
 
 

 

Multi-modal Analysis of Metabolic 

Enzyme Disruption in Adipocytes 

 

A dissertation 

submitted by:  

James Kenneth Sims 

 

In partial fulfillment of the requirements 

for the degree of 

 

Doctor of Philosophy 

in 

Chemical Engineering 

Tufts University 

 

February 2015 

ADVISOR: Kyongbum Lee, Ph.D 



ii 
 

  



iii 
 

Abstract 

Obesity results from a chronic imbalance in caloric intake and 

expenditure. The excess calories are stored mainly as lipids (triglycerides, TG), 

leading to an expansion of body fat or adipose tissue through increases in fat cell 

(adipocyte, AD) size and number. One approach to controlling body fat could be 

to intervene in the metabolic processes of the adipose tissue that directly 

contribute to lipid accumulation and cell growth. The goal of this study is to 

investigate targets for reducing AD size and TG accumulation via RNAi-mediated 

gene silencing (i.e. siRNA knockdown) of metabolic proteins. Targets for siRNA 

knockdown were selected based on our knowledge of adipocyte metabolism, and 

were identified from each stage of lipid accumulation: early synthesis (breakdown 

and transformation of glycolysis intermediates into precursors of fatty acid 

synthesis), late synthesis (formation of triglyceride from synthesized precursors), 

and droplet stability (protection from intracellular lipases and formation of larger 

lipid droplets). Pyruvate carboxylase (PCX) and isocitrate dehydrogenase (IDH) 

were identified as targets for early synthesis, diglyceride acyltransferase (DGAT) 

for late synthesis, and fat-specific protein 27 (FSP) and perilipin (PLIN) for 

droplet stability.  

In addition to monitoring TG accumulation via conventional, destructive 

biochemical assays, we developed an image processing method, which identifies 

LDs in microscopy images, and quantifies their number, size distribution, and 

total lipid content. This method could prospectively be used as a high-throughput 

screening method for a variety of applications. We also conducted a metabolomic 
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analysis and isotopic labeling experiments to understand how disrupting each 

enzyme affected metabolite concentrations and reaction fluxes across the entire 

metabolic network. We have shown successful knockdown of several metabolic 

proteins, which led to reduction in accumulation of triglycerides; however, 

inhibition of PCX and DGAT had the greatest individual effects. Interestingly, 

DGAT and FSP had the greatest combined effect on and this combination was 

selected for further analysis. Prospectively, results from this study could be used 

to identify potential therapeutic targets for treating obesity, guided by an 

improved understanding of how the enzymes and LD proteins regulate the 

balance of TG in adipocytes. 
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1 Introduction 

In adults, body fat essentially consists of white adipose tissue (WAT). 

Distributed across the body in various depots, WAT performs metabolic as well 

as signaling functions critical for whole body homeostasis. The core metabolic 

functions of WAT are to store excess nutrients as esterified lipids (i.e. 

triglycerides, TGs) and to mobilize these stores during fasting. The bulk of WAT 

cellular mass consists of lipid-laden white adipocytes, held in a dense network of 

fibrous extracellular matrix (ECM) proteins. Differentiated adipocytes express 

high levels of enzymes for lipid uptake, synthesis, storage, and breakdown. In 

vivo, almost the entire adipocyte volume is filled by a single large lipid droplet 

(LD), which expands or shrinks depending on the body’s energy balance. Chronic 

overfeeding can lead to significant expansion of adipocyte volume, termed 

hypertrophy, to accommodate the storage of excess nutrients as lipids. This 

expansion requires a reorganization of the surrounding ECM as well as 

neovascularization for adequate oxygen supply. Hypertrophic expansion cannot 

proceed without limit; it is thought that recruitment and differentiation of locally 

resident precursor cells may also be necessary to accommodate additional lipid 

stores. Adipocyte hypertrophy, especially in the context of obesity, correlates with 

accumulation of pro-inflammatory immune cells in WAT, which in turn 

underpins tissue insulin resistance and other metabolic alterations associated with 

obesity-related metabolic diseases. 
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1.1 Hypertrophy in Adipocytes 

There is now increasing evidence that mechanistic relationships exist between 

adipocyte hypertrophy, tissue remodeling, inflammation, and metabolic 

alterations (Lee & Kuo, 2015). Several biochemical explanations have been 

proposed to connect tissue remodeling and inflammation, including hypoxia-

induced deposition of excess collagen (Sun, 2011). In obese subjects, adipose 

expandability could be compromised, as deposition of fibrillar ECM proteins 

outpaces MMP activity, resulting in fibrosis. It remains an open question whether 

fibrosis acts to limit differentiation of precursor cells into adipocytes, expansion 

of mature adipocytes, or both. Regardless, the ensuing “stiffening” of the tissue 

could further contribute to a state of metabolic stress by favoring the hydrolysis of 

stored TG, i.e. lipolysis, over fatty acid esterification and storage.  

Normally, lipolysis is under tight hormonal regulation. Catecholamine 

stimulation activates hormone-sensitive lipase (HSL) through a G-protein coupled 

receptor (GPCR)-dependent signalling cascade mediated by protein kinase A 

(PKA). Insulin potently inhibits lipolysis by activating a phosphodiesterase 

(PDE3B) to lower the intracellular level of cAMP and reduce PKA activity, 

thereby attenuating post-translational activation of HSL. Under conditions of 

fibrosis and limited adipose expandability, excess free fatty acids that cannot be 

stored as esterified lipids could establish a positive feedback loop for elevated 

lipolysis, as the metabolite products of HSL are putative ligands or pro-ligands for 

peroxisome proliferator-activated receptor-γ (PPARγ) (Shen, 2011). The 

transcription factor PPARγ is a key regulator of differentiation adipocyte function 
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whose many metabolic targets include adipose triglyceride lipase (ATGL), a 

lipolytic enzyme that acts upstream of HSL.  

Experiments with isolated cells from human subcutaneous WAT showed that 

both basal and hormone stimulated lipolysis positively correlates with cell size 

(Laurencikiene, 2011). The same study also observed higher expression of 

lipolytic enzymes hormone sensitive lipase (HSL) and ATGL in larger 

adipocytes. These and other metabolic studies on hypertrophic adipocytes suggest 

that increased lipolysis, sustained over time, could overwhelm the re-esterification 

capacity of WAT depots, and up-regulate net fatty acid efflux (Mitrou, 2010). 

Elevation of extracellular free fatty acid levels in turn could further promote local 

inflammation through a variety of signaling mechanisms involving recruitment 

and/or polarization of macrophages (Lumeng, 2007, 2008; Nguyen, 2007) . In 

addition to fatty acids, the levels of several immune cell recruitment factors are 

elevated in WAT of obese individuals. An important factor linking adipose tissue 

inflammation with metabolic phenotypes characteristic of obesity is the monocyte 

chemoattractant protein-1 (MCP-1). Adipose-specific overexpression of MCP-1 

in mice led to insulin resistance, higher levels of free fatty acids in circulation, 

and greater accumulation of macrophages and elevated expression of pro-

inflammatory cytokines in WAT (Kamei, 2006). 

Almost all macrophages in adipose tissue localize to dying/dead adipocytes, 

where they scavenge residual free lipid droplets and fuse with other macrophages 

to form multinucleate giant cells (Cinti, 2007). This would suggest that adipocyte 

death is an early event in WAT macrophage recruitment and inflammation 
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(Strissel, 2007). However, recent studies with granulocyte/monocyte-colony 

stimulating factor-null mice showed that HFD induced adipocyte death can occur 

independently of macrophage infiltration and activation (Feng, 2011), which 

suggests that macrophage recruitment and activation could result from, rather than 

cause, adipocyte hypertrophy and cell death.  

Adipocytes are unique in their ability to expand in volume by a factor near 

1000x. This is largely due to their role as a storage depot for esterified lipids. 

However, TG synthesis is a complex pathway which involves many metabolic 

and regulatory pathways, with complex interactions. These pathways are 

described in further detail in Chapter 2. Briefly, TG accumulation can be roughly 

broken down into three stages: upstream synthesis, downstream synthesis and 

droplet stability. Upstream synthesis involves the formation of precursor 

metabolites (i.e. glycerol and acetyl-coA) from intermediates of glycolysis and the 

TCA cycle. Acetyl-coA is the building block for biosynthesis of fatty acids which 

are then esterified to a glycerol backbone (downstream synthesis).  

Once TG is synthesized, it is sequestered in intracellular lipid droplets, which 

are stabilized by a variety of proteins that shield the droplets from intracellular 

lipases. Ultimately, a single LD occupies almost the entire volume of the cell. As 

more TG is accumulated, the LD continues to grow, and so does the cell itself 

(i.e., hypertrophy). These pathways are tightly interconnected and highly 

regulated as well. Therefore, it is the goal of this study to examine these pathways 

using a systems approach. There are several new methods available for the 

metabolic analysis of tissues, which will be described in the following section. 
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1.2 Methods for Analysis of Tissue Metabolism1 

Metabolism refers to biochemical processes that extract chemical energy from 

nutrients (or solar energy in the case of phototrophic organisms), and use this 

energy to convert nutrients into building blocks for biosynthesis. The 

intermediates of these processes, i.e. metabolites, also act as regulatory molecules 

that coordinate the activities of metabolic pathways and other cellular pathways 

such as signaling. Even for cells and tissues whose primary physiological role is 

not metabolic per se, e.g. immune cells (Bordbar, 2012), there is increasing 

evidence that their metabolic state is a key factor in determining function.  

For metabolically active cells in liver, muscle, and adipose, metabolic 

indicators are integral to tissue function assessment. More broadly, analysis of 

cellular metabolism can reveal opportunities to tailor the culture environment to 

fit the tissue engineering objectives, for example by identifying metabolic 

pathways whose activities correlate with improved function (Sharma, 2011). 

Rational redesign of cellular metabolism, termed metabolic engineering, has been 

successfully used in the microbial cell engineering community to upgrade the 

catalytic properties (Wang, 2013; Shaw, 2008) or biosynthetic capabilities 

(Avalos, 2013; Smith, 2011; Huo, 2011) of various unicellular organisms. In 

comparison, cells relevant to tissue engineering and regenerative medicine 

applications have been examined to only a limited extent from a metabolic 

engineering perspective.  

                                                 
1 Sims JK, Manteiga S, Lee K. Towards High Resolution Analysis of Metabolic Flux in Cells and 

Tissues. Curr Opin Biotechnol. 2013, 24: 933-939. 
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Fortunately, many of the methods developed to analyze microbial metabolism 

can be readily adopted to study tissue metabolism, as the main pathways for 

extracting energy and generating building block biomolecules are highly 

conserved across organisms (Peregrin-Alvarez, 2009). One qualification is that 

cells of differentiated tissue require rich media with more than one carbon source. 

This adds complexity (Orman, 2011), in terms of both the number of metabolites 

that need to be monitored and the mathematical models that need to be 

formulated/solved to interpret the measurements. Another important qualification 

is that metabolic studies on microbes have typically assumed that the system of 

interest is homogeneous, or that characterization of bulk behavior is satisfactory.  

In the case of tissue systems, which often comprise a heterogeneous 

population of cells, it can be desirable to obtain spatially and/or temporally 

resolved information. Spatial heterogeneity in metabolic state could reflect the 

presence of nutrient or signaling gradients, which are nearly always present in an 

avascular system due to mass transfer limitations. Spatial heterogeneity is 

sometimes an inherent feature representing physiological or pathological 

variations such as tissue zonation (Allen, 2003; Davidson, 2012) or tumor 

microenvironments (Konig, 2013; Xu, 2013). Temporal heterogeneity can arise as 

cells respond to hormones and other stimuli to engage and disengage different 

metabolic pathways. Terminal changes in metabolic phenotypes can occur over 

longer time periods, as illustrated by stem cells exhibiting dramatic changes in 

their redox levels as they transition from a proliferative state to terminally 

differentiated state (Reid, 2013). Ideally, these types of heterogeneities are studied 
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using spatiotemporally resolved, noninvasive methods that enable repeated 

observations over time.  

In this remainder of this section, we first provide an overview of the most 

commonly used methods for quantitative characterization of cellular metabolism, 

highlighting representative applications in systems that are relevant to tissue 

engineering and regenerative medicine. We then discuss emerging methods that 

could enable highly resolved analysis of cellular metabolism, and thus address the 

issues of heterogeneity outlined above.   

1.2.1 Methods for Quantitative Analysis of Metabolic Flux 

Metabolic flux, typically expressed as a rate per unit amount of cell or tissue, 

measures the degree of engagement of various metabolic pathways in the intact 

cell. Compared to gene expression level or enzyme amount, metabolic flux 

provides a more immediate description of cellular activity. In the absence of 

detailed knowledge of enzyme kinetics, which is rarely available, steady-state 

fluxes provide useful quantitative snapshots of cellular metabolism. In the context 

of engineering microbial cells, metabolic flux analysis is already an established 

methodology, and has been discussed extensively in a number of excellent 

reviews (Mueller, 2013; Dandekar, 2012). Broadly, there are three groups of 

methods: metabolic flux analysis, flux balance analysis (FBA), and isotopomer 

analysis. Metabolic flux analysis (MFA) refers to the quantification of 

intracellular reaction rates from measurements on the rates of uptake or output of 

major nutrients and metabolic products in conjunction with a stoichiometric 

model of the major metabolic pathways. Given sufficient measurements, the 
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intracellular reactions rates can be calculated from stoichiometric mass balances. 

The major limitations are that the measurement requirements can be high if broad 

coverage of metabolism is desired and that resolution is limited.  

Flux balance analysis (Schilling, 1998) incorporates the stoichiometric mass 

balances as constraints into a linear programming framework to predict 

intracellular reaction rates when measurements are insufficient to completely 

determine the system. This method is especially useful for large-scale metabolic 

models, which cannot be fully constrained using measurements. The main 

limitation is that FBA depends on identifying one or more recognizable metabolic 

objectives for the system of interest, which is not always possible for mammalian 

cells. In the context of tissue engineering, FBA can be viewed as a valuable 

analysis and design tool to explore possible (e.g. genetic) modifications that could 

redirect metabolic resources for a desired engineering objective. An interesting 

variant is flux variability analysis (FVA), which estimates the possible ranges of 

reaction rates by iteratively maximizing and minimizing the flux through each 

reaction in the metabolic model, thereby exploring alternate metabolic states for a 

given set of uptake and output measurements (Yang, 2011; Mahadevan, 2003). A 

useful outcome of FVA is to discriminate between well and poorly constrained 

parts of the metabolic network, which can then be used to focus additional 

experiments to improve the resolution of specific pathways.  

Isotopic labeling is the current gold standard for experimental resolution of 

metabolic fluxes. Isotopomer (isotopic isomer) analysis exploits asymmetries in 

atom transfers of enzymatic reactions to relate reaction fluxes in a cell to the 
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distribution of label from an input substrate (typically a 13C labeled sugar, amino 

acid, or fatty acid) to various metabolic pathway intermediates. The relationship 

between reaction fluxes and label distribution is defined by a mathematical model, 

which is usually solved computationally to obtain the flux estimates. A clear 

advantage of isotopomer analysis is that details such as exchange fluxes of 

reversible reactions can be quantified with good confidence. The drawbacks are 

that the computational, experimental, and analytical efforts can be substantial. 

1.2.2 Metabolic Flux Analysis of Mammalian Cells and Tissues 

There have been numerous metabolic studies on the liver, which performs 

catabolic and anabolic functions essential for whole body homeostasis, including 

fasting glucose production, ammonia clearance, and xenobiotic transformation. 

While the hepatocyte is the dominant parenchymal cell type, other cell types also 

contribute to the organ’s metabolism. Therefore, MFA studies aimed at 

characterizing alterations in liver metabolism under different physiological 

(Orman, 2010) or pathological (Lee, 2003) conditions have often utilized ex vivo 

organ perfusion to isolate systemic influences while preserving the in vivo cell 

composition. Hepatocyte specific metabolism has been studied using cultures of 

established cell lines as well as primary cells from rodents, pigs and humans.  

One of the most widely utilized cell lines is HepG2, which has been used to 

study the metabolic effects of various stresses such as fatty acid toxicity 

(Srivastava, 2008) and drug challenge (Niklas, 2009). The latter study is 

particularly interesting, as MFA revealed alterations in central metabolism, 

specifically TCA cycle flux, even for sub-toxic doses of drugs, suggesting that an 
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examination of metabolic fluxes could provide insights into more subtle impacts 

of a drug before onset of outright toxicity. Isotopic labeling experiments have 

long been used to measure metabolic flux in the liver, although historically this 

approach has focused on a small subset of reactions in central metabolism (Des 

Rosiers, 1991; Di Donato, 1993).  

In recent years, technological advances in high-resolution tandem mass 

spectrometry (MS), paired with new methods for extracting positional labeling 

information (Ruhl, 2012) as well as developments in modeling isotopic label 

distribution in metabolic networks (Crown, 2012) have steadily improved both 

resolution and breadth to enable increasingly sophisticated and comprehensive 

flux quantification experiments. For example, utilizing transient label enrichment 

data can facilitate the analysis of pathways whose intermediates do not rapidly 

reach isotopic steady state (Jazmin, 2013). This approach was used to examine the 

effect of a statin drug on both cholesterol synthesis as well as central carbon 

metabolism in primary rat hepatocytes, confirming that the drug exerts only minor 

effects outside of its target pathway (Maier, 2009).  

Similar to the liver, metabolic studies of muscle cells, notably 

cardiomyocytes, have centered on energy metabolism in the context of overall 

tissue function (Schroeder, 2009) and metabolic consequences of drug challenge 

(Strigum, 2012). In a recent study, Strigun et al. used 13C labeling experiments 

using a murine atrial cell line (HL-1) to examine the effects of verapamil, a 

calcium channel blocker used to treat hypertension, and found that the drug 

reduces flux through glycolysis while minimally affecting the TCA cycle, 
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suggesting a possible explanation for the drug’s potential anti-cancer activity 

(Strigum, 2011). 

For adipocytes, isotopic labeling experiments have been used to specifically 

interrogate lipid synthesis (Lligona-Trulla, 1997) and, in conjunction with MFA, 

to broadly profile the changes in central metabolism as the cells mature 

phenotypically through differentiation (Si, 2007). More recently, we have utilized 

MFA as a screening tool to identify and characterize enzyme targets for reducing 

lipid accumulation in adipocytes in the context of obesity (Si, 2009).  

For neuronal cell types, a major focus has been on glutamate metabolism, due 

to the metabolite’s central role as a neurotransmitter. In vivo, glucose is first 

converted to glutamine in astrocytes, and then taken up and hydrolyzed to 

glutamate in neurons (Lapidot, 1994). This compartmentalization presents a 

challenge for conventional MFA (Chatziioannou, 2003), which assumes that 

metabolite pools are homogeneous. Thus, isotopic labeling has been the method 

of choice. For in vivo studies, NMR spectroscopy has been particularly useful as a 

noninvasive analytical tool. In an earlier study, Shen et al. used this approach to 

estimate that glutamine/glutamate cycling rate is ~80% of glucose oxidation in 

resting human brains, confirming the quantitative importance of this metabolic 

cycle (Shen, 1999). In vitro studies where destructive sampling is an option have 

typically used MS to take advantage of increased sensitivity. Recently, Amaral et 

al. analyzed the dynamics of 13C label enrichment in cell extracts collected over 

time to determine the quantitative significance of branched chain amino acid 

metabolism in cultured primary rat cortical astrocytes (Amaral, 2011).  
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In comparison to liver, muscle, and neuronal cells, relatively little is known 

regarding immune cell metabolism. The field of immunometabolism is relatively 

new, having emerged only a few years ago. However, the field has already 

proposed compelling hypotheses (Mathis, 2011) linking cellular energy 

metabolism to the regulation of immune cell phenotypes. Here, we focus on 

macrophages, although metabolism appears to play an important role in the 

functions of dendritic cells (Everts, 2012) and T-cells (Miccheli, 2006). For 

macrophages, it has been suggested that the metabolic state of the cell influences 

its activation state (Mantovani, 2013). A recent isotopic labeling study in cultured 

primary murine macrophages showed that activated macrophages exhibit a tumor 

cell-like tendency favoring glycolysis over oxidative metabolism (Rodriguez-

Prados, 2010). Another intriguing observation was that classical (M1) activation 

led to a significant shift to glucose catabolism via glycolysis, whereas alternative 

activation had minimal impact. Such a metabolic “switch” has been also identified 

in the pentose phosphate pathway (PPP), where the switch can direct the cell 

towards M1 polarization by rebalancing the carbon fluxes through glycolysis and 

PPP (Haschemi, 2012).  

1.2.3 Genome-scale Metabolic Analysis 

Since the publication of the first genome-scale model of Escherichia coli 

MG1655 more than a decade ago (Edwards, 2000), a number of such models have 

been assembled for many industrially significant unicellular organisms, and used 

to characterize, design or optimize cellular metabolism, very often in conjunction 

with FBA or related constraint-based methods. In recent years, several models 
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reflecting a global reconstruction of enzyme-catalyzed pathways have also 

appeared for mammalian species, including humans (Thiele, 2013). A major 

challenge in the construction of tissue-specific models has been the need to 

manually curate the reconstruction based on literature reports due to the 

complexities arising from tissue-specific distribution of enzymes (Gille, 2010).  

A notable example of a large-scale tissue-specific model is HepatoNet1, the 

first comprehensive reconstruction of human hepatocyte metabolism capable of 

simulating a large number of the liver’s canonical metabolic functions (Gille, 

2010). As a demonstration of potential utility, this model was used to identify 

metabolic enzymes that are essential to a pathogen, but nonessential to the liver, 

and thus targets for antibiotics, demonstrating an intriguing possibility to analyze 

tissue metabolism in the context of infectious disease studies. Another example is 

a model of human macrophage metabolism (Bordbar, 2012), which was recently 

used to show that oxidative phosphorylation is more important for alternative 

(M2) activation, whereas shuttling of glycolytic NADH from cytosol to 

mitochondria is more important for M1 activation, underscoring the quantitative 

role of metabolism in determining macrophage phenotype.  

Beyond cell-type specific analysis, an exciting development in the use of 

genome-scale models has been to examine the integration of metabolism across 

multiple tissues in the body. For example, the HepatoNet1 model was combined 

with a physiologically based pharmacokinetic (PBPK) model to examine the 

consequences of perturbing specific enzymes in the liver on the metabolic profile 

of the whole body (Krauss, 2012). Using a related approach, Bordbar et al. 
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tailored a genome-scale reconstruction of human metabolism into cell-type 

specific models for adipocytes, hepatocytes and myocytes, which was then used 

to simulate several known metabolic cycles that integrate the different cell types 

(Bordbar, 2011). The integrated model predicted that alterations in metabolic gene 

expression in disease (e.g. obesity) lead to differentially active sets of reactions in 

these cycles, demonstrating potential uses for multi-tissue models in 

characterizing and understanding complex metabolic diseases. The predictions of 

these multi-scale FBA models remain to be experimentally validated, and would 

almost certainly benefit from the inclusion of other important cell types and 

regulatory (e.g. endocrine) mechanisms. In this regard, recent advances in micro-

physiological lab-on-chip devices could offer timely opportunities to validate the 

multi-tissue models by isolating the interactions of selected cell types under 

controlled conditions.  

1.2.4 Spatiotemporally Resolved Metabolic Analysis 

The metabolic analysis methods discussed thus far are inherently limited in 

their ability to address cellular heterogeneity. One way to address this limitation 

could be to measure isotopic enrichment of metabolites at the single cell level for 

calculation of metabolic fluxes. Single cell metabolomics is a relatively recent 

development (reviewed by Rubakhin, 2013)). To date, a majority of single cell 

metabolomics efforts have targeted unicellular organisms such as yeast (Ibanez, 

2013) and simple algae (Amantonico, 2010), which exist in a population, but not 

bound cohesively as in tissue. Examples of animal cell studies involve zebra fish 

embryos (Hayashi, 2011) and mollusk neurons. In the latter study, capillary 
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electrophoresis coupled electrospray ionization MS was used to detect several 

hundred distinct metabolite signatures in individual neurons of a mollusk (Nemes, 

2011). These studies demonstrate that metabolite detection at subcellular 

concentration is possible; however, challenges remain in isolating the cells and 

quantifying the metabolites (Rubakhin, 2011).  

