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Abstract. Granville and Soundararajan have recently introduced the notion of preten-
tiousness in the study of multiplicative functions of modulus bounded by 1, essentially the
idea that two functions which are similar in a precise sense should exhibit similar behavior.
It turns out, somewhat surprisingly, that this does not directly extend to detecting power
cancellation - there are multiplicative functions which exhibit as much cancellation as pos-
sible in their partial sums that, modified slightly, give rise to functions which exhibit almost
as little as possible. We develop two new notions of pretentiousness under which power
cancellation can be detected, one of which applies to a much broader class of multiplicative
functions.

1. Introduction and statement of results

In a series of papers, Granville and Soundararajan ([1], [3], [4], [5], [6] as a few examples)
recently introduced the notion of pretentiousness in the study of multiplicative functions
taking values in the complex unit disc, essentially the idea that if two functions are “close” in
some sense, they should exhibit the same behavior. One striking example of this philosophy
is a theorem of Halász [7], which can be interpreted as saying that given a multiplicative
function f(n) with |f(n)| ≤ 1 for all n, the partial sums

Sf (x) :=
∑
n≤x

f(n)

are large if and only if f(n) “pretends” to be nit for some t ∈ R (possibly 0). To make this
precise, define the distance between two multiplicative functions f(n) and g(n) taking values
in the complex unit disc to be

D(f, g)2 :=
∑
p

1− Re(f(p)ḡ(p))

p
,

where here and throughout, the summation over p is taken to be over primes. This distance
is typically infinite, but in the event that it is finite, we follow Granville and Soundararajan
and say that f(n) and g(n) are pretentious to each other, or that f(n) is g(n)-pretentious.
Halász’s theorem then says that if Sf (x)� x, then f(n) must be nit-pretentious for some t.
In other words, Halász’s theorem classifies those f(n) for which Sf (x) is as large as possible.
It is therefore natural to ask for which f(n) we have that Sf (x) is exceptionally small. Since
for generic f(n) taking values in the complex unit disc, the best we can typically hope for is
Sf (x)�ε x

1/2+ε, we are interested in when Sf (x) exhibits more than square root cancellation.
In particular, we ask the following question.

Question 1. If f(n) is a completely multiplicative function, bounded by 1 in absolute value,

such that both
∑

n≤x |f(n)|2 � x and Sf (x)� x
1
2
−δ hold for some fixed δ > 0, must f(n) be

χ(n)nit-pretentious for some Dirichlet character χ and some t ∈ R?
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The reason for the condition that ∑
n≤x

|f(n)|2 � x

is twofold. First, we wish to exclude functions like f(n) = n−a for some a > 0, and second,
this condition is necessary for D(f, f) to be finite, and therefore for f(n) to be pretentious
to any function. In other words, this condition is necessary for f(n) to fit into the context
of pretentiousness.

To study Question 1, we first ask that if f(n) is χ(n)-pretentious for some character χ,
must Sf (x) be small? This turns out to not be the case - by taking f(p) to be 1 for primes
lying in one of a suitably sparse set of dyadic intervals and to be χ(p) otherwise, one obtains
a function which is χ(n)-pretentious, but for which Sf (x) � x/ log x for infinitely many x.
Thus, we have a function, f(n), which is pretentious to a function, χ(n), which exhibits as
much cancellation as possible in its partial sums, and yet Sf (x) is almost as large as possible.
We therefore must ask whether there is a stronger notion of pretentiousness which preserves
power savings.

To this end, given any two multiplicative functions f(n) and g(n), not necessarily bounded
by 1, define the multiplicative function h(n) by

g(n) = (f ∗ h)(n),

where (f ∗ h)(n) represents the Dirichlet convolution of f(n) and h(n), and, for any β > 0,
define the (possibly infinite) quantity Hβ(f, g) by

Hβ(f, g) :=
∑
p

∞∑
k=1

|h(pk)|
pkβ

.

