
Detangling PPI Networks to Uncover Functionally

Meaningful Clusters

Senior Honors Thesis

submitted by

Sarah Hall-Swan, Degree

In partial fulfillment of the requirements
for the degree of

Bachelor of Science

in

Computer Science

TUFTS UNIVERSITY

May 2018

ADVISOR: Prof. Lenore Cowen

Acknowledgments

We thank the Tufts BCB group for helpful discussions, and the organizers of the

CNB-MAC workshop, where preliminary results were presented, for helpful feed-

back.

Portions of this work have been previous published as Detangling PPI Net-

works to Uncover Functionally Meaningful Clusters in BMC Systems Biology. I

thank my co-authors Jake Crawford, Rebecca Newman, and Lenore Cowen for their

permission to include our joint published work in this thesis.

Sarah Hall-Swan

TUFTS UNIVERSITY

May 2018

ii

Detangling PPI Networks to Uncover Functionally

Meaningful Clusters

Sarah Hall-Swan

ADVIS0R: Prof. Lenore Cowen

We compare computational methods for decomposing a PPI network into

non-overlapping modules. A method is preferred if it results in a large proportion of

nodes being assigned to functionally meaningful modules, as measured by functional

enrichment over terms from the Gene Ontology (GO). We compare the performance

of three popular community detection algorithms that produce non-overlapping clus-

ters with the same algorithms run after the network is pre-processed by removing

and reweighting based on the diffusion state distance (DSD) between pairs of nodes

in the network. We call this detangling the network. In some cases, we find that

detangling the network based on the DSD distance reweighting provides more mean-

ingful clusters. We look at extending to methods that produce overlapping clusters.

iii

Contents

Acknowledgments ii

Abstract iii

List of Tables v

List of Figures xiii

Chapter 1 Introduction 1

1.1 Network Clustering . 1

1.1.1 Measuring quality of a clustering 2

1.1.2 Overlapping Clusters . 3

1.2 Outline of This Work . 5

Chapter 2 Non-Overlapping Clusters 7

Chapter 3 Overlapping Clusters 27

Chapter 4 Conclusion 35

Bibliography 36

iv

List of Tables

2.1 The performance of Louvain run directly on the PPI network versus

Louvain plus DSD at different edge removal thresholds; the reported

results of Louvain are median values from running the algorithm over

10 random permutations of the nodes. We discard clusters of size

< 3. NEC= “Nodes in Enriched Clusters”. We calculate %NEC in

two settings: %NEC is enrichment in the GO hierarchy with terms

above the fifth level filtered out, and %NEC S uses the same filtered

GO hierarchy, but then only gives a node credit if there is a match be-

tween one of the node’s labels and one of the terms for which there is

GO enrichment for the cluster. Note that without modifying Louvain

to restrict the maximum cluster size, the S statistic is the most mean-

ingful. Running directly on the PPI network and run with high DSD

thresholds, Louvain produces a relatively small number of clusters,

and many are of very large size. It is worth noting that with a DSD

threshold of 5, nearly 175 clusters are produced, and the enrichment

statistics remain reasonable. 16

v

2.2 The performance of Louvain versus Louvain plus DSD at different

edge removal thresholds; the results of Louvain are median values

from running the algorithm over 10 random permutations of the

nodes. We discard clusters of size < 3 and recursively split clus-

ters of size > 100. The values above the double line are from running

Louvain and using the first level of clusters created; the values below

the double line are from running Louvain and using the level with the

best modularity. NEC= “Nodes in Enriched Clusters”. We calculate

%NEC in two settings: %NEC is enrichment in the GO hierarchy

with terms above the fifth level filtered out, and %NEC S uses the

same filtered GO hierarchy, but then only gives a node credit if there

is a match between one of the node’s labels and one of the terms for

which there is GO enrichment for the cluster. Louvain run directly

on the PPI network performs better than every DSD threshold we

tested. The version that uses the level with the best modularity pro-

duces slighty better clusters than the version that uses the first level

of clusters according to the %NEC, but the results are more similar

according to the %NEC S. 21

vi

2.3 The performance of Walktrap versus Walktrap plus DSD at different

edge removal thresholds; we discard clusters of size < 3. The numbers

above the double line are for cutting the Walktrap dendrogram at 500

clusters, and the numbers below the double line are for cutting the

dendrogram at 700 clusters. NEC= “Nodes in Enriched Clusters”.

We calculate %NEC in two settings: %NEC is enrichment in the GO

hierarchy with terms above the fifth level filtered out, and %NEC S

uses the same filtered GO hierarchy, but then only gives a node credit

if there is a match between one of the node’s labels and one of the

terms for which there is GO enrichment for the cluster. In both

dendrogram cuts, Walktrap+DSD did better in both statistics than

Walktrap directly on the PPI network, though for the cutoff of 700

clusters, Walktrap directly on the PPI network did very similarly to

Walktrap+DSD according to the %NEC S. 22

vii

2.4 The performance of Modified Walktrap versus Modified Walktrap

plus DSD at different edge removal thresholds; We discard clusters of

size < 3, and restrict maximum cluster size to be < 100. The num-

bers above the double line are for cutting the Walktrap dendrogram

at 200 clusters; the numbers below the double line are for cutting the

Walktrap dendrogram at 300 clusters. NEC= “Nodes in Enriched

Clusters”. We calculate %NEC in two settings: %NEC is enrich-

ment in the GO hierarchy with terms above the fifth level filtered

out, and %NEC S uses the same filtered GO hierarchy, but then

only gives a node credit if there is a match between one of the node’s

labels and one of the terms for which there is GO enrichment for the

cluster. In both cases, for the S statistic the best DSD threshold is

5.5, at which performance is slightly better than running Walktrap

directly on the PPI network. For cutoffs of both 200 and 300 clus-

ters, DSD+Walktrap is slightly better than Walktrap in the NEC

measure, and in both cases the DSD version produces slightly more

and smaller clusters. 23

2.5 Exploring the dendrogram cut level for Walktrap. Above the double

line we report the percentage of nodes placed into an enriched cluster

(i.e. the statistic we are calling % NEC), and below the double line

we report the number of correctly clustered nodes (i.e. the statistic

we are calling % NEC S). At different dendrogram cut levels, the

best percentage is bolded; in every case it is Walktrap plus DSD, at

varying thresholds (5, 5.5, and 6). 24

viii

2.6 Exploring the dendrogram cut level for modified Walktrap with a

maximum cluster size of 100. Above the double line we report the

percentage of nodes placed into an enriched cluster (i.e. the statistic

we are calling % NEC), and below the double line we report the

number of correctly clustered nodes (i.e. the statistic we are calling

% NEC S). At different dendrogram cut levels, the best percentage

is bolded; in every case but one it is modified Walktrap plus DSD, at

varying thresholds (5.5, 6, and 6.5). 25

2.7 The performance of Spectral versus Spectral plus DSD at different

edge removal thresholds when the input parameter K in all cases is

set to 300, but then we discard clusters of size < 3. NEC= “Nodes

in Enriched Clusters”. We calculate %NEC in two settings: %NEC

is enrichment in the GO hierarchy with terms above the fifth level

filtered out, and %NEC S uses the same filtered GO hierarchy, but

then only gives a node credit if there is a match between one of the

node’s labels and one of the terms for which there is GO enrichment

for the cluster. In this case, the Spectral algorithm run directly on

the PPI network results in a higher %NEC statistic than any of the

DSD-preprocessed results. However, without cluster size restrictions

%NEC S is the most meaningful statistic, and it is best when Spec-

tral is run with DSD at a distance threshold of 6.0. 25

ix

2.8 The performance of Spectral versus Spectral plus DSD at different

edge removal thresholds when the input parameter K in all cases is

set to 300, but then we discard clusters of size < 3 and split clusters

of size > 100. NEC= “Nodes in Enriched Clusters”. We calculate

%NEC in two settings: %NEC is enrichment in the GO hierarchy

with terms above the fifth level filtered out, and %NEC S uses the

same filtered GO hierarchy, but then only gives a node credit if there

is a match between one of the node’s labels and one of the terms for

which there is GO enrichment for the cluster. For every threshold we

tested ≥ 5, the percentage of nodes in enriched clusters is better than

Spectral run alone for both measures. 26

2.9 The performance of Spectral versus Spectral plus DSD at different

edge removal thresholds when the input parameter K in all cases is

set to 300, but then we discard clusters of size < 3 and split clusters

of size > 100 on the Human network. We calculate %NEC in two

settings: %NEC is enrichment in the GO hierarchy with terms above

the fifth level filtered out, and %NEC S uses the same filtered GO

hierarchy, but then only gives a node credit if there is a match between

one of the node’s labels and one of the terms for which there is GO

enrichment for the cluster. By both of the NEC statistics, at every

DSD threshold, detangling with DSD performs better. 26

x

3.1 The performance of the concatenation algorithm vs the concatena-

tion algorithm plus DSD at different edge removal thresholds. The

reported values are the mean over 10 runs, and the standard devia-

tion (SD) from the mean. NEC= “Nodes in Enriched Clusters”. We

calculate %NEC in two settings: %NEC is enrichment in the GO

hierarchy with terms above the fifth level filtered out, and %NEC S

uses the same filtered GO hierarchy, but then only gives a node credit

if there is a match between one of the node’s labels and one of the

terms for which there is GO enrichment for the cluster. Each node

is worth 1/#clusters. The algorithm performed best in all three

measures on the PPI network without preprocessing. 31

3.2 The performance of the top conductance algorithm vs the top con-

ductance algorithm plus DSD at different edge removal thresholds.

