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Abstract

All oligosaccharides are assembled from their corresponding monosaccharide
residues via glycosidic bonds. In chemical syhesis, these linkages are formed
by chemical glycosylation reactions. This dissertation studies the two
fundamental aspects of chemical glycosylations: 1) Stereocontrolled
formation of glycosidic linkages and 2): Design of chemical promoters to
achieveuser-friendly glycosyl donor activations.

Chapter 1 first covers an overview of the biological relevance of carbohydrate
molecules as well as the important applications of synthetic chemistry in
advancing glycobiology. Following these backgroundtroduction, the second
part of Chapter 1 reviews general mechanisms of chemical glycosylations, and
further discusses the respective advantages/disadvantages of currently

employed glyosyl donor activation approaches
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synthetic preparation of these linkages hasong been considered a daunting
task in glycochemistry. The work in this dissertation resulted in the
development of a new directing groip-free stereoselective glycosylation

strategy. As these glycosidic linkagegalso commonly serve aspathogenic



determinants, we believe that this methodology will find broad applications in

synthetic vaccineprojects.
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Chapter 3 and 4 are focused on the development of usg&rendly

glycosylations with a new class of thiophilic promoter. Unlike most

contemporary approaches, the procedures develogkhere are characterized

by their particular operational simplicity . Later daboration of these methods

further accomplished1,2-trans-f OAl AAOEOEOU xEOEI 60 ET O1 EE]
neighboring acyl group participations. Weanticipate that these userfriendly

glycosylation methodologies will ultimately lead to the development of

Qlycosylation kitsd that can be adopted by the wide chemical biology

community, thereby permitting the routine construction of carbohydrate

samples.
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Chapter 1:

Glycobiology and Carbohydrate Chemistry .



1.1. Chemical Glycobiology
1.1.1. Carbohydrates as Critical Mediators in Biology

The central relevance of carbohydrates in the biological system is
conceptually straightforward. Glycan moieties are ubiquitous, found both
extra- and intracellularly in all living cells and organisms, and have historically
been recognized for providing tle mechanical framework that supportsthe
structural integrity of cell wall/ cytoskeletons as well as servin@sthe main
metabolic source of energy for lifé. Despitethe fact thattheir existence as ce
and posttranslational modifications has long been documented, the
biological effects of carbohydrate molecules were initid§ considered to be
limited to the prevention of protein degradation3 In more recent years,
however, there has been increased realization of theide array of biological

events mediated by carbohydrates (Figure 1.1kignificantly challengingthe

long-OOAT AET ¢ AAT OOAI AiCi A xEEAE 1 EI EOAA AEI

nucleic acids and amino acids*? It is estimated that up to 90% of human
proteins are glycosylatec® Glycanmediated intracellular functions®
predominantly involve gene regulation (such as STAT and NFB transcription
factors),10 protein folding, quality control11.12 and vesicle trafficking at the
endoplasmic reticulum (ER) z Golgi network. On the other hand,
glycoconjugates, such as glycoproteins, glycosaminoglycans andaglypids,
have also been found to be densely packed on the cell surfaceediating
various cellcell*3.14 and cellpathogent5-18 interactions that are required for

their downstream signaling cascades (Figure 1.2).
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Figure 1.1: Important cellular events mediated by carbohyrates. Adapted

from Hart et al.,2010.# Used with permissionfrom Elsevier.

The untapped research potential enabled by tackling these important
pathways has inspired the pursuit of carbohydrate-based therapeutics in the
past several decade&?2! To date, a vast variety of glycaiased agents in the
forms of small molecule therapeuticFigure 1.3) have been discovered and
produced in the pipdine. These examples further highlight the versatility of

carbohydrates in modern medicinezz-26
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1.1.2. Importance of Carbohydrate Chemistry in Tackling Glycobiology