An obvious limitation of MS based single cell metabolomics is that the 

analysis of intracellular metabolites is destructive, thus precluding repeated 

observations over time on the same cell. An alternative is to utilize noninvasive 

imaging methods, which additionally offer the benefit of providing spatially 

resolved information. There are many established fluorescent chemical probes 

used to quantify metabolic flux through specific pathways, with earlier studies 

relying on non-metabolized analogs of native substrates. An interesting variation 

involves fluorescence generating reporter substrates competing with the native 

substrate of the target enzyme. Sames and coworkers, who have reported 

extensively on this approach, demonstrated that the synthetic chemical 

coumberone selectively competes for human hydroxysteroid dehydrogenases of 

the aldo-keto reductase (AKR) superfamily, and thus can be used to infer the flux 

of enzymes that couple with AKRs (Rodriguez, 2010). In principle, this approach 

could be extended to other enzymes, provided that a fluorescence generating 

substrate with suitable affinity similar to the native substrate is available for the 

enzyme of interest. 

Genetically encoded probes have only recently been to be utilized to directly 

measure metabolite fluxes. In pioneering work, Frommer and coworkers 
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developed a glucose sensor based on Förster Resonance Energy Transfer (FRET). 

The sensor comprised a glucose recognition element from a bacterial periplasmic 

glucose/galactose binding protein fused with a cyan version GFP (CFP) and a 

yellow version of GFP (YFP). Upon binding of a glucose molecule, the fusion 

protein undergoes a conformational change, leading to increased FRET when CFP 

is excited (Hou, 2011). More recently, a similarly constructed FRET sensor for 

lactate has also been described, and used to quantitatively compare lactate flux in 

primary and cancerous glial cells at a single cell resolution (Barros, 2013; San 

Martin, 2013).  

While achieving impressive sensitivity without the use of exogenously 

introduced dyes, the genetically encoded FRET sensors present the drawback that 

they require at least one transfection step, which may introduce artifacts from 

uneven transfection efficacy. In this regard, an attractive option is to utilize 

methods that exploit the auto-fluorescence of endogenous metabolites. This 

advantage is especially important for applications involving three-dimensional 

(3D) systems, where uniform labeling or transfection is challenging. Well-known 

examples of auto-fluorescent metabolites are nicotinamide and flavin adenine 

dinucleotides, which emit fluorescence upon near infrared excitation. These 

cofactor metabolites participate ubiquitously in cellular metabolism, coordinating 

the regulation of virtually every major pathway. Ratios of these and related 

cofactors have been used as a measure of metabolic activity in numerous studies 

over the last several decades. With the advent of sophisticated imaging techniques 

such as two-photon excited fluorescence (TPEF) microscopy, it has now become 
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possible to image ratios of auto-fluorescent cofactors at substantial tissue depths. 

Very recently, Quinn et al. utilized TPEF microscopy to correlate a decrease in 

cellular redox with stem cell differentiation into adipocytes in a 3D vascularized 

human adipose construct, reporting time- and tissue depth-dependent differences 

in the redox ratio (Quinn, 2012).  

1.3 Thesis Outline 

Chapter 2 

We first identified several enzyme targets to reduce triglyceride accumulation. 

These targets were selected from each stage of TG synthesis: pyruvate 

carboxylase and isocitrate dehydrogenase from upstream synthesis, diacylglycerol 

acyltransferase from downstream synthesis, and perilipin and fat specific protein 

27 from droplet stability. We evaluated TG accumulation after siRNA knockdown 

of each target and selected targets for further analysis. 

Chapter 3 

In order to non-invasively monitor TG accumulation, we used light 

microscopy to capture images at different time points in adipocyte differentiation. 

We developed an algorithm to automatically detect lipid droplets in an image so 

that we can quantify lipid droplet number, size, distribution and total lipid 

content. Using this algorithm, we can better understand spatial heterogeneity in 

adipocyte differentiation. 
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Chapter 4 

After identifying promising targets, we examined changes in metabolite 

profiles due to enzyme knockdown. Using LC-MS, we measured concentrations 

of metabolites in many different pathways: glycolysis, TCA cycle, amino acid 

metabolism, fatty acids and cofactors. We used principal component analysis and 

hierarchical clustering to understand differences between knockdown conditions 

and which metabolites contribute most strongly. 

Chapter 5 

We then combined knockdown of multiple targets (in multiple stages of TG 

synthesis, as well as multiple targets within the same stage) to examine the effects 

on TG accumulation and the overall metabolic network. In addition to 

metabolomic analysis, we conducted an isotopic labeling experiment to resolve 

the fluxes using a previously developed stoichiometric model. 
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2 Identification of Enzyme Targets to Reduce Triglyceride 

Accumulation 

2.1 Abstract 

We have previously assembled a three dimensional (3D) co-culture model of 

the adipose tissue using type I collagen gel as the scaffolding material. This co-

culture significantly enhanced differentiation and lipid accumulation of 

adipocytes as well as proliferation and organization of endothelial cells (ECs) into 

a capillary-like network. The goal of the present study is to investigate reduction 

in TG accumulation and AD size via RNAi mediated gene silencing (siRNA 

knockdown) of metabolic proteins in both 3D and 2D culture.  

Targets for siRNA knockdown were selected based on our knowledge of 

adipocyte metabolism. Metabolic proteins were identified from each stage of lipid 

accumulation: upstream synthesis (breakdown and transformation of glycolysis 

intermediates into precursors of fatty acid synthesis), downstream synthesis 

(formation of triglyceride from synthesized precursors), droplet stability 

(protection from intracellular lipases and formation of larger, more stable lipid 

droplets). Pyruvate carboxylase (PCX) and isocitrate dehydrogenase (IDH) were 

identified as targets for upstream synthesis, diglyceride acyltransferase (DGAT) 

for downstream synthesis, and fat-specific protein 27 (FSP) and perilipin (PLIN1) 

for droplet stability. To understand the efficacy of the lipofection in 3D culture, 

we characterized the effect of PLIN1 knockdown. Although, PLIN1 knockdown 

led to reduction in TG accumulation, gene expression data suggested that 
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knockdown was not sustained for the entire experiment, therefore, the remaining 

targets were examined in 2D mono-culture.  

2.2 Introduction 

Previous work identified pyruvate as a key intermediate in adipocyte 

triglyceride (TG) accumulation (Si, 2009). Although pyruvate is involved in many 

pathways, including glycolysis, TCA cycle, and amino acid metabolism, upon 

differentiation, adipocytes increasingly utilize pyruvate for de novo fatty acid 

synthesis. The activities of enzymes involved in the fatty acid synthesis pathway 

increase up to 20-fold as undifferentiated 3T3-L1 cells differentiate into mature 

adipocytes (Freytag, 1980). One of the key enzymes involved is pyruvate 

carboxylase (PCX), which carboxylates pyruvate to form oxaloacetate (OAA). 

Inhibition of PCX by phenylacetate has been shown to reduce TG accumulation 

by up to 30% in vitro.  

The present study builds on this previous finding to examine the effects of 

disrupting the activities of additional, multiple enzymes across a network of 

metabolic pathways centered on TG synthesis. We constructed a simplified model 

of TG synthesis, separated into multiple segments (Figure 2-1). The upstream 

segment involves the production of building blocks/precursors from intermediates 

of glycolysis and the TCA cycle. The key precursors are cytosolic acetyl-CoA and 

3-glycerol-P, which are the building block for long-chain fatty acids and the 

alcohol backbone for esterification, respectively. The downstream segment 

comprises de novo biosynthesis of long-chain fatty acids and esterification into 

TG. The third segment of TG accumulation is the protection and stabilization of 
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intracellular LDs. Once TG is synthesized, it is localized in membrane-enclosed 

inclusion bodies, called lipid droplets (LDs), within the cell. These LDs are 

shielded from uncontrolled degradation by many LD-associated proteins. The 

pathways and enzymes identified in Figure 2-1 by no means represent an 

exhaustive list. Transcriptional (and post-transcriptional) regulation of the 

enzymes involved is critically important in the synthesis and mobilization of TG. 

For example, intracellular lipases, which are involved in the breakdown of TG, 

clearly contribute to the balance of TG and free (non-esterified) fatty acids, and 

could be additional targets to investigate. However, as quantitatively important 

lipases are regulated primarily via allosteric mechanisms that are difficult to 

disrupt selectively, we decided to focus on synthesis enzymes and stability-related 

proteins that can be selectively disrupted at the level of translation. 

 
Figure 2-1: Triglyceride Accumulation Pathway 
The triglyceride accumulation pathway is grouped into three segments: upstream 
synthesis (purple), downstream synthesis (green) and droplet stability (blue). 
Lipolysis (tan) is also an important factor affecting the intracellular TG level. 
Intracellular lipid droplets are represented as yellow circles. See Table 1 for more 
detailed list of these enzymes.  
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Table 1: Abridged List of Enzymes involved in TG Accumulation 
Enzyme Abbr. Reaction Catalyzed Stage 

Pyruvate 

Carboxylase  
PCX  

Pyruvate � Oxaloacetate 
(mitochondria)  

Early Synthesis  

Pyruvate 
Dehydrogenase  

PDC Pyruvate � Acetyl-CoA Early Synthesis 

Citrate Synthase  CS  
Oxaloacetate � Citrate 
(mitochondria)  

Early Synthesis  

ATP-Citrate Lyase  ACL  Citrate � Acetyl-CoA (cytosol)  Early Synthesis  

Isocitrate 

Dehydrogenase  
IDH Isocitrate � 2-Oxoglutarate (cytosol)  Early Synthesis  

Glycerol-3-P 
Dehydrogenase 

GPDH Dihydroxyacetone-P � Glycerol-3-P Early Synthesis 

Fatty Acid 
Synthase  

FAS  
Acetyl-CoA + Malonyl-CoA � 
Palmitate  

Late Synthesis  

Diacylglycerol 

Acyltransferase  
DGAT  Diacylglycerol � Triglyceride  Late Synthesis  

Perilipin  PLIN1  
Coats lipid droplet, shields from 
lipase  

Stability  

Fat Specific 

Protein 27  
FSP27  Promotes lipid droplet fusion  Stability  

Hormone Sensitive 
Lipase 

HSL Hydrolyzes TG to fatty acids Lipolysis 

Adipose TG 
Lipase 

ATGL 
Hydrolyzes TG to fatty acids 
(committal step) 

Lipolysis 

 
Within each segment, we selected key protein targets for further examination. 

These targets are highlighted in bold in Table 1. As discussed previously, PCX 

catalyzes the carboxylation of pyruvate to oxaloacetate, which goes on to supply 

the carbons required to form fatty acids. Chemical inhibition of PCX has been 

shown to decrease TG accumulation in differentiated 3T3-L1 cells. Furthermore, 

PCX may also play a role in glyceroneogenesis that leads to the formation of the 

glycerol backbone in adipose tissue (Nye, 2008). PCX expression has been shown 

to be transcriptionally regulated by PPARγ, a key pro-adipogenic transcription 

factor (Jitrapakdee, 2005). Another target in early synthesis is isocitrate 
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dehydrogenase 1 (IDH), which catalyzes the oxidative decarboxylation of 

isocitrate to 2-oxoglutarate while reducing NADP+ to NADPH. Although many 

intermediates of the TCA cycle are precursors for fatty acid and TG synthesis, the 

importance of IDH is the formation of NADPH, which is an essential cofactor in 

fatty acid synthesis (Koh, 2004)). Cytosolic NADPH can also be produced by 

glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and 

malic enzyme; however, research has shown that IDH is a major producer of 

NADPH in lipogenic tissues (Koh, 2004). Overexpression of IDH positively 

correlates with adipogenesis in 3T3-L1s and transgenic mice with overexpressed 

IDH showed fatty liver, hyperlipidemia, and obesity. It is important to note that 

there is also a mitochondrial isozyme of IDH, which catalyzes the third step of the 

TCA cycle and also plays a role in reducing oxidative damage via glutathione 

metabolism.  

Diacylglycerol transferase (DGAT) catalyzes the final reaction in TG 

synthesis, the covalent addition of a fatty acyl chain to diacylglycerol (Harris, 

2011). This reaction takes place primarily in the endoplasmic reticulum; however, 

there is also evidence suggesting local synthesis on the surface of lipid droplets 

(Walther, 2012). There are two primary forms of DGAT, both of which are highly 

expressed in adipose tissue, as well as liver and other tissues. DGAT2-deficient 

mice typically do not survive, but DGAT1 deficiencies lead to a reduction in 

adipose mass and smaller adipocyte size (Chen, 2004). Therefore, DGAT1 could 

be a promising target for in vivo modulation of adipose tissue hypertrophy. 
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After synthesis, TG is typically sequestered in intracellular lipid droplets 

(LDs). While the mechanisms of droplet formation and enlargement are not fully 

understood, the current model of LD formation involves budding from the ER 

membrane to form an organelle that is bounded by a monolayer of phospholipids 

and LD-associated proteins (Martin, 2006). Among these associated proteins is 

perilipin (PLIN1), a member of the PAT family of proteins (perilipin, adipophilin 

and TIP47) (Brasaemie, 2007). PLIN1 localizes to the surface of LDs and protects 

them from lipolytic degradation. Interestingly, under lipolytic conditions, perilipin 

is phosphorylated and recruits HSL to the droplets. However, for the purposes of 

this study, we assume that PLIN1 is not phosphorylated, and thus protects LDs 

from lipolysis, given the fact that the cells are exposed to the anabolin hormone 

insulin, which stimulates glucose uptake and TG synthesis. 

Another key stage of TG accumulation is the formation of larger lipid 

droplets. Typically, in vivo, almost the entire cytoplasm of adipocytes (in WAT) 

is occupied by a large, unilocular (single droplet) LD (Nishino, 2008), though the 

mechanism of large LD formation is still unclear. Fat-specific protein of 27 kDa 

(FSP27) is thought to promote the formation of unilocular LDs. FSP27 was first 

identified as a member of the CIDE family of proteins (Cell death-Inducing DNA 

fragmentation factor 45-like Effector), but was also found to be highly expressed 

in adipose tissue and upregulated during adipogenesis (Puri, 2007). FSP27 has 

been shown to promote fusion of small LDs, which reduces the amount of surface 

area available to lipolytic enzymes. Therefore, knockdown of FSP27 leads to 
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decreased droplet size and increased lipolysis, and is a promising target for 

therapeutic action.  

In order to examine the effects of disrupting each target, we used RNA 

interference (RNAi) via siRNA. Previous studies primarily used chemical 

inhibition of enzymes; however, chemical inhibitors are rarely specific to one 

enzyme and often result in off target effects, which can confound the analysis. For 

example, oxamate can be used to inhibit lactate dehydrogenase (LDH), which 

reduces pyruvate to lactate. Oxamate is a structural analog of pyruvate that 

competitively inhibits LDH activity. However, oxamate might also inhibit other 

enzymes where pyruvate is a substrate (e.g. PCX) and it is thus difficult to isolate 

the effects to the target enzyme. Therefore, we chose siRNA to knock down 

selected targets based on this method’s high degree of specificity. 

In vitro, adipose tissue is typically studied using an immortalized cell line, 

3T3-L1, which was isolated from mouse fibroblasts (Green, 1974). These cells 

have been shown to recapitulate most of the key features of adipogenesis in vivo, 

including morphological changes, expression of lipogenic enzymes, extensive 

lipid accumulation, etc (Rosen, 2000). Furthermore, transplantation studies 

confirm that preadipocyte cell lines represent faithful models for adipogenesis 

(MacDougald, 1995). The use of isolated preadipocytes is largely limited due to 

their decreased proliferative capacity and decline in differentiation potential 

during subculture (Feve, 2005). Typically, 3T3-L1 cells are grown and 

differentiated in planar culture (e.g. 12-well plates); however, previous work 

identified the effects of culture dimensionality on differentiation and TG 
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accumulation (Lai, 2009; Shi, 2010). Briefly, when embedded in a collagen 

matrix, the cells accumulate more TG, indicating a higher degree of 

differentiation. This is likely due to the cells’ freedom to exhibit morphological 

changes (i.e. rounding and expansion as TG is accumulated), which better 

represents the cells’ behavior in vivo. Furthermore, when endothelial cells were 

incorporated, the effects were compounded. Adipose tissue is highly vascularized, 

and the importance of intercellular interactions is becoming increasingly 

important to in vitro studies of adipocytes, and many other cell types. We have 

thus expanded on previous work to examine the effects of targeted enzyme 

knockdown in both 2D and 3D culture.  

2.3 Materials and Methods 

2.3.1 Materials 

3T3-L1 cells were purchased from ATCC (Manassas, VA). Tissue culture 

reagents including Dulbecco's Modified Eagle's Medium (DMEM), calf serum 

(CS), fetal bovine serum (FBS), human insulin, and penicillin/streptomycin were 

purchased from Invitrogen (Carlsbad, CA). Unless otherwise noted, all other 

chemicals were purchased from Sigma (St. Louis, MO). 

2.3.2 Cell culture 

Low passage 3T3-L1 preadipocytes were seeded into 12 well plates at a 

concentration of 2×104 cells/cm2 and cultured in a humidified incubator at 37°C 

and 10% CO2. The cultures were expanded in a growth medium consisting of 

DMEM supplemented with 10% v/v CS, 100 units/mL penicillin, 100 μg/mL 
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streptomycin, and 2.5 μg/mL amphotericin. The growth medium was changed 

every 2-3 days until confluence was reached. Two days post-confluence 

(designated as day 0), the cells were induced to differentiate using an adipogenic 

cocktail (DM1: 1 µg/ml insulin, 0.5 mM isobutylmethylxanthine, 1 μM 

dexamethasone, and 2 nM triiodothyronine) added to a basal medium (DMEM 

with 10% FBS and penicillin/streptomycin/amphotericin). After 48 h, the first 

induction medium was replaced with a second induction medium (DM2) 

consisting of the basal adipocyte medium supplemented with only insulin (1 

µg/ml). After another 48 h, DM2 was replaced with the adipocyte basal medium. 

On days 4, 8, and 14, images were recorded for three randomly selected wells, 

which were then sacrificed for enzymatic assays of total TG content.  

2.3.3 Three-Dimensional Co-culture 

Previous work has shown that adipocytes co-cultured in a 3D matrix with 

vascular endothelial cells exhibited greater metabolic activity and attained 

morphological parameters that more closely approached in vivo values (Lai, 

2009). Therefore, preliminary knockdown experiments were conducted in 3D co-

culture based on the rationale that effects on LD size should be more readily 

detectable in this more tissue-like setting. On day 3 post-induction in planar 

culture, 3T3-L1 preadipocytes were detached using trypsin-EDTA and 

resuspended in ice-cold collagen prepolymer solution (2 g/L) at a density of 2x106 

cells/mL. For co-culture, HUVECs separately expanded in tissue culture flasks 

were detached and mixed into the collagen solution at a ratio of 10:1 (adipocytes 

to endothelial cells) as previously described Lai, 2009). This mixture was added 
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to each well (0.5 mL per well), and allowed to gel at 37°C. After 1 hour, 0.5 mL 

of basal medium was added on top of the collagen gels. After another 24 hours, 

the spent medium was replaced with fresh basal medium (day 4 post-induction). 

To enhance differentiation and mediate effects of detachment, the cells received 

another round of the adipogenic cocktail (DM1) for 48 hours, followed by insulin 

treatment (DM2) for 48 hours. On days 8 and 14, images were recorded for three 

wells, and gels were digested using a collagenase solution. The suspensions 

containing the liberated cells were then mixed with SDS buffer and sonicated to 

lyse the cells.  

2.3.4 siRNA Transfection 

Beginning on day 4 post-induction, cells were transfected with siRNA at 30 

nM. Lipofectamine 2000 (Invitrogen) was used as a transfection reagent based on 

the manufacturer’s suggested protocol. Briefly, Lipofectamine and the target 

siRNA were combined in Opti-Mem reduced serum medium and incubated for 10 

minutes at room temperature to allow the nucleic acids to complex with the 

liposomes. After replacing the insulin supplemented adipocyte medium (DM2) 

with the reduced medium containing the siRNA-lipid complexes, the cells were 

incubated as normal. Preliminary experiments using nonsense siRNA showed no 

signs of cytotoxicity. Knockdown was sustained by continuing the siRNA 

treatment every 48 hours for the remainder of culture. The siRNA sequences were 

optimized for target specificity based on Sigma’s Rosetta predictions. The vendor 

did not provide the exact nucleotide sequences, but the approximate nucleotide 

positions on the target RNAs are known. The sequence locations for each target 
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are listed in Table 2. The nucleotide position is given relative to the beginning of 

the NCBI RefSeq sequence for the given target gene. All sequences are for the 

target enzyme in mice, because 3T3-L1 preadipocytes come from a murine 

source. As a control, cells were transfected with a nonsense siRNA sequence. 

Table 2: siRNA sequences of target enzymes 
Enzyme Target Sequence Start Mission siRNA ID 

Diglyceride acyltransferase 660 SASI_Mm01_00165594 
Fat specific protein – 27 1211 SASI_Mm01_00118727 
Isocitrate dehydrogenase 432 SASI_Mm02_00306822 
Perilipin 1206 SASI_Mm02_00307953 
Pyruvate carboxylase 1047 SASI_Mm01_00196797 

2.3.5 Triglyceride accumulation and DNA content 

Triglyceride measurements were performed on cell lysates as described 

previously (Si, 2007). Briefly, cells were rinsed with warm 1× PBS after 

aspirating the medium, and lysed in situ using a 0.1% SDS buffer followed by 

sonication. Free glycerol and TG were measured using an enzymatic assay kit 

from Sigma (catalog number TR0100). Data was normalized to the corresponding 

cell sample DNA content, which was determined with a fluorescence-based assay 

using the Hoescht dye. 

2.3.6 Real time RT-PCR 

Total RNA was isolated using the RNeasy Mini Kit from Qiagen (Valencia, 

CA). Reverse transcription was performed on a Stratagene MX 3000P qPCR 

(Qiagen), using high capacity RNA-to-cDNA kit (Applied Biosystems, Foster 

City, CA) and primers specific for perilipin and pyruvate carboxylase. mRNA and 

18S rRNA levels were determined using the TaqMan gene expression assay. Gene 
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expression data was normalized to the 18S rRNA content in corresponding 

samples, and fold-changes with respect to untreated control were calculated using 

the normalized data. 

2.3.7 Microscopy and Manual Image Analysis 

Images were acquired using a Nikon Eclipse TE300 inverted microscope 

(Melville, NY), Orca-HR digital CCD camera and Simple PCI imaging software 

(HC Image/Hamamatsu, Sewickley, PA). At 200× total magnification, the image 

pixel to physical distance calibration was ~3 pixels/µm. For each condition, 10 

images were randomly captured per well and manually analyzed. The diameter of 

every visible lipid droplet within an image was measured using ImageJ in order to 

calculate the average LD area and approximate size distribution.  

2.4 Results 

2.4.1 Perilipin Knockdown Reduces TG Accumulation 

Preliminary experiments were conducted in 3D culture to determine the 

efficacy of siRNA-mediated knockdown. Perilipin was selected as the initial 

target due to its known role in LD stability. As expected, co-culture with 

HUVECs led to increased TG accumulation (Figure 2-2, open bars). Reduction of 

TG accumulation in monoculture (adipocytes only) was modest, but this reduction 

was significantly amplified in co-culture.  
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Figure 2-2: Triglyceride 
Accumulation in 3D Co-culture 
Open bars represent control 
(scrambled siRNA sequence) and 
close bars represent anti-perilipin 
siRNA. Error bars represent one 
standard deviation (n=3) and 
*indicates statistically significant 
differences (p<0.05). 

 

2.4.2 Manual Image Analysis of Perilipin Knockdown 

We manually analyzed images to investigate the effect of PLIN1 knockdown 

on average LD size and distribution. Compared to the monoculture, co-culture 

with HUVECs led to a ~100% increase in average droplet size (Figure 2-3, left 

panel, open bars). Similar to intracellular TG content, PLIN1 knockdown reduced 

the average size of LDs, with a greater effect observed in co-culture. In addition 

to a reduction in average droplet size, knockdown caused an apparent shift in LD 

size distribution towards droplets of smaller size. 

