas of relatively low hydraulic conductivity or as more diffuse, lower saturation

ganglia. Following convention [22], in this work pools are taken to be connected regions

in the source zone where the DNAPL saturation exceeds 0.15 [41] while ganglia are those

areas where the saturation is below this threshold.

The spatial distribution of DNAPL saturation is governed by the physics of multi-phase

1Saturation of DNAPL is the volume fraction of the total void volume occupied by DNAPL

23
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flow and transport through porous media. In this work, the system of interest contains two

fluid phases: DNAPL and water. The DNAPL phase in general is immobile and dissolved

when the aqueous phase flows through it. The saturation of each phase (indexed by p) is

described by the following partial differential equation presented in Abriola et, al.’s work

[1],

∂(ρpϕSp)

∂t
−∇ ·

(
ρp

kkrp
µp

(∇Pp − ρpg)
)

=
∑
p′

Mpp′ (2.1)

where ρp is the density of phase-p, ϕ is the porosity, Sp is the saturation, k is the intrinsic

hydraulic conductivity tensor, krp is the relative hydraulic conductivity, µp is the dynamic

viscosity, Pp is the thermodynamic pressure, g is the gravity vector, and Mpp′ is the mass

transfer to phase-p within the contiguous phase p′ which takes place through dissolution or

absorption. In our application, we only consider two fluid phases in source zone saturation,

they are DNAPL phase (Sn) and aqueous phase (Sa), which satisfy the following constraint,

Sn = 1− Sa (2.2)

The nominal flow of groundwater through the source zone will gradually dissolve DNAPL

and create a diffuse plume of aqueous phase contaminant distant from the region containing

the DNAPL.

In practice, contaminant site characterization is accomplished through the processing

of observations of such down-gradient concentration signals. In this work we consider the

case where we have concentration data sampled densely in space across a transect oriented

orthogonal to the direction of groundwater flow at a single point in time. While there

would be a significant benefit to having data from multiple points in time, the time scales
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associated with relevant changes to the concentration data caused by groundwater flow

are far too long for most practical circumstances. Additionally, although in the field these

transects are constructed from a small number of wells, we initially assume here that a dense

collection of data are acquired resulting in the availability of a concentration “image” for

processing. Though admittedly an idealization, this assumption allows us to more readily

develop and demonstrate the utility of a set of machine learning tools to address the rather

challenging problem of source zone characterization from a single temporal snapshot of data.

The concentration value in phase-p (cp) is computed by the following mass balance

partial differential equation,

ϕ
∂(Spcp)

∂t
+ ϕ∇ · Sp(cpVp −Dp · ∇cp) =

∑
p′

Mpp′ (2.3)

where Dp is the hydrodynamic dispersion tensor in phase-p [8] and Vp is the pore velocity

vector of phase-p determined by the following Darcy’s law [1],

ϕSpVp = −kkrp
µp

(∇Pp − ρpg) (2.4)

the right side of (2.3) is the mass transfer from phase-p′ to phase-p which is determined by

the following linear driving force expression [74],

Mpp′ = κpp′(cpeq − cp) (2.5)

where cpeq is the concentration value in phase-p in equilibrium with phase-p′, κpp′ is the

lumped mass transfer coefficient which represents the rate of mass transfer of from phase-p′
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to phase-p [57].

Here DNAPL is considered to be comprised of only one constitute (i.e., PCE or TCE)

and the dissolution is the only mass transfer process between the phases, therefore a simple

form of the DNAPL constitute balance is as follow,

ϕ
∂(Snρn)

∂t
= κan(caeq − ca) (2.6)

Pool fraction (fp), the metric of interest in source zone remediation, is defined as the

percentage of DNAPL as pools:

fp =
Mp

Mp +Mg
=

∫
ρnSnφdxdydz ∀Sn ≥ 0.15∫

ρnSnφdxdydz
(2.7)

where ρn is the DNAPL density, Sn is the saturation, φ is the porosity, dx, dy and dz are

for x, y, and z directions respectively. The term in the numerator of (2.7) is the mass of

DNAPL in pools (Mp) and the denominator is the total mass (Mp + Mg) of DNAPL in

the source zone. Since these Mp and Mg are closely related to the fp, we also expect we

can estimate them and hopefully the performance of our algorithm can be improve by the

estimation of these three metrics simultaneously. The mass of DNAPL in pools is defined

as,

Mp =

∫
ρnSnφdxdydz ∀Sn ≥ 0.15 (2.8)

and the mass of DNAPL in ganglia is defined as,

Mg =

∫
ρnSnφdxdydz ∀Sn < 0.15 (2.9)
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2.2 Classification

The goal of the classification framework for our problem is to take a concentration image

c as input and to assign it to one of K discrete classes Ck where k = 1, · · · ,K. Each

class represents an interval of the associated metric. Many classification machine learning

methods have been used in geophysical image classification applications [31, 14, 15, 52,

13]. There are three kinds of classification techniques depending on the availability of

label information by which we mean knowledge of the ground truth classes to which each

datum belongs. The first one is called supervised classification, in which the sufficient label

information is available and used in the training procedure. The second class of methods

is called unsupervised classification, in which there is no prior label information. Rather,

clustering-based algorithms are applied to partition the data into clusters based on the

features inherent in these data. The third kind of classification techniques is called semi-

supervised classification, in which a small set of data has labels and a wealth of unlabeled

data are also available. In the learning procedure an initial classifier is trained based on

the labeled data pairs, after which the unlabeled data will be classified, and then these new

labeled data will be added in the classifier training procedure. For our problem, although the

metric information is available for each datum, the number of classes and the boundaries

between each intervals are unknown. Thus we will first use unsupervised classification

method to find the label for each datum, then use supervised approaches to reduce the

dimension of data. Therefore our classification approach belongs to the semi-supervised

classification.

In this section, we review several kinds of unsupervised and supervised classification
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techniques used in geophysical data processing. Unsupervised classification methods can

be used to find hidden patterns in the data with absence of label information [26]. Two

cornerstones of unsupervised classification methods are dimension reduction and clustering.

One widely applied unsupervised dimension reduction method is Factor Analysis, which

assumes the data are generated by a linear combination of latent factors plus noise [60]. In

practice, the number of latent factors is much smaller than the dimension of observed data,

thus factor analysis can reveal the intrinsic dimensionality of data set by finding the key

factors.

Another popular dimension reduction method is Principal Component Analysis (PCA)

[67]. PCA is an important limited case of factor analysis which assumes the variance of the

noise in the data is zero. A further constraint of PCA is that the factors of data set need to

be orthogonal, which makes PCA attractive because the solution is the eigen-decomposition

of the covariance matrix of data set [59].

For clustering, the Gaussian mixture model assumes the distribution of data is a linear

combination of Gaussian, each of which has its own mean and variance. The density of each

data point follows p(x) =
K∑
k=1

πk N (x|µk,Σk), where N (x|µk,Σk) is one of K components

of the mixture model and πk is the proportion of each component, thus
∑K

k=1 πk = 1 [58].

Another closely related method to mixture Gaussian model is K-means, the value of density

assumes the variance matrix of each Gaussian distribution is identity matrix and πk = 1
K

[72]. The details about mathematical models of both PCA and K-means are introduced in

Section 3.2.

The most well-known supervised linear dimension reduction method for classification

is Linear Discriminant Analysis (LDA) [24], which is a well-established method for finding
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a linear transformation that, in a precise mathematical sense, projects high dimensional

feature vectors onto a low dimensional space in a manner that maximally separates classes,

in our case different bins of fp,Mp,Mg. The mathematic model of LDA is discussed in

Section 3.3. The K-means method measures the similarity between data using Euclidean

distance and can not guarantee to balance the data in different clusters. Spectral Clustering

partitions the training feature sets into several clusters by spectrum analysis of Laplacian

graph and is equivalent to normalized cut problem [71] which can distribute the data in

different cluster more evenly. The detail of Spectral Clustering is introduced in Section 3.3.

2.3 Regression

Regression techniques can give point estimates of the source zone metrics for each concentra-

tion observation, which is different from the classification solution. Regression is employed

for problems where the quantity to be determined is continuously varied while classification

is used for problems where there are only a finite number of values that the variable can

assume. In machine learning, a simple model called multiple linear regression [5] learns

a linear function to predict a target variable given one or more observations. In order to

avoid overfitting, which means the predictors are redundant and the regression model is too

complicated, the linear regression model with regularization term called ridge regression

model was introduced by Hoerl et al.’s work [34]. A nonlinear regression method called

artificial neural networks was inspired by animal’s nervous system which typically consists

of interconnected “neurons” [79]. The input neurons are activated by the data, and then

these activations are weighted and transformed through the network, finally the estimation
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is given by the output neuron. The model of regression function is determined by the weight

factors connecting the neurons and the structure of network. The famous Back-Propagation

(BP) algorithm is used to determine the weights [40] adaptively. However the structure of

network needs to be designed by human before the training of weights and BP algorithm

can’t guarantee to find the global optimal solution.

Another popular regression model is ε-Support Vector Regression (ε-SVR), the goal of

this model is to find a function ŷ = f(x) that the deviation of ŷ from the actual target

y is at most ε [65]. A soft margin version of ε-SVR allows some error greater than ε by

introducing the slack variables. The optimization problem of ε-SVR can be converted to

quadratic programming using Lagrange multipliers.

Bayesian regression is a kind of statistical machine learning method, which uses Bayes

Law to determine a regression function [11]. Moreover, under a Bayesian framework, rather

than a point estimate for the metrics, we provide a full probabilistic model; i.e., a joint

density function of the metric estimates given the data. In our case, we assumed it is

Gaussian. The details of Bayesian regression is discussed in the following.

We assume the model of linear regression function for training data is t(r) = wT r +

ε, ε is additive Gaussian noise distributed as ε ∼ N (0, β) where for our problem β is

determined according to a procedure discussed in Section 4.3. Under this model we have

Pr(t(ri)|w, ri) = N (wT ri, β). Under the standard assumption that the ri’s are independent,

the overall likelihood function is,

Pr(t|w,R) =

N∏
i=1

Pr(t(ri)|w, ri), , where R = [r1, r2, · · · , rN ]. (2.10)
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According to Bayesian rule, the posterior distribution of w is,

Pr(w|t,R) =
Pr(t|w,R) Pr(w)

Pr(t)
(2.11)

Assuming the conjugate prior distribution Pr(w) = N (0, αI), the maximizing posterior

distribution is [11],

Pr(w|t,R) = N (β−1SNRt,SN ), where SN = (α−1I + β−1RRT )−1 (2.12)

resulting in the maximum posterior estimate of w as w∗ = β−1SNRt.

The estimate of the metric for a test datum is obtained by the predictive distribution

[11],

Pr(t̂|R, t, r̃) =

∫
Pr(t̂|w, r̃) Pr(w|t,R)dw (2.13)

where r̃ is the manifold coordinates of test datum in manifold space, t̂ is the metric corre-

sponding to test data. Assume Pr(t̂|w, r̃) = N (wT r̃, βr̃) with βr̃ determined as discussed

in Section 4.3, the distribution of t̂ is,

Pr(t̂|R, t, r̃) = N (µ, ŝ2) = N ((β−1SNRt)T r̃, βr̃ + r̃TSN r̃) (2.14)

We take the estimation of t̂ as µ and the 85% of confidence interval as ±1.44ŝ.
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2.4 Manifold Learning

Within the geophysics community, a wide range of manifold dimension reduction methods

have been proposed to address a variety of issues specifically in the areas of geophysical

image classification and regression [47, 18, 27, 36, 68, 69, 78]. For example, in Chen et al.’s

work [18], two manifold dimension reduction methods, ISOMAP and multidimensional scal-

ing, are evaluated by using k-nearest neighbor classifier on land cover classification. Since

collecting labels for geophysical image is very expensive, Gomez et al.’s work [27] and Kim

et al.’s work [36] combine kernel machines and manifold learning method through regular-

ization to exploit both labeled data and unlabeled data. Motivated in part by its success

in geophysical image classification [27, 68] of specific interest in our work is the Laplacian

Eigenmaps (LE) method for constructing low dimensional manifolds which preserve the lo-

cal structure observed in the high dimensional space. Crucial to this process is the use of a

well-designed weight factor which, for example in Yang et al.’s work [78], was used to build

a manifold reflecting similarity in both the spectral and spatial components of the data for

geophysical image classification.

While the majority of the work using manifold methods for geophysical machine learn-

ing has focused on the unsupervised case, when labeled data are available (as is the case

here), one important supervised extension of LE was introduced in Perry et al.’s work

[55], which combines the objective functions of LE and classifier training by regularization

to incorporate the label in the manifold learning. We also note two other supervised LE

methods proposed in Raducanu et al.’s work [56] and Wu et al.’s work [76] for face classi-

fication, where the weight factor is constructed to reflect similarity in examples from the
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same class. In all of these cases, the labels were discrete-valued reflecting the fact that these

were classification problems. For the regression problem of interest to us in this work, no

straightforward adaptation of these methods exists. Our approach has been to include the

label information (that is, knowledge of fp,Mp,Mg for the training data) directly into the

LE weight factors which is proposed in Section 4.1.

As explained more fully in [9], the Laplacian Eigenmaps procedure seeks a collection of

length m manifold coordinate vectors ri which minimize the objective function,

N∑
i,j=1

‖ri − rj‖22 ωij = tr(RLRT ) (2.15)

where R = [r1, r2, · · · , rN ], L = D − Ω is called the Laplacian matrix, Ω is comprised of

the ωij , here we define ωij = exp(
‖xi−xj‖22

σ1
) exp(

‖ti−tj‖22
σ2

) to measure the similarity between

data. The matrix D is a diagonal matrix whose entries are dii =
∑N

j=1 ωij . Formally, the

optimization problem of LE is,

min
R∈<m×N

tr(RLRT )

s.t. RDRT = I.