Since its initial concise definition, the field of glycoscience has seen a
boom with regards to the global appreciation of its pivotal presence in
virtually all aspects of human health and disease manifestations. Despite clear
motivation, glycan therapeutcs are often times overshadowed by the more
accessible proteinbased approaches. One key reason for the lagging
advancement of glycobiology lies in the unparalleled structural complexity of
the human glycome28 Unlike nucleic acids and peptides, which are assembled
through linear, achiral chemical linkages, glycans are branched structurésat
incorporate regiodiversity. In addition, new stereocentersare generatedupon
glycosidic linkage formation, thereby adding stereodiversity (Figure 1.4).
Furthermore, the biosynthesis of complex glycans is not templatdriven, but
instead is processed by a series of editing and trimming enzymes whose
expression leves are highly regulated by multiple cellular factors. As a result,
naturally-occurring glycans cannot be routinely manipulated through simple

genetic engineering, and are often intractable heterogeneous mixtures.
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The therapeutic impact of carbohydrate microheterogeneity can be
largely seen in the recent development of glycosylated monoclonal antibodies
(mADb). Notably, distinct glycoforms have been shown to possess different
AET AAOEOEOU AT A EiIiT OITTCATEAEOU j4AAT A p8pQ
monoclonal antibodies lacking coreO-fucosylation possessed significantly
higher binding affinity for FcARIlla, and consequently eliciéd greatly
enhanced ADCC (antibodglependent cellmediated cytotoxicity).2® These
glycoforms can often vary from batch to batch in cebased productions,

further exemplifying the need for methods to produce homogenous

glycoforms30-33



Glycan species Safety/ Biologic Clearance

Immunogenicity activity/ (PK/PD)
efficacy

Galactose Unknown + Unknown
ol,3-galactose —— Unknown Unknown
Fucose (=) ++ Unknown
Bisecting GlcNac ~ (—) + Unknown
High mannose Unknown + -
NANA Unknown (=) +

NGNA —— (-) +
B1,2-Xylose/ —— Unknown Unknown

o1,3-Fucose
NGHC Unknown - (=)

Table 1.1: Impact of Fc glycans on numerous activities of biologics.

+ Positive impact;- negative impact; ++ high positive impact:- high negative impact;
(+/-) potential impact. NANA: CMM-acdylneuraminic acid. NGNA: N
glycolylneuraminic acid. NGHC: nowglycosylated heavy chain. Adapted and used with

permission from Oxford Journals.

It has beenhypothesizedthat the ability of carbohydratesto mediate
the myriad of downstream biological evensis due totheir inherent structural
diversity. Hence, rapid access to structurally weltlefined samples is an
essential prerequisite to unambiguously decipherthese glycarencoded
information. However, the isolation of pure glycans from natural sourcessi
typically cumbersome due to their microheterogeneity. Therefore, chemical
synthesis is often regarded as the only avenue for the production of pa
material. Recent advancementsn oligosaccharide synthesis, as well as the
development of chemical tools ¢ aid in the elucidation of their subcellular

localization and functional, haveresulted in the emergence of a unique and



powerful sub-AEOAEDI ET A (= AET 11 CUh
Cl UAT A &3%44] Jorgelctassic examples of chemical glycobiology inclid

surface glycan labeling? metabolic engineering#344 rapid screening of

glycanlectin interactions through carbohydrate arrays34> and the
construction of synthetic glycoprotein therapeutics (Figure 1.5¥6 This
research not only significantly broadened our limited understanding of
carbohydrates in mediating cellular biology, but also provided the critical
information for the rational design of modern glycomedicine. While the field
continues to expand, a fundamentdottleneck is the need for general methods

for producing homogenous carbolgdrates 28.47-49
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In light of this, my dissertation is dedicated to the development of
general and useffriendly chemical synthetic methods to enable routine
construction of carbohydrate molecules. Background introduction anda
generalreview of the field of carbohydrate synthesis will first be discussed in
the remainder of this chapter. The rationale for method improvements will

then be further connected to my own dissertation workstarting in Chapter 2.

1.2. Chemical Glycosylations

The chemical synthesis of complex oligosaccharides is far from a trivial
process (Scheme 1.1). Regioselective functionalization of the multiple reactive
hydroxyl groups on the pyranose or furanose rings presents a daunting task
that inevitably requires tedious protection/deprotection schemes. This
largely contributes to the fundamental lack of atom economy in carbohydrate
synthesis. However, the key transformation in the field of glycochemistry
arguably lies in the chemical glycosylation stage where numerauglycosidic
linkages are constructec? Firstly, the design of corresponding promoters to
match leaving group reactivity on the glycosyl donor needs to be accomplished.
Secondly, the formation of new stereocenters after glycosylations necessarily
introduces difficulties associated with corrolling stereoselectivity. Finally,
various competing side reactions, such as elimination, anomeric hydrolysis
and protecting group migration, often complicate the outcomeof the reaction.
Despite intensive research and manpower devoted to the field ohemical

glycosylation over the past decades, it is pertinent to say that to date no



general synthetic methods are available to cover the entire spectrum of
complex glycosidic linkages. As a result, developing universal chemical
glycosylation strategies tha afford precise stereocontrol still stands out as one

of the most difficult synthetic challenges in modern organic chemistry.

