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Abstract  

All oligosaccharides are assembled from their corresponding monosaccharide 

residues via glycosidic bonds. In chemical synthesis, these linkages are formed 

by chemical glycosylation reactions. This dissertation studies the two 

fundamental aspects of chemical glycosylations: 1): Stereocontrolled 

formation of glycosidic linkages and 2):  Design of chemical promoters to 

achieve user-friendly glycosyl donor activations.  

Chapter 1 first covers an overview of the biological relevance of carbohydrate 

molecules as well as the important applications of synthetic chemistry in 

advancing glycobiology.  Following these background introduction, the second 

part of Chapter 1 reviews general mechanisms of chemical glycosylations, and 

further discusses the respective advantages/disadvantages of currently 

employed glycosyl donor activation approaches.  

 

 

Chapter 2 discusses our contributions in tackling 1,2-cis-ɻ ÇÌÙÃÏÓÉÄÅÓȢ 4ÈÅ 

synthetic preparation of these linkages has long been considered a daunting 

task in glycochemistry. The work in this dissertation resulted in the 

development of a new directing group-free stereoselective glycosylation 

strategy. As these glycosidic linkages also commonly serve as pathogenic 
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determinants, we believe that this methodology will find broad applications in 

synthetic vaccine projects.  

 

 

 

Chapter 3 and 4 are focused on the development of user-friendly 

glycosylations with a new class of thiophilic promoter. Unlike most 

contemporary approaches, the procedures developed here are characterized 

by their  particular operational simplicity . Later elaboration of these methods 

further accomplished 1,2-trans-ɼ ÓÅÌÅÃÔÉÖÉÔÙ ×ÉÔÈÏÕÔ ÉÎÖÏËÉÎÇ ÔÈÅ ÔÒÁÄÉÔÉÏÎÁÌ 

neighboring acyl group participations. We anticipate that these user-friendly 

glycosylation methodologies will ultimately lead to the development of 

Ȱglycosylation kitsȱ that can be adopted by the wide chemical biology 

community, thereby permitting the routine construction of carbohydrate 

samples. 
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Glycobiology and Carbohydrate Chemistry . 
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1.1. Chemical Glycobiology  

 

1.1.1. Carbohydrates as Critical Mediators in Biology  

The central relevance of carbohydrates in the biological system is 

conceptually straightforward. Glycan moieties are ubiquitous, found both 

extra- and intracellularly in all living cells and organisms, and have historically 

been recognized for providing the mechanical framework that supports the 

structural integrity of cell wall/ cytoskeletons as well as serving as the main 

metabolic source of energy for life.1 Despite the fact that their existence as co- 

and post-translational modifications has long been documented,2 the 

biological effects of carbohydrate molecules were initially considered to be 

limited to the prevention of protein degradation.3 In more recent years, 

however, there has been increased realization of the wide array of biological 

events mediated by carbohydrates (Figure 1.1), significantly challenging the 

long-ÓÔÁÎÄÉÎÇ ÃÅÎÔÒÁÌ ÄÏÇÍÁ ×ÈÉÃÈ ÌÉÍÉÔÅÄ ÂÉÏÌÏÇÉÃÁÌ ÉÎÆÏÒÍÁÔÉÏÎ ȰÃÏÄÅÓȱ ÔÏ 

nucleic acids and amino acids.4-7 It is estimated that up to 90% of human 

proteins are glycosylated.8 Glycan-mediated intracellular functions9 

predominantly involve gene regulation (such as STAT and NF-ʆB transcription 

factors),10 protein folding, quality control11,12, and vesicle trafficking at the 

endoplasmic reticulum (ER) ɀ Golgi network. On the other hand, 

glycoconjugates, such as glycoproteins, glycosaminoglycans and glycolipids, 

have also been found to be densely packed on the cell surface, mediating 

various cell-cell13,14 and cell-pathogen15-18 interactions that are required for 

their downstream signaling cascades (Figure 1.2).   
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Figure 1.1: Important cellular events mediated by carbohydrates. Adapted 

from Hart et al., 2010.4 Used with permission from Elsevier. 