(2.16)

where the constraint RDRT = I is added to eliminate the trivial solution R = 0. Standard

Lagrange multiplier method can be used to solve this problem. The Karush-Kuhn-Tucker

optimality condition requires that the optimal ri are obtained via the generalized eigen-

decomposition problem

Lvk = λkDvk where λk, k = 1, 2, · · · ,m+ 1 (2.17)
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Specifically, we pick m� d the eigenvectors corresponding to second smallest through (m+

1)th eigenvalues with 0 = λ1 ≤ λ2 ≤ · · · ≤ λm+1 because v1 is 1 vector which is useless for

regression and the minimum value of objective function is
m+1∑
k=1

λk. The manifold coordinates

of ith datum are the ith coefficients of all the eigenvectors, i.e., ri = (v2,i, v3,i, · · · , vm+1,i)
T .

2.5 Out-of-Sample Extension

The manifold dimension reduction methods reviewed in the last section directly give the

manifold coordinates of training data set, but the estimation of test data requires the

embedding of test data in the same manifold as training data set. In this section, we

review the out-of-sample extension algorithm for the manifold dimension reduction. Bengio

et al.’s work [10] proposed to extent the manifold embedding to new data using Nyström

formula because all the manifold dimension reduction methods can be converted to the

eigen-decomposition problem of similarity matrix M ∈ <N×N of training data.

Mvk = λkvk where λk, k = 1, 2, · · · , N (2.18)

Each coefficient Mij of matrix M is the kernel k(xi,xj) used to measure the similarity

between training data. For our problem k(xi,xj) = ωij . The manifold coordinates of ith

training datum are composed of all the ith elements of eigenvectors {vk} in (2.18). The

computational cost of eigen-decomposition of (2.18) is O(N3), it is an issue for huge data set

where N is very large. The solution of this problem is the subsampling of training data set to

construct a smaller similarity matrix M′ ∈ <n×n where n < N , thus the computational cost

will be reduced from O(N3) to O(n3). When we want to compute the manifold coordinates
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for the rest set of training data, the Nyström formula can be applied [63].

Shawe-Taylor el at.’s work [75] gives the k-th element of manifold coordinates r for the

datum x in the rest of training data set as,

rk =

√
n

λk

n∑
i=1

vkik(x,xi) (2.19)

where λk is the k-th eigenvalue of the small similarity matrix M′ for subsampling training

data set, vki is the i-th element of k-th corresponding eigenvector, k(·, ·) is the kernel used

to calculate the similarity between data and xi is the ith training datum. The drawback

of this algorithm is that the manifold coordinate of new datum depends on the kernel used

to calculate the weight factors in similarity matrix, thus the kernel can not include label

information if we apply Nyström formula to embed the test data in the manifold.

Since the manifold dimension reduction methods give the manifold coordinates of train-

ing data, with raw feature and the manifold representation pair {(xi, ri), i = 1, · · · , N},

another idea of learning the embedding function from raw feature space to manifold space

using Spectral Regression is discussed in Section 4.2.

2.6 Data Sets

In order to evaluate the performance of our classification and regression approaches, we

utilize the data generated from a field-scale simulation library. This library was designed to

provide a variety of source zone architectures resulting from various spill and hydraulic con-

ductivity scenarios, and then the library was used to identify source zone metrics controlling

plume evolution. Two different hydraulic conductivity field models were used to generate
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the simulation data, one is Sequential Gaussian Simulation (SGS) geo-statistical methods

[42] conditioned to the Bachman, Michigan site [2], the other is Transition Probability based

Markov Chain (TP/MC) model [48]. In the following two sections, we introduce these two

types of data sets.

2.6.1 SGS Data

The simulation methodology for DNAPL infiltration and subsequent mass dissolution in

the saturated zone has been reported before by Christ et al.’s works [20, 19, 22]. Briefly,

DNAPL infiltration, entrapment and dissolution were simulated for three-dimensional (3D)

non-uniform hydraulic conductivity fields based upon the Oscoda, Michigan site [42]. Three

simulated data sets were considered for the evaluation of the methods in this work. DNAPL

infiltration and entrapment were simulated with UTCHEM 9.0 using a baseline hydraulic

conductivity field representative of a relatively homogeneous glacial out-wash deposit.

In data set-1, we combined three different spill scenarios (DNAPL infiltration, entrap-

ment and dissolution). Scenario-1 of data set-1 in Table 2.1 is the baseline and was reported

before in Christ et al.’s work [22]. Here an ensemble of 16 equally probable realizations of

3D hydraulic conductivity field was obtained from Lemke et al.’s work [42]. The baseline

scenario consisted of a release of 128 liters of PCE for a period of 400 days located in a 4×5

grid area centered in the top layer of the domain. Following infiltration and entrapment,

MT3DMS [80] was used to simulate dissolution under natural gradient conditions and the

source zones with their correspondent down-gradient transect (end section of the domain)

concentration data were recorded at every 20 time steps. Thus each dissolution simulation

produced nearly 20 time-dependent plume response signals for machine learning approaches.
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Figure 2.1: The results of SGS data, subfigure (a) shows the hydraulic conductivity in three
dimension 26×26×128, in which the values are presented in log scale. Subfigure (b) shows
the saturation of PCE, the regions with the saturation lower than 0.15 are ganglia and
the regions with the saturation higher than 0.15 represent the pools. Subfigure (c) is the
concentration image, the colorbar shows the range of concentration value (mg/L), the shape
of concentration is obviously closely related to the shape of saturation in source zone.

One set of samples of hydraulic conductivity field, the saturation in the source zone and

the downstream concentration profile are shown in Figure 2.1. In Figure 2.1(a), the hy-

draulic conductivity is very high in source zone, the saturation of PCE at most parts is

low which means the ganglia region dominates the source zone, therefore the down-gradient

concentration image has very high values.

Scenario-2 and 3 of data set-1 are variations of the baseline scenario. Scenario-2 consisted

of a catastrophic release, with the same release volume and location as the baseline scenario

but a release period of 4 days. Scenario-3 of data set-1 consisted of the same volume and

release period as the baseline but a different release location. In this scenario the release

was located in the top layer of the 3D domain in 2 block areas: one block of 3× 4 grid area
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Matrix Properties Data set 1 Data set 2 Data set 3

Variogram
Parameters

H V H V H V

Nugget 0.333 0.333 0.333 0.333 0.333 0.333
Range (m) 7 1.07 7 1.07 7 1.07

Integral Scale (m) 2.33 0.36 4.66 0.72 4.66 0.72

σ2 (ln(k)) 0.29 1 1.5

Mean Hydraulic
Conductivity, (m/day)

16.8 16.8 16.8

Anisotropy Ratio
kv/kh

0.5 0.5 0.5

Spill conditions Scenario1 Scenario2 Scenario3

128 128 128
400 4 400

Spill Volume (L) 128 128
Spill Duration (d) 400 400

Table 2.1: Conditions of the 3 different data sets generated for the machine learning algo-
rithm implementation.

located north from the center and the other of 4× 2 located south from the center.

The spill scenario used in scenario-1 of data set-1 was used for data set-2 and 3. The

difference in these sets rested on the statistical properties used for obtaining the hydraulic

conductivity realizations. As shown in Table 2.1, modifications to the statistics included

longer correlation length values for data set-2 and 3, and higher log scale transformed

hydraulic conductivity variance of 1.0 and 1.5 for data set-2 and 3 respectively. In order

to test the performance of regression function under a wide range of conditions, we also

combine these three data sets as data set-4. Taken together, these simulations provide a

large library comprised of scenarios with different spill release history, spill configuration

and heterogeneity of hydraulic properties.
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2.6.2 Markov Chain Model

In addition to the Sequential Gaussian Simulation data sets, simulations with hydraulic

conductivity fields based upon a highly heterogeneous glaciofluvial deposit [49] were per-

formed to investigate the influence of the capillary pressure saturation (Pc-sat) parameters,

residual organic saturation, spill rate and hypothetical field structure. Two dimensional hy-

draulic conductivity realizations were generated using a transition probability based Markov

chain (TP/MC) approach. The glaciofluvial deposit hydraulic conductivity realizations were

characterized by four dominant lithofacies with a high degree of continuity in the horizontal

versus the vertical direction [49].

In the simulated scenarios, the soil matrix properties were generated according to the

transition probability-based Markov Chain hydraulic conductivity distribution, representa-

tive of highly heterogeneous glaciofluvial deposits. The hydraulic conductivity region was

modeled following the aquifer located 500 meters west of town Herten, southwest of German

[32, 7, 37]. There are four dominant lithofacies with increasing hydraulic conductivity that

are shown in Figure 2.2(a) from 1 to 4. The properties of these lithofacies are listed in

Table 2.3 [49]. The lithofacies pattern of hydraulic conductivity field in each direction is

determined by transition probability based Markov Chain model, the type of lithofacies at

next location depends only on the type of lithofacies at current location. In the x direc-

tion, for an example, the transition probability pij from lithofacies component i at current

location x to the component j at next location x+ δx is defined as,

pij = Pr(component j at x+ δx|component i at x) (2.20)



40

the transition matrix for each direction is reported from Maji et al.’s work [48] which is in

Table 2.4.

The hydraulic conductivity fields were generated in the following way. First, an uncon-

ditional categorical simulation was generated based on the TP/MC model obtained from

laboratory-scale region. Second, the categorical data were sampled from a set of 22 randomly

located points from the unconditional simulation. Finally, a set of hydraulic conductivity

fields was conditionally generated using the TP/MC model and the 22 randomly located

data points.

In these scenarios, MVALOR-2D was used to simulate the infiltration and entrapment

of TCE and modified MT3D was applied for dissolution in two dimensional aquifer cells.

The parameter settings of TCE infiltration is summarized in Table 2.2. Pc-sat properties

were obtained from Schroth et al.’s work [62]. To generate an ensemble of hydraulic con-

ductivity field realizations for these numerical simulations, the hydraulic conductivity field

(aquifer cell) was discretized into 41× 91 grid nodes with grid dimensions of 0.025× 0.005

m. This simulation was then sampled using a set of 25 randomly located points. These

sparse concentration signals are used for application and modification of the manifold re-

gression approaches in Chapter 5. A sample set of hydraulic conductivity, saturation and

concentration is shown in Figure 2.2. Figure 2.2(a) represents the hydraulic conductivity

in which four components are indicated by number from 1 to 4 with increasing hydraulic

conductivity. The DNAPL in Figure 2.2(b) was spilled on the top of 2D model and resided

with high saturation above the low hydraulic conductivity layer. The flow dissolved the

DNAPL and transported from left to right, the concentration was observed on the right

side of 2D model in Figure 2.2(c).
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Figure 2.2: The result of TP/MC data, subfigure (a) is the hydraulic conductivity field, in
which four components have different hydraulic conductivity, they are represented from 1
to 4 with the increasing hydraulic conductivity. Subfigure (b) shows the saturation of TCE
which is spilled on the left side. The flow transport from left to right, subfigure (c) is the
concentration and the colorbar shows the range of concentration value (mg/L).
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Fluid Properties Water TCE

Density (g/cm3) 0.999 1.470
Dynamic viscosity (cP) 1.14 0.59
Compressibility (Pa−1) 4.4× 10−10 0.0

Initial saturation 1.0 0.0

Spill conditions

Spill Volume (ml) 39.6
Spill Duration (hr) 1.32

Redistribution time (hr) 22.66
Release Rate (ml/hr) 30
Spill Location (cm) (x-25,z-33)

Table 2.2: The parameter settings for simulation of infiltration of TCE.

No. Lithofacies Description
Volume

Percentage
Hydraulic

Conductivity (m/s)
Porosity

1 Gs-x well-sorted gravel 29% 4.30× 10−5 0.2
2 Gcm poorly-sorted gravel 57% 2.30× 10−4 0.23
3 S-x pure, well-sorted sand 6% 1.00× 10−3 0.24

4 bGcm
cobble and

boulder rich gravel
6% 8.00× 10−2 0.26

Table 2.3: The properties of lithofacies components in Herten site, southwest German.

Gs-x Gcm S-x bGcm
x direction

Gs-x 3.6 0.17 0.53 0.30
Gcm 0.15 14.6 0.51 0.33
S-x 0.41 0.3 0.78 0.29

bGcm 0.65 0.04 0.31 1.12
y direction

Gs-x 7.1 0.002 0.51 0.48
Gcm 0.34 9.8 0.51 0.15
S-x 0.48 0.33 1.5 0.19

bGcm 0.31 0.39 0.3 2.2
z direction

Gs-x 0.3 0.37 0.43 0.20
Gcm 0.53 0.90 0.30 0.17
S-x 0.71 0.29 0.10 0.001

bGcm 0.66 0.33 0.01 0.2

Table 2.4: The transition matrix of different lithofacies components, the diagonal entries
of each direction are the average thickness of lithofacies components (m), the off-diagonal
entries are the transition probability.



Chapter 3

Classification

In this chapter, first we propose a set of new features motivated by the hydrological model

introduced in Section 2.1. The morphological image processing method is applied to extract

the features from concentration image which is predictive for the estimation of metrics (i.e.,

fp,Mp and Mg) in source zone. Therefore this set of features is used for both classification

and regression framework. Second, we propose our classification approach to estimate a

metric interval for each concentration datum represented by feature vector x. Taking the

classifying the pool fraction as an example,

f̂p = C(x) =



C1 f̂p ∈ [0, B1)

C2 f̂p ∈ [B1, B2]

C3 f̂p ∈ (B2, 1]

(3.1)

where C is the classifier which assigns one label to an interval of pool fraction (e.g. C1

means the pool fraction is between 0 and B1). The B1 and B2 are the boundaries between

classes. The classifier training process and the testing procedure are shown in Figure 3.1.