NEC= “Nodes in Enriched Clusters”. We calculate %NEC in two

settings: %NEC is enrichment in the GO hierarchy with terms above

the fifth level filtered out, and %NEC S uses the same filtered GO

hierarchy, but then only gives a node credit if there is a match be-

tween one of the node’s labels and one of the terms for which there is

GO enrichment for the cluster. Each node is worth 1/#clusters. The

algorithm performed best in all three measures on the PPI network

without preprocessing. 32

xi

3.3 The performance of the top modularity algorithm versus the top

modularity algorithm plus DSD at different edge removal thresholds.

NEC= “Nodes in Enriched Clusters”. We calculate %NEC in two

settings: %NEC is enrichment in the GO hierarchy with terms above

the fifth level filtered out, and %NEC S uses the same filtered GO hi-

erarchy, but then only gives a node credit if there is a match between

one of the node’s labels and one of the terms for which there is GO

enrichment for the cluster. Each node is worth 1/#clusters. The

algorithm performs best in all three measures on the PPI network

without preprocessing. 32

xii

List of Figures

2.1 Comparison of two example network partitions under the NEC statis-

tic. Edges are omitted for visual clarity and only a single function f

is considered in this simple case. The clusters outlined in bold blue

are “enriched” and those outlined in dotted red are not. Although

the lower partition is more specific for f (i.e. its enriched clusters

contain fewer false positives), by the NEC statistic it does not score

as well as the upper partition. Note that in this case, the distribution

of cluster sizes is indeed much different between partitions; that is,

the upper partition has a single giant cluster, and the lower partition

contains clusters having a more uniform size distribution. 17

2.2 Example of scoring a single cluster using the NEC S statistic. GO

annotations are listed for each node and for the cluster as a whole,

and only those nodes with an annotation matching the cluster (the

shaded nodes) are counted. In this case, 4 of the 6 total nodes (67%)

are correctly clustered. 18

2.3 Histogram of all DSD distances in the STRING PPI network for yeast;

edge removal thresholds of 4.5 and 6.0 are marked. 19

xiii

2.4 This figure compares median cluster sizes running Louvain (with clus-

ter sizes restricted to 3-100) directly on the PPI network with Louvain

running on the DSD-detangled network (again with cluster sizes re-

stricted to 3-100), with an edge removal threshold of 5.0. The overall

percentage of nodes in enriched clusters is 76.21% for Louvain directly

and 70.46% for DSD+Louvain. 19

2.5 This figure plots the number of clusters output by spectral cluster-

ing and spectral clustering run on the DSD reweighted network, for

different filter distance thresholds, based on the number K of clus-

ters input to the method; in all cases, the number of output clusters

starts out as less than K since clusters of size < 3 are not included

in the count of output clusters. Then the number of clusters grows

larger than the number of input clusters (because large clusters are

recursively split) until K grows so large that the number of clusters

of size < 3 counterbalances that increase. 20

2.6 This figure compares cluster sizes running Spectral (with cluster sizes

restricted to 3-100) directly on the PPI network with Spectral running

on the DSD-detangled network (again with cluster sizes restricted to

3-100), with an edge removal threshold of 5.5. The percentage of

nodes in enriched clusters is 50.54% for Spectral directly and 61.76%

for DSD+Spectral. 20

2.7 Histogram of all DSD distances in the Human STRING PPI network;

previous edge removal thresholds of 4.5 and 6.0 for yeast are marked. 24

3.1 This figure compares cluster sizes running the concatenation method

(with cluster sizes restricted to 3-100) directly on the PPI network

with the concatenation method running on the DSD-detangled net-

work (again with cluster sizes restricted to 3-100), with an edge re-

moval threshold of 6. The percentage of nodes in enriched clusters is

80.54% for the method directly and 65.33% for DSD+concatenation. 33

xiv

3.2 This figure compares cluster sizes running the best conductance method

(with cluster sizes restricted to 3-100) directly on the PPI network

with the top conductance method running on the DSD-detangled net-

work (again with cluster sizes restricted to 3-100), with an edge re-

moval threshold of 6. The percentage of nodes in enriched clusters is

64.88% for the method directly and 62.37% for DSD+best conduc-

tance. 33

3.3 This figure compares cluster sizes running the best modularity method

(with cluster sizes restricted to 3-100) directly on the PPI network

with the top modularity method running on the DSD-detangled net-

work (again with cluster sizes restricted to 3-100), with an edge re-

moval threshold of 6. The percentage of nodes in enriched clusters is

64.88% for the method directly and 61.24% for DSD+best modularity. 34

xv

Chapter 1

Introduction

1.1 Network Clustering

Clustering of protein-protein interaction networks is one of the most common ap-

proaches to predicting modules of genes and proteins that work together in func-

tional roles [SS09]. However, the low network diameter and dense interconnection

structure in these networks confounds a notion of local neighborhood in these net-

works; it is difficult to partition a network into clusters representing local neigh-

borhoods when the network best resembles a tangled hairball, and most nodes are

close to all other nodes in shortest path distance, a problem termed the “ties in

proximity problem” by Arnau et al [AMM05]. There are nonetheless many no-

tions of clustering that have been developed for the so-called “community detec-

tion” problem in biological or social networks; many of them seek to maximize the

modularity of the clusters, a quantity defined by Girvan and Newman [GN02] that

measures the relative denseness of interconnections within a cluster as compared

to the connection of that cluster to the rest of the network, or alternatively the

conductance of the clusters [VM03]. Other clustering methods have been proposed

based on random walks, successive removal of cut edges, spectral embeddings and

so on [For10, LLM10, HBG+14].

In 2013, Cao et al. introduced a new distance measure called Diffusion State

Distance, or DSD, designed to be a more fine-grained distance measure for protein-

1

protein interaction networks [CZP+13]. In contrast to the typical shortest path

metric, which measures distance between pairs of nodes by the number of hops on

the shortest path that joins them in the network, DSD was shown to spread out the

pairwise distances, making for a more fine-grained notion of graph local neighbor-

hood. We hypothesized that re-embedding the PPI network by first reweighting its

edges according to their DSD distance in the original network might lead to better

clusters. Before we can test this hypothesis, however, we need to think about how

to measure the overall quality of a set of clusters: only then can we talk about once

method producing better clusters than some other method.

1.1.1 Measuring quality of a clustering

In the current study, we consider the problem of separating the yeast protein-

protein association network (as downloaded from the STRING database version

10 on 2/7/2017 [Szk15]) into non-overlapping clusters. Some proposed ways to

measure the quality of a clustering are purely graph-theoretic, based on minimizing

quantities such as modularity or conductance. In this study, instead, we wish to

judge the quality of the clustering we obtain by how “meaningful” the clusters are

biologically– where the standard way to measure this would be based on measuring

functional enrichment of the resulting clusters. In this study, we measure functional

enrichment of the clusters over the GO using the FuncAssociate tool [BBC+09],

with appropriate multiple testing correction for the number of clusters in our set.

We declare a cluster to be functionally enriched if it is enriched for at least one and

no more than 50 different GO terms, at an appropriate level of specificity in the GO

hierarchy.

However, while it is easy to declare one particular cluster to be known to

be meaningful if it is enriched for at least one and no more than 50 biological

functions, it is not immediately clear how to use this to compare the overall quality

of different clusterings, particularly when the number and distribution of cluster sizes

is different across the different clustering algorithms. Observe that in particular, the

percentage of enriched clusters is not a good statistic: any algorithm that picks off

2

small good clusters around the periphery of the network, and then puts all the

remaining nodes into a giant single cluster in the center, will score all but one of its

clusters enriched (the large center cluster), for a very large percentage of enriched

clusters. Restricting the maximum size of a cluster (as we do for some of the

experiments) can ameliorate this behavior to a large extent, but we still are faced

with the need to find a meaningful overall statistic even when the distribution of

cluster sizes is highly non-comparable.

When we are restricting ourselves to non-overlapping clusterings, we choose

as the main statistic by which we judge the quality of a clustering to be the number

(or percent) of network nodes that are placed within enriched clusters. We abbreviate

this as #NEC and %NEC. We note that this NEC statistic can be measured

across clusterings with different numbers of clusters, size of clusters, and different

cluster size distributions. However, even these NEC statistics are most meaningful

when comparing clusterings when the number of clusters and their ranges of sizes

are approximately matched; in particular, adding some number of unrelated nodes

arbitrarily to an enriched cluster will improve the NEC statistics, even if it dilutes

the cluster enrichment, as long as it doesn’t cause the enrichment to dip below the

enrichment threshold. See figure 2.1 for a simple example demonstrating this case.

