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ABSTRACT 

 Determining whether the peritoneum is positive for metastases is an important factor 

when a clinician stages the progression of various abdominal cancers. Currently, the examination 

of the peritoneum takes place via laparoscopy, however the sensitivity with which cancer lesions 

are detected with this method needs improvement. This work is concerned with the application 

of differentially polarized light (DPL) imaging in laparoscopy to improve the contrast of surface 

features resembling cancer lesions. The performance of this imaging modality was assessed 

through examination of tissue phantoms and ex vivo samples modeling the optical properties of 

the metastatic peritoneum. It was found that compared to current conventional imaging, DPL 

imaging substantially increases the contrast of tumor tissue on a peritoneal surface in a human 

biopsy sample. With this, an optical system was also designed to enable DPL imaging in a 

clinical laparoscope. 
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CHAPTER 1: THE CLINICAL NEED AND DIFFERENTIALLY POLARIZED LIGHT 

Introduction  

It is the purpose of this chapter to outline the clinical need, describe the optical behavior 

of differentially polarized light (DPL) imaging, and address how this behavior is exploited and 

serves as a means of addressing the clinical need. 

Clinical Need: Peritoneal Metastasis Screening 

 For patients who suffer from the numerous varieties of abdominal cancer (ovarian, bowel, 

pancreatic, etc.), the prescribed treatment protocol can depend heavily on the degree of the 

cancer’s progression. Thus, it is important the clinician is aware of the severity of the case and 

can accurately stage its advancement in the patient. If the accuracy of this staging is in question, 

so too is the efficacy of the prescribed treatment.  

To illustrate this clinical scenario, consider a hypothetical patient suffering from 

gastrointestinal cancer. In general, the standard treatment options available for this patient 

consist of surgery, chemotherapy, radiation therapy, or a combination of these. As mentioned, 

the application of these treatments will vary depending on the stage of the cancer. Stage 0 

gastrointestinal cancer patients exhibit some abnormal (precancerous) cell phenotypes within the 

mucosa (innermost tissue lining of the intestine). This stage is effectively treated through 

surgery, excising the suspicious tissue in a gastrectomy. Stage I is characterized by the distinct 

development of cancerous tissue within the mucosa/submucosa or the muscle layer of the 

stomach. Treatment also includes gastrectomy, but the surgery may also be followed by 

chemoradiation therapy. Stage II cancer has spread farther towards the stomach (present in the 
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serosa and sub serosal membranes surrounding the stomach) and/or has reached up to 6 lymph 

nodes near the primary tumor. Now more aggressive gastrostomies are applied, consistently 

followed by postoperative chemo- and radio-therapy. By stage III, the cancer has potentially 

spread to other nearby organs, and/or compromised 7 or more lymph nodes. Effective treatment 

often requires radical surgical resection in conjunction with aggressive post- and peri-operative 

chemoradiation therapy. Finally, in the case of a stage IV patient, the presence of cancer is 

detected in areas in the body more distant from the primary tumor than those detailed in previous 

stages, and is associated with metastasis. In cases such as these, only palliative treatments are 

pursued as it is effectively impossible to cure the disease at this point. Thus, surgery is rare 

unless it is required to remove an obstruction, and other therapies are only applied where they 

would provide relief from symptoms and improve patient quality of life (NIH, 2017). 

Here, the concern is specifically with the diagnosis of stage IV cancer patients exhibiting 

signs of metastasis. The patient group this applies to is significant: according to data reported by 

the Surveillance, Epidemiology, and End Results Program of the National Institute of Health 

(Cancer Statistics, 2017), of all newly diagnosed cancer patients in the United States from 2005-

2014, abdominal cancers composed over 20% of the cases. Of these incidences of abdominal 

cancer, 27.3% exhibited metastasis. Thus, approximately 5.5% of all new cancer patients are 

positive for metastatic abdominal cancers and are candidates for laparoscopic examination. The 

data from which these statistics are derived may be examined in appendix A. Given the annual 

increase of 1.7 million new cases of cancer predicted for 2017 (Siegal et al., 2017), this means 

that nearly 100,000 new cases of metastatic abdominal cancers will arise this year.  
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As detailed earlier, the metastatic-stage cases of interest here are defined by the presence 

of cancer tissue growth in sites distant from that of the primary tumor. One common procedure 

by which the clinician may detect such satellite growths involves the visual screening of the 

interior of the peritoneum for the presence of cancer lesions. The peritoneum is a thin tissue 

membrane that surrounds the abdominal organs; in the event where an abdominal tumor becomes 

metastatic, small white lesions commonly form on its surface, detailed in the figure below: 

 
Figure 1: Example image of peritoneum possessing several metastatic carcinomas. (Abid et al., 2013). 

Currently, the procedure by which this screening takes place involves the insertion of an 

optical device called a laparoscope into the abdomen through an incision. Once inserted, the 

clinician may conduct their search of the peritoneum for metastases as the laparoscope relays the 

image of the interior. Accordingly, obtaining a detailed image of the peritoneum surface is of 

great interest to clinicians to more reliably identify the lesions. 
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Unfortunately, utilizing current laparoscopic imaging techniques, the sensitivity with 

which the clinician can identify the presence of these lesions is unsatisfactory, with false 

negative rates as high as 36% (Schnelldorfer et al., 2014) in complete laparotomies. The 

consequence of these false negatives is that they result in the application of a treatment plan for 

non-metastatic cancers to a pathology that is metastatic. However, if the diagnosis for metastasis 

is a false negative, more aggressive treatment likely associated with stage II and III cancers will 

be applied under the assumption that there is a chance of inducing remission in these stages. This 

results in a reduction in the patient’s quality of life as they undergo costly and strenuous 

treatment measures which will not likely result in remission due to the undiagnosed metastatic 

nature of their cancer. It is this scenario that drives clinical need: it is desired to prevent the 

baseless reduction in patient quality of life caused by false negatives. To achieve this, it is 

proposed to improve the ability of laparoscopy to visualize metastatic lesions of the peritoneum. 

With this, the sensitivity of laparoscopic imaging to metastatic cancer would improve, reducing 

the rate of false negatives for cancer metastasis.  

Differentially Polarized Light in Biomedical Imaging 

Given that much of this work is concerned with optical techniques, it is useful to frame 

the pathology described here in an optical context before proceeding. In the case of standard 

imaging like that in fig. 1, the primary source of optical contrast between the lesions and the 

peritoneum is their difference in absorption. The absorbance spectrum of the peritoneum is 

dominated by the hemoglobin contained in the blood vessels of the tissue, imparting a reddish 

appearance to the reflectance. Conversely, the cancer tissue composing the lesions is not so 

heavily infiltrated by blood vessels and thus does not contain any significant absorbing agents, 
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resulting in their white appearance. It is the distinction between the reddish reflectance of the 

peritoneum and the broadband reflectance of the lesions that is used to visually identify 

metastases in conventional imaging. However, this is not the only optical property that may be 

exploited to distinguish between these two tissues: the cancer tissue composing the metastases is 

also significantly more scattering in the visible wavelengths than the peritoneum, with 

intraperitoneal tumor tissues typically exhibiting a reduced scattering coefficient of ~10cm-1 

(Wang et al., 2005), while the coefficient associated with the peritoneum itself is roughly half of 

this value (Bashkatov et al., 2016). While the light scattering of tissue is not of great 

consequence in the case of conventional imaging, it is key in the realm of differentially polarized 

light.  

Essentially, DPL imaging is a polarized imaging modality that which serves to separate 

the light scattered from the surface of a sample from light scattered from the interior. Thus, it is 

theorized that if DPL imaging were to be implemented in laparoscopy, the visibility of surface 

features of the peritoneum including the lesions would be improved, increasing the sensitivity 

with which clinicians can detect them. This would help achieve the reduction in the number of 

false negatives reported during patient exams and ensure relevant treatments are applied more 

often. 

 The potential of DPL imaging as a method of selectively resolving the surface features of 

tissue was recognized as early as 1997, when Demos and Alfano examined various forms of 

polarized imaging of biological tissues (Demos et al., 1997). They found that when imaging in 

the DPL modality, the surface detail of the sample (in this case, a human palm) was notably 
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improved. Following this, others began to exploit this phenomenon when conducting optical 

interrogation of tissue surfaces.  

Gurjar et al. and Hunter et al. both conducted studies concerned with the light-scattering 

spectroscopy (LSS) signal from tissue epithelia (Gurjar et al., 2001; Hunter et al., 2006). This 

optical signal consists of the spectrum of light scattered from a tissue sample. Based on the 

distribution of this spectrum, information concerning the cellular morphology of the tissue may 

be determined, including data on the nuclear size, population density, and refractive index 

distributions of the cells under study. These parameters are functions of the pathological state of 

the epithelial cells, allowing the distinction between cancerous, pre-cancerous, or healthy cells 

by the sampling of this scattering spectrum. However, the signal from the surface epithelium is 

small compared with the diffuse signal from deeper within the tissue bulk, making the analysis of 

epithelium’s LSS difficult. To address this, the authors applied the properties of DPL in their 

imaging systems to help isolate the signal received from the surface epithelium from that of the 

bulk tissue. This allowed for the precise examination of the LSS signal from the epithelium 

without interference from the tissue bulk signal. 

Yaroslavsky et al. combined the polarized imaging of DPL with fluorescence to create a 

fluorescent imaging system which could limit the detected signal to the surface of the tissue 

sample (Yaroslavsky et al., 2004). They applied this system towards the improved visualization 

of surface-layer pathologies exhibited in nonmelanoma skin cancers. It was demonstrated that 

following the application of fluorophores preferentially retained by cancerous tissue, the basal 

cell carcinomas present on the epithelial surface could be delineated in polarized fluorescence 

imaging with detail superior to regular fluorescence as well as histopathology. Once again, this 
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approach takes advantage of DPL’s ability to limit the signal to the surface layer of the sample, 

removing any background originating from deeper within the bulk. When examining surface 

pathologies like basal cell carcinomas, this serves to isolate the diseased tissue from the bulk in 

imaging, permitting a more detailed study of its features. 

In addition to these implementations of DPL in microscopy, there are also several groups 

concerned with its use in endoscopy. Their endeavors draw a close parallel with our own in 

laparoscopy, thus it is necessary to explore the possibility of applying their designs to our clinical 

need while considering their work.  

Consider first the DPL probe designed by Steve Jacques (Jacques, 2002) in figure 2 

below:  
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Figure 2: DPL endoscope probe design by Steve Jacques (Jacques, 2002). 

Here, the polarized illumination (66) emerges from a polarization-maintaining fiber (70) 

and is deflected off a mirror (89) into an interface formed between the tissue surface (92) and the 

glass probe tip (72). The formation of this interface combined with the deflected angle of the 

illumination allows the reflection of specular reflectance (glare) (86) at an angle (93) that will 

not result in its collection by the detection fiber (102). The tissue reflectance (94, 93) is sampled 

by the detection fiber and analyzed by polarization optics upstream to generate parallel and 

perpendicular images for computing the DPL image. 

For our purposes, the main issue with this proposed configuration is that it is designed to 

operate with the probe in physical contact with the interrogated tissue to create a flat glass-tissue 

interface (interface between 72 and 92) which reflects specular reflectance at an angle not 

sampled by the detection (101). This forces the working distance of the probe to a short, fixed 
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separation from the tissue surface. These characteristics make the device better suited for the 

close inspection of a small predetermined feature, but here to meet the clinical need it is desired 

that wide-field scanning be possible to rapidly screen a large surface (the peritoneum) at variable 

distances for the presence of lesions. This requires the probe to be out of contact with the tissue, 

and demands an optic which allows variable focus for accommodating different working 

distances. It should be noted that while Jacque’s probe is lacking these requirements, taking the 

probe out of contact with the tissue to meet them sacrifices the ability to direct specular 

reflection away from the detection. However, this challenge may be addressed in other ways 

(glare detection, changing viewing angle) in the development of a contact-free probe.  

Following Jacques, Myakov et al. created their own design for a polarized endoscopic 

probe (Myakov et al., 2002): 

 
Figure 3: DPL endoscope probe design by the Myakov group (Myakov et al., 2002). 
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On the left side of figure 3 the front face of the distal end of the probe is presented. In this 

design, three optical fibers each carry the illumination, parallel, and perpendicular signals 

(middle, bottom, and top respectively) separately. Like Jacques’ device, this probe is designed to 

operate in contact with the tissue surface, which once again conflicts with the need for wide-field 

examination. In addition to this, there is a greater conflict in the fact that this system does not 

provide a spatially resolved image of the sample, rather it collects only the net intensity of the 

reflectance incident on the end of the collection fibers. This would further cripple the screening 

capabilities of this device, requiring the scanning of the peritoneum surface with a probe area 

even smaller than that of Jacques’, after which a mapping of the detected signal would have to be 

assembled to resolve the presence of any lesions. Thus, this would be an inappropriate 

implementation to address the clinical need. 

More recently, Qi and Elson developed the design for a Mueller polarimetric endoscope 

(Qi et al., 2016) detailed in the figure 4 below: 

 
Figure 4: (a) A rigid endoscope consists of an imaging channel and an illumination channel. (b) The Mueller 
polarimetric endoscope consists of a stainless-steel sheath, a motorized rotation stage, a rigid endoscope, a 
polarization state analyzer (PSA) and a CCD image sensor. The part that rotates during acquisition is represented in 
red, and the stationary part is in purple. (c) A photo of the Mueller polarimetric endoscope (Qi et al,, 2016). 

 This system measures with detail the transformation of the polarization state of the 

incident illumination as it is reflected off the imaged tissue. This transformation is quantified in 

the form of a Mueller matrix, hence the device name, and from it information regarding the 
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linear depolarization, circular depolarization, directional birefringence, optical rotation, and 

diattenuation may be derived if so desired (Ghosh et al., 2008).  

Here, the derived property of linear depolarization contains the same information as DPL, 

effectively making this Mueller system DPL-capable. Further, unlike Jacques’ and Myakov’s 

designs, this one is capable of imaging in a wide field of view without the need to be in contact 

with the tissue surface. There is one major shortcoming however, in the form of the very long 

collection time the device requires for each image it takes due to the methods associated with the 

acquisition of a Mueller matrix:   

To measure the complete Mueller matrix of some optically active sample (tissue in this 

case), it must be first separately illuminated with four forms of polarized light. These forms 

include linearly polarized light in the horizontal (0 degrees), vertical (90 degrees), and diagonal 

(45 degrees) directions, as well as circularly polarized light. Under each of these illuminations, 

the polarization state of the detected reflectance from the sample is examined. Combining the 

information from the reflectance polarization at each illumination, a Mueller matrix describing 

the properties of the sample may be computed. The optical systems responsible for illumination 

and detection in this case are referred to as the polarization state generator (PSG) and 

polarization state analyzer (PSA) respectively.  

In Qi and Elson’s design, the PSG consists of a ¼ wave retarding film coupled to the 

rotating sheath (fig. 4b, red) combined with a fixed linear polarizer (inset fig. 4b, blue). To 

provide the four forms of polarized illumination required to compute the Mueller matrix, the 

retarding film must be oriented with respect to the linear polarizer at four separate angles 

(specifically, -45, 0, 30, and 60 degrees where the polarizer is oriented at 90 degrees). Thus, for 
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each Mueller image, the retarding film must rotate through four angular positions for the system 

to expose at four illuminations separately. This severely limits the frame rate of the image stream 

due to the need for multiple exposures and the operational limitations imposed on the rotation 

rate of the retarding film; currently the minimum time it takes to acquire a single image is 15 

seconds.  This limits the video frame rate of the device to far less than one frame per second, and 

requires that the probe be held still for the duration of each 15 second exposure. These 

limitations would make the screening of the peritoneum with this system quite onerous, as the 

clinician would have to be aware of the timing of each exposure period and hold the probe steady 

for its duration during the examination. In addition, if this device were to operate at its maximum 

frame rate, there would be negligible downtime between exposures and the probe could not be 

moved without affecting an exposure. Thus, the frame rate must be lower than this maximum if it 

is intended to move the probe at all between exposure periods while streaming images. The 

severely limited framerate and awkward operating requirements make this system impractical to 

use in the context of the clinical need. 