43
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Figure 3.1: The framework of our classification-based machine learning approach.

After feature extraction, as discussed in Section 1.2.2, we need to reduce the dimension of

these training data and cluster these data in this reduced feature space. We introduce the

classic Principle Component Analysis and K-means method (PCA and K-means algorithm)

in Section 3.2 for the dimension reduction and clustering steps respectively in Figure 3.1.

These algorithms are used for comparison against our proposed iterative Linear Discriminant

Analysis and Spectral Clustering algorithm (LDA-SC algorithm). Since the metrics are

continuously valued, after discretization we divide the metric into several non-overlapping

bins, each of which represents a class. The k-nearest-neighbor method is employed to

classify the test datum. The metric discretization and k-nearest-neighbor classifier are used

for both PCA and K-means algorithm and LDA-SC algorithm. In the experiment section,

we compare the performance of our LDA-SC algorithm to the PCA and K-means algorithm,

which demonstrates the superior classification ability of LDA-SC approach.

3.1 Geometric Feature Extraction

As shown in Figure 1.1, we consider a scenario in which we are provided observations

of contaminant concentrations within a transect located away from the source zone and
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Figure 3.2: The observation of concentration image according to their mass in pools value.

oriented orthogonally to the nominal direction of groundwater flow. The feature vector

we develop is motivated by our intuition concerning how the morphology of the observed

concentration data is related to that of the unknown DNAPL saturation in the source

zone. As an example, we consider the concentration data and associated mass in pools

(i.e., similar intuition can also be established for the other two metrics fp,Mg) shown in

Figure 3.2. Roughly speaking we observe that as the mass in pools decreases, the geometry

of the concentration data changes accordingly. Specifically the number of “blobs” in the

images increases and their sizes decrease. Motivated by this observation, here we seek the

features that capture the size and number of blobs in the concentration data believing that

they are related to the metrics in a way that can be learned given sufficient examples.

To motivate the mathematical definitions for the feature vector we develop, in Figure 3.3

we display samples of the concentration data as height maps along with the corresponding

geometric feature vectors for the same data displayed as images in Figure 3.2.

Mathematically, the key issues here are quantifying the notion of a “blob” and determin-

ing what characteristics of these blobs are useful. The first issue is addressed by a simple

thresholding operation in which we specify the blobs at some level τ to be those pixels in
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Figure 3.3: The geometric feature vectors of concentration data in Figure 3.2.
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the image whose concentration values exceed τ :

b(x, y; τ) =


1 if c(x, y) > τ

0 else

(3.2)

where (x, y) is the coordinate of concentration data. From b(x, y; τ) we have found it useful

to compute two quantities: the percentage of the area in c(x, y) for which b(x, y; τ) =

1 denoted as π(τ), and the number of connected components at that level, ν(τ). The

percentage of area calculation is,

π(τ) =

∑
x,y b(x, y; τ)∑
x,y b(x, y; 0)

(3.3)

where the denominator is nothing more than the number of pixels in the concentration

image that are nonzero. Referring to the data in Figure 3.3 again, for sub-figure(a) with

τ = 20, the number of connected components is one. For (b) at τ = 10 there are two

connected components while in (c) with τ = 5 there are only two small size connected

components.

The geometric feature vector we create, denoted as x, is comprised of π(τ) and ν(τ) for

τ = 0, 1, 2, · · · , τmax where τmax is the largest value of concentration in the training data

set. We define X = [x1,x2, · · · ,xN ] ∈ <d×N as the geometric feature matrix constructed

using all data in our training set. In Figure 3.3(d) - (i), we plot π(τ) and ν(τ) corresponding

to concentration data in Figure 3.2(a) - (c). We see that the behavior of these quantities

as a function of threshold is quite distinct depending on the Mp value. The number of

connected component is almost always one in Figure 3.3(d) for the high mass in pools case,
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indicating that there is only one large diffuse area in concentration image1. In Figure 3.3(f),

the pattern is more variable reflecting that the structures in the concentration image are

themselves more complex. Finally in Figure 3.3(h) the number of connected components

drops to zero quite quickly reflecting the presence of only a single blob in the concentration

data due to the low mass in pools (i.e., a lack of diffuse ganglia in the saturation profile).

Similarly, the decays of π(τ) as a function of τ illustrated in Figure 3.3(e), (g) and (i) show

a strong dependence on the underlying mass in pools.

3.2 PCA and K-means

In this section, we introduce the widely applied unsupervised dimension reduction method

PCA and the K-means clustering method (PCA and K-means algorithm). These algorithms

will be applied for comparison against our iterative LDA-SC algorithm which is proposed

in Section 3.3. As discussed in Section 1.3.1, we need first to reduce the dimension of geo-

metric feature vectors proposed in Section 3.1, and then cluster the reduced feature vectors.

Since the metric value is continuous, we do not have class labels for training data set, we

apply unsupervised dimension reduction method, Principle Component Analysis (PCA), to

reduce the dimensionality of training features. PCA can find the most representative linear

low dimensional subspace to embed the original high dimensional data without the label

1Although there is some variability in feature vector (e.g. the number of connected component is two for
a couple of larger values of the threshold) such inconsistencies have little impact in the ultimate utility of
these features.
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information. It minimizes the distortion function below,

min
rik,ek

J =
N∑
i=1

‖
m∑
k=1

rikek + x̄− xi‖22

s.t. ‖ek‖22 = 1, k = 1, 2, · · · ,m.

(3.4)

where ri = [ri1, ri2, · · · , rim]T is the reduced feature vector of xi and x̄ = 1
N

∑N
i=1 xi.

The solution to minimize the above function is to determine first the orthogonal directions

{e1, e2, · · · , em} using the method discussed below and the set rik = eTk (xi − x̄).

In order to solve the optimization problem (3.4), using linear algebra the orthogonal

directions are the eigenvectors of the scatter matrix M of training data [35], which is

Mek = λkek, k = 1, 2, · · · ,m, M =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T . (3.5)

When the distortion function J is minimized, J =
∑d

k=m+1 λk and d is the dimension of

geometric feature vector, we select m = 6 resulting in
∑d

k=7 λk∑d
k=1 λk

= 0.1. The eigenvalues

of covariance matrix M are the variances of data set in eigenvector directions. We select

m = 6 such that the residual variance is only 10% of total variance of data set. For the test

data, the reduced feature vector r̃ = [r̃1, r̃2, · · · , r̃m] is calculated as r̃k = eTk (x̃− x̄) where

k = 1, 2, · · · ,m.

One of the widely applied clustering methods is the K-means technique, which is an

iterative clustering algorithm and tries to minimize the criterion function below,

min
pik ,̄rk

J =
N∑
i=1

K∑
k=1

pik‖ri − r̄k‖22 (3.6)
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where r̄k represents the center of cluster Ck, pik is the assignment indicator variable pik =

{0, 1}, pik = 1 indicates that the ri belongs to cluster Ck.

The goal of K-means is to find optimal {pik} values and calculate the center of each

cluster {r̄k} according to the assignment indicators. The algorithm achieves this goal by

iterating the following two successive steps. After initialing K cluster centers, in the first

step we fix the centers and use Euclidian distance to calculate ‖ri− r̄k‖22 for each data, then

minimize J with respect to {pik}. The solution of {pik} is below.

pik =


1 k = argmink ‖ri − r̄k‖22, k = 1, 2, · · · ,K

0

(3.7)

In the second step, we minimize J with respect to {r̄k}, keeping {pik} fixed. The solution

of r̄k is

r̄k =
1

nk

∑
ri∈Ck

ri (3.8)

where nk is the number of data in cluster Ck. We do these two successive steps iteratively

until {r̄k} does not change. There is still one problem that we need to determine the number

of clusters K beforehand, in the experiment section we set K = 3.

3.3 Linear Discriminant Analysis and Spectral Clustering

PCA method in the last section reduces the dimension of training features without con-

sidering the label information, but the objective of dimension reduction is to find a low

dimensional space that the clusters can be separated so far away that the test datum can

be classified easily into one of clusters. Therefore Linear Discriminant Analysis (LDA)
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[17] is a more appropriate choice for dimension reduction because it is a well-established

method for finding a linear transformation T that, in a precise mathematical sense, projects

high dimensional feature vectors such as the geometric feature vectors x, onto a reduced

dimensional space in a manner that maximally separates classes, (e.g. the different bins of

pool fraction, etc), that is the reduced feature r = Tx, where r ∈ <m,T ∈ <m×d and the

geometric feature x ∈ <d. LDA needs the class labels which are given by clustering method.

While K-means clustering method in the last section finds the clusters by minimizing the

objective function (3.6), it can not guarantee the number of data in each cluster is “bal-

anced”. In our application, it is desired that the data are evenly distributed in each class

because we use k-nearest-neighbor classifier which determines the label of test datum as the

majority of class labels in its neighborhood, thus the classifier will not be bias to any class

with balanced classes. The Spectral Clustering (SC) method can achieve this goal because

in [71] SC method is proved to be equivalent to RatioCut problem, its objective function

minimizes the similarity between classes and balances the distribution of data in each class.

Thus in this section we propose an iterative algorithm based on a combination of LDA and

SC to determine feature-based clusters that are associated with metric bins.

Assume training feature set X is partitioned intoK clusters which is X = [X1,X2, · · ·XK ].

Two scatter matrices within-class Sw and between-class Sb are defined below [17],

Sw =
1

N

K∑
k=1

∑
xi∈Ck

(xi − x̄k)(xi − x̄k)
T (3.9)

where x̄k is the center of cluster Ck, x̄k = 1
nk

∑
xi∈Ck xi, nk is the number of data in cluster
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Ck.

Sb =
1

N

K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T (3.10)

where x̄ is the center of whole training data set, x̄ = 1
N

∑N
i=1 xi.

LDA intends to find the linear transform matrix T which can minimize the within-class

distance and maximize the between-class distance simultaneously, thus the optimization

problem is as following,

T∗ = min
T

J =
tr(TSwTT )

tr(TSbTT )
(3.11)

the solution of (3.11) is the eigenvectors of matrix S−1w Sb for the eigenvalue λ 6= 0. In [25] it is

shown that the number of non-zero eigenvalues is at mostK−1. Thusm = K−1 = 3−1 = 2.

The reduced feature space for training data is comprised of r = T∗x and the test data x̃

can be projected in the same space by r̃ = T∗x̃.

The Spectral Clustering method clusters the training data in the reduced feature space.

First a graph Laplacian matrix is construct [71],

L = D−W (3.12)

where W is the weight matrix, of which the entries are,

wij = exp(−‖ri − rj‖22
σ

) (3.13)

wij measures the similarity between data. If wij 6= 0, data ri and rj are connected in

the graph, thus these data should belong to the same cluster. If wij ≈ 0, data ri and rj
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are disconnected in the graph, so these data should belong to the different clusters. σ is

chosen by cross-validation [11] which is discussed in Section 3.6. D is a diagonal matrix

whose entries are dii =
∑N

j=1wij . The spectral analysis of the Laplacian matrix L is the

eigen-decomposition,

Lvk = λkvk, where 0 = λ1 ≤ λ2 ≤ · · · ≤ λK (3.14)

Assume there are three non-overlapping clusters which means the datum is only con-

nected to the data within its cluster and there is no connection between the data in different

clusters. The Laplacian matrix L has a block diagonal form as follow [71],


L1

L2

L3

 (3.15)

where Lk, k = 1, 2, 3 is the Laplacian matrix for each cluster.

By definition, the sum of each row in Laplacian matrix is 0, thus the number of 0

eigenvalues of L is equal to the number of non-overlapping clusters [54], and the eigenvector

vk ∈ <N corresponding to cluster Ck is filled with “1” at the position of data belonging

to Ck and filled with “0” at other positions [53]. Since the clusters in our problem are not

strictly non-overlapping, we take the K eigenvectors as V ∈ <N×K corresponding to the

smallest K eigenvalues and apply K-means method to each row of V.

The problem here is that the LDA method assumes that labeled data are available; i.e.

that the bins into which the metric will be divided are known as a priori. As this is not the
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case for our problem, we have developed an iterative algorithm (LDA-SC algorithm) that

both finds the reduced dimension feature space and cluster the feature data in this space.

The training procedure of the approach is summarized in the Table 3.1.

Algorithm: Linear Discriminant Analysis and Spectral Clustering iterative algorithm

Inputs:
{xi, ti}Ni=1, and K the number of bins into which we wish to divide metric.
xi is the geometric feature vector and ti is the metric

Outputs: - K collections of feature vectors
- An optimal linear transformation for projecting geometric feature
vectors into a reduced feature space.

Initialization: Perform the Spectral Clustering to obtain initial class labels.
Loop:

- LDA finds the reduced dimension space and the transform matrix T.
- Spectral Clustering in the low dimension subspace, updates the class
labels. Change the labels of data to the new labels determined in this loop.
- If the labels do not change or the number of loop exceeds 20, stop loop.

Table 3.1: The iterative LDA-SC algorithm to find the reduced dimension feature space
and cluster the feature vectors in this space.

3.4 Metric Discretization

After clustering in the reduced feature space, we need to divide continuous metric value

into intervals. Take fp as an example, corresponding to each of these feature clusters is a

grouping of associated pool fractions. Ideally, if the range of corresponding fp value to each

cluster does not overlap, it is easy to determine the boundary of fp value. But, while the

K groups of reduced feature vectors are disjoint, in general, the corresponding K groups

of fp will overlap. This is illustrated in Figure 3.4(a) for the case of two clusters where

the cluster-1 and cluster-2 are disjoint in the reduced dimension feature space, but the

corresponding ranges of metric are overlapping. To obtain non-overlapping bins then, we

must choose a boundary in the overlap region of metric space. If, for example, we take the
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Figure 3.4: The illustration of boundary adjustment.
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left extreme point of overlap region as the boundary, this would require that many of the

red-cross training data would be “flipped” to blue stars. Hence this choice for the boundary

would lead to a high misclassification rate among the training data in cluster-1 as shown

in Figure 3.4(b). Likewise, if we take the right extreme point, the misclassification rate

in cluster-2 will be high, as shown in Figure 3.4(c). Clearly, there is some choice between

these two extremes for which the misclassification rate for the data in the training set

is minimized. We search the range of overlap linearly to find the boundary to divide fp

value into intervals which can minimize the misclassification rate. For our example, these

boundaries are displayed in Figure 3.4(d) with the black arrow. At the end of this process

then, we have clusters of reduced feature vectors corresponding to non-overlapping bins in

metric space.