Thus we add a second statistic that we call NEC S (for number of enriched

clusters, same label), for the number (or percent) of nodes whose label matches a

label of its enriched cluster. This is a more stringent condition met by a smaller

number of nodes in enriched clusters and more precisely measures how well our

clustering recapitulates existing knowledge. In the case where there is no bound

on cluster sizes, this is the more meaningful statistic, because the ordinary NEC

statistics will tend to inflate the quality of the clustering. Figure 2.2 shows the NEC

S statistic computed on an example cluster.

1.1.2 Overlapping Clusters

Many proteins have more than one function and belong to multiple functional

groups. For biological problems strict partitioning of a graph is not an accurate

3

method of predicting protein function because it forces each protein into only one

cluster. Nodes that share a community are more densely connected to each other

than to nodes outside their community, and this logic can be extended to say that

nodes in the overlaps between communities are more connected to each other than

nodes in non-overlapping parts [YL13, BRCG12]. Therefore, techniques that allow

for overlapping clusters are more useful for identifying protein functions.

To measure the quality of overlapping clusters, we penalize each node based

on the number of clusters it is in. Each node is worth 1/(number of clusters), such

that a node in only one cluster is worth 1, a node in 2 clusters is worth 0.5, and so

on. We then calculate the same statistics as decribed above, where the number of

nodes is instead the combined worth of the nodes.

Review of DSD

Consider the undirected graph G(V,E) on the vertex set V = {v1, v2, v3, ..., vn} and

|V | = n. Now He{k}(A,B) is defined as the expected number of times that a simple

symmetric random walk starting at node A and proceeding for some fixed k steps

(including the 0th step), will visit node B.

We now take a global view of the Hek(A,B) measure from each vertex to all

the other vertices of the network.

More specifically, we define a n-dimensional vector Hek(vi),∀vi ∈ V , where

Hek(vi) = (Hek(vi, v1), He
k(vi, v2), ...,He

k(vi, vn)).

Then, the Diffusion State Distance (DSD) between two vertices u and v, ∀u, v ∈ V

is defined as:

DSDk(u, v) = ||Hek(u)−Hek(v)||1.

where ||Hek(u)−Hek(v)||1 denotes the L1 norm of the Hek vectors of u and v.

We showed in [CZP+13] for any fixed k, that DSD is a true distance metric,

namely that it is symmetric, positive definite, and non-zero whenever u 6= v, and it

4

obeys the triangle inequality. Thus, one can use DSD to reason about distances in a

network in a sound manner. Further, we showed that when the network is ergodic,

DSD converges as the k in He{k}(A,B) goes to infinity, allowing us to define DSD

independent from the value k, and to compute the converged DSD matrix tractably,

with an eigenvalue computation, where we can compute

DSD(u, v) = ||(1u − 1v)(I −D−1A+W)−1||1

where D is the diagonal degree matrix, A is the adjacency matrix, and W is the

constant matrix where each row is a copy of π, the degrees of each of the vertices,

normalized by the sum of all the vertex degrees.

The above treatment does not consider edge weights; DSD was generalized

to handle edge-weighted graphs in [CPF+14]. To incorporate edge weights, the

random walk is modified where instead of choosing all edges at a vertex with equal

probability, the walk instead chooses edges in proportion to their confidence weights,

namely we define a new 1-step transition matrix with (i, j)th entry given by:

p′ij =
wij∑n
l=1wil

Then we redefine Hek(A,B) as the expected number of times that the weighted

random walk starting at node A and proceeding for k steps will visit B, which can

be calculated as the (i, j)th entry of the kth power of the transition matrix. The

n-dimensional vector Hek(vi) can be constructed as before, and then the DSD is

calculated the same as before, just based on the modified He vectors.

1.2 Outline of This Work

Following is the outline of individual chapters in this thesis.

In Chapter 2, we show the effect of DSD on some popular clustering algo-

rithms.

In Chapter 3, we discuss possible algorithms for producing overlapping clus-

5

ters, and the effect of DSD on those methods.

6

Chapter 2

Non-Overlapping Clusters

Methods

The network

The protein-protein association network for S. Cerevisiae was downloaded from

STRING version 10 on 2/7/2017 [Szk15]. We removed all edges that had no direct

experimental verification. Edge weights were taken directly from from the “escore”

confidence values given by STRING. There are 2 nodes that are isolated from the

rest of the network, and after we remove them the network has 6096 nodes.

Enrichment calculation

Functional enrichment was measured in Gene Ontology terms using the FuncAsso-

ciate 3.0 web API [BBC+09]. All GO terms that were level 5 or below in specificity

from all three hierarchies (molecular function, biological process, and cellular com-

ponent) were considered. FuncAssociate uses Fisher’s exact test to calculate an

enrichment p-value, and we used a p-value cutoff of 0.05 to determine if a cluster

was significantly enriched for a term. To correct for multiple testing, FuncAssociate

uses an approach based on Monte Carlo sampling from the background gene space,

as described in [BBC+09] (note that because of the stochastic sampling, different

runs of FuncAssociate can give slightly different results, but we mostly observe dif-

7

ferences of only fractions of a percentage point).

The clustering algorithms

We considered the following popular clustering algorithms, each of which will return

a non-overlapping set of clusters. In our study, we restricted cluster sizes to be

at least 3; any cluster of size less than 3 created by an algorithm was discarded.

We considered all three algorithms with no restriction on maximum cluster size;

we then modified each of the three algorithms to set a maximum cluster size of

100. Bounds on minimum and maximum cluster size were set in order to make the

clusterings returned by different methods more comparable; the specific values of

3 and 100 were set to be consistent with the recent DREAM community “disease

module identification” challenge [Con16]. For each clustering method, we run it

natively on the network from STRING. We then run it on a transformed network,

preprocessed with DSD as follows: 1) We form the DSD matrix of distances in

the original network. 2) We create a new graph by placing edges between pairs

of nodes whose DSD distance is less than r, with edge weight 1/r. We then run

the clustering algorithm on the new DSD-based detangled graph. We considered a

range of different values of the threshold r (between 4 and 6).

The Louvain Algorithm

For a partition of a network into two pieces, consider the quantity

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where Aij is the matrix of edge weights, m is the sum of all the edge weights,

ki =
∑

j Aij is the sum of all the edge weights emanating from vertex i and δ is an

indicator function that is 1 iff i and j have been placed in the same cluster. Then

Q measures the modularity in a weighted graph, based on the weight of links within

a cluster as compared to the links between clusters (see [GN02]).

The Louvain Algorithm, first defined in [BGLL08], is a heuristic that repeat-

8

edly tries to move individual nodes across cluster boundaries in order to improve

the value of Q. Starting from a partition of the network into clusters (initially, every

node is placed into its own cluster), the first phase of the Louvain algorithm consid-

ers nodes i that are adjacent to some node j which has been placed in a different

community. i is moved into j’s community if and only if doing so would increase

the modularity Q described above. Nodes are considered multiple times until the

quantity Q can no longer be improved by moving any individual nodes. The second

phase of the algorithm consists in building a new network whose nodes are now the

communities found during the first phase. The weights between these new supern-

odes are now set to be the sum of the weight of the links between nodes in the

corresponding two communities (where links between nodes of the same community

are retained as self-loops). Then the first phase of the Louvain algorithm is run

again on the new nodes.

In our implementation, clusters with fewer than 3 nodes were discarded. We

also modified the Louvain algorithm to force clusters to have at most 100 nodes by

re-running Louvain separately on each cluster with more than 100 nodes, in order

to split the cluster into multiple clusters of size under 100 nodes.

The Walktrap Algorithm

Consider the random walk on G where at each time step, the walker moves from

a node to a new node chosen randomly and uniformly among its neighbors (with

probability in proportion to edge weights). When D is the matrix that has the

ith diagonal entry be the degree of vertex i, and 0’s off the diagonal, then one

can define the transition matrix of the random walk as P = D−1A where A is the

adjacency matrix. Fix t, the length of a random walk and let P t
i◦ denote the ith row

of the matrix P t The Walktrap algorithm [PL06] defines an an (i, j) distance ri,j

depending on the L2 distance between the two probability distributions P t
i◦ and P t

j◦.

This internode distance is then generalized to a distance between communities in

a straightforward way, by choosing a starting node randomly and uniformly among

the nodes of the community. This defines the probability P t
Cj

to go from community

9

C to vertex j in t steps and an associated probability vector P t
Cj◦. Then the distance

rC1C2 is defined as the L2 distance between the two probability distributions P t
C1◦

and P t
C2◦..

This algorithm is initialized by putting each vertex into its own cluster.

