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Abstract

It has been suggested by Ellis et al [8, 10] that the universe could be eternal in the past,

without beginning. In their model, the “emergent universe” exists forever in the past, in

an “eternal” phase before inflation begins. We will show that in general, such an “eternal”

phase is not possible, because of an instability due to quantum tunneling. One candidate

model, the “simple harmonic universe” has been shown by Graham et al [11] to be per-

turbatively stable; we find that it is unstable with respect to quantum tunneling. We also

investigate the stability of a distinct oscillating model in loop quantum cosmology with

respect to small perturbations and to quantum collapse. We find that the model has per-

turbatively stable and unstable solutions, with both types of solutions occupying significant

regions of the parameter space. All solutions are unstable with respect to collapse by quan-

tum tunneling to zero size. In addition, we investigate the effect of vacuum corrections,

due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe

with respect to decay by tunneling to the singularity. We find that these corrections do

not generally stabilize an oscillating universe. Finally, we determine the decay rate of the

oscillating universe. Although the wave function of the universe lacks explicit time depen-

dence in canonical quantum cosmology, time evolution may be present implicitly through the

semiclassical superspace variables, which themselves depend on time in classical dynamics.

Here, we apply this approach to the simple harmonic universe, by extending the model to

include a massless, minimally coupled scalar field φ which has little effect on the dynamics

but can play the role of a “clock”.
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Chapter 1

Introduction

Did the universe have a beginning, or has it simply existed forever? This is perhaps one

of the more compelling questions that cosmology may address. Originally, it was shown by

the singularity theorems of Penrose and Hawking that an initial singularity is not avoidable

[1]. These theorems relied on the assumption that certain energy conditions apply.

High precision measurements of cosmic microwave background (CMB) are consistent

with an inflationary phase in the cosmic past [2]. During such a phase, a source of energy

density with negative pressure forces the universe to expand very rapidly; the scale factor

increases exponentially

a(t) ∝ eHt (1.1)

during this phase. By pushing large inhomogeneities outside of the horizon of the observable

universe, inflation explains the large scale homogeneity and isotropy and almost complete

flatness of the universe [3]. In addition, quantum fluctuations of fields during inflation result

in density perturbations in agreement with those observed in the CMB.

While inflation may provide an explanation for observations in our universe, there is no

definite answer to what preceded inflation. Inflation violates the strong energy condition,

and the quantum fluctuations of fields during inflation violate the weak energy condition,

so the singularity theorems of Penrose and Hawking do not apply. However, it was more

recently shown that spacetimes which are on average expanding, Havg > 0, cannot be

complete in the past. The theorem of [4] does not rely on Einstein’s equations or require

any energy conditions to be satisfied; instead, it says that as long as the average expansion

rate along a geodesic is positive, it must reach the past boundary of the expanding region
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in a finite proper time.

Eternal Inflation

One possibility is that our universe could be a part of a larger eternally inflating universe,

containing many distinct inflating bubbles which are disconnected from our own. It has been

shown [5] that such models may inflate eternally, at least in the future. However, inflating

space-times are expanding with Havg > 0, and are therefore subject to the theorem of [4],

and cannot be eternal in the past.

Cyclic Models

Alternatively, our universe could be the re-birth of a universe in the past, that contracted

from infinite size to a big crunch before re-expanding into our present universe – a “cyclic”

model [6]. The second law of thermodynamics requires that entropy grows, so through each

phase of contraction and expansion the total entropy of the universe must grow [7]. For

infinite cycles to be possible (infinite cycles would represent a universe having no beginning,

or end), entropy would grow without bound, signaling a “thermal death” of the universe.

One way around this is keeping the entropy density S/V finite; this would require the

volume of the universe to increase as it cycles. Although there are periods of expansion and

contraction, the overall growth of volume means that the cyclic universe has Havg > 0, and

the theorem of [4] applies. Therefore, cyclic universe models must have a beginning.

The “Emergent” Universe

There is one way to avoid the singularity theorem of [4], which is requiring Havg = 0. If the

universe is in a phase satisfying Havg = 0 before inflation, the initial singularity is avoided

and there is no beginning of the universe. Such a scenario has been recently proposed by

Ellis et al [8] (see also [9]); it is the aim of this thesis to investigate the plausibility of the

emergent universe.

In order for the emergent universe to be possible, two main ingredients are needed.

First, a phase which is truly “eternal” in the past must be possible. Second, the “eternal”

phase must somehow reach an end and transition into the inflating universe. The emergent

universe was first suggested by Ellis et al; they proposed a model including a scalar field

φ with a flat potential V (φ → −∞) = const., but reaching a hill at φ → 0 [10]. This is

2
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Figure 1.1: Schematic potential for the emergent universe scenario (see [10] for details). In
the “eternal” phase, the scalar field rolls along a flat potential V (φ → −∞) = const (1)
before reaching a hill in the potential, where V (φ) ∝ (eBφ − 1)2, with B ∼ const. Slow-roll
inflation occurs (2), after which inflation ends and re-heating begins (3).

depicted in Fig. 1.1. The field rolls along the flat potential in the infinite past, but begins

inflation when it reaches the hill. In this sense, a past-eternal phase is possible with inflation.

However, the first condition, that the eternal phase is possible to arrange, is not easily

met. For example, the Einstein Static universe is well-known to be perturbatively unstable.

Perturbations caused by quantum fluctuations of matter fields present in the universe can

easily de-stabilize potential emergent universe models.

One model, the simple harmonic universe (SHU) was discussed by Graham et al [11],

who showed that it is completely perturbatively stable, for some values of model parameters.

We will also show, in Chapter 3, another oscillating model from loop quantum cosmology

which is perturbatively stable for some values of model parameters. While we don’t claim

that this list of two examples is exhaustive, we wish to show that such perturbatively stable

solutions are in fact possible, indicating that it is at least plausible that our universe could

have begun in such a state. Evidence will show, however, that in fact it is not possible due

to quantum instabilities.

In order for the emergent universe to be truly eternal, it must not succumb to instabilities

of any sort. The main focus of this thesis is on the quantum mechanical instability of the

emergent universe.
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Hamiltonian Framework of Quantum Cosmology

The goal of “quantum cosmology” is to apply quantum mechanics to the entirety of the

universe. We understand the universe to be made up of spacetime and matter fields 1; our

particular observed universe has a particular combination of matter fields coexisting with

a particular structure of spacetime. However, any object, regardless of how macroscopic, is

always subject to the laws of quantum mechanics, and therefore the entire universe itself

must be described by a wave function of some sort. The canonical Hamiltonian framework of

quantum gravity, which we will use to determine an appropriate description of the quantum

mechanical behavior of the classically oscillating emergent models, was originally pioneered

by DeWitt [12].

The wave function of the universe is defined on a space of all possible three-geometries

hij and matter field {φ} configurations ψ(hih, {φ}) (the “superspace”). This may be roughly

interpreted as probability amplitudes for the universe to exist in a certain state as a function

of these parameters. The wave function is the solution to the Wheeler-DeWitt equation

Hψ(hih, {φ}) = 0. (1.2)

Here, H is the Hamiltonian operator. The wave function determines the quantum state of

the universe; we observe only the classical universe.

The role of time in quantum cosmology

In canonical quantum cosmology, the wave function of the universe is not dependent on time.

However, temporal evolution may be present implicitly through the semiclassical superspace

variables, which themselves depend on time in classical dynamics. In this chapter, we apply

this approach to the Simple Harmonic Universe discussed in Chapter 2 of this thesis. By

extending the model to include a massless, minimally coupled scalar field φ which has little

effect on the dynamics but can play the role of a “clock,” we determine the decay rate of

the oscillating universe in Chapter 5.

We first present, in Chapter 2, the simplest model of a perturbatively stable oscillating

model, SHU. We review the classical dynamics and then show that it is unstable with

respect to quantum tunneling. We discuss a distinct model motivated by loop quantum

1Matter fields includes gauge fields, which are only fixed up to some gauge choice. Probability amplitude
is independent of gauge choice, but it may be present as a phase in the wave function.
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cosmology in Chapter 3. Like the SHU, it is perturbatively stable but unstable with respect

to tunneling. Because of the LQC aspect of the model, its dynamics is significantly different

than the SHU; it is therefore important to demonstrate separately the tunneling instability

of this model. In Chapter 4, we address the effect on the tunneling probability of quantum

corrections to the energy-momentum tensor.

We focus on the stability of the emergent universe phase, setting aside the explicit inclu-

sion of the inflationary mechanism proposed by Ellis. The reason for this is straightforward:

if it is impossible to construct a perfectly stable eternal phase, then the emergent universe

scenario itself does not avoid some sort of beginning. However, it should be relatively

straightforward to extend either of the models we analyze to include a scalar field in the

prescribed potential (Fig. 1.1).
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Chapter 2

The Simple Harmonic Universe

One oscillating model that satisfies the condition Havg = 0, called the “Simple Harmonic

Universe,” was shown to be perturbatively stable by Graham et al [11]. In this model,

oscillation is driven by the balance between negative cosmological constant (Λ), which turns

around the expansion at large distances, and the presence of a material having equation of

state

P = wρ. (2.1)

with

−1 < w < −1

3
, (2.2)

which causes the bounce. The energy density of the universe is then

ρ = Λ + ρ0a
−3(1+w) (2.3)

with Λ < 0 and ρ0 > 0. The SHU is closed, having positive spatial curvature k = +1, and

the Friedmann evolution equation is

ȧ2 + 1 =
8πG

3
ρa2. (2.4)

The need for a material with equation of state in the range 2.2 to drive oscillations can be

seen from the second Friedmann evolution equation, given by

ä

a
= −4πG (3p+ ρ) . (2.5)
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With the relation (2.1), a material for which w < −1/3 corresponds to ä > 0, which

means that the material is gravitationally repulsive. This causes the bounce; with positive

curvature (k = +1), the bounce radius is non-zero.

The model is radially stable, provided that w satisfies (2.2). For a perfect fluid source,

the speed of sound cs can be found from c2s = dP/dρ = w. With the equation of state (2.2),

this gives c2s < 0, indicating instability with respect to short-wavelength compressional

perturbations. Hence, it is important that the exotic matter source should not be a perfect

fluid [11].1 It could, for example, be an assembly of randomly oriented domain walls, which

cannot be regarded as a perfect fluid, so instead w = −2/3 but the speed of sound c2s > 0

[13]. For this choice of w, Eq. (2.3) takes the form

ρ = Λ + ρ0a
−1, (2.6)

and the evolution equation (2.4) has a simple oscillatory solution

a = ω−1(γ −
√
γ2 − 1 cos(ωt)) (2.7)

where

ω =

√
8π

3
G|Λ| (2.8)

and

γ =

√
2πGρ2

0

3|Λ|
. (2.9)

A static universe solution is obtained from (2.7) by setting γ = 1; then a = 1/ω. It has

been shown in [11] that this solution is stable with respect to arbitrary small perturbations,

including all scalar and tensor modes.

2.1 Collapse through tunneling

We consider a spherical universe with metric ansatz

ds2 = dt2 − a2(t)

(
1

1− kr2
dr2 + r2

(
dθ2 + sin2θdφ2

))
(2.10)

1A perfect fluid source could be acceptable if one allows an equation of state P (ρ) more general than
Eq. (2.1). All one needs is that w = P/ρ satisfies Eq. (2.2) and dP/dρ > 0.
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with k = +1 for a closed universe. Matter content is described by Eq. (2.3); the scale factor

a(t) is the single dynamical degree of freedom. In classical theory, such a universe can be

regarded as a dynamical system with a Hamiltonian

H = − G

3πa

(
p2
a + U(a)

)
, (2.11)

where

pa = − 3π

2G
aȧ (2.12)

is the momentum conjugate to a and

U(a) =

(
3π

2G

)2

a2

(
1− 8πG

3
a2ρ(a)

)
. (2.13)

The Hamiltonian constraint H = 0 then yields the evolution equation (2.4). This can be

thought of as expressing the fact that the total energy of a closed universe is zero.