 

The untapped research potential enabled by tackling these important 

pathways has inspired the pursuit of carbohydrate-based therapeutics in the 

past several decades.19-21 To date, a vast variety of glycan-based agents in the 

forms of small molecule therapeutics (Figure 1.3) have been discovered and 

produced in the pipeline. These examples further highlight the versatility of 

carbohydrates in modern medicine.22-26 
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Figure 1.2 : Cell-surface distribution of carbohydrate-ÃÏÎÔÁÉÎÉÎÇ ȰÇÌÙÃÏÃÁÌÙØȱȢ 

Adapted from Seeberger et al., 2005,27 used with permission from Nature 

publishing group . 

 

 

 

 

Figure 1.3: Examples of glycan-based small molecule therapeutics currently 

in the pipeline. 
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1.1.2. Importance of Carbohydrate Chemistry in Tackling Glycobiology  

 

Since its initial concise definition, the field of glycoscience has seen a 

boom with regards to the global appreciation of its pivotal presence in 

virtually all aspects of human health and disease manifestations. Despite clear 

motivation, glycan therapeutics are often times overshadowed by the more 

accessible protein-based approaches. One key reason for the lagging 

advancement of glycobiology lies in the unparalleled structural complexity of 

the human glycome.28 Unlike nucleic acids and peptides, which are assembled 

through linear, achiral chemical linkages, glycans are branched structures that 

incorporate regiodiversity. In addition, new stereocenters are generated upon 

glycosidic linkage formation, thereby adding stereodiversity (Figure 1.4). 

Furthermore, the biosynthesis of complex glycans is not template-driven, but 

instead is processed by a series of editing and trimming enzymes whose 

expression levels are highly regulated by multiple cellular factors. As a result, 

naturally-occurring glycans cannot be routinely manipulated through simple 

genetic engineering, and are often intractable heterogeneous mixtures. 
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Figure 1.4 : Structural comparison between nucleic acid, peptides and 

carbohydrates-based macromolecules. 

 

The therapeutic impact of carbohydrate microheterogeneity can be 

largely seen in the recent development of glycosylated monoclonal antibodies 

(mAb). Notably, distinct glycoforms have been shown to possess different 

ÂÉÏÁÃÔÉÖÉÔÙ ÁÎÄ ÉÍÍÕÎÏÇÅÎÉÃÉÔÙ ɉ4ÁÂÌÅ ρȢρɊȢ &ÏÒ ÅØÁÍÐÌÅȟ ÉÔȭÓ ÂÅÅÎ ÓÈÏ×Î ÔÈÁÔ 

monoclonal antibodies lacking core O-fucosylation possessed significantly 

higher binding affinity for FcȂRIIIa, and consequently elicited greatly 

enhanced ADCC (antibody-dependent cell-mediated cytotoxicity).29 These 

glycoforms can often vary from batch to batch in cell-based productions, 

further exemplifying the need for methods to produce homogenous 

glycoforms.30-33  
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Table 1.1: Impact of Fc glycans on numerous activities of biologics.33  

+ Positive impact; - negative impact; ++ high positive impact; -- high negative impact; 

(+/ -) potential impact. NANA: CMP-N-acetylneuraminic acid. NGNA: N-

glycolylneuraminic acid. NGHC: non-glycosylated heavy chain. Adapted and used with 

permission from Oxford Journals. 

 

It has been hypothesized that the ability of carbohydrates to mediate 

the myriad of downstream biological events is due to their  inherent structural 

diversity. Hence, rapid access to structurally well-defined samples is an 

essential prerequisite to unambiguously decipher these glycan-encoded 

information. However, the isolation of pure glycans from natural sources is 

typically cumbersome due to their microheterogeneity. Therefore, chemical 

synthesis is often regarded as the only avenue for the production of pure 

material. Recent advancements in oligosaccharide synthesis, as well as the 

development of chemical tools to aid in the elucidation of their subcellular 

localization and functional, have resulted in the emergence of a unique and 
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powerful sub-ÄÉÓÃÉÐÌÉÎÅ ÏÆ ÃÈÅÍÉÃÁÌ ÂÉÏÌÏÇÙȟ ÔÅÒÍÅÄ ȰÃÈÅÍÉÃÁÌ 