 

Figure 2-3: Manual Analysis of Adipocyte Images 
Open bars represent control (scrambled siRNA sequence) and close bars represent 
anti-perilipin siRNA. Error bars represent one SD (n=10 images, ~100 droplets 
per image) and * indicates statistically significant differences (p<0.05). 
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2.4.3 Gene Expression  

In order to confirm knockdown, mRNA levels were analyzed for perilipin 

knockdown in 3D culture. 48 hours after the first treatment, mRNA levels were 

decreased significantly (Figure 2-4). However, perilipin mRNA expression 

steadily returned to normal over the course of the experiment, until day 10 when it 

reached the control level. This suggests that knockdown was not sustained for the 

entire time course of the experiment, which may be due to transport limitations of 

the siRNA-lipid complex through the collagen gel. Initial knockdown was 

achieved from the first treatment (when the cells were still in planar culture). 

Interestingly, even transient knockdown of perilipin led to significant changes in 

triglyceride accumulation (see next section). Based on these findings, we 

determined that the 3D culture system was not appropriate for knockdown 

experiments and performed the remainder of the knockdown experiments in 2D 

culture. 

 
Figure 2-4: Perilipin mRNA Levels 
Data was normalized to 18s rRNA of each sample, and reported as a fold change 
with respect to the untreated control for each time point. 
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2.4.4 Targeted Knockdown Reduces TG Accumulation 

After the preliminary experiments with perilipin, knockdown experiments of 

other metabolic targets were conducted in 2D mono-culture. As expected, 

knockdown of metabolic enzymes led to significant reduction in TG 

accumulation. On day 14, intracellular TG was reduced by as much as 30%. The 

largest difference was seen in pyruvate carboxylase knockdown, with smaller 

differences in the other conditions (Figure 2-5). There were no significant 

differences between the experimental conditions. siRNA treatment did not lead to 

cell death at any time point, as DNA content was relatively constant between 

replicates and experimental conditions (data not shown).  

 
Figure 2-5: Triglyceride Accumulation in 2D Culture 
On day 14, triglyceride concentration for each knockdown condition compared to 
the control. Error bars represent one standard deviation (n=3) and * indicates 
significant difference (p<0.05). 
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2.5 Discussion 

In this study, we explored potential enzyme targets across multiple pathways 

for reducing triglyceride accumulation. We selected targets from different 

pathways contributing to TG accumulation, with the ultimate goal of achieving 

greater TG reduction through coordinated knockdown of multiple enzyme/protein 

targets. siRNA was used to selectively knock down each enzyme, with little to no 

off-target effects. The first target we investigated was perilipin (PLIN1), a lipid 

droplet associated protein. Previous work in the literature showed that PLIN1 

knockout reduced LD size, but there were conflicting results regarding reduction 

of TG. We confirmed a significant decrease in LD size, and a shift in the 

distribution as well (Figure 2-3). In monoculture, TG accumulation was reduced, 

but not significantly (Figure 2-2).  

As previously reported, incorporation of endothelial cells significantly 

increased adipogenesis, leading to higher TG accumulation and larger LD size. 

Interestingly, PLIN1 knockdown had a more significant effect when analyzed in 

the co-culture system. Although the mechanisms are not fully understood, 

adipocytes and endothelial cells interact with each through secretion of soluble 

factors, as well as cell-to-cell contact. Due to the increased degree of adipogenesis 

in co-culture, we were able to observe a greater effect of knockdown. 

Furthermore, although PLIN1 knockdown would not have any direct effect on the 

growth and differentiation of ECs (as ECs do not express PLIN1), it is possible 

that knockdown impaired adipogenesis, causing reduction in the secretion of 

soluble factors by the ADs. Therefore, in the co-culture system, we may be 

observing compound effects of knockdown. 
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Unfortunately, mRNA levels of PLIN1 increased over the course of the 

experiment (Figure 2-4). This is likely due to transport issues of siRNA-lipid 

complexes through the collagen matrix; we estimated diffusion rates ~60-240 

hours, based on the size of lipoparticles and porosity of the collagen matrix. The 

effective diffusion constant of lipoparticles is roughly 100 times greater than 

glucose and other small molecules. While metabolites are able to diffuse through 

the gel relatively quickly, lipoparticles do not reach the cells within an 

appreciable time frame. Despite this fact, we still observed a significant effect at 

the end of the experiment. It is likely that depressed mRNA levels early in the 

culture were sufficient to cause an effect, combined with the fact that expression 

of PLIN1 early in differentiation is also low.  PLIN1 has a relatively long half-life 

(70h) (Koysan, 2007), so if expression was substantial at early time points, we 

might not have observed any effect at all. Although there are other transfection 

reagents and methods available, we decided to conduct future experiments in 2D 

monoculture to simplify the analysis, and ensure maximal knockdown of targets.  

For each of the selected targets, we observed significant reduction in TG 

accumulation ranging from 20-40% (Figure 2-5). IDH knockdown had the least 

effect, followed by DGAT and FSP27, and PCX had the greatest effect. This 

likely reflects the respective methods of TG reduction. IDH knockdown causes a 

reduction in availability of NADPH, which would slow the synthesis of fatty 

acids. However, there are many pathways in the cell, which balance cofactor 

production. Furthermore, fatty acids can be taken up from the media as well, and 

a decrease in fatty acid synthesis could be mediated by increasing fatty acid 
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uptake rates. Similarly, PCX knockdown could reduce the availability of acetyl-

CoA, a precursor for fatty acid synthesis; however, there are also several other 

pathways that produce acetyl-CoA. While PCX and IDH knockdowns both lead to 

reduced TG accumulation, it is possible that flux through these alternative 

pathways could increase to attenuate the effects of knockdown. 

In contrast, there is one pathway that synthesizes TG, and the terminal enzyme 

is DGAT. In this study, DGAT knockdown did not result in total elimination of 

TG accumulation, due to the fact that DGAT expression may not have been 

knocked down completely, and other isoforms of the enzyme (notably DGAT2) 

are also expressed in the cell. Similarly, FSP27 is not the only LD associated 

protein. There are many other LD-associated proteins that affect LD stability (e.g. 

PLIN, adipophillin, S3-12, vimentin) (Brasaemie, 2004); however, without FSP27 

to promote droplet fusion, LDs are more sensitive to lipolytic degradation. 

Although FSP27 does not directly reduce the amount of TG, it leads to an overall 

reduction in droplet size, and subsequent increase in total surface area. This 

increase in surface area provides greater access to lipases within the cell, and 

increased lipolysis.  
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3 Image Processing Algorithm for Non-invasive Analysis 

of Lipid Droplets2 

3.1 Abstract 

Cellular hypertrophy of adipose tissue underlies many of the proposed pro-

inflammatory mechanisms for obesity-related diseases. Adipose hypertrophy 

results from an accumulation of esterified lipids (triglycerides) into membrane-

enclosed intracellular lipid droplets (LDs). The coupling between adipocyte 

metabolism and LD morphology could be exploited to investigate biochemical 

regulation of lipid pathways by monitoring the dynamics of LDs. This chapter 

describes an image processing method to identify LDs based on several 

distinctive optical and morphological characteristics of these cellular bodies as 

they appear under bright field (BF). The algorithm was developed against images 

of 3T3-L1 preadipocyte cultures induced to differentiate into adipocytes. We 

show that the calculated lipid volumes are in excellent agreement with enzymatic 

assay data on total intracellular triglyceride content. We also demonstrate that the 

image processing method can efficiently characterize the highly heterogeneous 

spatial distribution of LDs in a culture by showing that differentiation occurs in 

distinct clusters separated by regions of nearly undifferentiated cells. 

Prospectively, the LD detection method described in this work could be applied to 

time-lapse data collected with simple, visible light microscopy equipment to 

quantitatively investigate LD dynamics. 

                                                 
2 Sims JK, Rohr B, Miller E, Lee K. Automated Image Processing for Spatially Resolved Analysis 

of Lipid Droplets in Cultured 3T3-L1 Adipocytes. Tissue Eng Part C Methods. 2014 Nov 12.  
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3.2 Introduction 

Biochemically, adipocyte LD volume depends on the balance of synthesis and 

degradation of lipids.  There is also a biophysical component, as the LDs are 

sequestered in a membrane-enclosed compartment that interacts with various 

components of the cytoskeleton through vesicle transport-associated proteins 

(Bostrom, 2007). How these different mechanisms interact to govern LD fate is an 

active area of research. To this end, methods are needed for monitoring the 

dynamics of LDs under controlled experimental conditions to quantitatively track 

the morphological changes in relation to cellular metabolism, signaling, and other 

biochemical processes.   

Conventional methods used for LD analysis can be broadly categorized into 

enzymatic and dye-based assays. Enzymatic assays offer the benefit of absolute 

quantitation, but require the cells to be lysed, and are thus incompatible with live 

cell analysis. Moreover, information on size and spatial distribution of LDs 

cannot be obtained. An alternative approach is to stain the LDs with lipophilic 

dyes such as Oil Red O (ORO), which typically requires fixing the cells. The dye 

can be extracted with a solvent to quantify the amount bound to the cells, or the 

stained cells can be analyzed using microscopy, with the dye acting as a contrast 

agent for the LDs. Recently, Mehlem et al. presented a protocol that optimizes 

ORO staining for image analysis, and demonstrated that this protocol could be 

used to compare the differences in the tissue distribution of lipids in wild-type 

mice challenged with a high-fat diet (HFD) and transgenic (db/db) mice lacking 

leptin receptor activity (Ramirez-Zacarias, 1992). One limitation of using 

lipophilic dyes is that these dye also bind other lipids that are not associated with 
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intracellular LDs. Specificity can be improved by staining for LD-associated 

proteins, such as perilipin, adipose differentiation-related protein, and hormone-

sensitive lipase, which co-localize to the surface of the droplets (Mehlem, 2013). 

On the other hand, this approach still requires fixing the cells, and thus cannot be 

used to observe dynamic behavior over time. Certain methods of fixing cells can 

deform and fuse the LDs, and thereby distort the analysis (Fukumoto, 2002). 

Fixing the cells can be avoided by introducing labels, e.g. fatty acid analogs, 

which incorporate into native enzymatic pathways. For example, Kuerschner et al. 

added a fluorescent polyene-tagged lipid (trans-16:5 fatty acid) to the medium of 

cultured COS7 and 3T3-L1 cells to monitor the kinetics and spatial distribution of 

lipid flux (Kuerschhner, 2008). However, similar to lipophilic dyes, the polyene 

probes labeled not only LDs, but also other parts of the cell, including the ER. 

Moreover, fluorescent labeling of individual LDs occurred with very different 

kinetics, even for LDs of identical size, due to the rapid metabolism of the 

polyene, which may not reflect the native metabolism of naturally occurring lipids 

and thus confound the analysis.  

In principle, one could avoid the use of synthetic dyes or exogenous labels by 

exploiting a distinctive optical or spectroscopic property of the LDs to image 

these intracellular objects. An attractive option is coherent anti-Stokes Raman 

scattering (CARS), which can be used to image lipids by tuning into the 

vibrational contrast of C-H bonds that are enriched in aliphatic molecules (Nan, 

2003). An especially powerful feature of CARS microscopy is the ability to 

characterize the chemical composition of individual LDs, for example the degree 
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of unsaturation, based on stretching vibrations of C-C and C=C bonds (Nan, 

2003; Rinia, 2008).  

Another, simpler alternative is to utilize light microscopy. While 

spectroscopy-driven imaging methods offer superior specificity, these methods 

require more sophisticated instruments that may not be routinely available to 

many laboratories. The challenge in using light microscopy for extracting relevant 

LD parameters is that the images can be quite complex due to the heterogeneity in 

the size and distribution of the LDs, and distinguishing the LDs from other 

cellular objects is not trivial. In images acquired using bright-field (BF) 

microscopy, LDs generally appear as the brightest objects. This characteristic can 

be sufficient to identify LDs based on a simple threshold filter as long as the 

brightness differences between the LDs and other objects are relatively uniform. 

This filter can be readily implemented for automated analysis, as recently 

demonstrated by Or-Tzadikario et al. on images of cultured adipocytes treated 

with adipogenic or lipogenic factors (Or-Tzadikario, 2010). On the other hand, 

relying solely on a fixed brightness threshold can confound the analysis due to 

uneven contrast arising from various factors unrelated to LD morphology, such as 

variations in cell density, location within the well, and shadows caused by cellular 

debris. Furthermore, LDs of different sizes may appear brighter than others, and 

may skew the results of this analysis. 

In the present study, we extend the algorithm for BF image analysis by 

incorporating additional features for LD identification with the goal of 

minimizing both false positives and negatives, while also improving the flexibility 
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to analyze a wide range of microscopy images acquired under different contrast 

and brightness settings. The algorithm recognizes LDs as objects that are (1) 

relatively light, (2) circular, and (3) surrounded by a relatively dark boundary, (4) 

which is also circular. In addition to manual analysis, we quantitatively compared 

the lipid volumes calculated from image analysis against enzymatic assay results, 

and found excellent agreement. Applied to images of cultured 3T3-L1 cells 

induced with an adipogenic cocktail, the image analysis showed that 

differentiation is highly heterogeneous in terms of spatial distribution with a 

culture well, occurring in distinct clusters separated by regions of nearly 

undifferentiated cells.  

3.3  Methods 

3.3.1 Materials 

3T3-L1 cells were purchased from ATCC (Manassas, VA). Tissue culture 

reagents including Dulbecco's Modified Eagle's Medium (DMEM), calf serum 

(CS), fetal bovine serum (FBS), human insulin, and penicillin/streptomycin were 

purchased from Invitrogen (Carlsbad, CA). Unless otherwise noted, all other 

chemicals were purchased from Sigma (St. Louis, MO). 

3.3.2 Cell culture 

Low passage 3T3-L1 preadipocytes were seeded into 48 well plates at a 

concentration of 2×104 cells/cm2 and cultured in a humidified incubator at 37°C 

and 10% CO2. The cultures were expanded in a growth medium consisting of 

DMEM supplemented with CS (10 % v/v), penicillin, streptomycin, and 
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amphotericin. The growth medium was changed every 2-3 days until confluence 

was reached. Two days post-confluence (designated as day 0), the cells were 

induced to differentiate using an adipogenic cocktail (1 µg/ml insulin, 0.5 mM 

isobutylmethylxanthine, 1 μM dexamethasone, and 2 nM triiodothyronine) added 

to a basal medium (DMEM with 10 % FBS and penicillin/streptomycin/ 

amphotericin). After 48 h, the first induction medium was replaced with a second 

induction medium consisting of the basal adipocyte medium supplemented with 

only insulin. After another 48 h, the second medium was replaced with the 

adipocyte basal medium. On days 4, 8, 12, and 16, images were recorded for six 

randomly selected wells, which were then sacrificed for enzymatic assays of total 

triglyceride (TG) content.  

3.3.3 Enzymatic assay 

Triglyceride measurements were performed on cell lysates as described 

previously (Si, 2007). Briefly, cells were rinsed with warm 1× PBS after 

aspirating the medium, and lysed in situ using a 0.1 % SDS buffer followed by 

sonication. Free glycerol and TG were measured using an enzymatic assay kit 

from Sigma (catalog number TR0100).  

3.3.4 Microscopy 

Images were acquired using a Nikon Eclipse TE300 inverted microscope 

(Melville, NY), Orca-HR digital CCD camera and Simple PCI imaging software 

(HC Image/Hamamatsu, Sewickley, PA). The total area recorded per well was 

0.44 mm2, which represents ~58 % of the available culture area. At 200× total 

magnification (objective × eyepiece), the image pixel to physical distance 
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calibration was ~3 pixels/µm. The total number of images recorded was 300, 

representing an approximately square block of 20×15 contiguous images 

inscribed in the center of each well. The images were captured using a semi-

automated process, where one out of every 25 images was manually focused. 

Once an image was focused and captured, a 5×5 block of images centered on the 

manually focused image was captured using programmed microscope stage 

motion (Prior Proscan, Rockland, MA). This process was repeated 12 times for 

each well, following a pattern of 4 rows and 3 columns. Using this process, the 

amount of time needed to image each well was ~7 min. Images were acquired 

under three different modalities: BF, phase contrast (PC), and differential 

interference contrast (DIC). The algorithm was developed against the BF images. 

The PC and DIC images were used to evaluate whether the algorithm could also 

be used for images reflecting contrast generated due to differences in IOR or 

optical path length, respectively. 

3.3.5 Image Processing Overview 

The goal of image processing was to label each pixel in the raw gray-scale 

image as either part of an LD or not such that the processed image displays the 

location and size of the LDs as white pixels against a black background.  The 

algorithm looks for objects in an image that have the following characteristics of 

LDs as they appear under BF microscopy: a circular shape with a dark boundary 

and light interior. While these characteristics are common to most cellular LDs, it 

is important to note that there were exceptions. In particular, depending on the 

contrast and brightness settings, the LDs in some images did not have an interior 
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region that was noticeably lighter than the background. Our processing algorithm 

takes into account this possibility by considering all three of the aforementioned 

LD characteristics.   

The algorithm consists of the following six steps (Figure 3-1). First, the 

original gray-scale image is converted to a black and white (B/W) image using a 

“high” threshold value to isolate the light interiors of the LDs. In this image, 

objects that are lighter than the background pixels are labeled as white. Second, 

the original gray-scale image is converted to a B/W twice using a “low” threshold 

value to identify the dark boundaries. In this image, only those regions that are 

surrounded by a very dark boundary are labeled as white. Third, these two B/W 

images are intersected to yield an image that is white only where there are objects 

that are both light and surrounded by a dark boundary.  

Fourth, a circle finding step is applied to eliminate non-circular objects from 

this image. This step identifies circles based on the area to perimeter ratio, as a 

circle has the highest such ratio of any two-dimensional shapes. A second 

criterion is that a circular object should have boundary pixels that are equidistant 

(one radius away) from the object’s centroid. Fifth, the circle-finding step is 

applied to the low threshold image. Another filter is then applied to this image to 

evaluate each white-labeled object based on its solidity (defined as the fraction of 

an object’s convex hull that is occupied by the object) and the average pixel value 

of the corresponding region in the original gray-scale image. Sixth, the resulting 

image is combined with the intersected image (from step three) to yield the final 

processed image. All six steps of the processing algorithm were implemented in 
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MATLAB (MathWorks, Natick, MA) using a combination of custom code and 

built-in functions. Source code is available in Appendix A. The typical runtime 

for a stack of 300 images at 1024 × 1280 pixel resolution was 1,500 sec.  

 

Figure 3-1: Overview of Image Processing Algorithm.  
Boxes represent the image after each processing step, starting with the original 
grayscale image and ending with the final, processed image. 
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Step 1: Black and White Conversion Using High-Threshold - Each pixel in the 

original gray-scale image has a numerical value between zero (black) and one 

(white). To generate the “high” threshold B/W image, all pixels with values 

greater (lighter) than the threshold are set to white, and all pixels less (darker) 

than the threshold are set to black. Setting the threshold to an a priori fixed value, 

as was done in a previous work (Or-Tzadikario, 2010), was not desirable due to 

the possibility that overall brightness and contrast could vary between images. 

Therefore, the threshold was recomputed automatically for each image based on 

the pixel value distribution of the image using a built-in function of the Image 

Processing Toolbox in MATLAB. The function used Otsu’s method (Otsu, 1979) 

to choose a threshold value that minimizes the intra-class variance of the black 

and white pixels. We observed that the threshold chosen by the built-in function is 

usually close to the mean pixel value of the gray-scale image. Using the value 

returned by the built-in function led to B/W images that clearly included a 

substantial amount of background noise (Figure 3-2).  

To better discriminate between LDs and other objects that appear lighter than 

the background, we compared the pixel value histogram of a representative image 

containing LDs to the histogram of an image from a culture that was not induced 

to differentiate and thus did not contain LDs. Based on the difference between 

these two histograms (Figure 3-3), we set the high threshold at a slightly larger 

value (15 % closer to white) than the value determined by Otsu’s method.   
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Figure 3-2: Representative Grayscale Images  
(A, C) processed with a fixed threshold (B, D). (A, B) If the threshold is too high, 
most of the lipid droplets are included along with noise. (C, D) If the threshold is 
too low, many of the droplets may be missed. 

 
Figure 3-3: Pixel Histograms for Representative Images 
(A) of cells containing LDs, shown in blue, and (B) overlaid with a histogram for 
a representative image of cells with no LDs shown in yellow. It can be seen in the 
overlaid image that the blue histogram includes a shoulder to the right of the 
average, indicating that images with differentiated cells contain a larger fraction 
of bright pixels (due to the interior of lipid droplets). The red line indicates the 
automatically determined threshold, and the green line indicates the “high 
threshold” set at a 15% higher value. 
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Step 2: Black and White Conversion Using Low-Threshold - The original gray-

scale image was processed using an automatically computed “low” threshold to 

generate an image that identifies the dark rings surrounding the LDs. As was the 

case for the high-threshold value, the low-threshold value was determined based 

on a comparison of representative histograms from gray-scale images of 

differentiated and non-differentiated cultures. Using the threshold determined by 

Otsu’s method as a conveniently calculated reference, the low threshold was set at 

90% of this reference value.  

To identify white-labeled objects that are not associated with the dark rings 

and thus likely represent background, the area of every white object in the B/W 

low-threshold image was computed. Using a multiple of the largest LD size as a 

conservative cut-off, all objects larger than the cut-off were recorded as 

background. The low-threshold image was then inverted and then flood-filled, 

using the recorded object locations as seeds. The flood-filled image was then re-

inverted to obtain an image (referred as the low-threshold image from hereon) 

where the white pixels represent the dark rings and enclosed areas, i.e. LDs, as 

well as residual noise representing background.    

Step 3: Intersecting the B/W Images - In the high-threshold image, the white 

pixels represent objects that are lighter than the average background pixel in the 

gray-scale image, which include the LDs. In the low-threshold image, the white 

pixels represent the LDs and objects that are darker than the average pixel in the 

original image. By intersecting the high- and low-threshold images, a new image 

is generated where the white pixels correspond to pixels that were labeled white 
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in both images. The result is to eliminate most of the noise, i.e. background pixels 

falsely labeled as part of an LD, as these pixels cannot be simultaneously darker 

and lighter than the low- and high-thresholds, respectively, and thus do not 

overlap in the two images. 

Step 4: Identifying Circular Objects in the Intersected Image - Much of the 

remaining noise (false positives) represents objects that are not circular, and thus 

unlikely to be an LD. Therefore, a circle-finding algorithm is applied to the 

intersected image from Step 3 to eliminate the non-circular objects. The circle-

finding algorithm evaluates the circularity of each object in two ways. First, the 

algorithm calculates the area (A)-to-perimeter (P) ratio Z, which is maximal in 

two dimensions for a circle. 

 Z = 4π A

P2
 (1) 

Scaled by 4π, this ratio ranges from zero for a line to one for a circle. The Z ratio, 

which is a measure of roundness, is easily computed for all objects in an image, 

but cannot distinguish smooth, oval-shaped objects (which probably are not LDs) 

from circular objects with irregular edges (which very well could be LDs). 

Therefore, another score is computed that determines how evenly distant an 

object’s perimeter pixels are from the object’s centroid. In a perfect circle, all 

boundary points are exactly one radius away from the center. After calculating the 

nominal radius (rn) of an object based on the object’s area using the formula for a 

perfect circle, the actual radii (ra,i) of the boundary pixels are calculated from their 

coordinates and compared to the nominal radius. The differences between actual 
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and nominal radii are squared, normalized to the nominal radius, and averaged to 

compute a shape score S: 

 S = 1
N

rn − ra,i( )
rn

2
i=1

N

∑
2

 (2) 

To keep the computational time reasonable (< 10 s), the number of boundary 

pixels analyzed for each image (N) was fixed at 32. The final circularity score 

was computed as a ratio of Z to S, such that an object that is more circular has a 

larger score. Based on the scores computed for representative LDs, the cut-off 

was set at 15, i.e. objects with circularity scores less than 15 were eliminated as 

potential LDs.  