Then two adjacent communities (joined by at least one edge) are merged according

to which gives the lowest value of the quantity ∆α, where the change in ∆α that

would result when clusters C1 and C2 are instead merged into a new cluster C3 is

given by:

∆α(C1, C2) =
1

n

|C1||C2|
|C1|+ |C2|

r2C1C2

Walktrap can produce clusters of size > 100. We therefore also consider a

modified version of Walktrap (again setting t=4) that prevents the merging clusters

if the merge would create a cluster of of size > 100. Modified Walktrap is run until

no more merges are possible, which can be represented as a forest dendrogram (not

a tree, because there are multiple clusters at the top level that cannot merge because

their union would contain more than 100 nodes). We then cut the dendrogram at

a lower level to produce some lower number of output clusters: the final number of

clusters output is all the clusters at that level of size ≥ 3 (discarding clusters of size

1 or 2).

Spectral Clustering

Spectral Clustering was introduced by Ng, Jordan and Weiss [NJW+01] in 2001.

It takes as input a similarity matrix, and does a low-dimensional embedding of the

nodes according to that similarity matrix. Then K-means clustering is run on the

nodes in the embedded space, where K, the number of clusters, is an input to the

algorithm. In our case we construct the similarity matrix by computing 1/(the DSD

distance). The final number of clusters we produce is not K, since we discard any

cluster of size < 3. We consider also a modified version of spectral clustering where

we recursively split any cluster of size > 100, recursively calling spectral clustering

with K = 2 clusters, until all cluster sizes are less than 100 nodes.

10

Clustering Implementations

In the case of Louvain, we used the implementations in the popular igraph package

[CN06]. In the case of spectral clustering, our implementation came from scikit-

learn [PVG+11]. In the case of Walktrap, we used the Walktrap source code from

[PL06], and for the modified Walktrap algorithm (which restricted cluster sizes to

be < 100 nodes), we worked directly from the Walktrap source code.

Results

For each algorithm we consider, we compare what would be obtained by running

that algorithm directly on the PPI network with weights taken directly from the

STRING confidence values, with no filtering or pre-processing, to what is obtained

by first running DSD on the network, filtering out edges where the DSD distance

between their endpoints exceeded a threshold, and otherwise running the algorithm

with edges weighted by 1/(DSD distance).

We first considered the Louvain algorithm without any restriction on maxi-

mum cluster size. The Louvain algorithm is highly sensitive to the order in which

nodes are considered [BGLL08], so we report median results over 10 independent

runs of the algorithm (mean results over the 10 runs are highly similar and not

shown). Louvain creates a multilevel structure of clusters, so we report the results

of the first level of clusters created because the clusters were the smallest. The re-

sults appear in Tables 2.1 The best results occur when the network is pre-processed

with DSD at an appropriate threshold, however, run directly on the PPI network

as well as some of the DSD thresholds, these algorithms unmodified produce some

large, uninformative clusters. For example, in every one of the 10 times we ran

Louvain directly on the PPI network, the largest cluster had size greater than 1000

nodes.

We also considered the Walktrap algorithm without any restriction on max-

imum cluster size. These results appear in Table 2.3. The algorithm outputs a

dendrogram that can be cut at different levels, so we sought to control the number

11

of clusters by cutting the dendrogram at different levels. The dendrogram level

corresponds to the number of clusters before removing clusters of size < 3, so the

final number of clusters may be less than the dendrogram cut level. The results

appear in Table 2.5. For both %NEC and %NECS, Walktrap with DSD performs

better than Walktrap run on the unproccessed PPI network for every dendrogram

cut level. Walktrap performs best when at the dendrogram cut level 700.

We also considered modified versions of Louvain and Walktrap, as described

above, that force cluster sizes between 3 and 100 nodes (where again, the specific

values of 3 and 100 were set to be consistent with the recent DREAM community

“disease module identification” challenge [Con16].) Louvain also creates a multilevel

structure of clusters, so we report the results of just the first level of clusters created

because the clusters were the smallest, and the level with the best modularity.

These results appear in Tables 2.2 and 2.4. DSD plus Louvain performs worse than

Louvain alone, with bounded cluster sizes. Note that while modified Louvain can

bound cluster sizes, and we can choose which level of the final hierarchical strucure

we can use, it really has no way to tune the exact number of clusters that are

output by the algorithm. On the other hand, the number of clusters that are output

by modified Walktrap can be tuned by cutting the cluster dendrogram at different

levels.

Thus, in order to explore our chosen measure of cluster quality, namely, the

percent of the 6096 network nodes placed into an enriched cluster of size between

3 and 100 further, for Walktrap modified to have bounded cluster size run directly

on the PPI network versus run after pre-processing with various DSD thresholds,

we explored cutting the Modified Walktrap dendrogram at different numbers of

clusters (before filtering small clusters, so the resulting numbers of clusters may

not necessarily be exactly the same as the dendrogram cut level). The results

appear in Table 2.6 for both the %NEC and %NEC S statistics. For the %NEC

statistic, the modified Walktrap algorithm with DSD preprocessing performs better

for every dendrogram cut level. For the %NEC S statistic, the algorithm with DSD

preprocessing performs better for lower dendrogram cut levels (i.e. fewer clusters),

12

but for a dendrogram cut level of 700, the algorithm run directly on the PPI network

performs better, although DSD with a cutoff of 5.5 performs nearly comparably for

this statistic.

Figure 2.3 gives some intuition for how the DSD thresholds were chosen: it

shows a histogram of all pairwise DSD distances between nodes in the PPI network;

setting the DSD threshold removes a fraction of these edges and sparsifies the net-

work. For example, setting the edge removal threshold to 4.5 will result in direct

edges from a vertex only to a small fraction of its close neighbors in DSD distance.

Setting the edge removal threshold to 6, on the other hand, preserves roughly half

the pairwise network distances.

Figure 2.4 directly compares the clusters at different size ranges by enrich-

ment for Louvain directly, and DSD followed by Louvain, with an edge removal

threshold of 5, and cluster sizes bounded to lie between 3 and 100. Detangling with

DSD decreased the percentage of nodes placed within enriched clusters.

We next sought to make the comparison for spectral clustering, but spectral

clustering has an additional parameter that must be set, namely K, the number

of clusters. We look at both a version of spectral clustering that does not restrict

maximum cluster size, as well as a variant of spectral clustering that recursively splits

clusters of size greater than 100, in order to produce a clustering with clusters of size

between 3 and 100 nodes, as before. Note that the final number of clusters output

by our spectral clustering method will be different than K, the input number of

cluster centers, because our implementation of spectral clustering recursively splits

any cluster of size > 100. Figure 2.5 shows that the number of clusters that spectral

clustering plus DSD (modified to force a maximum cluster size of 100) produces

based on the number of input clusters is robust to the threshold cutoff. In all cases,

the number of output clusters rises for awhile based on the number of input cluster

centers, and then falls off. It rises compared to the number of input clusters when

cluster sizes are too large and get split by our method for having > 100 nodes. It falls

off when K is set large enough that many of the clusters that spectral clustering

produces have < 3 nodes, which we then discard and do not include as output

13

clusters according to the cluster size restrictions of our methods. Based on this

figure, we report results for K = 300 at different DSD thresholds in Tables 2.7 and

2.8.

Figure 2.6 gives the number of clusters and the percentage of enriched clus-

ters for spectral clustering (with a maximum cluster size bounded at 100) and

DSD+spectral clustering for K = 300. As can be seen, DSD+spectral clustering

has a higher percentage of nodes in enriched clusters than spectral clustering using

both NEC and NEC S statistics when cluster sizes are bounded by 100; with un-

bounded cluster sizes, the results are mixed: the NEC statistic is better for spectral

run directly on the PPI network than DSD+spectral, because more nodes are placed

into a large enriched central cluster. However, DSD+spectral is better for the NEC

S statistic, which is the more informative statistic in the case of unbounded cluster

sizes. On the human network, DSD+spectral outperforms spectral run natively on

the PPI network by every statistic (see Discussion).

Discussion

We have shown that some popular clustering methods appear to perform better

when DSD is applied as a pre-processing step to help detangle the network. In par-

ticular, we tested Louvain, Walktrap, and Spectral Clustering methods, both native

as well as modified to keep the maximum cluster size bounded by 100 nodes, run

on the yeast PPI network directly, and then run on the PPI network after using

DSD to sparsify and detangle the network, for a total of 6 different methods. For

four of the six methods, applying the DSD pre-processing method at an appropriate

threshold improved the percentage of network nodes that were placed into clusters

enriched for their own functional label. For the fifth method, spectral clustering

with no modification to large clusters, the DSD detangling sometimes improved

performance slightly or sometimes hurt performance slightly, depending on other

parameter settings. For the sixth method, Louvain with bounded cluster sizes, the

DSD detangling was inferior to running Louvain directly on the PPI network. Mea-

14

suring the number of nodes placed into enriched clusters (not necessarily enriched

for their own label) showed similar trends regardless of whether or not we filtered

out the most general GO terms; these statistics were also often improved at the ap-

propriate DSD threshold when sizes and and number of clusters were approximately

matched.