Unfortunately, in each case these prior arts prove lacking in some aspect in the specific 

context of screening for peritoneal metastases. Thus, in addition to our investigation of DPL as a 

method of improving lesion visibility, we will also propose our own novel system design for its 

clinical implementation in Chapter 4.  

Optical Description of DPL 

Here the fundamental optical phenomenon behind DPL imaging exploited by these 

biomedical imaging applications is detailed. Jacques et al. provide an elegant stochastic 
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description to this end: consider a tissue sample is illuminated with light linearly polarized in one 

direction, where the angular deviation of the reflectance polarization from the illumination 

polarization may be described by the following Gaussian distribution: 

𝑝(𝜃) =
1

𝜎√𝜋 2⁄
𝑒

−(
𝜃2

2𝜎2)
 

The variance σ for this distribution is equal to 𝜒τ, the diffusivity multiplied by the optical path 

length (Jacques et al., 2000). Here, diffusivity (𝜒) is related to the average amount the light’s 

angle of polarization changes with each scattering event, and the optical path length (τ) describes 

the total number of scattering events encountered by the light as it travels through the sample. 

Together, these parameters influence the variance of the polarization angle of the sample 

reflectance. As 𝜒 or τ increase, the polarization angle distribution of the signal spreads due to the 

larger number of scattering events, and the depolarization of the signal increases.  

It can be expected that for some diffusivity, if the optical path is long enough, eventually 

the polarization of the light will become completely randomized due to the large variance σ in 

polarization angle resulting from large τ. For biological tissues, it was found that this complete 

randomization of the incident polarization resulted from optical paths associated with tissue 

depths greater than ~200-300 microns (Jacques et al., 2000). Thus, light which penetrates to the 

bulk volume of the sample beyond this distance in the sample before exiting as reflectance 

becomes depolarized. Conversely, light that follow a shorter τ (less than ~200-300 microns), 

undergoes fewer scattering events before exiting as reflectance and retains some degree of 

polarization parallel to that when it was first incident on the sample. The general relationship 

between optical path length and reflectance polarization is illustrated in the figure below: 
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Figure 5: General behavior of the polarization of the reflectance from polarized illumination in bulk and surface 
regimes. 

Figure 5a shows the scenario exhibited in DPL imaging where the sample is illuminated 

with linearly polarized light (yellow), and the reflectance of this illumination is received from 

both the surface (blue) and the bulk (red) of the sample. 5b presents the polarization states of the 

illumination, reflectance from the bulk, and reflectance from the surface. Reflectance originating 

from deeper within the sample follows a longer optical path and becomes randomly polarized. 

This state of random polarization is symbolized in 5b as the two perpendicular black arrows of 

equal length, indicating that the light is polarized equally in the directions parallel and 

perpendicular to the polarization of the incident illumination. In contrast, the surface reflectance 

retains the direction of the incident polarization, and is still completely polarized parallel to the 

illumination, as signified by the identical black arrows in both the illumination and surface 

reflectance signals. 

The distinction between the polarization states of the surface and bulk signals is exploited 

in differentially polarized light imaging to remove the bulk signal, leaving only the surface 
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signal. To achieve this, the signal received from reflectance is examined through a linear 

polarizer (henceforth referred to as the analyzer) in two configurations. In the first of these 

configurations, the analyzer is oriented parallel to the illumination polarization, passing the 

surface signal, and half of the depolarized bulk signal, as detailed in figure 6a. Next, the analyzer 

is oriented perpendicular to the illumination polarization (6b), blocking the surface signal, while 

again passing half of the bulk signal.  

 
Figure 6: Analyzing the polarization of the reflectance signal to separate the bulk and surface reflectance. 

Thus, the total intensity of the parallel-polarized reflectance, Ipara, is the sum of the 

surface signal and half of the bulk signal, whereas the perpendicular polarized signal is 

composed only of half the bulk signal. With this, it is possible to separately image the sample in 

both parallel and perpendicular analyzer configurations. The perpendicular image may then be 

arithmetically subtracted from the parallel image to produce a difference image limited to signal 

received from the surface reflectance: 

Ipara = Isurface+ Ibulk, para 

Ipara = Isurface+ Iperp 

Ipara - Iperp = Isurface 
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Additionally, to generate an image representative of conventional depolarized imaging 

for comparison, the average of the parallel and perpendicular images may be taken to recover the 

entire signal independent of polarization.  
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CHAPTER 2: TESTING THE CONCEPT 

Introduction 

 Given the theoretical relevance of DPL imaging to surface feature examination, data was 

sought to help verify this theory. In this chapter, the potential for this imaging technique to 

improve feature visibility is examined via a benchtop DPL system with various optical 

phantoms. 

Benchtop DPL Laparoscope Setup 

 The following experimental setup was utilized to acquire proof of concept DPL images: 

 
Figure 7: Experimental optical setup designed to implement DPL imaging. 

Starting from the right, a specially designed polarizing cap (Eickhoff, 2014) is placed 

over the tip of a laparoscope. The inset details the front face of this cap, which is composed of a 
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crescent shaped polarizing film covering the illumination output of the laparoscope, while 

leaving the aperture below clear. This cap’s addition serves to supply the linearly polarized 

illumination required for DPL imaging.  

The laparoscope optic itself consists of a ~30cm long metal tube containing a fiber optic 

and a gradient index (GRIN) lens. The fiber optic delivers light from the illumination source to 

the sample at the distal (right) end, while the GRIN lens receives the reflectance image returned 

from the sample and relays it to the proximal (left) end. At this point, the signal passes a linear 

analyzer before being focused by a zoom lens onto a camera CCD.  

To ensure the analyzer and illumination polarizations are oriented appropriately, a mirror 

image of the illumination is resolved by the system, and the analyzer is rotated while monitoring 

the live intensity average supplied by the imaging software. Once this intensity is minimized, the 

analyzer orientation is noted as perpendicular to the illumination. The parallel orientation is then 

denoted as the perpendicular orientation plus 90 degrees. The resulting images of the 

illumination at parallel (8a) and perpendicular (8b) analyzer orientations are depicted in the 

following figure: 

 
Figure 8: Mirror image of the laparoscope illumination at maximum intensity (a) and minimum intensity (b) 
corresponding to parallel and perpendicular analyzer orientations respectively. The ratio of the perpendicular intensity 
to the parallel intensity is displayed in c. 
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In 8c, the ratio of the perpendicular to the parallel image is calculated. Ideally, this ratio 

should be close to zero in the regions of illumination seen in 8a. For the most part, this is the 

case, and the ratio is <5%. However, there is some amount of depolarized light leakage seen in 

the bottom edges of the illumination in 8b, which is confirmed by ratios in this region 

approaching 1 in 16c. To quantify the amount of depolarized leakage relative to the polarized 

illumination, the ratio of the average intensities of 8b and 8a was calculated, yielding a value of 

9%. This indicates that 9% of the applied illumination is depolarized. The presence of 

depolarized light in the illumination does not necessarily compromise the DPL signal. The 

magnitude of the DPL signal is proportional to the magnitude of the polarized light signal, and is 

independent of any depolarized component, which will be removed in the image subtraction. The 

problem would arise where the illumination is composed overwhelmingly of depolarized light 

such that there is very low polarized illumination intensity. Here the detector would receive a 

correspondingly low DPL signal that may make visualizing the sample difficult. Fortunately, in 

this case, >90% of the illumination intensity is polarized, ensuring a significant amount of 

polarized illumination is delivered for a given lamp power. 

To acquire a DPL image, the analyzer is first oriented parallel to the illumination 

polarization and an image is collected by the camera. Then, the analyzer is oriented 

perpendicular to the illumination and a second image is collected. The signal of this second 

image is subtracted from that of the first via MATLAB (Appendix B-1) to produce the DPL 

image. For comparison, the conventional non-polarized image is reconstructed by taking the 

average of the parallel and perpendicular images.  
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Imaging Results: Optical Phantoms 

To verify the basic level of functionality in this system, a phantom was devised which 

possessed a feature and background that in theory should be very distinguishable in DPL 

imaging. The feature of the phantom was created from a drop of 5um diameter polystyrene 

microbead solution (concentration 0.3% solids) dried into a plaque on a glass coverslip. The 

background upon which this coverslip was placed was a Spectralon white standard. Due to the 

highly diffuse scattering of this background, it was expected that the reflectance from the 

Spectralon would be randomly polarized, while the backscatter from the beads would retain more 

of the incident polarization. The results may be seen below: 

 
Figure 9: DPL imaging of a bead plaque-Spectralon phantom. Images for each polarization component (a parallel, b 
perpendicular) as well as their average and normalized difference (c and d respectively). In e, intensity as a function 
of position along the illustrated bisecting line is plotted, along with the raw DPL for comparison. Dashed lines indicate 
the boundary of the feature. 1mm scale. 

To better understand the nature of the signals in images a-d, their intensities as a function 

of position along a slice (colored lines) was plotted in e. Directing attention first to the plots of 

the parallel (blue) and perpendicular (red) image components in e, it is evident that the bead 

plaque (flanked by dashed lines) retains some of the incident polarization in its reflectance, 
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resulting in a greater parallel intensity compared to perpendicular. This difference between the 

two signals is expressed in the DPL signal (yellow). Conversely, the Spectralon background 

(outside the dashed lines) presents virtually no difference in the parallel and perpendicular 

signals, thus has nearly zero DPL signal, due to its depolarized reflectance. In this way, the DPL 

image has its background brought to nearly zero while retaining signal from the feature. When 

the feature intensity in the DPL image is normalized to that of the feature intensity exhibited in 

the conventional image (c, purple plot of e), the visibility of the feature is significantly increased 

due to the reduction in background intensity. 

Given the promising results encountered in the bead phantom, it was decided to continue 

towards more tissue-like samples. The next phantom fabricated consisted of a porcine muscle 

tissue (derived from the psoas major muscle) background with implanted silk scaffold to serve as 

the scattering feature. Fabrication involved the boring of four 3mm deep holes in the tissue with 

a 1mm diameter biopsy punch (white arrows in figure 10a-d). Of these holes, two had cylindrical 

silk scaffold fragments 1mm in diameter and 2mm in height inserted (solid white arrows). These 

silk scaffolds were fabricated via salt leaching protocol with 6% w/v silk solution as described 

by Nazarov et al. (Nazarov et al., 2004). The two remaining holes were left empty to act as 

controls (dotted white arrows). 
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Figure 10: Conventional and DPL imaging of silk scaffold implants (solid white arrows) and empty control holes 
(dotted white arrows) in porcine muscle. (a) presents the conventional image, while b is DPL. Intensity plots around 
both the silk feature (c) and empty hole (d) were created for the conventional and DPL modes. The bounds of each 
feature are indicated by dashed lines. 1mm scale. 

 Once again, the visibility of the scattering feature (silk, solid white arrows) is improved 

in the DPL (10b) versus the conventional image (10a), while the visibility of the empty control 

holes (dashed white arrows) does not change appreciably. These observations are confirmed by 

the corresponding plots in c and d which indicate that the silk feature (flanked by dashed lines) 

exhibits increased signal to background in DPL (green) compared to conventional (purple), while 

this increase is not evident for the empty hole feature (also flanked in dashed lines) between DPL 

(red) and conventional (blue). The reduced width of the empty hole relative to the silk feature is 

due to its partial collapse since it has no feature to hold it open. These results suggest both that 

the presence of holes in the sample do not generate “false” DPL signal, and that DPL can 

increase the visibility of a scattering feature against a tissue background.  

 To model a feature more physiologically similar to a cellular tissue, the next phantom 

was designed with a cell-based feature instead of silk. In this case, a porcine muscle sample was 

once again bored with a small hole (flanked by dotted lines in figure 11a, b, d, and e) of the same 

size as those in the silk phantom. The sample was then imaged in conventional (11a) and DPL 

(d) modalities. Following this, a drop of highly concentrated (pelleted) lymphoma cancer cell 
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suspension was pipetted into the hole. The resulting phantom was imaged in conventional (11b) 

and DPL (e) modalities. 

 
Figure 11: Conventional (a, b) and DPL (d, e) of porcine muscle with and without a lymphoma cell feature (circled in 
white) added. Intensity plots intersecting the location of the feature are presented in conventional (c) and DPL (f). The 
plot’s intersection with the feature boundary positions are marked by the dashed lines. 1mm scale. 

 Studying the conventional imaging in figure 11a and b, the addition of the lymphoma 

cells (circled in white) is virtually undetectable. However, in the case of the DPL imaging in d 

and e, the lymphoma cells are visible as a cloudy feature surrounding the hole in the muscle. The 

large feature size (~2mm diameter cloud) compared to the hole (~1mm diameter) is due to the 

poor confinement of the lymphoma sample to the hole; essentially the sample formed a droplet 

that occupied the hole but also overflowed slightly onto the surrounding surface. Plots of the 

intensity over the feature location are provided for conventional (c) and DPL (f), with the points 

of intersection of the plot with the feature edge marked with dashed lines. From these data, it is 

demonstrated how the application of DPL imaging can provide distinction between the 

lymphocytes (f, red plot) and their background (blue) while they are nigh-invisible in the plot for 

the conventional modality (c).  
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 At this point, a strong case for the proof of concept for the application of DPL is 

materializing. Namely, its ability to improve the visibility of a scattering feature placed on a 

background by measuring the polarized reflectance. This ability has been demonstrated in a 

variety of phantoms of differing degrees of comparison to the clinical pathology. The next 

logical step is to move towards a proof of principle which shows that DPL can maintain this 

observed degree of performance in a more clinically relevant model.  
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CHAPTER 3: QUANTITATIVE VISUALIZATION OF CANCER LESIONS IN DPL 

IMAGING 

Introduction 

 As mentioned in the prior chapter, it is desired to examine a clinically relevant sample 

with a DPL system to establish a proof of principle. This chapter outlines how this was 

attempted, and the results encountered. 

DPL Apparatus 

 
Figure 12: Schematic for the benchtop manual DPL imaging setup. 

Figure 12 above depicts the simplified benchtop optical setup utilized for proof-of-

principle imaging. Once again, a polarizer is positioned in front of the illumination to linearly 

polarize it, and an analyzer placed in front of the camera which may be oriented perpendicular or 

parallel to the illumination polarizer. This allows for the separate collection of the parallel and 

perpendicular components of the reflectance.  
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Image Processing 

 The camera employed in the current device design is a RGB camera, as opposed to the 

monochrome camera applied in Chapter 2. The CCD arrays used by these types of cameras are 

covered by a great number of red, green, and blue color filters in an arrangement referred to as 

Bayer tiling (Bayer, 1976): 

 
Figure 13: The Bayer-tiled arrangement of RGB filters over the CCD array of a color camera. 