ÇÌÙÃÏÂÉÏÌÏÇÙȱȢ6,34-41 Some classic examples of chemical glycobiology include 

surface glycan labeling,42 metabolic engineering,43,44 rapid screening of 

glycan-lectin interactions through carbohydrate arrays,36,45 and the 

construction of synthetic glycoprotein therapeutics (Figure 1.5).46 This 

research not only significantly broadened our limited understanding of 

carbohydrates in mediating cellular biology, but also provided the critical 

information for the rational design of modern glycomedicine. While the field 

continues to expand, a fundamental bottleneck is the need for general methods 

for producing homogenous carbohydrates.28,47-49  

 

 

Figure 1.5: Biomedical applications of carbohydrates. Adapted and used with 

permission from Elsevier.35 
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In light of this, my dissertation is dedicated to the development of 

general and user-friendly chemical synthetic methods to enable routine 

construction of carbohydrate molecules. Background introduction and a 

general review of the field of carbohydrate synthesis will first be discussed in 

the remainder of this chapter. The rationale for method improvements will 

then be further connected to my own dissertation work starting in Chapter 2.  

 

1.2. Chemical Glycosylations  

The chemical synthesis of complex oligosaccharides is far from a trivial 

process (Scheme 1.1). Regioselective functionalization of the multiple reactive 

hydroxyl groups on the pyranose or furanose rings presents a daunting task 

that inevitably requires tedious protection/deprotection schemes. This 

largely contributes to the fundamental lack of atom economy in carbohydrate 

synthesis. However, the key transformation in the field of glycochemistry 

arguably lies in the chemical glycosylation stage where numerous glycosidic 

linkages are constructed.50 Firstly, the design of corresponding promoters to 

match leaving group reactivity on the glycosyl donor needs to be accomplished. 

Secondly, the formation of new stereocenters after glycosylations necessarily 

introduces difficulties associated with controlling stereoselectivity. Finally, 

various competing side reactions, such as elimination, anomeric hydrolysis 

and protecting group migration, often complicate the outcomes of the reaction. 

Despite intensive research and manpower devoted to the field of chemical 

glycosylation over the past decades, it is pertinent to say that to date no 
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general synthetic methods are available to cover the entire spectrum of 

complex glycosidic linkages. As a result, developing universal chemical 

glycosylation strategies that afford precise stereocontrol still stands out as one 

of the most difficult synthetic challenges in modern organic chemistry.  

 

Scheme 1.1: Generic depiction of chemical glycosylation reactions. 

 

 

Two critical  issues in the development of chemical glycosylations will 

be addressed in this dissertation. The first issue will involve the 

stereocontrolled formation of difficult glycosidic linkages. This will be 

followed by the second aim which is to develop alternative chemical 

promoters for Á ȰÕÓÅÒ-ÆÒÉÅÎÄÌÙȱ donor activation. Lastly, efforts to combine the 

principles derived from these two parts will be further attempted. In the next 

section of this chapter, general aspects of chemical glycosylations will first be 

discussed. 

1.2.1. General Mechanistic Considerations  

As depicted in Scheme 1.2, chemical glycosylation reactions are 

typically initiated by donor activation with a promoter. In the absence of 

additional stereochemical bias, the resulting glycosyl cation reacts through an 
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SN1-manifold. However, contemporary studies have also suggested that there 

is an equilibrium between the oxocarbenium ions and the corresponding 

contact ion-pair (CIP) intermediates. If this latter species is sufficiently 

stabilized it can react through a more SN2-like pathway. Factors such as 

solvent polarity, temperature and protecting group patterns have all been 

shown to impact the equilibrium between these species, thereby affecting the 

stereochemical outcomes of glycosylation reactions.51  

 

 

Scheme 1.2: Overall depiction of chemical glycosylation mechanisms. 

