
AU T O B A H N : U S I N G G E N E T I C A L G O R I T H M S T O I N F E R
S T R I C T N E S S A N N O TAT I O N S

yisu remy wang

Bachelor of Science
Computer Science
Tufts University

Committee: Kathleen Fisher, Norman Ramsey

May 2017

[May 14, 2017 at 18:42]

Yisu Remy Wang: Autobahn: using genetic algorithms to infer strictness
annotations, Bachelor of Science, © May 2017

[May 14, 2017 at 18:42]

Wir fahren fahren fahren auf der Autobahn.

— Kraftwerk

I dedicate this thesis to my loving family.

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

N O T E

This thesis is based on joint work with Diogenes Nunez and Kathleen
Fisher published in the 2016 Haskell Symposium under the same title
(Wang, Nunez, and Fisher, 2016).

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

A B S T R A C T

Although laziness enables beautiful code, it comes with non-trivial
performance costs. The GHC compiler for Haskell has optimizations
to reduce those costs, but the optimizations are not sufficient. As a
result, Haskell also provides a variety of strictness annotations so
that users can indicate program points where an expression should
be evaluated eagerly. Skillful use of those annotations is a black art,
known only to expert Haskell programmers. In this thesis, I demon-
strate that automated heuristic search can find strictness annotations
that consistently and significantly improve program performance. I
introduce Autobahn, a tool that uses genetic algorithms to auto-
matically infer strictness annotations that improve program perfor-
mance on representative inputs. Experiments on 60 programs from
the NoFib benchmark suite show that Autobahn can infer annotation
sets that improve runtime performance by a geometric mean of 8.5%.
Case studies show Autobahn can reduce the live size of a GC sim-
ulator by 99.3% and infer application-specific annotations for Aeson
library code. A 10-fold cross-validation study shows the Autobahn-
optimized GC simulator generally outperforms a version optimized
by an expert. To achieve those improvements, Autobahn typically
runs about 100 times longer than the running time of the program it
optimizes. That can sometimes become several hours, and then the
user can run Autobahn over night. Autobahn also adds an average
of 24 annotations per 100 LOC. The user needs to reason about the
soundness of each annotation, either with a termination proof or with
unit tests. A second pass of genetic algorithms can reduce the average
number of bangs to 16 per 100 LOC while retaining at least 85% of
the performance improvement from the first pass. A demand analysis
marks 10% of the remaining bangs as sound.

vii

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

A C K N O W L E D G M E N T S

Right now it is summer of 2017. two years ago, I walked into Pro-
fessor Kathleen Fisher’s office and said to her: “I couldn’t get any
internship this summer. Do you have anything for me to do?” Thus
started my journey with Autobahn. Looking back, I would not have
traded that summer with any internship. Two years earlier still, I
walked in a crowded conference room full of first year students. A
tall, energetic man with a full head of Luxuriant Flowing Hair1 was
on stage. His passionate speech convinced me to enroll in his intro-
ductory programming course even though I planned to major in archi-
tecture. Two weeks later, I dropped the architecture class. Two weeks
before graduation, I was still in a class with Professor Norman Ram-
sey, this time as a TA. I want to thank Professor Kathleen Fisher and
Professor Norman Ramsey for teaching me almost everything I know
about programming and computer science research.

Most of the pictures in this thesis were made in Halligan Hall, our
computer science lab at Tufts University. For many nights, together
with me late in Halligan was Diogenes Nunez. Without his support
and encouragement, I could not have tamed the dozens of benchmark
programs and survive the anxious hours of experiments that might
result in a single error exit code.

Many others in the Computer Science department and the pro-
gramming languages group at Tufts supported me with their friend-
ship and expertise. They helped me find the right words in Norman’s
Technical Writing course as well as take me out to lunch after a whole
morning of typing.

Nathan Ricci, an alumnus of PL at Tufts, provided the gcSimulator

program. Our anonymous referees at the 2016 Haskell Symposium as
well as Stephen Chang, Matthias Felleisen, and Simon Peyton Jones
commented on an earlier version of this project. John Launchbury
guided us into the strictness analysis literature and provided the fact

example in Chapter 4. Simon Marlow helped us use ghc to obtain
program statistics.

Finally, I could not have met any of these wonderful mentors and
friends without my family’s endless support. They have sacrificed a
much more comfortable life for my education. I will always cherish
their love and remember their dream to contribute to science and
teaching.

1 See http://www.improbable.com/hair/gallery1/

ix

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

C O N T E N T S

1 introduction 1

1.1 My Program Is Too Lazy! 1

1.2 My Thesis 1

1.3 What Is Laziness and Why Is It Good? 2

1.4 Why Can Laziness Be Bad Sometime? 3

1.5 Autobahn Comes To Rescue 4

2 genetic algorithms 7

2.1 Why a Genetic Algorithm? 7

2.2 How Does It Work? 7

3 autobahn 11

3.1 Genes and Chromosomes 11

3.2 How Many Genes? 12

3.3 Fitness Functions 12

3.4 Algorithm Parameters - How Do I Use It? 14

3.5 The First Generation 15

3.6 Producing New Generations 15

3.7 Determining a Winner 16

3.8 Putting It All Together 17

3.9 Soundness 17

3.10 Fewer Bangs! 19

3.11 Discussion 20

4 evaluation 21

4.1 Small Programs: a Sanity Check 22

4.2 NoFib Benchmarks 22

4.3 Strict Haskell 23

4.4 Case Study: gcSimulator 26

4.5 Case Study: Aeson Library with Two Different Drivers 28

4.6 10-fold Cross-validation 30

4.7 Autobahn Performance 33

4.8 Soundness 34

5 related work / future work 37

5.1 Static Analysis 37

5.2 Including Dynamic Information 37

5.3 Multi-objective Optimization for Program Synthesis 38

5.4 Other Approaches 39

6 conclusion 41

bibliography 43

xi

[May 14, 2017 at 18:42]

L I S T O F F I G U R E S

Figure 1 Pseudo-code of a genetic algorithm to maxi-
mize the value of the fitness function starting
from initial chromosome seed. 9

Figure 2 Sample inferred configuration 15

Figure 3 Performance of Autobahn-optimized programs
normalized by the original program’s perfor-
mance; lower values are better. The data show
geometric mean improvements of 8.5%, 18%,
and 7.2%, and maximum improvements of 89%,
98%, and 99.3% on the total runtime, garbage
collection, and live size performance criteria,
respectively. 25

Figure 4 Runtime of Autobahn-optimized programs and pro-
grams compiled with Strict Haskell normalized to
base programs run in GHC 8.0.1. Lower on the y-
axis means the Autobahn version of the program
ran faster. 27

Figure 5 Heap profiles of gcSimulator on 1
2 of the batik

trace. 29

Figure 6 10-fold evaluation for gcSimulator, showing
runtime and live size performance improve-
ments of Autobahn versions of gcSimulator

compared to the bare program. I highlight points
where the Autobahn-optimized program ran
on its training trace. I also show how the hand-
annotated program performed. 32

Figure 7 10-fold evaluation for convert, showing run-
time and live size performance improvements
of Autobahn versions of convert compared
to the bare program. I highlight points where
the Autobahn-optimized program ran on its
training trace. 32

Figure 8 Autobahn running time to optimize each pro-
gram in the NoFib benchmark suite. 33

Figure 9 Minimizer performance and bang reduction 35

Figure 10 Ratio of bangs marked safe / total bangs in
program 35

xii

[May 14, 2017 at 18:42]

List of Tables xiii

L I S T O F TA B L E S

Table 1 Genetic algorithm parameters 14

Table 2 User inputs to Autobahn 17

Table 3 Statistics for the NoFib benchmarks 24

Table 4 Peak memory allocation, total runtime, and GC
time for hand- and Autobahn-optimized ver-
sion of gcSimulator, normalized to the bare
program. For each band, the first row shows
the by-hand results and the second Autobahn

results. 28

Table 5 Peak memory allocation, total runtime, and GC
time for Autobahn-optimized version of two
Aeson driver programs, normalized to the bare
program. For each band, the first row shows
the results for validate and the second for
convert. 31

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

1
I N T R O D U C T I O N

1.1 my program is too lazy!

Meet Pat and Chris. They coded their most recent project in Haskell,
a programming language they have been learning for the past few
months. They are excited about how easy the project was to write and
are confident that it is correct, but they are dismayed to learn that it
is too slow. They chose algorithms and data structures that should
lead to an efficient implementation, and so they are at a loss as to
why the program is inefficient. After a little web search, they found a
code segment very similar to theirs on Stack Overflow (Ondra, 2011).
The code suffers from a performance bug called a thunk leak, which
results from Haskell’s lazy evaluation strategy. We will take a deeper
look into the code in the next section.

To fix a thunk leak, the usual strategy is to insert program anno-
tations called strictness annotations. A strictness annotation reverses
the effect of lazy evaluation, or laziness, on the part of program it ap-
pears, thereby fixing the thunk leak. However, each annotation comes
with risks. In a minor case, it can make a program run slower. In a
serious case, it can make an originally terminating program run for-
ever. These risks make adding strictness annotations a black art, well
understood only by expert Haskell programmers.

For a while Pat and Chris thought they could solve the problem by
relying on Haskell libraries that experts had already optimized. But
then they realized that approach could not work: the necessary anno-
tations for the library code depend upon how the library functions
are used, but the library writer cannot always predict that. The GHC
Haskell compiler also optimizes laziness, but the optimizations are
too conservative and did not help. At this point, Pat and Chris are
faced with unpalatable choices: spend a long time learning how to
use strictness annotations, find an expert to help them, rewrite the
code in a different language, or cope with the bad performance.

1.2 my thesis

In this thesis, I demonstrate that useful strictness annotations can
be found by automated heuristic search. I have implemented such a
search in a tool called Autobahn, which finds strictness annotations
that consistently and significantly improve program performance. In
my experiments, Autobahn made 60 programs run 8.5% faster on
average. For some programs, Autobahn can produce spectacular im-

1

[May 14, 2017 at 18:42]

2 introduction

provements. The program in one of my case studies had 99% less live
size after Autobahn optimization.

To achieve the above performance improvements, Autobahn im-
poses unusual costs. It typically runs for about 100 times longer than
the running time of the program it optimizes, and that can some-
times become several hours. After running Autobahn, Pat and Chris
still need to examine the annotations it suggests and decide whether
to apply them. For each annotation, they need to see if it can intro-
duce non-termination. They can either prove termination by hand or
rely on unit tests. To make the job easier for Pat and Chris, Auto-
bahn runs the heuristic search a second time to reduce the number
of bangs in the program. It also runs a static analysis in the GHC
compiler to mark which of the bangs are safe. In my experiments, the
second search reduced 45% bangs from the first search; the demand
analysis marked 10% of the remaining bangs as safe.

Given Autobahn’s running time and the manual labor it requires,
Pat and Chris should deploy it at the end of their development cycle
when they only need to make the program run faster. Starting Auto-
bahn when they go to bed, they can expect to find a faster program
when they wake up. Then they can spend the morning inspecting the
annotations.

1.3 what is laziness and why is it good?

Stepping back, lazy functional programming languages like Haskell
can produce elegant and efficient programs. They only evaluate the
expressions needed to compute the answer. For example, in a sim-
plified version of the Stack Overflow code Pat and Chris found, lazy
evaluation saves a lot of work by avoiding uneccessary function calls:

upgraderThread :: [Int] -> Int -> Int

upgraderThread ns 0 = length ns

upgraderThread ns n =

let ns’ = map (+ 1) ns

in upgraderThread ns’ (n - 1)

Function upgraderThread recursively updates the integer list ns in
its first argument n times. Each time it increments every number in
the list by one. At the end, it returns the length of the updated list.
Under non-lazy, viz., eager evaluation, upgraderThread would always
increment all the numbers in the list for every recursive call, whether
their values are needed or not.

Under lazy evaluation, an expression is only evaluated when its
value is needed. Formally, every new expression is stored unevalu-
ated on the heap as a thunk. A thunk can be thought of as a lambda
without arguments which saves all information needed for evaluation
in its closure. Then, whenever a future evaluation demands the value
of the expression, the evaluation forces the thunk. At this time, the

[May 14, 2017 at 18:42]

1.4 why can laziness be bad sometime? 3

evaluation still may not complete. Instead, it forces the thunk to its
outer-most data constructor into weak head normal form. For example,
the list [1..] becomes 1:[2..], where : is “cons” in Haskell, and
[n..] represent the thunk of an infinite integer list starting from n.

Thanks to lazy evaluation, the program Pat and Chris found above
never wastes time in updating the integer list. Since length never de-
mands the individual values in the list, it only forces the list into a
sequence of cons’s holding thunks. The call to map remains unevalu-
ated.

Incidentally, laziness is one of the reasons why Pat and Chris chose
Haskell. They believed laziness can make programs run faster. Be-
sides performance, laziness also makes for beautiful programs be-
cause it supports modularity: it supports useful programming idioms
and first-class control constructs. With laziness, researchers have de-
veloped robust algorithms for a variety of applications (Shan and
Ramsey, 2017; Mangal et al., 2015; Cheung, Madden, and Solar-Lezama,
2016).

1.4 why can laziness be bad sometime?

Although laziness promises efficient and beautiful code, it can some-
times make programs unpredictable and slow. Because not all expres-
sions are evaluated, the asymptotic behavior is not obvious from the
source code; because a large number of thunks are eventually forced,
they end up wasting time and space (Peyton Jones and Partain, 1994;
Peyton Jones and Santos, 1998; Ennals and Peyton Jones, 2003). In this
thesis, I focus on laziness’ performance costs. To optimize laziness,
the GHC Haskell compiler uses a static analysis (Sergey, Vytiniotis,
and Peyton Jones, 2014) to find program points where it can avoid
creating thunks. Although this analysis provides consistent perfor-
mance improvements, programs can still be too slow. Because forcing
a thunk, for example the length of an infinite list, may not terminate,
the compiler must only force those it can prove to terminate. The
compiler optimization is too conservative.