Glycosyl Donor Glycosyl Acceptor
oP oP

PROMOTER po/é&M 0
Po/é&wwl_e +HO%OR = PO 0N\ or

REGlOSELECT|V|TY STEREOSELECTIVITY

REACTIVITY

Scheme 1.1:Generic depiction of chemical glycosylation reactions.

Two critical issues in the develpment of chemical glycosylationswill
be addressed in this dissertation. The first issue will involve the
stereocontrolled formation of difficult glycosidic linkages. This will be
followed by the second aim which is to develop alternate chemical
promoters for A O GRDA @ HoAdr ddtévation. Lastly efforts to combine the
principles derived from these two partswill be further attempted. In the next
section of this chapter, general aspects of chemical glycosylations witist be
discussed

1.2.1. General Mechanistic Considerations

As depicted in Scheme 1.2 chemical glycosylation reactions are
typically initiated by donor activation with a promoter. In the absence of

additional stereochemical bias the resulting glycosyl cation reacts through an

10



Svl-manifold. However, contemporary studies have also suggested that there
is an equilibrium between the oxocarbenium ios and the corresponding
contact ion-pair (CIP) intermediates. If this latter speciesis sufficiently
stabilized it can react through a more &-like pathway. Factors such as
solvent polarity, temperature and protecting group patterns have all been
shown to impact the equilibrium between these species, thereby affecting the

stereochemical aitcomes of glycosylation reactions?!

Glycosyl donor

o)
PO%H

LG

l donor activation

by promoter
O oxocarbenium
PO&@
activated
activated Contact ion-pair Contact ion-pair o-donor
B-donor (CIP) @ (CIP) ®
P o = oD O E—— PO
PO == PON_N LG /
OLe
Sn2 SN2 like" "Sn2- Ilk/
"Sn1-like"
ORI OR
OR
a-product B-product

Scheme 1.2 Overall depiction of chemical glycosylatiormechanisms.

To date, varioudeaving group activation strategies have been reported.
The advantages and limitations of each method will be discussed in the next

section. Generally, theimodes of action can be classified as follows

11



1 Direct activation, where the initial activation of the leaving group

occurs directly at theatom connected to the anomeric center

1 Remote activation where the initial activation of anomeric leaving

group takes place at functional group not directly attached to the

anomeric center(Scheme 13).

(A) Direct Activation

OP
OP /—\E . /é&/l'z Nu-
. -Nu PO @
PO R PO
PO activated
species
acceptor EXR
glycoside
product
(B) Remote Activation
oP oP
. O -
ngég\/x R ——> PS&Q R
o Y FM PO (Il
gV J activated R/é\E
species
XYR
acceptor o /Y\E
glycoside
product

Scheme 1.3 Generic classification of chemical glycosylation reactions into

direct (A) or remote (B) donor activation strategies.

1.2.2. Common Classes of Glycosyl Donors

Direct Activation :

Glycosyl Halides

12



AcO AcO
Ag,CO3 or Ag>,0 c
AcOBr

AcO
4

Scheme 1.4 Koenigs/Knorr glycosylation approach with glycosyl halides?

First described by Arthur Michael in 187%3 glycosyl halides are one of
the eariest-studied glycosyl donors. Several decades afterwardspenigs and
Knorr reported the synthesis of glycosides through the use of fully acetylated
glycosyl halides (either bromide or chloride) with an alcohol in the presence
of AgCQ or AgO. Since then, glycosyl bromides and chlorides found use
through wide variations of what is now known as the KoenigKnorr
glycosylation. Most of the reagents utilized to activate anomeric chlorides and
bromides discovered to date involved using silver (I) ad mercury (Il)-
containing metal salts such as AgCIQAgOTf, AgN§) AgO, Hg(CNy and
combinations thereof5455 In addition to the traditional methods above, a
AE £FEAOAT O OOOAOACU xAO DPOAOGAT OAA EI
where they attempted to use halogen bonding catalysis to actitea glycosyl
chlorides (Scheme 1.5%% However, this approach exhibited significantly

limited substrate scope and couldonly efficiently activate deoxy glycosyl

donors with simple nucleophilic acceptors.