The basic tile element is shown on the left in figure 13, it is a mosaic of these tiles that 

forms the sensor array of the camera, analogous to the array on the right. The signal read from 

this array forms the raw Bayer-tiled image, which is then read by a color processing algorithm to 

produce the final image. Depending on the algorithm applied, the resulting image may be in 

RGB color or in monochrome. In the former case, for every pixel in the array, a red, green, and 

blue intensity value is extrapolated from neighboring color pixels and the pixel itself, creating an 

image with the same spatial resolution as the raw Bayer tile array, but where each pixel has a red, 

green, and blue value associated with it instead of just its filter’s color. In the monochrome case, 
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a single intensity value is calculated for each pixel as the weighted average of the three-color 

intensities in the local area. 

 In either case, the intensity values for each pixel are recorded as 12bit unsigned integers 

by the camera. Following the collection of the parallel and perpendicular polarized images, each 

of the intensity values in the perpendicular image is subtracted from its corresponding value in 

the parallel image via MATLAB. This is straightforward for monochrome images, where 

corresponding subtracted pixels share the same position, and only slightly more complicated for 

RGB images. For RGB images, the raw Bayer-tiled image is recorded without any of the 

camera’s color-processing algorithms applied to avoid any potential artifacts they may introduce 

when applied prior to subtraction (this mostly concerns automatically applied color correction 

like white balance). The images are then subtracted from one another in the same manner as in 

the monochrome case, after which MATLAB’s demosaic() function is used to generate an RGB 

color image from the Bayer-tiled difference image via a simple linear color processing algorithm 

without correction. This functionality is also detailed in the MATLAB code of appendix B-1. 

 While not necessarily a vital feature of DPL imaging, the ability of the system to image 

in RGB is not simply a novelty, it does provide additional practical information beyond what is 

gleaned in monochrome. At the very least, it allows the system to meet the original capabilities 

of a conventional non-polarizing laparoscopes, which image in RGB color. However, in addition 

to this, it has been found that the low resolution spectral information provided by the three color 

channels can prove useful when trying to resolve lesions more clearly. 
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Imaging Results 

In an ovarian cancer patient, a biopsy was taken of the peritoneum and of the bulk tumor. 

In this case, there was no indication of metastases on the peritoneum. Thus, a metastasis model 

was assembled by placing a ~1mm2 excised portion of the tumor atop the peritoneum biopsy. 

This model was then imaged in DPL and non-polarized modalities, after which the lesion feature 

intensity in the DPL image was normalized to that in the non-polarized image. Below are the 

collected RGB images (figure 14a and e) along with the separated presentation of each of their 

color channels (b-c for DPL, f-g for non-polarized): 

 
Figure 14: Imaging of a human ovarian tumor biopsy (circled in blue) placed atop a human peritoneum biopsy. 6a was taken in 

conventional non-polarized RGB, while 6e was imaged in DPL mode. The corresponding individual red, green, and blue 

channels are displayed alongside each image. 1mm scale. 

When transitioning from conventional (fig. 14e-h) to DPL (a-d) imaging it is immediately 

apparent that there is some improvement to the visibility of the model lesion in all color 

channels. Looking at the pairs of images associated with each channel, some qualitative 

observations may be made. In each case, there appears to be some level of improvement in tumor 
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visibility when transitioning from the conventional to the DPL modality, as mentioned earlier. 

The improvement is most drastic in the red channel, and subtler in the green and blue channels. 

This observation is attributed to the fact that most the background signal is composed of red light 

due to the hemoglobin in the vasculature of the peritoneum. Thus, when this background signal 

is reduced via DPL imaging, the biggest effect is seen in the red channel. Another interesting 

aspect contained in the color channel information is the improvement in tumor contrast that is 

exhibited in conventional imaging depending on the selected channel. When comparing fig. 14f, 

g, and e, it appears that the visibility of the tumor is improved simply by viewing it through the 

blue or green channels without need for DPL imaging. Once again, this has to do with the 

background signal being mostly red light, while the tumor is white (red, green, and blue. 

Therefore, viewing the sample through the green or blue channels filters out the red signal from 

the background, while the tumor remains in the image thanks to having blue and green 

components to its signal. In this way, the visibility of the tumor is improved.  

This phenomenon is somewhat analogous to the narrow band imaging (NBI) modality 

currently applied in endoscopy. NBI filters the illuminating light, limiting it its spectra to a 

narrow bandwidth (usually around 30nm) centered around blue (415nm) or green (540nm) 

wavelengths. The high absorbance of these wavelengths by hemoglobin allows for the superior 

visualization of blood vessels on the surfaces of tissues by increasing their negative contrast 

against the background tissue from their absorbance of the illumination (Gono et al., 2003). 

There are other useful features of NBI, but this is the one we see also exploited in our system. In 

the same way that NBI illuminates with green and blue bands to reduce the signal from blood 

vessels and increase their contrast, we can do the same by instead examining the collection in 
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only the green and blue bands provided by the color filters on our Bayer-tiled sensor. In our case, 

reducing the signal from blood serves to darken the background, while in NBI it darkens the 

feature. In both cases this increases the contrast of the feature, only in NBI this is negative 

contrast, while in our application it is positive contrast. 

Imaging Analysis 

DPL images appear to qualitatively improve the visualization of the tumor tissue, but it is 

desired that some more quantitative data be acquired in support of these observations. Thus, a 

parameter must be conceived which somehow captures the degree of visibility of the tumor 

against the peritoneum. It was decided that this “visibility” parameter is best described by the 

contrast of the feature (tumor) against its background (peritoneum). Contrast is defined here by 

the formula for Weber contrast: (Signal - Background)/Background (Peli, 1990). To quantify this 

contrast, the following approach was applied: 

 First, two regions of interest (ROIs) are drawn on the sample image, shown encircled in 

orange and blue in the image contained in figure 15 below: 

 
Figure 15: Quantifying the level of contrast between a feature (tumor tissue, orange ROI) and background (healthy peritoneum, 

blue ROI) for the sample exhibited in fig. 11. Values for contrast calculated on this basis are presented in the plot on the left for 

conventional and DPL modes in color and each individual RGB channel. 
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Here, one ROI defines the region the tumor biopsy occupies (orange), while the other 

defines the region of the background peritoneum the biopsy rests on (blue). The average intensity 

within the biopsy ROI serves as the value of the signal, while the average intensity within the 

peritoneum ROI excluding the biopsy ROI is taken as the value of the background. Note that in 

this case the ROIs are drawn to avoid glare spots, which would otherwise inflate the average 

value of each region regardless of the tissue composition; the glare signal is a function only of 

the sample surface angle, and is not dependent on the presence or absence of tumor tissue. The 

Weber contrast is then calculated for these signal and background values, yielding an estimate 

for the contrast of the biopsy against the peritoneum. The results for this value under various 

conditions may be seen in the plot in fig. 15. Note that the error bars in this plot are derived not 

from a sample of several biopsies as may be expected by default. Rather, these error bars 

represent the standard deviation of the contrast as propagated from the standard deviation from 

the mean signal and background values. They represent an estimate of the potential variance in 

the contrast based on the variance of the pixel intensity values within each ROI.  

This plot helps confirm the qualitative trends in contrast observed in fig. 14. Once again, 

it may be seen that DPL provides a substantial improvement in contrast over conventional 

imaging, with the greatest difference in contrast exhibited in the red channel. As expected, it can 

also be seen that the contrast in the conventional color image may be improved by examining the 

green or blue channel separately. 

With these results, it was decided that our case for DPL imaging would be furthered by 

setting up a tumor-negative control for comparison to the tumor model. This was intended to 

ensure that the signal produced by the tumor in the prior images is due to the difference in tissue 
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composition between tumor and peritoneum, not simply the physical presence of a tissue biopsy 

regardless of its type. To examine this scenario, another tumor-peritoneum model was set up as 

outlined previously, and following imaging of it (green channel displayed for best tumor 

visibility in fig 16a and b below), the tumor biopsy was removed and replaced with a biopsy of 

the peritoneum of the same dimensions. This was then imaged as well (fig. 16c and d): 

 
Figure 16: Conventional and DPL imaging (green color channel) of both a tumor (a, b) and a normal peritoneum biopsy (c, d) 

placed on a peritoneum background. For each of these four images, the contrast of the biopsy feature (blue) against the 

background (orange) is measured in color and in each individual color channel. 1mm scale. 

However, before extracting contrast data from these images, there are some problems that 

must be addressed. First, glare is more prevalent, and more sophisticated measures are needed 

for removing its influence from the ROIs than simply drawing the ROIs around it. To address 

this automated detection and masking of the glare was applied in the image prior to contrast 

calculation. In this application, reference to an image “mask” refers to a two-dimensional array 
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of binary values (Booleans in our application, treated arithmetically as 0 and 1) with the same 

spatial resolution of the image it is associated with. Element-wise multiplication of an image 

with its mask results in the “masked” image. This resulting image has the same values of the 

original image at every pixel multiplied by a true value (1) in the mask. However, every pixel 

multiplied by a false value (0) is set to zero. Thus, the creation of a mask allows the selective 

suppression of a population of pixels in an image while leaving others alone. This may be 

applied to remove glare: given a mask associated with the glare pixels of an image is created, the 

image may be multiplied (hereafter referred to as masked) by the inversion of this mask to set 

glare pixels in the image to zero.  

The generation of the glare mask is achieved by applying the Canny edge detection 

algorithm in MATLAB to outline sharp intensity spikes in the image characteristic of glare. An 

example of how distinct the difference between glare and tumor signal is detailed below: 
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Figure 17: Comparison of glare signal versus tumor signal in the image from 8b. The signal intensity along the dotted green line 

is plotted below the image, with the dashed red line demarcating a glare spot, while the dashed blue lines flank the tumor signal. 

1mm scale. 

As the Canny algorithm analyzes the image, it identifies these steep gradients 

characteristic of glare (flanked by dashed red lines in fig. 17) and marks the edge of these 

gradients. The process by which the Canny algorithm achieves this is as follows: first, a 

smoothing filter (usually a Gaussian filter) is applied to smooth edges resulting from noise while 

leaving larger nonrandom features intact. The 2-D intensity gradient is then calculated for the 
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filtered image, generating an image of the intensity gradient. Each pixel in this image has a 

gradient vector associated with it described by a magnitude and an angular direction. For each 

vector, the angle value is rounded to the closest cardinal or semi-cardinal direction on one half of 

the compass (0, 45, 90, or 135 degrees). This is because for any one pixel, a gradient calculated 

between it and its 8 immediate neighbors can only have 8 possible directions. The other half of 

vector angles are not used because they describe the same edge direction (0 and 180 degrees, 

etc.) perpendicular to the vector. So far, the outlined process is integral to many other edge 

detection algorithms. Canny’s innovation involved the further refinement of the detected edges 

thus far.  

To start, the discovered edges are thinned to one pixel in width. This is achieved by 

selecting an edge pixel, then examining its neighbors that lie in a direction parallel to its gradient 

vector. Of this pixel and its neighbors, the gradient maximum among them is found and kept 

while the other pixels are discarded. The process is then repeated for the next pixel along the 

edge (perpendicular to the gradient). Once completed, a user defined upper and lower threshold 

is applied to the thinned edges. This essentially examines each remaining edge pixel, and if the 

magnitude of its gradient is above the upper threshold, the pixel is kept, and labeled a strong 

pixel. If it falls between the upper and lower threshold it is also kept, but is labeled a weak pixel. 

Lastly, if it is below the lower threshold, it is discarded entirely. The resulting population of 

weak pixels are then examined for their connection to a strong pixel. If a strong pixel is not 

connected to the pixel through a series of adjacent weak pixels, it is discarded. The final product 

is a precise detection of strong edges that are not interrupted if their gradient becomes weaker as 

one travels along the edge (Canny, 1986). 
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The resulting outlines of the glare traced by the Canny algorithm and the regions they 

enclose are converted to a mask for the glare present in the image which may then be applied to 

the image to remove the glare. The MATLAB implementation of this is detailed in appendix 

This step was taken for two reasons: first, it automates the process of accounting for glare, 

helping to reduce potential bias introduced by the user trying to manually avoid the glare spots. 

Secondly, it allows for easier and more complete inclusion of the sample area within the ROIs as 

opposed to the limitations imposed by being forced to draw two simply connected curves around 

glare spots, which is more difficult in this image. In addition to masking glare, it was also desired 

to be able to draw the feature and background ROIs in an intersecting fashion, such that the 

feature ROI may be drawn inside the background ROI as seen in fig. 16, rather than the 

background ROI tracing around the feature ROI as in fig. 15. This would provide a better-tuned 

and more representative calculation of contrast, and was enabled by forming a mask for the 

feature ROI, and excluding the pixels within this mask from the population of pixels within the 

background ROI. With these additional image processing techniques in place, the contrast values 

for the images may be calculated from the masked feature (fig. 16, blue) and background 

(orange) ROIs: 
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Figure 18: Plot of the contrast values of a healthy peritoneal biopsy and a tumor biopsy for a given RGB color channel 
and imaging modality. Values derived from the sample exhibited in fig. 8.  

For the tumor biopsy (cold colors), the observed trends in the contrast values are 

consistent with those witnessed for the previous sample in fig. 15, with one notable exception: 

the highest absolute contrast is seen in the green channel instead of the red channel. It is 

suspected that this phenomenon is likely due to the heterogeneity of the tissues examined here, 

producing subtly different results for different samples of the same tissue. In addition to the 

tumor data, we now have a control to compare with. In the case of the healthy biopsy (hot 

colors), in the DPL modality the feature was nearly invisible, demonstrating the ability of DPL 

imaging to distinguish healthy and tumor tissue on an optically intrinsic basis, rather than simply 

by detecting the physical presence of a tissue biopsy regardless of its nature. 

Taking the analysis of these samples one step further, a more general approach to contrast 

quantification is proposed for the case where the location of the feature is unknown, or it is 

desired that the contrast of two areas of the same image be compared. Here, since no feature ROI 

can be defined, the Weber contrast of each individual pixel intensity against the average intensity 

of the image (average of background ROI, including biopsy) is calculated and mapped. There is 
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a caveat when applying this method: it is most effective only when the area of the biopsy does 

not take up the majority of the image background. If it did, the average value of the image would 

not differ much from that of the biopsy, and pixels within the biopsy would be reported as low 

contrast. In these samples the biopsies take up a minority (~12% maximum) of the background 

area which has allowed the acquisition of meaningful results in these mappings: 

 
Figure 19: Mapping of the per-pixel contrast against the average image intensity for the same image set presented in fig. 13. 

1mm scale. 

This allows the observation of contrast against the image average as a function of 

position within the image, shown in fig. 19. It may be seen that the contrast of pixels associated 

with the tumor is maximized in DPL (purple ROI in 19b), while there is a lack of this increased 

contrast in the case of the healthy biopsy (purple ROI in d). Conversely, the contrast provided for 

the tumor in conventional imaging (purple ROI in a) is not much greater than that from a healthy 

biopsy (purple ROI in c) compared to DPL. While these data are supportive of DPL in tumor 
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visualization, they reveal a potential concern that must be addressed. Looking at fig. 19b, it may 

be seen that a large glare spot was masked above the tumor biopsy. Despite the masking, there 

remains a thin halo of contrast similar in magnitude to the contrast of the tumor. These halos 

cannot be effectively excluded by the Canny edge detection without removing the tumor signal, 

and are likewise too low in intensity to effectively threshold without drastically affecting the 

tumor image. While presence of glare in the tumor ROI is sparse enough that it may be 

concluded that majority of the contrast within it is due to the tumor itself and not these glare 

halos, there is still a question of how the presence of these halos skews the average intensities of 

ROIs used to calculate contrast here and in fig. 18. Fortunately, their contributions to the 

averaged ROI values has been found to be small. Consider the following glare-masked grayscale 

DPL images of the sample from fig. 19a-b:  

 
Figure 20: (a) Grayscale DPL image of a tumor biopsy placed on a peritoneum background (image from 13b). Insets 
b and c illustrate the standard and dilated glare masks applied to the image in a. 1mm scale. 