To address this deficiency, Haskell provides strictness annotations
such as bang patterns1 (Bang Patterns 2016). These annotations allow
programmers to instruct the compiler to evaluate the corresponding
expression immediately, without creating thunks. Judicious use of
strictness annotations can improve program performance in terms of
speed and memory usage by significant amounts (O’Sullivan, Stew-
art, and Goerzen, 2009, Chapter 25).

Unfortunately, as Pat and Chris discovered, non-expert program-
mers often struggle with how to add strictness annotations to im-
prove performance. As Mitchell points out in his 2013 ACM Queue
article (Mitchell, 2013)

1 Available through the -XBangPatterns compiler argument

[May 14, 2017 at 18:42]

4 introduction

Compilers for lazy functional languages have been deal-
ing with space leaks for more than 30 years and have de-
veloped a number of strategies to help. There have been
changes to compilation techniques and modifications to
the garbage collector and profilers to pinpoint space leaks
when they do occur. . . . Despite all the improvements, space
leaks remain a thorn in the side of lazy evaluation, produc-
ing a significant disadvantage to weigh against the bene-
fits.

The full version2 of the Stack Overflow code Pat and Chris found il-
lustrates the challenges. Instead of directly updating a list of integers,
the original upgraderThread wraps the list in a Maybe monad.

upgraderThread :: Maybe [Int] -> Int -> Maybe Int

upgraderThread nsM 0 = sum <$> nsM

upgraderThread nsM n = do

ns <- nsM

let !ns’ = transform ns

upgraderThread (return ns’) (n - 1)

{- transform fully evaluates its argument -}

transform :: [Int] -> [Int]

...

The original program without the underlined annotation suffered
from a space leak. The leak was caused by lazily evaluating the result
of the call to transform. One “usual cure” (Ramsey, 2010) to fix thunk
leaks is to add a bang at the accumulating parameter of recursive
functions. Accordingly, one might expect that annotating nsM with a
bang in the case where n is not zero would fix the leak because nsM

accumulates thunks at every recursive call. However, that does not
work here because nsM is only reduced to weak head normal form
(its outermost constructor, either Just or Nothing), not fully evalu-
ated. To completely eliminate the space leak, one needs to instead
add a bang before nsM’ (as underlined in the code fragment above)
to trigger the call to transform. As program size grows, it is hard to
spot the bindings where thunks build up.

1.5 autobahn comes to rescue

Pat and Chris can automatically infer strictness annotations with Au-
tobahn. First, they write their Haskell program without worrying
about strictness annotations. Once they confirm their code is correct,
they supply the program and representative data to Autobahn. Au-
tobahn then runs a genetic algorithm to search through all possible
sets of annotations. Within these sets, it finds several candidate anno-
tations that significantly improve program performance. Autobahn

2 I still make minor modifications to the program here to simplify it

[May 14, 2017 at 18:42]

1.5 autobahn comes to rescue 5

can start with a program with no annotations, or one that Pat and
Chris have already started to optimize with bangs. It can also both
add and remove annotations. At the end, Autobahn returns a list
of candidate annotation sets, ranked by how much each candidate
improves performance. Pat and Chris then examine if the candidates
are sound on relevant program inputs. Finally, if they are happy with
an annotation set, they can instruct Autobahn to apply it to the pro-
gram.

Autobahn’s genetic algorithm iteratively considers a collection of
candidate annotations. In each round, it preserves those annotations
that demonstrate the best performance on the supplied data. Since
Autobahn starts with the original program, it is guaranteed to only
suggest alternative annotations that actually improve upon the origi-
nal performance on the supplied dataset.

As with any dynamic approach, it is important that the training
data be representative of the data of interest. In the worst case, Auto-
bahn could introduce annotations that cause the program fail to ter-
minate when given new input. For this reason, Autobahn supplies a
list of alternatives and asks Pat and Chris to choose from them. Pat
and Chris may decide to adopt an annotation set that could lead to
non-termination because they know that the triggering input values
will never occur in practice. Autobahn goes a step further to help
Pat and Chris reason about the soundness of the annotations it infers.
With a second pass of genetic algorithm, Autobahn tries to reduce
the number of bangs from the best performing candidates. With a de-
mand analysis from the GHC compiler, Autobahn marks bangs that
the analysis can prove to be sound. In the future, I plan to extend Au-
tobahn to synthesize example inputs that trigger non-termination
given a set of annotations. If those example inputs should never arise
in practice, Pat and Chris can safely accept the annotations.

Pat and Chris can decide how much of the program’s source it
should infer annotations for. At one extreme, Autobahn can analyze
a single annotation point; at the other, it can analyze the entire source
code for a program, including libraries. This expansive mode can be
useful because in general, the appropriate strictness annotations for
libraries is a property of how they are used, information not available
to the library writer. Note, though, that Autobahn will not dupli-
cate code to allow for different annotations in different contexts, an
important limitation particularly for larger programs.

In this thesis, I

• show how to use genetic algorithms to automatically infer strict-
ness annotations that enable non-expert Haskell programmers
to improve the performance of their programs on a variety of
performance criteria: total runtime, garbage collection time, and
live size (a.k.a. peak allocation).

[May 14, 2017 at 18:42]

6 introduction

• demonstrate the effectiveness of this approach on 60 programs
from the NoFib (Partain, 1993) benchmark suite, showing geo-
metric mean improvements of 8.5%, 18%, and 7.2%, and max-
imum improvements of 89%, 98%, and 99.3% on the total run-
time, garbage collection time, and live size performance criteria,
respectively. To achieve those performance improvements, Au-
tobahn inserts 24 annotations per 100 LOC on average.

• use Autobahn in a case study to optimize the performance of
a garbage collector simulator gcSimulator (Ricci, Guyer, and
Moss, 2013). The annotations inferred on a small training set re-
sult in performance improvements on larger data sets: with 11

annotations per 100 LOC the running time decreased by 23.6%
and the live size reduced to under 1% of the unoptimized pro-
gram on the full dataset.

• show in a second case study that Autobahn can infer application-
specific annotations for Aeson (Bryan O’Sullivan, 2016) library
code to optimize driver programs validate and convert that
require different annotations to produce optimal behavior.

• show that the inferred annotations are stable across different
data sets through a 10-fold cross-validation on gcSimulator and
convert. For gcSimulator, the study also shows that the in-
ferred annotations generally outperform the annotations added
by hand by the original author.

• show that a second pass of the generic algorithm can reduce
the number of bangs Autobahn infers. For NoFib programs,
the second pass reduced the geo-mean of 24 bangs per 100 LOC
to 16. With fewer bangs, the programs retain at least 85% of the
performance improvements from the first pass.

• show that the demand analysis from the GHC compiler can fur-
ther reduce the number of bangs an Autobahn needs to reason
about. For NoFib programs, the analysis marks an average of
10% of the bangs to be safe. Thus Pat and Chris only need to
inspect an average of 14.4 bangs per 100 LOC.

[May 14, 2017 at 18:42]

2
G E N E T I C A L G O R I T H M S

2.1 why a genetic algorithm?

Intuitively, Autobahn models how Pat and Chris insert bangs by trial
and error. Unable to infer the bangs analytically, they would add
bangs at a few arbitrary places and then benchmark the program.
They would repeat this process until a certain set of bangs produce
satisfactory performance.

This problem of finding a set of annotations to maximize program
performance can be formalized as a search problem. Consider a func-
tion F that takes an argument x and returns F(x). We wish to find an
x that maximizes the value F(x). If the number of possible values for
x is large, we cannot exhaustively search for the x that optimizes F.
Instead, we must turn to heuristic searches.

A genetic algorithm seems a natural choice. Just like the natural
evolution it is modeled after, it can combine two strong entities to
produce a stronger one. In the case of bang patterns, it is likely that
if two sets of bangs both improve performance, together they will
combine the improvements. For example, if functions f and g both
benefit from bangs at their arguments, and they do not interfere with
each other’s evaluation, then adding the bangs for both will combine
the improvements from adding the bangs for either. Even if that’s
not the case, genetic algorithm can generate new programs to escape
from the local optimum.

Autobahn also allows Pat and Chris plug in other search algo-
rithms. Future work can compare the performance of other algorithms
with that of genetic algorithms.

2.2 how does it work?

A genetic algorithm (Goldberg, 1989) uses ideas from natural evolu-
tion to guide a heuristic search for a value of x that maximizes a
function F. Each possible value of x is encoded as a sequence of genes
that collectively form a chromosome. Function F is called a fitness func-
tion because it measures how fit each chromosome is to survive. The
algorithm runs for a number of rounds, each of which is called a gen-
eration. Each generation starts with a group of chromosomes called a
population. The algorithm computes the fitness of each chromosome in
the current population by calculating the corresponding value of F. It
forms the population for the next generation by promoting the fittest
individuals of the current population and adding the offspring of the

7

[May 14, 2017 at 18:42]

8 genetic algorithms

current generation. The algorithm computes the offspring in two was:
first, it randomly changes the genes in some members of the current
population to perform mutations; second, it splices together the chro-
mosomes of others to perform crossovers. The result of the search is
the “fittest” member of the population in the final generation.

Figure 1 shows the pseudo-code for the genetic algorithm Auto-
bahn uses, and Table 1 lists the various parameters with which the
algorithm can be configured. I use italics to indicate the names of
parameters. The algorithm creates an initial population using a seed
chromosome. The diversityRate parameter determines how much the
chromosomes generated for the initial population differ from the
seed. When constructing a new chromosome for the initial popula-
tion, each gene in the seed is mutated with probability diversityRate.

For each of numGenerations generations, the algorithm evolves a
population of populationSize chromosomes. For each generation, the
algorithm uses the fitness function to score each individual. To form
the next generation, it first selects the archiveSize fittest chromosomes
from the current generation in an operation called archiving. It then
uses mutateRate to calculate the number of chromosomes for the next
generation that should be created via mutation. To generate each
such chromosome, it randomly picks a chromosome from the pre-
vious generation and modifies each of its genes with probability mu-
tateProb. Next, the algorithm computes the number of chromosomes
for the next generation that should be created via crossover. To gener-
ate each such chromosome, it randomly picks two chromosomes from
the previous generation and splices them together. The algorithm re-
turns either the highest scoring chromosome in the final generation
(as shown in Figure 1) or a list of all the chromosomes in the final
population along with their fitness scores.

Genetic algorithms differ from other heuristic search algorithms in
the randomness introduced when creating each generation. Specif-
ically, mutation and crossover introduce chromosomes that archiv-
ing alone would not. This randomness helps prevent the algorithm
from getting stuck at local maxima. High values for mutateProb and
diversityRate cause bigger chromosomal changes. Bigger changes lead
to faster convergence, but also increase the odds of missing a good
“nearby” chromosome.

[May 14, 2017 at 18:42]

2.2 how does it work? 9

pr
oc

ed
ur

e
g

e
n

e
t
i
c

A
l
g

(d
iv

er
si

ty
R

at
e,

nu
m

G
en

er
at

io
ns

,p
op

ul
at

io
nS

iz
e,

ar
ch

iv
eS

iz
e,

m
ut

at
eR

at
e,

m
ut

at
eP

ro
b,

cr
os

sR
at

e)
po

pu
la

ti
on
←

g
e
n

Po
p
u

l
a

t
i
o

n
(s

ee
d,

di
ve

rs
ity

R
at

e,
po

pu
la

tio
nS

iz
e)

.
G

en
er

at
e

in
it

ia
lp

op
ul

at
io

n
fr

om
se

ed
us

in
g

di
ve

rs
ity

R
at

e
sc

or
es
←

m
a

p
(fi

tn
es

s,
po

pu
la

ti
on

)
.

C
al

cu
la

te
fit

ne
ss

of
in

di
vi

du
al

s

fo
r

i=
1
→

nu
m

G
en

er
at

io
ns

do
fit

te
st
←

s
e
l
e
c

t
(a

rc
hi

ve
Si

ze
,s

co
re

s,
po

pu
la

ti
on

)
.

G
et

th
e

ar
ch

iv
eS

iz
e

fit
te

st
ch

ro
m

os
om

es
nu

m
M

ut
an

ts
←

(p
op

ul
at

io
nS

iz
e

-
ar

ch
iv

eS
iz

e)
*

m
ut

at
eR

at
e

.
C

al
cu

la
te

nu
m

be
r

of
m

ut
an

ts
fr

om
m

ut
at

eR
at

e
m

ut
an

ts
←

m
u

t
a

t
e
(p

op
ul

at
io

n,
nu

m
M

ut
an

ts
,m

ut
at

eP
ro

b)
.

M
ut

at
e

nu
m

M
ut

an
ts

ch
ro

m
os

om
es

nu
m

C
hi

ld
re

n
←

(p
op

ul
at

io
nS

iz
e

-
ar

ch
iv

eS
iz

e)
*

cr
os

sR
at

e
.

C
al

cu
la

te
nu

m
be

r
of

ch
ild

re
n

fr
om

cr
os

sR
at

e
ch

ild
re

n
←

c
r

o
s
s
o

v
e
r

(p
op

ul
at

io
n,

nu
m

C
hi

ld
re

n)
.

U
se

cr
os

sR
at

e
to

ge
ne

ra
te

nu
m

C
hi

ld
re

n
ch

ro
m

os
om

es
po

pu
la

ti
on
←

fit
te

st
+
+

m
ut

an
ts

+
+

ch
ild

re
n

.
R

ea
dy

th
e

po
pu

la
ti

on
fo

r
th

e
ne

xt
ge

ne
ra

ti
on

sc
or

es
←

m
a

p
(fi

tn
es

s,
po

pu
la

ti
on

)
.