Step 5: Identifying Solid Circular Objects in the Low-Threshold Image - For large 

LDs (> 6µm in diameter), the presence of a dark ring around the droplet is a more 

reliable characteristic than the presence of a light interior. It is possible that 

intersecting the low- and high-threshold images will erroneously remove large 

LDs or underestimate the size of these LDs by only retaining the interior regions. 

To solve these “false negative” problems, the low-threshold image from step 2 is 

reprocessed to identify large, circular objects that should be restored in the final 

processed image. First, small objects were eliminated. Next, circularity scores are 

calculated for all remaining objects to identify likely LDs. As was the case for the 

earlier steps, the parameter values to determine smallness and circularity were 

chosen based on comparison with ground truth determined from visual inspection 

of the original BF images. A final filter is then applied to remove the remaining 

false positives (objects that are erroneously labeled as LDs) based on whether an 
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object is both solid and relatively light. Solidity is defined as the fraction of an 

object that is contained in its convex hull, and lightness is defined as the mean 

pixel value of the object normalized to the threshold computed by Otsu’s method. 

The resulting image is referred to “dark ring image” from hereon.   

Step 6: Union of Intersected and Dark Ring Images - The final processing step is 

to form the union of images resulting from steps 3 and 5. This final step restores 

several large LDs as well as boundaries eliminated during step 3. 

3.3.6 Calculating LD Size, Volume, and Distribution 

The following statistics were calculated: number of LDs, fraction of image 

occupied by LD, average LD size, total LD volume, and a histogram of LD size 

distribution. All calculations were performed using the final processed image. The 

LD fraction was calculated by dividing the number of white pixels by the total 

number of pixels. Average LD size was calculated by dividing the number of 

white pixels by the number of distinct objects in the image. Total LD volume (in 

cubic pixels) was calculated by treating each object as a perfect sphere with a 

nominal radius estimated based on the object’s area and the assumption that the 

area represents a circle defining the equator of the sphere. Size distributions based 

on LD volume were computed for each image as well as sets of images 

representing different time points in the differentiation experiment. As the number 

of small LDs (< 3 μm in diameter) was at least one order of magnitude greater 

than all other LDs, the bins of the histogram were determined based on the 

aggregate volume of the LDs in each bin, rather than number of LDs.  
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3.4 Results 

3.4.1 Comparison with ground truth 

A key desired feature for the image analysis algorithm is to process images 

that can be readily obtained using standard microscopy equipment without 

requiring the addition of fixatives, dyes and/or chemical probes. To this end, we 

developed the image analysis algorithm against micrographs of cultured 3T3-L1 

adipocytes obtained under BF. Starting with a grayscale image (Figure 3-4A), the 

algorithm generates a high threshold image (Figure 3-4B) and a low threshold 

image (Figure 3-4C). The latter is inverted and flood-filled, then re-inverted to 

obtain a processed low threshold image (Figure 3-4D).  

Intersecting the processed low and high threshold images eliminates much of 

the background noise (Figure 3-4E). However, some noise remains (boxed insert 

in Figure 2E), consisting of irregularly shaped objects that are falsely labeled as 

LDs. To remove these false positives, a circle finding step is applied. Figure 3-4F 

shows an image containing only the circular objects identified in the intersected 

image. Next, we identify larger solid objects from the processed low threshold 

image that should be retained as LDs (Figure 3-4G). The last step adds these 

circular objects to the intersected image (Figure 3-4F) to form the final image 

(Figure 3-4H). A comparison between Figure 3-4A and Figure 3-4H shows that 

the final processed image correctly identified nearly all of the LDs recognizable in 

the original grayscale image. 
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Figure 3-4: Illustration of Processing Steps  
(A) Original grayscale, (B) high threshold, (C) low threshold, (D) processed low 
threshold, and (E) intersected images. (F) circular objects from the intersected 
image, (G) dark ring image, and (H) final processed image. Boxed insert shows 
irregularly shaped objects that are falsely labeled as LDs in (E).  
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3.4.2 Comparison with biochemical data 

In this study, we used visual inspection to determine “ground truth,” i.e. 

whether an LD pixel was correctly labeled in the processed image. However, this 

determination can be prone to bias or user error. To obtain a more objective and 

quantitative assessment, we compared the calculated volume of LDs in a culture 

well against total TG content measured using an enzymatic assay on cell lysates. 

Over the course of a typical experiment, we noted that the extent of differentiation 

and lipid accumulation varied significantly from one region of a culture well to 

another. Consequently, it was possible that a small set of selected images may not 

be representative of the entire culture well.  

For each well, we thus recorded a large contiguous (20 × 15) block of images 

covering approximately 58 % of the culture area. As shown in Figure 3-5, the 

calculated LD volume correlated linearly and very strongly with the 

corresponding TG data. Interestingly, the linear correlation was stronger (R2 = 

0.991, p < 0.01), when the data were averaged based on the time point (n = 6 

wells per time point). A well-by-well comparison of calculated LD volume and 

measured TG data (Figure 3-5A) showed a greater amount scatter (R2 = 0.723, p 

< 0.0001), especially for wells corresponding to the later time points (days 12 and 

16). The dominant source of scatter was the LD volume calculation, as the well-

to-well variance in the enzymatically measured TG values was relatively small 

within a time point group (Figure 3-5B).  
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Figure 3-5: Calculated vs Enzymatically Measured TG content 
(A) individual wells and (B) time point averages. Closed squares, open squares, 
closed circles, and open circles indicated, respectively, day 4, 8, 12, and 16 data. 
For the individual well comparison, matching images and enzymatic assay results 
were obtained on the same well. Error bars represent one SD (n = 6 wells). 

3.4.3 Culture heterogeneity 

An important advantage of image analysis is the ability to obtain spatial 

information, which is impossible using destructive assays that require sample 

homogenization. To investigate the culture heterogeneity suggested by the sample 

scatter in Figure 3-5B, we mapped the distribution of LDs in a culture based on 

the calculated total LD volume for each image. The resulting heat maps (Figure 

3-6) confirmed a highly heterogeneous distribution of LDs within a culture well. 

This trend was observed for all time points. To characterize the intra-well 

distribution of LDs, the pixel values in each heat map were scaled with respect to 

the image containing the largest amount of LD across all time points (set to 

white). We used a nonlinear (quadratic) scale for the purpose of visualization, as 

the gray colors resulting from linear scaling were difficult to distinguish from 

black. The scaled heat maps indicate that lipid accumulation, and presumably 

differentiation, occurs in clusters.  
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Figure 3-6: Heat Maps Showing Culture Heterogeneity 
(A) day 8, (B) day 12, and (C) day 16. Each pixel represents a single image, with 
the intensity ranging from black (no lipid) to white (highest lipid content across 
all samples and time points). TG accumulation on day 4 is limited and not shown. 

3.4.4 Size distribution of LDs 

In addition to spatial heterogeneity, image analysis can be used to characterize 

the size distribution of LDs. In one model of LD biogenesis, TG molecules ‘oil 

out’ between the leaflets of the bilayer membrane, initiating the formation of tiny 

primordial LDs (Pol, 2014). Once formed, the primordial LDs can fuse to form 

larger cytosolic LDs independent of TG synthesis, although it should be noted 

that the quantitative importance of fusion is subject to debate. Based on this 

model, we would expect to see a large number of LDs at early time points 

following adipogenic induction, with the number of LDs decreasing thereafter as 

smaller droplets fuse to form larger ones. This trend is indeed reflected in the 

data, with a steady increase in the number of LDs from day 4 to day 12, and a 

decrease on day 16 (Figure 3-7). An alternative model for LD biogenesis is the 

incorporation of locally synthesized TG molecules, which is supported by the 

presence of TG synthesis enzymes on the LD surface (Kuerschner, 2008).  Both 

of these models imply that newly differentiated adipocytes will contain smaller 

LDs compared to mature adipocytes due to the time required to form larger LDs. 
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Comparing the size distributions of LDs on days 4, 8, 12 and 16, we found a 

steady increase in the fraction of large LDs with time post-induction ( 

 

 

 
 

 
 

Figure 3-8). On day 4, large LDs (> 11 μm in diameter, bins 10 and 11) 

contribute less than 20 % of the total lipid volume. In contrast, large LDs 

contribute more than 70 % of the lipid volume on day 16. Similarly, the 

contribution of the smallest droplets (< 4 μm in diameter, bin 1) to the total lipid 

volume steadily decreases from 47 % on day 4 to 5 % on day 16. 

Figure 3-7: Average Number of 
Droplets per Image  
For each time point (n = 6 wells). 
Error bars represent one standard 
deviation. 
 
 
 
 

 

 
 
Figure 3-8: Droplet Size 
Distribution  
Day 4 (filled bars) and day 
16 (open bars). Each droplet 
was binned according its 
contribution to the total lipid 
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volume of the corresponding image. 
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3.4.5 Comparison of Imaging Modalities 

In addition to BF, PC and DIC microscopy have been commonly used to 

observe LDs. We thus investigated whether our processing algorithm could also 

analyze images captured using these two additional modalities. For comparisons, 

we recorded images of differentiating 3T3-L1 cells in the same field of view 

(comprising a 5×5 block of images) using all three (BF, PC, and DIC) modalities 

(Figure 3-9). The images were analyzed for total lipid volume, LD count, and LD 

size distribution, and the results from PC and DIC images were compared to the 

corresponding BF results.  

 
Figure 3-9: Representative Image Under Different Modalities  
Bright-field (BF), differential interference contrast (DIC), or phase contrast (PC) 
modality. 

Overall, the DIC results correlated more strongly with the BF results than the 

PC results. For total lipid volume, the coefficient of determination (R2) for linear 

regression of DIC on BF was 0.82, whereas the R2 value for linear regression of 

PC on BF was only 0.55 (Figure 3-10). In both cases, total lipid volume was 

underreported relative to the BF analysis. The trend was similar for number of 

LDs, with linear regression of DIC and PC on BF yielding R2
 values of 0.78 and 

0.31, respectively (Figure 3-10). In contrast, we did not find any statistically 

significant differences (based on the two-sample Kolmogorov-Smirnov test) in 

the distribution of LD sizes calculated from BF, DIC, and PC images for any of 
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the four time points observed in this study (Figure 3-11). This finding, taken 

together with the observation that analysis of DIC or PC images tends to 

underestimate total lipid volume, suggests that the sizes of the LDs that the 

algorithm fails to detect in the DIC and PC images (but detects in the BF images) 

are likely randomly distributed; i.e. there is no clear bias for larger or smaller 

droplets.  

 
Figure 3-10: Comparison of Different Modalities 
(A) PC and (B) DIC images compared to BF images. For LD volume, each data 
point represents a 5x5 block of images captured at different time points (day 4, 8, 
12 and 16). For average LD number, each data point represents the average 
number of LDs calculated for a 5×5 block of images, captured at different time 
points (days 4, 8, 12, and 16). Averaging was performed by dividing the total 
number of LDs detected in the block by the number of images (25). 
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Figure 3-11: Droplet Size Distribution from BF, DIC and PC Images 
Distributions were analyzed on images captured of the same cells in a 20×15 
block of images. Data shown are for day 16. The analysis was performed for all 
time points. For each time point, the droplet size distribution was computed as 
follows. First, the number of LDs in each size bin was summed across all images. 
Then, the sum for each bin was divided with the total number of LDs across all 
bins to calculate the fraction of LDs in each bin. The BF, DIC, PC distributions 
were not found to be statistically significantly different based on the Kolmogorov-
Smirnov test (p=0.01). 

3.5 Discussion 

In this chapter, we present an automated image analysis algorithm that can be 

used with BF microscopy to accurately identify LDs in cultured adipocytes. 

Importantly, the images can be obtained using standard microscopy equipment, 

and the analysis does not require the cells to be fixed and/or labeled using a 

chemical probe. We develop the processing algorithm for images captured using 

BF microscopy, and show that we can obtain sufficient contrast even with this 

simple technique to robustly and accurately resolve LDs of varying sizes in cells 

at various stages of adipogenic differentiation.  

An obvious benefit of automated analysis is efficiency, as manual analysis is 

time-consuming, especially if the images are heterogeneous and large numbers of 
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images need to be analyzed to obtain statistically robust results. Another benefit is 

consistency, as manual analysis of LDs can be error prone and biased. In certain 

cases, the designation of an object as an LD can be subjective, for example when 

only a part of an LD is visible due to spatial overlap with other LDs within a cell. 

Another potential source of error is the determination of LD boundaries, which is 

necessary to compute size. Due to practical issues such as focusing and 

microscope resolution, manual determination of an LD periphery may yield 

variable results, and thus significantly affect volume calculations. 

Previous work on automated analysis of label-free images (Or-Tzadikario, 

2010) relied on brightness contrast to identify LDs, with the implicit assumption 

that the LDs are the brightest objects in an image. In principle, this characteristic 

allows simple discrimination between LDs and other objects by applying a 

brightness threshold as a filter. However, this approach can become inadequate 

for complex images containing a heterogeneous distribution of non-uniformly 

differentiated cells with varying LD sizes. If the overall brightness of an image is 

too low, setting a fixed threshold can include many false positives due to 

background noise. Conversely, a fixed threshold could erroneously eliminate 

many actual LDs, if the brightness of an image is too low.  

To address these issues, our algorithm utilizes two variable thresholds to 

exploit other characteristic features of LDs. Specifically; our method considers 

not only the lightness of an LD’s interior, but also the darkness of the boundary 

and the circularity of both the LD and its boundary. By accounting for these 

multiple features, our algorithm can reproducibly process a variety of complex 
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images with different brightness and contrast to identify nearly all of the visible 

LDs while generating a very low number of false positives. 

One particular challenge in both manual and automated analysis is the 

treatment of very small objects near the resolution limit of the microscopy 

instrument. In this study, we used a plan fluorite objective with a numerical 

aperture of 0.5 to acquire the images, yielding a resolution limit of approximately 

~0.6 µm based on the Rayleigh criterion. In practice, we found that LDs with 

diameters less than 1 µm were difficult to resolve, especially when juxtaposed 

with other similar sized objects. This difficulty was especially acute when 

identifying droplets manually, as it was practically impossible to consistently 

obtain an accurate measurement of a small LD’s diameter. Even when the 

analysis utilizes image processing, the small LDs can be mistakenly eliminated as 

noise from the final processed image. Due to the limited resolution, we could not 

use the characteristic shape and contrast features of an LD to discriminate 

between true LDs and other objects.  

On the other hand, these small droplets accounted for a very small fraction of 

the total LD volume in a given image. The volume fraction contributed by LDs 

with diameters < 4 µm was less than 1 % for images of newly differentiated 

adipocytes on day 4, the earliest time point where we observed microscopically 

visible intracellular LDs. This fraction was even smaller for images of the cells 

captured at subsequent time points. For these reasons, we tuned the algorithm’s 

parameters (cutoff values for the low and high thresholds and circularity criteria) 

to focus on identifying the larger droplets that quantitatively determine the total 
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lipid volume. However, we also realized that larger lipid droplets are not as 

uniformly bright as small/medium droplets, therefore we tuned cutoff values for 

medium LDs and added the circle finding step for the low threshold image to 

make sure large LDs were not missed. For large lipid droplets, the interior will be 

less bright, and may be missed in the high threshold image. Furthermore, if the 

interior of a large LD is not uniformly bright, the portion that is included in the 

intersected image won’t be circular. However, the dark ring is very circular, and 

will either add the object back to the processed image, or in the case of the test 

image, increase the size of LDs (and significantly add to the volume).   

Overall, the results from automated image analysis correlated very well with 

the results from a standard enzymatic assay, especially across the different points 

along the differentiation time course (Figure 3-5B). We found that the correlation, 

while still significant, was weaker for individual culture wells (Figure 3-5A). The 

scatter in the data is likely due to the uneven nature of differentiation, both 

between wells and within an individual well. The heat maps of Figure 3-6 show 

that lipid accumulation is not uniformly distributed across the culture area in a 

well. Rather, lipid accumulation is quite heterogeneous and clusters into a few 

areas, presumably where differentiation has progressed to a greater extent 

compared to the rest of the culture. The uneven differentiation could explain the 

well-to-well variability in the image analysis data. If differentiation and lipid 

accumulation occurred uniformly, then every image would be equally 

representative of the entire culture regardless of the corresponding location of the 

image in the culture well. This is obviously not the case, and thus sampling 
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depends on both location of capture and number of images. For each well, the 

total area covered by the captured images represents approximately 58% of the 

available culture surface area, whereas the biochemical assay data was performed 

on homogenized cell extracts collected by processing the entire culture well.  

Heterogeneity in the sizes and distribution of LDs in cultured adipocytes has 

long been recognized (Green, 1974). Loo et al. characterized this heterogeneity by 

examining LD morphologies and several key markers for adipogenesis in 

individual cells compared to population-averaged trends (Loo, 2009), and 

suggested that the heterogeneity reflects the presence of several subpopulations 

with distinct phenotypes. Using a single-cell approach, Le et al. found that the 

cell-to-cell phenotypic (non-mutative) variability in a clonal population of 

differentiating 3T3-L1 cells was not due to differences in the induction of 

adipogenic genes, as they observed that key regulatory genes such as PPARγ and 

C/EBPα were expressed in all cells. Rather, single-cell analysis of LD formation 

suggested that the variability was due to cell-to-cell differences in the kinetics of a 

signaling cascade that includes insulin sensitivity and glucose uptake (Le, 2009).  

Still, this does not directly explain why adipocytes with microscopically 

visible LDs tend to differentiate in clusters within the culture well. One possible 

explanation is that the aforementioned kinetic variability between individual cells 

leads to different rates of LD formation early in the differentiation process, with 

the differences subsequently amplified via autocrine and paracrine signaling 

factors that are secreted by the differentiating adipocytes to promote the 

differentiation of neighboring cells. Enhanced differentiation of preadipocytes due 
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to the production of adipogenic factors by adipocytes has been reported in several 

in vitro studies involving conditioned media (Maumus, 2008), trans-well inserts 

(Stacey, 2009; Shillabeer, 1989), and microfluidic devices (Lai, 2012). However, 

the chemical identities of these adipocyte-derived factors and their effects of LD 

formation remain to be fully elucidated. In this regard, image analysis techniques 

that can characterize the time evolution of LDs in conjunction with live-cell 

microscopy should be useful in investigating the dynamics of LD formation in the 

context of local signaling between newly differentiated adipocytes and their 

neighboring cells. 

In addition to obtaining spatially resolved information, another benefit of live-

cell microscopy is the ability to repeatedly observe the same cells over time. In 

the present study, we used BF microscopy, which does require fixing the cells and 

affords relatively rapid image capture, while still providing sufficient contrast to 

identify LDs. Employing the image processing algorithm presented in this 

chapter, we were able to detect the LDs without introducing dyes or probes, 

whose labeling kinetics could potentially confound the analysis when studying 

LD dynamics. Upon differentiation, adipocytes become relatively immotile, and 

the same cells can be readily monitored to estimate time constants for LD 

remodeling. For example, based on images recorded at 15 min intervals, we 

estimated that formation of small LDs (on the order of a few micrometers) occurs 

over several hours (Figure 3-12A), whereas further enlargement seems to occur 

over several days (Figure 3-12B). These estimates are consistent with a study by 

Nagayama et al., who manually analyzed time-lapse microscopy images to find 
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that nascent LDs form over several hours in primary stromal-vascular cells 

(SVCs) induced to differentiate into adipocytes (Nagayama, 2007). 

 
Figure 3-12: Representative Images Taken Over Time.  
(A) Images were recorded for the same cell every 2 hours. (B) Images were 
recorded for the same cell every 48 hours. Images in (A) and (B) show different 
cells. 

Clearly, the simplicity of the microscopy technique employed in the present 

study precludes finer analysis on the chemical composition of the LDs. Fine 

resolution chemical analysis can be performed with more advanced techniques 

that incorporate spectroscopy, notably CARS (Isomaki, 2014). However, these 

techniques require sophisticated equipment not readily available in most 

laboratories. For certain biological specimen, other light microscopy modalities 

such as PC and DIC have been shown to provide better resolution and contrast. 

Surprisingly, this was not the case for LDs in cultured adipocytes. Indeed, DIC 

images of LDs in adipocytes reported by several other groups (Nagayama, 2007; 

Wolins, 2005) appear quite similar to the BF images we recorded in the present 

study.  
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Consequently, we were able to use our image analysis algorithm to analyze 

LDs in DIC images without any parameter adjustments ( 

Figure 3-10B). On the whole, the algorithm performed relatively poorly on PC 

images, generally underestimating the number of LDs in an image. For selected 

PC images however, the results were nearly identical to the corresponding BF 

images (Figure 3-13). The number of LDs identified was 833, 268 and 1,153 for 

BF, DIC and PC images, respectively. Although many of the smaller droplets 

were missed in the DIC image, the total lipid volumes were comparable (972,000 

for BF, 1,279,000 for DIC and 1,281,000 cubic pixels for PC). The distributions 

were not found to be statistically significantly different. These results suggest that 

the main limitation in extending the algorithm to PC images lies in the 

consistency of the image acquisition. PC images seem to be more sensitive to 

differences in focus level than BF or DIC images, indicating the combination of 

PC microscopy and semi-automated image acquisition involving intermittent 

focusing is not suitable for the feature-based LD identification processing 

described in the present study. This type of sensitivity to focusing was not as 

evident in the results of BF or DIC image analysis.  

Taken together, our results suggest that automated detection of LDs can be 

applied to BF images for accurately estimating the lipid content and LD 

distribution of adipocyte cultures. The total LD volumes calculated using image 

processing correlated linearly with the amounts measured using a commercial 

enzymatic assay kit.  In addition to offering an alternative to destructive assays for 

TG quantification, image analysis also affords spatially resolved analysis of LD 
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number and size distribution, which have been shown to directly vary with factors 

affecting cellular lipid metabolism, and thus could be used as readouts when 

testing agents designed to affect LD biogenesis or remodeling. For example, 

obese (fa/fa) Zucker rats fed a diet containing trans-10,cis-12 conjugated linoleic 

acid (CLA) showed increased glucose tolerance, reduced liver lipid content and 

reduced inflammation. Compared to Zucker rats fed a control diet, the livers of 

rats fed the diet containing trans-10,cis-12 CLA had a higher number of smaller 

LDs. In vitro experiments with cultured hepatocytes suggested that this anti-

steatotic effect observed in vivo is due to influences of non-hepatic tissues, and 

likely involved increased utilization of lipids in WAT.  

Smaller LDs expose a proportionately greater fraction of their lipid volume to 

degradation by hormone-sensitive lipase (Walther, 2009). Under lipolytic 

conditions, for example, induced by elevating cAMP via hormonal stimulation 

and consequent activation of protein kinase A, intracellular LDs transition from a 

clustered to dispersed state (Marcinkiewicz, 2006). This remodeling is thought to 

increase the total LD surface area within the cell and thereby accelerate lipolysis. 

As illustrated by hepatic steatosis, accumulation and mobilization of cellular LDs 

are not only important physiological processes, but also implicated in the 

pathophysiology of obesity and related diseases. In this light, methods that enable 

rapid, noninvasive, and spatially resolved analysis of LD dynamics should not 

only be useful in studying the biochemical and biophysical processes that govern 

cellular LD formation and morphology, but also in developing efficient screens 

for potential therapeutics that target LDs. 
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Figure 3-13: Representative Set of Processed BF, DIC, and PC Images  
These images were captured from the same location in the well (at the same time) 
under different microscopy modalities.  
Left column: unprocessed grayscale image; right column: processed image.  
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4 Analysis of Network-wide Effects of Individual Enzyme 

Knockdown 

4.1 Abstract 

Based on the results from Chatper 2, we selected the following targets for 

further analysis: pyruvate carboxylase (PCX), isocitrate dehydrogenase (IDH), 

diacylglycerol acyltransferase (DGAT), and fat specific protein (FSP27). We used 

a targeted metabolomic approach to understand the effects of knockdown. Using 

LC-MS, we measured concentrations of metabolites in many different pathways: 

glycolysis, TCA cycle, amino acid metabolism, fatty acids and cofactors. Changes 

in intracellular metabolite concentrations were greater on day 8 than day 14, with 

the most noticeable differences in DGAT and FSP knockdown, which were also 

surprisingly similar to eachother. Knockdown of FSP and DGAT led to increased 

concentration of TCA cycle intermediates, and decreased concentrations in 

glycolysis and amino acids. Knockdown of PCX led to increases in some amino 

acid concentrations, and decreased concentrations of saturated fatty acids, but had 

no significant effect on the TCA cycle.  IDH knockdown reduced glycolytic 

intermediates as well. 