It is hard to definitively answer which of the six methods is best, since it

is hard to control the range of cluster sizes exactly. With both bounded and un-

bounded cluster sizes, it is not clear which method has best performance overall.

Spectral clustering plus DSD and Louvain alone, both modified to bound maximum

cluster sizes, are able to produce an impressive percent of nodes in enriched clus-

ters, in a setting where it is very easy to control the and size range of the clusters

that are returned. For spectral clustering, it is also easy to control the number of

clusters returned. For this reason, the spectral clustering method was probably our

favorite, though all three modified algorithms also performed quite well, both with

and without DSD.

It is natural to ask if our results were peculiar to the yeast network, or

whether they would generalize to other organisms. We were particularly interested

in the human network, which has more nodes but is more sparsely annotated. We

thus also downloaded the protein-protein interaction network for H. sapiens from

STRING version 10 on 2/7/2017. As before, we removed all edges that had no

direct experimental verification. Edge weights were taken directly from the ’escore’

confidence values given by STRING. In the human network, we consider only the

largest connected component which has 15,129 nodes.

Because there are fewer known edges and this is a sparser network than

yeast, we set higher DSD thresholds, ranging from 6 to 8. See Figure 2.7 for the

corresponding histogram of all pairwise DSD distances in this network.

As can be seen in Table 2.9, the advantages of detangling the network with

DSD before applying Spectral clustering seem even clearer on the human network.

For both of the %NEC thresholds, and robust to the exact value of the DSD cutoff,

results are better when the network is pre-processed with DSD.

15

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 29.5/47.5 (62.11%) 799.0 13.10% 548.5 8.99%

4.0 130.0/192.0 (67.71%) 1144.0 18.77% 1011.0 16.58%

4.5 175.0/265.5 (65.91%) 1960.5 32.16% 1562.0 25.62%

5.0 106.5/173.0 (61.56%) 1736.0 28.48% 967.0 15.86%

5.5 15.0/45.5 (32.97%) 361.5 5.93% 288.0 4.72%

6.0 5.0/21.5 (23.26%) 221.0 3.63% 178.5 2.93%

Table 2.1: The performance of Louvain run directly on the PPI network versus Lou-
vain plus DSD at different edge removal thresholds; the reported results of Louvain
are median values from running the algorithm over 10 random permutations of the
nodes. We discard clusters of size < 3. NEC= “Nodes in Enriched Clusters”. We
calculate %NEC in two settings: %NEC is enrichment in the GO hierarchy with
terms above the fifth level filtered out, and %NEC S uses the same filtered GO
hierarchy, but then only gives a node credit if there is a match between one of the
node’s labels and one of the terms for which there is GO enrichment for the cluster.
Note that without modifying Louvain to restrict the maximum cluster size, the S
statistic is the most meaningful. Running directly on the PPI network and run with
high DSD thresholds, Louvain produces a relatively small number of clusters, and
many are of very large size. It is worth noting that with a DSD threshold of 5,
nearly 175 clusters are produced, and the enrichment statistics remain reasonable.

Many open questions still remain. One way in which our problem formula-

tion was somewhat artificial is that we required our clusters to be non-overlapping ;

however, many proteins participate in multiple pathways, complexes or processes,

which would be more accurately represented by overlapping clusters or communities.

The next chapter explore possible methods of producing overlapping clusters.

Tables

16

= “annotated with function f ”

12 of 18 nodes in enriched clusters (67%)

9 of 18 nodes in enriched clusters (50%)

Figure 2.1: Comparison of two example network partitions under the NEC statistic.
Edges are omitted for visual clarity and only a single function f is considered in this
simple case. The clusters outlined in bold blue are “enriched” and those outlined
in dotted red are not. Although the lower partition is more specific for f (i.e. its
enriched clusters contain fewer false positives), by the NEC statistic it does not score
as well as the upper partition. Note that in this case, the distribution of cluster sizes
is indeed much different between partitions; that is, the upper partition has a single
giant cluster, and the lower partition contains clusters having a more uniform size
distribution.

17

GO:00002
GO:00003
GO:00018

GO:00002
GO:00003 GO:00003

GO:00004

GO:00002
GO:00014
GO:00018

GO:00005
GO:00012

GO:00006
GO:00018

= “correctly clustered”

4 of 6 nodes correctly clustered (67%)

Figure 2.2: Example of scoring a single cluster using the NEC S statistic. GO
annotations are listed for each node and for the cluster as a whole, and only those
nodes with an annotation matching the cluster (the shaded nodes) are counted. In
this case, 4 of the 6 total nodes (67%) are correctly clustered.

18

0e+00

2e+06

4e+06

6e+06

0.0 1.0 2.0 3.0 4.0 4.5 5.0 6.06.0 7.0 8.0 9.0 10.0 11.0
DSD distance

N
um

be
r

of
 e

dg
es

Figure 2.3: Histogram of all DSD distances in the STRING PPI network for yeast;
edge removal thresholds of 4.5 and 6.0 are marked.

3­4 5­8 9­16 17­32 33­64 65­100
Cluster size range

0

20

40

60

80

100

120

140

N
um

be
r

of
 c

lu
st

er
s

not significantly enriched ­ Louvain
not significantly enriched ­ DSD+Louvain
enriched ­ Louvain
enriched ­ DSD+Louvain

Figure 2.4: This figure compares median cluster sizes running Louvain (with cluster
sizes restricted to 3-100) directly on the PPI network with Louvain running on the
DSD-detangled network (again with cluster sizes restricted to 3-100), with an edge
removal threshold of 5.0. The overall percentage of nodes in enriched clusters is
76.21% for Louvain directly and 70.46% for DSD+Louvain.

19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

100

200

300

400

500

200 400 600 800
Input number of cluster centers

A
ct

ua
l n

um
be

r
of

 o
ut

pu
t c

lu
st

er
s

Filter distance
●

●

●

●

●

5

5.5

6

6.5

spectral

Figure 2.5: This figure plots the number of clusters output by spectral clustering and
spectral clustering run on the DSD reweighted network, for different filter distance
thresholds, based on the number K of clusters input to the method; in all cases,
the number of output clusters starts out as less than K since clusters of size < 3
are not included in the count of output clusters. Then the number of clusters grows
larger than the number of input clusters (because large clusters are recursively split)
until K grows so large that the number of clusters of size < 3 counterbalances that
increase.

3­4 5­8 9­16 17­32 33­64 65­100
Cluster size range

0

20

40

60

80

100

120

N
um

be
r

of
 c

lu
st

er
s

not significantly enriched ­ Spectral
not significantly enriched ­ DSD+Spectral
enriched ­ Spectral
enriched ­ DSD+Spectral

Figure 2.6: This figure compares cluster sizes running Spectral (with cluster sizes
restricted to 3-100) directly on the PPI network with Spectral running on the DSD-
detangled network (again with cluster sizes restricted to 3-100), with an edge removal
threshold of 5.5. The percentage of nodes in enriched clusters is 50.54% for Spectral
directly and 61.76% for DSD+Spectral.

20

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 264.5/361.0 (73.27%) 4646.0 76.21% 2765.5 45.37%

4.0 129.0/192.0 (67.19%) 1139.0 18.68% 1006.5 16.51%

4.5 207.5/304.0 (68.26%) 2220.5 36.43% 1754.0 28.77%

5.0 221.0/363.0 (60.88%) 3720.5 61.03% 2418.0 39.67%

5.5 131.0/227.0 (57.71%) 4107.5 67.38% 2380.5 39.05%

6.0 113.5/177.0 (64.12%) 4295.5 70.46% 2192.5 35.97%

PPI 161.0/200.0 (80.80%) 4944.0 81.10% 2697.5 44.25%

4.0 104.0/150.0 (69.33%) 1216.5 19.96% 996.5 16.35%

4.5 163.5/236.5 (68.89%) 2269.5 37.23% 1712.0 28.08%

5.0 167.5/256.5 (64.93%) 3909.0 64.12% 2450.5 40.20%

5.5 118.0/176.5 (65.07%) 4309.5 70.69% 2336.5 38.33%

6.0 94.0/145.0 (65.27%) 4413.5 72.40% 2263.5 37.13%

Table 2.2: The performance of Louvain versus Louvain plus DSD at different edge
removal thresholds; the results of Louvain are median values from running the al-
gorithm over 10 random permutations of the nodes. We discard clusters of size < 3
and recursively split clusters of size > 100. The values above the double line are
from running Louvain and using the first level of clusters created; the values below
the double line are from running Louvain and using the level with the best modu-
larity. NEC= “Nodes in Enriched Clusters”. We calculate %NEC in two settings:
%NEC is enrichment in the GO hierarchy with terms above the fifth level filtered
out, and %NEC S uses the same filtered GO hierarchy, but then only gives a node
credit if there is a match between one of the node’s labels and one of the terms
for which there is GO enrichment for the cluster. Louvain run directly on the PPI
network performs better than every DSD threshold we tested. The version that uses
the level with the best modularity produces slighty better clusters than the version
that uses the first level of clusters according to the %NEC, but the results are more
similar according to the %NEC S.