C
al

cu
la

te
fit

ne
ss

of
ea

ch
ne

w
in

di
vi

du
al

en
d

fo
r

be
st
←

s
e
l
e
c

t
Be

s
t
(s

co
re

s,
po

pu
la

ti
on

)
re

tu
rn

be
st

en
d

pr
oc

ed
ur

e

Fi
gu

re
1

:P
se

ud
o-

co
de

of
a

ge
ne

ti
c

al
go

ri
th

m
to

m
ax

im
iz

e
th

e
va

lu
e

of
th

e
fit

ne
ss

fu
nc

ti
on

st
ar

ti
ng

fr
om

in
it

ia
lc

hr
om

os
om

e
se

ed
.

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

3
AU T O B A H N

3.1 genes and chromosomes

What is a gene in Autobahn? Conceptually, a gene is a program
source location where a bang may appear. A gene is on (represented
by the bit 1) if a bang appears at the corresponding source location;
it is off (bit 0) otherwise. Although multiple bangs can appear at the
same location according to the Haskell syntax, Autobahn inserts at
most one bang per location. That is because bangs are idempotent:
any value can be reduced to weak head normal form once and for
all. Formally, for a given program p, consider the related program p’

that is just like p except p’ has no bangs. I call p’ the bare version of
p. A gene for p is any program location in p’ where a bang pattern is
legal. Autobahn uses the haskell-src-exts library (Broberg, 2015)
to identify the appropriate locations.

Because Autobahn adds at most one bang per location, any Haskell
program has a fixed number of candidate bangs and so a fixed num-
ber of genes. Consequently, Autobahn encodes the space of all pos-
sible annotations with a fixed-length bit vector . A chromosome is a
particular value for the bit vector. For our favorite upgraderThread

function:

upgraderThread :: Maybe [Int] -> Int -> Maybe Int

upgraderThread nsM 0 = sum <$> nsM

upgraderThread nsM n =

let !nsM’ = transform nsM

in upgraderThread nsM’ (n - 1)

transform :: Maybe [Int] -> Maybe [Int]

The program has 5 genes, one for each parameter and one for the
let binding. The chromosome for the current bangs is the bit vector
00001. The corresponding bangs indicate the expressions bound to
nsM’ should be evaluated eagerly, but all function arguments should
be evaluated lazily. In some cases, adding or removing a bang at a
program location does not have any effect. For example, a bang like
!(x, y) is superfluous because pattern matching the tuple forces its
evaluation. I am exploring how to identify these program locations
and remove them from the chromosome.

11

[May 14, 2017 at 18:42]

12 autobahn

3.2 how many genes?

Another key question is deciding the extent of the program to allow
Autobahn to consider. The approach works at the level of source
code, so it cannot explore changing annotations within pre-compiled
portions of the program. For the portion for which source code is
available however, there is complete flexibility. Conceptually, the tool
can consider any subset of the program source: everything from the
entire program down to a single bang pattern location. For simplic-
ity, I have restricted this flexibility to the level of individual source
files. Pat and Chris specify which source files they want Autobahn

to consider. The possible bang pattern locations in these files form
the chromosome that Autobahn will optimize over. By specifying
which source code files to consider, Pat and Chris can limit the size
of the search space by not including libraries or their own source code
whose performance is irrelevant.

This approach means that for any libraries for which source code is
available, Autobahn can search for application-specific annotations.
Currently, authors of high-performance libraries provide multiple ver-
sions of some functions to accommodate different use patterns. For
example, the Aeson (Bryan O’Sullivan, 2016) library for parsing JSON
provides strict and lazy versions of the key parsing function. To the ex-
tent that Autobahn is successful, Pat and Chris won’t have to worry
about choosing the appropriate versions of such functions. Note, how-
ever, that Autobahn will not copy library functions to infer different
annotations for copies called in different contexts.

3.3 fitness functions

Genetic algorithms can search for chromosomes that optimize any
measurable fitness function. Our approach for measuring the fitness
of a particular chromosome is to run the corresponding program on
user-supplied training data and measure the resulting performance
using statistics provided by the GHC runtime. Given a chromosome
and the associated Haskell sources, Autobahn produces the pro-
gram to profile by parsing the sources using the haskell-src-exts

library (Broberg, 2015), modifying the resulting data structure rep-
resentation of the program to reflect the bang pattern annotations
described by the chromosome, and then pretty-printing the modified
sources so they can be compiled, linked with binaries, and profiled
with GHC.

There are a variety of performance metrics that programmers like
Pat and Chris might care about. Autobahn provides three differ-
ent fitness functions they can choose among. Each of these functions
works by parsing the output produced by GHC when invoked with
the +RTS -t command-line option (GHC Profling 2016). The first fit-

[May 14, 2017 at 18:42]

3.3 fitness functions 13

ness function uses the total running time as the measure, rewarding
faster genes. The second uses the reported garbage collection (GC)
time: shorter GC times mean less GC work, which in turn implies
less allocation; a reduction in GC time is also directly reflected in
the total runtime of the program. The third uses the peak allocation
statistic, corresponding to the live size of the program.

When evaluating programs to measure the fitness of the corre-
sponding chromosome, we must keep in mind that introducing bang
patterns may cause non-termination. Intuitively, chromosomes that
cause non-termination are not fit and should be given poor fitness
scores so that they die off. Therefore Autobahn timeouts program
runs that take longer than twice the running time of the original pro-
gram. It allows programs that are slightly slower than the original be-
cause sometimes such programs lead to overall improvements when
additional annotations are added in future generations. Autobahn

assigns very low scores to programs that trigger the timeout and to
programs that terminate by throwing an exception, ensuring they die
out.

Autobahn also assigns fatally low scores to programs with invalid
bang pattern annotations. Autobahn generates such programs be-
cause the haskell-src-exts library permits bang pattern annotations
in two kinds of places that trigger GHC errors. An example of the first
kind comes from the NoFib (Partain, 1993) benchmark :

copy n x = take (max 0 n) xs

where !xs = x : xs

The parser in ghc flags this use of a bang pattern on a recursively used
variable as an error. The second kind of error arises when variables
within typeclass instance declarations are annotated with bangs. For
instance,

instance Monad Foo where

!c1 >>= f = ...

raises a parse error on the bind operator. In both cases, ghc returns an
error exit code. Autobahn catches the error and assigns a low score
to kill off the chromosome.

Another challenge for Autobahn is when the original program
takes a long time to run on the training data. A fundamental limit
on the number of chromosomes Autobahn can explore is how long
it takes to run the original program on the training data. Shorter run-
ning times enable searching a larger portion of the annotation space.
When a profiling iteration takes so long to finish that Autobahn de-
termines it cannot run 10 generations with a population size of 10

chromosomes (its defaults), it asks the user to supply a smaller set of
representative training data.

[May 14, 2017 at 18:42]

14 autobahn

3.4 algorithm parameters - how do i use it?

As discussed in Chapter 2 and shown in Table 1 , genetic algorithms
can be configured in a number of ways. Choosing a good set of pa-
rameters can be confusing, and so Autobahn attempts to determine
reasonable default values, asking Pat and Chris to supply only the
amount of time they are willing to let Autobahn run and a mea-
sure of their confidence that a good set of annotations is “close” to
the annotations in the program they supply. The goal is to maximize
the possibility of performance improvement while guaranteeing the
optimizer runs for a reasonable time.

term type description

diversityRate float probability with which each gene in seed
is mutated to form initial population

numGenerations int number of generations to run algorithm

populationSize int number of chromosomes in each popula-
tion

archiveSize int number of chromosomes to promote to
next generation unchanged

mutateRate float percentage of the new population gener-
ated by mutation

mutateProb float probability with which each gene in
a chromosome selected for mutation is
changed

crossRate float percentage of the new population gener-
ated by crossover

Table 1: Genetic algorithm parameters

Autobahn uses the supplied confidence level to set the diversi-
tyRate parameter. If Pat and Chris believe only slight changes to the
original bang patterns are necessary, Autobahn assigns a low value
to diversityRate so that Autobahn will focus on chromosomes that
resemble the original annotation set. If Pat and Chris are less confi-
dent, Autobahn uses a higher value to explore the search space more
widely.

Autobahn uses the total time that Pat and Chris are willing to run
Autobahn to calculate the highest possible values for the parameters
numGenerations and populationSize, allowing us to explore as large a
portion of the annotation space as possible in the allocated time. Since
both parameters prolong Autobahn’s runtime, I find the “golden ra-
tio” of the two parameters based on their effect on the possibility of
discovering better annotation sets. In practice, a 4/3 ratio of numGen-
erations / populationSize works well as default. This ratio is somewhat

[May 14, 2017 at 18:42]

3.5 the first generation 15

{ diversityRate = 0.4 -- 1st generation diversity
, numGenerations = 20 -- Evolve for 20 generations
, populationSize = 15 -- 15 chromosomes/generation
, archiveSize = 7 -- 7 best chromosomes survive
, mutateRate = 0.2 -- 20% from mutation
, mutateProb = 0.2 -- 20% chance a bang flips
, crossRate = 0.8 -- 80% from crossover
, numFitnessRuns = 4 -- Profiling iterations }

Figure 2: Sample inferred configuration

unconventional for genetic algorithms, where the value of numGenera-
tions is usually on the order of twenty times larger than populationSize
[16]. I empirically adjusted these parameters to guarantee an afford-
able running time and a reasonable populationSize.

Autobahn] uses simple default values for four parameters: archive-
Size (7), mutateRate (0.2), mutateProb (0.2), and crossRate (0.8). I chose
these values because they worked well in practice.

In addition to the generic genetic algorithm parameters described
in the previous section, Autobahn has an additional parameter num-
FitnessRuns that arises because the fitness function runs the program
to measure its performance. To ensure the profiling information is
accurate, Autobahn runs each program on the training data numFit-
nessRuns times. It calculates an appropriate value for this parameter
by iteratively profiling the unannotated program until the mean of
the measured performance changes by less than 5%. It uses that num-
ber of iterations as the value for numFitnessRuns. The record in Figure
2 shows a sample inferred configuration. Autobahn allows Pat and
Chris to override default values if they wish.

3.5 the first generation

After generating the algorithm parameters, Autobahn populates the
first generation. It seeds this generation with the chromosome that en-
codes the bang patterns in the user-provided Haskell source program.
Starting from this seed chromosome, Autobahn uses the diversityRate
parameter to generate the required number of chromosomes to com-
prise a full generation (specified by populationSize). To produce each
new chromosome, Autobahn considers each gene in the seed and
flips the value of that gene with probability diversityRate. Note that
this process can both add and remove bang patterns.

3.6 producing new generations

Autobahn uses the Haskell genetic algorithm library GA (Hoste,
2011) to produce each successive generation, passing it the mutation
and crossover functions, which I explain in turn.

[May 14, 2017 at 18:42]

16 autobahn

Mutation. For each generation, the GA library calls the function
mutation mutateRate * populationSize times, each time passing in a ran-
domly chosen chromosome c from the current population. Intuitively,
the mutation function independently flips each gene in c whenever
a randomly chosen floating point number between 0 and 1 exceeds
the mutateProb threshold. The function makes use of three parame-
ters. The first is a parameter p that represents the probability that a
given gene should be flipped; Autobahn sets this value according
to the mutateProb parameter. Next, Autobahn uses a seed parameter
to generate randomness. Finally, mutation takes a parameter c that
is the chromosome selected for mutation. The function works by cal-
culating the number of genes in the chromosome (len), generating
a random sequence (fs) of len floats, converting fs into a sequence
(bs) of bits where a given bit is set whenever the float has a value
smaller than (p). Finally, Autobahn computes and returns the new
chromosome c’ by xor-ing c with the bit sequence.

Crossover. For each generation, the GA library calls the crossover

function crossRate * populationSize times, each time passing in a pair
of randomly chosen chromosomes c1 and c2 from the current pop-
ulation. The crossover function implements the Uniform Distribu-
tion (Syswerda, 1989) strategy to ensure that each gene has an equal
opportunity to change through evolution. Intuitively, the crossover

function randomly picks half of the genes for the new chromosome
from the corresponding positions in one parent, and the rest from
another. This strategy makes stronger genes more likely to survive:
when a new bang improves performance, its improvement is likely
to persist regardless of other annotations. The function makes use of
three parameters. As with mutation, Autobahn uses a seed param-
eter to generate randomness. Next, crossover takes two parameters,
c1 and c2, as the chromosomes that have been selected as parents.
Intuitively, the crossover function first generates a random sieve (s)
whose length (len) matches that of a chromosome and that statisti-
cally will have half of its bits on (map (< 0.5) fs). For all the on-bits
Autobahn selects the genes from one parent (c1’) using a bitwise-and
operation (.&.). It uses the off-bits to select the remaining genes from
the other parent (c2’). Autobahn then use a bitwise-or operation (.|.)
to generate a new chromosome with roughly half of its genes from
each parent.

3.7 determining a winner

When Autobahn has evolved the population through the number
of generations viable in the user-specified time window, Autobahn

returns a list of the surviving chromosomes ranked by their fitness
score. Autobahn provides a web interface that allows Pat and Chris
to see the program with the suggested annotations. Upon request,

[May 14, 2017 at 18:42]

3.8 putting it all together 17

Autobahn will produce copies of the program sources with the an-
notations specified by a particular chromosome.