We used principal component analysis and hierarchical clustering to 

understand differences between knockdown conditions. This analysis confirmed 

observations that DGAT and FSP clustered tightly together. PCX and IDH also 

clustered together, but not as strongly. These trends were consistent from day 8 to 
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day 14, though slightly weaker on day 14, confirming observations that 

metabolite differences were less significant later in the experiment.  

4.2 Introduction 

Based on previous experiments described in Chapter 2 of this thesis, we 

selected the following targets for further analysis: pyruvate carboxylase (PCX), 

isocitrate dehydrogenase (IDH), diacylglycerol acyltransferase (DGAT), and fat 

specific protein (FSP27). PCX and IDH produce intermediates required for TG 

synthesis, DGAT catalyzes the final reaction in TG synthesis, and FSP27 

promotes fusion of the lipid droplets and thereby regulates lipolysis. The goal was 

to understand the metabolic basis underlying the TG reduction we observed by 

examining the network-wide effects of the targeted knockdowns. We utilized a 

metabolomics approach to broadly profile the major intermediates of energy and 

lipid pathways in adipocytes.   

Metabolomics is a growing field that applies a systems view to study the 

metabolic state of a biological system. Analogous to genomics, transcriptomics, 

and proteomics, metabolomics is concerned with obtaining a comprehensive 

picture of cellular physiology (Matilla, 2008). Of particular interest for adipose 

tissue biology has been lipidomics, which focuses on quantifying fatty acids, 

acylglycerols, phospholipids and other lipid species (Griffin, 2006). Pioneering 

studies in the field have highlighted the potential for lipidomics to enable 

simultaneous investigation of the multiple biological roles of lipid molecules as 

metabolic substrates, signaling intermediates, and structural components such as 

membranes of subcellular compartments (Manteiga, 2013; Choi, 2004). Recently, 
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lipidomics has been used to identify metabolic indicators of adipose tissue 

response to therapeutic intervention. In a study on the effects of rosiglitazone on 

lipid metabolism in diabetic mice, Watkins et al. identified palmitoleate (16:1n7) 

as an indicator of increased de novo FA synthesis in AT (Newton, 2011). More 

recently, Cao et al. found that palmitoleate is produced during de novo lipogenesis 

in AT, and that its production significantly correlates with improved insulin 

sensitivity (Wilson-Fritch, 2004). These findings are supported by studies in HSL-

null mice, whose TG stores in AT depots contain significantly less palmitoleate 

(Foster, 2005). The proportion of palmitoleic acid was found to increase in obese, 

but otherwise healthy humans, suggesting that the production of this fatty acid 

could reflect an adaptation to restore insulin sensitivity (Bouwman, 2004). 

Notably, palmitoleic acid production was not increased in morbidly obese 

subjects. 

In the present study, we utilized metabolomics to characterize not only the 

metabolites of lipid pathways, but also the intermediates of other major metabolic 

pathways that collectively govern the balance of intracellular TG in adipocytes. 

We developed and employed a series of liquid chromatography-mass 

spectrometry (LC-MS) methods to measure a broad range of intracellular 

metabolites and extracellular fluxes. Specifically, we profiled the following 

pathways and metabolites: amino acid metabolism and exchange rates, fatty acid 

profiles (both unsaturated and saturated), intermediates of glycolysis and the TCA 

cycle, and cofactors (ATP, NADH, etc). We utilized targeted product scans to 

robustly identify the metabolites of interest based on fragmentation spectra.  
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4.3 Materials and Methods 

4.3.1 Materials 

3T3-L1 cells were purchased from ATCC (Manassas, VA). Tissue culture 

reagents including Dulbecco's Modified Eagle's Medium (DMEM), calf serum 

(CS), fetal bovine serum (FBS), human insulin, and penicillin/streptomycin were 

purchased from Invitrogen (Carlsbad, CA). Unless otherwise noted, all other 

chemicals were purchased from Sigma (St. Louis, MO). 

4.3.2 Cell culture 

Low passage 3T3-L1 preadipocytes were seeded into 12 well plates at a 

concentration of 2×104 cells/cm2 and cultured in a humidified incubator at 37°C 

and 10% CO2. The cultures were expanded in a growth medium consisting of 

DMEM supplemented with 10% v/v CS, 100 units/mL penicillin, 100 μg/mL 

streptomycin, and 2.5 μg/mL amphotericin. The growth medium was changed 

every 2-3 days until confluence was reached. Two days post-confluence 

(designated as day 0), the cells were induced to differentiate using an adipogenic 

cocktail (DM1: 1 µg/ml insulin, 0.5 mM isobutylmethylxanthine, 1 μM 

dexamethasone, and 2 nM triiodothyronine) added to a basal medium (DMEM 

with 10% FBS and penicillin/streptomycin/amphotericin). After 48 h, the first 

induction medium was replaced with a second induction medium (DM2) 

consisting of the basal adipocyte medium supplemented with only insulin (1 

µg/ml). After another 48 h, DM2 was replaced with the adipocyte basal medium. 

On days 4, 8, and 14, images were recorded for three randomly selected wells, 

which were then sacrificed for enzymatic assays of total TG content.  
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4.3.3 siRNA Transfection 

Beginning on day 4 post-induction, cells were transfected with siRNA at 30 

nM. Lipofectamine 2000 (Invitrogen) was used as a transfection reagent based on 

the manufacturer’s suggested protocol. Briefly, Lipofectamine and the target 

siRNA were combined in Opti-Mem reduced serum medium and incubated for 10 

minutes at room temperature to allow the nucleic acids to complex with the 

liposomes. After replacing the insulin supplemented adipocyte medium (DM2) 

with the reduced medium containing the siRNA-lipid complexes, the cells were 

incubated as normal. Preliminary experiments using nonsense siRNA showed no 

signs of cytotoxicity. Knockdown was sustained by continuing the siRNA 

treatment every 48 hours for the remainder of culture. The siRNA sequences were 

optimized for target specificity based on Sigma’s Rosetta predictions. The vendor 

did not provide the exact nucleotide sequences, but the approximate nucleotide 

positions on the target RNAs are known. The sequence locations for each target 

are listed in Table 2. The nucleotide position is given relative to the beginning of 

the NCBI RefSeq sequence for the given target gene. All sequences are for the 

target enzyme in mice, because 3T3-L1 preadipocytes come from a murine 

source. As a control, cells were transfected with a nonsense siRNA sequence. 

4.3.4 Metabolite Extractions 

Because salt-based detergents (e.g. SDS) are not compatible with LCMS, cells 

were extracted using an organic solvent mixture, methanol/chloroform/water 

(48:48:4 v/v) as follows. On days 8 and 14, media was removed and collected for 

separate analysis. Cells were rinsed with ice cold PBS and 524 uL of 
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methanol/water (91:9 v/v) was added to each well. Cells were detached from the 

well using manual scraping over ice and stored in a 1.5 mL eppendorf tube. 476 

uL of chloroform was added to each tube to reach the final concentration. 

Chloroform degraded tissue culture plastic, and thus could not be added directly 

to the well. The extraction protocol was optimized by varying the solvent to cell 

ratio to ensure that the volume of methanol/water was sufficient to detach cells 

from the plate and extract the metabolites while not overly diluting the samples. 

After addition of chloroform, the samples were vortexed and freeze/thawed 3 

times in liquid nitrogen in order to fully lyse the cells. In order to remove cell 

debris, samples were centrifuged at 10,000 rpm for 10 minutes, and dried using a 

speed-vac at room temperature. Samples were reconstituted in 100 uL 

methanol/water (50:50 v/v) and stored at -20 °C until further analysis. 

Extracellular media was centrifuged to remove cell debris and diluted 10x in 

HPLC-grade water. 

4.3.5 LC-MS  

We analyzed the metabolite concentrations using multiple reaction monitoring 

(MRM) experiments performed on a QTRAP 3200 triple quadrupole ion-trap 

mass spectrometer (Ab Sciex, Framingham, MA). Chromatographic separation 

was achieved using an Agilent 1200 liquid chromatography system (Agilent, 

Santa Clara, CA). Separate runs were conducted for amino acids, fatty acids, and 

TCA/glycolysis intermediates. A complete list of columns and solvents used for 

chromatographic separation is available in the Appendix B. Each metabolite was 

confirmed based on its MRM transition (precursor and product ion pairing), and 
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were quantified by integrating the ion chromatogram to obtain the corresponding 

area under the curve (AUC). The AUC for each metabolite was then normalized 

to the total ion count (TIC) of the corresponding sample. Metabolite identities 

were confirmed based on their unique fragmentation spectra.  Metabolite 

extraction buffers were not compatible with the Hoechst dye assay, which 

prevented the use of DNA content for normalization. While the DNA contents 

were relatively constant across different biological replicates and treatment 

conditions, normalization by sample TIC proved more robust. 

4.3.6 Principal Component Analysis and Hierarchical Clustering 

In order to understand the significance of metabolite observations, we 

conducted a principal component analysis (PCA), using normalized metabolite 

measurements as independent variables, and knockdown conditions as dependent 

variables. We performed the analysis for both time points (day 8 and 14) as well 

as on control groups across time points. The analysis was conducted using built-in 

functions in MATLAB’s Statistics Toolbox (Version 7.9.0.529, R2009B, 

Mathworks, Natick, MA). In addition, we categorized interactions between 

metabolite changes using hierarchical clustering. This analysis also utilized the 

built-in function of the Statistics Toolbox in MATLAB. 
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4.4 Results 

4.4.1 Measured Metabolite Levels and Extracellular Fluxes 

In general, changes in intracellular metabolite concentrations were greater on 

day 8 than day 14, with the most noticeable differences in FSP and DGAT 

knockdowns (Table 3 in Appendix C). Interestingly, the effects of FSP and 

DGAT were very similar to each other, and very different from the other 

knockdown conditions. The effects of PCX and IDH were also similar to each 

other, but not to the same extent. Knockdown of FSP and DGAT led to increased 

concentration of TCA cycle intermediates, and decreased intermediates of 

glycolysis and amino acid metabolism. Knockdown of PCX led to increases in 

some amino acid concentrations, and had no significant effect on the TCA cycle.  

IDH knockdown reduced glycolytic intermediates as well. Overall, knockdown 

conditions had less significant effects on fatty acid levels, with the exception of 

linoleic acid, which was significantly reduced in FSP, DGAT and PCX 

knockdown. As expected, PCX knockdown reduced the concentrations of 

palmitic and stearic acid as well. On day 14, differences were less significant, but 

metabolite levels were generally lower when compared to control, suggesting an 

overall decrease in metabolic activity, without significant effects on specific 

pathways.  

Overall, there were fewer significant differences in measured extracellular 

fluxes (Table 7). Knockdown of the target enzymes/proteins did not significantly 

affect glucose uptake on day 8, while reducing the uptake slightly on day 14. On 

average, amino acid exchange rates were quantitatively very small compared to 
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flux through glycolysis, and generally similar across the control and treatment 

conditions. 

4.4.2 Principal Component Analysis 

We first examined the principal components across each time point. We found 

good separation between the time points, despite a high degree of scatter within 

each group (Figure 4-1). Day 4 showed the most variability between replicates, 

consistent with the morphological heterogeneity present in cultures differentiating 

preadipocytes. As differentiation progressed, biological replicates exhibited less 

scatter. The primary metabolites contributing to the separation included TG, 

several amino acids, citrate and fumarate (Figure 4-2). 

Figure 4-1: Principal Component Analysis (Over Time) 



80 
 

 
Figure 4-2: Components Scores (Over Time) 

We then examined separation between knockdown conditions on day 8 and 

day 14. We observed strong clustering of DGAT and FSP, and weak clustering of 

PCX and IDH, with control groups in between (Figure 4-3). Metabolites 

contributing most strongly to the separation between DGAT/FSP and the other 

conditions mainly included amino acids and fatty acids (Figure S-0-1 in Appendix 

D). Fructose 1,6-bisphosphate caused separation between PCX and IDH, 

indicating that PCX knockdown may lead to increased concentrations of 

glycolytic intermediates.  

On day 14, PCX and IDH clustered together (still with a high degree of 

scatter) and DGAT/FSP clustered closer to the control condition (Figure 4-3). 

Several cofactors (NAD, NADPH, etc) strongly contributed to separation between 

experimental conditions as well as citrate and some amino acids (Figure S-0-2 in 

Appendix D). Interestingly, though we observed significant differences in TG 

accumulation between control and knockdown conditions, this was not identified 

in the PCA analysis. 
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Figure 4-3: Principal Component Analysis (Day 8 and 14) 

Day 8 

Day 14 
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Figure 4-4: Heatmap of Normalized Metabolite Concentrations (Day 8) 
Each column represents a biological replicate, and each row represents a 
metabolite measurement. Red/orange indicates increased concentrations, blue 
indicates decreased concentrations. 

Lastly, in order to visualize changes in concentration across the entire 

network, we constructed a heatmap of normalized metabolite concentrations 

(Figure 4-4). We again observed strong similarities between the FSP and DGAT 

conditions when compared to the control and to the other knockdown conditions. 

PCX and IDH knockdown also have similar effects, but not to the same extent as 

FSP and DGAT. Metabolites were organized on the y-axis based on hierarchical 

clustering (Figure S-0-1 in Appendix E). Metabolites towards the bottom 

clustered most strongly. These included many TCA cycle intermediates and fatty 

acids.  Interestingly, oxaloacetate clustered with amino acids, indicating that 
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changes in its concentration are more closely correlated with amino acid 

metabolism. Similarly, citrate clustered with cofactors, suggesting that the citrate 

pool is strongly affected by the cofactor balance within the cell. 

4.5 Discussion 

In this chapter, we examined the effect of individual enzyme knockdown on 

metabolite profiles. Overall, changes in intracellular metabolite concentrations 

were greater on day 8 than day 14. This likely reflects the redundancy built-in to 

biological pathways, and the cell’s ability to respond to perturbations and return 

to equilibrium. On day 8, 4 days after the initial siRNA treatment, we observe 

many significant differences in intracellular metabolite concentrations. However, 

by day 14, many of these differences have normalized. Despite this fact, TG 

accumulation on day 14 is still significantly reduced, indicating that perturbations 

to metabolism during the early stages of adipogenesis do affect the final 

differentiated state of the cells.  

FSP and DGAT knockdown led to the most significant changes in metabolite 

concentrations, and these changes were surprisingly similar to each other. 

FSP/DGAT knockdown resulted in increased concentrations of TCA cycle 

intermediates (citrate, fumarate, and malate), which reflects an accumulation of 

precursors for fatty acid synthesis, and thus, feedback inhibition of the process. 

Fatty acid concentrations were highest in FSP knockdown, indicating that 

increased lipolysis (due to reduced droplet stability) results in accumulation of 

free fatty acids. In DGAT knockdown, some fatty acids increased, while others 

remained relatively constant, suggesting that accumulating fatty acids (before 
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esterification) had an immediate impact on continued fatty acid synthesis. 

Interestingly, unsaturated fatty acid concentrations were lower in DGAT and FSP 

knockdowns. By day 14, intracellular concentrations of TCA cycle intermediates, 

amino acids, and glycolytic intermediates decreased; however fatty acid levels 

increased, compared to control, with the exception of arachidonic acid, which is 

not typically incorporated into triglycerides.  

Principal component analysis confirmed the empirical observations that FSP 

and DGAT knockdown had similar effects on metabolite profiles (Figure 4-3). On 

day 8, FSP/DGAT clustered tightly together, while PCX, IDH and control 

experiments were more spread. On day 14, FSP/DGAT were still distinct from 

PCX and IDH, but clustered more closely with the control group. This 

observation strengthens the hypothesis that intracellular metabolism returns to 

normal after metabolic perturbation. 

While the effects of PCX and IDH knockdown were distinctly different from 

FSP and DGAT knockdown, they were also less similar to each other. They both 

led to increased concentrations in TCA cycle intermediates, but not significantly. 

Both conditions led to increased concentrations of many essential amino acids. 

IDH knockdown also had a stronger effect on glycolytic intermediates. Most 

notably, PCX knockdown led to significant reduction (up to 50%) in fatty acid 

concentrations on day 8, reflecting decreased availability of acetyl-coA, but these 

changes were smaller on day 14.  

Interestingly, IDH knockdown did not significantly affect NADP/NADPH 

levels within the cell. One possible explanation is that there are many reactions 
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which produce and consume these cofactors, and, as mentioned previously, 

redundant pathways help to minimize the propagation of perturbation. However, 

cofactors are notoriously difficult to quantify due to stability and binding issues. 

For example, since cofactors are so ubiquitously utilized, they may bind to many 

substrates upon cell lysis, which impairs our ability to detect them at the 

appropriate m/z ratio. Furthermore, some cofactors are more stable than others, so 

it can be difficult to calculate redox and energy balance ratios accurately. 

Principal component analysis generally clustered PCX and IDH together, but not 

as tightly as FSP/DGAT and with less overlap between the two groups (Figure 

4-3). At both time points, PCX/IDH were distinct from FSP/DGAT, but closer to 

the control group on day 8 than on day 14. 
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5 Coordinated Knockdown of Multiple Targets 

5.1 Abstract 

Based on the results from Chapters 2 and 4, we selected pyruvate carboxylase 

(PCX), diacylglycerol acyltransferase (DGAT), and fat specific protein (FSP27) 

as targets for combined knockdown experiments. Individual knockdown of each 

of these enzymes led to significant reduction in TG accumulation, ranging from 

20-30%. When we combined knockdown of multiple targets, we saw slightly 

greater reduction across the board. Interestingly, combinations including PCX 

(i.e. PCX/DGAT and PCX/FSP) did not further reduce TG accumulation 

compared to DGAT or FSP alone. However, combining DGAT and FSP 

knockdown led to the largest reduction in TG accumulation. 

Double knockdown of DGAT and FSP increased concentrations of TCA cycle 

intermediates, indicating feedback inhibition from fatty acid accumulation, as 

well as decreased amino acid concentrations, suggesting an overall depression in 

metabolic activity. In order to resolve metabolic fluxes, we conducted an isotopic 

labeling experiment and found significant differences in 24 out of 66 fluxes. 

Double knockdown resulted in a general decrease in flux through TCA cycle 

(>30%) and slight changes in amino acid metabolism, without affecting flux 

through glycolysis. In addition, fatty acid synthesis was reduced by 44% and TG 

accumulation was reduced by 36%. These results show that perturbing multiple 

steps in the same stage of TG synthesis, or in closely related stages may have the 

largest effect. 
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5.2 Introduction 

Based on individual knockdown data, we selected pyruvate carboxylase 

(PCX), diacylglycerol acyltransferase (DGAT), and fat specific protein (FSP27) 

as targets for further analysis. Our goal is to selectively knockdown multiple 

stages of TG accumulation to examine the combinatorial effects. We combined 

knockdown of enzymes in a pair wise fashion, to understand if double knockdown 

results in a synergistic or additive effect ( 

Figure 5-1). For example, we know that individual knockdown of PCX and 

DGAT reduce TG accumulation, via reduction in fatty acid synthesis and TG 

synthesis, respectively. However, will combined knockdown of both enzymes 

reduce TG accumulation to a greater extent? Or is single knockdown sufficient to 

achieve the lowest level of TG accumulation. If PCX knockdown reduces 

synthesis of fatty acids, then it is possible that simultaneously knocking down 

DGAT will not have a significant effect because there is not enough substrate 

present in the first place.  
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Figure 5-1: Example Knockdown Strategy for Reducing TG Accumulation 

To examine the effects of knockdown, we decided to use metabolic flux 

analysis (MFA) and isotopic labeling. MFA is a powerful tool in systems biology 

research; the basic principle is that intracellular reaction rates (fluxes) can be 

estimated based on exchange rates of extracellular metabolites. Previous work in 

the lab developed a stoichiometric model of adipocyte metabolism for MFA (Si, 

2007). This model consists of 66 reactions and 38 metabolites. The intracellular 

fluxes are estimated by solving a constrained nonlinear optimization problem 

(Nolan, 2005).  

To enhance this analysis, we also employed stable isotopic labeling within an 

elementary metabolite unit (EMU) framework. Isotopic labeling improves upon 

MFA by resolving the fluxes through parallel metabolic pathways and metabolic 

cycles (Wiechert, 2001). For isotopic labeling, a labeled substrate (e.g. [1,2-13C] 

glucose) is fed to the cells, and the labeled carbon atoms are then distributed 

throughout the metabolic network. The isotopic enrichment in specific metabolite 

pools can be measured and used to estimate intracellular fluxes. However, 

modeling every possible isotopomer dramatically increases the complexity of the 

problem (for example, citrate, a 6-carbon molecule has 64 possible isotopomers). 

To reduce the number of isotopomer variables and equations, we can perform an 

EMU decomposition (Antoniewicz, 2006; Si, 2009). 
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5.3 Materials and Methods 

5.3.1 Materials 

3T3-L1 cells were purchased from ATCC (Manassas, VA). Tissue culture 

reagents including Dulbecco's Modified Eagle's Medium (DMEM), calf serum 

(CS), fetal bovine serum (FBS), human insulin, and penicillin/streptomycin were 

purchased from Invitrogen (Carlsbad, CA). Unless otherwise noted, all other 

chemicals were purchased from Sigma (St. Louis, MO). 

5.3.2 Cell culture 

Low passage 3T3-L1 preadipocytes were seeded into 12 well plates at a 

concentration of 2×104 cells/cm2 and cultured in a humidified incubator at 37°C 

and 10% CO2. The cultures were expanded in a growth medium consisting of 

DMEM supplemented with 10% v/v CS, 100 units/mL penicillin, 100 μg/mL 

streptomycin, and 2.5 μg/mL amphotericin. The growth medium was changed 

every 2-3 days until confluence was reached. Two days post-confluence 

(designated as day 0), the cells were induced to differentiate using an adipogenic 

cocktail (DM1: 1 µg/ml insulin, 0.5 mM isobutylmethylxanthine, 1 μM 

dexamethasone, and 2 nM triiodothyronine) added to a basal medium (DMEM 

with 10% FBS and penicillin/streptomycin/amphotericin). After 48 h, the first 

induction medium was replaced with a second induction medium (DM2) 

consisting of the basal adipocyte medium supplemented with only insulin (1 

µg/ml). After another 48 h, DM2 was replaced with the adipocyte basal medium. 

On days 4, 8, and 14, images were recorded for three randomly selected wells, 

which were then sacrificed for enzymatic assays of total TG content.  
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5.3.3 siRNA Transfection 

Beginning on day 4 post-induction, cells were transfected with siRNA at 30 

nM. Lipofectamine 2000 (Invitrogen) was used as a transfection reagent based on 

the manufacturer’s suggested protocol. Briefly, Lipofectamine and the target 

siRNA were combined in Opti-Mem reduced serum medium and incubated for 10 

minutes at room temperature to allow the nucleic acids to complex with the 

liposomes. After replacing the insulin supplemented adipocyte medium (DM2) 

with the reduced medium containing the siRNA-lipid complexes, the cells were 

incubated as normal. Preliminary experiments using nonsense siRNA showed no 

signs of cytotoxicity. Knockdown was sustained by continuing the siRNA 

treatment every 48 hours for the remainder of culture.  