We caution that the convergence of this quantity is potentially asymmetric in f(n) and g(n).
Motivated by the idea that if f(n) and g(n) are close, then each should need to be modified
only slightly to obtain the other, we say that f(n) and g(n) are strongly β-pretentious to each
other if both Hβ(f, g) and Hβ(g, f) are finite. If f(n) and g(n) are strongly β-pretentious
for each β > 0, then we say that they are totally pretentious to each other.

Theorem 1.1. Suppose that f(n) and g(n) are multiplicative functions, and that Sf (x)� xα

for some α > 0. If f(n) and g(n) are totally pretentious to each other, then Sg(x) � xα.
If, however, f(n) and g(n) are only strongly β-pretentious to each other, then we have that
Sg(x)� xmax(α,β).

Two remarks: First, it is apparent that the first statement of Theorem 1.1 regarding total
pretentiousness is an immediate corollary to the second statement by taking β < α. However,
we consider its merit to be that it presupposes no knowledge of α to deduce that Sg(x) and
Sf (x) exhibit the same level of cancellation.

Second, to obtain the conclusions of Theorem 1.1, it would suffice to suppose only that
Hβ(f, g) is finite, with no hypothesis necessary on Hβ(g, f). We have chosen this formulation
so that strong β-pretentiousness, and hence also total pretentiousness, is an equivalence
relation. However, it is only the symmetry requirement that fails if we rely only on the
finiteness of Hβ(f, g), in that if both Hβ(f, g) and Hβ(g, r) are finite, then so is Hβ(f, r).

Now, we wish to consider the extent to which strong and total pretentiousness relate to
the traditional notion defined by D(f, g). We begin with the observation that, if f(n) and

2



g(n) are bounded by 1 in absolute value, then we have that(∑
p,k

∣∣g(pk)− f(pk)
∣∣

pkγ

)2

≤

(∑
p,k

1

pk(2γ−β)

)(∑
p,k

∣∣g(pk)− f(pk)
∣∣2

pkβ

)

�
∑
p,k

1− Re
(
f(pk)g(pk)

)
pkβ

,

assuming that γ > (1 + β)/2. This last quantity is a kind of generalized distance considered
by Granville and Soundararajan in their book [2], and so the convergence of the initial series
is, in this way, dictated by whether f(n) and g(n) are pretentious in a more traditional
sense (although this observation is valid only if γ > 1/2). Moreover, since we have that
h(p) = g(p)−f(p), it is perhaps not unreasonable to hope that the convergence of this series

is also related to the convergence of Hβ(f, g). Thus, define a distance D̂β,k(f, g) by

D̂β,k(f, g) :=
∑
p

∑
j≤k

|g(pj)− f(pj)|
pjβ

,

and additionally define D̂β := D̂β,∞. Our next theorem shows that, while D̂β(f, g) < ∞
does not imply that Hβ(f, g) < ∞, it does imply the convergence for sufficiently large
primes. We also consider what power cancellation can be deduced directly from assuming

that D̂β,k(f, g) <∞.

Theorem 1.2. Let f(n) and g(n) be multiplicative functions satisfying f(n), g(n) = o(nδ)
for some δ > 0.

1. If D̂β(f, g) <∞, there is a Y > 0 such that if

Hσ(f, g;Y ) :=
∑
p<Y

∑
k

∣∣h(pk)
∣∣

pkσ

converges for some σ ≥ β and σ > δ, then Hσ(f, g) <∞.

2. Suppose that Sf (x) � xα and that D̂β,k(f, g) < ∞. There is a Y > 0 such that if
Hσ(f, g;Y ) <∞ for some σ > 1/(k+1)+δ also satisfying σ ≥ max(α, β), then Sg(x)� xσ.