3.8 putting it all together

To summarize, I discuss how people like Pat and Chris use Auto-
bahn. First, they provide the inputs specified in Figure 1. Autobahn

uses this information to compute parameter values for the genetic
algorithm (unless Pat and Chris have provided explicit parameter
values instead). Autobahn populates the first generation from the
chromosome corresponding to the source program supplied by Pat
and Chris. It uses the Haskell GA library for genetic algorithms to
produce each successive generation, during which bang patterns can
be both added and removed. At the end, it generates a web page
showing a list of candidate program annotations ranked by the fitness
score. If directed to do so by Pat and Chris, Autobahn will produce a
new version of the input sources that match any of the chromosomes
that survived to the final round.

Complete program sources

Cabal file with compilation instructions

Subset of program sources to analyze

Level of confidence on current annotations

Metric to be optimized

Representative input data

A cap on the amount of time available to search

Table 2: User inputs to Autobahn

3.9 soundness

One challenge with introducing bang patterns is the possibility of
changing the termination behavior of the program being optimized.
For example, consider the following silly program:

let x = length [1..] in 10

This program terminates because there is no need to evaluate the
expression bound to x. If, however, we annotate x with a bang pattern,
we will force the evaluation of length [1..], causing the program to
run forever.

The GHC compiler uses a conservative strictness analyzer (Sergey,
Vytiniotis, and Peyton Jones, 2014) to ensure that the compiler won’t
introduce non-termination when it decides to eagerly evaluate an ex-
pression. As with all static analysis, this analyzer is necessarily con-

[May 14, 2017 at 18:42]

18 autobahn

servative and so GHC will consequently miss some optimization op-
portunities.

Autobahn does not limit its search to annotations that do not
change termination behavior. It will kill off any chromosomes whose
corresponding program runs more than twice as long as the origi-
nal program on the training data. As a result, Autobahn will rule
out any annotations that introduce non-termination on the training
data. It is, however, possible to have a program that terminates on all
training data but that fails to terminate on other input, even if the
training data exercises all control flow paths. Consider, for example,
the following program:

{- Note that fact diverges on negative numbers. -}

fact 0 = 1

fact z = z * fact (z - 1)

g x b = if b then x else 5

print (g (fact u) b)

Assume that b is almost always true, variable u is read from input,
and the result of the call to g is needed (suggested by the call to
print). The program will terminate for all values of u as long as b is
false. Now, suppose the training data only has positive values for u.
In this scenario, Autobahn might well decide to add a bang pattern
on the x variable in the definition of g because most of the time b

is true and eagerly evaluating the call to fact is a performance win.
Note that every line of code in the program is executed during the
training, even though the user only passes in positive values for u.
Now suppose b is true and the user passes in a negative value for u

after Autobahn has introduced the bang pattern. At this point, the
program will diverge when the original would have terminated.

This scenario leads us to not automatically apply the best perform-
ing annotation set that Autobahn finds: this annotation set might
not preserve termination. It is up to Pat and Chris to verify that the
suggested annotations lead to appropriate termination behavior. For
the same reason, it is important that Pat and Chris supply represen-
tative training data. If negative values for u are legal inputs, then the
training data should include examples of this form. Note that Pat and
Chris might pick an inferred annotation set even if it introduces the
possibility of non-termination. In the example above, Pat and Chris
might know that the system will never in fact pass in a negative num-
ber and so introducing the bang pattern is fine.

Verifying soundness may not be easy. Even with this limitation,
however, Autobahn can help programmers like Pat and Chris, who
currently have to first produce an annotation set and then reason
about its soundness. With Autobahn, the problem is reduced to rea-
soning about the soundness of annotation sets that achieve the de-
sired performance. To help with this task, I extend Autobahn with

[May 14, 2017 at 18:42]

3.10 fewer bangs! 19

a second pass of genetic algorithms which focuses on reducing the
number of bangs in the progra. Finally, I run the GHC demand ana-
lyzer and mark the bangs it can prove to be safe.

3.10 fewer bangs!

After I implemented the original Autobahn and ran it on a set of
benchmark programs (see Chapter 4), I discovered one problem: it
inserts too many bangs! On average, Autobahn added 24 bangs per
100 LOC. This many bangs make it hard for Pat and Chris to reason
about soundness. They would have to inspect the bangs one by one.
In practice, only a few “critical bangs” can some time improve the
program performance drastically. For example, program convert in
the case study in Section 4.5 runs 25% faster with only 3 bangs,
whereas Autobahn inserted 124 to achieve the same performance.

The bangs Autobahn infers usually include all the critical ones as
well as some “non-opt” ones that barely affect performance. These
non-opt bangs survive because of the nature of genetic algorithms:
if a gene does not affect the fitness score, it is equally likely to have
any value. In the case of bang patterns, a non-opt bang has equal
chance to be on or off. As a result, half of them appear in the final
candidates. Some of the non-opt bangs are easy to eliminate. If they
appear in functions that are never called, i.e. dead code, Autobahn

can simply remove them. Others do not affect performance because
they appear before terms already evaluated. For example, a bang like
!(x, y) can appear because the pair is a valid pattern. However, the
bang is redundant because the pattern match on the tuple already
evaluates the pair constructor.

I extend Autobahn in two ways to reduce the number of bangs
it adds in order to help Pat and Chris reason about the final candi-
dates. First, Autobahn runs a second pass of the genetic algorithm
but focuses on reducing the number of bangs. I call this second pass
minimizing phase. This minimizing phase takes over the candidates at
the end of the first pass as the initial population. It uses the number
of bangs as the fitness score but assigns a bad score to any chromo-
some performing 15% worse than the best candidate. In this way, the
minimizing phase can reduce the number of bangs without undo-
ing the performance improvement. Besides the new fitness function,
the minimizing phase uses the same configuration in the first pass.
That means it will still explore chromosomes that did not appear in
the first pass, and potentially discover those with even better perfor-
mance.

Second, Autobahn tries to locate dead code and eliminate bangs
at already-forced terms. On outcome of the minimizing phase, Auto-
bahn runs the GHC compiler’s internal analysis. GHC implements
a static analysis that labels each expression with how it is used. This

[May 14, 2017 at 18:42]

20 autobahn

includes two levels of information: 1. whether the expression is used
at all to compute the final result, and 2. whether the expression needs
to be evaluated for future computation. To understand the distinction
between usage and evaluation, consider the following function:

f :: [Int] -> [Int] -> [Int] -> (Int, [Int])

f xs ys zs = (sum xs, ys)

Function f completely evaluates its first argument xs to compute the
sum of the integers in the list. But it does not need to be evaluated ys

at all, since it is returned as-is at the end of the function - it is used but
not evaluated. f can simply ignore the last argument zs since it does
not appear anywhere in the body - it is unused. The demand analysis
of GHC therefore tags xs as evaluated and used, ys as unevaluated
but used, and zs as unevaluated and unused. If we feed this func-
tion to Autobahn, it can safely add a bang at xs which needs to be
evaluated anyways; it may or may not introduce non-termination if it
adds a bang at ys, because f does not evaluate ys; it can always avoid
adding a bang at zs which will never evaluate.

The augmented Autobahn reduced the number of bangs inferred
by 54 % down to 11 per 100 LOC in NoFib programs. Within the
remaining bangs, it marks 7% as safe. Therefore, Pat and Chris only
needs to reason about 10 bangs per 100 LOC. Section 4.8 evaluates
the reduction in more detail.

3.11 discussion

Haskell has four major kinds of strictness annotations: seq (Seq 2016),
deepseq (Deepseq 2015), and related functions; strict application ($!) (Strict
Application 2016); strict data type declarations (Strict Fields 2016); and
bang patterns (Bang Patterns 2016). Currently, Autobahn searches
only for bang patterns. I chose not to search for places to insert
seq or related functions because the search space is too large. I am
currently exploring using Autobahn to insert strict applications and
strict datatype annotations.

[May 14, 2017 at 18:42]

4
E VA L U AT I O N

I evaluate Autobahn in a number of ways:

1. By running it on four small programs for which I can perform
an exhaustive search, showing that Autobahn computes the
optimal annotation set.

2. By running it on 60 programs taken from the NoFib (Partain,
1993) benchmark suite and measuring the performance gains
when optimized for total runtime, garbage collection time, and
live size.

3. By comparing the NoFib performance produced by Autobahn

with that produced by Strict Haskell (Strict Haskell 2016) via the
pragmas -XStrict and -XStrictData that force eager evalua-
tion.

4. By running it on a garbage collection simulator whose poor per-
formance was the original motivation for Autobahn and show-
ing that (1) performance gains inferred from a small training
set carry over to larger datasets and (2) Autobahn annotations
compare favorably to those introduced by hand.

5. By running it on two different driver programs that use the
Aeson (Bryan O’Sullivan, 2016) library for parsing JSON and
showing that Autobahn infers application-specific annotations
for the Aeson code that improve the overall performance of the
programs.

6. By measuring the stability of Autobahn’s optimization with
10-fold cross-validation on the garbage collection simulator and
one of the Aeson driver programs.

7. By measuring the time it takes Autobahn to infer the annota-
tions for the NoFib benchmark and for the two case studies.

Experimental Setup. All programs were compiled and run on a
computer with four 16-core AMD Opteron 6380 processors clocked at
2.5 GHz and 128 GB of RAM. I compiled Autobahn itself with GHC
version 7.8.4 with the -O2 flag. I compiled the benchmarks with ghc
version 7.10.3 with -O2 and -XBangPatterns along with NoFib’s de-
fault flags. I add -funbox-strict-fields for those benchmarks that
already have strict fields to ensure they still compile. Profiling was
not enabled. To obtain more accurate information about live sizes, I

21

[May 14, 2017 at 18:42]

22 evaluation

forced ghc to perform frequent garbage collections via the flags +RTS

-h -i0.01. For the StrictHaskell comparison, I used GHC version
8.0.1 because the relevant pragmas were not present in 7.10.3. I
ran each benchmark 4 times and report our results using NoFib’s
geometric-mean reporting convention for uniformity with other stud-
ies.

4.1 small programs : a sanity check

First, I ran Autobahn on a set of four small programs for which I was
able to exhaustively explore all possible bang pattern annotations to
calculate the “right answer”. For all four programs, Autobahn infers
the bang patterns that produce the best performance on all of our
performance criteria. In the following, I briefly describe the programs
and their strictness properties.

The fib function below uses accumulating parameters a, b1, and
b2 to calculate the nth Fibonacci number. The function has six genes,
one before each parameter to fib (including 0 and _). Adding bangs
to either a or b2 completely eliminates the thunk leak. Other bangs
have no effect.

fib :: Int -> Integer -> Integer -> Integer

fib 0 _ b1 = b1

fib n !a !b2 = fib (n - 1) b2 (a + b2)

The second program, taken from Edward Yang’s blog on thunk
leaks (Edward Z. Yang, 2011) needs three bangs to achieve top perfor-
mance. Each of the three bangs individually improves performance
slightly, but all three together produce the best performance.

f [] c = c

f (x : xs) !c = f xs (uncurry (tick x) c)

tick x !c0 !c1

| even x = (c0, c1 + 1)

| otherwise = (c0 + 1, c1)

The third program is our favorite upgraderThread program. The
fourth program, unlike the previous three, introduces the possibility
of non-termination. In particular, adding strictness before variable as

causes the program to diverge. The best annotation set is to only
annotate variable a.

u = 0 : go (head u) (tail u)

go !a as = a + 1 : go (head as) (tail as)

main = do print $ u !! 1999999

4.2 nofib benchmarks

I ran Autobahn on 60 benchmarks from the NoFib benchmark suite. I
optimized each program three separate times: once on runtime, once

[May 14, 2017 at 18:42]

4.3 strict haskell 23

on GC time, and finally on live size. These benchmarks comprise
all of the NoFib programs that are can be compiled by GHC version
7.10.3 and can be processed without errors by the haskell-src-exts

parser library (Broberg, 2015) version 1.17.1. The smallest of these
benchmark programs (rfib) has 5 genes, while the largest (anna) has
7709. Table 3 lists the programs, giving the number of lines of code,
the number of program files, and the number of genes in each.

Figure 3 shows the performance of each of the 60 NoFib bench-
mark programs when trained and measured on total runtime, GC
time, and live size, respectively. In each graph, the horizontal axis
lists the benchmark programs in order of increasing number of genes.
The vertical axis shows the normalized performance of each bench-
mark, reporting the ratio of Autobahn-optimized performance to the
original program’s performance. Values less than 1.0 thus represent
improvement. Because Autobahn returns the program unchanged
if it cannot find an improvement, I expect values to be less than or
equal to one. In the graphs, programs whose data point is a triangle
represent programs for which the Autobahn-optimized version of
the program performs slightly worse than the original. A manual re-
view revealed the degradation was caused by noise. Circles represent
programs whose original performance took so close to zero time that
no measurable improvement was possible.

The results are encouraging. Following Fleming and Wallace, 1986,
I report results as geometric means. Overall, Autobahn decreased
the runtime by 8.5%, reduced time spent in GC by 18%, and reduced
the live size by 7.2%. The lcss program saw the best improvement
on all metrics, with deltas of 89%, 98%, and 99.3% respectively. The
comments for lcss state there are many opportunities for optimiza-
tion, which helps explain why this particular program improved so
much.

To explore the reason for the performance improvements, I selected
the twelve NoFib programs whose run times decreased the most and
compared the heap profiles of the original and Autobahn-annotated
versions 1 . The heap profiles of the improved programs all reported
decreases in peak memory use. However, the shapes of the graphs re-
mained largely unchanged. Some programs, like simple and fulsom,
reduce the amount of time the program spent at peak memory. I be-
lieve this reduction in memory usage translated to the runtime im-
provements.