The siRNA sequences were optimized for target specificity based on Sigma’s 

Rosetta predictions. The vendor did not provide the exact nucleotide sequences, 

but the approximate nucleotide positions on the target RNAs are known. The 

sequence locations for each target are listed in Table 2. The nucleotide position is 

given relative to the beginning of the NCBI RefSeq sequence for the given target 

gene. All sequences are for the target enzyme in mice, because 3T3-L1 

preadipocytes come from a murine source. As a control, cells were transfected 

with a nonsense siRNA sequence. For double knockdowns, cells were transfected 

with either a combination of two target sequences, each at 30 nM, or a single 

target sequence combined with the scrambled sequence (so the total concentration 

of siRNA was held constant at 60 nM). Preliminary experiments were conducted 

to ensure that increased siRNA concentration did not lead to cell death. 
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5.3.4 Triglyceride assay 

Triglyceride measurements were performed on cell lysates as described 

previously. Briefly, cells were rinsed with warm 1× PBS after aspirating the 

medium, and lysed in situ using a 0.1% SDS buffer followed by sonication. Free 

glycerol and TG were measured using an enzymatic assay kit from Sigma (catalog 

number TR0100).  

5.3.5 Metabolite Extractions 

Because salt-based detergents (e.g. SDS) are not compatible with LCMS, cells 

were extracted using an organic solvent mixture, methanol/chloroform/water 

(48:48:4 v/v) as follows. On days 8 and 14, media was removed and collected for 

separate analysis. Cells were rinsed with ice cold PBS and 524 uL of 

methanol/water (91:9 v/v) was added to each well. Cells were detached from the 

well using manual scraping over ice and stored in a 1.5 mL eppendorf tube. 476 

uL of chloroform was added to each tube to reach the final concentration. 

Chloroform degraded tissue culture plastic, and thus could not be added directly 

to the well. The extraction protocol was optimized by varying the solvent to cell 

ratio to ensure that the volume of methanol/water was sufficient to detach cells 

from the plate and extract the metabolites while not overly diluting the samples. 

After addition of chloroform, the samples were vortexed and freeze/thawed 3 

times in liquid nitrogen in order to fully lyse the cells. In order to remove cell 

debris, samples were centrifuged at 10,000 rpm for 10 minutes, and dried using a 

speed-vac at room temperature. Samples were reconstituted in 100 uL 

methanol/water (50:50 v/v) and stored at -20 °C until further analysis.  
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5.3.6 LC-MS  

We analyzed the metabolite concentrations using multiple reaction monitoring 

(MRM) experiments performed on a QTRAP 3200 triple quadrupole ion-trap 

mass spectrometer (Ab Sciex, Framingham, MA). Chromatographic separation 

was achieved using an Agilent 1200 liquid chromatography system (Agilent, 

Santa Clara, CA). Separate runs were conducted for amino acids, fatty acids, and 

TCA/glycolysis intermediates. A complete list of columns and solvents used for 

chromatographic separation is available in the Appendix B. Each metabolite was 

confirmed based on its MRM transition (precursor and product ion pairing), and 

were quantified by integrating the ion chromatogram to obtain the corresponding 

area under the curve (AUC). The AUC for each metabolite was then normalized 

to the total ion count (TIC) of the corresponding sample. Metabolite identities 

were confirmed based on their unique fragmentation spectra.  Metabolite 

extraction buffers were not compatible with the Hoechst dye assay, which 

prevented the use of DNA content for normalization.  

5.3.7 Stoichiometric Model 

A stoichiometric network model of adipocyte intermediary metabolism was 

constructed as described previously (Si, 2007). Table 5 in Appendix F provides a 

complete listing of the reactions. Intracellular fluxes were estimated from 

measurements on metabolite uptake and output rates (exchange fluxes) by solving 

a constrained non-linear optimization problem with stoichiometric and 

thermodynamic constraints (Nolan, 2005). 
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5.3.8 Isotopomer Model 

Model based analysis of isotopomer distribution patterns provided additional 

flux estimates for selected experimental conditions. Briefly, calculation of 

reaction fluxes from mass isotopomer distribution data proceeded as follows (Si, 

2009).The calculation initializes with an assumed set of reaction fluxes that 

satisfy the metabolite balance constraints (step 0). Steady state isotopomer 

balance equations then calculate the corresponding isotopomer distribution pattern 

(step 1). This calculation utilized the elementary metabolite unit (EMU) 

framework (Antoniewicz, 2006) to reduce the number of model equations and 

variables. The EMU decomposition also eliminated non-linear equations of mass 

isotopomer distribution (MID) and reaction flux variables. The next algorithm 

step compares the simulated isotopomer pattern against measured data and 

updates the reaction fluxes (step 2). Steps 1 and 2 repeat until the simulated and 

measured data converge. These steps were implemented through non-linear 

constrained optimization. The objective function was to minimize the sum-

squared error between measured and calculated intracellular metabolite mass 

isotopomer distribution patterns, using measured metabolite exchange fluxes as 

bounds. The optimization problem was solved using a custom code written in 

MATLAB (Natick, MA). 

5.3.9 Isotopomer Measurements 

Previous work identified glucose labeled on carbons 1 and 2 as the optimal 

isotopomer input substrate. Thus, the labeling experiments used an enriched 

medium with [1,2-13C]glucose added at a final concentration of 4.5 g/L to a 
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glucose-free basal medium (DMEM supplemented with 10 % FBS and 

penicillin/streptomycin). After 2 days of culture in labeled media, metabolites 

were extracted (as above). We then analyzed the mass isotopomer distributions of 

target metabolites using a TOF-MS scan in negative mode and hydrophilic 

interaction chromatography (see Appendix B for column and solvent details). We 

simultaneously performed a product ion scan for each metabolite and its 

respective isotopomers (e.g. M+1, M+2, etc.) in order to confirm the identity of 

each species based on its fragmentation pattern. To validate this method, we 

analyzed mixtures of labeled and unlabeled standards and were able to recover the 

theoretical distribution. See Appendix H for a further explanation of this analysis. 

5.3.10 Target Metabolites 

Previous work established the accuracy of EMU-based flux estimation based 

on certain target metabolites and determined optimal combinations of target 

metabolites (e.g. MAL/CIT or GAP/CIT). Although previous studies identified 

MAL/CIT as an optimal combination we also measured MIDs for 2-oxoglutarate 

(OXO), fumarate (FUM), succinate (SUC), aspartate (ASP), glutamate (GLU), 

serine (SER), and threonine (THR), as well as intermediates of the pentose 

phosphate pathway septulose 7-phosphate (S7P) and erythrose 4-P (E4P). Our 

analysis methods precluded the use of GAP, PEP, PYR and OAA, because their 

masses were not unique (i.e. other metabolites in the cell have the same mass and 

confound the analysis). 
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5.4 Results 

5.4.1 Metabolic Network Mapping 

In order to visualize changes in metabolite levels and fluxes, a network map 

was created in cytoscape (Version 3.1.1), including all metabolites and reactions 

in the stoichiometric model. Metabolites are represented as circles, and reactions 

are represented as triangles. Arrows represent the predominant direction of flux, 

though many reactions are reversible. Cofactors were left out of the network map 

for simplicity. The complete network is shown in Figure 5-2. 

 
Figure 5-2 Network map of adipocyte metabolism  
Circles represent metabolites and triangles represent reactions. Extracellular 
metabolites are denoted “_E” and mitochondrial metabolites are “_M”. Reaction 
colors are based on canonical pathways. Many reactions were condensed to form 
the stoichiometric matrix; therefore some extracellular fluxes have been combined 
with intracellular metabolic reactions (e.g. [ext] glucose � [int] glucose-P) 
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5.4.2 Reduced TG Accumulation in Coordinated Double Knockdown 

The amount of intracellular TG was monitored via enzymatic assay on days 4, 

8 and 14. TG accumulation on day 4 was negligible. Similar to previous 

experiments, significant changes in TG were not observed on day 8, likely due to 

incomplete differentiation at that time point. However, by day 14 larger 

differences were noticeable ( 

Figure 5-3). The reduction in TG varied from 21 to 42%, with the largest 

reduction occurring in the FSP-27/DGAT double knockdown, although not 

statistically different from other knockdown conditions (note: p=0.02 for PF to 

FD). Interestingly, combinatorial knockdown with PCX (of both FSP and DGAT) 

did not further reduce TG accumulation compared to knockdown of FSP and 

DGAT alone. Based on these observations, the combination of FSP-27 and 

DGAT was selected for further metabolic flux and isotopomer analysis. 

 
Figure 5-3 Reduction in Intracellular Triglyceride Concentration 
Day 14 post-induction for PCX, FSP and DGAT knockdowns. TG concentrations 
of each knockdown condition were normalized to the control (scrambled siRNA) 
and error bars represent the standard deviation of n=3 biological replicates. 
*indicates statistically significantly different from control (p <0.05). 
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5.4.3 Metabolite Levels and Measured Extracellular Fluxes 

In general, double knockdown of FSP/DGAT led to increased concentration 

of TCA cycle intermediates and decreased concentrations of intracellular amino 

acids. As seen in the single knockdown experiments, differences between control 

and treated conditions are more prominent on day 8. A complete table of 

intracellular metabolite concentrations is shown in Table 6 in Appendix G. 

Buildup of citrate is consistent with decreased triglyceride accumulation, as citric 

acid is used to produce acetyl-coA which feeds into fatty acid synthesis. 

Decreased lipogenesis (due to DGAT) and increased lipolysis (due to FSP) result 

in slightly elevated levels of saturated fatty acids (myristic, palmitic and stearic), 

which likely causes feedback inhibition towards fatty acid synthesis.  

Overall, there were less apparent significant differences in measured 

extracellular fluxes (Table 7). Double knockdown did not affect glucose uptake 

on day 8, and reduced uptake by 10% on day 14. Fatty acids were mostly taken up 

by the cells at both time points, and knockdown did not reverse this trend. On 

average, amino acid exchange rates were very low compared to flux through 

glycolysis, and mostly consistent between control and knockdown. 

5.4.4 Mass Isotopomer Distribution  

MIDs were measured for numerous intermediates of the TCA cycle, amino 

acid metabolism and pentose phosphate pathway. As expected, each of the 

measured metabolites showed mass enrichment due to the labeled substrate. In 

general, 30-50% of a respective metabolite pool remained unlabeled (due to loss 

of label throughout the metabolic pathway or input from unlabeled substrates such 
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as extracellular amino acids in the media). For citrate, 25% of the metabolite pool 

was M+2 and <10% was fully labeled (M+6). In contrast, natural abundance of 

13C-glucose is ~1%, so the expected enrichment of M+1 citrate is roughly 6%, 

M+2 is ~1%, and enrichment of higher masses due to natural isotopic abundance 

decrease from there. Fumarate and malate showed similar labeling distributions. 

Amino acids overall retained less label, reflecting their displacement from central 

carbon metabolism and exchange with the media.  For example, <20% of the 

aspartate pool was M+2 and ~5% was fully labeled (M+4). Differences between 

control and double knockdown (FSP/DGAT) were subtle but noticeable at both 

time points. A full summary of measured MIDs is available in Table 8 in 

Appendix I. 

Although previous work identified CIT/MAL as optimal measurements for 

flux estimation (Si, 2009), initial modeling using this combination yielded 

variable results. This likely reflects discrepancies between the metabolite pools in 

the mitochondria and cytosol. The metabolite extraction protocol analyzes total 

cell lysates, and cannot distinguish between intracellular compartments; however, 

there is likely to be variation between these pools. Initial modeling showed 

consistency between mitochondrial and cytosolic citrate (suggesting rapid 

equilibrium between compartments), but MIDs for malate were often different. 

Therefore, we replaced malate with fumarate, because the concentration of 

fumarate in the cytosol (and metabolism therein) is negligible.  
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5.4.5 Flux Profiles 

Using EMU decomposition and measured MIDs of citrate and fumarate, in 

combination with measured extracellular fluxes, all 66 reaction rates were 

estimated. A full table of these rates is available in Table 9 in Appendix J. To 

account for the slight variations in glucose uptake (both in experiments and 

results), all fluxes are expressed as a percentage of the glucose uptake for a given 

experiment (Table 10). Similar to trends in metabolite levels, differences in 

metabolic rates were more significant on day 8 than day 14. After normalization, 

24 out of 66 estimated fluxes were significantly different from control on day 8, 

with only 10 significant differences on day 14. Double knockdown resulted in a 

general decrease in flux through TCA cycle (>30%) and slight changes in amino 

acid metabolism, without affecting flux through glycolysis (likely due to 

normalization). In addition, fatty acid synthesis was reduced by 44% and TG 

accumulation was reduced by 36%. 

5.4.6 Analyzing Network-wide Effects of Knockdown 

To understand the effects of the double knockdown, we plotted differences in 

measured metabolites along with fluxes estimated from the isotopomer analysis 

on the network map. We removed any fluxes that were less than 5% of the 

glucose flux (for simplicity), which eliminated all of the reactions in amino acid 

and ketone body metabolism, as well as corresponding exchange fluxes. 

Significant differences (p<0.05) are color coded- red for decreases and green for 

increases, with darker colors indicating a larger difference ( 
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Figure 5-4). The most noticeable changes in flux are the reduction of 

palmitate biosynthesis and subsequent decreases in conversion of citrate to acetyl-

coA and oxaloacetate. Decreased flux towards palmitate and triacylglycerol 

results in accumulation of citrate which propagates throughout the TCA cycle.  

 
Figure 5-4 Metabolic Changes of Double Knockdown 
Significant differences in metabolite concentrations (measured) and fluxes 
(estimated) on day 8. Circles represent metabolites and triangles represent fluxes. 
Decreasing metabolite concentrations and fluxes are colored red, and increasing 
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values are colored green (±0-40% difference), with darker colors indicating a 
higher magnitude of change (± >50% difference). 

5.5 Discussion 

In this chapter, we investigate the combined knockdown of multiple enzymes. 

Based on preliminary experiments, we selected pyruvate carboxylase (PCX), 

diacylglycerol acyltransferase (DGAT) and fat specific protein (FSP) as targets, 

representing three different stages of triglyceride accumulation. We conducted 

isotopic labeling experiments to estimate fluxes through the metabolic network in 

order to understand the effects of knockdown. Based on the stoichiometric model, 

we constructed a network map of adipocyte metabolism to visualize these 

changes. 

As expected, knockdown of PCX, DGAT and FSP led to significant reduction 

in TG accumulation ( 

Figure 5-3). The effects of single knockdown ranged from 20-30%. However, 

while PCX had previously shown the highest degree of knockdown, the effects 

were not as strong in these experiments. Overall, double knockdown led to 

slightly lower TG accumulation than single knockdown. However, when we 

compare double knockdowns to single knockdowns, it becomes clear that PCX 

does not contribute any added effect to DGAT or FSP knockdown. FSP and 

DGAT knockdown reduce TG accumulation by ~25% and 33%, respectively. 

PCX/FSP and PCX/DGAT knockdown reduce TG accumulation by the same 

amounts. In contrast, combination of FSP and DGAT leads to a reduction of over 

40%, which is greater than FSP or DGAT alone. 
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These results suggest that inhibiting one step of early synthesis (i.e. the 

production precursors for fatty acid biosynthesis) is not an optimal strategy for 

reducing TG accumulation. This is likely due to the fact that there are many 

production pathways for acetyl-coA within the network. Although knocking down 

PCX leads to a reduction in fatty acid synthesis, it does not really matter if fatty 

acids are not able to be esterified into TG (e.g. DGAT knockdown), or fatty acids 

are accumulating due to increased lipolysis (e.g. FSP knockdown). In contrast, 

combining knockdown of DGAT and FSP has an additive effect on reducing TG 

accumulation, which suggests that their distinct mechanisms work in tandem. 

DGAT knockdown reduces the final step in TG synthesis. FSP knockdown 

exposes the TG that is produced (within LDs) to lipolytic degradation. Finally, 

because DGAT is impaired, the lipolysis/lipogenesis cycle is shifted towards 

lipolysis. 

An examination of metabolite concentrations confirms these observations, on 

day 8, saturated fatty acid concentrations are increased (compared to control), 

though unsaturated fatty acid concentrations are actually lower. However, by day 

14, even unsaturated fatty acids have begun to accumulate within the cell. The 

accumulation of fatty acids also leads to increased concentrations of TCA cycle 

intermediates on day 8, indicating feedback inhibition towards production of more 

fatty acids. On day 14, TC cycle intermediates have decreased, suggesting an 

overall depression of metabolism due to the knockdown, although, glucose 

consumption is only slightly depressed. 
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Isotopic labeling further explains the effects of double knockdown. Although 

the changes in MID composition were subtle, they represent significant 

differences in the flux patterns throughout the network. Even after normalizing to 

glucose uptake, 24 out of 66 fluxes were significantly different from the control 

on day 8, with 10 significant differences on day 14. On day 8, flux through the 

entire TCA cycle was decreased. This complements the observation of 

accumulation of these intermediates, and illustrates that reducing TG 

accumulation in later stages propagates throughout the entire metabolic network. 

On day 14, flux was still decreased, but not to a significant extent, confirming that 

the cells may be returning to equilibrium over time. However, this also may 

reflect inefficiencies in knockdown. Knockdown led to significant changes in 

amino acid metabolism and exchange rates at both time points; however, these 

rates were such a small percentage of overall flux through the network, that they 

likely had little effect. Interestingly, isotopic labeling estimated a decrease in TG 

accumulation, even on day 8, suggesting that changes in intracellular fluxes at 

early time points preempted the subsequent reduction in the amount of TG. 

Though the flux rates generally make sense, and agree with previous work, 

reaction 12 had a reaction rate of zero. Reaction 12 is the conversion of citrate to 

oxoglutarate in the mitochondria (condensed with the isomerization of citrate to 

isocitrate). However, the stoichiometric model has a built in “loop” transporting 

citrate out of the mitochondria (reaction 63), and conversion to oxoglutarate in the 

cytosol (reaction 20). Both of these reaction rates are positive, and comparable in 

magnitude to the other fluxes in the TCA cycle. This is likely an artifact of the 
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stoichiometric model and isotopomer analysis, and not an actual representation of 

the fluxes within the cell. One possible explanation would be that the labeling 

pattern of citrate is slightly different from fumarate, so the model forces flux from 

citrate out of the mitochondria first to correct this difference (i.e. some of the label 

on citrate will be transferred to acetyl-CoA and oxaloacetate in reaction 17). This 

reflects one drawback of using this stoichiometric model, because in our analysis, 

we lumped together they cytosolic and mitochondrial compartments. Though we 

assume rapid equilibrium between mitochondrial and cytosolic citrate (and thus, 

assume that the MIDs will be the same), this may not be the case in practice. In 

future analysis, we may attempt to fractionate the cell lysates and analyze the 

mitochondrial fraction on its own. 
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Future Directions and Recommendations 

In this thesis, we aim to demonstrate the importance of cellular hypertrophy in 

adipocytes and examine the metabolic enzymes which contribute to TG 

accumulation. We identified several targets which significantly reduced TG 

accumulation (and subsequently, adipocyte size). These targets included pyruvate 

carboxylase (PCX), isocitrate dehydrogenase (IDH), diacylglycerol 

acyltransferase (DGAT), fat specific protein 27 (FSP, and perilipin (PLIN1). We 

conducted a metabolomic analysis to understand the network-wide effects of 

knockdown. We also examined the effect of combined knockdown of multiuple 

targets. When combined, FSP and DGAT knockdown led to the largest reduction 

in TG accumulation; therefore, we used isotopic labeling and metabolomic 

analysis to understand the mechanistic effects of knockdown.  

Proteomic analysis is still needed to confirm knockdown of target enzymes. 

Although RT-PCR of PLIN1 showed strong knockdown at early time points, 

mRNA levels increased over the course of the experiment. We assume, based on 

reduction in TG accumulation, that knockdown was successful for the other 

targets; however, mRNA and protein levels were not yet measured. While RT-

PCR is a standard method of measuring transfection efficiency, the key outcome 

of transfection is a reduction in protein levels. Therefore, we plan to repeat 

knockdown experiments and measure protein content at each time point, 

compared to the untreated control. This analysis will be especially important in 

understanding the decreased affect on metabolite concentrations and fluxes over 

time. While it is reasonable to assume that the cells are striving to reach 
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equilibrium, and regulating redundant pathways to respond to our perturbations, it 

is important to confirm successful knockdown over time (i.e. if transfection 

efficiency goes down over time, protein levels may be returning to normal as 

well). Based on the results of the analysis, it would also be interesting to extend 

the length of experiments. Although reduction in TG was greatest on day 14, 

changes in flux and metabolite concentrations were most noticeable on day 8, and 

seemed to normalize later in the experiment. It is possible, that differences 

between knockdown and control would continue to normalize over time, and 

disappear completely after multiple weeks of culture (which would be more 

reminiscent of an in vivo experiment). However, it is also possible that given 

further optimization of transfection and culture conditions, the effects of 

knockdown could be amplified over time. This analysis might require the use of a 

different culture system (because extended culture in 2D is typically not possible 

due to peeling and cell death). Therefore, we should continue to investigate 3D 

culture models (such as collagen or alginate), which can remain stable for many 

weeks. In addition, transfection of siRNA will also need to be optimized to 

accommodate this system. 

Another recommendation would be to extend both the breadth and depth of 

the current study. We decided to analyze the effects of DGAT/FSP knockdown 

(i.e. isotopic labeling experiments) which provided valuable information about 

fluxes throughout the metabolic network. This flux data is arguably more valuable 

than metabolomic data, because it yields details about reaction rates, without 

having to make inferences from metabolite pools (which could be affected in a 
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number of ways). In addition, there was considerable noise in the metabolite 

concentration data, which may have confounded the results. This is likely due to 

the fact that we could not directly normalize to cell content. In contrast, mass 

isotopomer distributions are self-normalizing in the analysis, and might be more 

reliable, though, the methods are new, and require further validation. Taken 

together, isotopic labeling experiments would be useful for individual 

knockdowns of selected targets, as well as for the combinations already tested. 

This analysis would confirm observations of metabolite concentration changes, 

and help us to understand the effects of knockdown. 

Furthermore, it would be interesting to investigate more targets, in all stages 

of TG accumulation. The most interesting conclusion was that DGAT/FSP 

combination had the largest effect on TG accumulation. This was especially 

surprising because individual knockdown of these two enzymes led to very 

similar differences in metabolite concentrations (despite the fact that the enzymes 

have very different mechanisms for promoting TG accumulation). Nevertheless, 

knocking down both enzymes seemed have the greatest effect by reducing TG 

synthesis (DGAT) and increasing lipolysis, based on decreased droplet stability 

(FSP). In contrast, combinations including PCX, did not seem to be effective, 

suggesting that other stages of the pathway were rate-limiting (i.e. knocking down 

DGAT led to an accumulation of fatty acids, so unless the production of fatty 

acids was reduced dramatically, it would not further affect TG accumulation). 

Perhaps a better strategy would be to only test double knockdown of multiple 

targets in upstream synthesis (e.g. blockade acetyl-coA synthesis), or droplet 
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stability (e.g. eliminate multiple LD-associated proteins). However, based on the 

current results, knocking down multiple targets in downstream synthesis (e.g., 

fatty acid synthase and DGAT), might not reduce TG accumulation further than 

individual knockdown.  

Lastly, we need to expand our understanding of the mechanisms of TG 

reduction. For example, DGAT and FSP knockdown leads to accumulation of 

fatty acids, which causes decreased flux through the TCA cycle and accumulation 

of these intermediates. However, it is not clear what happens to these 

intermediates after they accumulate. It is possible that citrate, for example, is 

transported out of the cell. By day 14, TCA cycle intermediates decrease, 

compared to the control, as does flux through the TCA cycle; therefore, 

accumulation of citrate at early time points, may cause sufficient feedback within 

the TCA cycle and glycolysis as well, resulting in decreased glucose uptake. In 

addition to confirming knockdown efficiency, proteomic analysis will provide 

insight about regulatory changes to other enzymes and proteins. For example, 

upon knockdown of FSP-27, the cells may up-regulate transcription of other lipid-

droplet associated proteins.  