In quantum theory, the universe is described by a wave function ψ(a), the conjugate

momentum pa becomes the differential operator −id/da and the constraint is replaced by

the Wheeler-DeWitt (WDW) equation [12] (for a review see, e.g., [14, 15, 16])

Hψ = 0, (2.14)

or (
− d2

da2
− β

a

d

da
+ U(a)

)
ψ(a) = 0. (2.15)

Here, the parameter β represents the ambiguity in the ordering of the non-commuting

factors a and pa in the Hamiltonian (2.11). Its value does not affect the wave function in

the semiclassical regime a� lPlanck. In most of this thesis we set β = 0.

One might expect that for a simple harmonic universe the potential U(a) should be of

the same form as for a harmonic oscillator. This, however, is not the case: the motion in the

potential (2.13) is simple harmonic only for a particular value of the energy, H = 0. With

ρ(a) from (2.6), we have

U(a) =

(
3π

2G

)2

a2

(
1− 8πG

3
(ρ0a+ Λa2)

)
. (2.16)

It will be convenient to introduce a rescaled variable x = ωa with ω from Eq. (2.8). In

8



terms of this variable the WDW equation takes the form

(
− d2

dx2
+ U(x)

)
ψ(x) = 0, (2.17)

where

U(x) = λ−2x2(1− 2γx+ x2), (2.18)

γ is given by Eq. (2.9), and

λ =
16G2|Λ|

9
. (2.19)

The classically allowed range is defined by U(x) ≤ 0. This range is non-empty when

γ ≥ 1. The shape of the potential in this case is illustrated in Fig. 2.1. In the classical

solution, the radius of the universe oscillates forever between the values x+ and x− where

U(x±) = 0,

x± = γ ±
√
γ2 − 1. (2.20)

However, it is clear from the figure that quantum-mechanically the universe can tunnel

through the barrier to a vanishing size at x = 0. The WKB tunneling action is given by

S =

∫ x−

0

√
U(x)dx (2.21)

and the corresponding tunneling probability can be estimated as

P ∼ e−2S . (2.22)

This can be interpreted as the probability of collapse through quantum tunneling as the

universe bounces at radius x = x−.

Semiclassical quantum tunneling in oscillating universe models has been studied by

Dabrowski and Larsen [17, 18]. They considered a closed universe containing nonrelativistic

matter (dust), a domain wall fluid with equation of state w = −2/3, and a negative cos-

mological constant. Due to the presence of dust, this model has another classically allowed

range at small values of a. The WKB action (2.21) for tunneling between the two classi-

cally allowed regimes can then be expressed in terms of elliptic integrals. In the absence of

dust, the model of [18] reduces to the simple harmonic universe, but the authors have not

discussed this case.

9
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Figure 2.1: The WDW potential U(x) for the parameter values λ = 0.03 and γ = 1.1.

For a simple harmonic universe, the integral in (2.21) can be expressed in terms of

elementary functions,

S = λ−1

[
γ2

2
+
γ

4

(
γ2 − 1

)
ln

(
γ − 1

γ + 1

)
− 1

3

]
, (2.23)

Since the tunneling probability (5.84) is nonzero, such a universe cannot survive forever.

For γ = 1, the classically allowed range reduces to a single point, and the WKB action

is given by the simple formula

Sγ=1 =
1

6λ
. (2.24)

The classical solution in this case is a static universe with x = 1, and Eq. (5.84) can be

interpreted as being proportional to the probability of quantum collapse per unit time.

2.2 Tunneling from nothing

We note that the tunneling between x = x− and x = 0 can also go in the opposite direction,

in which case Eq. (5.84) with S from (2.23) or (2.24) can be interpreted as describing

spontaneous creation of an oscillating or static universe from nothing. The corresponding

10



instanton can be found by solving the Euclideanized Friedmann equation,

ẋ2 = ω2(x+ − x)(x− − x), (2.25)

where the dot stands for differentiation with respect to the Euclidean time τ . The solution

can be expressed as

ωτ =

∫ x

0

dx′√
(x+ − x′)(x− − x′)

= −2 ln

(√
x+ − x+

√
x− − x√

x+ +
√
x−

)
. (2.26)

Solving this for x as a function of τ we find

x(τ) = γ − 1

2
(γ − 1)eωτ − 1

2
(γ + 1)e−ωτ . (2.27)

Introducing

τ0 = ω−1 ln

(
γ + 1

γ − 1

)
, (2.28)

Eq. (2.27) can be rewritten as

x(τ) = γ −
√
γ2 − 1 cosh[ω(τ − τ0/2)]. (2.29)

Note that this is related to the Lorentzian solution (2.7) by a simple analytic continuation,

as one might expect. The instanton solution (2.29) starts with x = 0 at τ = 0, grows until

it reaches a maximum value x(τ0/2) = x−, and then returns to x = 0 at τ = τ0. It is

symmetric with respect to the point τ = τ0/2.

The geometry of the instanton,

ds2 = dτ2 + a2(τ)dΩ2
3, (2.30)

is similar to a 4-dimensional ellipsoid. We note that

ȧ(0) = −ȧ(τ0) = 1, (2.31)

which indicates the absence of conical singularities. In other words, the “poles” at τ = 0, τ0

are rounded off.

11



For γ = 1 the instanton solution (2.27) simplifies to

x(τ) = 1− e−ωτ . (2.32)

It interpolates between x = 0 at τ = 0 and x = 1 at τ →∞. The geometry of this instanton

is that of a cigar. It is rounded off at a = 0 and asymptotically approaches a static sphere

at large τ . The instanton action in this case is given by

|Sinst| =
3π

4G

∫ ∞
0

dτa
[
ȧ2 + (ωa− 1)2

]
=

1

6λ
. (2.33)

Of course it is the same as in Eq. (2.24). Note that the action is finite, even though

the instanton has an infinite 4-volume. We note also that the boundary term, which is

proportional to the normal derivative of the boundary volume, vanishes for this instanton.

Even though there are no conical singularities, a closer examination shows that somewhat

milder singularities are still present at the poles.2 The scalar curvature for the metric (2.30)

is

R = 6a−2(1− ȧ2 − aä). (2.34)

The first two terms in the parentheses cancel out at the poles, but in the last term ä(0) =

−γω 6= 0, and thus R ∝ a−1 ∝ τ−1. This singularity is integrable, so the instanton action

is finite.

It is possible that the curvature singularity can be removed by modifying Einstein’s

equations or the equation of state at small values of a. We could imagine, for example, that

for a gas of domain walls the equation of state parameter gradually changes from w = −2/3

to w = −1 as we approach a = 0 (so the equation of state becomes that of the symmetric

vacuum in the wall interiors). This would cure the singularity.

The situation here is somewhat similar to that with the Hawking-Turok (HT) instanton

[19], which was proposed to describe quantum creation of open universes. Garriga has shown

that this singular instanton can be regulated with a suitable matter source [20] and can also

be obtained by dimensional reduction from a regular instanton in a higher-dimensional

theory [21]. It is possible that the Euclidean solutions presented here can similarly be

regarded as approximations to instantons of a more fundamental theory.

An important difference between HT and our instantons is that in the HT case the vicin-

2We are grateful to Jaume Garriga for pointing this out to us.
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ity of the singular point makes a significant contribution to the action. For our instantons

the contributions of singular points are negligible. This indicates that the instanton action

and the tunneling probability are not sensitive to short-distance modifications of the theory.

2.3 The wave function

Having studied the semiclassical tunneling of the universe, we shall now examine solutions

of the WDW equation (2.17) for the wave function of the universe ψ(a). By analogy with

a quantum harmonic oscillator, one might expect the wave function to oscillate in the

classically allowed range and to decay exponentially in the two classically forbidden ranges

on both sides of it. However, the situation we have here is rather different. In the case of

an oscillator, we solve the Schrodinger equation

1

2

(
− d2

dx2
+ ω2x2

)
ψ(x) = Eψ(x) (2.35)

with boundary conditions ψ(x → ±∞) = 0. Solutions exist only for certain values of the

energy, E = (n+ 1
2 )ω; this determines the energy spectrum of the oscillator.

Now, in our case the eigenvalue of the WDW operator is fixed: it is equal to zero. If we

impose boundary conditions requiring, e.g., that ψ(x → ∞) = ψ(x = 0) = 0, the system

would be overdetermined and no solutions would exist, except for some special values of the

parameters λ and γ. For generic values of the parameters, we have the freedom to impose

only a single boundary condition. A natural choice appears to be

ψ(x→∞) = 0. (2.36)

This fully specifies the solution. In the classically forbidden region 0 ≤ x ≤ x−, the wave

function is a superposition of exponentially growing and exponentially decreasing solutions.

The solution that grows towards a = 0 will dominate, unless the parameters of the model

are fine tuned to suppress its contribution. Some numerical solutions to the WDW equation

(2.17) are illustrated in Figs. 2.2 and 2.3.

The interpretation of these solutions is not completely clear, since we do not have a well

established procedure for extracting probabilities from the wave function of the universe

(see, e.g., Ref. [14] and references therein). But a nonzero value of ψ(0) signals a non-
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Figure 2.2: Solution of the WDW equation for the parameter values λ = .05 and γ = 1.3
(red dashed line). The WDW potential is also shown (blue line).

vanishing probability of collapse and appears to be inconsistent with the picture of an

eternal oscillating or static universe.

Here, we assume that hitting the singularity at x = 0 is fatal for the universe. It

is conceivable that wave functions similar to those in Fig. 2.3 could describe an eternal

universe tunneling back and forth between a finite radius a = ω−1 and a Planck-size nugget.

However, analysis of this possibility would require a full theory of quantum gravity and

is beyond our present level of understanding. Our simple minisuperspace model certainly

becomes inadequate at a ∼ lPlanck.

2.4 Discussion

Is it possible to save the simple harmonic universe from quantum collapse? One possibility

is to impose the boundary condition

ψ(0) = 0. (2.37)

(This boundary condition was introduced in [12]; for a recent discussion see [22].) Together

with the boundary condition at infinity (4.18), this will enforce a relation between the

parameters of the model γ and λ. As Figs. 2.2 and 2.3 illustrate, the value of ψ(0) can be
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Figure 2.3: Solution of the WDW equation with λ = 0.1 and γ = 1 (red dashed line).
The WDW potential is also shown (blue line). The classical solution in this case is a static
universe at x = 1.

either positive or negative. This is determined by whether ψ(x) is growing or decreasing

near x = x−, which is in turn determined by the number of oscillations N of ψ that fit into

the classically allowed range x− < x < x+. Suppose for definiteness that we decrease λ while

keeping γ fixed. This makes the potential well deeper, so N monotonically increases and

ψ(0) oscillates between positive and negative values, making one oscillation as N changes

by ∆N ∼ 1. By continuity, ψ(0) should go through zero twice per such oscillation. Values

of λ� 1 correspond to the semiclassical regime, where N � 1 and the boundary condition

(2.37) can be satisfied by a relatively small change in λ.

Thus, for each value of γ > 1 we expect an infinite set of values of λ for which the

condition (2.37) can be enforced. Fig. 2.4 shows the wave function for a universe with

the parameters fine-tuned in this way. This approach appears to avoid the collapse, but the

following argument indicates that it may not be possible to extend it beyond minisuperspace.

The WDW equation (2.14) can be interpreted as stating that the energy of a closed

universe is equal to zero. Quantum states with different occupation numbers of matter

particles have different energy of matter, but this energy is exactly compensated by the

negative energy of gravity, so the total energy is zero. Then one expects that transitions

between different states should be possible, as long as they have the same conserved quantum

numbers. For example, there seems to be nothing to prevent spontaneous nucleation of
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Figure 2.4: Solution of the WDW equation with the parameter values λ = .0473 and γ = 1.3,
fine tuned so that ψ(0) = 0 (red dashed line). The WDW potential is also shown (blue line).

particle-antiparticle pairs. This seems to suggest that the universe will evolve to a state with

large occupation numbers and high entropy. In terms of the wave function, we expect ψ to

be a superposition of states with different occupation numbers. The value of ψ(0) cannot

be fine-tuned for all of them, and we expect that quantum collapse cannot be avoided by

fine tuning in more realistic models including a matter field.