Here the original glare mask may be seen in fig. 120b. This mask was dilated to suppress 

the glare halos mentioned earlier, the result of this is presented in 20c. For the background ROI, 



 
 
 

40 
 

 

halo suppression resulted in a 0.3% decrease in the mean intensity of the ROI, while the mean 

feature intensity decreased by 0.7%. This would propagate a 0.8% decrease in the calculated 

contrast between the two ROIs. Thus, the effect of these halos is neglected in favor of retaining a 

more complete image without unnecessary masking.  



 
 
 

41 
 

 

CHAPTER 4: IMPLEMENTING DPL IMAGING IN A CLINICAL SETTING 

Introduction 

At this point, it is evident that DPL imaging has the potential to improve peritoneal 

cancer lesion visibility, however this progress is meaningless without a means of implementation 

in the clinic. It is not possible to effectively apply the manually operated benchtop setup outlined 

earlier at the video rates desired to examine the peritoneum of patients in surgery. This chapter is 

intended to address this problem, and details the transition from a laboratory to clinical setting 

for this imaging modality.  

Device Design 

In chapter 1 we exhausted any potential pre-existing DPL-capable endoscope systems 

well-suited to peritoneal screening, demonstrating the necessity of proposing a novel design. It 

was decided that the most efficient form of this design would be a modified version of the 

laparoscopic system currently applied for peritoneal metastasis screening. Below is a simplified 

schematic for a typical unmodified clinical laparoscope: 

 
Figure 21: Simplified diagram of a clinical laparoscope. 
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 To enable DPL imaging in this device, there are two main modifications that must be 

made to the optical train. First, a linear polarizer must be inserted such that the illumination is 

linearly polarized. Second, a variable analyzer must be introduced such that the polarization 

components of the reflectance both parallel and perpendicular to the illumination polarization 

may be detected separately.  

 The modifications applied here to support this functionality are outlined in figure 22 

below, with the three added components in blue: 

 
Figure 22: Modified laparoscope setup designed to implement DPL imaging. 

As the collected reflectance travels to the left towards the camera, it is incident on two 

elements, a voltage-controlled variable wavelength retarder (Thorlabs LCC1111T-A), and a 

second linear polarizer (analyzer). The analyzer may be oriented parallel or perpendicular to the 

cap polarizer, in this case it is perpendicular. The variable wavelength retarder is oriented with 

the slow axis 45 degrees offset from the analyzer’s polarization angle. In this way, when the 

retarder is set to zero retardance (effectively making the retarder invisible to the incoming signal) 

the camera sees the polarization of the image perpendicular to the illumination. If the wavelength 

retarder is set to half-wavelength retardance, the parallel and perpendicular components of the 

reflectance polarization are rotated 90 degrees. Now the camera sees the parallel component 
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through the analyzer since this component has been rotated into alignment, while the 

perpendicular component has been rotated 90 degrees out of alignment, extinguishing its signal 

as it passes the analyzer. In this way, depending on the retardance setting, either a parallel or 

perpendicular polarization image may be focused onto the detector via a zoom lens (computar® 

M3Z1228C-MP varifocal zoom lens). Once an image for each polarization is acquired, they may 

be subtracted as described earlier to yield the DPL image. The camera used here is a Point Grey 

model BFLY-PGE-23S2C-CS, which is a 12 bit-per-pixel camera with RGB color and 

monochrome imaging capability. This camera’s CCD has a greater intensity resolution (12-bit) 

than that typically applied in laparoscopes (8-bit). This substitution concerning sensitivity was 

made because the DPL signal is several times weaker than the total reflectance. Thus, to 

effectively resolve this signal in detail a greater intensity resolution is required than that typically 

applied in regular endoscopic reflectance imaging. 

Device Operation 

First, a mirror image of the illumination is resolved, and the analyzer is aligned 

perpendicular to the illumination polarization via the same methods detailed in Chapter 2. 

Following this, the variable wavelength retarder is placed in position and set to approximately 

half-wavelength retardance (~1.4V). The fast axis of the retarder is then rotated relative to the 

analyzer. Like the calibration of the analyzer, once the angular position of the retarder is found 

where the average image intensity is at an extremum (maximized in this case, the fast axis should 

be 45 degrees offset from the analyzer angle at this point), the retarder is fixed at this position.  
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Next, the optimal zero and half-wavelength retarding voltages of the retarder are 

determined. Examining the performance data for the retarder below: 

 
Figure 23: Plot illustrating the dependence of the retardance on light wavelength and applied voltage for the 
wavelength retarder model used here (Thorlabs 2017). 

Provided by the manufacturer, this plot indicates that the retardance may be driven to 

near zero with the application of a high voltage, with subtle retardance variation with 

wavelength. This establishes the zero retardance voltage at the maximum operating voltage, 25V. 

The dashed green line marks the second target retardance at half-wavelength. The voltage 

required to enforce this retardance varies more with wavelength, ranging from 1.3 (red dashed 

line) to 1.7V (blue dashed line) over the range of wavelengths 405-635nm.  

To determine the optimal half-wavelength retardance voltage for the range of possible 

detected wavelengths emitted by the illumination, the following experimental setup is applied: 
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Figure 24: Diagram of the experimental setup for determining the optimal half-wave retarding voltage. 

Here, if the wavelength retarder were not present, the signal read by the camera from the 

illuminated paper would be extinguished by its passage through the crossed analyzers. Placing 

the retarder back between the polarizers with its slow axis oriented 45 degrees from the analyzer 

axes, as the voltage of the retarder is varied, the polarized light incoming from the right analyzer 

will have the component of its polarization parallel to the slow axis of the retarder phase shifted 

relative to the perpendicular component. As the voltage is varied, this phase shift approaches 180 

degrees, or half-wavelength retardance, and the signal received by the camera will approach a 

maximum as the polarization of the light from the 90-degree analyzer is rotated into alignment 

with the 0-degree analyzer. Because the half-retardance voltage is dependent on wavelength, 

there will be a different voltage for the signal maximum in each color channel. However, there 

will be a single voltage associated with the maximum for the intensity averaged across all color 

channels, it is this voltage that is sought as an approximation in place of custom voltages for each 

color channel. To find the value of this singular voltage, a series of raw Bayer-tiled images was 

acquired while incrementing the voltage of the retarder. The average intensity of each of these 

images was computed and plotted against the applied voltage to find the maximum: 
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Figure 25: Plot of the average intensity for the raw Bayer-tiled images of a white standard at various retarder 
voltages. The maximum of the plot is indicated by the dashed red line at 1.4V. 

These data indicate the optimum voltage for this setup is 1.4V. With this, the two 

operating voltages of the retarder are established: 25V for zero retardance, and 1.4V for half-

wavelength retardance. Below are a pair of test images (converted to grayscale) taken at each of 

these voltages with the setup described by figure 24: 

 
Figure 26: Imaging results collected from the setup in figure 24 for the half-wave retarding voltage (a, 1.4V) and zero 
retarding voltage (b, 25V). The ratio of b to a is displayed in c. 

Given perfect retardance of all wavelengths at each voltage, the ratio of fig. 26b to 26a 

should be zero within the FOV (field of view). Due to the wavelength dependencies of the 

retarder detailed previously in figure 23, this ideal performance is not exhibited, but it is close, 

with the intensity of 26b less than 10% of that in 26a for much of the FOV. The implications of 

imperfect retardance in this system will be examined in greater detail in the following section. 
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Once all of these optical elements are calibrated appropriately, the camera is signaled to 

start capturing images by a software program utilizing the camera and retarder APIs (application 

program interfaces, see appendix C for details). The program essentially queries the camera 

frame rate, then sets the retarder voltage controller to switch between its two operating voltages 

at half this frame rate. After exposing the first image, the voltage controller is triggered to begin 

modulating between the two voltages, syncing the switching voltage with the data reading period 

following the exposure of each frame. This process is detailed in the figure below: 

 
Figure 27: Time course for the operation of the camera shutter in conjunction with the wavelength retarder. 

This results in the recording of a series of images of which the first is exposed during the 

collection of the parallel polarized reflectance, the second during the perpendicular, and so forth 

alternating in this way at the camera’s frame rate. For every pair of polarized images, the DPL 

image is computed from them following data readout and appended to a vector of images. After 

the number of specified frames is exposed and appended, this image vector is converted to AVI 

video format for viewing. The current state of this controller requires further refinement before 

implementation, details concerning this will be provided as future directions in Chapter 5. 
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Design Challenges 

 While the design proposed here is certainly sound in an ideal case, there are a few 

polarization properties intrinsic to certain components that have the potential to complicate its 

functionality. We have already briefly touched on one of these complications, that is the 

retarder’s wavelength dependence, but there are some other additional sources of error that must 

be accounted for. 

 Before addressing these error sources, it is useful to become familiar with some tools that 

help describe polarization states and effects. The tool in this case is called Mueller calculus, the 

concept of which was briefly touched upon in the examination of the Mueller endoscope of Qi 

and Elson in Chapter 1. This is a method by which the polarization state of light is described by a 

four-element vector called the Stokes vector, and the transformations applied to the light 

polarization by optical elements is quantified by a 4x4 matrix called the Mueller matrix. 

For a given beam of light of arbitrary polarization, the Stokes vector takes the following form: 

[

𝐼
𝑄
𝑈
𝑉

], where I is the total intensity of the beam, Q is the intensity of linear polarization in the 

horizontal (oriented 0 degrees, positive Q) and vertical (oriented 90 degrees, negative Q), U is 

the intensity of linear polarization in the diagonal direction (45, positive U, and 135 degrees, 

negative U) and V is the intensity of circular polarization (positive V for right circular, negative 

for left).  

In the context of DPL imaging, there are two components of polarization we are 

concerned with in the collected signal. First is a completely linearly polarized component in the 
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vertical direction of intensity B retaining the polarization of the illumination, described by the 

Stokes vector [

𝐵
−𝐵
0
0

]. It is this intensity that is isolated in the DPL modality. The elements of this 

vector may be interpreted as follows: all the total intensity of this component (I = B) is linearly 

polarized in the vertical direction, resulting in Q = -B. This component has no net diagonal 

polarization or circular polarization, thus U = V = 0.  

The second component is the depolarized component, described by the Stokes vector [

𝐴
0
0
0

]. 

These elements indicate a beam of light of intensity I = A which exhibits no net polarization in 

any form, Q = U = V = 0. It is this intensity which is removed from the image in DPL imaging. 

Armed with this information, the polarization of the total signal reflected from the sample 

may be expressed as the sum of these polarized and depolarized components: 

[

𝐴
0
0
0

]+[

𝐵
−𝐵
0
0

]=[

𝐴 + 𝐵
−𝐵
0
0

] 

Having arrived at an expression for the Stokes vector of the reflectance, it is now desired 

to study the effect the polarizing elements of the device have on this signal. 

The transformation in the polarization of light as it passes a polarizing element is 

quantified in the context of Stokes vectors in the form of Mueller matrices. Given light of a 

certain Stokes vector incident on a polarizing element, the resulting Stokes vector of the light 

transmitted through the optic is given by the multiplication of the incident vector with the 
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Mueller matrix associated with the polarizing optic. Ideally, there are only two polarizing optics 

the sample reflectance must pass through in this system: the wavelength retarder and the 

analyzer. The Mueller matrix for the analyzer (or more generally, a linear polarizer) provides a 

good introduction to the properties of Mueller matrices, and the matrix for the horizontally 

aligned analyzer used in the system is given below: 

1

2
[

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

] 

To put this matrix in a more intuitive context, if we imagine a beam of depolarized light 

(Stokes vector [

𝐴
0
0
0

] ) incident on a linear polarizer, intuitively we would expect the transmitted 

beam of light to be entirely linearly polarized and half the intensity of the incident beam. 

Expressing this transformation in Mueller calculus: 

1

2
[

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

] [

𝐴
0
0
0

] = [

(1 2)⁄ 𝐴

(1 2)⁄ 𝐴
0
0

] 

This confirms our intuition, the resulting Stokes vector indicates that the beam is half the 

intensity of the incident (I = ½A), and the entirety of this intensity is linearly polarized in the 

horizontal direction (Q = ½A, while U = V = 0). 

Now we consider the Mueller matrix of a wavelength retarder oriented with its fast axis 

45 degrees offset from the horizontal, as applied in our system: 
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[

1 0 0 0
0 cos𝜑 0 −sin𝜑
0 0 1 0
0 sin𝜑 0 cos𝜑

] 

Here, the parameter φ refers to the phase difference imposed by the retarder between light 

polarized along its fast and slow axis, henceforth referred to as the phase retardance. The two 

operating states of this retarder are at half-wavelength retardance (φ = π radians) and zero 

retardance (φ = 0 radians). The corresponding Mueller matrices for these two states are  

[

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

] and [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] respectively. Recall that the purpose of the wavelength 

retarder here is to first rotate the collected signal polarization by 90 degrees to expose the parallel 

(to the illumination polarization) image to the camera through the analyzer, then be switched to 

have no effect on the signal to expose the perpendicular image to the camera through the 

analyzer. Computing the Mueller calculus for these two transformations on the reflectance signal 

of polarization [

𝐴 + 𝐵
−𝐵
0
0

]: 

For zero retardance: [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

𝐴 + 𝐵
−𝐵
0
0

] = [

𝐴 + 𝐵
−𝐵
0
0

], and the signal is unchanged. 

For half-wave retardance: [

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

] [

𝐴 + 𝐵
−𝐵
0
0

] = [

𝐴 + 𝐵
𝐵
0
0

], in this case the only change to 

the signal is the 90-degree rotation of the polarized light, flipping the sign of Q = -B to B. 
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The complete transformation of the collected reflectance from the sample as it travels to 

the camera may now be described by the series of transformations it experiences as it passes first 

the wavelength retarder, then the analyzer: 

For the parallel signal (φ = π radians): 

 
1

2
[

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

] [

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

] [

𝐴 + 𝐵
−𝐵
0
0

] =  
1

2
[

𝐴 + 2𝐵
2𝐵
0
0

] 

For the perpendicular signal (φ = 0 radians):  

1

2
[

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

] [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

𝐴 + 𝐵
−𝐵
0
0

] =
1

2
[

𝐴
𝐴
0
0

] 

Subtracting the perpendicular signal from the parallel, the resulting DPL signal has the Stokes 

vector 𝑆𝐷𝑃𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = [

𝐵
𝐵
0
0

], which recovers the intensity I = B of the reflectance retaining the illumination 

polarization from the initial total reflectance of [

𝐴
0
0
0

]+[

𝐵
−𝐵
0
0

]=[

𝐴 + 𝐵
−𝐵
0
0

]. 

 Having been familiarized with the Mueller conceptualization of the system optics, we can 

now apply this description to better understand some of the sources of error introduced by the 

non-ideal functionality of the system components. 