3.5 k-nearest-neighbor Method

A k-nearest-neighbor (kNN) method is used as the basis for testing. This approach assumes

the training data and test data live in the same space. The algorithm calculates the distance

between test data and each training data to measure similarity, the smaller the distance

is, the more similar the metrics of data are. The algorithm assigns the label of testing

data as that of its nearest neighbors. As shown in Figure 3.5, the circle is the test data,

the classifier takes k = 5 nearest neighbors to decide the label of test data. If the labels

are not consistent, we use majority vote to determine the final label for test data, thus in

Figure 3.5 the test data will be classified into class-1 and the metric interval corresponding

to class-1 is determined by metric discretization. k-nearest-neighbor method is a decent way
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Figure 3.5: The illustration of k-nearest-neighbor method.

to build a classifier implicitly because we don not need to care about the shape of boundary

between classes, it classifies the test data only depending on its neighborhood which gives

an outstanding performance.

3.6 Experiments

In this section, we examine the performance of the LDA-SC algorithm using data set-1 which

we introduce in Section 2.6.1, comparing to the result using PCA and K-means algorithm.

There are three hyper-parameters we need to determine beforehand for the experiments.

The first one is the number of classes K, if we choose K = 1, we classify all the test data

into one class, the accuracy will be 100%, but the classification is meaningless; on the other

hand, if we choose K = N , the number of classes is too many and the interval of metric
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for each class is extremely narrow. Therefore the appropriate K needs to be determined

according to the precision we want to achieve. In this section, we choose K = 3. The

other two hyper-parameters are the σ in weight factor of Laplacian graph and the number

of neighbors in k-nearest-neighbor method. The σ in (3.13) has an impact on the similarity

measured between data, if σ is too small, almost all the weights are zero which means all

the data are disconnected; if σ is too large, almost all the weights are one which means

all the data are connected in Laplacian graph, thus the choice of σ will affect the result of

clustering. For k-nearest-neighbor method, if k = 1 the test datum is classified based upon

the label of its nearest neighbor, the classifier will not robust; whereas if k = N all the test

data are classified as the label of the majority in training data which makes the classifier

useless. We use grid search to select σ and k manually, we run the experiments for each

combination of σ and k, then select the σ and k when the accuracy of classification for test

data is highest. From this process, the resulting values are σ = 15 and k = 5.

For each metric (fp,Mp and Mg), we use 90% of data set for training and 10% of data

set for test. The algorithm (PCA and K-means or LDA-SC) is applied to determine the

boundary of metric, which is denoted as one run classification. The classification accuracy

of class-k is calculated as,

Accuracy =
the number of test data that are classified correctly as class-k

the number of test data in class-k
(3.16)

we also calculate the average accuracy as,

Average Accuracy =
the number of test data that are classified correctly

the total number of test data in class
(3.17)
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In order to estimate the classification accuracy of LDA-SC algorithm, we use the de-

termined boundary in one run to label the training data and run 10-fold cross-validation

using these boundaries [11] to estimate the true accuracy of each class. Since the label of

each training data is fixed, we only need to perform LDA to find the reduced feature space

and then use k-nearest-neighbor classifier to classify each test data. We take the mean

of ten classification results as the estimation and ±1.96 of standard deviation as the 95%

confidence interval estimation which are shown as bold face number on the diagonal line in

confusion matrix in Table 3.4, 3.7 and 3.10. The misclassification rates on the off-diagonal

lines are calculated as,

Misclassification Rate =
the number of test data in class-k that are classified as class-j

the number of test data in class-k

(3.18)

The one run classification results and confusion matrix of each metric are provided in

Table 3.2 to 3.10. Since the PCA and K-means algorithm can not find the appropriate

boundaries, we only show the confusion matrices for the LDA-SC algorithm.

Pool Fraction
Average Accuracy: 0.790

Class-1 Class-2 Class-3

Boundary 0 < fp < 0.49 0.49 < fp < 0.58 0.58 < fp < 1
Accuracy 0.935 0.481 0.513

The number of training data 289 40 107

Table 3.2: The one run classification result of pool fraction for data set-1 using PCA and
K-means algorithm.

In Table 3.2, the one run classification result of fp using PCA and K-means algorithm is

shown, more than half of data set is clustered as class-1 and the fp interval corresponding

to class-2 is very narrow (i.e., only 0.09), the accuracy of class-2 and class-3 is 0.481 and
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Pool Fraction
Average Accuracy: 0.868

Class-1 Class-2 Class-3

Boundary 0 < fp < 0.36 0.36 < fp < 0.56 0.56 < fp < 1
Accuracy 0.915 0.812 0.857

The number of training data 190 116 130

Table 3.3: The one run classification result of pool fraction for data set-1 using LDA-SC
algorithm.

Pool Fraction
Estimated Class

Class-1 Class-2 Class-3

True
Class

Class-1 0.873± 0.064 0.057± 0.045 0.070± 0.037
Class-2 0.116± 0.044 0.860± 0.058 0.024± 0.036
Class-3 0.134± 0.120 0.036± 0.034 0.830± 0.133

Table 3.4: The confusion matrix of pool fraction classification result for data set-1 using
the boundaries found by LDA-SC algorithm.

0.513 respectively, the classifier randomly guesses the labels of test data in these two classes.

Therefore, PCA and K-means algorithm does not work for the fp classification. However,

the performance of LDA-SC algorithm in Table 3.3 is much better, the average accuracy

increase from 0.790 to 0.868, the number of data in each class are almost evenly distributed

and the accuracy of each class is higher than 0.800. The confusion matrix of accuracy

estimation for fp is in Table 3.4. The estimated accuracy of each class is around 0.85.

Mass in Pools
Average Accuracy: 0.830

Class-1 Class-2 Class-3

Boundary (kg) 0.59 < Mp < 6.55 6.55 < Mp < 28.7 28.7 < Mp < 44.6
Accuracy 0.660 0.920 0.680

The number of training data 60 284 92

Table 3.5: The one run classification result of mass in pools for data set-1 using PCA and
K-means algorithm.

The one run classification of Mp using PCA and K-means algorithm is in Table 3.5. The

average accuracy reaches 0.830 because the accuracy of class-2 is very high which is 0.92,

but the accuracy of class-1 and class-2 is around 0.650, barely better than the random guess.
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Mass in Pools
Average Accuracy: 0.856

Class-1 Class-2 Class-3

Boundary (kg) 0.59 < Mp < 9.26 9.26 < Mp < 26.7 26.7 < Mp < 44.6
Accuracy 0.911 0.844 0.830

The number of training data 114 177 145

Table 3.6: The one run classification result of mass in pools for data set-1 using LDA-SC
algorithm.

Mass in Pools
Estimated Class

Class-1 Class-2 Class-3

True
Class

Class-1 0.908± 0.062 0.026± 0.026 0.066± 0.045
Class-2 0.042± 0.044 0.870± 0.071 0.087± 0.053
Class-3 0.079± 0.126 0.077± 0.099 0.844± 0.067

Table 3.7: The confusion matrix of mass in pools classification result for data set-1 using
the boundaries found by LDA-SC algorithm.

The metric interval of class-2 is from 6.55 kg to 28.7 kg which almost two thirds of data set

belong to, the kNN classifier is clearly biased to classify the test data into class-2. However,

by using LDA-SC algorithm in Table 3.6, the number of data in each class is almost the

same and all the accuracy is higher than 0.800 even though the average accuracy is only

0.02 higher than PCA algorithm. The confusion matrix in Table 3.7 shows the estimated

accuracy is around 0.85.

Mass in Ganglia
Average Accuracy: 0.940

Class-1 Class-2 Class-3

Boundary (kg) 0 < Mg < 14.1 14.1 < Mg < 30.5 30.5 < Mp < 201.4
Accuracy 0.952 0.708 0.965

The number of training data 153 35 248

Table 3.8: The one run classification result of mass in ganglia for data set-1 using PCA and
K-means algorithm.

The classification result of Mg is better than fp and Mp because the shape of concen-

tration is highly related to the ganglia region as shown in Figure 2.1. The average accuracy

of PCA and K-means algorithm is 0.94 in Table 3.8 because the cluster-3 dominates the
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Mass in Ganglia
Average Accuracy: 0.886

Class-1 Class-2 Class-3

Boundary (kg) 0 < Mg < 13.4 13.4 < Mg < 69.1 69.1 < Mp < 201.4
Accuracy 0.920 0.835 0.884

The number of training data 145 139 152

Table 3.9: The one run classification result of mass in ganglia for data set-1 using LDA-SC
algorithm.

Mass in Ganglia
Estimated Class

Class-1 Class-2 Class-3

True
Class

Class-1 0.934± 0.018 0.064± 0.021 0.002± 0.002
Class-2 0.079± 0.019 0.820± 0.013 0.101± 0.002
Class-3 0.000± 0.000 0.113± 0.017 0.887± 0.017

Table 3.10: The confusion matrix of mass in pools classification result for data set-1 using
the boundaries found by LDA-SC algorithm.

training data set and the k-nearest-neighbor classifier is bias to classify the data into class-3

which is undesirable for classification. Although the average accuracy of LDA-SC algorithm

decrease to 0.886, the accuracy of class-2 increases from 0.708 to 0.835 while the accuracy

of class-1 and class-2 doesn’t deteriorate much in Table 3.9. The confusion matrix in Ta-

ble 3.10 shows the confidence intervals are less than 0.02 which means the classification

results of Mg are very stable.

From the experiments, the performance of LDA-SC algorithm is much better than PCA

and K-means algorithm. The reason is that LDA incorporates the label information into

the dimension reduction, thus in the reduced feature space the between class distances are

maximized and within class distances are minimized, this gives advantage to classification

while PCA is an unsupervised dimension reduction method which has no benefit. Spectral

Clustering method balances the distribution of data in each class, so the k-nearest-neighbor

classifier is not bias to any class, this also gives a better performance than K-means method.
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Manifold Regression

Motivated by the ideas in Guo et al.’s work [30], here we present a regression based ma-

chine learning algorithm whose component steps are illustrated in Figure 4.1. As shown in

Figure 4.1, the training and testing processes require a number of steps which we outline

here. The inputs to the training phase are observations of down-gradient concentration

data ci(x, y) and an associated metrics vector ti = [fp,Mp,Mg]
T for the known source zone

associated with these concentration signals with i = 1, 2, · · · , N . The variables x and y

represent the coordinates in the down-gradient transect where the concentration data are

collected. Thus we may regard ci(x, y) as an image where x and y index the coordinates

of the pixels. It is also convenient to think of these data as a vector, ci, obtained by lexi-

cographically ordering the pixels in the image. Thus Nc, the dimensionality of ci, is equal

to the product of the number of rows and columns in ci(x, y). As explained in Section 2.1

these training data are generated via numerical simulation where a number of DNAPL

infiltrations are obtained followed by dissolution to generate the concentration data.

From the concentration data, the first step in training is geometric feature extraction

63
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Figure 4.1: The framework of our regression-based machine learning approach.

using the same method proposed in Section 3.1. Then we employ manifold dimension

reduction method to obtain the low dimensional manifold coordinate vectors for training

regression functions under a Bayesian approach. For testing, we first learn the embedding

function, which is a mapping from geometric feature space to manifold space, using training

data. Then we can embed the test data in the same space as the training data to estimate

the desired metrics and confidence intervals. We call this process the serial approach because

each component in Figure 4.1 is designed and optimized serially. In the following sections

we explain each component of the manifold regression framework shown in Figure 4.1.

Subsequent to this discussion, we present our two primary contributions to the prob-

lem of manifold-based metric estimation. First, due to the outliers issue discussed in

Section 1.2.3, the embedding function obtained using the traditional Spectral Regression

method cannot reconstruct the manifold built by Laplacian Eigenmaps accurately. Tech-

nically, the L2 norm in the SR objective function makes the embedding function sensitive

to outliers. Therefore the Huber norm is employed to train the embedding function. This

approach is called the robust approach. Second, the three metrics fp, Mp and Mg are not

independent, they follow the mathematical relation fp = Mp/(Mp + Mg). We enforce this
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constraint into the training process to regularize the regression functions for the three met-

rics. We also determine the regression functions and embedding function simultaneously,

thus this approach is called the integrated approach.

4.1 Laplacian Eigenmaps

As discussed in Section 3.1, the number of geometric features we compute is on the order

of a few hundred. Dimensionality reduction is used to further extract from the data those

degrees of freedom that are most relevant for solving the regression problem. As explained

in the Section 1.2.3, our use of manifold methods is motivated by a desire to embed the

training data comprised of the geometric feature vectors along with the known metrics into

a low dimensional space where regression can be performed accurately. More precisely, we

seek to transform the feature vectors into a space such that the distance between vectors in

this new space is reflective of the distance between the corresponding source zone metrics we

seek to determine. If this condition is satisfied, when the feature vector from a test datum

is transformed into this space, the use of regression for the metrics based on the training

data points close to the test data point in manifold space is expected to be accurate. As

this closeness requirement involves a highly nonlinear mapping of the feature vectors [44],

standard linear dimensionality reduction methods such as PCA [35] or LDA [17] discussed

in the last chapter, are not appropriate.