Our analysis indicates that oscillating and static models of the universe, even though

they may be perturbatively stable, are generically unstable with respect to quantum collapse.

Here we focused on the simple harmonic universe with matter content described by Eq. (2.6),

but we expect our conclusions to apply to a wider class of models. If we consider additional

sources of energy density including strings, domain walls, dust, radiation, etc., the energy

density may be represented as

ρ(a) = Λ +
C1

a
+
C2

a2
+
C2

a3
+
C4

a4
+ . . . . (2.38)

For positive values of Cn, the effect of this is that the potential U(a) develops another

classically allowed region at small a. So the tunneling will now be to that other region,

but the qualitative conclusion about the quantum instability remains unchanged. Altering

this conclusion would require rather drastic measures. For example, one could add a matter

component ρn(a) = Cn/a
n with n ≥ 6 and Cn < 0. Then the height of the barrier becomes
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infinite at a→ 0 and the tunneling action is divergent. Note, however, that such a negative-

energy matter component is likely to introduce quantum instabilities of its own. In addition,

we consider the effect of quantum corrections such as Casimir energy and the trace anomaly

in Chapter 5.

Additionally, one could investigate the quantum stability of braneworld, loop quantum

cosmology, and other modified gravity inspired models.3 We will discuss an oscillating model

in loop quantum cosmology in the next Chapter.

3Some relevant discussion of quantum cosmology in Horava-Lifshitz gravity models can be found in
Ref. [23].
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Chapter 3

LQC oscillating model

Another class of oscillating models arise in loop quantum cosmology (LQC). LQC is a

minisuperspace of loop quantum gravity, which is an approach to a quantized theory of

gravity (this is analogous to canonical quantum cosmology, which is a minisuperspace of the

standard Hamiltonian approach to quantum gravity). A key feature of LQC which motivates

our interest here is that it generically has bouncing solutions, which allows for a class of

oscillating models relevant to the emergent universe scenario. One spatially closed model

(k = +1) was suggested by Mulryne et al [24] has been shown to have eternally oscillating

solutions. Additionally, a scalar field potential can cause the spontaneous ignition of an

inflationary epoch, preceded by eternal oscillation, giving a concrete example characterizing

the emergent universe scenario.

Mulryne et al [24] have shown that such a model has eternally oscillating solutions with

positive spatial curvature (K = +1), and that inflation may arise with an appropriate

potential for the scalar field. An LQC model with flat spatial geometry (K = 0) and the

energy density given by a massless scalar field φ and a negative cosmological constant was

recently discussed by Mielczarek et al [25], who found a simple oscillating solution in this

case. It should be noted that Loop Quantum Gravity, on which LQC is based, is still an

incomplete theory; in this sense the foundations of LQC are not very reliable. However,

LQC has now been studied in great detail and is an interesting (albeit restricted) theory in

its own right (see Ref. [26] for an up to date review). It resolves the singularities of FRW

models and provides a useful framework for investigating Planck-scale physics.

In this Chapter, we investigate the stability of the oscillating universe of Ref. [25] with
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respect to classical scalar field perturbations and to quantum tunneling.

3.1 Classical dynamics of oscillating LQC model

In LQC, the effective Friedmann equation is modified – as we will show below – such that

the energy density ρ is replaced by ρ̃, where

ρ̃ = ρ

(
1− ρ

ρmax

)
, (3.1)

where ρmax = const is the maximum energy density the universe can reach; the universe

bounces at this energy density. This is the source of one of the key differences for the

purposes of tunneling between the LQC-inspired model and the SHU model.

Here, we consider an oscillating model in a flat spacetime described by the metric

ds2 = N2(t)dt2 − a2(t)dxidx
i. (3.2)

Again, we choose N = 1 for the lapse function and a(t) is the scale factor. The Cartesian

coordinates are in the range

0 ≤ xi ≤ L, (3.3)

where L represents the overall comoving size of the universe. The boundary at L is identified

with 0, forming a closed toroidal universe with finite total volume V = a3L3.

The dynamics of this model in LQC are accurately described by the effective Hamiltonian

[26]1

H = − 3

8πGγ2

cos2(`β)

`2
V +Hmatter, (3.4)

where,

β = 4πGγpV , (3.5)

and pV is the canonical momentum conjugate to V . Here, γ is the so-called Barbero-Immirzi

parameter, and `2 = 4π
√

3γG. It is usually assumed that γ ∼ 1; then ` is comparable to

the Planck length.

We consider a model with energy density sourced by a massless scalar field φ and a

1The effective Hamiltonian commonly used in the LQC literature is given by (3.4) with cos(`β) replaced
by sin(`β). These two forms of H are related by a simple change of variable β → β + π/2`.
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negative cosmological constant Λ, The corresponding matter Hamiltonian is

Hmatter =
p2
φ

2V
+ ΛV ≡ ρV, (3.6)

where pφ is the momentum conjugate to φ, and we have defined the matter energy density

ρ.

The classical equations of motion for the canonical variables are then

ṗφ = 0 (3.7)

φ̇ =
pφ
V

(3.8)

V̇ = − 3

γ
V

cos(`β)

`
sin(`β) (3.9)

β̇ = −4πGγ
p2
φ

V 2
. (3.10)

where in the final relation we have used the Hamiltonian constraint

H = 0. (3.11)

Squaring the equation for V̇ and combining with Eqs. (3.6) and (3.11), we find the

modified Friedmann equation:

ȧ2

a2
=

V̇ 2

9V 2
=

8πG

3
ρ

(
1− ρ

ρmax

)
, (3.12)

where

ρmax =

√
3

32π2γ3G2
(3.13)

is the maximum energy density that can be attained in this model.2 We assume that

|Λ| . ρmax. When the maximum energy density is reached, V̇ = 0 and the volume reaches

its minimum.

The equations of motion for φ and pφ in Eq. (3.7-3.8) result in the familiar equation for

a homogeneous massless scalar field,

φ̈+ 3
ȧ

a
φ̇ = 0 (3.14)

2The same form of the modified Friedmann equation is obtained in the Shtanov-Sahni braneworld model
with a timelike extra dimension [27, 28].
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Using Eq. (3.6), the matter energy density can be expressed as

ρ = Λ +
C

V 2
, (3.15)

where C = p2
φ/2 = const.

With this matter density, the Friedmann equation (4.9) has an oscillating solution [25]:

V (t) = Vmin(2λ)−1/2 (− cos(ωt) + 1 + 2λ)
1/2

, (3.16)

ω =
√

96πGρmaxλ (1 + λ), (3.17)

where λ = |Λ|/ρmax and

Vmin =

(
C

ρmax + |Λ|

)1/2

≡ L3a3
min. (3.18)

The universe oscillates at frequency ω between minimum volume Vmin, where ρ = ρmax,

and maximum Vmax = Vmin
1+λ
λ , where ρ = 0. The value of the parameter L depends on the

normalization of the scale factor a. We shall choose it so that amin = 1. Then Vmin = L3

with L = (C/ρmax)1/6(1 + λ)−1/6.

We may also find a solution for the momentum β:

β(t) =

(
8πGγ2ρmax

3

)1/2

arctan

(√
1 + λ

λ
tan

(
ωt

2

))
. (3.19)

In the limit Λ→ 0 the solution (3.16) goes into

V (t) = V
(0)
min

(
1 + 24πGρmaxt

2
)1/2

, (3.20)

where V
(0)
min = (C/ρmax)

1/2
. This solution, which describes a contracting, bouncing and

re-expanding universe, has been discussed earlier by a number of authors [29].

In the following section, we study perturbative stability of the oscillating universe by

considering space-dependent contributions from the scalar field φ(x, t). The inhomogeneous

components of the field to contribute perturbatively to the energy density; unbounded

solutions to equations of motion for the inhomogeneous field perturbations correspond to

de-stabilizing growth of the energy density.
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3.2 Perturbative stability

Growth in mode functions of the scalar field corresponds to increased energy density of

the scalar field. This must manifest by increased number density of particles having the

corresponding energy level present in the universe. If perturbations of the scalar field modes

grow without bound, this signals runaway particle production in the universe, and the

geometry must correspondingly be destabilized.

The dynamics of perturbations in LQC has been studied by Agullo et al [30], with

the conclusion that it is accurately given by the usual quantum field theory on the FRW

background described by the solutions to the effective field equations.3 In our case, the

scalar field perturbations should then satisfy the Klein-Gordon equation

�φ = φ̈+ 3
ȧ

a
φ̇− 1

a2
∇2φ = 0 (3.21)

in the oscillating background (3.16). Metric perturbations, describing gravitons, satisfy the

same equation, so it will be sufficient to investigate the stability of the solutions of Eq. (3.21).

It will be convenient to introduce a new variable τ = ωt. The field φ can then be

expanded into plane waves,

φ(x, τ) =
∑
k

φk(τ)eikx, (3.22)

where the mode functions φk satisfy

φ′′k + 3
a′

a
φ′k +

k2

ω2a2
φk = 0. (3.23)

Here, primes stand for derivatives with respect to τ .

Periodic boundary conditions in the range (3.3) require that ki = 2πni/L, where ni are

integers. The eigenvalues of the Laplacian are then given by

k2 = (2π/L)2n2, (3.24)

where n2 ≡ n2
1 + n2

2 + n2
3.

3It is shown in Ref. [31] that this prescription can become inaccurate in the regime where C � 102`6ρmax,
so that the bounce is at a near-Planckian volume Vmin � 10`3. Here we shall assume that C � 102`6ρmax.
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The scale factor corresponding to the solution (3.16) can be written as

a(τ) = (2λ)−1/6 (− cos τ + 1 + 2λ)
1/6

, (3.25)

where we have normalized to amin = 1. With this form of the scale factor, the mode

equation (3.23) becomes

φ′′k +
sin τ

2f(τ)
φ′k +

q2

f1/3(τ)
φk = 0, (3.26)

where

f(τ) = − cos τ + 1 + 2λ (3.27)

and

q2 =
(2λ)1/3k2

ω2
=

π

12

n2

GL2ρmax(2λ)2/3(1 + λ)
. (3.28)

Eq. (3.26) is a form of Hill’s equation, which is a more general form of the familiar

Mathieu equation. As with the Mathieu equation, we can find stable and unstable regions in

the parameter space. The modes φk represent excitations of the field at a certain momentum

k, so growing solutions to the mode equation signal particle production in that state.

With a transformation to conformal time dη = a−1dt and defining y(η) = a(η)φ(η),

Eq. (3.26) can be brought to the form

y′′ + (k2 + a′′/a)y = 0, (3.29)

where primes stand for derivatives with respect to η. One can then perform the standard

stability analysis using Floquet theory [32]. We did not follow this path because we could not

obtain an analytic solution for a(η) and using a numerical solution would take an excessive

amount of computer time. We therefore modified the Floquet method as described in

Appendix B, so that it can be directly applied to Eq. (3.26). The resulting stability diagram

in the parameter space of q and λ is shown in Fig. 3.1.

The parameter λ in our model determines the ratio amax/amin. For λ ∼ 1, we have

amax ∼ amin, so the scale factor oscillates about the value a ∼ 1 with an amplitude also

∼ 1. In this regime, the diagram exhibits the characteristic pattern of narrow parametric

resonance, with instability confined to narrow bands. For λ� 1, amax/amin ∼ λ−1/3 � 1,

so the size of the universe changes by many orders of magnitude in the course of one
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Figure 3.1: Stability diagram in the parameter space of q and λ. Red bands are unstable.

oscillation. The instability bands become broader in this limit.

These results can be qualitatively understood as follows. In the absence of oscillations,

the energy spectrum of a scalar field in a compact universe is discrete. If the oscillation

amplitude is relatively small, the oscillations act as a periodic perturbation of frequency ω,

and particle production occurs only if ω is very close to one of the resonant frequencies of

the modes. As the oscillation amplitude gets large, the perturbation effectively includes a

wide range of frequencies, so a larger number of modes are affected.