13
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Scheme 1.5 Halogen bondingpromoted activations of glycosyl halides$

On the other hand, glycosyl iodides were long regarded to be too
unstable to be synthetically usefub? In 1910, Fischer and Fischer isolated
glycosyl iodide 10 as an unstable crystalline solid by reacting peacetylated
glucose9 with Hl/acetic acid (Scheme 1.6.58 They further reacted 10 with
silver carbonate in methanol to afford methyl glycosidell, representing the
first example of using glycosyl iodides as glycosyl donoP8.Since this seminal
report, several Lewis acidic/metatbased activations of glycosyl iodides, such

asLiClQy, FeCd-12, Cu@l2, have been reporteck?

OAC OAc OAc
HI, HOAc AcO O A92C03 AcO (@)
AcO O —_ ZCO/%LL — 40 OMe
AcO 54 % AcO MeOH AcO
AcO ‘oAc I 1
9 10

Scheme 1.6 First glycosylation reaction with glycosyl iodide donors8
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BnO\ 3 BnO | "“OoMe
12 13 95:5 a:p 14

Scheme 1.7 Early example ofin situ generation of glycosyl iodides

demonstrated by Kozner and Schuerc#?.

However, the difficulty associated with glycosyl iodide preparation

largely prevented a wider use of these donors. In 1974, Kronzer ai@thuerch

OETl xAA AT Al OAOT AOEOGA ADPDbQljcAshes theti OEAEO

involved the in situ generation of glycsyl iodide 13 (Scheme 1.7,
demonstrating a new pathway to take advantage of these reactive donors in
carbohydrate synthesiséo Shortly after, Thiem and Mger reported areliable
method to generate glycosyl iodides from ahost of precursors including
anhydrosugars, methyl glycosies and pentaacetylated hexoses, with the use
of TMSI (trimethylsilyl iodide).6! These advancemerd therefore significantly
expanded tre synthetic utility of glycosyl iodides.In 1997, GervayHagueand
coworkers adapted this procedure and further characterized the formation of
armed glycosyl iodide species by NMR (Scheme 1%)They found that unlike
the substrates previously studied by Thiem and Meyer, these p&>-
benzylated glycosyl iodide species are highly unstable, and that extremely low
temperature ((1003q AOA OANOEOAA EI -iotideA80 OI
Furthermore, rapid anomerization from the r-glycosyl iodide 18b to the
OEAOI T AUl Al EAAI liddidei18aOnas alB® dbdervédd inythese
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Scheme 1.8 Synthesis and characterization of armed glycosyl iodides by

GervayHague and coworkers?2

Importantly, GervayHague and coworkers later showed that under
basic conditions,these armed, -glycosyl iodidescould undergo direct kinetic
S\2 displacementswithout the presence of additional promoters. Under these
procedures, high Uselective glycosylation couldbe achieveds For example,
Grignard reagents were shown to be compatible with this method and led to
the £1 Ol A O Ellgliycosideg ugon reaction with19a (Scheme 1.9A On the
other hand, perhaps the most commonly used synthetic approach utilizing
glycosyl iodide donors involves thein situ AT T | A OE U AiG#hicdsyl T £
iodides under Lemieuxtype halide-ion exchange condition$* which can
further lead to theselective synthesid /Z=glycosidesTaking advantage of this
principle, Kulkarni and GervayHague also demongrated a
tetrabutylammonium iodide (TBAI)-D O1 | T Gylydbsylation scheme with

16



Grignard reagents, starting from identical glycosyl iodide donot9a (Scheme
1.9B).65> The detailed mechanistic rationale, synthetic deficiencies of this
strategy and further improvements attempted in this dissertationwill be

discussed in Chapter 2.

(A)
Bno OBN Bno OBN
o AllylMgClI o 20
BnO THF, 0°Ctort BnO =
19a BnO | 2h B0 5%, p
(B)
BnO OBn TBAI BnO OBn . BnO OBn
Vinyl MgBr
BnO BnOé QA’ I Toluene  BNO 21
BnO | BnO 110 °C B0 &
19a 19b

79%, 12:1 a:p

Scheme 1.9 Stereoselective glycosylations with glycosyl iodides.