Taken together, our results provide insight into the mechanism of TG (fat) 

accumulation in adipocytes. Currently, none of the drugs approved by the FDA to 

treat obesity actually target adipose tissue. Therefore, it is our goal that a better 

understanding of adipose tissue metabolism and development will enable the 

investigation of new treatment strategies of obesity and related illnesses.   
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Appendix A: Sample Code for Image Analysis Algorithm 

% function [results, images, filenames]=BR_rad() 
  
%Load files to be analyzed 
  
filenames=uigetfile('20x A1 1.tif','MultiSelect','on'); 
% filenames=uigetfile('20x A1 1.tif'); 
  
if isnumeric(filenames)==1 
    break 
end 
  
clc 
clearvars -except filenames  
close all 
  
initialtime=clock; 
  
%results setup 
results=zeros(length(filenames),14); 
countdrops=zeros(length(filenames),8); 
hist=zeros(11,1); 
for j=1:10 
    hist(j)=100*j; 
end 
hist(11)=10^7; 
Z=1; 
skipcount=0; 
sumlights=zeros(length(filenames),1); 
% sumdarks=zeros(length(filenames),1); 
% tempas=zeros(length(filenames),1); 
% temps=zeros(length(filenames),1); 
  
  
% The Program 
for ImageNumber=1:length(filenames) 
%% Load Files     
    im_RGB=imread(filenames{ImageNumber}); 
%     im_gray=rgb2gray(im_RGB); 
    im_gray=im_RGB(:,:,1); 
    im_gray=double(im_gray); 
    im_gray=im_gray/255; 
    im_gray=wiener2(im_gray); 
    S=size(im_gray); 
     
%% Test if there is any fat using lights 
    thr=(1-graythresh(im_gray))*(.667)+graythresh(im_gray); 
    bwlight=im2bw(im_gray,thr); 
    sumlights(ImageNumber,1)=sum(sum(bwlight)); 
     
    thrdark=0.5*graythresh(im_gray); 
    bwdark=im2bw(im_gray,thrdark); 
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%     sumdarks(ImageNumber,1)=sum(sum(~bwdark)); 
     
    if sumlights(ImageNumber,1)<150 
        results(ImageNumber,1:14)=zeros(1,14); 
        zeroed(Z,1)=ImageNumber; 
        Z=Z+1; 
        ImageNumber 
        continue 
    end 
     
%% Test to see if I want to analyze it 
  
    [x(1:256,2),x(1:256,1)]=imhist(im_gray); 
%     y=sortrows(x,-2); 
%     cutoff=mean(y(1:4,1)); 
    [maxval index]=max(x(:,2)); 
    if x(index,1)<(1-graythresh(im_gray))*.4+graythresh(im_gray) 
        start=index; 
        leftsum=0; 
        rightsum=0; 
        while x(start,2)>.1*maxval 
            start=start-1; 
            if start==0 
                break 
            end 
            leftsum=leftsum+x(start,2); 
        end 
        [maxval index]=max(x(:,2)); 
        finish=index; 
        while x(finish,2)>.1*maxval 
            finish=finish+1; 
            if finish>=255 
                break 
            end 
            rightsum=rightsum+x(finish,2); 
        end 
  
        rightside=finish-index; 
        leftside=index-start;   
        difference=rightside-leftside; 
  
        if difference>=20 
            skipcount=skipcount+1; 
            skipped(skipcount,1)=ImageNumber; 
            results(ImageNumber,1:14)=1000*ones(1,14); 
            ImageNumber 
            continue 
        end 
    end 
     
%% The big parts 
     
    threshold=graythresh(im_gray)*.9; 
    ibw1=im2bw(im_gray,threshold); 
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    %Automatic determination of flood fill start location 
    [B L]=bwboundaries(ibw1,4); 
    [tempL tempnum1]=bwlabel(ibw1,4); 
   % tempnumlowthresh 
    Astats=regionprops(L,'Area'); 
    A=zeros(length(B),1); 
    for i=1:length(B) 
        bound=B{i}; 
        A(i,1)=Astats(i).Area; 
        A(i,2)=bound(1,1); 
        A(i,3)=bound(1,2); 
    end 
    A2=sortrows(A,-1); 
    ibw1f=~ibw1; 
    q=1; 
    SizeA2=size(A2); 
    loc=0; 
    if SizeA2(1,1)>0 
        while A2(q,1)>10000 && SizeA2(1,1)>q 
            r=A2(q,2); 
            c=A2(q,3); 
            loc(q,1)=r; 
            loc(q,2)=c; 
            q=q+1; 
        end 
    end 
    if loc(1,1)~=0 
        ibw1f=imfill(ibw1f,loc,4); 
    end 
    ibw1f=imfill(~ibw1f,'holes'); 
    [tempL tempnumlowthresh]=bwlabel(ibw1f,4); 
    countdrops(ImageNumber,1)=tempnumlowthresh; 
    bigs=bwareaopen(ibw1f,250); 
    [tempL tempnumbigs]=bwlabel(bigs,4); 
    countdrops(ImageNumber,2)=tempnumbigs; 
  
%circle finder on ibw1f 
    [B,L]=bwboundaries(bigs,8); 
    stats=regionprops(L,'Area','Centroid','Perimeter'); 
    areas=zeros(length(B),1); 
    dcount=1; 
    dr=0; 
    dc=0; 
    for k=1:length(B) 
        A=stats(k).Area; 
        bound=B{k}; 
        areas(k,1)=A; 
        R=sqrt(A/pi); 
        centroid=stats(k).Centroid; 
        npoints=32; 
        everynth=floor(length(bound)/npoints); 
        errorsum=0; 
        for j=1:npoints 
            i=everynth*j; 
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            if i==0 
                i=1; 
            end 
            dist=sqrt((bound(i,1)-centroid(2))^2+(bound(i,2)-centroid(1))^2); 
            errorsum=errorsum+(dist-R)^2/R^2; 
        end 
        error=errorsum/npoints; 
         
        P=stats(k).Perimeter; 
        roundness=4*A*pi/P^2; 
         
        circlescore=roundness/error; 
         
        if circlescore<5 
            dr(dcount,1)=bound(1,1); 
            dc(dcount,1)=bound(1,2); 
            dcount=dcount+1; 
            continue 
        end 
    end 
    if dr~=0 
        deleted=bwselect(bigs,dc,dr,8); 
    end 
    temp=bigs&~deleted; 
    [tempL tempnumbigscircles]=bwlabel(temp,4); 
    countdrops(ImageNumber,3)=tempnumbigscircles; 
         
%% The small parts 
%     threshold=graythresh(im_gray)*1.1; 
%     if threshold>1 
%         threshold=graythresh(im_gray); 
%     end 
%     ibw2=im2bw(im_gray,threshold); 
%  
%     %Automatic determination of flood fill start location 
%     [B L]=bwboundaries(ibw2,4); 
%     Astats=regionprops(L,'Area'); 
%     A=zeros(length(B),1); 
%     for i=1:length(B) 
%         bound=B{i}; 
%         A(i,1)=Astats(i).Area; 
%         A(i,2)=bound(1,1); 
%         A(i,3)=bound(1,2); 
%     end 
%     A2=sortrows(A,-1); 
%     %     ibw2f=~ibw2; 
%     ibw2f=ibw2; 
%     q=1; 
%     SizeA2=size(A2); 
%     loc=0; 
%     if SizeA2(1,1)>0 
%         while A2(q,1)>10000 && SizeA2(1,1)>q 
%             r=A2(q,2); 
%             c=A2(q,3); 
%             loc(q,1)=r; 
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%             loc(q,2)=c; 
%             q=q+1; 
%         end 
%     end 
%     if loc(1,1)~=0 
%         ibw2f=imfill(ibw2f,loc,4); 
%     end 
%     ibw2f=imfill(~ibw2f,'holes'); 
%  
%     [L num]=bwlabel(ibw2f,4); 
%     stats2=regionprops(L,'Area','PixelList'); 
%     dcount=1; 
%     dr=0; 
%     dc=0; 
%     for z=1:length(stats2) 
%         A=stats2(z).Area; 
%         PL=stats2(z).PixelList; 
%         if A<20 || A>250 
%             dc(dcount,1)=PL(1,1); 
%             dr(dcount,1)=PL(1,2); 
%             dcount=dcount+1; 
%             continue 
%         end 
%     end 
%     if dr~=0 
%         deleted=bwselect(ibw2f,dc,dr,4); 
%     end 
%     ibw2f=ibw2f&~deleted; 
%      
% %circle finder on ibw2f 
%   [B,L]=bwboundaries(ibw2f,4); 
%   stats=regionprops(L,'Area','Centroid','Perimeter'); 
%   temp2=ibw2f; 
%   areas=zeros(length(B),1); 
%     dcount=1; 
%     dr=0; 
%     dc=0; 
%     for k=1:length(B) 
%       A=stats(k).Area; 
%         bound=B{k}; 
%       areas(k,1)=A; 
%       R=sqrt(A/pi); 
%         centroid=stats(k).Centroid; 
%         npoints=32; 
%         everynth=floor(length(bound)/npoints); 
%         errorsum=0; 
%         for j=1:npoints 
%             i=everynth*j; 
%             if i==0 
%                 i=1; 
%             end 
%             dist=sqrt((bound(i,1)-centroid(2))^2+(bound(i,2)-centroid(1))^2); 
%             errorsum=errorsum+(dist-R)^2/R^2; 
%         end 
%         error=errorsum/npoints; 
%          
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%         P=stats(k).Perimeter; 
%         roundness=4*A*pi/P^2; 
%          
%         circlescore=roundness/error; 
%          
%         if circlescore<20 
%           dr(dcount,1)=bound(1,1); 
%             dc(dcount,1)=bound(1,2); 
%             dcount=dcount+1; 
%           continue 
%         end 
%     end 
%     if dr~=0 
%         deleted=bwselect(ibw2f,dc,dr,4); 
%     end 
%     temp2=ibw2f&~deleted; 
     
     
%% The Light Parts 
    t=(1-graythresh(im_gray))*.15+graythresh(im_gray); 
    bw=im2bw(im_gray,t); 
    [B L]=bwboundaries(bw,4); 
    [tempL tempnum5]=bwlabel(bw,4); 
   % tempnum5 
    Astats=regionprops(L,'Area'); 
    A=zeros(length(B),1); 
    for i=1:length(B) 
        bound=B{i}; 
        A(i,1)=Astats(i).Area; 
        A(i,2)=bound(1,1); 
        A(i,3)=bound(1,2); 
    end 
    A2=sortrows(A,-1); 
    bwf=~bw; 
    q=1; 
    SizeA2=size(A2); 
    loc=0; 
    if SizeA2(1,1)>0 
        while A2(q,1)>10000 && SizeA2(1,1)>q 
            r=A2(q,2); 
            c=A2(q,3); 
            loc(q,1)=r; 
            loc(q,2)=c; 
            q=q+1; 
        end 
    end 
    if loc(1,1)~=0 
        bwf=imfill(bwf,loc,4); 
    end 
    bwf=imfill(~bwf,'holes'); 
    [tempL tempnumhighthresh]=bwlabel(bwf,4); 
    countdrops(ImageNumber,4)=tempnumhighthresh; 
% intersection of light interiors and dark rings     
     
    iclear=bwf;%&ibw1f; 
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    [tempL tempnum7]=bwlabel(iclear,4); 
    %tempnum7 
    deleted=zeros(S); 
    [B,L]=bwboundaries(iclear,4); 
    stats=regionprops(L,'Area','Centroid','Perimeter'); 
    areas=zeros(length(B),1); 
    dcount=1; 
    dr=0; 
    dc=0; 
    for k=1:length(B) 
        A=stats(k).Area; 
        bound=B{k}; 
        areas(k,1)=A; 
        R=sqrt(A/pi); 
        centroid=stats(k).Centroid; 
        npoints=32; 
        everynth=floor(length(bound)/npoints); 
        errorsum=0; 
        for j=1:npoints 
            i=everynth*j; 
            if i==0 
                i=1; 
            end 
            dist=sqrt((bound(i,1)-centroid(2))^2+(bound(i,2)-centroid(1))^2); 
            errorsum=errorsum+(dist-R)^2/R^2; 
        end 
        error=errorsum/npoints; 
         
        P=stats(k).Perimeter; 
        roundness=4*A*pi/P^2; 
         
        circlescore=roundness/error; 
         
        if circlescore<12 
            dr(dcount,1)=bound(1,1); 
            dc(dcount,1)=bound(1,2); 
            dcount=dcount+1; 
            continue 
        end 
    end 
    if dr~=0 
        deleted=bwselect(iclear,dc,dr,4); 
    end 
    iclearer=iclear&~deleted; 
    [tempL tempnumhighthreshcircles]=bwlabel(iclearer,4); 
    countdrops(ImageNumber,5)=tempnumhighthreshcircles; 
     
    iclearer=iclearer&ibw1f; 
    [tempL tempnumintersected]=bwlabel(iclearer,4); 
    countdrops(ImageNumber,6)=tempnumintersected; 
     
%      
%     close all 
%     imshow(iclearer); 
%     figure;imshow(deleted) 
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%     figure;imshow(im_gray) 
     
%% Finding 'Cells' that were mistaken as LDs 
%   iclearest=temp|(temp2&bwf); 
     
    cells=temp; 
    [L num]=bwlabel(cells,8); 
    stats3=regionprops(L,'Area','BoundingBox','PixelList','Solidity'); 
    boxdilation=20; 
    fractions=zeros(num,1); 
    num1s=zeros(num,1); 
    num2s=zeros(num,1); 
    thrL=(1-graythresh(im_gray))*.5+graythresh(im_gray); 
    bwL=im2bw(im_gray,thrL); 
    dcount=1; 
    dr=0; 
    dc=0; 
    Sol=zeros(num,1); 
    As=zeros(num,1); 
    score=zeros(num,1); 
    for p=1:num 
        PL=stats3(p).PixelList; 
        Sol(p,1)=stats3(p).Solidity; 
        As(p,1)=stats3(p).Area; 
%         BB=round(stats3(p).BoundingBox); 
%         UL_col=BB(1); 
%         UL_row=BB(2); 
%         cols=BB(3); 
%         rows=BB(4); 
%  
%         rowstart=UL_row-boxdilation; 
%         rowend=UL_row+boxdilation+rows; 
%         colstart=UL_col-boxdilation; 
%         colend=UL_col+boxdilation+cols; 
%         if rowstart<1 
%             rowstart=1; 
%         end 
%         if rowend>S(1) 
%             rowend=S(1); 
%         end 
%         if colstart<1 
%             colstart=1; 
%         end 
%         if colend>S(2) 
%             colend=S(2); 
%         end 
%  
%         % how many other big objects are nearby? 
%         boxbig=temp(rowstart:rowend,colstart:colend); 
%         [L1 num1]=bwlabel(boxbig); 
%         num1s(p,1)=num1; 
%          
%         % how many other total objects are nearby? 
%         boxall=iclearest(rowstart:rowend,colstart:colend); 
%         [L2 num2]=bwlabel(boxall); 



117 
 

%         num2s(p,1)=num2; 
         
        % Look in light parts from beginning to see if it's a droplet 
        [i j]=find(L==p); 
        summer=0; 
        for n=1:length(i) 
            summer=summer+im_gray(i(n),j(n)); 
        end 
        fractions(p,1)=summer/length(i); 
         
        score(p,1)=fractions(p,1)/graythresh(im_gray)*Sol(p,1); 
         
        if score(p,1)<=1.26 
            dc(dcount,1)=PL(1,1); 
            dr(dcount,1)=PL(1,2); 
            dcount=dcount+1; 
        end 
    end 
    if dr~=0 
        cells=bwselect(cells,dc,dr,8); 
    else 
        cells=zeros(S); 
    end 
    temp=temp&~cells; 
    [L3 bigsafterfilter]=bwlabel(temp); 
    countdrops(ImageNumber,7)=bigsafterfilter; 
     
%% Combining Images 
  
    if sumlights(ImageNumber,1)<=500 
        iclearest=iclearer&~bwareaopen(iclearer,400); 
    else 
        iclearest=(temp|iclearer); 
    end 
     
%% Results Output     
    [L,num]=bwlabel(iclearest,4); 
    finalcount=num; 
    countdrops(ImageNumber,8)=finalcount; 
     
    stats2=regionprops(round(L),'Area'); 
    S=size(iclearest); 
     
    areas=zeros(num,1); 
    for i=1:num 
        areas(i,1)=stats2(i).Area; 
    end 
    areas=sort(areas); 
  
    results(ImageNumber,1)=100*sum(sum(iclearest))/(S(1)*S(2)); % %of the image occupied by 
LDs 
    summer=0; 
    z=1; 
    bins=zeros(1,11); 
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    for i=1:num 
        while areas(i)>hist(z) 
            bins(1,z)=summer; 
            z=z+1; 
            summer=0; 
        end 
        summer=summer+4/3*pi*(areas(i)/pi)^1.5; 
    end 
    bins(1,z)=summer; 
    results(ImageNumber,14)=sum(bins); 
    if results(ImageNumber,14)~=0 
        histresults=100*bins/results(ImageNumber,14); 
        results(ImageNumber,3:13)=histresults; 
        results(ImageNumber,2)=sum(sum(iclearest))/num; % Average LD size     
    end 
     
    n=1; 
    if mod(ImageNumber,n)==0 
        images(1:S(1),1:S(2),ImageNumber/n)=im_gray; 
        images(S(1)+1:2*S(1),1:S(2),ImageNumber/n)=iclear; 
        images(1:S(1),S(2)+1:2*S(2),ImageNumber/n)=iclearest; 
        images(S(1)+1:2*S(1),S(2)+1:2*S(2),ImageNumber/n)=temp; 
    end 
    ImageNumber 
end 
filenames=filenames'; 
  
acount=0; 
cleanresults=zeros(length(filenames)-skipcount,14); 
for imagenumber=1:length(filenames) 
    if results(imagenumber,1)==1000 
        continue 
    else 
        acount=acount+1; 
        cleanresults(acount,1:14)=results(imagenumber,1:14); 
        cleanfilenames(acount,1)=filenames(imagenumber,1); 
    end 
end 
  
finaltime=clock; 
finaltime-initialtime 
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Appendix B: Solvent and Column Info for LC-MS/MS 

All columns were purchased from Phenomenex, Torrance, CA 

HPLC-grade solvents and other components were purchased from Sigma. 

TCA Cycle/Glycolysis/Cofactors 

Column: Luna 5 μm NH2 100 Ǻ, LC column 
Dimensions: 250 mm x 2.00 mm I.D.  
Particles: 5 μm particle size, 100 Ǻ pore size 

 
Solvent A: 20 mM ammonium hydroxide and 20 mM ammonium formate  

in 95:5 (v/v) water and acetonitrile, pH=9.5 
Solvent B: 100% acetonitrile 

Amino Acids 

Column: Synergi 4u Fusion reverse phase (C18) column 
 Dimensions: 150 mm x 2.00 mm I.D. 
 Particles: 4 μm particle size, 80 Ǻ pore size 
 
Solvent A: 0.1% Formic acid in water 
Solvent B: 0.1% Formic acid in methanol 

Fatty Acids 

Column: Luna C8(2) reverse phase column 
 Dimensions: 150 mm x 2.00 mm I.D. 
 Particles: 3 μm particle size, 100 Ǻ pore size 
 
Solvent A: 10 mM tributylamine and 15 mM acetic acid  

in 97:3 (v/v) water and methanol, pH=4.5 
Solvent B: 100% methanol  
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Appendix C: Measured Metabolites (Individual 

Knockdown) 

Table 3: Intracellular Metabolite Concentrations 
 

  
Day 8 Day 14 

 FSP DGAT PCX IDH FSP DGAT PCX IDH 

G
ly

co
ly

si
s 

G6P -0.284 -0.242 -0.054 -0.382 -0.060 -0.086 -0.214 -0.346 
F16BP 0.356 0.449 1.485 0.173 -0.335 -0.684 -0.555 -0.748 
R5P_X5P -0.380 -0.082 -0.072 -0.395 -0.023 -0.175 -0.112 -0.186 
DHAP_GAP -0.236 -0.066 0.183 -0.113 -0.230 -0.327 -0.231 -0.220 

PEP 0.467 0.529 0.201 0.021 -0.310 -0.374 -0.272 -0.364 

T
C

A
 C

yc
le

 

OXA -0.322 -0.352 0.150 0.333 -0.251 -0.246 -0.250 -0.256 
FUM 0.132 0.239 0.196 0.106 -0.151 -0.116 -0.236 -0.112 
MAL 0.170 0.200 0.170 0.081 -0.165 -0.088 -0.228 -0.125 
CIT_ISOCIT 0.637 0.729 1.190 0.006 -0.147 -0.250 -0.618 -0.494 
SUC 0.439 0.434 0.129 0.294 -0.055 -0.080 -0.083 0.103 
AKG -0.149 -0.164 -0.124 -0.198 -0.166 -0.169 -0.200 -0.209 

A
m

in
o 

A
ci

ds
 

Alanine -0.670 -0.618 -0.078 -0.258 -0.251 -0.204 0.271 -0.039 
Aspartic Acid -0.392 -0.803 -0.679 -0.471 0.007 -0.506 -0.421 0.034 
Cysteine -0.758 -0.782 -0.486 -0.356 -0.611 -0.568 -0.324 -0.462 
Glutamate -0.759 -0.754 -0.423 -0.449 -0.520 -0.308 0.009 -0.281 
Glycine -0.649 -0.641 -0.196 -0.314 -0.516 -0.463 -0.211 -0.345 
Histidine -0.508 -0.311 0.330 0.010 -0.359 -0.357 -0.161 -0.255 
Leu_Iso -0.159 0.085 0.939 0.333 -0.162 0.060 0.342 0.216 
Methionine -0.116 0.067 1.072 0.411 -0.188 -0.203 -0.059 0.043 
Proline -0.338 -0.296 0.591 0.352 -0.178 -0.204 0.047 0.176 
Serine -0.673 -0.569 -0.451 -0.285 -0.585 -0.526 -0.169 -0.287 
Threonine -0.722 -0.667 -0.237 -0.297 -0.437 -0.352 -0.012 -0.262 
Tyrosine -0.068 0.089 1.035 0.414 -0.191 -0.262 -0.002 0.026 
Valine 0.151 0.161 1.305 0.707 -0.168 -0.309 -0.091 -0.041 
Phenylalanine -0.008 -0.009 1.022 0.884 -0.322 -0.516 -0.485 -0.340 
Asparagine -0.779 -0.717 -0.264 -0.339 -0.315 -0.104 0.180 0.035 
Tryptophan 0.047 0.135 1.066 0.825 -0.188 -0.224 -0.242 -0.193 

Fa
tty

 A
ci

ds
 

Oleid Acid -0.129 -0.205 -0.308 -0.250 0.195 0.028 -0.186 -0.157 

Myristic Acid 0.182 0.157 -0.035 0.126 0.219 0.124 0.013 0.038 
Palmitic Acid 0.075 -0.003 -0.174 -0.040 -0.007 0.013 -0.049 -0.028 
Linoleic Acid -0.223 -0.340 -0.387 0.912 0.230 0.434 0.054 0.164 
Stearic Acid 0.095 0.040 -0.347 -0.196 0.240 0.347 0.197 0.188 
Palmitoleic Acid -0.118 -0.058 -0.470 -0.352 0.273 -0.080 -0.248 -0.168 
Arachidonic  -0.043 -0.006 -0.051 0.039 -0.185 -0.148 -0.249 -0.312 

Expressed as a percent change from the control each respective time point. 