 

 

To date, various leaving group activation strategies have been reported. 

The advantages and limitations of each method will be discussed in the next 

section. Generally, their modes of action can be classified as follows: 
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¶ Direct activation, where the initial activation of the leaving group 

occurs directly at the atom connected to the anomeric center. 

¶ Remote activation, where the initial activation of anomeric leaving 

group takes place at a functional group not directly attached to the 

anomeric center (Scheme 1.3).  

 

 

 

Scheme 1.3: Generic classification of chemical glycosylation reactions into 

direct (A) or remote (B) donor activation strategies. 

 

 

1.2.2. Common Classes of Glycosyl Donors 

Direct Activation : 

Glycosyl Halides 
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Scheme 1.4: Koenigs/Knorr glycosylation approach with glycosyl halides.52 

 

First described by Arthur Michael in 1879,53 glycosyl halides are one of 

the earliest-studied glycosyl donors. Several decades afterwards, Koenigs and 

Knorr reported the synthesis of glycosides through the use of fully acetylated 

glycosyl halides (either bromide or chloride) with an alcohol in the presence 

of Ag2CO3 or Ag2O. Since then, glycosyl bromides and chlorides found use 

through wide variations of what is now known as the Koenigs-Knorr 

glycosylation. Most of the reagents utilized to activate anomeric chlorides and 

bromides discovered to date involved using silver (I) and mercury (II) -

containing metal salts such as AgClO4, AgOTf, AgNO3, Ag2O, Hg(CN)2 and 

combinations thereof.54,55 In addition to the traditional methods above, a 

ÄÉÆÆÅÒÅÎÔ ÓÔÒÁÔÅÇÙ ×ÁÓ ÐÒÅÓÅÎÔÅÄ ÉÎ ÔÈÅ ÒÅÃÅÎÔ ×ÏÒË ÂÙ #ÏÄïÅÓȭ ÒÅÓÅÁÒÃÈ ÇÒÏÕÐ 

where they attempted to use halogen bonding catalysis to activate glycosyl 

chlorides (Scheme 1.5).56 However, this approach exhibited significantly 

limited substrate scope and could only efficiently activate deoxy glycosyl 

donors with simple nucleophilic acceptors.  
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Scheme 1.5: Halogen bonding-promoted activations of glycosyl halides.56 

 

On the other hand, glycosyl iodides were long regarded to be too 

unstable to be synthetically useful.57 In 1910, Fischer and Fischer isolated 

glycosyl iodide 10 as an unstable crystalline solid by reacting per-acetylated 

glucose 9 with HI/acetic acid (Scheme 1.6).58 They further reacted 10 with 

silver carbonate in methanol to afford methyl glycoside 11, representing the 

first example of using glycosyl iodides as glycosyl donors.58 Since this seminal 

report, several Lewis acidic/metal-based activations of glycosyl iodides, such 

as LiClO4, FeCl3-I2, CuCl-I2, have been reported.59  

 

 

Scheme 1.6: First glycosylation reaction with glycosyl iodide donors.58 
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Scheme 1.7: Early example of in situ generation of glycosyl iodides 

demonstrated by Kozner and Schuerch.60  

 