4.3 strict haskell

Strict Haskell (Strict Haskell 2016) provides language pragmas to make
Haskell modules strict rather than lazy by default to improve per-
formance. Specifically, as of version 8.0.1, ghc has two additional

1 Available at https://genetic-strictness.github.io/Autobahn/profiles

[May 14, 2017 at 18:42]

24 evaluation

program loc files genes

rfib 12 1 5

x2n1 35 1 6

tak 16 1 9

primes 18 1 12

banner 108 1 17

queens 19 1 18

bernouilli 40 1 19

kahan 58 1 23

exp3_8 93 1 24

pidigits 22 1 27

integrate 43 1 28

cryptarithm1 164 1 33

wheel-sieve1 41 1 38

fasta 58 1 44

integer 68 1 47

wheel-sieve2 47 1 47

life 53 1 48

rsa 74 2 50

binary-trees 74 1 51

maillist 178 1 52

gen_regexps 39 1 54

gcd 60 1 57

scc 100 2 59

cryptarithm2 128 1 60

lcss 60 1 71

atom 188 1 74

paraffins 91 1 75

fannkuch 103 1 88

calendar 140 1 92

ansi 128 1 96

. . .

awards 115 2 99

fish 128 1 102

puzzle 170 1 103

treejoin 121 1 119

n-body 188 1 122

eliza 267 1 138

power 142 1 180

cichelli 195 4 205

cse 464 2 222

pretty 265 3 229

pic 527 9 235

clausify 184 1 246

minimax 238 6 299

boyer2 723 5 302

expert 525 6 424

hidden 507 14 430

gamteb 701 13 458

multiplier 501 1 468

prolog 643 9 514

infer 590 16 586

fem 1286 17 655

scs 585 7 770

simple 1129 1 845

reptile 1522 13 895

symalg 1146 11 1148

gg 812 9 1192

cacheprof 2151 3 1228

fulsom 1392 13 1433

fluid 2401 18 1688

anna 9561 32 7709

Table 3: Statistics for the NoFib benchmarks

[May 14, 2017 at 18:42]

4.3 strict haskell 25

2
-4

2
-3

2
-2

2
-1

2
0

rf
ib

x
2
n

1
ta

k
p
ri
m

e
s

b
a

n
n

e
r

q
u
e

e
n

s
b

e
rn

o
u
ill

i
k
a
h

a
n

e
x
p
3

8
p

id
ig

it
s

in
te

g
ra

te
c
ry

p
ta

ri
th

m
1

w
h
e

e
l-
s
ie

v
e

1
fa

s
ta

in
te

g
e
r

w
h
e

e
l-
s
ie

v
e

2
lif

e
rs

a
b

in
a

ry
-t

re
e
s

m
a
ill

is
t

g
e
n

re
g
e

x
p

s
g
c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m
p
a

ra
ff
in

s
fa

n
n

k
u
c
h

c
a
le

n
d

a
r

a
n

s
i

a
w

a
rd

s
fi
s
h

p
u

z
z
le

tr
e
e

jo
in

n
-b

o
d

y
e
liz

a
p
o

w
e

r
c
ic

h
e
lli

c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a

x
b
o

y
e
r2

e
x
p

e
rt

h
id

d
e
n

g
a
m

te
b

m
u

lt
ip

lie
r

p
ro

lo
g

in
fe

r
fe

m
s
c
s

s
im

p
le

re
p

ti
le

s
y
m

a
lg g
g

c
a

c
h
e

p
ro

f
fu

ls
o
m

fl
u

id
a
n

n
a

T
o

ta
l
ru

n
ti
m

e
 c

o
m

p
a

re
d

 t
o
 o

ri
g
in

a
l

Normalized Total Runtime of NoFib

Autobahn Ratio over 1.0 Original Runtime of 0

2
-8

2
-6

2
-4

2
-2

2
0

rf
ib

x
2
n
1

ta
k

p
ri
m

e
s

b
a
n
n
e
r

q
u
e
e
n
s

b
e
rn

o
u
ill

i
k
a
h
a
n

e
x
p
3

8
p
id

ig
it
s

in
te

g
ra

te
c
ry

p
ta

ri
th

m
1

w
h
e
e
l-
s
ie

v
e
1

fa
s
ta

in
te

g
e
r

w
h
e
e
l-
s
ie

v
e
2

lif
e

rs
a

b
in

a
ry

-t
re

e
s

m
a
ill

is
t

g
e
n

re
g
e
x
p
s

g
c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m
p
a
ra

ff
in

s
fa

n
n
k
u
c
h

c
a
le

n
d
a
r

a
n
s
i

a
w

a
rd

s
fi
s
h

p
u
z
z
le

tr
e

e
jo

in
n
-b

o
d
y

e
liz

a
p
o
w

e
r

c
ic

h
e
lli

c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a
x

b
o
y
e
r2

e
x
p
e
rt

h
id

d
e
n

g
a
m

te
b

m
u
lt
ip

lie
r

p
ro

lo
g

in
fe

r
fe

m
s
c
s

s
im

p
le

re
p
ti
le

s
y
m

a
lg g
g

c
a
c
h
e
p
ro

f
fu

ls
o
m

fl
u
id

a
n
n
aG

C
 t
im

e
 c

o
m

p
a
re

d
 t
o

 o
ri
g

in
a

l

Normalized GC Time of NoFib

Autobahn Ratio over 1.0 Original GC Time of 0

2
-8

2
-6

2
-4

2
-2

2
0

rf
ib

x
2
n
1

ta
k

p
ri
m

e
s

b
a
n
n
e
r

q
u
e
e
n
s

b
e
rn

o
u
ill

i
k
a
h
a
n

e
x
p
3

8
p
id

ig
it
s

in
te

g
ra

te
c
ry

p
ta

ri
th

m
1

w
h
e
e
l-
s
ie

v
e
1

fa
s
ta

in
te

g
e
r

w
h
e
e
l-
s
ie

v
e
2

lif
e

rs
a

b
in

a
ry

-t
re

e
s

m
a
ill

is
t

g
e
n

re
g
e
x
p
s

g
c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m
p
a
ra

ff
in

s
fa

n
n
k
u
c
h

c
a
le

n
d
a
r

a
n
s
i

a
w

a
rd

s
fi
s
h

p
u
z
z
le

tr
e
e
jo

in
n

-b
o
d
y

e
liz

a
p
o
w

e
r

c
ic

h
e
lli

c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a
x

b
o
y
e
r2

e
x
p
e
rt

h
id

d
e
n

g
a
m

te
b

m
u
lt
ip

lie
r

p
ro

lo
g

in
fe

r
fe

m
s
c
s

s
im

p
le

re
p
ti
le

s
y
m

a
lg g
g

c
a
c
h
e
p
ro

f
fu

ls
o
m

fl
u
id

a
n
n
aL

iv
e
 s

iz
e
 c

o
m

p
a
re

d
 t

o
 o

ri
g
in

a
l Normalized Live Size of NoFib

Autobahn Ratio over 1.0

Figure 3: Performance of Autobahn-optimized programs normalized by
the original program’s performance; lower values are better. The
data show geometric mean improvements of 8.5%, 18%, and 7.2%,
and maximum improvements of 89%, 98%, and 99.3% on the to-
tal runtime, garbage collection, and live size performance criteria,
respectively.

[May 14, 2017 at 18:42]

26 evaluation

language extensions: -XStrictData and -XStrict. According to the
GHC wiki page (Strict Fields 2016), when someone compiles a module
with the pragma -XStrictData, datatypes declared in that module be-
come strict by default. When compiled with -XStrict, the compiler
makes functions, data types, and bindings in the module strict by
default.

How does the performance of programs compiled with Strict Haskell
compare to those optimized with Autobahn? To answer this ques-
tion, I compiled and ran the NoFib programs with GHC 8.0.1 us-
ing -O2, -XBangPatterns, -funbox-strict-fields, -XStrict, and 4

-XStrictData flags. Figure 4 shows the results. Seventeen of the NoFib
programs failed when using Strict Haskell. These programs failed for
one of the following reasons:

• The program uses an infinite list. For example, wheel-sieve1 and
wheel-sieve2 specify an infinite list of primes but demand only
the first few. With Strict Haskell, the programs try to evaluate
the infinite lists.

• The program depends on a lazy evaluation of error to detect a
specific problem. For example, infer puts error at the end of a
list; reaching this value signals an error. With Strict Haskell, the
error is always triggered.

• The program contains a latent dynamic error. For example, rep-
tile crashes when nil is passed to the tiletrans function, which
does not occur when the program is evaluated lazily, but does
occur when using Strict Haskell.

Nine programs performed worse; some significantly so, because
Strict Haskell forces the evaluation of expressions that are not needed.
Autobahn did better than Strict Haskell on all of these programs. Of
the programs that improved under Strict Haskell, two did better than
Autobahn: exp3_8 and treejoin. In all other cases, Autobahn did
as well as or better than Strict Haskell. It is possible to add laziness an-
notations to the programs whose performance degrades under Strict
Haskell, but that requires determining where to insert the annota-
tions, another hard problem (Chang and Felleisen, 2014).

4.4 case study : gcsimulator

As a case study, I used Autobahn to optimize gcSimulator, a garbage
collection simulator that uses trace files generated by the Elephant
Tracks (Ricci, Guyer, and Moss, 2013) tool to understand the perfor-
mance of garbage collectors. The simulator consists of 20 files and
2026 lines of code. A chromosome for this program consists of 132

genes. The trace files are very large, on the order of gigabytes, re-
sulting in gcSimulator execution times on the order of several min-

[May 14, 2017 at 18:42]

4.4 case study : gcsimulator 27

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

rf
ib

x
2

n
1

ta
k

p
ri
m

e
s

b
a

n
n

e
r

q
u

e
e

n
s

b
e

rn
o

u
ill

i

k
a
h

a
n

e
x
p

3
8

p
id

ig
it
s

in
te

g
ra

te

c
ry

p
ta

ri
th

m
1

w
h

e
e

l-
s
ie

v
e
1

fa
s
ta

in
te

g
e

r

w
h

e
e

l-
s
ie

v
e
2

lif
e

rs
a

b
in

a
ry

-t
re

e
s

m
a

ill
is

t
g
e

n
re

g
e

x
p
s

g
c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m

p
a

ra
ff

in
s

fa
n

n
k
u
c
h

c
a
le

n
d
a

r

a
n
s
i

a
w

a
rd

s

fi
s
h

p
u

z
z
le

tr
e

e
jo

in

n
-b

o
d
y

e
liz

a

p
o
w

e
r

c
ic

h
e

lli

c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a

x

b
o
y
e
r2

e
x
p
e

rt

h
id

d
e
n

g
a

m
te

b

m
u

lt
ip

lie
r

p
ro

lo
g

in
fe

r

fe
m

s
c
s

s
im

p
le

re
p
ti
le

s
y
m

a
lg g
g

c
a

c
h
e

p
ro

f

fu
ls

o
m

fl
u
id

a
n

n
a

R
u
n

ti
m

e
 c

o
m

p
a
re

d
 t
o
 b

a
s
e
 p

ro
g

ra
m

Autobahn Strict Haskell Strict Haskell actual value of 19.5 Failed with Strict Haskell

Figure 4: Runtime of Autobahn-optimized programs and programs com-
piled with Strict Haskell normalized to base programs run in GHC
8.0.1. Lower on the y-axis means the Autobahn version of the pro-
gram ran faster.

utes. This performance makes running Autobahn prohibitively time
consuming. Consequently, I used only the first 512KB of one of the
traces as the input data source, specifically, a prefix of the trace for the
batik program of the DaCapo benchmarks (Blackburn et al., 2006). I
then evaluated the performance of the Autobahn-optimized version
of gcSimulator on increasing sizes of the same trace. For this study,
I seeded the initial population with the bare program; I did not in-
clude the annotations the original author had added by hand. For
these measurements, I compiled all versions of the gcSimulator with
the same settings as NoFib along with -rtsopts to gather runtime
information.

Table 4 shows the performance of the hand- and Autobahn- op-
timized programs normalized to the bare version. Autobahn strove
to decrease peak allocation, a choice consistent with that the goal the
original author used when manually inserting bang patterns. Each
colored band in the table represents a run with trace inputs of in-
creasing size. When run against the training data, both the hand- and
the Autobahn-optimized version use 80% of the peak memory of the
unannotated version. As the input data increased in size, we see Au-
tobahn’s version pull ahead in reducing peak memory usage and, as
a result, time spent in garbage collection. When given the entire batik
trace, we see Autobahn has reduced memory usage to less than 1%
of the unannotated version, compared to the original author’s 7%.
This change results in an overall reduction of runtime to 76.4% of the
bare program. Figure 5 shows the heap profile for three versions of
gcSimulator when run on half of the batik trace. We see the expert’s
annotations reduced the live size of the program and eliminated some

[May 14, 2017 at 18:42]

28 evaluation

peak alloc(mb) total runtime gc time

0.8 0.898 0.556

training data
0.8 0.905 0.417

1
3 of trace

0.140 0.616 0.094

0.137 0.586 0.050

0.318 0.612 0.1361
2 of trace

0.021 0.812 0.069

full trace
0.072 0.914 0.444

0.005 0.764 0.272

Table 4: Peak memory allocation, total runtime, and GC time for hand- and
Autobahn-optimized version of gcSimulator, normalized to the
bare program. For each band, the first row shows the by-hand re-
sults and the second Autobahn results.

thunk leaks. The Autobahn- optimized version further reduced the
live size and also changed its allocation behavior. In particular, we do
not see a sharp rise in memory usage at the end of the program’s life-
time. Table 4 and Figure 5 further show that the annotations inferred
for a small training set provide benefits even when the program is
given larger inputs.