Glycosyl Hydroxyls (Hemiacetals)

Glycosylation reactions with G1 unprotected hemiacetal donors
present a notable variation to most other procedures. In soalled dehydrative
glycosylations, anomeric derivatization and the following
activation/nucleophilic displacement are typically combhned in a onepot
fashion. Notably, this approach offers the advantage over glycosyl halides in
that it eliminates the need to isolate watersensitive activated donors.

Hemiacetals as glycosyl donors were initially discovered and
investigated by Emil Fiscler in his pioneering work on Bronstedacid

catalyzed glycosylations. This approach possesses significant drawbacks due

17



to its harsh reaction conditions. Furthermore, since hemiacetals themselves
can behave as nucleophilic glycosyl acceptors, inefficientta@tion invariably
leads to selfcondensation and trehalose formation. In the past century, an
appreciable amount of work has been devoted to the development of
improved activation protocols under milder reaction conditions. Most
examples involve Lewis aid-mediated activations such as Sn(OT£) Cu(OTf},
and BFRs-(OEt)257.68 Alternative approaches involve using reagents designed to
convert the hemiacetal alcohol into reactive leaving groupsn situ. For
example, Mtsunobu activation of hemiacetals can be achieved with
phosphorus betaines® whereas sulfoniumbased electrophile 22 was
demonstrated by Gin and colleagues (Scheme 1.10)Recent modificatons of
this procedure have further allowed the use of sulstoichiometric amount of
sulfoxide reagent, where 0.2 equiv. of din-butyl)sulfoxide could be employed

with benzenesulfonic anhydride as the active promoter systerfi.72

oP
0
0 Poég_
PO
PO/&‘ PO

PO OH

lPhZSO, Tf,0 ‘ ROH

o Ph 22

PO e = |PO 0 Bh

PO /S—OTf PO |
P

OoTf

Scheme 1.10: Sulfonium-based electrophilicactivation of hemiacetals’®
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In line with these efforts, the research program in our laboratory has
Al AOOGAA 11 AARAOGATT HBBICI DOAAOADAT OAI AAGEOA
With these approaches, diastereoselective synthesis of both anomeric
glycosides can be achieved from identical coupling partners, with the
stereochemical outcomes dictated by the employed glycosylation promoters.
We have recently disclosed two distinct strategies that efficiently activate-2
AAT ou EAT EAAAOCAT AT-1AIT G\Gelpctveylycos@dticnd NOAT O
respectively (Scheme 1.11)37¢ Briefly, hemiacetal donor 24 was first
activated by the diphenylcyclopropenium cation, which was generateth situ
by the combination of oxalyl chloride and diphenylcyclopropenone. This was
followed by the sequential addition of TBAI and nucleophil@6, leading tothe
] -selective formation of glycoside25. Shortly after, an improved modification
of this procedure was developed with the use of dibromocyclopropene
promoter.”> This in turn allowed for more robust reactions (12 hours as
I BT OAA O 1ty ET O00Qq AT A COAAOGr). AT EAT AAA
On the other hand, electrophilic activation of24 by p-toluenesulfonic
AT EUAOEAA NOAT OE Odlyodsyd fdylate itokniediaieA Thd A
subsequent stereoinversion by glycosyl acceptor @tben afforded glycoside

25 1 -specifically.
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Scheme 1.11: Reagentcontrolled stereoselective glycosylation of 2deoxy

hemiacetal donors reported ly the Bennett research groug3-76

Remote Activation:

Glycosyl Imidates

Of the various chemical glycosylation strategies developed to date, the
use of Oglycosyl imidates as donors is one of the most common. Initially
introduced by Schmidt and coworkerg’” O-glycosyl trichloroacetimidates
exhibited excellent glycosyl donor properties in terms of their ease of
formation and general applicability. Importantly, only a catalytic amount of
the promoter is required to achieve rapid and quantitative activation of the
donor. This is in contrast to most other glycosyl donors where stoichiometric
amounts of promoter are typically needed Glycosylation reations with
glycosyl trichloroacetimidates typically involve activation with Lewis acids
such as TMSOTf and B®E#t, which coordinate to the Lewis basic nitrogen
atom on the leaving group. The imidate is expelled as a trichloroacetamide,
releasing the Lews acid for further rounds of donor activation.

Despite its wide popularity, Schmidt glycosylations are not without
significant drawbacks. Notably, the highly unstable nature of

trichloroacetimidates makes donor purification difficult, and usually requires
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