In the ideal analysis conducted earlier it was assumed that the laparoscope exhibited no 

polarization effects. In reality, this is not the case: in the work of Wood et al. (2010), the 
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polarization effects of several commercial laparoscopes (including our Karl-Storz variant) are 

demonstrated by the measurement of the Mueller matrix for each point in the field of view of the 

laparoscope. It was suspected and validated by the authors that for the Storz model much of these 

polarization effects were due to the presence of a sapphire crystal window in the device. To 

improve on these properties, in a separate paper the authors use a less polarizing replacement for 

the sapphire window in the form of fused silica (Qi et al., 2012). Once again, they measured the 

Mueller matrix over the field of view of the device. Their results for these matrices are displayed 

below for the sapphire and fused silica crystal respectively: 

 
Figure 28: Mueller matrix values as a function of position within the field of view of a Karl-Storz laparoscope with a 
sapphire window (a), and a fused silica window (b) (Qi et al., 2012).  

These data may seem daunting at first glance, but there are only a few key features we are 

concerned with. Since it is desired that the laparoscope be a non-polarizing optic, we must find 

regions in the field of view where the Mueller matrix resembles that of a non-polarizing optic.  

The non-polarizing Mueller matrix is the 4x4 identity matrix, which has zeros (0) at all the 
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sixteen indices, with the exceptions of ones (1) occupying the diagonal running from the top left 

to bottom right, which appears as 

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

Looking at the matrix for the sapphire window configuration in 28a (our configuration), it is 

possible to meet these criteria given certain restrictions to the field of view. If the FOV is limited 

to area surrounding the center, the state of the matrix comes very close to the form of the identity 

matrix detailed above, making it possible to conduct polarization-sensitive analysis within this 

region of the image relayed by the laparoscope. As depicted in 28b, it is possible to reduce the 

polarization effects of the laparoscope by replacing the sapphire window with fused silica, 

reducing the restrictions on the viable field of view that forms an identity Mueller matrix. 

However, there are still some elements of this matrix that still heavily depend on the position in 

the field of view (those in the 4th column). 

 Composing a Mueller matrix to represent the laparoscope: 

  [

1 0 0 0
0 𝑚22 𝑚23 𝑚24

0 𝑚32 𝑚33 𝑚34

0 𝑚42 𝑚43 𝑚44

] 

This matrix was derived from features in figure 28a. Here, only the matrix elements in 

the first row and first column have a consistent value (~1 for the top left, ~0 for the rest) 

throughout the field of view. These values are reflected in our derived Mueller matrix. The 

remaining elements vary in value as a function of position in the field of view, and are 
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represented as variables mij for the i-th row and j-th column. For the transformation of the sample 

reflectance as it passes first through the laparoscope, then the retarder, and finally the analyzer, 

we have 

1

2
[

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

] [

1 0 0 0
0 cos𝜑 0 −sin𝜑
0 0 1 0
0 sin 𝜑 0 cos𝜑

] [

1 0 0 0
0 𝑚22 𝑚23 𝑚24

0 𝑚32 𝑚33 𝑚34

0 𝑚42 𝑚43 𝑚44

] [

𝐴 + 𝐵
−𝐵
0
0

]

=
1

2
[

𝐴 + 𝐵−𝑚22𝐵 cos𝜑 + 𝑚42𝐵 sin𝜑
𝐴 + 𝐵−𝑚22𝐵 cos𝜑 + 𝑚42𝐵 sin𝜑

0
0

] 

(Here the phase retardance φ of the wavelength retarder is left as a variable to study the influence 

of its value). Calculating the DPL Stokes vector where φ⊥ is the retardance for exposing the 

perpendicular image and φ∥ for the parallel image: 

𝑆𝐷𝑃𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  =

1

2
[

𝑚22𝐵(cos𝜑⊥ − cos𝜑∥) + 𝑚42𝐵(sin𝜑∥ − sin𝜑⊥)

𝑚22𝐵(cos𝜑⊥ − cos𝜑∥) + 𝑚42𝐵(sin𝜑∥ − sin𝜑⊥)

0
0

] 

An interesting detail to note is the only variable elements of the laparoscope Mueller 

matrix whose value has any effect on the detected signal are m22 and m42, corresponding to M22 

and M42 in figure 28. For these two elements to have no influence on the polarization of our 

signal, they must be one and zero respectively. For the sapphire matrix (28a) this condition is 

only met near the center of the field of view. However, if the sapphire were to be replaced with 

fused silica as in 28b, these elements exhibit a uniform distribution close to their target values of 

1 and 0.  
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If we assume the retarder is accurate in the application of its zero (φ⊥ = 0) and half-

wavelength (φ∥ = π) retardances, the expression for the DPL Stokes vector simplifies to [

𝑚22𝐵
𝑚22𝐵

0
0

]. 

This is an intriguing result: given the ideal function of the wavelength retarder, the only 

variable element of the laparoscope Mueller matrix that has any impact on the DPL signal is that 

associated with m22, that is M22 in figure 28a and b. If this element’s value is close to one and 

the retarder is accurate, the DPL Stokes vector returns to its ideal form calculated earlier: 𝑆𝐷𝑃𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  =

[

𝐵
𝐵
0
0

] accurately yielding intensity B, the sought intensity of the light retaining the illumination 

polarization. Thus, accurate DPL imaging relies regions within only M22 being close to one 

given ideal retarder function. This element is also completely uniform in the fused silica window, 

providing an option for overcoming the potential field of view limitations in the sapphire 

window. 

Following the study of the laparoscope effects, the next step is to determine the potential 

impact the wavelength dependence of the retardance has on the collected DPL signal. For a static 

retarder (representative of our retarder at a constant voltage), the wavelength retardance (ẟ) may 

be described as 𝛿(𝜆) =  
𝛽𝑑

𝜆
 , where β is birefringence, and d is the geometric thickness of the 

retarder (Meadowlark Optics, 2005). Combining this knowledge with the retardance data 

provided by the manufacturer at two wavelengths (Thorlabs, 2017, plotted in figure 23, raw data 

can be found in appendix D), and approximating the variation of birefringence with wavelength 
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as a linear dependence, a model of the form 𝛿(𝜆)  =
𝐶

𝜆
+ 𝐷 is parameterized to estimate the 

wavelength dependence in the regime around each operating voltage:  

At 25V, 𝛿25𝑉(𝜆)  =
111𝑛𝑚

𝜆
− 0.156 

At 1.4V, 𝛿1.4𝑉(𝜆)  =
303𝑛𝑚

𝜆
− 0.0574 

Based on the Stokes vector for the signal detected by the camera from earlier, assuming 

the signal is from a region in the field of view of the laparoscope that is not polarizing (m1 = 1, 

m7 = 0) the Stokes vector describing the calculated DPL signal is: 

𝑆𝐷𝑃𝐿
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  =

1

2
[

𝐵(cos𝜑
25𝑉

− cos𝜑
1.4𝑉

)

𝐵(cos𝜑
25𝑉

− cos𝜑
1.4𝑉

)

0

0

] 

Where φ25V and φ1.4V are the phase retardances applied at 25 and 1.4V respectively, which may 

be expressed simply as the wavelength retardance 𝛿(𝜆) at that voltage multiplied by 2π. The 

intensity of the signal is expressed as the top element in this vector multiplied by 1/2, thus the 

error fraction of this signal compared to the expected intensity of the polarized component (B) 

may be expressed as  

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
=

(1/2)𝐵(𝑐𝑜𝑠(𝜑25𝑉) − 𝑐𝑜𝑠(𝜑1.4𝑉)) − 𝐵

𝐵
 

𝑒𝑟𝑟𝑜𝑟 = 0.5(𝑐𝑜𝑠(𝜑25𝑉) − 𝑐𝑜𝑠(𝜑1.4𝑉)) − 1 

Where 𝜑25𝑉(𝜆) = (2𝜋)(𝛿25𝑉(𝜆))  = (2𝜋)(
111𝑛𝑚

𝜆
− 0.156) 

And 𝜑1.4𝑉(𝜆) = (2𝜋)(𝛿1.4𝑉(𝜆))  = (2𝜋)(
303𝑛𝑚

𝜆
− 0.0574) 
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Substituting these phase retardance functions, we obtain the expression for the error fraction due 

to the retarder as a function of wavelength: 

𝑒𝑟𝑟𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝜆) = 0.5 (𝑐𝑜𝑠 ((2𝜋)(
111𝑛𝑚

𝜆
− 0.156)) − 𝑐𝑜𝑠 ((2𝜋)(

303𝑛𝑚

𝜆
− 0.0574))) − 1 

Plotting this function: 

 
Figure 29: Fraction of error in signal due to the wavelength dependencies of the retarder as a function of signal 
wavelength. 

Thus, the observed signal of intensity I and wavelength λ may be expressed as  

𝐼 = 𝐼0 + 𝐼0(𝑒𝑟𝑟𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝜆)) 

𝐼 = 𝐼0(0.5 (𝑐𝑜𝑠 ((2𝜋)(
111𝑛𝑚

𝜆
− 0.156)) − 𝑐𝑜𝑠 ((2𝜋)(

303𝑛𝑚

𝜆
− 0.0574)))) 

𝐼 = 𝐼0(𝑒𝑟𝑟𝑜𝑟(𝜆)) 

Where I0 is the expected intensity of the signal.  
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We now look to the illumination spectrum of the lamp and the detection spectrum of the 

RGB camera to approximate the expected signal intensity I0 as a function of wavelength. 

Examining the spectra recorded for the Storz lamp applied in our system: 

 
Figure 30: Plot of the measured illumination intensity spectrum for the xenon arc lamp used in the Storz laparoscope. 
Spectrum is modeled by a Gaussian. 

The function of the illumination intensity as a function of wavelength is approximated 

here by a Gaussian (red dashed line).  

Below are the transmission spectra for the three filters applied in our RGB camera’s 

Bayer-tiled sensor mosaic, supplied by the manufacturer. These three spectra are once again 

approximated by Gaussians which each share the center wavelength (dotted line) and peak 

efficiencies of their corresponding data plot: 
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Figure 31: Detection efficiency spectra for the RGB camera used (FLIR 2017). Manufacturer-provided data in a, 
corresponding Gaussian models of this data in b. 

The expected signal ultimately detected by the camera for each color pixel may be 

estimated as the product of the illumination spectra (figure 30) and the detection efficiencies 

(31b), yielding the solid-line plots in figure 32 below. To introduce the retarder error, we 

multiply these spectra by the error function error(λ) defined earlier. The resulting spectra (figure 

32, dashed lines) model the observed signal: 
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Figure 32: Expected and observed spectra for the RGB camera signal detection of the illumination. Expected case is 
without the influence of the retarder error (solid lines), observed is with this error included (dashed lines). 

 The intensity value reported by the camera is given by the integral of each of these 

spectra over the entire spectrum (~300-800nm): 

𝐼𝑟𝑒𝑑 = ∫ 𝐼𝑟𝑒𝑑(𝜆) 𝑑𝜆
800𝑛𝑚

300𝑛𝑚

 

𝐼𝑔𝑟𝑒𝑒𝑛 = ∫ 𝐼𝑔𝑟𝑒𝑒𝑛(𝜆) 𝑑𝜆
800𝑛𝑚

300𝑛𝑚

 

𝐼𝑏𝑙𝑢𝑒 = ∫ 𝐼𝑏𝑙𝑢𝑒(𝜆) 𝑑𝜆
800𝑛𝑚

300𝑛𝑚

 

Calculating the error fraction between the observed and expected intensities for each 

color channel: 

𝐼𝑟𝑒𝑑,𝑜𝑏𝑠 − 𝐼𝑟𝑒𝑑,𝑒𝑥𝑝

𝐼𝑟𝑒𝑑,𝑒𝑥𝑝
= −0.0643 
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𝐼𝑔𝑟𝑒𝑒𝑛,𝑜𝑏𝑠 − 𝐼𝑔𝑟𝑒𝑒𝑛,𝑒𝑥𝑝

𝐼𝑔𝑟𝑒𝑒𝑛,𝑒𝑥𝑝
= −0.0461 

𝐼𝑏𝑙𝑢𝑒,𝑜𝑏𝑠 − 𝐼𝑏𝑙𝑢𝑒,𝑒𝑥𝑝

𝐼𝑏𝑙𝑢𝑒,𝑒𝑥𝑝
= −0.125 

These calculations and the spectra they are derived from may be examined in detail in the 

MATLAB code of appendix B-3. The error is lowest for the green channel (4.61%) and highest 

for the blue channel (12.5%) with red in between (6.43%). This trend is reflected in the plot of 

the retarder error function in figure 29, where the error magnitude is minimized around the green 

band, highest along the blue band, and intermediate in the red band. These errors serve as 

estimators of DPL signal error that may be encountered during operation in the manner proposed 

in the previous section. The error values suggest that this method of operation is indeed feasible, 

collecting wideband RGB signal with only two retarder voltage settings despite the associated 

wavelength dependence. If for whatever reason it is desired to reduce this error, it is also possible 

to tailor the voltage settings to each color channel individually. However, this requires the 

individual collection of each channels’ signal rather than simultaneous detection, slowing the 

acquisition rate of the whole RGB image. 

Device Verification 

 With the proving of the theoretical functionality of this system design, the next logical 

step is to test the setup and verify its functionality experimentally. Naturally, it would make 

sense to image ex vivo tissues like those from Chapter 3 to ensure that the laparoscopic 

implementation of the system can maintain its performance relative to the benchtop 

configuration. This is simple enough, but in addition it is desired to probe the limits of the device 
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concerning the geometry of the lesions, that is, how small and thin of a lesion can the device 

detect versus conventional imaging? This is difficult to study rigorously with excised tissues, 

thus the possibility of fabricating an optical phantom with the desired geometry was investigated.  

 It was decided that the best substrate to compose the phantom would be 

polydimethylsiloxane (PDMS). This polymer base in its initial state is a viscous fluid that may be 

cast against a mold. After adding a curing agent, the base cures solid, retaining the features 

impressed upon it by the mold with great detail (<1um resolution). By default, PDMS is optically 

clear in the visible range. This allows the control of the optical properties by adding optically 

active agents to the base prior to curing. With this, a phantom may be fabricated with tunable 

geometry and optical properties. The figure below details the protocol developed to create such a 

phantom: 

 
Figure 33: Process diagram describing the fabrication of a PDMS optical phantom with controlled feature geometry. 

 Following the process beginning in the top left, a 3D-printed mold is placed in a petri 

dish. This mold defines the size and thickness of the resulting phantom features. The dish is then 
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filled with a PDMS with optical properties representative of the background and the assembly is 

degassed for one hour. After curing, the PDMS and mold are flipped upside-down in the dish, 

and the mold is removed. The excess PDMS is then trimmed off, and the surface is covered in 

PDMS with optical properties representative of the feature. The film of excess feature PDMS is 

then squeezed out as the phantom is clamped between two glass slides. To prevent the PDMS 

from sticking to the slide as it cures, the slide in contact is covered in paraffin film (Bemis NA) 

for easier separation.  

The mold design was printed on a Solus 3D printer (Junction 3D) from the proprietary 

resin SolusProto. The SolidWorks design file from which this mold was printed (figure 34a) and 

a resulting phantom prototype (b) are detailed below: 

 
Figure 34: (a) SolidWorks model of the printed mold defining feature geometries. (b) PDMS phantom resulting from 
the mold printed from this design. 

 The mold defines an array of twenty-five different feature geometries. Each row contains 

features of the same area with decreasing thickness (depth) from left to right ranging from 1mm 

to 50um. Each column contains features of the same thickness, while the dimensions of the area 

are varied ranging from 1x1mm to 50x50um. The background PDMS (Sylgard 184, 1:10 curing 

agent to base ratio) in this case had no optical agents added, while rutile titanium dioxide powder 
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was added to the feature PDMS (6mg/g concentration) to help visualize the feature geometry. 