4.5 case study : aeson library with two different drivers

A second case study shows Autobahn can infer different annota-
tions for the same library code based on how the library is used.
The Aeson parser library pairs with two different diver programs
called validate and convert. Each driver program takes in a JSON
file containing a list of records. Driver validate checks if its input
respects the JSON syntax. It does not need to completely evaluate
each JSON value. Therefore, validate achieves the best performance
if it evaluates some parsing functions lazily. Driver convert converts
its input to a Haskell data structure. It needs to completely evaluate
each JSON value. Therefore, convert achieves the best performance
if it evaluates all parsing functions eagerly.

Each driver program takes in one of 5 JSON files published by
the City of Chicago (City of Chicago Public Datasets 2012). The files
are objects.json, A, B, C, and D, by increasing size. The smallest file
objects.json is passed to each driver during Autobahn optimiza-
tion so that Autobahnfinishes in reasonable time. The larger 4 files
are passed to each driver before and after Autobahn optimization so
that performance improvements can be measured on realistic inputs.
The drivers and the Aeson library are compiled with the same set-

[May 14, 2017 at 18:42]

4.5 case study : aeson library with two different drivers 29

(a) Bare program
gcSimulator 25,352,583,379 bytes x seconds Thu Jun 9 15:42 2016

seconds0.0 20.040.060.080.0100.0120.0140.0160.0180.0200.0

b
y
te

s

0M

200M

400M

600M

800M

1,000M

1,200M

main:Graph.Sing

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Two

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Four

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Node3

THUNK_SELECTOR

THUNK_1_0

ghc-prim:GHC.Tuple.(,)

THUNK_1_1

main:Graph.Doub

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Deep

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntMap.Base.Tip

main:Graph.Cons

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntMap.Base.Bin

BLACKHOLE

STACK

THUNK

(b) Hand optimized
gcSimulator 11,735,311,846 bytes x seconds Thu Jun 9 17:05 2016

seconds0.0 20.040.060.080.0100.0120.0140.0160.0180.0200.0

b
y
te

s

0M

50M

100M

150M

200M

250M

300M

350M

400M

450M

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.One

main:Graph.Sing

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Four

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Single

main:Graph.Doub

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Two

THUNK_SELECTOR

THUNK_1_0

ghc-prim:GHC.Tuple.(,)

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntMap.Base.Tip

main:Graph.Cons

THUNK_1_1

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Node3

conta_LKCPrTJwOTOLk4OU37YmeN:Data.Sequence.Deep

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntMap.Base.Bin

(c) Autobahn-optimized
gcSimulator 4,240,875,844 bytes x seconds Thu Jun 9 22:41 2016

seconds0.0 20.040.060.080.0100.0120.0140.0160.0180.0200.0220.0

b
y
te

s

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

20M

22M

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntSet.Base.Tip

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntSet.Base.Bin

main:Graph.Sing

main:Graph.Doub

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntMap.Base.Tip

main:Graph.Cons

conta_LKCPrTJwOTOLk4OU37YmeN:Data.IntMap.Base.Bin

Figure 5: Heap profiles of gcSimulator on 1
2 of the batik trace.

[May 14, 2017 at 18:42]

30 evaluation

tings as NoFib except for 2 compiler flags. The -rtsopts flag is added
to gather runtime information, and the -funbox-strict-fields flag
is removed since Aeson does not use strict fields.

Autobahn takes in the source of each driver program as well as
the relevant part of the Aeson library source. Each driver/library
pair consists of two files totaling 320 lines of code. Each pair has a
chromosome with 194 genes. The original driver programs use the
“wrong” version of the parsing functions so that there is room for im-
provement. The original validate uses strict parsing functions with
too many annotations, and the original convert uses lazy ones with
too few annotations. Autobahn optimizes each driver/library pair
for shorter runtime.

Table 4 shows the result of Autobahn’s optimizations. Both pro-
grams ran significantly faster than their original versions: validate
ran a maximum of 37% faster and convert ran a maximum of 34%
faster. convert also used an average of 28.3% less memory than its
original version, whereas validate used the same amount of mem-
ory as its original version. Because convert used less memory, it also
spent less time in garbage collection, therefore also ran faster overall.

To achieve these performance improvements, Autobahn inferred
different annotations in the Aeson library for each driver. For convert,
Autobahn adds a bang in a function 2 that inserts values into a hash
table. For validate, Autobahn removes the same annotation in an
eager version of that function. Because convert eventually needs to
fully evaluate the values in the hash table, it will force all hash table
insertions. Therefore an eager insertion that does not create thunks is
more efficient than a lazy one that creates thunks. Autobahn adds
the annotation to make the insertion eager and eliminates unneces-
sary thunks. Because validate does not need to fully evaluate the
values in the hash table, it will not force all hash table insertions.
Therefore a lazy insertion that does not insert the value is more effi-
cient than an eager one that inserts the value. Autobahn removes the
annotation to make the insertion lazy and avoids unnecessary com-
putation.

4.6 10-fold cross-validation

To assess the applicability of Autobahn’s optimizations to non-training
data, I perform 10-fold cross-validation on gcSimulator and the con-
vert Aeson driver. To apply this methodology to the optimization of
gcSimulator, I first select ten different input data sets. Next, I use
Autobahn to optimize gcSimulator using each input file in turn to
obtain ten different optimized programs. Finally, I evaluate each opti-
mized program on all ten inputs. For these experiments, Autobahn

optimized for runtime. I measured the performance of the optimized

2 the function calls H.insert in the objectValues function in the Aeson library source.

[May 14, 2017 at 18:42]

4.6 10-fold cross-validation 31

peak alloc(mb) total runtime gc time

1.0 0.869 0.979

A (46MB)
0.457 0.661 0.434

B (50MB)
0.999 0.907 1.062

0.853 0.830 0.808

1.0 0.638 0.855

C (51MB)
0.834 0.754 0.671

D (68MB)
1.0 0.900 0.988

0.810 0.787 0.694

Table 5: Peak memory allocation, total runtime, and GC time for Autobahn-
optimized version of two Aeson driver programs, normalized to the
bare program. For each band, the first row shows the results for
validate and the second for convert.

programs on both runtime and live size. The methodology for convert
is analogous.

For gcSimulator, I chose as input ten different traces of programs
from the DaCapo Benchmarks. Because the full traces lead to long
training times, I selected the first 35 million lines from each trace. I
tested the optimized programs, however, on the full traces. For con-
vert, I chose ten different JSON datasets from the data made available
by the City of Chicago, ranging in size from 32 to 68MB. I trained and
tested the optimized programs on the full data files.

Figures 6 and 7 show the performance of each program/input pair
compared to the bare program for gcSimulator and convert, respec-
tively. Each label training-opt on the horizontal axis corresponds
to a program trained on input training and evaluated with perfor-
mance criteria opt. For gcSimulator, I also show the performance of
the hand-optimized version of the program.

Figure 6 shows that Autobahn produces consistent runtime im-
provements of roughly 60% for gcSimulator. The live size measure-
ments suggest the runtime improvement likely comes from fixing
thunk leaks. The data also shows that Autobahn annotations outper-
form the hand annotations for gcSimulator: the geometric mean of
gcSimulator runtime when optimized by Autobahn is 58.6% of the
bare runtime, compared to a geometric mean of 64.8% of bare for the
hand-optimized version. Autobahn-optimized versions used a geo-
metric mean of 9.6% of the bare live size whereas the hand optimized
ones used 22.8%.

The Autobahn version of convert reduced its total runtime to a ge-
ometric mean of 65.2% of the bare runtime. Autobahn also reduced
the live size to a geometric mean of 78.6% of the bare live size, which
contributed to the improved runtime. Since the bare version of the

[May 14, 2017 at 18:42]

32 evaluation

2
-8

2
-6

2
-4

2
-2

2
0

p
m

d
-r

u
n

ti
m

e

p
m

d
-l
iv

e
-s

iz
e

jy
th

o
n

-r
u

n
ti
m

e

jy
th

o
n

-l
iv

e
-s

iz
e

lu
in

d
e

x
-r

u
n

ti
m

e

lu
in

d
e

x
-l
iv

e
-s

iz
e

to
m

c
a
t-

ru
n

ti
m

e

to
m

c
a

t-
liv

e
-s

iz
e

s
p

e
c
jb

b
-r

u
n

ti
m

e

s
p

e
c
jb

b
-l
iv

e
-s

iz
e

lu
s
e

a
rc

h
-r

u
n

ti
m

e

lu
s
e

a
rc

h
-l
iv

e
-s

iz
e

b
a
ti
k
-r

u
n

ti
m

e

b
a

ti
k
-l
iv

e
-s

iz
e

tr
a

d
e

b
e

a
n

s
-r

u
n

ti
m

e

tr
a

d
e
b

e
a

n
s
-l
iv

e
-s

iz
e

tr
a

d
e

s
o

a
p

-r
u

n
ti
m

e

tr
a
d

e
s
o

a
p

-l
iv

e
-s

iz
e

fo
p

-r
u

n
ti
m

e

fo
p

-l
iv

e
-s

iz
e

2
-8

2
-6

2
-4

2
-2

2
0

R
u
n

ti
m

e
 c

o
m

p
a

re
d

 t
o

 b
a

re

L
iv

e
 s

iz
e

 c
o
m

p
a

re
d

 t
o

 b
a

re

Normalized Runtime of gcSimulator to Bare

Different Trace - Runtime

Different Trace - Live size

Same Trace - Runtime

Same Trace - Live size

Hand Optimized - Runtime

Hand Optimized - Live size

Figure 6: 10-fold evaluation for gcSimulator, showing runtime and live size
performance improvements of Autobahn versions of gcSimulator
compared to the bare program. I highlight points where the Auto-
bahn-optimized program ran on its training trace. I also show how
the hand-annotated program performed.

2
-8

2
-6

2
-4

2
-2

2
0

u
u

p
f-

x
9

8
q

-r
u

n
ti
m

e

u
u

p
f-

x
9

8
q

-l
iv

e
-s

iz
e

e
4

s
p

-i
tv

q
-r

u
n

ti
m

e

e
4

s
p

-i
tv

q
-l
iv

e
-s

iz
e

u
x
ic

-z
s
u

j-
ru

n
ti
m

e

u
x
ic

-z
s
u

j-
liv

e
-s

iz
e

rs
x
a

-i
fy

5
-r

u
n

ti
m

e

rs
x
a

-i
fy

5
-l
iv

e
-s

iz
e

z
u

x
i-
7

x
e

m
-r

u
n

ti
m

e

z
u

x
i-
7

x
e

m
-l
iv

e
-s

iz
e

9
k
s
k
-n

a
4

q
-r

u
n

ti
m

e

9
k
s
k
-n

a
4

q
-l
iv

e
-s

iz
e

7
a

s
2

-d
s
3

y
-r

u
n

ti
m

e

7
a

s
2

-d
s
3

y
-l
iv

e
-s

iz
e

e
z
m

a
-p

p
p

n
-r

u
n

ti
m

e

e
z
m

a
-p

p
p

n
-l
iv

e
-s

iz
e

9
7

t6
-z

rh
s
-r

u
n

ti
m

e

9
7

t6
-z

rh
s
-l
iv

e
-s

iz
e

h
c
q

p
-h

y
q

a
-r

u
n

ti
m

e

h
c
q

p
-h

y
q

a
-l
iv

e
-s

iz
e

2
-8

2
-6

2
-4

2
-2

2
0

R
u
n

ti
m

e
 c

o
m

p
a

re
d

 t
o

 b
a

re

L
iv

e
 s

iz
e

 c
o

m
p

a
re

d
 t

o
 b

a
re

Normalized Runtime of gcSimulator to Bare

Different Trace - Runtime

Different Trace - Live size

Same Trace - Runtime

Same Trace - Live size

Figure 7: 10-fold evaluation for convert, showing runtime and live size per-
formance improvements of Autobahn versions of convert com-
pared to the bare program. I highlight points where the Auto-
bahn-optimized program ran on its training trace.

[May 14, 2017 at 18:42]

4.7 autobahn performance 33

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

rf
ib

x
2

n
1

ta
k

p
ri
m

e
s

b
a

n
n

e
r

q
u

e
e

n
s

b
e

rn
o

u
ill

i
k
a
h

a
n

e
x
p

3
_

8
p

id
ig

it
s

in
te

g
ra

te
c
ry

p
ta

ri
th

m
1

w
h

e
e

l-
s
ie

v
e
1

fa
s
ta

in
te

g
e

r
w

h
e
e

l-
s
ie

v
e
2

lif
e

rs
a

b
in

a
ry

-t
re

e
s

m
a

ill
is

t
g
e

n
_
re

g
e

x
p
s

g
c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m
p
a

ra
ff

in
s

fa
n

n
k
u
c
h

c
a
le

n
d
a

r
a

n
s
i

a
w

a
rd

s
fi
s
h

p
u

z
z
le

tr
e

e
jo

in
n

-b
o

d
y

e
liz

a
p
o
w

e
r

c
ic

h
e

lli
c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a

x
b

o
y
e
r2

e
x
p
e

rt
h

id
d

e
n

g
a

m
te

b
m

u
lt
ip

lie
r

p
ro

lo
g

in
fe

r
fe

m
s
c
s

s
im

p
le

re
p
ti
le

s
y
m

a
lg g
g

c
a

c
h
e

p
ro

f
fu

ls
o
m

fl
u
id

a
n

n
a

R
u
n

ti
m

e
 o

f
A

u
to

b
a

h
n

 (
s
e

c
o
n
d

s
)

Runtime of Autobahn

Optimized for Total Runtime Optimized for GC Time

Figure 8: Autobahn running time to optimize each program in the NoFib
benchmark suite.

convert driver evaluates as much as it can to weak head normal form,
the live size and runtime are related.