21

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 71/95 (74.74%) 2388 39.17% 1309 21.47%

4.0 132/189 (69.84%) 1169 19.18% 1011 16.58%

4.5 136/195 (69.74%) 857 14.06% 703 11.53%

5.0 114/182 (62.64%) 1480 24.28% 958 15.72%

5.5 59/100 (59.00%) 1062 17.42% 754 12.37%

6.0 108/141 (76.60%) 3305 54.22% 1390 22.80%

PPI 122/165 (73.94%) 2896 47.51% 1678 27.53%

4.0 134/196 (68.37%) 998 16.37% 891 14.62%

4.5 182/264 (68.94%) 1948 31.96% 1536 25.20%

5.0 111/183 (60.66%) 1430 23.46% 957 15.70%

5.5 90.135 (66.67%) 2223 36.27% 1214 19.91%

6.0 127/175 (72.57%) 3952 64.83% 1690 27.72%

Table 2.3: The performance of Walktrap versus Walktrap plus DSD at different edge
removal thresholds; we discard clusters of size < 3. The numbers above the double
line are for cutting the Walktrap dendrogram at 500 clusters, and the numbers below
the double line are for cutting the dendrogram at 700 clusters. NEC= “Nodes in
Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment
in the GO hierarchy with terms above the fifth level filtered out, and %NEC S
uses the same filtered GO hierarchy, but then only gives a node credit if there is
a match between one of the node’s labels and one of the terms for which there
is GO enrichment for the cluster. In both dendrogram cuts, Walktrap+DSD did
better in both statistics than Walktrap directly on the PPI network, though for the
cutoff of 700 clusters, Walktrap directly on the PPI network did very similarly to
Walktrap+DSD according to the %NEC S.

22

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 35/64 (54.69%) 3274.0 53.69% 1703.0 27.93%

3.5 56/91 (61.54%) 570.0 9.35% 468.0 7.68%

4.0 97/142 (68.31%) 1155.0 18.95% 915.0 15.01%

4.5 144/215 (66.98%) 1869.0 30.66% 1415.0 23.21%

5.0 96/174 (55.17%) 2785.0 45.69% 1724.0 28.28%

5.5 56/93 (60.22%) 4067.0 66.72% 1783.0 29.25%

6.0 51/81 (62.96%) 4155.0 68.16% 1667.0 27.35%

PPI 39/69 (56.52%) 3367.0 55.21% 1782.0 29.22%

3.5 55/91 (60.44%) 495.0 8.12% 463.0 7.60%

4.0 97/142 (68.31%) 1155.0 18.95% 915.0 15.01%

4.5 144/215 (66.98%) 1869.0 30.66% 1415.0 23.21%

5.0 95/174 (54.60%) 2686.0 44.06% 1676.0 27.49%

5.5 60/106 (56.60%) 3978.0 65.26% 1862.0 30.54%

6.0 66/96 (68.75%) 4077.0 66.88% 1680.0 27.56%

Table 2.4: The performance of Modified Walktrap versus Modified Walktrap plus
DSD at different edge removal thresholds; We discard clusters of size < 3, and
restrict maximum cluster size to be < 100. The numbers above the double line are
for cutting the Walktrap dendrogram at 200 clusters; the numbers below the double
line are for cutting the Walktrap dendrogram at 300 clusters. NEC= “Nodes in
Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment
in the GO hierarchy with terms above the fifth level filtered out, and %NEC S
uses the same filtered GO hierarchy, but then only gives a node credit if there is a
match between one of the node’s labels and one of the terms for which there is GO
enrichment for the cluster. In both cases, for the S statistic the best DSD threshold
is 5.5, at which performance is slightly better than running Walktrap directly on the
PPI network. For cutoffs of both 200 and 300 clusters, DSD+Walktrap is slightly
better than Walktrap in the NEC measure, and in both cases the DSD version
produces slightly more and smaller clusters.

23

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0.0 1.0 2.0 3.0 4.04.55.0 6.06.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
DSD distance

N
um

be
r

of
 e

dg
es

Figure 2.7: Histogram of all DSD distances in the Human STRING PPI network;
previous edge removal thresholds of 4.5 and 6.0 for yeast are marked.

Dendrogram cut level 200 300 500 700

PPI 3.6% 8.9% 39.2% 47.5%

DSD 4.5 8.8% 8.8% 14.1% 31.9%

DSD 5.0 9.8% 15.9% 24.3% 23.5%

DSD 5.5 13.1% 12.8% 17.4% 36.5%

DSD 6.0 9.6% 14.6% 54.2% 64.8%

PPI 3.1% 7.7% 21.5% 27.5%

DSD 4.5 7.4% 7.4% 11.5% 21.2%

DSD 5.0 7.7% 12.5% 15.7% 15.7%

DSD 5.5 10.4% 10.4% 12.4% 19.9%

DSD 6.0 7.9% 10.5% 22.8% 27.7%

Table 2.5: Exploring the dendrogram cut level for Walktrap. Above the double line
we report the percentage of nodes placed into an enriched cluster (i.e. the statistic
we are calling % NEC), and below the double line we report the number of correctly
clustered nodes (i.e. the statistic we are calling % NEC S). At different dendrogram
cut levels, the best percentage is bolded; in every case it is Walktrap plus DSD, at
varying thresholds (5, 5.5, and 6).

24

Dendrogram cut level 200 300 500 700

PPI 55.3% 53.6% 54.9% 55.3%

DSD 4.5 30.7% 30.7% 30.7% 30.3%

DSD 5 44.1% 44.0% 44.1% 44.2%

DSD 5.5 66.7% 66.9% 65.1% 65.3%

DSD 6 72.6% 68.3% 66.2% 63.0%

PPI 29.0% 28.0% 30.2% 32.3%

DSD 4.5 23.3% 23.2% 23.2% 24.5%

DSD 5 27.3% 27.5% 27.4% 28.9%

DSD 5.5 29.6% 31.5% 30.6% 31.8%

DSD 6 28.4% 27.8% 27.5% 24.8%

Table 2.6: Exploring the dendrogram cut level for modified Walktrap with a max-
imum cluster size of 100. Above the double line we report the percentage of nodes
placed into an enriched cluster (i.e. the statistic we are calling % NEC), and below
the double line we report the number of correctly clustered nodes (i.e. the statistic
we are calling % NEC S). At different dendrogram cut levels, the best percent-
age is bolded; in every case but one it is modified Walktrap plus DSD, at varying
thresholds (5.5, 6, and 6.5).

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 201/225 (89.33%) 5650.0 92.65% 2409.0 39.50%

4.5 185/244 (75.82%) 2190.0 35.93% 1322.0 21.69%

5.0 176/252 (69.84%) 5003.0 82.07% 2100.0 34.45%

5.5 175/251 (69.72%) 4651.0 76.30% 2223.0 36.47%

6.0 168/224 (75.00%) 4997.0 81.97% 2473.0 40.57%

Table 2.7: The performance of Spectral versus Spectral plus DSD at different edge
removal thresholds when the input parameter K in all cases is set to 300, but then
we discard clusters of size < 3. NEC= “Nodes in Enriched Clusters”. We calculate
%NEC in two settings: %NEC is enrichment in the GO hierarchy with terms above
the fifth level filtered out, and %NEC S uses the same filtered GO hierarchy, but
then only gives a node credit if there is a match between one of the node’s labels
and one of the terms for which there is GO enrichment for the cluster. In this case,
the Spectral algorithm run directly on the PPI network results in a higher %NEC
statistic than any of the DSD-preprocessed results. However, without cluster size
restrictions %NEC S is the most meaningful statistic, and it is best when Spectral
is run with DSD at a distance threshold of 6.0.

25

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 234/324 (72.22%) 3082.0 50.54% 2158.0 35.39%

4.5 194/266 (72.93%) 1647.0 27.02% 1330.0 21.82%

5.0 199/309 (64.40%) 3589.0 58.87% 2203.0 36.14%

5.5 189/291 (64.95%) 3765.0 61.76% 2228.0 36.55%

6.0 177/249 (71.08%) 4670.0 76.61% 2490.0 40.85%

Table 2.8: The performance of Spectral versus Spectral plus DSD at different edge
removal thresholds when the input parameter K in all cases is set to 300, but then
we discard clusters of size < 3 and split clusters of size > 100. NEC= “Nodes in
Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment
in the GO hierarchy with terms above the fifth level filtered out, and %NEC S
uses the same filtered GO hierarchy, but then only gives a node credit if there is
a match between one of the node’s labels and one of the terms for which there is
GO enrichment for the cluster. For every threshold we tested ≥ 5, the percentage
of nodes in enriched clusters is better than Spectral run alone for both measures.