In this section we use the Laplacian Eigenmaps (LE) approach to construct a manifold

with the locality preserving property we desire. Mathematically, for each length d + 3

feature vector-metrics value pair [xi, ti]
T , we seek a low dimensional embedding, ri ∈ <m
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with m � d + 3. Here ri is best thought of as an m-dimensional coordinates vector for

the ith datum in the manifold. The LE manifold is constructed by choosing the manifold

coordinates to minimize the following objective function [9],

min
ri∈<m

N∑
i,j=1

‖ri − rj‖22 ωij (4.1)

The weight ωij is constructed as a measure of the similarity between [xi, ti]
T and

[xj , tj ]
T , and is chosen to be largest when these quantities are closest. In this work we

employ a variant of the Gaussian weight function [9] for which ωij is,

ωij = exp

(
−‖xi − xj‖22

σ1

)
exp

(
−‖ti − tj‖22

σ2

)
(4.2)

we emphasize LE is used here to embed the three related metrics into the same manifold

and we normalize all the metrics between 0 to 1.

To illustrate these ideas, consider again the three cases illustrated in Figures 4.2. With

σ1 = 20 and σ2 = 1, the values used in our experiments in Section 4.6 when constructing the

weight for comparing (a) and (b), the geometric feature vectors for these data are relatively

similar (i.e., the Euclidean distance of feature vectors is 5.29, while the Euclidean distances

of feature vectors between (a)/(c) and (b)/(c) are 7.43 and 7.49 respectively.), so that the

first factor in (4.2) will be large, but the difference between the metric vectors is huge so that

the second factor in (4.2) will be very small, resulting in ωab = 0.37. When we calculate the

weight for (a) and (c), the first factor measuring the similarity between geometric features

will be relatively small, but the second factor will be large, yielding the weight ωac = 0.63.
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Figure 4.2: Ambiguity of the metric estimation problem. Due to the differences in the
manner in which the contaminant was spilled into the subsurface, the pool masses associated
with similar concentration images (a) and (b) are quite different while the dissimilar images
(a) and (c) correspond to source zones with nearly the same mass in pools.

Thus, using this approach we see that (a) and (c) are, in a sense, almost twice as similar

as (a) and (b) which is exactly what we desire given that metrics for (a) and (c) are much

closer than those of (a) and (b).

In Figure 4.3, we display a two-dimensional projection of an m = 4 dimensional man-

ifold constructed using this approach for the single metric mass in pools. As discussed

in Section 2.4, we sort the eigenvalues of Laplacian matrix in ascending order, thus the

minimum value of objective function (4.1) is
m+1∑
k=1

λk. The eigenvalues of Laplacian matrix

are between 0 to 1 [9]. From Figure 4.4 we choose the eigenvalue from the second to the

fifth and set m = 4 because the sixth eigenvalue is over 0.95. We show in Figure 4.3 the

location of each training datum projected onto the first two coordinates corresponding to

the smallest two eigenvalues. Each dot in this space corresponds to one datum of data set-4

used in the experiments in Section 4.6 with the color of the circle indicating the mass in

pools, the colorbar indicates the range of mass in pools in kilogram. From Figure 4.3, the

data whose metric values are similar will in fact be mapped close to one another at least in
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Figure 4.3: Embedding of concentration image data with its associated metric onto two
dimensions, the color of dots indicates the mass in pools Mp as an example. The manifold
we find has validated the objective of Laplacian Eigenmaps which is the data with metric
locate nearby each other, this gives advantage for linear regression function learning.
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Figure 4.4: The plot of second to eighth eigenvalue of Laplacian matrix for LE.

this subspace so that the locality preserving property discussed before is in fact evident at

least with respect to the training data.

Two remarks are in order concerning the LE method. First, the process of solving the

optimization problem in (4.2) is well known in Belkin et al.’s work [9]. The details are

reviewed in Section 2.4. Second, full specification of the problem requires that the hyper-

parameters σ1 and σ2 be provided. As described in the Section 4.6.2, here we use a cross

validation approach [11] to determine these quantities adaptively from the data sets.
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4.2 Spectral Regression

After LE embeds the training data in manifold space, the predictions of metrics given a

test datum are processed by first constructing geometric feature vector from observed test

concentration image and then embedding this feature vector into the manifold. Finally the

estimation of the associated metrics is obtained as a linear combination of the metric vectors

associated with training data that are located close-by in the manifold. Now, the manifold is

constructed under the assumption that both the xi and ti, i = 1, · · · , N are known. Thus, a

method for embedding data when only xi’s are given is needed. In Section 2.5, we discussed

the limitation of Nyström formula and in this section the Spectral Regression method is

used to perform the task of learning a function r = f(x) which can embed the geometric

feature of test data into the manifold space.

Spectral Regression (SR) casts embedding function learning into a regression framework.

Since LE is a nonlinear dimension reduction method, the mapping function from feature

space to manifold space should also be nonlinear. We assume the nonlinear function lives

in a Hilbert space specified by a kernel k(·, ·) [64]. The model of this nonlinear function is

f(x) = ATk(x), specified by the parameter matrix A ∈ <N×m and kernel function vector

k(x) = [k(x,x1), k(x,x2), · · · , k(x,xN )]T . The optimization problem to learn A is [12]:

A∗ = argmin
A

=
N∑
i=1

‖ATk(xi)− ri‖22 + γ‖A‖2F (4.3)

where γ is a regularization hyper-parameter. The solution of problem (4.3) is A∗ = (K +

λI)−1RT where matrix K is the Gram matrix withKij = k(xi,xj), and R = [r1, r2, · · · , rN ].
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In the experiments Section 4.6, we use the Gaussian kernel [12],

k(x,xi) = exp(−‖x− xi‖22
σSR

) (4.4)

where the hyper-parameter σSR is determined by cross validation.

4.3 Bayesian Regression

The final step of our machine learning framework is training the regression function in

manifold space to estimate the metrics of test data. One of the advantages of Bayesian

regression is that it can provide both the estimated metric itself along with a confidence

interval allowing for the quantification of uncertainty in the estimate. The details of stan-

dard linear Bayesian regression is provided in Bishop’s book [11]. Here we summarize our

approach.

We first centralize the manifold coordinate matrix and metrics vectors, that is, we

compute r̄ =
∑N

i=1 ri/N , and define a centralized R as R̄ = [r1− r̄, r2− r̄, · · · , rN − r̄], and

centralize T as T̄ = [t1−t̄, t2−t̄, · · · , tN−t̄] where t̄ = [f̄p, M̄p, M̄g]
T =

∑N
i=1 ti/N . A linear

regression function is used to estimate each metric which takes the form t̄(r̄i) = wT r̄i + ε,

where ε is modeled as zero mean, additive Gaussian noise with variance β. We employ an

iterative maximum-likelihood method to estimate β [50]. Specifically all experiments, we

initially set β = 0.01. After determining w∗, the optimal values for w using the methods of

[11], the random variable εi is estimated as ε̂i = t̄i−w∗T r̄i, and β is updated as the sample

variance of ε̂i. With this new value of β, the regression function can again be computed and

the process repeats until convergence. The rate of convergence is quite fast, generally only
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one update is enough. The complete Bayesian regression method is provided in Section 2.3.

For the fully Bayesian approach to regression construction [11], we also require a prior

probability distribution for the unknown metrics being estimated for a given set of test data.

Again a zero mean Gaussian model is used for which the variance needs to be determined.

Unlike the specification of β here we only possess the metrics estimated from a single set

of test data so that sample variance methods can not so easily be employed. To address

this issue we assume that the embedding process is sufficiently accurate so that the training

data in the neighborhood of the embedded test data will have associated metrics that are

close to that of the test data. Under such an assumption, we estimated the variance of

the metric for the test datum as the variance of the metrics within the n-nearest-neighbors

of test datum in the manifold. The size of neighborhood, n, is determined empirically to

ensure that roughly 85% of the test data did in fact fall in the theoretical 85% confidence

interval. From our experiments using an integrated approach with half of data set-4 for

training, the EP85’s of size 10 for all the metrics are around 85%. Therefore we choose the

size n as 10.

4.4 Robust Spectral Regression

One approach to using the methods described in the last sections to address the problem

of interest here is to optimize each of the components shown in Figure 4.1 individually.

More specifically, the Laplacian Eigenmpas method could be used to construct a manifold

in which the training data corresponding to similar metric vectors are, ideally, located close

to one another. Subsequently, the same data set with only geometric feature x would be
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used to determine the optimal A matrix for the spectral regression function by minimizing

the reconstruction error e = ‖ATk(x) − r‖2. Finally, the training data would be used

to construct the Bayesian regression functions. The performance of the overall processing

chain could then be evaluated using the test data.

Unfortunately, this serialized type of approach suffers from challenges associated with

the embedding of the feature vector into the constructed manifold. To illustrate the more

general situation, consider the simpler problem of estimating only the mass in pools. In

Figure 4.5(a) and (c) we show the manifold determined by LE and the reconstructed man-

ifold obtained using SR. Ideally the two would be the same. In general we would hope

that the data points predicted by SR are close to their “true” coordinates as defined by the

LE process. By comparing these two figures however we see that there is a good deal of

discrepancy.

In a bit more detail, recall that the goal of SR is to determine a function for embedding

the geometric data vectors into the manifold when the associated metric values are not

known. The hope is that such an embedding function will place the test data into the

manifold close to the training data coordinates such that we can estimate the metrics vector

using Bayesian regression based on the neighbors. Unfortunately, in Section 1.2.3 around the

discussion of Figure 1.5, the metric values associated with very different concentration data

sets can be quite similar leading to large errors in the embedding process. The concentration

images of Figure 1.5 are shown in Figure 4.6 for convenience.

By zooming in the red rectangle in Figure 4.5(a) we can better see where these data are

located in the manifold. Figure 4.5(b) indicates that the cases associated with Figure 4.6(b)

and (c) are placed in the low Mp neighborhood, although the case for Figure 4.6(a) is a
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Figure 4.5: The manifold constructed by LE using feature and metrics pair is shown in (a),
the manifold coordinates of data for Figure 4.6 is in (b), the reconstructed manifold using
embedding function with only geometric feature is shown in (c), the reconstructed manifold
coordinates of data for Figure 4.6 is in (d) and the reconstructed manifold by embedding
function from Robust SR is shown in (e). The median of the reconstructed error is in the
legends in both (c) and (e).
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Figure 4.6: The outlier in data set, (a)-(c) have almost the same metric mass in pools, but
due to the different spill scenario, the concentration data is quite different.

bit further away from (b) and (c) due to difference in the geometric feature vector. After

SR, we can reconstruct the manifold found by LE using only geometric feature vector

as r̂ = ATk(x), which is shown in Figure 4.5(c). By zooming in the red rectangle in

Figure 4.5(c), Figure 4.5(d) shows that concentration (b) and (c) are reconstructed almost

at the same position as in Figure 4.5(b), but the embedding of (a) is quite far from where

it should be. Moreover, in the neighborhood of this point the associated training data have

high Mp value as indicated by the bluish color. In Table 4.1, we summarize the quantitative

analysis of concentration data in Figure 4.6. From Table 4.1, the reconstructed error (defined

to be ‖r̂− r‖2) of case (a) is much larger than (b) and (c).

Concentration
Manifold Coordinate

in Figure. 4.5(b)
Reconstructed Manifold

Coordinate in Figure. 4.5(d)
Reconstruction

Error

(a) (-0.2029,-0.7378) (-0.8092,0.0455) 0.9905
(b) (0.8320,-0.3802) (0.7759,-0.3940) 0.0577
(c) (0.8201,-0.3621) (0.8081,-0.3601) 0.0121

Table 4.1: The quantitative analysis of the data in Figure 4.6

Since cases like Figure 4.6(a) are relatively rare, we regard them as the outliers. In

order to get an embedding function that is less sensitive to these potentially large errors, we
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propose in this section a robust form of the spectral regression method. In the original SR

objective function (4.3), the quadratic function will penalize heavily the large reconstruction

error, which makes the embedding function quite sensitive to outliers. The Huber norm

which is proposed by [29] can solve this problem and is defined as

H(x) =


x2

2ε if x < ε

x− ε
2 if x > ε

(4.5)

The threshold ε distinguishes normal data from outliers. To determine this threshold

we first use (4.3) to determine an embedding function and then measure the reconstructed

error, ei = ‖ATk(xi) − ri‖2, i = 1, · · · , N . We let ε be the 95th percentile of {ei} [50].

Using this value (4.3) is changed to the following as the basis for determining the optimal

embedding function:

A∗ = argmin
A

=
N∑
i=1

H(‖ATk(xi)− ri‖2) + γ‖A‖2F (4.6)

In the case of pool mass, the reconstructed manifold using robust SR is shown in Fig-

ure 4.5(e). We see that the shape of reconstructed manifold is improved by visually com-

paring this figure to Figure 4.5(c). The median of reconstruction error of Figure 4.5(c) is

0.1139, while the median of that for Figure 4.5(e) drops to 0.0832. Since we reduce the

impact of outliers on the learning the embedding function, the outliers cannot be embed-

ded correctly in the manifold using the robust approach, but by using the Huber norm in

the robust cost function, the impact of these outliers on the overall accuracy of the SR

embedding is reduced.



77

4.5 Integrated Approach

Thus far, we have considered the estimation of these three quantities fp,Mp,Mg individually.

That is, one learner is used to estimate pool fraction, another for the mass of DNAPL in

pools and a third for the mass of DNAPL in ganglia. These three metrics however are not

independent of one another. Thus, we hypothesize that an approach which incorporates the

mathematical relationships among these quantities to determine all three at once should

outperform the case where we ignore the coupling. More specifically, we exploit the fact

that pool fraction is equivalent to the ratio of the mass in pools to the mass in pools plus

the mass in ganglia.