However, the difficulty associated with glycosyl iodide preparation 

largely prevented a wider use of these donors. In 1974, Kronzer and Schuerch 

ÓÈÏ×ÅÄ ÁÎ ÁÌÔÅÒÎÁÔÉÖÅ ÁÐÐÒÏÁÃÈ ÉÎ ÔÈÅÉÒ ÓÙÎÔÈÅÓÉÓ ÏÆ ɻ-glycosides that 

involved the in situ generation of glycosyl iodide 13 (Scheme 1.7), 

demonstrating a new pathway to take advantage of these reactive donors in 

carbohydrate synthesis.60 Shortly after, Thiem and Meyer reported a reliable 

method to generate glycosyl iodides from a host of precursors, including 

anhydrosugars, methyl glycosides and pentaacetylated hexoses, with the use 

of TMSI (trimethylsilyl iodide).61 These advancements therefore significantly 

expanded the synthetic utility of glycosyl iodides. In 1997, Gervay-Hague and 

coworkers adapted this procedure and further characterized the formation of 

armed glycosyl iodide species by NMR (Scheme 1.8).62 They found that unlike 

the substrates previously studied by Thiem and Meyer, these per-O-

benzylated glycosyl iodide species are highly unstable, and that extremely low 

temperature (-100 ᴈɊ ÁÒÅ ÒÅÑÕÉÒÅÄ ÉÎ ÏÒÄÅÒ ÔÏ ÄÅÔÅÃÔ ÔÈÅ ɼ-iodide 18b. 

Furthermore, rapid anomerization from the ɼ-glycosyl iodide 18b to the 

ÔÈÅÒÍÏÄÙÎÁÍÉÃÁÌÌÙ ÍÏÒÅ ÓÔÁÂÌÅ ɻ-iodide 18a was also observed in these 
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ÓÔÕÄÉÅÓȟ ÁÎÄ ÁÓ Á ÒÅÓÕÌÔ ÏÎÌÙ ÔÈÅ ɻ-anomer was detected at temperatures of -

40ᴈ and above.  

 

 

Scheme 1.8: Synthesis and characterization of armed glycosyl iodides by 

Gervay-Hague and coworkers.62 

 

Importantly , Gervay-Hague and coworkers later showed that under 

basic conditions, these armed ɻ-glycosyl iodides could undergo direct kinetic 

SN2 displacements without the presence of additional promoters. Under these 

procedures, highÌÙ ɼ-selective glycosylation could be achieved.63 For example, 

Grignard reagents were shown to be compatible with this method and led to 

the ÆÏÒÍÁÔÉÏÎ ÏÆ ɼ-C-glycosides upon reaction with 19a (Scheme 1.9A). On the 

other hand, perhaps the most commonly used synthetic approach utilizing 

glycosyl iodide donors involves the in situ ÁÎÏÍÅÒÉÚÁÔÉÏÎ ÏÆ ɻȾɼ-glycosyl 

iodides under Lemieux-type halide-ion exchange conditions,64 which can 

further lead to the selective synthesis ÏÆ ɻ-glycosides. Taking advantage of this 

principle, Kulkarni and Gervay-Hague also demonstrated a 

tetrabutylammonium iodide (TBAI)-ÐÒÏÍÏÔÅÄ ɻ-glycosylation scheme with 
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Grignard reagents, starting from identical glycosyl iodide donor 19a (Scheme 

1.9B).65 The detailed mechanistic rationale, synthetic deficiencies of this 

strategy and further improvements attempted in this dissertation will be 

discussed in Chapter 2. 

 

 

Scheme 1.9: Stereoselective glycosylations with glycosyl iodides.66 

 

 

Glycosyl Hydroxyls (Hemiacetals) 

Glycosylation reactions with C-1 unprotected hemiacetal donors 

present a notable variation to most other procedures. In so-called dehydrative 

glycosylations, anomeric derivatization and the following 

activation/nucleophilic displacement are typically combined in a one-pot 

fashion. Notably, this approach offers the advantage over glycosyl halides in 

that it eliminates the need to isolate water-sensitive activated donors.  

Hemiacetals as glycosyl donors were initially discovered and 

investigated by Emil Fischer in his pioneering work on Bronsted-acid 

catalyzed glycosylations. This approach possesses significant drawbacks due 
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to its harsh reaction conditions. Furthermore, since hemiacetals themselves 

can behave as nucleophilic glycosyl acceptors, inefficient activation invariably 

leads to self-condensation and trehalose formation. In the past century, an 

appreciable amount of work has been devoted to the development of 

improved activation protocols under milder reaction conditions. Most 

examples involve Lewis acid-mediated activations such as Sn(OTf)2, Cu(OTf)2, 

and BF3.(OEt)2.67,68 Alternative approaches involve using reagents designed to 

convert the hemiacetal alcohol into reactive leaving groups in situ. For 

example, Mitsunobu activation of hemiacetals can be achieved with 

phosphorus betaines,69 whereas sulfonium-based electrophile 22 was 

demonstrated by Gin and colleagues (Scheme 1.10).70 Recent modifications of 

this procedure have further allowed the use of sub-stoichiometric amount of 

sulfoxide reagent, where 0.2 equiv. of di-(n-butyl)sulfoxide could be employed 

with benzenesulfonic anhydride as the active promoter system.71,72 

 