5.7 Autobahn Performance
Finally, Figure 8 shows how long it took Autobahn to analyze each

of the programs in the NoFib benchmark suite for the total runtime
and GC time performance criteria. When optimizing the benchmarks
for runtime, Autobahn took 861.166 seconds, or 14 minutes (geomet-
ric mean). When Autobahn is run optimizing for GC time, it took
732.451 seconds, or 12 minutes. We see that there are some bench-
marks where Autobahn runs for close to no time at all when opti-
mizing for runtime and GC time. In those cases, Autobahn found
that the bare program had a runtime of 0 CPU seconds or spent no
time in the collector. Since it cannot optimize below that value, Au-
tobahn terminated and reported the bare program as the optimal
chromosome. I have yet to run this experiment to capture the run-
time when optimizing for live size.

4.7 autobahn performance

As for our case studies, it took Autobahn 5 hours and 34 minutes
to optimize the gcSimulator and 2 hours and 12 minutes to optimize
the Aeson convert driver. For each program, I ran Autobahn once,
optimizing for runtime. These two programs in particular have much
longer running times than those in the benchmark suite. For instance,
gcSimulator emulates an entire program run, complete with garbage
collections, on top of a garbage collected language. This results in a
long runtime before Autobahn adds any strictness.

Since the use case for Autobahn is that programmers like Pat and
Chris use the tool once they have a working program they want to

[May 14, 2017 at 18:42]

34 evaluation

optimize, I see these running times as acceptable. I imagine Pat and
Chris starting the tool before they go to bed and wake up with candi-
date annotations to consider.

4.8 soundness

Autobahn gives good performance improvement if we do not limit
how many bangs it should add. But too many bangs make it difficult
for Pat and Chris to decide if they may introduce non-termination.
Therefore, as described in Section 3.10, Autobahn’s second phase
aims to reduce the number of bangs without sacrificing performance.
After the second phase, the resulting programs run at least 85% as
fast as those after the first phase, with a few programs running even
faster. The final programs from the NoFib benchmark suit have an
average of 11 bangs per 100 lines of code, reduced from the 24 bangs
per 100 LOC after phase 1 by 54 %.

The algorithm in phase 2 guarantees the final program runs at least
85% as fast as those after phase 1. Because Autobahn assigns very
bad score for chromosomes with more than 15% worse performance,
they rarely survive through the next generation. It still allows for the
small slowdown to trade off between a fast program and a readable
one. Figure 9 compares the performance improvement from the orig-
inal program after phase 2 with that after phase 1. In most cases,
phase 2 did not affect performance. For a few programs, like gcd,
atom and pic, phase 2 produced slightly slower program than phase
1. Programs banner, gen_regexp, scc and ansi ran too fast for Au-
tobahn to improve. For all other programs phase 2 improved upon
the original performance. The same figure compares the number of
bangs after each phase. As expected, phase 2 consistently produces
fewer bangs than phase 1. This is also guaranteed by the algorithm,
because phase 2 starts with the candidate programs from phase 1.
Just as phase 1 never produces programs slower than the original
one, phase 2 never produces programs with more bangs than phase
1’s. Finally, for programs like scs, puzzle, and binary-trees, phase
2 allows for slightly slower programs in favor of fewer bangs.

After the second phase of genetic algorithm, Autobahn goes a step
further to help Pat and Chris reason about the remaining bangs. As
described in section 3.10, Autobahn runs GHC’s demand analysis
on the original program to find out which locations are safe to have
bangs. Figure 10 shows the ratio of bangs marked safe over all bangs
Autobahn produced after phase 2. The unmarked bangs are the ones
Pat and Chris need to reason about. This figure also explains Au-
tobahn’s advantage over the compiler optimization. Since a good
portion of the bangs Autobahn added cannot be proven safe in the
compiler, the compiler must never force the annotated binder. The
same bangs must also be responsible for the performance improve-

[May 14, 2017 at 18:42]

4.8 soundness 35

ment in our experiments, since the baseline of the measurements are
programs already optimized by GHC.

2
-2

2
-1

2
0

2
1

rf
ib

x
2

n
1

ta
k

p
ri
m

e
s

b
a

n
n

e
r

q
u

e
e
n

s
b

e
rn

o
u

ill
i

k
a

h
a

n
e

x
p
3

8
p

id
ig

it
s

in
te

g
ra

te
c
ry

p
ta

ri
th

m
1

w
h
e

e
l-
s
ie

v
e

1
fa

s
ta

in
te

g
e

r
w

h
e

e
l-
s
ie

v
e

2
lif

e
rs

a
b

in
a

ry
-t

re
e

s
m

a
ill

is
t

g
e

n
re

g
e

x
p

s
g

c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m
p

a
ra

ff
in

s
fa

n
n
k
u

c
h

c
a

le
n

d
a

r
a

n
s
i

a
w

a
rd

s
fi
s
h

p
u

z
z
le

tr
e

e
jo

in
n

-b
o
d

y
e

liz
a

p
o

w
e

r
c
ic

h
e

lli
c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a

x
b

o
y
e
r2

e
x
p
e

rt
h

id
d

e
n

g
a

m
te

b
m

u
lt
ip

lie
r

p
ro

lo
g

in
fe

r
fe

m
s
c
s

s
im

p
le

re
p

ti
le

s
y
m

a
lg g
g

c
a

c
h
e

p
ro

f
fu

ls
o

m
fl
u

id
a

n
n

a

 0

 100

 200

 300

 400

 500

R
u

n
ti
m

e
 o

f
P

ro
g
ra

m
 (

s
e

c
o

n
d

s
)

N
u

m
b

e
r

o
f

B
a

n
g

s
 I

n
fe

rr
e

d

Phase 1 and Phase 2 Stats

Phase 1 Perf Phase 2 Perf Phase 1 Bang Phase 2 Bang No Optimization

Figure 9: Minimizer performance and bang reduction

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-1

rf
ib

x
2
n
1

ta
k

p
ri
m

e
s

b
a
n
n
e
r

q
u
e
e
n
s

b
e
rn

o
u
ill

i
k
a
h
a
n

e
x
p
3

8
p
id

ig
it
s

in
te

g
ra

te
c
ry

p
ta

ri
th

m
1

s
ie

v
e
1

fa
s
ta

in
te

g
e
r

s
ie

v
e
2

lif
e

rs
a

tr
e
e
s

m
a
ill

is
t

g
e
n

re
g
e
x
p
s

g
c
d

s
c
c

c
ry

p
ta

ri
th

m
2

lc
s
s

a
to

m
p
a
ra

ff
in

s
re

d
u
x

c
a
le

n
d
a
r

a
n
s
i

a
w

a
rd

s
fi
s
h

p
u
z
z
le

tr
e
e

jo
in

b
o
d
y

e
liz

a
p
o
w

e
r

c
ic

h
e
lli

c
s
e

p
re

tt
y

p
ic

c
la

u
s
if
y

m
in

im
a
x

b
o
y
e
r2

e
x
p
e
rt

h
id

d
e
n

g
a
m

te
b

m
u

lt
ip

lie
r

p
ro

lo
g

in
fe

r
fe

m
s
c
s

s
im

p
le

re
p
ti
le

s
y
m

a
lg g
g

c
a
c
h
e
p
ro

f
fu

ls
o
m

fl
u
id

a
n
n
a

 0

 80

 160

 240

 320

 400

 480

#
 s

a
fe

 b
a
n
g
s
 /
 #

 t
o
ta

l
b

a
n

g
s

#
 t
o
ta

l
b
a

n
g

s

Demand Analysis for Autobahn-inferred Bangs

safe bangs / # total bangs no bangs before analysis # total bangs

Figure 10: Ratio of bangs marked safe / total bangs in program

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

5
R E L AT E D W O R K / F U T U R E W O R K

5.1 static analysis

Identifying opportunities to remove laziness has long been a key op-
timization in compilers for lazy functional languages (Peyton Jones
and Partain, 1994; Peyton Jones and Santos, 1998; Ennals and Peyton
Jones, 2003). Compilers traditionally use various forms of strictness
analysis (Mycroft, 1980) to identify program fragments that can be
evaluated eagerly. Many of the strictness analyses in the literature
are based on applying forward abstract interpretation (Wadler, 1987;
Partain, 1993; Schrijvers and Mycroft, 2010) to richer and richer lan-
guages. Other approaches are based on various flavors of resource-
aware type systems (Turner, Wadler, and Mossin, 1995; Holdermans
and Hage, 2010; Verstoep and Hage, 2015). The current strictness ana-
lyzer in GHC uses backward abstract interpretation, sacrificing some
accuracy for compilation speed (Peyton Jones, Sestoft, and Hughes,
2006; Sergey, Vytiniotis, and Peyton Jones, 2014). Because such analy-
ses are static, they are necessarily approximate. Since they are part of
the compiler, they are necessarily conservative, identifying binding lo-
cations as strict only if they can guarantee that eagerly evaluating the
corresponding expression can never cause non- termination. Auto-
bahn implements a dynamic analysis, so it does not have to approx-
imate. It is not part of the compiler, so it does not have to guarantee
termination on all inputs. Instead, it allows programmers to decide
whether a given annotation set has the necessary termination behav-
ior on an application-specific basis. Autobahn does require program-
mers to reason about the soundness of the inferred annotation sets,
which may not be easy.

5.2 including dynamic information

There is extensive literature on using dynamic information to im-
prove compiler performance. In the following, I focus only on work
that has used dynamic information to improve the performance of
Haskell programs by changing when expressions are evaluated. En-
nals and Peyton Jones (Ennals and Peyton Jones, 2003) extended GHC’s
strictness analysis to incorporate dynamic information, exploiting the
observation that most thunks are either always evaluated or are cheap
to evaluate. They speculatively evaluated thunks, aborting if the eval-
uation took too long. This approach produced significant speedups
(5-25%) on programs from the NoFib benchmarks over purely static

37

[May 14, 2017 at 18:42]

38 related work / future work

approaches. In contrast to Autobahn, the profiling overheads are nec-
essarily part of the execution time of the user program. In practice, the
complexity of the analysis outweighed its performance benefits, and
it never became part of the official GHC release.

Recent work (Trilla and Runciman, 2015) explores using runtime
profiling in conjunction with static analysis to enable embedded seq

calls, dynamically adjusting the amount of parallelism in the program.
As in Ennals’ work, this approach instruments the user’s code, so
there is a runtime overhead that cannot be avoided. Earlier work (Har-
ris and Singh, 2007) explored using dynamic profiling to identify pro-
gram points that could be profitably executed in parallel, essentially
finding places to insert par. Unlike Autobahn, the focus of this work
is on adding parallelism, rather than improving performance by re-
ducing laziness.

The Seqaid (Seniuk, 2015) project on hackage seems closely related
to Autobahn. It is a Haskell compiler plug-in that uses dynamic pro-
filing to selectively force thunks via deepseq-bounded. As with Au-
tobahn, Seqaid is not guaranteed to be sound. Comments on the
project webpage indicate the optimizer is under development. I have
not been able to compile the code and are not aware of any paper
describing the algorithms or reporting on its performance.

5.3 multi-objective optimization for program synthe-
sis

I made great effort to reduce the number of bangs without affecting
performance. In essence, I face a two-objective optimization problem
where the relation between the objectives (performance and readabil-
ity) is not clear. I am not alone.

One recent work(Darulova et al., 2013) synthesizing fixed-point pro-
grams uses genetic algorithms to search for a program with the least
error. However a more accurate program sometime take longer to run.
Therefore, performance constitutes the second objective. Without a
clear way to combine the objectives, the authors directs the genetic al-
gorithm to optimize over accuracy and selects the fastest among the
most accurate candidates.

In yet another domain, researchers use machine learning algorithms
to look for minimal binary abstractions for static analysis (Liang,
Tripp, and Naik, 2011). A binary abstraction is a bit vector that rep-
resents a proof. Only certain vectors represent valid proofs, and the
researchers wish to find the vector with the fewest bit on. They con-
struct efficient algorithms and guarantee to find the correct minimal
abstraction. Their success is based on two properties of the correlation
between the binary abstraction and its validity - bivalent and mono-
tonicity. That is, an abstraction can only be either valid or invalid, and
if an abstraction is valid, then it stays valid with any more bits on.

[May 14, 2017 at 18:42]

5.4 other approaches 39

It would be interesting to explore extending the abstraction al-
gorithms into continuous, non-monotonic functions like that map-
ping bang vectors to performance. Furthermore, a more general al-
gorithm that can be parameterized on the objectives to be optimized
can greatly benefit work in program synthesis.

5.4 other approaches

The recent Strict Haskell (Strict Haskell 2016) effort avoids the laziness
problem by allowing programmers to make specific modules strict-
by-default rather than lazy-by-default by using the -XStrict and
-XStrictData language pragmas. This approach is complementary to
Autobahn’s, offering performance benefits at the cost of eliminating
laziness. Adding such pragmas to existing code can be problematic,
triggering non-termination or reducing performance. Of course, lazi-
ness can be recovered by inserting explicit delays, which is another
known hard problem (Chang and Felleisen, 2014).

Chang and Felleisen’s recent work (Chang and Felleisen, 2014) is
the complement of Autobahn. It uses dynamic profiling to com-
pute a laziness potential that guides the insertion of laziness anno-
tations into programs written in a strict language. It would be inter-
esting to see whether their approach could be adapted to inferring
performance-enhancing strictness annotations for Haskell programs.
As with Autobahn, this adapted approach would face the soundness
problem, which arises from trying to eliminate rather than introduce
laziness. Another possibility would be to use laziness potential to add
laziness to Strict Haskell programs.