As unstable mode functions oscillate, their amplitudes grow exponentially,

φk(τ) ∝ eατ , (3.30)

with the rate of growth α getting higher as λ gets smaller and the instability band widens.

The time evolution of the energy density,

ρk(τ) =
ω2

2

(
φ′k

2
+

k2

ω2a2
φk

2

)
, (3.31)

is shown in Fig. 3.2 for q = 0.55 and λ = 0.5, 0.05, 0.01. The corresponding growth rates
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Figure 3.2: The growth of energy density in unstable modes with q = 0.55 and λ =
0.5, 0.05, 0.01. Lower curves on the graph correspond to larger values of λ.

are α = 0.09, 0.23, 0.31, respectively.

The parameter q defined in Eq. (3.28) depends on λ, as well as on L and the mode

number n2. In Fig. 3.3 we show regions of instability for the independent parameters of the

model, λ and

κ = (GL2ρmax)−1/2. (3.32)

Each unstable band of Fig. 3.1 now splits into an infinite number of bands, corresponding

to different values of n2. We have included in Fig. 3.3 only modes with n2 ≤ 10, with higher

values of n2 indicated by lighter shades of grey.

It is interesting to compare our results with those of Graham et al [11], who studied

the stability of their simple harmonic universe model. In that model, the solution for

a(τ) is inversely proportional to the oscillation frequency ω, so ω drops out of the mode

equation (3.26). This leaves a single model parameter γ̃ = 3|Λ|/2πGρ2
0, where Λ < 0 is the

cosmological constant and ρ0 characterizes the contribution of matter with w = −2/3 to

the total density. The role of this parameter is similar to that of λ in our model. Graham

et al find that for γ̃ ∼ 1, amax/amin ∼ 1 and all modes are stable, while for γ̃ � 1,

amax/amin � 1 and there is a large number of unstable modes. (An oscillating solution

exists only for γ̃ < 1.) In contrast, our diagram in Fig. 3.3 shows a non-trivial pattern of

stability and instability regions. In particular, we find wide ranges of κ where the model is

unstable when λ ∼ 1 and where it is stable when λ is very small.
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Figure 3.3: Stability diagram in the parameter space of κ and λ, with instability regions
corresponding to different values of n2 marked by different shades of grey. Lighter shades
correspond to larger values of n2.

3.3 Tunneling to nothing

So far we have found that the oscillating LQC universe is stable with respect to inhomo-

geneous perturbations of the scalar field for certain values of the parameters. However, it

is possible that the oscillating universe could tunnel from the bounce point to nothing, as

is the case with the simple harmonic universe [33]. Even if the oscillating LQC universe

is stable with respect to classical perturbations, it may tunnel quantum mechanically from

the bounce point at V = Vmin to a state of zero volume. Here we estimate the semiclassical

tunneling probability.

The application of standard semiclassical methods to this case is complicated by the fact

that the field φ has a nonzero velocity at the bounce point, φ̇(Vmin) = pφ/Vmin [see Eqs. (3.7-

3.8)]. This problem, however, is not difficult to resolve if we note that the variables V and

φ are essentially decoupled from one another. The Hamiltonian (3.4),(3.6) is independent
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of φ, so pφ = (2C)1/2 = const, and the wave function can be factorized

Ψ(V, φ) = eipφφψ(V ). (3.33)

The problem then reduces to a one-dimensional tunneling problem with a single dynamical

variable V , which is described by the action

S =

∫ f

i

dt

(
1

4πGγ
βV̇ −NH

)
, (3.34)

where

H = −ρmaxV cos2(`β) +
C

V
+ ΛV. (3.35)

The semiclassical tunneling probability is given by

P ∼ e−2SE , (3.36)

where SE is the Euclidean action of the instanton solution to the Euclidean equations of

motion. The instanton can be obtained from the Lorentzian solution (3.16),(5.7) by analytic

continuation t → −it̃, β → iβ̃ to the classically forbidden range of 0 < V < Vmin. This

gives

V (t̃) = L3(2λ)−1/2
(
− cosh(ωt̃) + 1 + 2λ

)1/2
, (3.37)

β̃(t̃) = −
(

8πGγ2ρmax
3

)1/2

tanh−1

[√
1 + λ

λ
tanh

(
ωt̃

2

)]
. (3.38)

The classically forbidden range extends from t̃ = 0, where β̃ = 0, to t̃ = t̃f , where V = 0.

(t̃f can be found from cosh(ωt̃f ) = 1 + 2λ.) Taking into account the Hamiltonian constraint

H = 0, the instanton action is given by

SE =
1

4πGγ

∫ t̃f

0

dt̃

∣∣∣∣β̃ dVdt̃
∣∣∣∣ =

1

4πGγ

∣∣∣∣∣
∫ Vmin

0

dV β̃(V )

∣∣∣∣∣ . (3.39)

The form of β̃(V ) may be determined from the constraint,

β̃(V ) = `−1 cosh−1

[
ρ−1/2
max

√
C

V 2
− |Λ|

]
. (3.40)
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Then, introducing a new variable x = V/Vmin, the integral (4.32) can be rewritten as

SE =
Vmin

4πGγ`

∣∣∣∣∣
∫ 1

0

dx cosh−1

(
1 + λ

x2
− λ
)1/2

∣∣∣∣∣ . (3.41)

It can be expressed as an elliptic integral, but this expression is not particularly illuminating

and we do not present it here. An interesting special case is the limit λ→ 0, when Vmax �

Vmin. In this limit we obtain

P ∼ exp

(
−π
√

3

2

Vmin
`3

)
, (3.42)

where we have used ∫ 1

0

dx cosh−1 1

x
=
π

2
. (3.43)

The above semiclassical treatment indicates that when the universe reaches its minimum

volume, there is a non-zero probability of tunneling to a singularity. The tunneling is

strongly suppressed when the minimum volume at the bounce Vmin is much larger than the

Planck volume.

We note finally that our conclusions here are somewhat different from those of Ashtekar et

al [34], who studied quantum tunneling in the same LQC model with Λ = 0. They found that

the Euclidean action in the classically forbidden region between V = 0 and V = Vmin is SE =

0, suggesting that the tunneling to V = 0 is unsuppressed. On the other hand, numerical

calculations in Ref. [34] indicate that the wave function is actually suppressed in this region,4

and the authors interpret this as a breakdown of the semiclassical approximation. In our

view, the semiclassical approximation is accurate under the usual conditions (roughly, SE �

1). The reason for the discrepancy is that the Euclidean continuation in [34] was performed

in the full action, including both V and φ variables, while we considered a reduced action

(3.34) with a single variable V . The latter appears to be the correct prescription in the

presence of classical motion in φ.5

4We also mention a related result by Craig [35] who showed analytically that eigenfunctions of the
quantum evolution operator in LQC decay exponentially in the region between zero volume and the bounce.

5For a discussion of multi-dimensional tunneling in the presence of classical motion, see Ref. [36].
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Chapter 4

Effect of Quantum Corrections

on Stability of the Oscillating

Universe

So far, we have considered two distinct oscillating models which may be perturbatively stable

but which decay quantum mechanically. We may understand the reason for the decay in

a rather straightforward manner: the effective potential at large values of scale factor a

grows infinitely, forcing the boundary condition Ψ(a → ∞) → 0 and resulting in non-zero

probability for Ψ elsewhere, including at a→ 0.

Graham et al suggested an interesting possibility that the SHU model can be stabilized

by Casimir energy due to the zero-point fluctuations of quantum fields [42]. They assume

that the Casimir energy density is given by

ρC(a) = − C
a4

(4.1)

with C > 0. If ρC(a) is added to the energy density of the SHU in Eq. (2.38), the potential

U(a) in (2.13) takes the form shown in Fig. 2.1. The minimum of the potential at a = 0 is

lifted to a positive value, and Graham et al argued that this should prevent the tunneling

from taking place.

In this chapter we examine in some more detail the effect of Casimir and other quantum

corrections to the energy-momentum tensor on the tunneling of the universe. A Casimir
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Figure 4.1: The effective potential U(a) of the simple harmonic universe with Casimir energy.

energy density of the form (4.1) was derived for massless quantum fields in a static Ein-

stein universe. In an oscillating universe like the SHU, there are additional contributions,

depending on time derivatives of the scale factor. Even in the static limit, when a+ = a−,

the tunneling is described by an instanton solution a(τ), which depends on the Euclidean

time τ , so the additional terms in Tµν must be included. We shall see that these terms can

have a significant effect on the tunneling.

Even when keeping only the Casimir energy is a good approximation, we argue that it

does not generally prevent the universe from quantum decay. It may be possible, however,

to stabilize the universe in some finely-tuned non-vacuum states.

4.1 Energy-momentum tensor

Calculation of the expectation value of the energy momentum tensor 〈T qµν〉 of quantum fields

in a curved spacetime is a rather challenging task and can be done in a closed form only in

a few simple cases (see [37, 38] for a review). The case most relevant to our considerations,

which we shall adopt here, is that of free, massless, conformally coupled fields in a FRW
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universe. Then 〈T qµν〉 can be represented as

〈T qµν〉 = α (1)Hµν + β (3)Hµν + T (C)
µν + T (s)

µν , (4.2)

where Rµν is the Ricci tensor and we have used the standard notation [37]

(1)Hµν = 2R;µ;ν − 2gµνR
:σ
;σ + 2RRµν −

1

2
gµνR

2 (4.3)

and

(3)Hµν = RσµRνσ −
2

3
RRµν −

1

2
gµνRστR

στ +
1

4
gµνR

2. (4.4)

The coefficient β in (4.2) is determined by the trace anomaly; it is given by

β =
1

1440π2
(N0 + 11N1/2 + 31N1), (4.5)

where N0, N1/2 and N1 are the numbers of quantum fields of spin 0, 1/2 and 1, respectively.

(Note that N1/2 is the number of chiral spinors; a Dirac spinor is counted as two chiral

spinors.) The tensor (3)Hµν is not identically conserved, but it is conserved in conformally

flat spacetimes (and thus in FRW spacetimes). This tensor cannot be obtained by varying

a local action. On the other hand, the tensor (1)Hµν can be obtained by varying an R2

term in the action and is identically conserved. The coefficient α is affected by the R2

counterterm that has to be added in order to cancel infinities in Tµν .By a suitable choice of

the counterterm, this coefficient can be tuned to zero. We shall adopt this choice here, in

order to simplify the discussion.

T
(C)
µν is an additional Casimir contribution, which arises if the space has nontrivial topo-

logical identifications. One example is a spatially flat universe with a toroidal topology, like

we discussed in Chapter 3. (See in particular Eq. (3.2). There, we had 0 ≤ xi ≤ L.) Then

T (C)
µν = − C

a4
diag(1, 1/3, 1/3, 1/3) (4.6)

where this tensor is traceless and covariantly conserved: T
(C)ν
ν = 0, T

(C)ν
µ;ν = 0. The

coefficient C for a real scalar field is C0 = 0.8375. In general, for non-interacting conformal

fields,

C = (Nb −Nf )C0, (4.7)
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where Nb = N0 + 2N1 and Nf = 2N1/2 are the numbers of bosonic and fermionic spin

degrees of freedom.1 A flat toroidal universe will be discussed in detail in Sec. 4.2. Note

that for a spherical (k = +1) universe, there are no additional Casimir terms: the Casimir

contribution is already included in (3)Hµν . The reason is that a k = 1 universe is conformally

related to a static Einstein universe, which has a vanishing trace anomaly.

The last term in (4.2) depends on the choice of quantum state; it can be thought of as

‘radiation’, representing particle excitations of the fields. For conformal fields, there is a

natural choice of vacuum state – the conformal vacuum, whose mode functions are obtained

by a conformal transformation from those of a static universe with a = const. In this state

T
(s)
µν = 0. (Note that for conformal fields the time dependence of the scale factor does

not give rise to particle production.) For now, we shall assume that all fields are in their

conformal vacuum states; a more general case will be considered in Sec. 4.3.