The fabrication protocol proved reasonably effective; features down to the fourth row translated 

to the phantom effectively, while the fifth row (50x50um) failed to be cleanly printed in the mold 

due to approach of resolution limit. With this degree of control over the feature geometry, the 

phantom can be effectively applied to study the sensitivity of the system to lesions of different 

size and thickness. 

Alternative Design Considerations 

The proposed design here is only one of several possible configurations capable of DPL 

imaging, but it was selected as the most promising of these possibilities. Alternatives include the 

use of two cameras some combination of optical elements that separates the parallel and 

perpendicular components of the reflectance and directs each to its own camera. The advantage 

to having such a two-camera system relative to a singular one is that given all the cameras used 

here have the same max frame rate, a two-camera system would be able to stream DPL images at 

this max frame rate, while a single camera system would only be able to do so at half this frame 

rate. This follows from the single camera having to image two frames (parallel and 

perpendicular) for every DPL frame produced, while in the two-camera setup each of these two 

component frames is collected by a separate camera, allowing the resulting DPL image stream to 

be collected at the full framerate. However, there are notable difficulties to be considered in the 

technical details of a two-camera setup that are not applicable in a single camera design. First 

and most simply, a two-camera design would not be as compact and a singular one. This device 

is intended to be handheld by a clinician over the course of potentially long periods of time, thus 

it is of interest to minimize the size and weight to improve the efficacy and comfort with which 
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the clinician may operate it. Additionally, with each parallel and perpendicular image being 

resolved through two different optical paths, special care is required to ensure the paths are as 

close to identical as possible to ensure that no artifacts arise when subtracting the images from 

one another due to path difference. Finally, the most critical difficulty in a two-camera system is 

the challenge of splitting the collected signal and appropriately distributing it to each camera. 

The optical element that immediately comes to mind for this application is a 50:50 beam splitter, 

or a polarizing beam splitter. The primary problem with beam splitters in this case is that 

depending on the specific beam splitter there will be various angular, spectral, and/or 

polarization dependencies that will interfere with the signal in the resulting images. Conversely, 

the wavelength retarder exhibits only a subtle spectral dependence that is not of significance in 

our application. Beyond beam splitters, if one really wanted to push towards a two-camera 

system, a more realistic optic would be a Wollaston prism. These prisms would be able to 

separate orthogonal components of polarization into each camera with only a small spectral 

dependence. 
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CHAPTER 5: CURRENT DIRECTIONS FINAL THOUGHTS 

Introduction 

 The work exhibited here makes a good case for DPL imaging as a solution to the clinical 

need. However, there is still an amount of additional progress required to arrive at the final goal 

of clinical implementation. It is the purpose of this section to outline this progress and its current 

stage, and ultimately comment on the project as a whole. 

Additional Device Development 

 There are still a few features of the system which are still currently in need of further 

development: the device control software and the polarizing cap of the laparoscope system.  

The overview of the current software build was detailed previously in the device design 

section of Chapter 4 (code exhibited in appendix C). While conceptually sound, there are a few 

practical problems that hinder it. To start, the program ensures that the frame exposure and 

retarder switching are initialized in sync, but afterwards they operate independently of one 

another. The continued synchronization of the components relies on the precise matching of the 

camera capture and retarder switching frequencies. Given enough time, even the slightest 

frequency mismatch will result in the gradual desyncing of the components’ operation. Thus, for 

sustained operation, a better implementation would be one in which the camera’s end of 

exposure event would trigger the switching of the retarder on a frame-by-frame basis rather than 

just initialize its switching after the first end of exposure event occurs. This possibility was 

investigated, but it was discovered that if the frame rate of the camera is too high (above ~10fps) 

the end of exposure event triggering cannot keep up and will not trigger on every frame.  
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An alternative solution is proposed for future development involving a more hardware-

oriented approach. Here, the camera’s “strobe” (voltage pulse issued by the camera following 

every image exposure) feature would be exploited. The retarder controller would be calibrated 

such that this strobe acts as a hardware trigger to switch its voltage output. This would help 

bypass any software limitations of the system and provide simpler and more reliable 

functionality.  

Regardless of the approach settled on, it is also desired to maintain the camera’s 

compatibility with the manufacturer’s software UI (user interface) following the implementation 

of the approach. The ability to continue using the camera’s default UI would provide several 

features from the start that would not have to be developed later otherwise. These include most 

importantly the live streaming of camera imaging to a screen, infrastructure for the modification 

of camera settings while imaging, and triggers for camera recording and saving video to file.  

Concerning the polarizing cap, the current prototype can effectively polarize the 

illumination in a benchtop setting, but there are some additional requirements it must meet 

before seeing use in the clinic. Namely, its attachment to the laparoscope must be secured, and 

the component must be made sterilizable by clinical means following its contact with the patient. 

It possible that the former be realized through the conversion of the polarizer from a cap to a 

sleeve configuration. In this case, the entire length of the laparoscope lens rod is covered by a 

rigid sleeve with a window at the distal end that contains the polarizing film for the illumination. 

The position and angular orientation of this sleeve is secured relative to the lens rod by its 

attachment to the perpendicular metal tube at the proximal end of the laparoscope. The materials 

from which the current cap is fabricated are not very heat-tolerant in the context of autoclave 
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sterilization at 121 degrees Celsius. The housing is composed of a proprietary 3-D printed 

material called VeroClear, which exhibits warping at temperatures in excess of 50C (Stratasys, 

2016). Thus, barring the replacement of this material with a more heat-resistant one 

(polypropylene, polycarbonate, polymethylpentene, etc.) autoclaving is not a practical means of 

sterilization. Instead, it is recommended that sterilization by ethylene oxide is applied to avoid 

heat-induced damage to the component. 

PDMS Phantom Testing 

Thus far, an effective protocol has been developed for the fabrication of PDMS optical 

phantoms as detailed in the prior chapter. What remains is to investigate the different optical 

agents that may be added to the PDMS to model in vivo pathology. In the context of peritoneal 

metastases, the primary characteristics these agents should mimic include the absorbance of 

hemoglobin exhibited by blood vessels in the peritoneum background and the high scattering of 

the cancer lesions relative to the peritoneum. Initial candidates for the scattering agent include 

the titanium dioxide powder used in the phantom prototype, as well as hollow glass 

microspheres. Polystyrene microspheres are also a possibility, however they are less cost-

effective are usually stored in solution at relatively low concentration (~2% by volume) 

potentially creating difficulties in modeling higher scattering where a greater optical density is 

desired. Wide-band absorptive properties may be introduced with the addition of dyes like 

nigrosin or India ink, while absorption more representative of blood vessels may be modeled 

with the addition of powder hemoglobin.   
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Additionally, following the fabrication of the desired phantom, it would be prudent to 

verify the features of finer width and depth. Visual inspection is not sufficient in this case, rather 

it would be more effective to apply confocal microscopy. This allows the detailed inspection of 

small-width features, but more importantly provides depth-resolved imaging for the 

measurement of the thickness of the thinner features.  

Conclusion 

 It is believed that the application of DPL imaging in the clinic will help enhance the 

ability of physicians to make more accurate diagnoses concerning the presence or absence of 

peritoneal metastases. As the work here demonstrates, this belief is not unfounded. Evidence 

indicates that DPL imaging can provide a significant increase in the contrast between tumor 

tissue and the peritoneum. Additionally, there exists a reasonable method by which this imaging 

modality may be implemented in the desired clinical setting without greatly compromising its 

performance. Combined with the current dissatisfaction with the sensitivity of lesion detection, 

such a device would have a positive impact on patients at risk for these metastases. Ultimately, it 

is this potential for impact which decides the worth of the continued development of this device. 

It is thus concluded that the DPL imaging modality would prove to be a realistic and effective 

means to meet the clinical need outlined here. As a result, its continued development towards 

clinical application should be strongly considered. 
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APPENDICES 

A. Cancer Incidence Data 

A-1. Cancer Incidence Rates 

Age-Specific (Crude) SEER Incidence Rates; by Cancer Site; All Ages, All Races, Both Sexes; 
2005-2014 

Age At Diagnosis (years) Rate for all Cancer 
Varieties (per 100k) 

Rate for Digestive System 
Varieties (per 100k) 

<1 23.7989 1.9666 

1-4 21.6982 0.9544 

5-9 12.5177 0.2081 

10-14 13.8358 0.335 

15-19 22.0209 0.7601 

20-24 36.1699 1.7829 

25-29 57.4828 3.8317 

30-34 88.9892 8.0047 

35-39 134.2561 14.9501 

40-44 217.9132 29.4457 

45-49 353.194 55.9265 

50-54 561.9879 106.1138 

55-59 836.5394 151.3111 

60-64 1208.1955 209.7537 

65-69 1691.6209 289.2371 

70-74 2028.445 374.6663 

75-79 2293.1414 466.6783 

80-84 2380.9708 548.701 

85+ 2224.3536 579.4303 

Cumulative 14207.1312 2844.0574 

   

 

A-2. Digestive System Cancer Stage Distribution 

Stage Distribution (SEER Summary Stage 2000); by Cancer Site; All Ages, All Races, Both Sexes; 2005-
2014 

 Localized (percent) Regional (percent) Distant (percent) Unstaged (percent) 

Digestive 
System 

32.4 31.6 27.3 8.8 
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B. MATLAB Coding 

B-1. DPL Image Processing 

%This script takes the pair of images obtained (grayscale or Bayer-tiled 

%RGB) in parallel and perpendicular polarizations and performs the 

%calibration and subtraction involved in computing the DPL image. 

 

%Import all images you intend to work with to the workspace 

 

%Settings START 

calibrate = 0; %1 allows for calibration of image with a reference, 0 leaves the image 

as is 

 

bayerTiled = 0; %Image color type: 1 for bayer-tiled, 0 for grayscale 

 

imRegistration = 1; %1 aligns parallel and perpendicular images to overlap features, 0 

leaves their relative positions as is 

%Settings END 

 

%Data entry START 

paraIm = parallelImage; %Enter parallel image 

perpIm = perpendicularImage; %Enter perpendicular image 

paraCal = parallelCalibrator; %Enter parallel calibrator image 

perpCal = perpendicularCalibrator; %Enter perpendicular calibrator image 

%Data entry END 

 

paraIm = im2double(paraIm); 

perpIm = im2double(perpIm); 

 

if calibrate == 1; %Apply calibration 

    paraCal = double(paraCal); 

    perpCal = double(perpCal); 

    paraIm = paraIm./imread(paraCal); 

    perpIm = perpIm./imread(perpCal); 

end 

 

if imRegistration == 1; %Apply image co-registration 

    [optimizer, metric] = imregconfig('Multimodal'); 

    perpIm = imregister(perpIm, paraIm, 'translation', optimizer, metric); 

end 

 

diffIm = (paraIm - perpIm); %Calculate difference of images (DPL image) 
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sumIm = ((paraIm/2 + perpIm/2)); %Calculate average of images (conventional image) 

 

if bayerTiled == 1; %Additional processing for Bayer-tiled images 

    colorParaIm = demosaic(im2uint16(paraIm),'gbrg'); %Convert Bayer-tiled images to 

RGB images 

    colorPerpIm = demosaic(im2uint16(perpIm),'gbrg'); 

    colorSumIm = demosaic(im2uint16(sumIm),'gbrg'); 

    colorDiffIm = demosaic(im2uint16(diffIm),'gbrg'); 

 

    redParaIm =  colorParaIm(:,:,1); %Separate the color channels in each image 

    greenParaIm =  colorParaIm(:,:,2); 

    blueParaIm =  colorParaIm(:,:,3); 

 

    redPerpIm = colorPerpIm(:,:,1); 

    greenPerpIm = colorPerpIm(:,:,2); 

    bluePerpIm = colorPerpIm(:,:,3); 

 

    redSumIm = colorSumIm(:,:,1); 

    greenSumIm = colorSumIm(:,:,2); 

    blueSumIm = colorSumIm(:,:,3); 

 

    redDiffIm = colorDiffIm(:,:,1); 

    greenDiffIm = colorDiffIm(:,:,2); 

    blueDiffIm = colorDiffIm(:,:,3); 

end 

B-2. Contrast Computation 

%This script creates a data structure containing all of the output images 

%from the RGB functionality of the image processing script and the contrast 

%data associated with each 

 

imageNames = char('diffIm', 'sumIm', 'paraIm', 'perpIm',... %Listing the workspace 

image variable names from DPLImageProcessor 

    'colorDiffIm', 'colorSumIm', 'colorParaIm', 'colorPerpIm',... 

    'redDiffIm', 'redSumIm', 'redParaIm', 'redPerpIm',... 

    'greenDiffIm', 'greenSumIm', 'greenParaIm', 'greenPerpIm',... 

    'blueDiffIm', 'blueSumIm', 'blueParaIm', 'bluePerpIm'); 

 

numImages = length(imageNames(:,1)); %Counting the number of images 

 

imageData(numImages) = struct('name', imageNames(numImages,:), 'image', 

eval(imageNames(numImages,:)), 'contrast', -1, 'contrastStdev', -1); %Creating an 

array of <numImages> structures that each can hold the name, image, and contrast data 

for the image 
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for i = 1:numImages-1 %Loads images and their names into the structure array, contrast 

values have not yet been determined so they are set to -1 

    imageData(i) = struct('name', imageNames(i,:), 'image', eval(imageNames(i,:)), 

'contrast', -1, 'contrastStdev', -1); 

end 

 

im = imageData(5).image; %Loads and shows image in figure for defining ROIs for 

contrast calculation, 

figure(); 

imshow(im); 

 

disp('Press a key to continue') %Pause for zooming image if needed before defining 

ROIs. Keypress continues program 

pause; 

 

%Generate glare mask 

glareMask = glareMask(rgb2gray(imageData(5).image),.09,2); 

 

featureBoundary = imfreehand(); %Allows drawing of simply connected (no holes) ROI for 

the feature 

featureMask = logical((featureBoundary.createMask()).*not(glareMask)); %Mask for glare 

featurePixels = sum(featureMask(:)); %Number of pixels in ROI 

 

featureBoundaries = bwboundaries(featureMask); %Stores defined feature ROI 

fROIxy = featureBoundaries{1}; % Get n by 2 array of x,y coordinates. 

 

backgroundBoundary = imfreehand(); %Allows drawing of simply connected (no holes) ROI 

for the background, should not intersect the feature ROI 

backgroundMask = 

logical((backgroundBoundary.createMask()).*not(glareMask).*not(featureMask)); %Mask 

for glare 

backgroundPixels = sum(backgroundMask(:)); %Number of pixels in ROI 

 

backgroundBoundaries = bwboundaries(backgroundMask); %Stores defined background ROI 

bROIxy = backgroundBoundaries{1}; % Get n by 2 array of x,y coordinates. 