The analytical method we have developed proceeds as follows. We first use LE to deter-

mine the manifold coordinates of the training data R, and then simultaneously determine

three Bayesian regression functions, one each for the three metrics of interest, integrated

with robust SR, subject to the constraint that the estimated pool fraction is equal to the

ratio of Mp to Mp +Mg. The optimization problem to solve then is,

min
A,W

L(A,W) =
1

N

N∑
i=1

H(‖ATk(xi)− ri‖2) + γ1‖A‖2F+

γ2
1

N

N∑
i=1

H(‖WTATk(xi)− ti‖2) + γ3‖W‖22

s.t. w1A
Tk(xi) + f̄p =

w2A
Tk(xi) + M̄p

w2ATk(xi) + M̄p + w3ATk(xi) + M̄g
i = 1, . . . , N.

(4.7)

where W = [w1,w2,w3] and the estimation of pool fraction, mass of DNAPL in pool and
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ganglia are generated using the following linear regression functions.

f̂p = wT
1 ATk(xi) + f̄p

M̂p = wT
2 ATk(xi) + M̄p

M̂g = wT
3 ATk(xi) + M̄g

(4.8)

The integrated robust SR and linear Bayesian regression is proposed in the objective

function (4.7). The constraint in (4.7) enforces the physical relationship among the three

quantities to be estimated. The first term in (4.7) is motivated by the robust SR cost

function with the Huber norm. The second term ‖A‖2F is the regularization term coming

from SR, with the regularization hyper-parameter γ1 playing the same role as γ in (4.6). The

third term in (4.7) arises from the mathematical details of the Bayesian regression problem

provided in [11]. The hyper-parameter γ2 is used to balance the desire for a good embedding

with the needs of obtaining accurate regression results. Using Lagrange multiplier, we can

convert (4.7) into unconstrained optimization problem as the following,

min
A,W

L(A,W) =
1

N

N∑
i=1

H(‖ATk(xi)− ri‖2) + γ1‖A‖2F+

γ2
1

N

N∑
i=1

H(‖WTATk(xi)− ti‖2) + γ3‖W‖22+

γP

N∑
i=1

(
w1A

Tk(xi) + f̄p −
w2A

Tk(xi) + M̄p

w2ATk(xi) + M̄p + w3ATk(xi) + M̄g

)2

.

(4.9)

While (4.9) provides for the joint determination of all three regression functions in a

manner that reflects the physical relationship among the metrics. To solve problem (4.9)

we use a cyclic decent type of optimization algorithm which is summarized in the Table 4.2.
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The details about the gradient are provided in Appendix A. For ξ0 = ξ1 = 0.001 the decent

algorithm converged for all experiments in this thesis.

Algorithm: Cyclic Decent Algorithm for Integrated Approach

Inputs: (R,T) := {ri, ti}Ni=1, η, σ1, σ2, σSR, γ1, γ2, γ3, γP , ξ0 > 0.
Outputs: Embedding function A and weight vectors of regression functions w1,w2,w3.

Initialization: A(0) and w
(0)
1 ,w

(0)
2 ,w

(0)
3 using serial approach.

Repeat:

- Gradient Descent Update A(p) and q = 1.

- Compute A
(p+1)
q+1 = A

(p)
q − ξq ∂L

∂A
(p)
q

.

- q = q + 1, ξq = ξ0
q .

- Until ‖A(p+1)
q+1 −A

(p+1)
q ‖22 < η.

- Gradient Descent Update w
(p)
k and q = 1, k = 1, 2, 3.

- Compute w
(p+1)
k,q+1 = w

(p)
k,q − ξq

∂L

∂w
(p)
k,q

.

- q = q + 1, ξq = ξ0
q .

- Until ‖w(p+1)
k,q+1 −w

(p+1)
k,q ‖22 < η.

Until: ‖w(p+1)
k −w

(p)
k ‖

2
2 < η, k = 1, 2, 3.

Table 4.2: The cyclic decent algorithm to solve integrated approach.

4.6 Experiments

We evaluate the performances of three approaches in this section. Under the serial approach,

each module in Figure 4.1 is determined independently using the ideas discussed from

Section 4.1 to 4.3. We compare this serial approach with the new approaches proposed

in Section 4.4 and 4.5. To quantify the utility of our robust approach to SR, we change

the objective function of SR from (4.3) to (4.6) keeping the remaining components the

same as the serial approach. Finally, we evaluate the fully integrated approach where the

objective function is (4.9), the embedding function and three manifold regression functions

are determined simultaneously. We compare the performances of these approaches to verify
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that the integrated approach can improve the accuracy of the metrics estimation.

4.6.1 SGS Data Sets

In this section, we use four data sets to test the performance of our manifold regression

approaches. The hydraulic conductivity of these data is generated by Sequential Gaussian

Simulation [22], here we refer our data sets used for experiments as SGS data sets. The

parameter settings of hydraulic conductivity field for SGS data sets were introduced in

Section 2.6.1. In data set-1, the hydraulic conductivity is a relatively homogeneous glacial

out-wash deposit, it combines three different spill scenarios which are summarized in Ta-

ble 2.1. In data set-2 and 3, the statistical parameters of hydraulic conductivity are changed

to larger correlation length values and higher lognormal transformed hydraulic conductivity

variance σ2 (ln(k)) of 1.0 and 1.5 respectively while keeping the same spill scenario. The

sizes of data set-1 to 3 are 500, 600 and 900 respectively. The conditions used in data

set 2 and 3 generated DNAPL architectures with higher pool content and longer sustained

dissolution in time compared to data set 1. Since the down-gradient dissolved concentration

was sampled every 20 time steps for all the data sets, those with longer dissolution times

generated more data samples (data sets 2 and 3 with 600 and 900 samples, respectively)

than those with less persistent dissolution times (data set 1 with 500 samples). In order to

test the performance of regression functions under a wide range of conditions, we combine

these three data sets as data set-4.
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4.6.2 Hyper-parameters Selection

The choice of hyper-parameters σ1 and σ2 in (4.2) for LE and σSR in (4.4) for the SR kernel

function controls the embedding of data in manifold space. The choice of regularization

parameters γ1, γ2 and γ3 in (4.9) will affect the performance of regression functions and

γP controls the importance of enforcing the physical relationship among three metrics. In

practice, we need to determine the values of these hyper-parameters before we run our

algorithm. Here we use cross validation [11] to accomplish this task. As an example of the

results of this process, the hyper-parameter settings of all SGS data sets are determined in

the following way. A grid search [33] process is used with data set-4 because it is the most

general data set which combines the data generated under different conditions. For σ1, σ2

and σSR, we choose five candidates for each hyper-parameter. For each combination of

σ1, σ2 and σSR, cross validation is used to evaluate the empirical performance of regression

by serial approach. In a bit more detail, we randomly select 90% of data set for training and

the remaining 10% for testing, repeating this procedure for 10 times. The final values of

σ1, σ2 and σSR are chosen as those with the smallest regression error for the sum of all three

metrics. Then these selected σ’s are applied to data set-1 to 4. The grid search results are

listed in Table 4.3. In the table, sum of the median absolute error between the true metric

and the estimated metric for each combination of σ’s are shown. In the Table 4.3, each row

we keep σ1 fixed, each column we keep σ2 fixed and the values of σSR are listed in the first

column of table. From the experimental results, we select σ1 = 20, σ2 = 1 and σSR = 15

because the estimations of three metrics reach the sum of their smallest regression error

with this combination. Using these hyper-parameters, cross validation is then employed to
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determine the values of the hyper-parameters γ1, γ2, γ3 and γP for integrated approach. In

our experiment γ1 = 0.5, γ2 = 1000, γ2 = 25, γP = 2. For the Bayesian regression, the noise

in the original data set is small, so we set the initial variance of metrics β as 0.01 and for

the prior distribution of w, we set α = 1.

σ1
σ2

0.1 0.5 1 2 5

σSR = 5

10 16.73 13.04 10.90 13.17 18.16
15 13.43 11.81 10.61 12.21 13.86
20 12.30 11.61 9.57 11.28 12.28
25 14.37 12.17 10.10 12.33 12.65
30 13.89 12.80 12.09 12.22 12.91

σSR = 10

10 18.16 13.13 11.29 14.44 16.52
15 12.75 11.98 10.73 12.11 13.35
20 12.33 11.02 9.64 10.74 12.00
25 12.91 11.93 11.65 12.14 12.25
30 14.20 12.96 10.56 12.53 13.86

σSR = 15

10 16.93 12.66 10.77 13.16 16.76
15 12.40 11.81 10.51 11.21 12.62
20 12.63 11.32 9.44 10.84 12.53
25 13.91 12.05 9.68 11.73 12.10
30 14.30 12.80 10.07 11.92 13.51

σSR = 20

10 19.42 12.44 10.93 13.43 15.45
15 13.07 11.72 10.49 11.76 13.16
20 12.54 10.84 9.82 11.00 12.62
25 14.02 12.83 10.00 11.80 12.58
30 14.65 12.94 10.15 12.80 12.88

σSR = 25

10 18.43 12.41 11.00 13.50 16.36
15 12.63 11.88 11.12 11.93 14.45
20 12.25 11.59 9.75 10.88 12.47
25 13.82 12.68 10.02 12.01 12.57
30 15.32 13.65 10.40 12.18 12.89

Table 4.3: The hyper-parameters selection of σ1, σ2 and σSR using data set-4.

4.6.3 Experimental Results

In our experiments, we evaluate the performance of our approaches in the following way.

For data sets one through three, we explored the performance of our processing methods
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using 10%, 20%, · · · , 90% of the data for training and the balance for testing. As long as

more than about 30% to 50% of the data (depending on the metric) were used for training,

the results were largely the same. Thus here we consider the case where 90% of data are

employed for training and the remaining 10% for testing. In the case of data set-4, which

combines all of the data from the other three sets, there are 2000 samples. Now, when

training data are plentiful, there is little to be gained by employing the more complex

processing method in which the physical constraint among the three metrics is explicitly

enforced. Therefore we decided to randomly select half of data set for training and use the

other half for testing. The procedure is then repeated 10 times. To demonstrate the utility

of the physical constraint in data-poor scenario, we also consider the case where only 25%

of data set-4 is used for training.

The geometric feature we use for manifold regression includes the number of connected

component and the percentage of remaining area. Both are predictive for the metrics

estimation. When we use only the number of connected component as the feature, the sum

of median error for all metrics is 11.78; and when we only take the percentage of remaining

area as the feature, the sum of median error for all metrics is 11.81. From Table 4.3, the

sum of median error is 9.44 when the both of features are applied.

In order to show that the performance of our manifold regression framework is better

than classification framework, we calculate the mean absolute error mean εa where εa =

|t− t̂|. The mean εa is the average error over whole test data set. Comparing the precision

between classification and our serial approach results using data set-11, for our application,

we find the mean εa of pool fraction is 0.102 which is smaller than the width of the narrowest

1We only have data set-1 when we first propose classification framework.
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interval (i.e., 0.200) in classification; the mean εa of mass in pools is 5.24 kg which is less

than the width of the narrowest interval 8.67 kg and the mean εa of mass in ganglia is

12.4 kg which is less than 13.4 kg in classification. These demonstrate the efficacy of our

manifold regression framework.

In order to show the superior performance of our integrated approach, the statistical

results for comparison between serial approach, robust approach and integrated approach

are provided in Table 4.4 to 4.8. The range of metrics for the each data set are also

provided in these tables, εr = εa/t × 100% is the relative error. We also provide the

Empirical Percentage of true metrics falling into the 85% confidence intervals, denoted as

EP85. Indeed, the Bayesian regression implies a Gaussian distribution N (t̂, ŝ2) for each

metric estimation, we take the mean as the estimation and ŝ2 is the variance [11], thus the

85% confidence interval is [t̂− 1.44ŝ, t̂+ 1.44ŝ].

In Table 4.4, the results of estimating the three metrics using data set-1 are shown.

This is the smallest data set we used. From the statistical results, (e.g. the median error of

Mp drops from 3.15 kg to 1.97 kg), enforcing the physical relation between metrics indeed

improves the performance of regression functions when the small training data set is applied.

In Table 4.5 and Table 4.6, the statistical results of fp for data sets-2 and 3 are both better

than those of data set-1. We believe that the reason is these two data sets are generated

under one spill scenario. The range of metric Mp for data set-2 and 3 are much higher

than that for data set-1, and while the relative error is smaller than that of data set-1, the

median value is a bit high. From the definition of relative error, we have the true metric is

t = εa/εr× 100%, therefore in the case where εa is large and εr is small, t is large, this high

absolute error is less of a problem. Since most DNAPL is entrapped in pools, the range
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of metric Mg for data set-2 and 3 is smaller than data set-1, thus the median error is also

small.

Data set-4 combines all SGS data generated under a wide range of conditions. In

Table 4.7, the median error of Mp for the integrated approach is around 4 kilograms and

that of Mg is less than 1.5 kg. Indeed, ganglia mass here is relatively easy to determine

because the morphology of the concentration images changes significantly when ganglia are

present. From the result of pool fraction in Table 4.7, the median absolute error level is

around 0.05 (meaning half the time we are within 0.05 of the true pool fraction). When

measured relative to the true pool fraction, the median level is around 8%.

From Table 4.7, the estimation of fp is very accurate, the median εa and median εr of

integrated approach are both very small. But the relative errors of mass in pools and mass

in ganglia are worse than that of pool fraction, thus in Figure 4.7, we show the scatter plots

of absolute error versus relative error. In Figure 4.7(a), the scatter plot of errors for mass in

pools shows that the data with high relative error have small absolute error while the data

with high absolute error have small relative error. By the definition of εr, the true values

of test data with high εr and low εa are small. A little overestimation of M̂p for a small

true value of Mp is not a big problem. There are some test data in Figure 4.7(a) that both

εr and εa are large, we believe they are the outliers because our robust spectral regression

are not sensitive to outliers, thus it can not locate the outlier test data in the right place in

the manifold. The same explanation can be applied to mass in ganglia.