To investigate the effect of quantum corrections on the SHU, we shall use the semiclassical

Einstein equations,

Rµν −
1

2
gµνR = −TSHUµν − 〈T qµν〉, (4.8)

where TSHUµν is the classical energy-momentum tensor of the SHU. Here we have used Planck

units to set 8πG = 1. The corresponding Friedmann equation is

ȧ2 + k

a2
= β

(
ȧ2 + k

a2

)2

+
1

3

(
Λ +

σ

a

)
, (4.9)

where we have set α = 0 and T
(C)
µν = 0 (assuming spherical topology).

As we already mentioned, the trace anomaly term in this case includes the effect of

Casimir energy (proportional to a−4 in the Friedmann equation). However, we will see that

this energy is positive, so its effect is to lower the potential, creating another classically

allowed region near a = 0.

We can find the classical turning points by setting ȧ = 0 in the Friedmann equation

(4.9), and finding solutions for

1− 1

3

(
σa− Λa2

)
= βa−2. (4.10)

With a suitable choice of the parameters, the classical turning points of the SHU (see

Eq. (2.20) in Chapter 2) remain approximately unchanged. (The condition for that is

1Note that T
(C)
µν vanishes in supersymmetric models, where Nb = Nf .
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β|Λ|3/σ4 � 1.) Then it is easy to see that there must be an additional turning point at

small a. With βσ2 � 1, this turning point is at

a∗ ≈ β1/2. (4.11)

If the number of quantum fields appearing in Eq. (4.5) is sufficiently large, N � 103, so that

β � 1, then a∗ is large in Planck units. There is then a classically allowed region between

a∗ and 0, and clearly the oscillating universe can tunnel to this region.

Graham et al have pointed out that a negative Casimir energy for a k = +1 SHU

may be possible to arrange by considering non-conformal fields. The case of a massless

non-conformally coupled scalar field was studied in Ref. [39], with the conclusion that the

Casimir energy density is given by Eq. (4.1), where the sign of the coefficient C depends on

the coupling ξ of the field to the curvature. It is negative for conformal coupling, ξ = 1/6,

but is positive for the minimal coupling, ξ = 0. Unfortunately the calculation of 〈Tµν〉 in

Ref. [39] was performed only for a static Einstein universe, which is not sufficient for the

analysis of tunneling. In the next section, we shall therefore introduce a version of the

SHU model which allows a negative Casimir energy for conformally coupled fields, so that

Eq. (4.2) can still be used.

4.2 A flat oscillating model

We consider a spatially flat (k = 0) universe,

ds2 = dt2 − a2(t)dx2, (4.12)

which is compactified on a torus: the coordinates xi (i = 1, 2, 3) take values in the range

0 ≤ xi ≤ 1 and the surfaces xi = 0 and xi = 1 are identified. (This is similar to the flat

oscillating model discussed in Chapter 3, Eq. (3.2), where in that case 0 ≤ xi ≤ L with L

corresponding to the comoving size of the universe.) In this case the expectation value of

Tµν has an additional Casimir contribution T
(C)
µν , given by Eqs. (4.6),(4.7). With Nb > Nf ,

we have C > 0 and the Casimir energy is negative. The k = 0 Friedmann equation including
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corrections to Einstein’s equations, the trace anomaly and Casimir contributions, is

ȧ2

a2
= β

(
ȧ2

a2

)2

+
1

3

(
Λ +

σ

a
− C

a4

)
. (4.13)

The turning points are the solutions to the Friedmann equation when ȧ = 0:

Λa4 + σa3 − C = 0. (4.14)

Though we cannot find analytic solutions, there are two classical turning points for C <

27σ4

256|Λ|3 . For σ4/|Λ|3 � C, the turning points are approximately given by

a+ ≈ σ/|Λ|, a− ≈ (C/σ)1/3. (4.15)

Following Graham et al [42], we shall first consider the regime where the trace anomaly

term can be neglected. (The effect of this term will be discussed in the next section.) The

Friedmann equation then corresponds to the Hamiltonian constraint H = 0 with H from

Eq. (2.11) and Ω(k = 0) = 1, so the potential is given by

U(a) = 12
(
−σa3 − Λa4 + C

)
. (4.16)

The Casimir contribution to the potential is a positive constant, so U(a) remains positive

all the way from a− to a = 0 and has the general form illustrated in Fig. 4.1. Graham et al

argued that in this case the universe should be stable with respect to quantum decay.

To examine this claim, we consider the wave function of the universe, which can be found

by solving the Wheeler-DeWitt (WDW) equation2

(
d2

da2
− U(a)

)
ψ(a) = 0. (4.17)

In our model, the probability for the universe to have infinite size should vanish; hence

we have to require that

ψ(a→∞) = 0. (4.18)

In order to exclude the singular state at a = 0, one would also want to require ψ(0) = 0 [12].

However, the general solution of Eq. (5.10) depends on only two arbitrary constants. One

2Here we assume the simplest ordering of the operators a and pa in the Hamiltonian (2.11).
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Figure 4.2: Numerical solution (dashed red line) to the WDW equation with σ = .39,
Λ = −.1 and C = .8375. The potential is plotted with a solid blue line.

of them is used to fix the overall normalization of ψ and the other to enforce the boundary

condition (4.18). Thus there is no freedom left to enforce a boundary condition at a = 0

[33].

The WKB solutions for ψ in the classically forbidden range 0 < a < a− have the form

ψ±(a) ∝ (U(a))
−1/4

e±W (a), (4.19)

where

W (a) =

∫ a−

a

√
U(a)da. (4.20)

The wave function will generally include a superposition of ψ+ and ψ−. Since ψ+ grows

exponentially with decreasing a, we expect ψ to be large at a = 0. This behavior is illustrated

in a numerical solution shown in Fig. 4.2.

The fact that ψ(0) is large indicates that the UV physics at a . 1 cannot be ignored.

Without a UV-complete theory of quantum gravity, we cannot tell what the effect of this

physics will be, but we shall try to consider some possible alternatives. If reaching a . 1

means disappearance of semiclassical spacetime, then a stationary state with ψ(0) 6= 0

simply cannot exist. To illustrate this point, let us consider a hypothetical world where

the electron wave function in a hydrogen atom is such that the probability density for the

electron to be at the location of the proton is nonzero. Suppose further that the proton,

electron, neutron and neutrino masses satisfy mp + me > mn + mν , so that proton and

35



electron can always scatter into neutron and neutrino,

e−p+ → nν. (4.21)

Under these assumptions, it is clear that the atom would have a nonzero decay rate. We

can imagine that the interaction between electrons and protons in this world is such that

the electron ‘orbit’ is separated from the center of the atom by a potential barrier. There

may or may not be a small classically allowed range near the center. Our conclusion applies

in either case: a stationary state of the atom is not possible if the probability density for

the electron at the center is nonzero. In this example, the reaction (4.21) represents the UV

physics, which is not included in the Schrodinger equation for the hydrogen atom, just like

the disintegration of the classical spacetime at a = 0 is not reflected in the WDW equation.

An alternative scenario is that the UV-complete theory will resolve the singularity at a =

0, replacing it with a non-singular Planck-size nugget. The universe may then tunnel back

and forth between the classical oscillating regime and the nugget, resulting in a stationary

quantum state. The WDW equation should be accurate in the semiclassical regime at a� 1;

hence our conclusion regarding the growth of the wave function towards small values of a

should still apply. This indicates that the most probable states of the universe will be in

the Planck regime at a ∼ 1.

4.3 Stable oscillating universes

Even though the boundary condition ψ(0) = 0 cannot be generally enforced, it may be

satisfied for some special values of the parameters Λ, σ and C. These parameters are

assumed to be fixed, but the effective value of C can be changed if we allow more general

states of the quantum fields contributing to the Casimir energy. We assumed so far that

these fields are all in conformal vacuum states, so that T
(s)
µν = 0 in Eq. (4.2). Suppose now

that some particle excitations on top of the vacuum are also present. For massless particles,

the expectation value of Tµν will have the form of the radiation energy-momentum tensor,

T (s)
µν =

Cr
a4

diag(1, 1/3, 1/3, 1/3) (4.22)
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(b) Cr = .09506

Figure 4.3: Numerical solutions of the WDW equation (dashed red line) with parameters
σ = .39, Λ = −.1 and C = .8375, and two values of Cr such that ψ(0) = 0. The potential
is plotted with a solid blue line.

with Cr > 0. This has the same form as the Casimir term (4.6). Hence, including particle

excitations has the effect of replacing the parameter C with an effective value

Ceff = C − Cr. (4.23)

Increasing Cr (decreasing Ceff ) widens the potential well and increases the number

of nodes of the wave function in the classically allowed region, causing ψ(0) to oscillate

between positive and negative values and pass through zero at special values of Ceff . We

can then tune the particle content in such a way that Ceff takes one of the values that

yield ψ(0) = 0. For a given set of parameters Λ, σ, and C, there is a finite number of such

nonsingular solutions, given by the difference in the number of nodes at Cr = C and at

Cr = 0.

As an illustration, we show in Fig. 4.3 the non-singular solution for the parameter values

σ = .39, Λ = −.1 and C = .8375 (the same as in Fig. 4.2). There are only two such solutions

in this case, corresponding to the values Cr = .6289, .09506.

4.4 The effect of the trace anomaly

Let us now consider the effect of the trace anomaly term (proportional to β) in Eq. (4.13).

The effective Lagrangian corresponding to this equation is [40, 41]

L = −3aȧ2 + β
ȧ4

a
− a3ρ(a), (4.24)
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where

ρ(a) = Λ +
σ

a
− C

a4
. (4.25)

Wheeler-DeWitt quantization of this model is problematic, because the momentum pa =

∂L/∂ȧ depends nontrivially on ȧ, and as a result the Hamiltonian operator involves frac-

tional powers of differential operators. We shall therefore take an alternative route and

analyze tunneling in terms of solutions to Euclideanized Friedmann equation.

With the replacement t→ −iτ , the Friedmann equation (4.13) takes the form

a′
2

a2
+ β

a′
4

a4
+

1

3
ρ(a) = 0, (4.26)

where primes stand for derivatives with respect to the Euclidean time τ . Solving this for a′,

we have

a′
2

=
a2

2β

(
−1±

√
1− 4β

3
ρ(a)

)
. (4.27)

In the classically forbidden range ρ(a) < 0, so we have to choose the positive sign of the

square root. Then it is easy to check that for |ρ(a)| � β−1 the trace anomaly term is

unimportant and Eq. (4.27) reduces to the usual (Euclidean) Friedmann equation,

a′
2

= −1

3
ρ(a). (4.28)

At small a, ρ(a) is dominated by the Casimir term, ρC(a) = −C/a4, and the condition

|ρ(a)| � β−1 gives

a� (βC)1/4 ≡ aq. (4.29)

For generic numbers of quantum fields, N0 ∼ N1/2 ∼ N1 ∼ N , aq ∼ 0.2N1/2, so we can

have aq � 1 if N is sufficiently large. We note also that with sufficiently small σ Eq. (4.15)

gives a− � aq. Thus, with a suitable choice of parameters the scale factor ranges 1� a . aq

and aq � a . a− should both allow semiclassical treatment.

In the range a � aq, where the trace anomaly term is important, Eq. (4.27) takes the

form

a′
2 ≈ (C/3β)1/2, (4.30)

with the solution

a(τ) ≈ (C/3β)1/4τ. (4.31)
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The Euclidean action evaluated in this range is

SE(τ) =

∫ τ−

τ

dτ

(
3aa′

2
+
βa′

4

a
− a3ρ(a)

)
, (4.32)

where τ− ∼ C1/12β1/4σ−1/3 corresponds to a = a−. We see immediately that with a(τ)

from (4.31) the integral in (4.32) diverges at τ → 0. Expressing τ in terms of a, we have

SE(a→ 0) ≈ Q ln
a−
a
, (4.33)

where

Q = (3βC3)1/4 ∼ N. (4.34)

This suggests that the wave function at small a grows as a large negative power of a,

ψ(a) ∝ eSE(a) ∝ a−Q. (4.35)

The growth may or may not be terminated by quantum gravity effects at a ∼ 1. In either

case, normalizable wave functions with ψ(a → 0) = 0 may exist for some special states of

the quantum fields, as discussed in Sec. 4.3.