 

%Calculate mean contrast between defined feature and background 

for i = 1:numImages 

    im = im2double(imageData(i).image); 

 

    featureMean = mean(im(featureMask)); 

    featureStdev = std(im(featureMask))/sqrt(featurePixels); 

    backgroundMean = mean(im(backgroundMask)); 

    backgroundStdev = std(im(backgroundMask))/sqrt(backgroundPixels); 

 

    imageData(i).contrast = (featureMean - backgroundMean)/backgroundMean; %Mean 

contrast between feature and background 
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    imageData(i).contrastStdev = 

sqrt(imageData(i).contrast^2*((featureStdev/featureMean)^2 + 

(backgroundStdev/backgroundMean)^2)); %Standard deviation of mean contrast 

end 

 

sampleMask = logical((backgroundBoundary.createMask()).*not(glareMask)); %Mask for 

glare 

samplePixels = sum(sampleMask(:)); %Number of pixels in ROI 

 

%Map the per pixel contrast against the sample mean for sum and difference 

%images 

finalPixels = sum(sampleMask(:)); %Count pixels in mask 

sumMaskedAverage = sum(sum((rgb2gray(imageData(6).image)).*sampleMask))/finalPixels; 

%Average intensity of masked sum image 

diffMaskedAverage = sum(sum((rgb2gray(imageData(5).image)).*sampleMask))/finalPixels; 

%Average intensity of masked diff image 

maskedSum = (rgb2gray(imageData(6).image)).*sampleMask; %masked sum image 

maskedDiff = (rgb2gray(imageData(5).image)).*sampleMask; %masked diff image 

 

sumContrastMap = sampleMask.*((maskedSum - sumMaskedAverage)./sumMaskedAverage); 

%Calculate the contrast of each pixel to the average intensity to create contrast map 

diffContrastMap = sampleMask.*((maskedDiff - diffMaskedAverage)./diffMaskedAverage); 

%Likewise for diff 

lowerContrast = min([min(min(sumContrastMap)),min(min(diffContrastMap))]); %Find 

minimum contrast value across both maps 

upperContrast = max([max(max(sumContrastMap)),max(max(diffContrastMap))]); %Find 

maximum contrast value across both maps 

figure;imshow(sumContrastMap) 

caxis([lowerContrast,upperContrast]) %Set upper and lower bounds 

figure;imshow(diffContrastMap) 

caxis([lowerContrast,upperContrast]) %Set the same upper and lower bounds for accurate 

comparison 

B-3. Detected Signal Modeling 

%This script serves to model the spectra detected by the RGB camera with 

%(observed) and without (expected) the influence of the error introduced by 

%the wavelength dependencies of the retarder. 

 

x1 = 300:1:800; %wavelength range 

 

%Create expected spectra and calculate detected signal 

blueFun = @(x1) 58.*exp(-((x1-470)./50).^2).*... %Blue transmission function for 

camera 

    (exp(-((x1-550)./113).^2)+.0323); %Lamp illumination spectra 

blueSignal = integral(blueFun,300,800); %Signal integrated by camera 
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redFun = @(x1) 44.*exp(-((x1-640)./40).^2).*... %Same treatment for red 

    (exp(-((x1-550)./113).^2)+.0323); 

redSignal = integral(redFun,300,800); 

 

greenFun = @(x1) 64.*exp(-((x1-525)./50).^2).*... %and green 

    (exp(-((x1-550)./113).^2)+.0323); 

greenSignal = integral(greenFun,300,800); 

 

%Create observed spectra and calculate detected signal 

blueErrFun = @(x2) 58.*exp(-((x2-470)./50).^2).*... %blue transmission function for 

camera 

    (exp(-((x2-550)./113).^2)+.0323).*... %Lamp illumination spectra 

(1 + (.5*(cos(2*pi.*(111./x2-.156))-cos(2*pi.*(303./x2-.0574)))-1)); %Introducing 

error due to retarder 

blueErrSignal = integral(blueErrFun,300,800); 

 

greenErrFun = @(x2) 64.*exp(-((x2-525)./50).^2).*... %green 

    (exp(-((x2-550)./113).^2)+.0323).*... 

(1 + (.5.*(cos(2*pi.*(111./x2-.156))-cos(2*pi.*(303./x2-.0574)))-1)); 

greenErrSignal = integral(greenErrFun,300,800); 

 

redErrFun = @(x2) 44.*exp(-((x2-640)./40).^2).*... %red 

    (exp(-((x2-550)./113).^2)+.0323).*... 

(1 + (.5.*(cos(2*pi.*(111./x2-.156))-cos(2*pi.*(303./x2-.0574)))-1)); 

redErrSignal = integral(redErrFun,300,800); 

 

%Calculate the error fraction between the actual and observed signals 

blueErrSignalFraction = (blueErrSignal-blueSignal)/blueSignal 

greenErrSignalFraction = (greenErrSignal-greenSignal)/greenSignal 

redErrSignalFraction = (redErrSignal-redSignal)/redSignal 

 

%Plot expected and observed spectra 

figure; 

plot(x1,redFun(x1)) 

hold on 

plot(x1,blueFun(x1)) 

plot(x1,greenFun(x1)) 

 

figure; 

plot(x1,redErrFun(x1)) 

hold on 

plot(x1,blueErrFun(x1)) 

plot(x1,greenErrFun(x1)) 

B-4. Functions 

%GLARE MASK FUNCTION 
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%This function serves to apply Canny edge detection to identify glare in 

%the supplied grayscale image and threshold value, then create a mask which 

%describes the detected glare regions. 

 

    function [mask] = glareMask(image, threshold,dilation) 

 

        edges = edge(image,'canny',threshold); 

 

        fatEdges = imdilate(edges,strel('disk',dilation)); 

 

        mask = imfill(fatEdges,'holes'); %Mask returned by the function which includes 

only the detected glare 

 

 

%COLOR CHANNEL SEPARATION FUNCTION 

 

%This function takes a Bayer-tiled image and returns three images of the 

%red, green, and blue pixels, each with the other two color channel pixels 

%suppressed 

 

    function [colorChannels] = colorChannelSeparator(im) 

        colorChannels = zeros(length(im(:,1)),length(im(1,:)),3); 

        imBlue = im; %Placeholders for writing image channels to 

        imGreen = im; 

        imRed = im; 

 

        topLeft = false; %Initializing booleans 

        bottomRight = true; 

 

        %Usually bayer tiles are in the following configuration: GB RG This 

        %configuration has green in the top left, blue in the top right, red in the 

        %bottom left, and green in the bottom right. If this is not the config for 

        %the loaded image, the following code may be modified by changing the 

        %variable assignment under each comment. 

 

        for j = 1:length(im(1,:)); 

            bottomRight = not(bottomRight); 

            if not(bottomRight); 

                for i = 1:length(im(:,1)); 

                    topLeft = not(topLeft); 

                    if topLeft %Top left assignment 

                        imBlue(i,j) = 0; 

                        imGreen(i,j) = im(i,j); 

                        imRed(i,j) = 0; 

                    else %Bottom left assignment 

                        imBlue(i,j) = 0; 

                        imGreen(i,j) = 0; 

                        imRed(i,j) = im(i,j); 
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                    end 

                end 

            else 

                for i = 1:length(im(:,1)); 

                    bottomRight = not(bottomRight); 

                    if bottomRight %Bottom right assignment 

                        imBlue(i,j) = 0; 

                        imGreen(i,j) = im(i,j); 

                        imRed(i,j) = 0; 

                    else %Top right assignment 

                        imBlue(i,j) = im(i,j); 

                        imGreen(i,j) = 0; 

                        imRed(i,j) = 0; 

                    end 

                end 

            end 

        end 

        colorChannels(:,:,1) = imRed; 

        colorChannels(:,:,2) = imGreen; 

        colorChannels(:,:,3) = imBlue; 

 

 

%IMAGE MASKING FUNCTION 

 

%Applies a Boolean mask to a rgb or grayscale image, false pixels are set 

%to zero 

 

    function [imMasked] = maskImage(im,mask,type) 

 

        imMasked = im; 

 

        if strcmp(type, 'mono') 

            for i = 1:length(im(:,1)) 

                for j = 1:length(im(1,:)) 

                    if not(mask(i,j)) 

                        imMasked(i,j) = 0; 

                    end 

                end 

            end 

        end 

 

        if strcmp(type, 'rgb') 

            for i = 1:length(im(:,1,1)) 

                for j = 1:length(im(1,:,1)) 

                    if not(mask(i,j)) 

                        for k=1:3 

                            imMasked(i,j,k) = 0; 

                        end 

                    end 
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                end 

            end 

        end 

 

 

%IMAGE NORMALIZING FUNCTION 

 

%Normalize im1 to a point (x,y) in im2 in RGB or grayscale 

 

    function [imNorm] = normalizeImage(im1,im2,x,y,type) 

 

        im1 = im2double(im1); 

        im2 = im2double(im2); 

        imNorm = im2; 

 

        if strcmp(type, 'mono') 

            imNorm = im2(y,x)/im1(y,x).*im1; 

        end 

 

        if strcmp(type, 'rgb') 

            for i=1:3 

                imNorm(:,:,i) = im2(y,x,i)/im1(y,x,i).*im1(:,:,i); 

            end 

        end 

 

 

%ROW PLOTTING FUNCTION 

 

%Plots the image intensity along the horzontal line bound by xMin and xMax 

%at height c. 

 

    function [] = rowPlotter(im,c,xMin, xMax) 

 

        x = xMin:xMax; 

        y = zeros(length(x),1); 

 

        for i= 1:length(x) 

            y(i) = im(c,x(i)); 

        end 

        figure() 

        plot(x,y) 

C. Device Control Code 

//Inclusions 
#include "stdafx.h" 
#include "FlyCapture2.h" 
#include <iostream> 
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#include <sstream> 
#include <stdio.h> 
#include "LCC25_Api.h" 
#include <iomanip> 
#include <string.h> 
#include <vector> 
#include <assert.h> 
#include <future> 
 
//Namespace declaration 
using namespace FlyCapture2; 
using namespace std; 
 
//Global variable instantiations and definitions 
unsigned int imageCnt = 0; //Counter for difference images 
unsigned int frameCnt = 0; //Counter for individual frames 
bool modStart = false; //Boolean that tracks if framerate and switching have been 
synchronized 
const int k_numFrames = 500; //Number of frames for the camera to capture 
const int k_numImages = k_numFrames/2; //Number of DPL images associated with the number 
of frames 
std::vector<Image> vecImages; //Vector to store collected images 
char c[256]; //Retarder error string 
Image paraImage; //Variable to store parallel image in 
Image perpImage; //Variable to store perpendicular image in 
Image diffImage; //Variable to store DPL image in 
bool initializeDiffImage = true; //Boolean that tracks if the variable for the DPL image 
has been initialized 
bool polState = true; //Boolean that tracks the voltage state of the retarder 
 
//Camera properties 
Error error; 
Property frameRateProp(FRAME_RATE); 
CameraInfo camInfo; 
FC2Config fc2Config; 
 
//Video appending properties 
enum AviType 
{ 
 UNCOMPRESSED, 
 MJPG, 
 H264 
}; 
 
//Printing camera information 
void PrintBuildInfo() 
{ 
    FC2Version fc2Version; 
    Utilities::GetLibraryVersion(&fc2Version); 
 
    ostringstream version; 
    version << "FlyCapture2 library version: " << fc2Version.major << "." 
            << fc2Version.minor << "." << fc2Version.type << "." 
            << fc2Version.build; 
    cout << version.str() << endl; 
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    ostringstream timeStamp; 
    timeStamp << "Application build date: " << __DATE__ << " " << __TIME__; 
    cout << timeStamp.str() << endl << endl; 
} 
 
void PrintCameraInfo(CameraInfo *pCamInfo) 
{ 
    cout << endl; 
    cout << "*** CAMERA INFORMATION ***" << endl; 
    cout << "Serial number - " << pCamInfo->serialNumber << endl; 
    cout << "Camera model - " << pCamInfo->modelName << endl; 
    cout << "Camera vendor - " << pCamInfo->vendorName << endl; 
    cout << "Sensor - " << pCamInfo->sensorInfo << endl; 
    cout << "Resolution - " << pCamInfo->sensorResolution << endl; 
    cout << "Firmware version - " << pCamInfo->firmwareVersion << endl; 
    cout << "Firmware build time - " << pCamInfo->firmwareBuildTime << endl 
         << endl; 
} 
 
void PrintError(Error error) { error.PrintErrorTrace(); } 
 
//Function for taking the difference of two 16 bit mono images, called in OnImageGrabbed 
void ImageDifference(Image* differenceImage, Image* minuendImage, Image* subtrahendImage) 
{ 
 // This image difference routine only works for mono, 16-bit images. 

// cast the image data pointer to point to unsigned short int* instead of unsigned 
char* 
unsigned short int* p16BitMinuendImageData = reinterpret_cast<unsigned short 
int*>(minuendImage->GetData()); 
unsigned short int* p16BitSubtrahendImageData = reinterpret_cast<unsigned short 
int*>(subtrahendImage->GetData()); 
unsigned short int* p16BitDifferenceImageData = reinterpret_cast<unsigned short 
int*>(differenceImage->GetData()); 
// With the cast to a 16-bit data type, the image "size" must be adjusted (in this 
case halved). 
unsigned int castImageSize = minuendImage->GetDataSize() / sizeof 
*p16BitMinuendImageData; 

 
 for (unsigned int index = 0; index < castImageSize; index++) 
 { 

p16BitDifferenceImageData[index] = p16BitMinuendImageData[index] - 
p16BitSubtrahendImageData[index]; 

 } 
} 
 
// User-supplied callback function to run when an event (end of camera exposure) is 
triggered. 
void ModSimpleCallback(void *cbData) 
{ 
 if (!modStart) 
 { 
  fnLCC25_DLL_SetOutputMode(0, 0); 
  modStart = !modStart; 
 } 
 cout << "Callback executes.\n"; 
 return; 
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} 
 
// User-supplied callback function to run when an image is read from the camera. 
void OnImageGrabbed(Image *pImage, const void *pCallbackData) 
{ 
 if (frameCnt < k_numFrames) { 
  if (polState) { 
   paraImage = *pImage; 

  if (initializeDiffImage) { //Initialize variable to hold difference 
image 

    diffImage = paraImage; 
    initializeDiffImage = !initializeDiffImage; 
   } 
  } 
  else { 
   perpImage = *pImage; 
   ImageDifference(&diffImage, &paraImage, &perpImage); 
   vecImages[imageCnt].DeepCopy(&diffImage); 
   imageCnt++; 
  } 
 } 
 polState = !polState; 
 frameCnt++; 
 cout << "Frame " << frameCnt << " Recieved.\n"; 
 return; 
} 
 
// Trigger a single camera to start streaming images, calling ModSimpleCallback on the 
first end of exposure event and OnImageGrabbed on each image read 
int RunSingleCamera(PGRGuid guid) 
{ 
 // Context variable 
 Camera cam; 
 
 // Connect to a camera 
 error = cam.Connect(&guid); 
 if (error != PGRERROR_OK) 
 { 
  PrintError(error); 
  return -1; 
 } 
 
 //Get camera framerate 
 error = cam.GetProperty(&frameRateProp); 
 if (error != PGRERROR_OK) 
 { 
  PrintError(error); 
  return -1; 
 } 
 
 //Wavelength retarder initialization 
 int ret = Init(); 
 assert(ret == 0); 
 int hdl = 0; 
 char sn[256] = "COM4"; 
 char a = 'e'; 
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 char c[256]; 
 memset(c, 0, sizeof(c)); 
 hdl = fnLCC25_DLL_Open(sn); 
 assert(hdl == 0); 
 
 //Setting operating voltages 
 ret = fnLCC25_DLL_SetVoltage1(hdl, 1.4); //Set parallel voltage 
 assert(ret == 0); 
 ret = fnLCC25_DLL_SetVoltage2(hdl, 25); //Set perpendicular voltage 
 assert(ret == 0); 
 
 //Sets voltage switching frequency to half camera framerate 
 ret = fnLCC25_DLL_SetFrequency(hdl, (frameRateProp.absValue)/2);  
 assert(ret == 0); 
 ret = fnLCC25_DLL_SetOutputMode(hdl, 1); 
 assert(ret == 0); 
 ret = fnLCC25_DLL_SetOutputEnable(hdl, 1); 
 assert(ret == 0); 
 cout << "Retarder Initialized.\n" << endl; 
 