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 252/510 (49.41%) 4540.0 29.96% 2301.0 15.18%

6.0 268/543 (49.36%) 6632.0 43.84% 2453.0 16.21%

6.5 286/543 (52.67%) 7085.0 46.83% 2918.0 19.29%

7.0 269/537 (50.09%) 7485.0 49.47% 3092.0 20.44%

7.5 272/552 (49.28%) 7243.0 47.87% 3073.0 20.31%

8.0 268/491 (54.58%) 7689.0 50.82% 3208.0 21.20%

Table 2.9: The performance of Spectral versus Spectral plus DSD at different edge
removal thresholds when the input parameter K in all cases is set to 300, but then
we discard clusters of size < 3 and split clusters of size > 100 on the Human network.
We calculate %NEC in two settings: %NEC is enrichment in the GO hierarchy
with terms above the fifth level filtered out, and %NEC S uses the same filtered
GO hierarchy, but then only gives a node credit if there is a match between one
of the node’s labels and one of the terms for which there is GO enrichment for the
cluster. By both of the NEC statistics, at every DSD threshold, detangling with
DSD performs better.

26

Chapter 3

Overlapping Clusters

Methods

Extending Louvain

The Louvain algorithm is nondeterministic, and when run with different starting

nodes or different node order, produces different clusters. We can therefore use sev-

eral runs of the Louvain algorithm, where each run produces a set of non-overlapping

clusters, to produce a set of overlapping clusters. We do this in three ways. Each

method uses the same set of ten trials from chapter one, produced by modified Lou-

vain where the clusters are > 3 and < 100 nodes, and the clusters are from the level

with the best modularity.

Concatenating Five Sets

The first method of producing overlapping clusters from Louvain results is to com-

bine five of the ten sets of clusters into one set. Five sets are chosen at randomly

from the ten sets, and these five are concatenated into one cluster set. In the final

cluster set, each node is automatically in five clusters, although when clusters that

are less than three nodes are removed, some nodes may be in less than five clusters.

The clusters are not checked for similarity, so there may be repeated clusters in the

final set. If the same cluster appears twice in a set, we can postulate that this cluster

27

is strongly connected, as multiple runs of Louvain found it. We then measure the

quality of the final cluster set. This whole process is repeated over ten trials, and

the five cluster sets are chosen at random each time, so the enrichment results are

the mean of the ten trials.

Top Conductance Clusters

The second method is based on the measurement of conductance of each cluster

as defined by Kannan et al. in [KVV04]. Consider the graph G = (V,E). The

conductance of a cut (S, S) is defined as:

ϕ(S) =

∑
i∈S,j∈S aij

min(a(S), a(S))

where a is the adjacency matrix for G, so

a(S) =
∑
i∈S

∑
j∈V

aij

is the total weight of the edges incident with S.

If the conductance of a cluster is low, it is considered a ”strong” cluster, and

if the conductance is high, it is a ”weak” cluster.

To produce overlapping clusters from a ten different cluster sets, where each

node is in ten clusters, we first calculate the conductance of each cluster for each

node. The conductance is calculated as if the cluster in question is the cut. Then,

the five clusters for each node that have the lowest conductance are chosen as the

clusters that node is in. In the final cluster set, before clusters under three nodes

are removed, each node is in five clusters. These five clusters may not be identical to

the clusters the node was originally in, because other nodes may have been removed

from the cluster. In the final cluster set, repeat clusters are removed so every cluster

is unique, and clusters under three nodes are removed.

28

Top Modularity Clusters

The third method is similar to the second method, but uses the measure of mod-

ularity [GN02]. Modularity is measured in the context of a partition of the graph.

The modularity is the fraction of edges that are in the partitions minus the ex-

pected fraction if the edges were randomly distributed. Consider the weighted graph

G = (V,E), with adjacency matrix A. The modularity is defined as:

Q =
1

2m
∗
∑
ij

(Aij −
ki ∗ kj

2m
)δci, cj

where m is the total edge weight of the graph and ki is the total weight of edges

adjacent to node i [BGLL08].

For our purposes, to find the top modularity clusters, we consider the mod-

ularity of the graph with respect to a partition with two groups: the cluster in

question and the rest of the graph. In the same manner as with the conductance

method, we calculate the modularity with respect to each of the ten clusters a single

node is in, then choose the five clusters with the top modularity score as that node’s

final clusters. In the final set of clusters, repeat clusters and clusters under three

nodes are removed.

Results

For each algorithm, we consider the results from running that algorithm on the

PPI network, and on the network after it has been preprocessed using DSD. We

consider the extended Louvain algorithm with a bound on cluster size for the first

step (obtaining non-overlapping clusters), where the bound is 100 nodes. We then

produce overlapping clusters with the three methods described above. The results

appear in Tables 3.1, 3.2, and 3.3. For all three methods, the algorithm performed

best when run directly on the PPI network. Of the three methods, concatenation

produces the best clusters by a small margin.

Figures 3.1, 3.2, and 3.3 show the number of clusters that are enriched versus

29

the number that are not enriched at each cluster size range, comparing the number

when the method is run directly on the PPI network versus when DSD is applied

with a cutoff of 6.

When compared to the results from Louvain in Chapter 2 in Table 2.2, the

concatenation method produces similarly meaningful clusters. For example, when

run directly on the PPI network, Louvain produces clusters with 80.10% NEC (the

median of 10 runs) and the concatenation method produces clusters with 80.18%

NEC (the mean of 10 runs), and when run with DSD at a distance threshold of

6.0, Louvain produces clusters with 72.40% NEC (the median of 10 runs) and the

concatenation method produces clusters with 73.01% NEC. Also, compared to the

non-overlapping Louvain results, the best conductance and best modularity methods

produce worse clusters according to both % NEC and % NEC S.

Discussion

In this chapter, we have explored three methods of producing overlapping clusters

using the Louvain algorithm, the first is concatenating five sets of non-overlapping

clusters into one set of overlapping clusters, the second is, over ten sets of non-

overlapping clusters, putting each node in the five clusters that have the highest

conductance score, and the third is the same as the second using the modularity

score instead of conductance. We ran these methods on the yeast network with a

bound on cluster size of > 3 and < 100 nodes. These methods produce the best

clusters when run directly on the PPI network as opposed to the network that

has been processed using DSD. This is congruent with our findings in Chapter 2

that the Louvain algorithm with a bound on cluster size produces better clusters

when run directly on the PPI network. We have also compared overlapping clusters

produced by these methods to the non-overlapping clusters produced by Louvain

algorithm with bounded cluster size. The concatenation method produces clusters

of a similar quality to the non-overlapping clusters from Louvain by our measure,

and the best conductance and best modularity method on produce worse clusters by

30

our measure than the non-overlapping method on the same parameters. However,

because many proteins have multiple functions or participate in multiple processes,

the overlapping clusters produced through the methods explored here are perhaps

more accurate representations of the biologicial reality.

Louvain is not stable in it’s production of clusters, so the variance in the

results may be more reflective of Louvain’s variance than the variance in the methods

explored here. Further exploration of Louvain can be done to quantify the variance

in the clusters, and determine the significance of the variance.

Tables

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 818.7/1016.5 (80.54%) 4887.92 SD = 46.10 80.18% 2690.14 SD = 32.90 44.13%

4.0 525.6/751.2 (69.97%) 1238.50 SD = 15.01 20.32% 1007.28 SD = 14.20 16.52%

4.5 814.8/1178.3 (69.15%) 2278.92 SD = 37.38 16.20% 1723.12 SD = 14.73 28.27%

5.0 831.2/1278.6 (65.01%) 3913.80 SD = 25.16 64.20% 2435.40 SD = 37.13 39.95%

5.5 582.1/890.9 (65.34%) 4328.16 SD = 45.81 71.00% 2353.08 SD = 21.73 38.60%

6.0 468.3/716.8 (65.33%) 4450.58 SD = 41.74 73.01% 2690.14 SD = 32.90 44.13%

Table 3.1: The performance of the concatenation algorithm vs the concatenation
algorithm plus DSD at different edge removal thresholds. The reported values are
the mean over 10 runs, and the standard deviation (SD) from the mean. NEC=
“Nodes in Enriched Clusters”. We calculate %NEC in two settings: %NEC is
enrichment in the GO hierarchy with terms above the fifth level filtered out, and
%NEC S uses the same filtered GO hierarchy, but then only gives a node credit if
there is a match between one of the node’s labels and one of the terms for which there
is GO enrichment for the cluster. Each node is worth 1/#clusters. The algorithm
performed best in all three measures on the PPI network without preprocessing.

31

Method Enriched Clusters # NEC % NEC # NEC S % NEC S

PPI 870/1341 (64.88%) 4416.73 72.45% 2498.78 40.99%

4.0 104/150 (69.33%) 1207.00 19.80% 1250.00 20.51%

4.5 236/350 (67.43%) 2238.45 36.72% 1691.02 27.74%

5.0 576/929 (62.00%) 3702.47 60.74% 2364.28 38.78%

5.5 553/924 (59.85%) 4071.98 66.80% 2300.60 37.74%

6.0 469/752 (62.37%) 4290.50 70.38% 2197.27 36.04%

Table 3.2: The performance of the top conductance algorithm vs the top conduc-
tance algorithm plus DSD at different edge removal thresholds. NEC= “Nodes in
Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment
in the GO hierarchy with terms above the fifth level filtered out, and %NEC S
uses the same filtered GO hierarchy, but then only gives a node credit if there is
a match between one of the node’s labels and one of the terms for which there is
GO enrichment for the cluster. Each node is worth 1/#clusters. The algorithm
performed best in all three measures on the PPI network without preprocessing.