4.5 Summary and discussion

We used a simple minisuperspace model to analyze the effect of Casimir and trace anomaly

corrections on the quantum decay of classically stable oscillating universe models. We found

that these corrections can significantly modify the wave function of the universe ψ(a) at small

values of the scale factor a and may even cause it to diverge at a→ 0. However, the vacuum

corrections do not generally stabilize an oscillating universe. The reason is simple: the wave

function of the universe must satisfy the boundary condition ψ(a → ∞) = 0. This leaves

no freedom to impose a boundary condition at a = 0, and as a result the wave function

generally grows towards small a. In this regard the situation is the same as for the simple

harmonic universe model without vacuum corrections [33].

We found also that the wave function can be tuned to zero at a = 0 for non-vacuum

states of the quantum fields, corresponding to certain fine-tuned amounts of ‘radiation’ in

the universe. Such states may correspond to absolutely stable, stationary quantum states
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of the universe.

This possibility, however, should be regarded with caution. Our treatment here has

been based on the semiclassical gravity approximation, Eq. (4.8), in which the quantity

Cr characterizing the amount of radiation in Eq. (4.22) is a continuous parameter. This

allowed us to tune this parameter to enforce ψ(a = 0) = 0. It is not clear that such tunable

parameters will exist in the full theory of quantum gravity. One might expect that, on the

contrary, Cr could be quantized. For example, if we simply add quantum conformal free

fields to a compact minisuperspace FRW model, the WDW equation will separate and the

fields will contribute a radiation term with a discrete spectrum of Cr, which is not likely to

overlap with the set of values required for ψ(0) = 0. This treatment, however, would not

account for the Casimir and trace anomaly contributions and for the possibility of having the

quantum fields in a superposition of occupation number eigenstates. A definitive resolution

of these issues will require a better understanding of the quantum theory of gravity.
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Chapter 5

Decay Rate of Simple Harmonic

Universe

In Chapters 2, we showed that the simple harmonic universe has a non-zero tunneling

probability, signaling that it cannot be eternal. However, in quantum cosmology, the wave

function of the universe is independent of time.

In the semiclassical regime, the decay rate can be expressed as

Γ = Ae−2|SE |, (5.1)

where SE is the under-barrier Euclidean action. The action SE has been calculated in

Refs. [18, 33] for some simple FRW models. Here, we would like to go beyond that and also

calculate the pre-exponential factor A, at least in the framework of the FRW models under

consideration.

The problem we have to address is that the rate Γ is the decay probability per unit

time, and the time variable is conspicuously absent in the formalism of quantum cosmology.

Any time evolution should then be understood implicitly, in terms of the canonical variables

themselves. We adopt this approach here and use it to calculate the decay rate in the simple

harmonic universe, extended to include a clock. Here, as before, we focus on the case where

w = −2/3 for calculation simplicity, though the situation is qualitatively similar for other

values of w.

The SHU model includes a single dynamical variable – the scale factor a. In the case of
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an oscillating universe, the scale factor evolution is not monotonic; hence it cannot serve as

a time variable. We therefore introduce a second minisuperspace variable – a homogeneous,

massless, minimally coupled scalar field φ, which will play the role of a clock. We shall

assume that the contribution of this field to the total energy density of the SHU is negligible,

so that its presence has little effect on the dynamics of oscillations and does not alter the

stability analysis of [42].

We now modify the SHU model by adding a homogeneous, massless, minimally coupled

scalar field ϕ(t). The corresponding Hamiltonian constraint is

H = − G

3πa

(
p2
a −

3

4πGa2
p2
ϕ + Ũ(a)

)
= 0, (5.2)

where

pϕ = 2π2a3ϕ̇ (5.3)

is the momentum conjugate to ϕ. The momentum pϕ is a constant of motion, ṗϕ = 0.

Without loss of generality, we shall assume that pϕ > 0. Then it follows from Eq. (5.3) that

the scalar field ϕ increases monotonically; hence it can be used as a time variable.

In quantum cosmology, we make the replacement pa → −i∂/∂a and pϕ → −i∂/∂ϕ, and

the Hamiltonian constraint H = 0 becomes the Wheeler DeWitt (WDW) equation

[
−a ∂

∂a
a
∂

∂a
+ a2Ũ(a) +

3

4πG

∂2

∂ϕ2

]
Ψ(a, ϕ) = 0. (5.4)

Here, we have adopted the ordering of the non-commuting factors a and ∂/∂a proposed in

[43], for which the differential operator in Eq. (5.4) becomes a covariant Laplacian.

With the change of variables α = ln (ωγa), φ = (4πG/3)1/2ϕ, the WDW equation

becomes [
− ∂2

∂α2
+ U(α) +

∂2

∂φ2

]
Ψ(α, φ) = 0, (5.5)

where the potential a2Ũ(a) = U(α) is

U(α) = β−2e4α
(
1− 2eα + γ−2e2α

)
, (5.6)

where

β =

(
2G

3π

)
ω2γ2 =

32π

27
G3σ2 � 1. (5.7)
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The last inequality follows from the assumption that both parameters |Λ| and σ are small

in Planck units:

|Λ| � G−2 ; σ � G−3/2. (5.8)

The WDW equation (5.5) separates, and the general solution can be expressed as a

superposition of terms of the form

Ψ(α, φ) = eipφfp(α), (5.9)

where the separation parameter p is the eigenvalue of the momentum pφ and the function

fp(α) satisfies the equation

[
− ∂2

∂α2
+ Up(α)

]
fp(α) = 0 (5.10)

with

Up(α) = U(α)− p2. (5.11)

The effective potential Up(α) is plotted in Fig. 5.1.

We see that inclusion of a scalar field has the effect of decreasing the potential U(α) by

a constant term, −p2. We assume that this term is small compared to the characteristic

scale of the potential, that is,

p� β−1. (5.12)

This term, however, does have an effect near the turning points

α± = ln
(
γ2 ± γ2

√
1− γ−2

)
(5.13)

of the unperturbed potential, U(α±) = 0. The turning points in the presence of a scalar

field,

α1 = α− − δα1 (5.14)

α2 = α+ + δα2 (5.15)
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can be found by solving Up(α) = 0. To the lowest order in p2, we have

δα1 ' p2

|U ′(α−)|
(5.16)

δα2 ' p2

U ′(α+)
. (5.17)

The derivatives of the potential appearing in Eqs. (5.16),(5.17) are

U ′(α−) = − 1

β2

(
−1 +

√
1− γ−2

)4

γ8
(

1 +
(
−1 +

√
1− γ−2

)
γ2
)
, (5.18)

U ′(α+) =
1

β2

(
1 +

√
1− γ−2

)4

γ8
(
−1 +

(
1 +

√
1− γ−2

)
γ2
)
, (5.19)

or, by order of magnitude,

U ′(α−) ∼ −β−2, U ′(α+) ∼ β−2γ10. (5.20)

Since γ & 1, we can write

δα± . β
2p2 � 1. (5.21)

This implies that the relative displacement of the turning points is small, δa±/a± ∼ δα± �

1.

Apart from shifting the turning points α±, the scalar field also modifies the character of

the potential at small a (α → −∞), introducing another classically allowed region (region

I in Fig. 5.1). The potential at α→ −∞ can be approximated as Up(α) ∼ β−2e4α − p2, so

the boundary of this region is approximately

α0 '
1

2
ln(βp). (5.22)

In order to justify semiclassical treatment, we shall require that the corresponding scale

factor is large in Planck units,

a0 =

(
2Gp

3π

)1/2

� G1/2, (5.23)

which implies p� 1.

The two classically allowed regions are separated by a barrier (region II) extending

between the turning points α0 and α1. The situation is therefore analogous to a particle
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Figure 5.1: Effective potential Up(α), with γ = 1.03, β = .03, and p = 3. The param-
eter values were chosen such that the qualitative features of the potential are clear; our
semiclassical analysis relies on 1� p� β−1/2 and γ − 1� β (see Eqs. (5.66)-(5.68)).

in a metastable state: the particle is localized in an approximate energy eigenstate, but

the corresponding energy eigenvalue takes on an imaginary part, indicating a non-vanishing

decay rate. We shall see that the wave function in our model exhibits a very similar behavior.

5.1 Semiclassical solutions

Solutions to the WDW equation are specified by imposing boundary conditions appropriate

to the problem. Here, we first require that the wave function must decay under the infinite

barrier to the right of α2, fp(α)→ 0 as α→∞ (this is the same boundary condition chosen

in earlier Chapters). In addition, we require that the solution be outgoing (left-moving)

in the region α < α0. Physically, this means that once the oscillating universe tunnels

through the barrier, it collapses to the singularity at a = 0 (α→ −∞). In other words, the

singularity is a point of no return: the probability of getting back from a = 0 to a = a0 is

zero.

Sufficiently far from the turning points, we can determine the solutions using the semi-

classical approximation:

fp(α) ' C1e
−iπ/4

[−Up(α)]1/4
e+i

∫ α
α∗

√
−Up(α′)dα′ +

C2e
iπ/4

[−Up(α)]1/4
e−i

∫ α
α∗

√
−Up(α′)dα′ . (5.24)
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for left (+) and right (−) moving waves in the classically allowed region, Up(α) < 0, and

fp(α) ' D1

(Up(α))1/4
e+

∫ α
α∗

√
Up(α′)dα′ +

D2

(Up(α))1/4
e−

∫ α
α∗

√
Up(α′)dα′ . (5.25)

for growing (+) and decaying (−) solutions under the barrier, Up(α) > 0.

Near a turning point, α = α∗, where1

Re Up(α∗) = 0, (5.26)

the semiclassical approximation breaks down. In such regions we use the standard technique

[44] and approximate the potential by a linear function,

U(α∗ + δα) ' U(α∗) + U ′(α∗)δα = U ′(α∗)(α− α∗). (5.27)

Setting z = (U ′(α∗))
1/3(α− α∗), the approximate WDW equation near a turning point is

(
∂2

∂z2
− z
)

Ψ(z) = 0. (5.28)

The solution is a linear combination of Airy functions Ai(z) and Bi(z), having the asymp-

totic (z →∞) forms

Ai(z) ∼ 1

2
√
π
z−1/4e−

2
3 z

3/2

(5.29)

Bi(z) ∼ 1√
π
z−1/4e

2
3 z

3/2

(5.30)

Ai(−z) ∼ 1√
π
z−1/4 sin

[
2

3
z3/2 +

π

4

]
(5.31)

Bi(−z) ∼ 1√
π
z−1/4 cos

[
2

3
z3/2 +

π

4

]
. (5.32)

On the other hand, for the linearized potential,

∫ α

α∗

[U(α)]1/2dα ' [U ′(α∗)]
1/2

∫ α

α∗

(α− α∗)1/2dα =
2[U ′(α∗)]

1/2

3
(α− α∗)3/2 (5.33)

=
2

3
z3/2. (5.34)

1We have to use the real part, since the parameter p is generally complex, and thus the potential Up(α)
is also complex. We shall see, however, that the imaginary part of p is exponentially suppressed. Hence we
shall disregard it everywhere, except for the calculation of the decay rate.
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We thus see that the linearized approximation near the turning points, with Airy function

solutions, matches onto the WKB solutions away from the turning points. We determine

solutions in all regions by imposing the boundary conditions in regions I and IV, and match

semiclassical solutions across the turning points α0, α1 and α2..