    // Register the End of Exposure (EoE) event and tie it to ModSimpleCallback.  
    EventOptions optEOE; 
    optEOE.EventName = "EventExposureEnd"; 
    optEOE.EventCallbackFcn = &ModSimpleCallback; 
    CustomUserDataStruct UserDataEOE = {1, 'a'}; 
         
        // Clear previously registered events. 
    error = cam.DeregisterAllEvents(); 
    if (error != PGRERROR_OK) 
    { 
  PrintError(error); 
  return (-1); 
    } 
 
    // Register our event 
    error = cam.RegisterEvent(&optEOE); 

 
    if (error != PGRERROR_OK) 
    { 
        PrintError(error); 
        return (-1); 
    } 
    else 
    { 
        cout << "Successfully registered event:" << optEOE.EventName << endl; 
    } 
 
    // Get the camera information (serial number, capabilities, etc) 
    CameraInfo camInfo; 
    error = cam.GetCameraInfo(&camInfo); 
    if (error != PGRERROR_OK) 
    { 
        PrintError(error); 
        return -1; 
    } 
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    PrintCameraInfo(&camInfo); 
 
    //Resize image vector to fit all the images 
    vecImages.resize(k_numImages); 
 
    // Start reading images from the camera, executing callback OnImageGrabbed with each 
image read. 
    error = cam.StartCapture(OnImageGrabbed); 
    if (error != PGRERROR_OK) 
    { 
        PrintError(error); 
        return -1; 
    } 
 
    //Continue capture until all frames captured 
    while (frameCnt < k_numFrames) 
    { 
     const unsigned int millisecondsToSleep = 1000 / frameRateProp.absValue; 
 #if defined(_WIN32) || defined(_WIN64) 

Sleep(millisecondsToSleep); 
 #else 
  usleep(millisecondsToSleep * 1000); 
 #endif 
    } 
 
    // Stop capturing images 
    error = cam.StopCapture(); 
    if (error != PGRERROR_OK) 
    { 
        PrintError(error); 
        return -1; 
    } 
 
    // De-register all events before disconnecting from camera 
    cam.DeregisterAllEvents(); 
 
    // Disconnect the camera 
    error = cam.Disconnect(); 
    if (error != PGRERROR_OK) 
    { 
        PrintError(error); 
        return -1; 
    } 
    return 0; 
} 
 
// Function to append collected image vector into avi video 
void SaveAviHelper(AviType aviType,std::vector<Image> &vecImages,std::string 
aviFileName,float frameRate) 
{ 
 AVIRecorder aviRecorder; 
 
 // Open the AVI file for appending images 
 switch (aviType) 
 { 
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 case UNCOMPRESSED: 
 { 
  AVIOption option; 
  option.frameRate = frameRate; 
  error = aviRecorder.AVIOpen(aviFileName.c_str(), &option); 
 } 
 break; 
 case MJPG: 
 { 
  MJPGOption option; 
  option.frameRate = frameRate; 
  option.quality = 75; 
  error = aviRecorder.AVIOpen(aviFileName.c_str(), &option); 
 } 
 break; 
 case H264: 
 { 
  H264Option option; 
  option.frameRate = frameRate; 
  option.bitrate = 1000000; 
  option.height = vecImages[0].GetRows(); 
  option.width = vecImages[0].GetCols(); 
  error = aviRecorder.AVIOpen(aviFileName.c_str(), &option); 
 } 
 break; 
 } 
 
 if (error != PGRERROR_OK) 
 { 
  PrintError(error); 
  return; 
 } 
 
 cout << endl; 
 cout << "Appending " << vecImages.size() 
  << " images to AVI file: " << aviFileName.c_str() << endl; 
 for (int imageCnt = 0; imageCnt < vecImages.size(); imageCnt++) 
 { 
  // Append the image to AVI file 
  error = aviRecorder.AVIAppend(&vecImages[imageCnt]); 
  if (error != PGRERROR_OK) 
  { 
   PrintError(error); 
   continue; 
  } 
 
  cout << "Appended image " << imageCnt << "..." << endl; 
 } 
 
 // Close the AVI file 
 error = aviRecorder.AVIClose(); 
 if (error != PGRERROR_OK) 
 { 
  PrintError(error); 
  return; 
 } 
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} 
 
// Main entry point 
int main(int /*argc*/, char ** /*argv*/) 
{ 
    PrintBuildInfo(); 
 
    Error error; 
 
    // Since this application saves images in the current folder 
    // we must ensure that we have permission to write to this folder. 
    // If we do not have permission, fail right away. 
    FILE *tempFile = fopen("test.txt", "w+"); 
    if (tempFile == NULL) 
    { 
        cout << "Failed to create file in current folder.  Please check " 
                "permissions." 
             << endl; 
        return -1; 
    } 
    fclose(tempFile); 
    remove("test.txt"); 
 
    // Create a Bus Manager instance so we can query all connected cameras. 
    BusManager busMgr; 
    unsigned int numCameras; 
    error = busMgr.GetNumOfCameras(&numCameras); 
    if (error != PGRERROR_OK) 
    { 
        PrintError(error); 
        return -1; 
    } 
    cout << "Number of cameras detected: " << numCameras << endl; 
  
    // Get a handle to an individual camera, and start to receive images and 
    // execute callbacks 
    for (unsigned int i = 0; i < numCameras; i++) 
    { 
        PGRGuid guid; 
        error = busMgr.GetCameraFromIndex(i, &guid); 
        if (error != PGRERROR_OK) 
        { 
            PrintError(error); 
            return -1; 
        } 
   
  //Here is where the camera is actually operated 
        RunSingleCamera(guid); 
    } 
  
 //Appending image vector to avi video 

cout << "Using frame rate of " << fixed << setprecision(1) << 
frameRateProp.absValue/2 << endl; 

 
 ostringstream aviFileName; 
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 aviFileName << "SaveImageToAviEx-Uncompressed-" << camInfo.serialNumber; 
 SaveAviHelper( 

UNCOMPRESSED, vecImages, aviFileName.str().c_str(), 
(frameRateProp.absValue)/2); 

 
    cout << "Done! Press Enter to exit..." << endl; 
    cin.ignore(); 
 
    return 0; 
} 

D. Thorlabs LCC111125-A Variable Retarder Performance Data 

Retardance by Wavelength at 25 °C 

Driver RMS Voltage 405 nm 635 nm 
0.1 1.32434 0.74277 

0.2 1.32544 0.74248 

0.3 1.32603 0.7423 

0.4 1.32507 0.74197 

0.5 1.32317 0.74129 

0.6 1.32023 0.73986 

0.7 1.31304 0.73495 

0.8 1.28526 0.71319 

0.9 1.2179 0.66649 

1 1.15237 0.61918 

1.02 1.14317 0.60874 

1.04 1.13727 0.5991 

1.06 1.13365 0.58939 

1.08 1.13147 0.57975 

1.1 0.86702 0.57049 

1.12 0.8627 0.56067 

1.14 0.85547 0.55151 

1.16 0.84666 0.5418 

1.18 0.83642 0.53288 

1.2 0.82592 0.52554 

1.22 0.81251 0.51624 

1.24 0.79953 0.50731 

1.26 0.7867 0.5 

1.28 0.77327 0.48833 

1.3 0.7601 0.47559 

1.32 0.74686 0.46484 

1.34 0.73316 0.45339 

1.36 0.7195 0.44193 
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1.38 0.70591 0.43124 

1.4 0.69188 0.4205 

1.42 0.67891 0.41033 

1.44 0.66547 0.40117 

1.46 0.65309 0.39182 

1.48 0.64075 0.38295 

1.5 0.62879 0.37469 

1.52 0.61854 0.36656 

1.54 0.60618 0.35853 

1.56 0.59499 0.35078 

1.58 0.58254 0.34325 

1.6 0.56993 0.33595 

1.62 0.55882 0.32912 

1.64 0.54658 0.32229 

1.66 0.53677 0.31554 

1.68 0.52695 0.30933 

1.7 0.51801 0.30325 

1.72 0.5 0.29697 

1.74 0.49609 0.29108 

1.76 0.49414 0.28545 

1.78 0.49805 0.27999 

1.8 0.48242 0.27454 

1.82 0.46834 0.26922 

1.84 0.46149 0.26401 

1.86 0.45342 0.25898 

1.88 0.44584 0.2542 

1.9 0.43717 0.24944 

1.92 0.4275 0.24468 

1.94 0.42084 0.24021 

1.96 0.41684 0.23577 

1.98 0.40854 0.2315 

2 0.40384 0.22739 

2.02 0.39727 0.22335 

2.04 0.39207 0.21945 

2.06 0.38538 0.21585 

2.08 0.37951 0.21242 

2.1 0.37326 0.20899 

2.12 0.36681 0.20581 

2.14 0.36186 0.20269 

2.16 0.35723 0.19984 

2.18 0.35274 0.19713 
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2.2 0.34738 0.19449 

2.22 0.34326 0.19201 

2.24 0.33907 0.18948 

2.26 0.33509 0.18702 

2.28 0.32972 0.18469 

2.3 0.3254 0.18235 

2.32 0.32189 0.18022 

2.34 0.31809 0.17777 

2.36 0.31441 0.17563 

2.38 0.31083 0.17358 

2.4 0.3075 0.17138 

2.42 0.30418 0.16948 

2.44 0.30098 0.16752 

2.46 0.29792 0.16564 

2.48 0.29466 0.16374 

2.5 0.29092 0.16191 

2.52 0.28853 0.16016 

2.54 0.28519 0.15842 

2.56 0.28215 0.15664 

2.58 0.27979 0.15505 

2.6 0.27759 0.15348 

2.62 0.27563 0.15169 

2.64 0.2728 0.15007 

2.66 0.27035 0.14855 

2.68 0.2672 0.14693 

2.7 0.26533 0.14538 

2.72 0.26237 0.14385 

2.74 0.26019 0.14222 

2.76 0.25833 0.14085 

2.78 0.25575 0.13919 

2.8 0.25495 0.13759 

2.82 0.25319 0.13618 

2.84 0.25119 0.13459 

2.86 0.24841 0.13316 

2.88 0.24702 0.1315 

2.9 0.24422 0.13008 

2.92 0.24332 0.12843 

2.94 0.2415 0.12713 

2.96 0.24027 0.12561 

2.98 0.2387 0.12427 

3 0.23787 0.12294 
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3.1 0.22988 0.1175 

3.2 0.22267 0.11248 

3.3 0.21387 0.10813 

3.4 0.20965 0.10388 

3.5 0.20421 0.10002 

3.6 0.19873 0.09654 

3.7 0.19417 0.09326 

3.8 0.19068 0.09022 

3.9 0.18733 0.08736 

4 0.18405 0.08474 

4.1 0.18097 0.08232 

4.2 0.17782 0.08 

4.3 0.17509 0.07782 

4.4 0.17149 0.07596 

4.5 0.16709 0.07415 

4.6 0.16615 0.07245 

4.7 0.16668 0.07092 

4.8 0.16568 0.06968 

4.9 0.16439 0.06841 

5 0.16195 0.06718 

5.1 0.16031 0.06595 

5.2 0.15883 0.06481 

5.3 0.15711 0.06364 

5.4 0.1556 0.06254 

5.5 0.15415 0.06143 

5.6 0.15329 0.06037 

5.7 0.15227 0.05928 

5.8 0.15076 0.05838 

5.9 0.14871 0.0574 

6 0.14887 0.05648 

6.1 0.14763 0.05548 

6.2 0.14615 0.05464 

6.3 0.14594 0.05374 

6.4 0.14444 0.05294 

6.5 0.14364 0.05211 

6.6 0.14375 0.05143 

6.7 0.14302 0.05059 

6.8 0.14126 0.04983 

6.9 0.14148 0.04916 

7 0.14035 0.04853 

7.1 0.13996 0.04774 
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7.2 0.13892 0.04714 

7.3 0.13835 0.04649 

7.4 0.13771 0.04581 

7.5 0.13768 0.04524 

7.6 0.13751 0.04461 

7.7 0.13518 0.04389 

7.8 0.13695 0.04341 

7.9 0.13616 0.0427 

8 0.13551 0.04227 

8.1 0.13521 0.04154 

8.2 0.13398 0.04107 

8.3 0.13409 0.04045 

8.4 0.1345 0.03976 

8.5 0.13401 0.03917 

8.6 0.13332 0.03857 

8.7 0.13333 0.03792 

8.8 0.13251 0.03739 

8.9 0.12599 0.03699 

9 0.128 0.03646 

9.1 0.12846 0.03604 

9.2 0.12773 0.03726 

9.3 0.12826 0.03827 

9.4 0.12851 0.0374 

9.5 0.12783 0.03685 

9.6 0.12709 0.03626 

9.7 0.12731 0.03583 

9.8 0.12731 0.03522 

9.9 0.12703 0.03456 

10 0.12728 0.03422 

10.2 0.12609 0.03308 

10.4 0.12676 0.0323 

10.6 0.12699 0.03165 

10.8 0.1258 0.03099 

11 0.12619 0.0303 

11.2 0.12546 0.02975 

11.4 0.1253 0.02928 

11.6 0.12496 0.0288 

11.8 0.12465 0.02846 

12 0.12463 0.02809 

12.2 0.1246 0.02765 

12.4 0.12397 0.02741 
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12.6 0.12383 0.02691 

12.8 0.12288 0.02657 

13 0.12262 0.02625 

13.2 0.12298 0.02602 

13.4 0.12188 0.02562 

13.6 0.12258 0.02539 

13.8 0.12353 0.02503 

14 0.12303 0.02478 

14.2 0.12207 0.02473 

14.4 0.12207 0.02437 

14.6 0.12215 0.02431 

14.8 0.12181 0.02412 

15 0.12151 0.02402 

15.2 0.1215 0.0238 

15.4 0.12233 0.02365 

15.6 0.12196 0.02369 

15.8 0.12276 0.02349 

16 0.12212 0.02342 

16.2 0.12226 0.02337 

16.4 0.12282 0.02298 

16.6 0.12255 0.02289 

16.8 0.12196 0.02286 

17 0.12139 0.02253 

17.2 0.12125 0.02258 

17.4 0.12082 0.02251 

17.6 0.12165 0.02232 

17.8 0.12191 0.02232 

18 0.12078 0.02236 

18.2 0.1215 0.0223 

18.4 0.12115 0.02206 

18.6 0.11939 0.02195 

18.8 0.12002 0.02198 

19 0.12073 0.02182 

19.2 0.1201 0.02173 

19.4 0.12014 0.02168 

19.6 0.12005 0.02171 

19.8 0.12089 0.02131 

20 0.12023 0.02123 

20.2 0.11947 0.02117 

20.4 0.11843 0.02099 

20.6 0.11833 0.021 
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20.8 0.11903 0.02102 

21 0.1201 0.02085 

21.2 0.12075 0.02072 

21.4 0.11854 0.02077 

21.6 0.11764 0.02062 

21.8 0.11592 0.0204 

22 0.11799 0.02051 

22.2 0.11708 0.02026 

22.4 0.11778 0.02027 

22.6 0.11748 0.02027 

22.8 0.11735 0.02018 

23 0.11765 0.02017 

23.2 0.11804 0.02015 

23.4 0.11819 0.02024 

23.6 0.11889 0.01995 

23.8 0.11914 0.02006 

24 0.1184 0.01995 

24.2 0.11895 0.01981 

24.4 0.11886 0.01984 

24.6 0.1187 0.01988 

24.8 0.11924 0.01975 

25 0.11931 0.01974 
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