In order to further test the performance of our proposed integrated approach, we reduce

the size of training data to 25%. From Table 4.8, the accuracy of manifold regression

function with the robustness and physics constraint under small training data set is almost
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Figure 4.7: The scatter plot of absolute error and relative error. Each asterisk in the plots
represent one test datum. The x-coordinate is absolute error and y-coordinate is relatice
error. Sub-figure (a) shows the mass in pools and sub-figure (b) shows the mass in ganglia.
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The Range of Metric The Approaches median εa median εr EP85

fp 0 ∼ 1
Serial Approach 0.0712 34.90% 85.60%

Robust Approach 0.0606 32.30% 91.60%
Integrated Approach 0.0451 27.10% 93.60%

Mp 0.59 ∼ 44.62 (kg)
Serial Approach 3.51 50.30% 88.60%

Robust Approach 2.24 42.30% 84.60%
Integrated Approach 1.97 36.90% 86.20%

Mg 0 ∼ 201.4 (kg)
Serial Approach 7.39 22.40% 86.00%

Robust Approach 5.46 16.10% 91.00%
Integrated Approach 4.92 14.10% 91.20%

Table 4.4: The statistical results and Empirical Percentage (EP85) of data set-1.

The Range of Metric The Approaches median εa median εr EP85

fp 0 ∼ 1
Serial Approach 0.0457 5.99% 93.80%

Robust Approach 0.0408 5.06% 92.17%
Integrated Approach 0.0389 4.81% 85.33%

Mp 0.61 ∼ 139.5 (kg)
Serial Approach 3.73 36.70% 86.60%

Robust Approach 3.18 28.80% 90.67%
Integrated Approach 2.14 24.80% 91.33%

Mg 0 ∼ 114.4 (kg)
Serial Approach 1.52 29.20% 85.80%

Robust Approach 1.33 20.50% 85.83%
Integrated Approach 0.896 19.70% 89.50%

Table 4.5: The statistical results and Empirical Percentage (EP85) of data set-2.

The Range of Metric The Approaches median εa median εr EP85

fp 0 ∼ 1
Serial Approach 0.0443 5.21% 85.11%

Robust Approach 0.0362 4.26% 92.67%
Integrated Approach 0.0333 3.90% 84.33%

Mp 0.60 ∼ 159.7 (kg)
Serial Approach 5.19 29.60% 86.44%

Robust Approach 3.33 19.70% 85.44%
Integrated Approach 2.57 14.10% 85.11%

Mg 0 ∼ 91.6 (kg)
Serial Approach 1.26 37.10% 94.89%

Robust Approach 0.978 29.80% 87.78%
Integrated Approach 0.637 16.50% 88.11%

Table 4.6: The statistical results and Empirical Percentage (EP85) of data set-3.
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The Range of Metric The Approaches median εa median εr EP85

fp 0 ∼ 1
Serial Approach 0.0622 9.52% 90.70%

Robust Approach 0.0561 8.15% 88.45%
Integrated Approach 0.0505 8.07% 88.53%

Mp 0.59 ∼ 159.7 (kg)
Serial Approach 5.41 43.40% 85.33%

Robust Approach 4.75 38.20% 85.33%
Integrated Approach 4.08 33.90% 85.87%

Mg 0 ∼ 201.4 (kg)
Serial Approach 3.97 47.10% 94.80%

Robust Approach 1.75 28.90% 85.16%
Integrated Approach 1.45 25.60% 85.13%

Table 4.7: The statistical results and Empirical Percentage (EP85) of data set-4 using half
of dataset for training.

The Range of Metric The Approaches median εa median εr EP85

fp 0 ∼ 1
Serial Approach 0.0822 11.40% 93.17%

Robust Approach 0.0679 10.50% 92.55%
Integrated Approach 0.0533 8.41% 88.19%

Mp 0.59 ∼ 159.7 (kg)
Serial Approach 6.02 49.10% 89.23%

Robust Approach 5.26 39.30% 84.40%
Integrated Approach 4.63 37.60% 86.50%

Mg 0 ∼ 201.4 (kg)
Serial Approach 4.34 60.80% 94.97%

Robust Approach 2.68 42.30% 85.88%
Integrated Approach 1.84 29.10% 85.19%

Table 4.8: The statistical results and Empirical Percentage (EP85) of data set-4 using a
quarter of dataset for training.
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that same as that under large training data set, and has a significant improvement comparing

to the other two approaches. To gain a better understanding of the performance of the

approaches we proposed in this chapter, in Figure 4.8 we compare the 10th to 90th percentile

[50] of absolute error for all three approaches using half of data set-4 for training and using

a quarter for training. Figure 4.8(a) shows the results for pool fraction. With a quarter of

the data set for training, the median εa of serial and robust approach increase 0.02 and 0.01

respectively, which are the 32% and 21% rise comparing to the median εa using half of the

data set-4 for training, however, the median εa of integrated approach only increases 0.003,

which is only 6% raise. In Figure 4.8(b), performance for mass in pools is shown. In both

cases, the use of the Huber norm has a significant impact. When training data is plentiful,

as shown by the dotted lines in Figure 4.8(b), the integrated approach has little gain (e.g.

0.5 kg difference at 90th percentile of εa), but when the training data are scarce, as shown

by the solid lines, the gain at 90th percentile of εa is almost 3 kg. The mass of ganglia

estimation with 50% training data is shown in Figure 4.8(c) by dotted lines. Here we see

that the performance of robust approach is almost the same as the integrated approach,

but shown by solid lines, where only 25% of the data are used for training, the superior

performance of integrated approach is obvious.

In Figure 4.9, we also show the 10th to 90th percentile of relative error for three ap-

proaches using half of data set-4 and a quarter for training. Figure 4.9(a) shows the results

for pool fraction. With a quarter for training, the median εr of serial and robust approach

increase 1.88% and 2.35% respectively, however, the median εr of the integrated approach

only increases 0.34%. In Figure 4.8(b), performance for mass in pools is shown. When
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training data is plentiful, as shown by the dotted lines in Figure 4.8(b), the integrated ap-

proach has little gain (e.g. 21.69% difference at 90th percentile of εr), but when the training

data are scarce, as shown by solid lines, the gain at 90th percentile of εr is almost 60.40%.

The mass of ganglia estimation with 50% training data is shown in Figure 4.8(c) by the

dotted lines. Here we see that the performance of integrated approach using 25% of data

set for training, shown by red solid lines, is almost the same as the integrated approach

using half of data set for training shown by red dotted lines, this demonstrates the superior

performance of integrated approach under scarce data set.
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Figure 4.8: The 10th to 90th percentile of absolute error. The results shown by dotted
lines are obtained by using half of data set 4 for training and that shown by solid lines are
using a quarter of data set 4 for training. Sub-figure (a) shows the statistical result for pool
fraction estimation, and (b) for mass in pools and (c) for mass in ganglia respectively. The
maximum values of mass in pools and ganglia are listed in Table 4.8
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Figure 4.9: The 10th to 90th percentile of relative error. The results shown by dotted lines
are obtained by using half of data set 4 for training and that shown by solid lines are using a
quarter of data set 4 for training. Sub-figure (a) shows the statistical result for pool fraction
estimation, and (b) for mass in pools and (c) for mass in ganglia respectively.



Chapter 5

Sparse Concentration Data

In this chapter, we address an application of our manifold regression approaches for esti-

mating the metrics describing the source zone based upon sparse concentration data. In

Chapter 4, we propose three manifold regression approaches for characterizing the source

zone based upon observations at a single instant in time of down-gradient DNAPL concen-

tration data collected across a transect oriented perpendicular to the flow. In that scenario,

we assumed that the transect data are sampled densely forming an “image” that could be

used both for learning and testing the regression functions. In practice, this dense data

assumption is not a problem for training, which will be based on high quality simulation

results. For testing purpose, however, it is problematic as field data are typically sampled

quite sparsely in space [73]. The goal of this chapter then is the development of a metric

estimation scheme that allows for “full data” training but “sparse data” testing.

93
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Figure 5.1: The hydraulic conductivity of 2D model, it is comprised of four components
which is indicated by number from 1 to 4 with increasing hydraulic conductivity.

Figure 5.2: The saturation is modeled as being comprised of two parts: “pool” for which
the saturation exceeds 0.15 and “ganglia” for which the saturation is lower than 0.15, the
color bar indicates the saturation value.

Figure 5.3: The flow through the source zone gives the concentration image, the color bar
shows the concentration value (mg/L). The size of 2D model is H × L = 48 cm× 1 m.
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5.1 TP/MC Model

Motivated by the experimental work in our group [73], here we consider a 2D scenario

illustrated in Figure 5.1 to Figure 5.3. In Figure 5.1, the hydraulic conductivity field includes

four components which represent four kinds of lithofacies with different conductivity. The

property of these lithofacies are introduced in Table 2.3. They are represented by number

from 1 to 4 with increasing conductivity. The hydraulic conductivity field is generated

by Probability Transition/Markov Chain (TP/MC) model [16] which is discussed in detail

in Section 2.6.2. In Figure 5.2, the source zone is located on the left side of the region

and “groundwater” flow proceeds from left to right. After the DNAPL is released, they

reside above the low conductivity layer governed by the multi-phase flow and transport

model discussed in Section 2.1. Given the data acquisition scenario of interest here, one

natural adaptation of the approaches proposed in Chapter 4 would employ concentration

data from the 1300 pixels in the red box of Figure 5.3 for both training and testing, but

the sparse samples of test data are too scarce (25 out of 1300 pixels) to reconstruct the full

concentration data. Therefore, our goal here is to develop a machine learning method for

metric estimation where training proceeds as before but testing is based on samples from

the 25 ports1 shown in Figure 5.3.

5.2 Manifold Regression Framework for Sparse Data

In this chapter, our work focuses on extending the ideas proposed in Chapter 4 to construct

the regression functions for estimating the three metrics Mp, Mg and fp from the sparse

1The term “port” reflects nature of the experimental setup in [73] where fluid is extracted from the test
cell at these locations.
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sampled concentration data. This process is comprised of a number of component steps

that are illustrated in Figure 5.4. Several modules are the same as our serial approach

shown in Figure 4.1. As the number of our training data, N , is about 3500 and the full

concentration image for training include 1300 pixels, we must first reduce the dimensionality

of the data. Here we follow the same two-steps method to reduce the dimensionality as the

serial approach in Chapter 4: feature extraction from the concentration images followed

by a low dimensional, manifold-based representation of this feature set. In Chapter 3, we

proposed a set of geometric features x extracted from the concentration using ideas from

morphological image processing operations [28], the structure of which are motivated by

extracting the shape and value information of concentration image. The SGS data sets are

sampled on the transect which perpendicular to the flow, however, the data used in this

chapter are sampled along the flow direction. But through our observation, the shape and

value information of concentration are still predictive to the estimation of metrics. Thus

we still use geometric feature extraction method to convert the concentration image in red

box of Figure 5.3 to the feature vector. In order to transform the feature vectors into a

space such that the distance between feature vectors is reflective of the distance between

the corresponding metrics, we still employ Laplacian Eigenmaps (LE) [9] to obtain a low

dimensional manifold coordinate vector r for training a regression function under a Bayesian

approach.

In Chapter 4 we considered the case of a manifold constructed in a supervised manner

using both the full geometric feature vector x as well as the known metrics t. Spectral

Regression is then employed to embed test data comprised only of the feature vector (no

metrics) into the manifold. One way to process the sparse test data is full concentration
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Figure 5.4: The framework of our regression-based machine learning approach using sparse
test data. The geometric feature extraction is used only by the training stage, in the test
stage the concentration is sparsely sampled according to the position of ports.

image interpolation based on the sparse samples and then extract geometric features from

full image, however, the test data in our problem are too sparse (i.e., 25 out of 1300) to

reconstruct the full image precisely. But the SR can bypass this issue. In Section 4.2,

SR learns an embedding function r = f(x) = ATk(x), specified by the parameter matrix

A ∈ <N×m and kernel function vector k(x) to map geometric feature vector into an already-

built manifold. In this chapter, we build the manifold in the same manner, but now learn

the embedding function from the raw 25-dimensional sparse sample vector x(s) sampled

from training image to the manifold coordinates r using SR,

A∗ = argmin
A

=

N∑
i=1

‖ATk(x
(s)
i )− ri‖22 + γ‖A‖2F (5.1)

Surprisingly, despite the rather substantial difference between the quantities used to con-

struct the manifold and those available for learning embedding function, there is relatively

little degradation in our ability to determine the metrics which is illustrated in Section 5.3.2.

We also use the two new proposed manifold regression approaches in Chapter 4 to
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process the sparse concentration data. The robust approach changes the L2 norm in (5.1)

to the Huber norm. The integrated approach jointly determines the spectral regression and

Bayesian regression functions needed to embed test data into the manifold and estimate the

metrics respectively. Mathematically, we only have to change the k(xi) in (4.7) to k(x
(s)
i )

where x
(s)
i is the sparse concentration datum vector.

5.3 Experiments

5.3.1 Data Set

The random hydraulic conductivity field of 2D model is generated by Transitional Prob-

ability Markov Chain (TP/MC) using statistical parameters from Maji’s work [49] which

is discussed in Section 5.1. M-VALOR [73] was used to simulate the infiltration and en-

trapment of contaminant in 2D aquifer cells. Dissolution and TCE solute transport were

modeled with a modified form of MT3DMS [80]. The training data are comprised of the full

concentration images within the red bounding box shown in Figure 5.3 for the various real-

izations. The test data are 25-dimensional sparse sample vectors taken from the indicated

ports.