We first apply the boundary condition in region IV, to the right of α2. There, the

solution consists only of a decaying mode, fp(α→∞)→ 0:

f IVp (α) =
A

2(Up(α))1/4
e
−

∫ α
α2

√
Up(α′)dα′

, (5.35)

where A = const. With the asymptotic form of the Airy functions, this fixes the coefficients

across α2 in region III:

f IIIp (α) =
e−iπ/4A

2[−Up(α)]1/4

(
ei

∫ α2
α

√
−Up(α′)dα′ + ie−i

∫ α2
α

√
−Up(α′)dα′

)
. (5.36)

The second boundary condition – that the solution be outgoing in the region α < α0 –

means that the solution must take the form

f Ip (α) =
e−iπ/4

[−Up(α)]1/4
Be−i

∫ α0
α

√
−Up(α′)dα′ , (5.37)

where B is a constant coefficient.2 We can now use the same method as above to match the

solutions across the turning point α0 and fix the coefficients of the wave function in region

II:

f IIp (α) =
−iB

2[Up(α)]1/4
e
−

∫ α
α0

√
Up(α′)dα′

+
B

[Up(α)]1/4
e
∫ α
α0

√
Up(α′)dα′

. (5.38)

We now have expressions for solutions f Ip and f IIp in terms of coefficient B, and solutions

f IIIp and f IVp in terms of coefficient A; we must now reconcile solutions everywhere in terms

of a single coefficient. The general solution to the left of α1 is

f IIp (α) =
A′

2[Up(α)]1/4
e−

∫ α1
α

√
Up(α′)dα′ +

B′

[Up(α)]1/4
e
∫ α1
α

√
Up(α′)dα′ . (5.39)

Matching this across α1 with the aid of the linearized approximation, we find the form of

2Note that two linearly independent solutions in the limit α → −∞ are fp(α) ∝ exp(±ipα), so the
outgoing mode can be unambiguously identified.
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the solution to the right of α1,

f IIIp (α) =
e−iπ/4

2[−Up(α)]1/4

(
(A′ + iB′)e

i
∫ α
α1

√
−Up(α′)dα′

+ (iA′ +B′)e
−i

∫ α
α1

√
−Up(α′)dα′

)
.

(5.40)

The coefficients A′ and B′ can now be determined by noting that the solution f IIp (α) in

Eq. (5.39) must match the solution in Eq. (5.38) determined with the boundary conditions.

Defining

K =

∫ α1

α0

√
Up(α′)dα

′, (5.41)

we find the relations

A′ = 2BeK (5.42)

B′ =
−iB

2
e−K . (5.43)

Then the solution in region III is

f IIIp (α) =
e−iπ/4B

2[−Up(α)]1/4

((
2eK +

e−K

2

)
e
i
∫ α
α1

√
−Up(α′)dα′

+ i

(
2eK − e−K

2

)
e
−i

∫ α
α1

√
−Up(α′)dα′

)
.

(5.44)

Similarly, we require that the solutions f IIIp (α) from Eq. (5.36) and Eq. (5.44) agree:

B

((
2eK + e−K

2

)
e
i
∫ α
α1

√
−Up(α′)dα′

+ i
(

2eK − e−K

2

)
e
−i

∫ α
α1

√
−Up(α′)dα′

)
(5.45)

= A
(
ei

∫ α2
α

√
−Up(α′)dα′ + ie−i

∫ α2
α

√
−Up(α′)dα′

)
. (5.46)

Defining

J =

∫ α2

α1

√
−Up(α′)dα′, (5.47)

the relations

A = iB

(
2eK − e−K

2

)
e−iJ (5.48)

A = −iB
(

2eK +
e−K

2

)
eiJ (5.49)

must be simultaneously satisfied.
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In order for a solution to exist, we must require

1− e−2K

4

1 + e−2K

4

= −e2iJ (5.50)

or

J =

(
n+

1

2

)
π − i

2
ln

(
1− e−2K

4

1 + e−2K

4

)
, (5.51)

where n is an integer. For the semiclassical approximation to be justified, we have to require

that

ReJ � 1, ReK � 1. (5.52)

Then, expanding the logarithm up to the leading order in powers of e−2K , we have the

approximate relation

J '
(
n+

1

2

)
π +

i

4
e−2K . (5.53)

This condition will later be used to determine the momentum eigenvalue p and the decay

rate Γ.

5.2 Evaluation of J and K

In the semiclassical regime, we shall assume that the contribution to J from p may be

treated as a perturbation. We shall determine this contribution to the leading order in p

(or, more precisely, in βp). Representing J as

J =

∫ α2

α1

√
−U(α) + p2dα (5.54)

'
∫ α+

α−

√
−U(α)dα+

∫ α+

α−

p2

2
√
−U(α)

dα (5.55)

+

(∫ α−

α1

√
−U(α)dα+

∫ α2

α+

√
−U(α)dα

)
≡ J0 + J1 + J2, (5.56)
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we then evaluate J0, J1, and J2 analytically:

J0 =

∫ α+

α−

√
−U(α)dα =

π

8β
γ3(γ2 − 1)(5γ2 − 1), (5.57)

J1 =
p2

2

∫ α+

α−

1√
−U(α)

dα =
πβp2

2
, (5.58)

J2 '
∫ α−

α1

√
−U(α)dα+

∫ α2

α+

√
−U(α)dα (5.59)

' 2

3

(√
−U ′(α−)δα

3/2
1 +

√
U ′(α+)δα

3/2
2

)
(5.60)

' 2

3

(
p3

|U ′(α−)|
+

p3

U ′(α+)

)
∼ β2p3. (5.61)

Here, in the calculation of J2 we have expanded U(α) near α± and used Eqs. (5.16), (5.17)

and (5.20). The contribution from the correction to the turning points, J2, is small compared

to J1; hence we can write

J ' J0 +
πβp2

2
. (5.62)

With J0 from Eq. (5.57), we note that it follows from the first condition in (5.52) that γ

should not be very close to 1,

γ − 1� β. (5.63)

To evaluate K, we again expand perturbatively in p, K = K0 + δK, where

K0 =

∫ α−

−∞

√
U(α)dα =

1

24β

[
15γ6 − 13γ4 +

3

2

(
γ3 − 6γ5 + 5γ7

)
ln

(
γ − 1

γ + 1

)]
. (5.64)

and δK ∼ βp2 includes all corrections due to p. For small values of γ, the term in brackets

is ∼ 1/2 (see Fig. 5.2). In the limit of large values of γ, the term in brackets simplifies to

48

105

(
1 +

69

16γ2

)
, (5.65)

which is also approximately 1/2 for γ � 1. Since β � 1, this means that K0 � 1 for any

value of γ. For example, with γ = 1.05, and β = .0001, K0 ' 549. The value of K0 is

largely unaffected by increasing the value of γ (see Fig. 5.2), and decreasing β has the effect

of increasing K0. Even though δK � K0, we cannot generally neglect δK. Since p � 1 is

required for our semiclassical analysis, we can have δK > 1 even if βp� 1. Neglecting δK

in Eq. (5.53) is justified only if βp2 � 1. To simplify further analysis, we shall assume this

condition to be satisfied.
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Figure 5.2: Plot of the behavior of the term in brackets, proportional to K0, for values of γ
near 1.

Thus, the complete list of our assumptions is

β � 1, (5.66)

corresponding to the fact that |Λ| and σ are small in Planck units;

1� |p| � β−1/2, (5.67)

which is the regime where the effect of the scalar field on the turning points is small

(Eq. (5.21)), and which keeps the turning point a0 large in Planck units, a0 � G1/2;

γ − 1� β, (5.68)

corresponds to the requirement that γ is not too close to 1 for the semiclassical analysis to

be appropriate.
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5.3 The decay rate

We shall now use Eqs. (5.53) and (5.62) to determine the momentum eigenvalue p. We first

assign to p real and imaginary parts,

p = p′ + ip′′, (5.69)

with p′ and p′′ real. We shall assume that p′′ � p′; this will be justified below. (Note that

we also neglected the effect of p′′ on the classical turning points in earlier sections.)

Substituting J from (5.62) in (5.53), using (5.69) and neglecting p′′
2

compared to p′
2
,

we obtain two relations:

J0 +
πβp′2

2
=

(
n+

1

2

)
π (5.70)

πβp′p′′ =
1

4
e−2K0 . (5.71)

With J0 from Eq. (5.57), the first of these relations becomes

γ3(γ2 − 1)(5γ2 − 1) = 4β[(2n+ 1)− βp′2] ≈ 4β(2n+ 1). (5.72)

Disregarding the small correction introduced by the “clock”, as we did in the last step,

this is a quantization condition on the parameters of the model β and γ. Note that if γ

is not very close to 1, the left hand side of (5.72) is O(1), and since β � 1, we must have

n � 1. The spectrum of the parameters is then nearly continuous, as one would expect in

the semiclassical regime.

The value of p′ is largely arbitrary, as long as it satisfies 1 � p′ � β−1/2. Once p′ is

selected, the imaginary part p′′ is determined by Eq. (5.71). And since p′ � 1 and β � 1

it is easy to see from (5.71) that p′′ � p′.

With a complex momentum (5.69), the WDW wave function (5.9) has the form

Ψ(α, φ) = eip
′φ−p′′φfp(α). (5.73)

The corresponding probability distribution can be found in terms of the Klein-Gordon cur-
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rent [12, 45]. Up to a normalization constant, it is given by

J =
i

2
(Ψ∗∇Ψ−Ψ∇Ψ∗), (5.74)

In our minisuperspace model, the current has two components,

J α =
i

2
(Ψ∗∂αΨ−Ψ∂αΨ∗), (5.75)

J φ = − i
2

(Ψ∗∂φΨ−Ψ∂φΨ∗), (5.76)

and satisfies the continuity equation

∂αJ α + ∂φJ φ = 0. (5.77)

With a proper normalization, the component

J φ = p′|fp(α)|2e−2p′′φ (5.78)

can be interpreted as the probability density for α at a given “time” φ,

dP ∝ J φ(α, φ)dα. (5.79)

To express the decay rate in terms of the proper time t, we find the amount ∆φ by which

the field φ increases during one period of oscillation, τ ≈ 2π/ω. Using the classical equation

of motion3 for φ,

φ̇ =
2G

3π

p

a3
(5.80)

and ignoring, as before, the contribution to the turning points from p, we have

∆φ =
2Gp

3π

∫
τ

dt
1

a(t)3
' 4Gp′

3π

∫ a+

a−

da
1

ȧa(t)3
. (5.81)

Expressing ȧ from Eq. (4.9) we evaluate the integral:

∆φ = 2p′
∫ α+

α−

dα
1√
−U(α)

= 2πβp′. (5.82)

3Note that this is different from Eq. (5.3) because of the rescalings φ = (4πG/3)1/2ϕ and pφ =

(3/4πG)1/2pϕ.
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We now relate the field φ to the number of oscillations,

N =
φ

∆φ
=

φ

2πβp′
, (5.83)

so the probability in Eq. (5.84) becomes

J φ ∝ e−4πβp′p′′N |fp′(α)|2. (5.84)

Finally, using Eq. (5.71), we obtain

J φ ∝ exp
(
e−2K0N

)
. (5.85)

We see that the probability for the universe to remain in the oscillating state decreases

by a factor of e in N = e2K0 oscillations. The characteristic lifetime of a simple harmonic

universe is thus

T =
2π

ω
e2K0 , (5.86)

with K0 given by Eq. (5.64).

5.4 The tunneling probability

In the semiclassical picture, we can think of the SHU as undergoing classical oscillations

between the turning points a− and a+, with some probability of tunneling through the

barrier every time it hits the point a−. We shall now calculate this tunneling probability

and relate it to the tunneling rate that we found in the preceding section.

We shall focus on the case of small Λ, when γ � 1 and the turning points are approxi-

mately given by

a− ≈
1

2γω
=

3

8πGσ
, (5.87)

a+ ≈
2γ

ω
=

σ

|Λ|
. (5.88)

The turning points are then widely separated, a+/a− ≈ 4γ2 � 1, and the form of the

barrier between a− and a = 0 is essentially independent of Λ. In this regime, we expect

the tunneling probability to be nearly the same as for a Λ = 0 universe undergoing a single
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bounce at a = a−. Then the probability for SHU to remain in the oscillating phase after N

oscillations is

PN ≈ (1−Q)N ≈ e−QN , (5.89)

where Q� 1 is the tunneling probability for a Λ = 0 universe.