 

Scheme 1.10: Sulfonium-based electrophilic activation of hemiacetals.70 
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In line with these efforts, the research program in our laboratory has 

ÆÏÃÕÓÅÄ ÏÎ ÄÅÖÅÌÏÐÉÎÇ ȰÒÅÁÇÅÎÔ-ÃÏÎÔÒÏÌÌÅÄ ÓÔÅÒÅÏÓÅÌÅÃÔÉÖÅ ÇÌÙÃÏÓÙÌÁÔÉÏÎÓȱȢ 

With these approaches, diastereoselective synthesis of both anomeric 

glycosides can be achieved from identical coupling partners, with the 

stereochemical outcomes dictated by the employed glycosylation promoters. 

We have recently disclosed two distinct strategies that efficiently activate 2-

ÄÅÏØÙ ÈÅÍÉÁÃÅÔÁÌ ÄÏÎÏÒÓ ÆÏÒ ÓÕÂÓÅÑÕÅÎÔ ɻ- ÁÎÄ ɼ-selective glycosylations, 

respectively (Scheme 1.11).73-76 Briefly, hemiacetal donor 24 was first 

activated by the diphenylcyclopropenium cation, which was generated in situ 

by the combination of oxalyl chloride and diphenylcyclopropenone. This was 

followed by the sequential addition of TBAI and nucleophile 26, leading to the 

ɻ-selective formation of glycoside 25. Shortly after, an improved modification 

of this procedure was developed with the use of dibromocyclopropene 

promoter.75 This in turn allowed for more robust reactions (12 hours as 

ÏÐÐÏÓÅÄ ÔÏ τψ ÈÏÕÒÓɊ ÁÎÄ ÇÒÅÁÔÌÙ ÅÎÈÁÎÃÅÄ ÓÔÅÒÅÏÓÅÌÅÃÔÉÖÉÔÙ ɉÕÐ ÔÏ ɻ-only). 

On the other hand, electrophilic activation of 24 by p-toluenesulfonic 

ÁÎÈÙÄÒÉÄÅ ÑÕÁÎÔÉÔÁÔÉÖÅÌÙ ÇÅÎÅÒÁÔÅÄ ɻ-glycosyl tosylate intermediate. The 

subsequent stereoinversion by glycosyl acceptor ςφȭ then afforded glycoside 

25 ɼ-specifically.  
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Scheme 1.11: Reagent-controlled stereoselective glycosylation of 2-deoxy 

hemiacetal donors reported by the Bennett research group.73-76 

 

Remote Activation:  

Glycosyl Imidates  

Of the various chemical glycosylation strategies developed to date, the 

use of O-glycosyl imidates as donors is one of the most common. Initially 

introduced by Schmidt and coworkers,77 O-glycosyl trichloroacetimidates 

exhibited excellent glycosyl donor properties in terms of their ease of 

formation and general applicability. Importantly, only a catalytic amount of 

the promoter is required to achieve rapid and quantitative activation of the 

donor. This is in contrast to most other glycosyl donors where stoichiometric 

amounts of promoter are typically needed. Glycosylation reactions with 

glycosyl trichloroacetimidates typically involve activation with Lewis acids 

such as TMSOTf and BF3.OEt2, which coordinate to the Lewis basic nitrogen 

atom on the leaving group. The imidate is expelled as a trichloroacetamide, 

releasing the Lewis acid for further rounds of donor activation.  

Despite its wide popularity, Schmidt glycosylations are not without 

significant drawbacks. Notably, the highly unstable nature of 

trichloroacetimidates makes donor purification difficult, and usually requires 