5.3.2 Experimental Results

We evaluate the performances of three approaches to metrics estimation. Under the serial

approach, each module in Figure 5.4 is constructed independently using the ideas discussed

in Section 5.2. We compare this serial approach with the robust approach and the fully

integrated approach to verify that integrated approach can improve the accuracy of the



99

metrics estimation. We randomly select half of data set (N = 3500) for training and the

rest of data set for test, repeating this procedure 5 times. The hyper-parameter selection

methods in Section 4.6.2 are used to determine the γi’s in (5.1) and the σ1, σ2 and σSR in

the LE and SR kernel functions. Additionally, to compare the performance degeneration

using sparse test data, we also apply our approaches based on full concentration test data.

Table 5.1 presents the range of metrics and the statistical results of the serial, robust and

integrated approaches, where εa = |t− t̂| is the absolute value of the difference between the

estimation and true metric and εr = εa/t × 100% is the relative error. EP85 is empirical

percentage of true metrics falling into the 85% confidence intervals.

The Range
of Metric

Algorithm
Test
Data

median εa median εr EP85

fp 0 ∼ 1

Serial Approach
Full 0.0451 4.63% 93.55%

Sparse 0.0459 4.74% 92.69%

Robust Approach
Full 0.0339 3.44% 93.78%

Sparse 0.0404 4.19% 92.74%

Integrated Approach
Full 0.0228 2.41% 91.44%

Sparse 0.0274 2.84% 91.84%

Mp 0 ∼ 57.3 (g)

Serial Approach
Full 5.15 38.1% 89.08%

Sparse 5.27 39.0% 81.77%

Robust Approach
Full 3.35 28.7% 82.28%

Sparse 4.71 35.6% 83.34%

Integrated Approach
Full 3.14 24.4% 83.79%

Sparse 3.99 30.3% 85.13%

Mg 0 ∼ 23.8 (g)

Serial Approach
Full 0.649 62.0% 86.84%

Sparse 0.750 67.2% 84.72%

Robust Approach
Full 0.289 41.9% 90.83%

Sparse 0.457 55.8% 90.71%

Integrated Approach
Full 0.232 33.6% 91.10%

Sparse 0.280 40.8% 92.43%

Table 5.1: The statistical result using half of the data set for training, two types of test
data are applied for evaluating the performance of regression functions. One is full image
which is shown within the red rectangle in Figure 5.3, the other is sparse signal sampled
from ports in Figure 5.3.
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From the results, the median error using sparse test data is only a little larger than

that using full test data. The median error of fp estimation using integrated approach

based on sparse test data is 0.0274, the median error using integrated approach based on

full test data is 0.0228, thus the degeneration is only 0.0046. The degeneration of Mp

estimation is from 3.14 g to 3.99 g and the degeneration of Mg estimation is from 0.232

g to 0.280 g. This validates the hypothesis that metrics of interest can be recovered very

accurately from sparse sampled data. The median error of integrated approach is almost

half of that for the serial approach. The median error of fp estimation drops from 0.0459

to 0.0274 by using integrated approach, the median error of Mp drops from 5.27 g to 3.99

g and the median error of Mg changes from 0.750 g to 0.280 g. This demonstrates the

efficacy and superior performance of our integrated manifold regression approach which can

simultaneously determine the embedding function and three regression functions.



Chapter 6

Conclusion and Future Work

In this thesis, we propose two machine-learning frameworks to address the problem of

contaminant characterization in source zone. Accidentally released hazardous Dense Non-

Aqueous Phase Liquid poses the persistent danger to drinking water aquifers. A critical

component in the planning of a remediation approach and the monitoring of the cleanup

effort is characterizing the source zone. The problem of source zone characterization is

complicated by the fact that the distribution of contaminant is determined to a large extent

by the spatial variability in hydraulic conductivity, which is typically modeled as a random

process whose statistics may be known for a given site but whose specific spatial distribution

is certainly not known. Hydrological scientists found that a single metric pool fraction fp of

the subsurface is necessary for remediation planning, we also found two other metrics mass of

DNAPL in pools Mp and mass of DNAPL in ganglia Mg are also interesting for contaminant

characterization, these metrics follow the constraint fp = Mp/(Mp + Mg). Therefore, in

this work we use machine learning algorithms to estimate these three metrics based on the

concentration data sampled at down-gradient. Given the availability of statistical models of

101
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the conductivity along with numerical models for both DNAPL entrapment and subsequent

flow and transport, hydrological scientists can simulate a large number of conductivity fields,

spill scenarios, and observations of down-gradient concentration. These data are used for

training the classifiers and regression functions for estimating the metrics.

First we propose a set of geometric features extracted from concentration images. Since

the observations of contaminant concentrations are located along a transect down-gradient

from the source zone, we seek the features that capture the size and number of blobs in the

concentration data which are more predictive for the estimation of metrics than the raw

images. This feature extraction is a kind of image processing methods, not involving any

training procedure and is appropriate and useful for both the classification and regression

methods.

Second, we have developed a classification approach to determining the parameters of

interest. Rather than point estimation for each metric, the method gives a metric interval

for each concentration datum. In the training procedure, after the feature extraction, we

propose an iterative Linear Discriminant Analysis and Spectral Clustering algorithm (LDA-

SC algorithm) which are employed to reduce the dimension of feature vectors and cluster

them in a reduced feature space. Since the metrics are continuously valued, after metric

discretization we divide the metric into several non-overlapping bins, each of which repre-

sents a class. The k-nearest-neighbor method is employed to classify the test datum. Our

iterative LDA-SC algorithm is compared against the classic Principle Component Analysis

and K-means method, the performance of our new algorithm demonstrates the superior

classification ability of our approach.

Furthermore, we propose a manifold regression framework to solve the challenge problem
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which is giving point estimations to the three metrics characterizing the structure of a

subsurface contaminant source zone given the observations of down-gradient concentration.

The training process of the regression framework includes a number of steps. After the

geometric feature extraction, we employ Laplacian Eigenmaps to reduce the dimension of

feature vectors and in the manifold space the data with similar metrics vector will be located

near-by. In this space, we use Bayesian regression method to train the regression function

which can give both the estimation and the confidence interval. Since LE needs both the

feature and metrics vector to embed the training data, we apply Spectral Regression (SR)

method for learning the embedding function to embed the test data without the metrics

information into the same manifold as training data. In the test process of regression

framework, the test datum is first embedded into the manifold space and then the regression

functions provide the point estimations of the metrics. Due to the existence of outliers,

we proposed a robust variant of SR to find a robust embedding function which is less

sensitive to the outliers. In the integrated approach, in addition to the robustness we use the

mathematical relationship among three metrics as a constraint to improve performance. The

experiments using Sequential Gaussian Simulation (SGS) data sets validate the performance

of the approaches we proposed in this work showing that the metrics of interest can be

recovered very accurately even from limited data.

We also apply our serial approach, robust approach and integrated approach to estimate

the metrics fp, Mp and Mg given sparse observations of concentration. A different hydraulic

conductivity model, Transition Probability Markov Chain (TP/MC) model, gives rise to

piecewise constant hydraulic conductivity fields which should result in qualitative structure

of the DNAPL distribution that differs markedly from that obtained using the SGS model.
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The concentration data for test are sparsely sampled rather than the full images used for

SGS data. The experiments using TP/MC simulation data sets validate the performance

of the approaches we proposed in this work showing that the metrics of interest can be

recovered very accurately even from sparse sampled data.

Given these results, there are a variety of issues needed to be explored in the future.

For the classification framework, in the LDA-SC algorithm, we first reduce the dimension

of feature space and cluster in the reduced feature space, then discretize the metric. In the

future, we may incorporate the metric discretization into clustering, thus in the reduced

feature space, we can simultaneously find the non-overlapping clusters and metric intervals.

This may improve the performance of our classifier. Moreover, since the metric interval

corresponding to each cluster is overlap, the linear dimension reduction method such as

LDA may be not an appropriate choice. In the future, kernel LDA [61] can be used for

dimension reduction. Another future work for classification framework can be the proof of

convergence of our LDA-SC algorithm.

For manifold regression framework, from the machine learning perspective, the first is-

sue we need to explore in the future is to find a method to select hyper-parameters more

efficiently which is great interesting because grid search grows exponentially and become

exhausted when the number of hyper-parameters increases. Also, we can separate the data

set into three categories, one for training, one for hyper-parameter selection and one for

testing. Second, the objective function of integrated approach is not convex, thus the solu-

tion is not guaranteed to be global optimal, a convex approximation of integrated approach

is necessary for future research. Third, mathematical morphology provides a far larger

range of features than the two considered in this thesis that may be of use in estimating the
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metrics. It would certainly be of interest to explore other options. From the application

perspective, first, the SGS concentration data sets used in this work are sampled across the

transect at the end of the source zone, however, in the field only far data can be acquired. It

is an open question that where the concentration data should be sampled. Using these far

sampled data, whether the metrics can be estimated accurately is a challenging question for

us in the future. Related to this issue is the need to validate the ideas in this work using real

data either from lab-scale experiments or eventually from field sites. Second, application of

the machine learning approaches to other types of hydraulic conductivity distributions is

also of interest. Third, the only limitation of our SGS data set-4 is that the total volume

of DNAPL released in the source zone is fixed for all the realizations. In the future, the

data set with different initial volume of contaminant is used for testing the performance of

machine-learning approaches.

The focus of this thesis has been a small data problem involving a few thousand training

samples. It is certainly possible that the ideas could be applied to big data problem com-

monly encountered in the geoscience and remote sensing communities. Doing so however

may require some consideration of the computational burden associated with the training

phase. Specifically, as we indicate in the Appendix A the gradient of L with respect to A

and weight vector wk require the multiplication of two kernel matrices: one whose dimen-

sion is equal to the number of outlier data as defined in Section 4.4 and a second whose

dimension is equal to the number of inlier data. Typically, the size of the second would

be much larger than the first. Therefore, the limiting calculation required by the gradient

decent approach discussed in Section 4.5 is an O(N3
i ) matrix-matrix multiplication where

Ni is the number of inlier training data. Such an operation may be prohibitive for on-line
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training. Even in an off-line setting there may be interesting work to be done exploring ap-

proximate methods for this calculation or developing alternative, more efficient techniques

for solving the optimization problem.



Appendix A

Cyclic Decent Algorithm

Take the Huber norm formula into the unconstrained optimization problem (4.9), we have,

min
A,W

L(A,W) =
1

N

( ∑
i∈normal

‖ATk(xi)− ri‖22
2εe

+
∑

i∈outliers

1

ei
‖ATk(xi)− ri‖22 −

εe
2

)

+ γ2
1

N

( ∑
i∈normal

‖WTATk(xi)− ti‖22
2εh

+
∑

i∈outliers

1

hi
‖WTATk(xi)− ti‖22 −

εh
2

)

+ γ1‖A‖2F + γ3‖W‖22

+ γP

N∑
i=1

(w1A
Tk(xi) + f̄p −

w2A
Tk(xi) + M̄p

w2ATk(xi) + M̄p + w3ATk(xi) + M̄g
)2.

(A.1)

where ei = ‖ATk(xi)−ri‖2 and hi = ‖WTATk(xi)−ti‖2. The εe and εh are the thresholds

in the Huber norm which are defined in Section 4.5. For convenience, we write (A.1) as

min
A,W

L(A,W) = J(A,W) + γPP (A,W) (A.2)
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The gradient of J with respect to A is

∂J

∂A
=

2

N

(
1

εe
ATKnK

T
n −

1

εe
RnK

T
n + ATKoEKT

o −RoEKT
o

)
+ 2γ1A

T

+
2γ2
N

(
1

εh
WWTATKnK

T
n −

1

εh
WTnK

T
n + WWTATKoHKT

o −WToHKT
o

)
(A.3)

where Kn is the kernel matrix of inliers and Ko is the kernel matrix of outliers. The matrices

Rn and Ro are the manifold coordinate matrices of inliers and outliers respectively. The

matrices Tn and To are the metrics vectors of inliers and outliers respectively. The matrix

E is the diagonal matrix of 1
ei

and H is the diagonal matrix of 1
hi

.

The gradient of J respect to wk where k = 1, 2, 3 is,

∂J

∂wk
=

2γ2
N

(
1

εh
ATKnK

T
nAwk−

1

εh
ATKnt

(k)
n +ATKoHKT

o Awk−ATKoHt(k)o

)
+ 2γ3wk

(A.4)

where t(k) is a metric vector, (e.g. t(1) is comprised of fp for each training data).

We rewrite the regularization term P (A,W) =
N∑
i=1

(f̂p− M̂p

M̂p+M̂g
)2 as P (A,W) =

N∑
i=1

((1−

f̂p)M̂p − f̂pM̂g)
2. We take the gradient of P (A,W) with respect to A is,

∂P

∂A
= 2

N∑
i=1

(
[(1−f̂p)M̂p−f̂pM̂g]

(
−w1k(xi)M̂p+(1−f̂p)w2k(xi)−M̂gw1k(xi)−f̂pw3k(xi)

))
(A.5)

The gradient of P (A,W) with respect to w1 is,

∂P

∂w1
= 2

N∑
i=1

(
[(1− f̂p)M̂p − f̂pM̂g](−ATk(xi)M̂p −ATk(xi)M̂g)

)
(A.6)
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the gradient of P (A,W) with respect to w2 is,

∂P

∂w2
= 2

N∑
i=1

(
[(1− f̂p)M̂p − f̂pM̂g](1− f̂p)ATk(xi)

)
(A.7)

and the gradient of P (A,W) with respect to w3 is,

∂P

∂w3
= 2

N∑
i=1

(
[(1− f̂p)M̂p − f̂pM̂g](−f̂pATk(xi))

)
(A.8)
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