In order to calculate Q, we find the semiclassical WDW wave function as we did in Sec.

III, except now we only have regions I, II and III to consider. We do not need a time variable

in this case, but the scalar field still plays a useful role of introducing a classically allowed

region near the singularity. This allows us to impose an outgoing boundary condition at

α → −∞, but we assume as before that the presence of the scalar field has little effect on

the dynamics.

By the same argument as in Sec. III, the wave function at large values of α has the form

of (5.9) with fp(α) given by Eq. (5.44). No boundary condition is imposed at α → +∞,

so we do not have any quantization condition in this case, and the momentum eigenvalue

p can be set to be real. The wave function (5.44) describes an ensemble of contracting

universes, which bounce at α = α− and re-expand. The expanding component has a smaller

coefficient, accounting for the fact that some universes have been lost to tunneling decay.

The probability to avoid decay is given by the ratio of the probability fluxes for the two

components in Eq. (5.44),

1−Q =
J α(→)

J α(←)
=

(
4− e−2K

4 + e−2K

)2

≈ 1− e−2K , (5.90)

where left and right arrows correspond to contracting and expanding branches, respectively.

(Note that at large α both terms in (5.44) are very rapidly oscillating, so any interference

effects between the two terms become completely negligible.) Thus, we have

Q ≈ e−2K . (5.91)

The tunneling exponent K can be found from Eq. (5.64). In the limit of large γ it gives

K0 ≈
2

105β

(
1− 69

16γ2

)
, (5.92)

where the second term can be dropped in the limit of γ →∞.

Substituting Q from (5.91) in Eq. (5.89), we recover Eq. (5.85), as expected.
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Chapter 6

Conclusions

The primary goal of this thesis was to determine the plausibility of the emergent universe

scenario. We focused on two oscillating models which have been shown to be perturbatively

stable, and investigated the stability with respect to quantum tunneling, using the canonical

approach to quantum cosmology.

In Chapter 1, we presented the basic Simple Harmonic Universe scenario, and showed

that generally it collapses to nothing, having non-zero solutions for the wave function at

zero size, ψ(a = 0) 6= 0. The main reason for this was that, at large values of the scale

factor a, the potential barrier is infinite, meaning that we have to impose as the single

boundary condition ψ(a → ∞) → 0; it is not possible to simultaneously require ψ(0) = 0.

We considered the general effect of other sources of energy density on the potential at small

a, with the conclusion that there is not a source that would produce a stabilizing effect

on the SHU. It was suggested by Graham et al that one exception could be a negative

Casimir energy, which has the effect of producing a positive but finite potential barrier at

small values of a. We examined the impact on the tunneling instability of negative Casimir

energy and other quantum corrections in Chapter 4, and found that they generally do not

stabilize the emergent universe agains quantum tunneling. Additionally, we considered in

Chapter 3 a distinct oscillating model in loop quantum cosmology, and found that that

model also has a nonzero tunneling probability.

In Chapter 5, we implemented DeWitt’s prescription to describe time evolution in quan-

tum cosmology in terms of semiclassical superspace variables, which can be used to define a

“clock”. We applied this approach to the calculation of the tunneling decay rate of a simple
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harmonic universe. The role of a clock in our model was played by a homogeneous, massless,

minimally coupled scalar field φ. The classical evolution of φ is monotonic, and thus it is a

good time variable.

We found the WKB wave functions Ψ(a, φ), which are eigenstates of the momentum pφ

conjugate to φ, and matched these wave functions across the turning points, where the WKB

approximation breaks down. We imposed a boundary condition at a→∞ requiring that Ψ

vanishes in that limit and an outgoing boundary condition at a = 0. The latter condition

means that collapse to a = 0 is irreversible, so collapsing universes do not bounce back from

the singularity. These two boundary conditions determine the wave function completely and

in addition provide two constraints on the parameters of the system and on the momentum

eigenvalue pφ. We showed how these constraints can be used to calculate the decay rate.

We also considered the case of a vanishing cosmological constant Λ, when the universe

experiences a single bounce off the barrier and found the tunneling probability through the

barrier using the conserved Klein-Gordon-type current. The resulting probability agrees

with our calculation of the decay rate in the limit of small Λ.

It would be interesting to extend our analysis to a static universe, which has γ = 1 and

a+ = a− = ω−1. In this case, the classically allowed region III reduces to a single point,

and the method of a linear approximation for the potential U(a) around the turning points

that we used in Sec. III cannot be applied. However, one can instead use a quadratic

approximation U(a) ∝ (a − a∗)2 around the point a∗ = ω−1. The wave function in that

range can be expressed in terms of harmonic oscillator functions, which will then have to

be matched to the WKB wave functions away from a∗. Alternatively, it should be possible

to find the solution numerically.

In summary, we have shown that generally it is not possible to construct an eternal

universe which is completely stable. While there are at least two models which are pertur-

batively stable, at least for much of the parameter space, they decay quantum mechanically.

This indicates that an “emergent universe” scenario cannot be truly eternal in the past, and

instead must have had some sort of beginning. Two other scenarios – the cyclic model and

eternal inflation – address the question of the state of the universe before inflation, but both

of these have expanding spacetimes, Havg>0, and therefore cannot be past-eternal. Together

with the fact that the emergent universe is not eternal in the past, either, we conclude that

there are currently no viable models for a universe with no beginning.
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Appendix A

FRW minisuperspace

As it is defined in the superspace, the full wave function seems to be of little practical

value. However, we can ask questions about the wave function in a restricted number of

degrees of freedom: a “minisuperspace.” Since we observe the universe in a classical state

– corresponding to a peak of the wave-function – we consider only a small, relevant sub-

set of the possible spatial geometries, and determine the wave function solutions in that

minisuperspace. Most importantly, the inflationary universe is an approximately deSitter

spacetime, corresponding to a spherically symmetric, homogeneous spacetime having clas-

sical dynamics which are sufficiently described by the FRW scale factor a(t). Then we can

reasonably restrict the the dimension of superspace to a single minisuperspace variable a(t),

suppressing the rest, and determine solutions ψ(a).

In this thesis, we investigate static and oscillating classical universes which homogeneous

and isotropic – their classical dynamics are well described by the FRW solutions. So long as

the solutions are perturbatively stable, we can restrict our attention to only wave function

solutions along the FRW scale factor a. In this Appendix, we present the procedure to

determine the WDW equation in the FRW minisuperspace, with some effective potential

determined by the matter fields.

We take the FRW metric ansatz

ds2 = −N2(t)dt2 + a(t)2dx2. (A.1)
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Here a(t) is the scale factor, and the spatial part of the metric is

dx2 =
1

1− kr2
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (A.2)

with k > 0 corresponding to positive spatial curvature, k < 0 to negative curvature, and

k = 0 no curvature. The lapse function N(t) is an arbitrary function describing the spacing

of time-like slices of the space-time; dynamics are completely independent of the choice of

N(t).

In a closed FRW space (k = +1), the scalar curvature is

R =
6

a2N3

(
N3 − aȧṄ +N

(
ȧ2 + aä

))
. (A.3)

The Einstein-Hilbert action

S =

∫
d4x
√
|g|
(

1

16πG
R−Lmatter

)
(A.4)

becomes

S = 2π2

∫
dt

(
3

8πG

(
Na− aȧ2

N

)
−Na3Lmatter

)
. (A.5)

Here, we have already performed an integration by parts to get the second term, and have

integrated over the volume of the three-sphere,

∫
dx3
√
h = 2π2. (A.6)

The conjugate momentum of the scale factor a is defined in the usual way:

pa =
∂L
∂ȧ

= − 3π

2G

aȧ

N
. (A.7)

and similarly

pN =
∂L
∂Ṅ

= 0. (A.8)

In this minisuperspace, then,

L = NH− paȧ. (A.9)
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Variation with respect to N results in the Hamiltonian constraint

H = 0. (A.10)

With the choice of N = 1, this corresponds to the Friedmann equation

ȧ2

a2
=

8πG

3
ρ. (A.11)
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Appendix B

Stability criterion

In this Appendix we shall derive a stability criterion for solutions to the equation

φ̈k + 3
ȧ

a
φ̇k +

k2

a2
φk = 0, (B.1)

where the scale factor a(t) is a periodic function with period T .

According to Floquet’s theorem, Eq. (B.1) admits solutions of the form

φ(t) = eiαtp(t), (B.2)

where p(t) is a periodic function with period T , and α is a constant defined by the boundary

conditions. It is apparent that when α is real, the solutions are oscillatory and therefore

stable, whereas when α is complex, the solutions grow or decay and are unstable.

Note that if φ(t) is a solution of (B.1), then φ(t+ T ) is also a solution. With the ansatz

(B.2), we have

φ(t+ T ) = ζφ(t), (B.3)

where ζ = eiαT is a constant.

To derive the stability criterion, we first define two solutions, φ1(t) and φ2(t), by the

initial conditions

φ1(0) = 1 φ2(0) = 0

φ̇1(0) = 0 φ̇2(0) = 1. (B.4)
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Any solution can be written as a linear combination of these two solutions:

φ(t) = c1φ1(t) + c2φ2(t). (B.5)

In particular, the solutions φ1(t+ T ) and φ2(t+ T ) are

φ1(t+ T ) = φ1(T )φ1(t) + φ′1(T )φ2(t)

φ2(t+ T ) = φ2(T )φ1(t) + φ′2(T )φ2(t). (B.6)

For any solution of the form (B.3), we obtain, using Eqs. (B.5), (B.6), the following set

of linear equations for c1 and c2:

(φ1(T )− ζ)c1 + φ2(T )c2 = 0 (B.7)

φ′1(T )c1 + (φ′2(T )− ζ)c2 = 0 (B.8)

Nonzero solutions to this set of equations exist when

∣∣∣∣∣∣∣
(φ1(T )− ζ) φ2(T )

φ′1(T ) (φ′2(T )− ζ)

∣∣∣∣∣∣∣ = ζ2 − (φ1(T ) + φ′2(T ))ζ +W (φ1(T ), φ2(T )) = 0 (B.9)

where W (t) = W (φ1, (t), φ2(t)) is the Wronskian. From Eq. (B.1), W (t)a3(t) = const, so

that W (T ) = W (0). With the boundary conditions in Eq. (B.4), we have W (0) = 1, so

that Eq. (B.9) becomes

ζ2 − (φ1(T ) + φ′2(T ))ζ + 1 = 0. (B.10)

The product of the two roots of this equation is equal to 1; hence the roots can be

represented as ζ1,2 = exp(±iαT ). The sum of the roots is

ζ1 + ζ2 = 2 cos(αT ) = φ1(T ) + φ′2(T ) ≡ b. (B.11)

If b > 2, then the roots are real, while if b < 2, the roots are complex and conjugate to one

another.

As we indicated above, the solutions are stable for real α and unstable for complex α.
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This corresponds to the condition

|φ1(T ) + φ′2(T )| < 2 (B.12)

for stable solutions, and

|φ1(T ) + φ′2(T )| > 2 (B.13)

for unstable solutions.1 In order to check the mode stability in our model, we integrate

Eq. (B.1) with a(t) from Eq. (3.25), using the initial conditions in (B.4). Then we check

whether the solutions at t = T satisfy (B.12) or (B.13).

The stability diagram in Fig. 3.3 was produced by sampling the parameter space 0 <

λ, κ < 1 at logarithmic intervals, so there are many more points at small values of the

parameters than at λ, κ ∼ 1. This ensures that we have high resolution in regions where it

is required.

1The case where |φ1(T ) + φ′2(T )| = 2, corresponding to the boundary between the stable and unstable
regions, is further analyzed in [32].
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