Method Enriched CLusters # NEC % NEC # NEC S % NEC S

PPI 689/1062 (64.88%) 4424.22 72.58% 2395.68 39.30%

4.0 103/150 (68.57%) 1198.00 19.65% 963.00 16.50%

4.5 232/343 (67.64%) 2207.07 36.21% 1647.15 27.02%

5.0 512/836 (61.24%) 3733.50 61.25% 2258.92 37.06%

5.5 493/827 (59.61%) 4037.50 66.23% 2184.97 35.84%

6.0 444/725 (61.24%) 4296.67 70.48% 2154.80 39.30%

Table 3.3: The performance of the top modularity algorithm versus the top modu-
larity algorithm plus DSD at different edge removal thresholds. NEC= “Nodes in
Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment
in the GO hierarchy with terms above the fifth level filtered out, and %NEC S
uses the same filtered GO hierarchy, but then only gives a node credit if there is
a match between one of the node’s labels and one of the terms for which there is
GO enrichment for the cluster. Each node is worth 1/#clusters. The algorithm
performs best in all three measures on the PPI network without preprocessing.

32

0

50

100

150

200

250

300

350

3-4 5-8 9-16 17-32 33-64 65-100

Nu
m

be
r

of
 C

lu
st

er
s

Cluster Size Range

not significantly enriched -
DSD+Concatenation

not significantly enriched -
Concatenation

enriched - DSD+Concatenation

enriched - Concatenation

Figure 3.1: This figure compares cluster sizes running the concatenation method
(with cluster sizes restricted to 3-100) directly on the PPI network with the con-
catenation method running on the DSD-detangled network (again with cluster
sizes restricted to 3-100), with an edge removal threshold of 6. The percentage
of nodes in enriched clusters is 80.54% for the method directly and 65.33% for
DSD+concatenation.

0

50

100

150

200

250

300

3-4 5-8 9-
16

17-
32

33-
64

65-
100

Nu
m

be
r

of
 C

lu
st

er
s

Cluster Size Range

not significantly enriched - DSD+Best
Conductance Method

not significantly enriched - Best
Conductance Method

enriched - DSD+Best Conductance
Method

enriched - Best Conductance Method

Figure 3.2: This figure compares cluster sizes running the best conductance method
(with cluster sizes restricted to 3-100) directly on the PPI network with the top
conductance method running on the DSD-detangled network (again with cluster
sizes restricted to 3-100), with an edge removal threshold of 6. The percentage
of nodes in enriched clusters is 64.88% for the method directly and 62.37% for
DSD+best conductance.

33

0

50

100

150

200

250

300

3-4 5-8 9-
16

17-
32

33-
64

65-
100

Nu
m

be
r

of
 C

lu
st

er
s

Cluster Size Range

not significantly enriched - DSD+Best
Modularity Method

not significantly enriched - Best
Modularity Method

enriched - DSD+Best Modularity
Method

enriched - Best Modularity Method

Figure 3.3: This figure compares cluster sizes running the best modularity method
(with cluster sizes restricted to 3-100) directly on the PPI network with the top
modularity method running on the DSD-detangled network (again with cluster sizes
restricted to 3-100), with an edge removal threshold of 6. The percentage of nodes
in enriched clusters is 64.88% for the method directly and 61.24% for DSD+best
modularity.

34

Chapter 4

Conclusion

In this thesis, we have explored the performance of several clustering algorithms on

a PPI network when the network is preprocessed using DSD. Some of the methods

that produce non-overlapping clusters perform better when run with DSD. We also

explored methods of producing overlapping clusters using the popular clustering

algorithm Louvain, and showed that these methods perform best when run directly

on the PPI network.

The next steps are to measure whether a similar DSD pre-processing step

improves algorithms for community detection in other biological networks and verify

that there are similar results on networks arising from additional species, and also

seek to investigate whether the results remain true on networks built using different

types of gene-gene or protein-protein association data. We will continue to study the

best way to measure cluster quality when faced with a different number of clusters

of different sizes.

Our work with overlapping clusters is preliminary, and can also be extended

to other clustering algorithms. The method of concatenating many sets of non-

overlapping clusters can be applied to other nondeterministic algorithms, or to clus-

ter sets from multiple algorithms. Also, there are many algorithms developed to

produce overlapping clusters that can be explored, such as ClusterOne [NYP12],

OSLOM [LRRF11], and BigClam [YL13].

35

Bibliography

[AMM05] V. Arnau, S. Mars, and I. Marin. Iterative cluster analysis of protein

interaction data. Bioinformatics, 31:364–378, 2005.

[BBC+09] Gabriel F Berriz, John E Beaver, Can Cenik, Murat Tasan, and Fred-

erick P Roth. Next generation software for functional trend analysis.

Bioinformatics, 25(22):3043–3044, 2009.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-

enne Lefebvre. Fast unfolding of communities in large networks. Journal

of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[BRCG12] E. Becker, B. Robisson, C.E. Chapple, and A. Gunoche. Multifunc-

tionaly proteins revealed by overlappng clustering in protein interaction

network. Bioinformatics, 28(1):84–90, 2012.

[CN06] Gabor Csardi and Tamas Nepusz. The Igraph software package for

complex network research. InterJournal, Complex Systems, 1695(5):1–9,

2006.

[Con16] The DREAM Consortium. The dream disease mod-

ule challenge. Manuscript in preparation. See

https://www.synapse.org/modulechallege., 2016.

[CPF+14] Mengfei Cao, C. M. Pietras, X. Feng, K. J. Doroschak, T. Schaffner,

J. Park, H. Zhang, L. J. Cowen, and B. Hescott. New directions for

36

diffusion-based prediction of protein function: incorporating pathways

with confidence. Bioinformatics, 30:i219–i227, 2014.

[CZP+13] Mengfei Cao, Hao Zhang, Jisoo Park, Noah M. Daniels, Mark E. Crov-

ella, Lenore J. Cowen, and Benjamin Hescott. Going the distance for

protein function prediction. PLOS One, 8:e76339, 2013.

[For10] Santo Fortunato. Community detection in graphs. Physics reports,

486(3):75–174, 2010.

[GN02] Michelle Girvan and Mark EJ Newman. Community structure in social

and biological networks. Proceedings of the National Academy of Sciences

USA, 99(12):7821–7826, 2002.

[HBG+14] Steve Harenberg, Gonzalo Bello, L Gjeltema, Stephen Ranshous, Ji-

tendra Harlalka, Ramona Seay, Kanchana Padmanabhan, and Nagiza

Samatova. Community detection in large-scale networks: a survey and

empirical evaluation. Wiley Interdisciplinary Reviews: Computational

Statistics, 6(6):426–439, 2014.

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings:

Good, bad and spectral. Journal of the ACM, 51(3):497–515, 2004.

[LLM10] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical compar-

ison of algorithms for network community detection. In Proceedings of

the 19th international conference on World Wide Web, pages 631–640.

ACM, 2010.

[LRRF11] Andrea Lancichinetti, Filippo Radicchi, José Ramasco, and Santo

Forunato. Finding statistically significant communities in networks.

PLoS ONE, 6(4):e18961, 2011.

[NJW+01] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering:

Analysis and an algorithm. In NIPS, volume 14, pages 849–856, 2001.

37

[NYP12] Tamás Nepusz, Haiyuan Yu, and Alberto Paccanaro. Detecting overlap-

ping protein complexes in protein-protein interaction networks. Nature

Methods, 9:471–472, 2012.

[PL06] Pascal Pons and Matthieu Latapy. Computing communities in large

networks using random walks. J. Graph Algorithms Appl., 10(2):191–

218, 2006.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-

tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-

chine learning in python. Journal of Machine Learning Research,

12(Oct):2825–2830, 2011.

[SS09] Jimin Song and Mona Singh. How and when should interactome-derived

clusters be used to predict functional modules and protein function?

Bioinformatics, 25(23):3143–3150, 2009.

[Szk15] et al. Szklarczyk, Damian. String v10: protein–protein interaction

networks, integrated over the tree of life. Nucleic Acids Research,

43(D1):D447–D452, 2015.

[VM03] Deepak Verma and Marina Meila. A comparison of spectral clustering

algorithms. University of Washington Tech Rep UWCSE030501, 1:1–18,

2003.

[YL13] J. Yang and J. Leskovec. Overlapping community detection at scale: a

nonnegative matrix factorization approach. In Proceedings of the Sixth

ACM International Conference on Web Search and Data Mining, pages

587–596. ACM, 2013.

38