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

6
C O N C L U S I O N

Excessive laziness has been a performance problem for lazy func-
tional languages since their inception. Despite decades of work on op-
timizing compilers for lazy languages and associated strictness anal-
yses, poor performance remains a problem. Strictness annotations al-
low programmers to control the laziness of their programs, but they
require high levels of expertise to use effectively and correctly. I have
designed and built Autobahn, a tool that uses a genetic algorithm to
automatically infer annotations that optimize program performance.
Users inspect the suggested annotation sets for soundness and can
ask Autobahn to automatically patch their program sources. Experi-
ments show that Autobahn improves runtime performance on NoFib
benchmark programs an average of 8.5% and up to 89%, with an av-
erage of 24 annotations per 100 LOC. In no case does Autobahn

degrade performance. With a second pass of genetic algorithms, Au-
tobahn can reduce the number of bangs to 11 per 100 LOC while
still retaining at least 85% of the performance improvement from the
first pass. It also marks an average of 7% of the bangs to be safe with
GHC’s demand analysis.

41

[May 14, 2017 at 18:42]

[May 14, 2017 at 18:42]

B I B L I O G R A P H Y

Bang Patterns (2016). https://downloads.haskell.org/~ghc/latest/
docs/html/users_guide/bang-patterns.html (cit. on pp. 3, 20).

Blackburn, Stephen M. et al. (2006). “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis.” In: OOPSLA ’06. Port-
land, Oregon, USA: ACM (cit. on p. 27).

Broberg, Niklas (2015). The haskell-src-exts package. https://hackage.
haskell.org/package/haskell-src-exts-1.17.1 (cit. on pp. 11,
12, 23).

Bryan O’Sullivan (2016). The Aeson Package. https://hackage.haskell.
org/package/aeson (cit. on pp. 6, 12, 21).

Chang, Stephen and Matthias Felleisen (2014). “Profiling for Lazi-
ness.” In: POPL ’14 (cit. on pp. 26, 39).

Cheung, Alvin, Samuel Madden, and Armando Solar-Lezama (2016).
“Sloth: Being Lazy Is a Virtue (When Issuing Database Queries).”
In: ACM Trans. Database Syst. 41.2, 8:1–8:42. issn: 0362-5915. doi:
10.1145/2894749. url: http://doi.acm.org/10.1145/2894749
(cit. on p. 3).

City of Chicago Public Datasets (2012). https://www.opensciencedatacloud.
org/publicdata/city-of-chicago-public-datasets/ (cit. on
p. 28).

Darulova, Eva, Viktor Kuncak, Rupak Majumdar, and Indranil Saha
(2013). “Synthesis of Fixed-point Programs.” In: Proceedings of
the Eleventh ACM International Conference on Embedded Software.
EMSOFT ’13. Montreal, Quebec, Canada: IEEE Press, 22:1–22:10.
isbn: 978-1-4799-1443-2. url: http://dl.acm.org/citation.cfm?
id=2555754.2555776 (cit. on p. 38).

Deepseq (2015). https://hackage.haskell.org/package/deepseq (cit.
on p. 20).

Edward Z. Yang (2011). Anatomy of a thunk leak. http://blog.ezyang.
com/2011/05/anatomy-of-a-thunk-leak/ (cit. on p. 22).

Ennals, Robert and Simon Peyton Jones (2003). “Optimistic Evalua-
tion: An Adaptive Evaluation Strategy for Non-strict Programs.”
In: ICFP ’03. Uppsala, Sweden (cit. on pp. 3, 37).

Fleming, Philip J. and John J. Wallace (1986). “How Not To Lie With
Statistics: The Correct Way To Summarize Benchmark Results.”
In: Commun. ACM 29.3, pp. 218–221. doi: 10.1145/5666.5673.
url: http://doi.acm.org/10.1145/5666.5673 (cit. on p. 23).

GHC Profling (2016). https://downloads.haskell.org/~ghc/latest/
docs/html/users_guide/profiling.html (cit. on p. 12).

43

[May 14, 2017 at 18:42]

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/bang-patterns.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/bang-patterns.html
https://hackage.haskell.org/package/haskell-src-exts-1.17.1
https://hackage.haskell.org/package/haskell-src-exts-1.17.1
https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/aeson
http://dx.doi.org/10.1145/2894749
http://doi.acm.org/10.1145/2894749
https://www.opensciencedatacloud.org/publicdata/city-of-chicago-public-datasets/
https://www.opensciencedatacloud.org/publicdata/city-of-chicago-public-datasets/
http://dl.acm.org/citation.cfm?id=2555754.2555776
http://dl.acm.org/citation.cfm?id=2555754.2555776
https://hackage.haskell.org/package/deepseq
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://dx.doi.org/10.1145/5666.5673
http://doi.acm.org/10.1145/5666.5673
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/profiling.html

44 Bibliography

Goldberg, David E et al. (1989). Genetic algorithms in search optimization
and machine learning. Vol. 412. Addison-Wesley Reading (cit. on
p. 7).

Harris, Tim and Satnam Singh (2007). “Feedback Directed Implicit
Parallelism.” In: ICFP ’07. Freiburg, Germany (cit. on p. 38).

Holdermans, Stefan and Jurriaan Hage (2010). “Making “Stricterness”
More Relevant.” In: PEPM ’10. Madrid, Spain (cit. on p. 37).

Hoste, Kenneth (2011). The GA Package. https://hackage.haskell.
org/package/GA (cit. on p. 15).

Liang, Percy, Omer Tripp, and Mayur Naik (2011). “Learning Mini-
mal Abstractions.” In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL
’11. Austin, Texas, USA: ACM, pp. 31–42. isbn: 978-1-4503-0490-0.
doi: 10.1145/1926385.1926391. url: http://doi.acm.org/10.
1145/1926385.1926391 (cit. on p. 38).

Mangal, Ravi, Xin Zhang, Aditya V. Nori, and Mayur Naik (2015).
“Volt: A Lazy Grounding Framework for Solving Very Large MaxSAT
Instances.” In: Proceedings of the 18th International Conference on
Theory and Applications of Satisfiability Testing. Vol. 9340. Lecture
Notes in Computer Science. Springer International Publishing,
pp. 299–306. doi: 10.1007/978-3-319-24318-4_22 (cit. on p. 3).

Mitchell, Neil (2013). “Leaking Space.” In: Queue 11.9 (cit. on p. 3).
Mycroft, Alan (1980). “The Theory and Practice of Transforming Call-

by-need into Call-by-value.” In: Proceedings of the Fourth ‘Colloque
International Sur La Programmation’ on International Symposium on
Programming. Springer-Verlag (cit. on p. 37).

O’Sullivan, Bryan, Don Stewart, and John Goerzen (2009). Real World
Haskell. Available at http://book.realworldhaskell.org. O’Reilly
Media (cit. on p. 3).

Ondra (2011). Thunk memory leak as a result of map function. http://
stackoverflow.com/a/6631097/3694032 (cit. on p. 1).

Partain, Will (1993). “The nofib Benchmark Suite of Haskell Pro-
grams.” In: Proceedings of the 1992 Glasgow Workshop on Functional
Programming. Springer-Verlag (cit. on pp. 6, 13, 21, 37).

Peyton Jones, Simon and Will Partain (1994). “Measuring the effective-
ness of a simple strictness analyser.” In: Functional Programming,
Glasgow 1993. Springer (cit. on pp. 3, 37).

Peyton Jones, Simon and André L. M. Santos (1998). “A Transformation-
based Optimiser for Haskell.” In: Sci. Comput. Program. 32.1-3 (cit.
on pp. 3, 37).

Peyton Jones, Simon, Peter Sestoft, and John Hughes (2006). “De-
mand analysis.” Available from http://research.microsoft.

com/en-us/um/people/simonpj/papers/demand-anal/demand.ps

(cit. on p. 37).

[May 14, 2017 at 18:42]

https://hackage.haskell.org/package/GA
https://hackage.haskell.org/package/GA
http://dx.doi.org/10.1145/1926385.1926391
http://doi.acm.org/10.1145/1926385.1926391
http://doi.acm.org/10.1145/1926385.1926391
http://dx.doi.org/10.1007/978-3-319-24318-4_22
http://book.realworldhaskell.org
http://stackoverflow.com/a/6631097/3694032
http://stackoverflow.com/a/6631097/3694032
http://research.microsoft.com/en-us/um/people/simonpj/papers/demand-anal/demand.ps
http://research.microsoft.com/en-us/um/people/simonpj/papers/demand-anal/demand.ps

Bibliography 45

Ramsey, Norman (2010). How do I write a constant-space length function
in Haskell? http://stackoverflow.com/a/2777886/3694032 (cit.
on p. 4).

Ricci, Nathan P., Samuel Z. Guyer, and J. Eliot B. Moss (2013). “Ele-
phant Tracks: Portable Production of Complete and Precise GC
Traces.” In: ISMM ’13. Seattle, Washington, USA (cit. on pp. 6,
26).

Schrijvers, Tom and Alan Mycroft (2010). “Strictness Meets Data Flow.”
In: SAS’10 (cit. on p. 37).

Seniuk, Andrew (2015). Seqaid. http://hackage.haskell.org/package/
seqaid (cit. on p. 38).

Seq (2016). https://wiki.haskell.org/Seq (cit. on p. 20).
Sergey, Ilya, Dimitrios Vytiniotis, and Simon Peyton Jones (2014). “Mod-

ular, Higher-order Cardinality Analysis in Theory and Practice.”
In: POPL ’14. San Diego, California, USA (cit. on pp. 3, 17, 37).

Shan, Chung-chieh and Norman Ramsey (2017). “Exact Bayesian In-
ference by Symbolic Disintegration.” In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages.
POPL 2017. Paris, France: ACM, pp. 130–144. isbn: 978-1-4503-
4660-3. doi: 10.1145/3009837.3009852. url: http://doi.acm.
org/10.1145/3009837.3009852 (cit. on p. 3).

Strict Application (2016). https://wiki.haskell.org/Performance/
Strictness (cit. on p. 20).

Strict Fields (2016). https://wiki.haskell.org/Performance/Data_
types (cit. on pp. 20, 26).

Strict Haskell (2016). https://ghc.haskell.org/trac/ghc/wiki/
StrictPragma (cit. on pp. 21, 23, 39).

Syswerda, Gilbert (1989). “Uniform Crossover in Genetic Algorithms.”
In: Proceedings of the 3rd International Conference on Genetic Algo-
rithms (cit. on p. 16).

Trilla, José Manuel Calderón and Colin Runciman (2015). “Improving
Implicit Parallelism.” In: Haskell ’15. Vancouver, BC, Canada (cit.
on p. 38).

Turner, David N., Philip Wadler, and Christian Mossin (1995). “Once
Upon a Type.” In: FPCA ’95. La Jolla, California, USA (cit. on
p. 37).

Verstoep, Hidde and Jurriaan Hage (2015). “Polyvariant Cardinality
Analysis for Non-strict Higher-order Functional Languages: Brief
Announcement.” In: PEPM ’15. Mumbai, India (cit. on p. 37).

Wadler, Philip (1987). “Strictness analysis on non-flat domains.” In:
Abstract interpretation of declarative languages (cit. on p. 37).

Wang, Yisu Remy, Diogenes Nunez, and Kathleen Fisher (2016). “Au-
tobahn: Using Genetic Algorithms to Infer Strictness Annotations.”
In: Proceedings of the 9th International Symposium on Haskell. Haskell
2016. Nara, Japan: ACM, pp. 114–126. isbn: 978-1-4503-4434-0.

[May 14, 2017 at 18:42]

http://stackoverflow.com/a/2777886/3694032
http://hackage.haskell.org/package/seqaid
http://hackage.haskell.org/package/seqaid
https://wiki.haskell.org/Seq
http://dx.doi.org/10.1145/3009837.3009852
http://doi.acm.org/10.1145/3009837.3009852
http://doi.acm.org/10.1145/3009837.3009852
https://wiki.haskell.org/Performance/Strictness
https://wiki.haskell.org/Performance/Strictness
https://wiki.haskell.org/Performance/Data_types
https://wiki.haskell.org/Performance/Data_types
https://ghc.haskell.org/trac/ghc/wiki/StrictPragma
https://ghc.haskell.org/trac/ghc/wiki/StrictPragma

46 Bibliography

doi: 10.1145/2976002.2976009. url: http://doi.acm.org/
10.1145/2976002.2976009 (cit. on p. v).

[May 14, 2017 at 18:42]

http://dx.doi.org/10.1145/2976002.2976009
http://doi.acm.org/10.1145/2976002.2976009
http://doi.acm.org/10.1145/2976002.2976009

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

[May 14, 2017 at 18:42]

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 My Program Is Too Lazy!
	1.2 My Thesis
	1.3 What Is Laziness and Why Is It Good?
	1.4 Why Can Laziness Be Bad Sometime?
	1.5 Autobahn Comes To Rescue

	2 Genetic Algorithms
	2.1 Why a Genetic Algorithm?
	2.2 How Does It Work?

	3 Autobahn
	3.1 Genes and Chromosomes
	3.2 How Many Genes?
	3.3 Fitness Functions
	3.4 Algorithm Parameters - How Do I Use It?
	3.5 The First Generation
	3.6 Producing New Generations
	3.7 Determining a Winner
	3.8 Putting It All Together
	3.9 Soundness
	3.10 Fewer Bangs!
	3.11 Discussion

	4 Evaluation
	4.1 Small Programs: a Sanity Check
	4.2 NoFib Benchmarks
	4.3 Strict Haskell
	4.4 Case Study: gcSimulator
	4.5 Case Study: Aeson Library with Two Different Drivers
	4.6 10-fold Cross-validation
	4.7 Autobahn Performance
	4.8 Soundness

	5 Related work / Future work
	5.1 Static Analysis
	5.2 Including Dynamic Information
	5.3 Multi-objective Optimization for Program Synthesis
	5.4 Other Approaches

	6 Conclusion
	Bibliography
	Colophon