Significant differences (p<0.05) are bold and highlighted. 
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Table 4: Extracellular Flux Measurements 

  
  

Day 8 Day 14 

FSP DGAT PCX IDH FSP DGAT PCX IDH 
A

m
in

o 
A

ci
ds

 
Alanine -0.211 -0.371 -0.125 -0.133 0.142 0.157 0.434 0.035 

Aspartic Acid -0.044 0.009 -0.029 -0.178 0.084 0.068 0.008 0.089 

Cysteine 1.071 0.979 1.393 1.231 -0.263 1.326 1.105 0.284 

Glutamate 0.000 -0.013 -0.038 -0.294 0.173 0.122 -0.017 0.068 

Glycine -0.159 -0.480 -0.462 0.023 0.252 0.071 0.592 0.443 

Histidine 0.699 1.452 2.871 1.753 -1.392 -1.860 -1.532 -2.425 

Leu_Iso 0.135 0.160 0.062 0.858 -0.028 -0.138 -0.146 -0.113 

Methionine 3.833 4.625 9.125 7.438 -0.416 -0.241 -0.493 -0.177 

Proline 0.050 0.213 0.334 0.356 0.006 -0.315 -0.311 0.097 

Serine -0.015 0.003 0.151 0.002 0.024 -0.058 -0.108 -0.069 

Threonine 0.765 0.487 1.160 0.584 0.469 -1.295 -2.250 -0.853 

Tyrosine -0.259 -0.578 -0.534 -0.310 0.197 0.124 -0.255 0.599 

Valine 0.045 -0.008 -0.020 0.119 -0.035 -0.233 -0.110 -0.411 

Phenylalanine -0.364 -0.500 -0.500 -0.523 -6.366 -8.805 -8.561 -7.341 

Asparagine -0.152 -0.173 0.002 -0.084 -0.048 0.074 0.353 0.003 

Tryptophan 0.006 -0.064 -0.038 -0.064 -1.722 -1.375 -1.833 -2.347 

Fa
tty

 A
ci

ds
 

Oleid Acid 0.881 0.762 0.571 1.000 -1.071 -1.786 -2.429 -0.929 

Myristic Acid 9.496 5.067 3.899 13.395 -0.619 -1.829 -1.285 -1.319 

Palmitic Acid -4.595 -1.024 -1.929 -3.738 -0.514 -2.432 -0.703 -0.432 

Linoleic Acid -0.002 0.175 0.275 -0.225 -0.175 -0.178 -0.011 -0.053 

Stearic Acid -1.431 -0.615 -0.154 -0.692 -0.556 -1.833 -0.972 -1.028 

Palmitoleic 0.597 0.105 0.069 0.395 0.362 0.124 0.191 -0.199 

Arachidonic 0.005 -0.008 0.008 -0.038 -0.018 -0.013 -0.032 -0.008 

Expressed as a percent change from the control each respective time point. 

Significant differences (p<0.05) are bold and highlighted. 
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Appendix D: Principal Component Analysis 

 

Figure S-0-1: Component Scores (Day 8) 

 

Figure S-0-2: Component Scores (Day 14) 
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Appendix E: Hierarchical Clustering 

 

Figure S-0-1: Hierarchical Clustering of Metabolites (Day 8) 
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Appendix F: Reaction stoichiometry of the model network  

Table 5: Stoichiometric model for the adipocyte network 
RXN Pathway Stoichiometry 

1* Glycolysis Glucose = Glucose 6-P 

2 Glycolysis Glucose 6-P = Fructose 6-P 

3 Glycolysis Fructose 6-P = Glyceraldehyde 3-P + Glycerone-P 

4 Glycolysis Glycerone-P = Glyceraldehyde 3-P 

5 Glycolysis Glyceraldehyde 3-P = P-Enolpyruvate 

6* Glycolysis P-Enolpyruvate = Pyruvate 

7 Glycolysis Pyruvate + NADH = Lactate 

8 Pentose Phosphate Shunt Glucose 6-P = Ribulose 5-P + CO2 + 2 NADPH 

9 Pentose Phosphate Shunt 3 Ribulose 5-P = 2 Fructose 6-P + Glyceraldehyde 3-P 

10* TCA cycle (mitochondria) Pyruvate + Oxaloacetate = Citrate + CO2 + NADH 

11 TCA cycle (mitochondria) Pyruvate + CO2 = Oxaloacetate 

12* TCA cycle (mitochondria) Citrate = 2-Oxoglutarate + CO2 + NADH 

13* TCA cycle (mitochondria) 2-Oxoglutarate = Succinyl-CoA + CO2 + NADH 

14 TCA cycle (mitochondria) Succinyl-CoA = Fumarate + FADH2 

15 TCA cycle (mitochondria) Fumarate = Malate 

16 TCA cycle (mitochondria) Malate = Oxaloacetate + NADH 

17 TCA cycle Citrate = Acetyl-CoA + Oxaloacetate 

18* TCA cycle Oxaloacetate + NADH = Malate 

19 TCA cycle Malate = Pyruvate + CO2 + NADPH 

20 TCA cycle Citrate = 2-Oxoglutarate + CO2 + NADPH 

21* TCA cycle Oxaloacetate  = P-Enolpyruvate + CO2 

22 Oxidative phosphorylation NADH + 0.5 O2 =  

23 Oxidative phosphorylation FADH2 + 0.5 O2 = 

24 Palmitate biosynthesis 8 Acetyl-CoA + 14 NADPH = Palmitate 

25* TG biosynthesis Glycerone-P + 3 Palmitate + NADH = Tripalmitoylglycerol 

26* TG biosynthesis Tripalmitoylglycerol = Glycerol + 3 Palmitate 

27 Ketone body metabolism 2 Acetyl-CoA = Acetoacetate 

28 Ketone body metabolism Acetoacetyl-CoA = Acetoacetate 

29 Ketone body metabolism Acetoacetate + NADH = 3-Hydroxybutyrate 

30 Amino acid metabolism Pyruvate + NH4+ + NADPH = Alanine 

31 Amino acid metabolism Aspartate + NH4+ = Asparagine 

32 Amino acid metabolism Aspartate = Oxaloacetate + NH4+ + NADH 

33* Amino acid metabolism Cysteine = Pyruvate + NH4+ + NADH 

34 Amino acid metabolism Glutamate = 2-Oxoglutarate + NH4+ + NADH 

35 Amino acid metabolism Glutamate + NH4+ = Glutamine 

36 Amino acid metabolism Serine = Glycine 

37* Amino acid metabolism Histidine = Glutamate + NH4+ 
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38* Amino acid metabolism Isoleucine =Succinyl-CoA +Acetyl-CoA  

39* Amino acid metabolism Leucine+CO2 =Acetoacetate +Acetyl-CoA 

40 Amino acid metabolism Lysine = 2-Oxoadipate  

41 Amino acid metabolism 2-Oxoadipate = Acetoacetyl-CoA  

42* Amino acid metabolism Methionine + Serine = Succinyl-CoA + Cysteine  

43* Amino acid metabolism Phenylalanine + O2 + NADH = Tyrosine 

44 Amino acid metabolism Glutamate + 2 NADPH = Proline 

45 Amino acid metabolism Serine = Pyruvate + NH4+ 

46* Amino acid metabolism Threonine = Glycine + Acetyl-CoA + NADH 

47* Amino acid metabolism Tryptophan= 2-Oxoadipate +Alanine  

48* Amino acid metabolism Tyrosine + 2 O2 = Acetoacetate + Fumarate  

49* Amino acid metabolism Valine = Succinyl-CoA  

50 Plasma exchange Palmitate = Palmitate 

51 Plasma exchange Acetoacetate = Acetoacetate 

52 Plasma exchange Alanine = Alanine 

53 Plasma exchange Aspartate  = Aspartate 

54 Plasma exchange Cysteine = Cysteine 

55 Plasma exchange Glutamate = Glutamate 

56 Plasma exchange Glycine = Glycine 

57 Plasma exchange Serine = Serine 

58 Plasma exchange Tyrosine = Tyrosine 

59 Plasma exchange O2 = O2 

60 Plasma exchange CO2 = CO2 

61 Plasma exchange NH4+ =  NH4+ 

62 Mitochondrial exchange Pyruvate = Pyruvate 

63 Mitochondrial exchange Citrate = Citrate 

64 Mitochondrial exchange 2-Oxoglutarate = 2-Oxoglutarate 

65 Mitochondrial exchange Malate = Malate 

66 TG Accumulation Tripalmitoylglycerol = Tripalmitoylglycerol 

Extracellular metabolites are indicated in bold. Mitochondrial metabolites are 

indicated in bold italics. Several entries in the table (e.g. reaction #10) represent 

pseudo-reactions obtained by condensing sequences of non-brancing reactions. 

Starred reaction numbers indicate irreversible reactions (e.g. regulated steps of 

glycolysis, metabolism of essential amino acids, etc.). Many other reactions are 

assumed to only go in the forward direction (e.g. pentose phosphate pathway, 

glycolysis).  
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Appendix G: Measured Metabolites (Double Knockdown) 

Table 6: Intracellular Metabolite Concentrations (Double KD) 

   Day 8 Day 14 
G

ly
co

ly
si

s 

G6P -0.263 -0.073 

F16BP 0.402 -0.510 

R5P_X5P -0.231 -0.099 

DHAP_GAP -0.151 -0.279 

PEP 0.498 -0.342 

T
C

A
 C

yc
le

 

OXA -0.337 -0.249 

FUM 0.185 -0.133 

MAL 0.185 -0.126 

CIT_ISOCIT 0.683 -0.199 

SUC 0.436 -0.068 

AKG -0.156 -0.167 

A
m

in
o 

A
ci

ds
 

Alanine -0.644 -0.228 
Aspartic Acid -0.597 -0.250 
Cysteine -0.770 -0.590 
Glutamate -0.757 -0.414 
Glycine -0.645 -0.489 
Histidine -0.409 -0.358 

Leu_Iso -0.037 -0.051 
Methionine -0.024 -0.195 
Proline -0.317 -0.191 
Serine -0.621 -0.556 
Threonine -0.695 -0.395 
Tyrosine 0.010 -0.226 

Valine 0.156 -0.238 

Phenylalanine -0.008 -0.419 

Asparagine -0.748 -0.210 
Tryptophan 0.091 -0.206 

Fa
tty

 A
ci

ds
 

Oleid Acid -0.167 0.111 

Myristic Acid 0.169 0.171 

Palmitic Acid 0.036 0.003 

Linoleic Acid -0.281 0.332 

Stearic Acid 0.067 0.294 

Palmitoleic Acid -0.088 0.096 

Arachidonic Acid -0.024 -0.166 

Expressed as a percent change from the control each respective time point. 

Significant differences (p<0.05) are bold and highlighted. 
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Table 7: Extracellular Flux Measurements (Double KD) 

    Day 8 Day 14 

A
m

in
o 

A
ci

ds
 

Alanine -0.291 0.150 
Aspartic Acid -0.018 0.076 

Cysteine 1.025 0.532 
Glutamate -0.007 0.148 

Glycine -0.319 0.162 
Histidine 1.075 -1.626 

Leu_Iso 0.147 -0.083 
Methionine 12.944 -0.329 
Proline 0.132 -0.154 
Serine -0.006 -0.017 
Threonine 0.626 -0.413 
Tyrosine -0.418 0.161 
Valine 0.018 -0.134 
Phenylalanine -0.432 -7.585 

Asparagine -0.163 0.013 
Tryptophan -0.029 -1.549 

Fa
tty

 A
ci

ds
 

Oleid Acid 0.821 -1.429 
Myristic Acid 1.986 -1.224 
Palmitic Acid -2.810 -1.473 
Linoleic Acid 0.087 -0.177 

Stearic Acid -1.023 -1.194 
Palmitoleic Acid 0.351 0.243 
Arachidonic Acid -0.001 -0.016 

Expressed as a percent change from the control each respective time point. 

Significant differences (p<0.05) are bold and highlighted. 
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Appendix H: Workflow for MID Measurements 

In order to evaluate the MIDs of selected metabolites, we utilized a new LC-

MS method. Briefly, we scanned for metabolites of interest and confirmed their 

identity based on fragmentation spectra. We simultaneously conducted product 

scans for each possible mass isotopomer (m+1, m+2, etc.). Sample spectra are 

shown below. 

Total Ion Count for a representative sample. 
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Extracted Ion Count (for each metabolite as well as isotopomers) 

Selected XIC for Fructose 1,6 bisphosphate 
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Fragmentation spectra for F16BP. Each spectra corresponds to a different peak. 

The correct peak was selected based on comparison of the fragmentation spectra 

to the Metlin Database. 

After identifying the correct peaks, we can examine metabolites of interest (in this 

case, malate and citrate). 
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Within each peak, we examine the mass isotopomer distribution. Note: this 

feature is usually used to confirm peaks based on natural abundance of isotopes. 

However, in this case, the distribution will not match natural abundance. Each 

peak corresponds to an isotopomer of citrate (m+1, m+2, etc). From this plot, we 

can quantify the relative abundance of each isotopomer and then calculate the 

MID. 

We can then examine the fragmentation spectra of isotopomers to confirm their 

identity. This plot shows the fragmentation of citrate (m+4). Peaks within the 

spectra match expected peaks of citrate (m+0) as well as enriched peaks. 
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Furthermore, we can mine the database for other compounds within the mass 

error range, to make sure the peaks could not be anything else. In this case, we 

search Metlin for compounds with the same mass as citrate (m+4), within an error 

of 30 ppm. There are several compounds with similar masses; however, it is clear 

that these particular compounds would not be present in a biological sample. 

When available, we examined the MS spectra for these compounds and compared 

them against the spectra of the compound of interest for further confirmation. 
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Appendix I: Mass Isotopomer Distributions 

Table 8: Mass Isotopomer Distribution (Double KD) 

  

Citrate 

  

Fumarate 

Day 8 Day 14 Day 8 Day 14 

Control KD Control KD Control KD Control KD 

M+0 0.440 0.440 0.388 0.378 M+0 0.386 0.428 0.430 0.349 

M+1 0.132 0.140 0.128 0.137 M+1 0.171 0.133 0.154 0.163 

M+2 0.250 0.246 0.254 0.258 M+2 0.257 0.266 0.252 0.240 

M+3 0.084 0.085 0.109 0.112 M+3 0.080 0.089 0.094 0.140 

M+4 0.067 0.065 0.080 0.079 M+4 0.106 0.084 0.070 0.109 

M+5 0.020 0.016 0.029 0.027 

M+6 0.006 0.007 0.012 0.008 

  

Malate 

  

Aspartate 

Day 8 Day 14 Day 8 Day 14 

Control KD Control KD Control KD Control KD 

M+0 0.490 0.491 0.455 0.449 M+0 0.498 0.499 0.459 0.461 

M+1 0.148 0.158 0.177 0.168 M+1 0.128 0.112 0.119 0.116 

M+2 0.203 0.201 0.217 0.224 M+2 0.181 0.185 0.210 0.195 

M+3 0.076 0.086 0.089 0.082 M+3 0.119 0.125 0.159 0.154 

M+4 0.083 0.064 0.063 0.076 M+4 0.074 0.080 0.054 0.073 
 

MIDs are expressed as a percentage of the total metabolite pools. Values are 

self-normalized in the analysis. Data shown is the average of three biological 

replicates, though fluxes were calculated individually from each replicate. 
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Appendix J: Results of Isotopomer Model 

Table 9: Flux Estimates (Double KD) 
` Day 8 Day 14 
 RXN Control   KD %Diff Control   KD %Diff 

1 371.690 340.028 -0.085 350.382 340.000 -0.030 
2 189.214 171.045 -0.096 212.830 205.126 -0.036 
3 310.865 283.701 -0.087 304.532 295.042 -0.031 
4 289.171 251.449 -0.130 266.532 263.565 -0.011 
5 660.861 591.477 -0.105 616.914 603.565 -0.022 
6 660.861 591.477 -0.105 691.597 715.911 0.035 
7 380.527 410.000 0.077 118.829 149.262 0.256 
8 182.476 168.983 -0.074 137.552 134.874 -0.019 
9 60.825 56.328 -0.074 45.851 44.958 -0.019 

10 281.706 185.496 -0.342 489.796 439.395 -0.103 
11 464.748 267.250 -0.425 464.433 504.005 0.085 
12 0.000 0.000 -1.489 639.467 492.693 -0.230 
13 196.414 139.344 -0.291 303.763 246.078 -0.190 
14 202.420 146.214 -0.278 308.528 249.179 -0.192 
15 205.158 149.154 -0.273 309.435 249.590 -0.193 
16 -183.042 -81.754 -0.553 25.363 -64.610 -3.547 
17 80.000 41.248 -0.484 176.000 178.667 0.015 
18 79.875 41.150 -0.485 101.194 66.243 -0.345 
19 468.075 272.059 -0.419 385.266 380.443 -0.013 
20 201.706 144.248 -0.285 -325.671 -231.965 -0.288 
21 0.000 0.000 -0.898 74.683 112.346 0.504 
22 39.699 41.254 0.039 55.722 65.414 0.174 
23 44.823 60.788 0.356 38.413 68.759 0.790 
24 10.000 5.156 -0.484 22.000 22.333 0.015 
25 21.694 32.251 0.487 38.000 31.477 -0.172 
26 17.694 29.893 0.689 30.000 23.810 -0.206 
27 2.071 2.366 0.142 2.118 2.204 0.041 
28 1.590 2.100 0.321 1.373 1.278 -0.070 

29 8.604 10.609 0.233 6.341 5.000 -0.211 
30 3.541 2.881 -0.186 4.503 4.695 0.043 
31 0.223 0.200 -0.100 0.205 0.168 -0.183 

32 -0.125 -0.097 -0.226 -0.123 -0.078 -0.366 

33 1.252 1.709 0.365 0.478 0.151 -0.683 
34 -5.292 -4.904 -0.073 -10.033 -14.650 0.460 
35 5.556 5.287 -0.048 9.770 14.545 0.489 
36 -0.019 -0.126 5.476 -0.171 -0.578 2.387 
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` Day 8 Day 14 
 RXN Control   KD %Diff Control   KD %Diff 

37 0.049 0.086 0.745 0.050 0.042 -0.161 
38 1.764 1.912 0.084 1.760 1.771 0.006 
39 1.946 2.387 0.227 2.034 1.936 -0.048 
40 0.475 1.000 1.106 1.000 1.000 0.000 
41 1.590 2.100 0.321 1.373 1.278 -0.070 

42 0.004 0.088 19.928 0.279 0.055 -0.801 

43 3.402 3.086 -0.093 1.641 0.715 -0.564 
44 0.176 0.166 -0.054 0.591 0.427 -0.277 
45 0.335 0.382 0.140 0.220 0.851 2.872 

46 0.433 0.433 0.001 0.442 0.702 0.589 

47 1.115 1.100 -0.014 0.373 0.278 -0.256 

48 2.738 2.940 0.074 0.907 0.412 -0.546 
49 4.237 4.871 0.150 2.726 1.275 -0.532 
50 -2.000 -1.920 -0.040 -2.000 -0.667 -0.667 
51 -0.258 -0.817 2.165 0.092 0.829 8.047 
52 4.656 3.981 -0.145 4.876 4.973 0.020 
53 0.097 0.103 0.062 0.082 0.090 0.092 

54 1.248 1.622 0.299 0.199 0.096 -0.518 
55 0.391 0.464 0.187 0.278 0.280 0.006 
56 0.413 0.307 -0.257 0.271 0.124 -0.543 

57 0.320 0.343 0.074 0.328 0.329 0.004 

58 -0.663 -0.146 -0.780 -0.734 -0.304 -0.586 

59 69.227 53.899 -0.221 39.529 70.883 0.793 
60 65.654 41.004 -0.375 42.371 66.725 0.575 
61 27.484 41.099 0.495 33.192 43.641 0.315 
62 746.455 452.746 -0.393 954.229 943.400 -0.011 
63 281.706 185.496 -0.342 -149.671 -53.299 -0.644 
64 196.414 139.344 -0.291 -335.704 -246.616 -0.265 
65 388.200 230.908 -0.405 284.072 314.201 0.106 
66 4.000 2.359 -0.410 8.000 7.667 -0.042 

All units of flux are in mmol/g-DNA/2 days. Data shown are the means (n=3). 

Significant differences (p<0.05) are bold and highlighted. Reaction numbers refer 

to Table 5 in the Appendix. 
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Table 10: Glucose Normalized Fluxes (Double KD) 
  Day 8 Day 14 
 RXN Control   KD %Diff Control   KD %Diff 

1 100.000 100.000 0.000 100.000 100.000 0.000 
2 50.938 50.303 -0.012 60.788 60.331 -0.008 
3 83.646 83.434 -0.003 86.929 86.777 -0.002 
4 77.848 73.949 -0.050 76.066 77.519 0.019 
5 177.848 173.949 -0.022 176.066 177.519 0.008 
6 177.848 173.949 -0.022 197.635 210.562 0.065 
7 102.601 120.578 0.175 34.209 43.901 0.283 
8 49.062 49.697 0.013 39.212 39.669 0.012 
9 16.354 16.566 0.013 13.071 13.223 0.012 

10 75.639 54.553 -0.279 139.463 129.234 -0.073 
11 124.762 78.597 -0.370 132.965 148.237 0.115 
12 0.000 0.000 -1.546 179.917 144.910 -0.195 
13 52.701 40.980 -0.222 86.273 72.376 -0.161 
14 54.322 43.001 -0.208 87.626 73.288 -0.164 
15 55.059 43.865 -0.203 87.882 73.409 -0.165 
16 -49.123 -24.043 -0.511 6.498 -19.003 -3.924 
17 21.531 12.131 -0.437 50.317 52.549 0.044 
18 21.497 12.102 -0.437 28.712 19.483 -0.321 
19 125.679 80.011 -0.363 110.096 111.895 0.016 
20 54.108 42.423 -0.216 -90.771 -68.225 -0.248 
21 0.000 0.000 -0.885 21.569 33.043 0.532 
22 10.732 12.132 0.130 15.878 19.239 0.212 
23 12.086 17.878 0.479 11.201 20.223 0.805 
24 2.691 1.516 -0.437 6.290 6.569 0.044 
25 5.798 9.485 0.636 10.864 9.258 -0.148 
26 4.721 8.791 0.862 8.577 7.003 -0.183 
27 0.558 0.696 0.248 0.605 0.648 0.071 
28 0.431 0.618 0.432 0.393 0.376 -0.043 
29 2.320 3.120 0.345 1.792 1.471 -0.179 
30 0.953 0.847 -0.111 1.292 1.381 0.069 
31 0.060 0.059 -0.017 0.059 0.049 -0.160 

32 -0.034 -0.029 -0.154 -0.035 -0.023 -0.348 

33 0.338 0.503 0.488 0.135 0.045 -0.670 
34 -1.408 -1.442 0.024 -2.873 -4.309 0.500 
35 1.479 1.555 0.051 2.797 4.278 0.529 
36 -0.005 -0.037 6.077 -0.049 -0.170 2.484 
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  Day 8 Day 14 
 RXN Control   KD %Diff Control   KD %Diff 

37 0.013 0.025 0.907 0.014 0.012 -0.128 
38 0.475 0.562 0.184 0.502 0.521 0.037 
39 0.524 0.702 0.339 0.581 0.569 -0.021 
40 0.131 0.294 1.242 0.286 0.294 0.029 
41 0.431 0.618 0.432 0.393 0.376 -0.043 
42 0.001 0.026 19.546 0.079 0.016 -0.794 

43 0.915 0.908 -0.008 0.466 0.210 -0.549 
44 0.047 0.049 0.034 0.170 0.126 -0.259 
45 0.090 0.112 0.247 0.063 0.250 2.966 

46 0.116 0.127 0.094 0.126 0.206 0.634 

47 0.300 0.324 0.078 0.107 0.082 -0.234 

48 0.737 0.865 0.173 0.256 0.121 -0.527 
49 1.145 1.432 0.251 0.771 0.375 -0.513 
50 -0.538 -0.565 0.049 -0.572 -0.196 -0.657 
51 -0.069 -0.240 2.468 0.043 0.244 4.618 
52 1.253 1.171 -0.066 1.399 1.463 0.046 
53 0.026 0.030 0.161 0.023 0.026 0.123 

54 0.337 0.477 0.417 0.056 0.028 -0.494 
55 0.105 0.136 0.297 0.079 0.082 0.039 
56 0.111 0.090 -0.188 0.077 0.036 -0.530 

57 0.086 0.101 0.174 0.094 0.097 0.032 
58 -0.178 -0.043 -0.759 -0.210 -0.089 -0.576 

59 18.685 15.850 -0.152 11.034 20.848 0.889 
60 17.615 12.059 -0.315 12.210 19.625 0.607 
61 7.466 12.088 0.619 9.674 12.836 0.327 
62 200.401 133.150 -0.336 272.428 277.470 0.019 
63 75.639 54.553 -0.279 -40.454 -15.676 -0.612 
64 52.701 40.980 -0.222 -93.644 -72.534 -0.225 
65 104.183 67.909 -0.348 81.384 92.412 0.136 
66 1.077 0.694 -0.356 2.287 2.255 -0.014 

Data were normalized to the glucose uptake rate (RXN #1) for each condition. 

Data shown are the means (n=3). Significant differences (p<0.05) are bold and 

highlighted. Reaction numbers refer to Table 5 in the Appendix. 
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