While it is unfortunate that we are unable to go from D̂β(f, g) < ∞ to Hβ(f, g) < ∞
without checking the convergence of Hβ(f, g;Y ), it is, in fact, generically necessary. If we
let f(n) = (−1)n+1, so that f(2k) = −1 and f(pk) = 1 for all p 6= 2 and all k ≥ 1, and we
let g(n) = 1, then we of course have that Sf (x) � 1 and that Sg(x) � x. However, since

neither function is large and they differ only at the prime 2, we also have that D̂β(f, g) <∞
for every β > 0, and we do not want to deduce any cancellation in Sg(x). The reason that
the theorem does not apply is that |h(2k)| = 2k, so that Hσ(f, g;Y ) diverges for every σ ≤ 1.

Despite the above discussion, for certain classes of functions, we do not have to check the
convergence of Hσ(f, g;Y ). We now present two such classes. The first class is motivated
by the properties of the normalized coefficients of automorphic forms.

Definition 1. Given a positive integer d, let Sd denote the set of “degree d” multiplicative
functions, those functions f(n) such that f(n) = (f1 ∗ f2 ∗ · · · ∗ fd)(n), where each fi(n) is a
completely multiplicative function of modulus bounded by 1.
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As mentioned above, we are able to deduce a nice statement about pretentiousness in
the context of degree d functions. Moreover, since the values at prime powers of a degree
d function are determined by its values on the first d, it should stand to reason that the

convergence of D̂β(f, g) should be dictated by the convergence of D̂β,d(f, g). We are able to
show this as well. Thus, we have the following.

Theorem 1.3. Let f(n) and g(n) be two degree d multiplicative functions such that D̂β,d(f, g) <

∞. We then have that both D̂β(f, g) and Hβ(f, g) are finite. In particular, if we also know
that Sf (x)� xα, then Sg(x)� xmax(α,β).

In the next class of functions, we return to the original setting of pretentiousness, functions
of modulus bounded by 1.

Definition 2. Let f(n) be a mutiplicative function of modulus bounded by 1. We say that
f(n) is good at a prime p if there is no choice of g(n) with modulus bounded by 1 for which
the series ∑

k

|h(pk)|
pkσ

fails to converge for some σ > 0. We say that f(n) is good if it is good at every prime p.

This definition is, of course, exactly what we need to remove the condition on Hσ(f, g;Y ).
However, we note two things: first, it is easy to give examples of good functions – any
completely multiplicative function, say, since we have that |h(pk)| ≤ 2 – and, second, that
it is possible to classify those functions which are good, which we do in Theorem 1.4. Also,

we note that for any f(n) and g(n) bounded by 1, to check the convergence of D̂β(f, g), it

suffices to check the convergence of D̂β,β−1(f, g).

Theorem 1.4. Let f(n) and g(n) be multiplicative functions of modulus bounded by 1.

1. If f(n) is good and D̂β(f, g) < ∞, then Hβ(f, g) < ∞. Thus, if Sf (x) � xα, we have
that Sg(x)� xmax(α,β).

2. f(n) is good at p if and only if the function

Fp(z) :=
∞∑
k=0

f
(
pk
)
zk

has no zeros in the open unit disc.

Finally, we return to the Granville-Soundararajan distance function, and we ask to what
extent the natural modification

Dβ(f, g)2 :=
∑
p

1− Re(f(p)g(p))

pβ

allows one to detect power cancellation for multiplicative functions of modulus bounded by
1. For convenience, if Dβ(f, g) is finite, we say that f(n) and g(n) are β-pretentious. As in
Theorem 1.2, given f(n) and g(n), we will need a consideration of h(n) at small primes, so
we define

H2
σ(f, g) :=

∑
p≤13

∞∑
k=0

|h(pk)|2

pkσ
,
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although, strictly speaking, only the condition p ≤ 41/σ is necessary (only σ > 1/2 will be
used, so p ≤ 13 is, indeed, weaker). We have the following result, establishing both that
β-pretentiousness is sufficient to detect some power cancellation, but that it is fundamentally
unable to detect to the level we desire.

Theorem 1.5. Let f(n) and g(n) be multiplicative functions bounded by 1 such that Sf (x)�
xα for some α < 1, and suppose that Dβ(f, g) <∞ for some β ∈ (0, 1].

1. If σ > 3/4 is such that σ ≥ max(α, (1 + β)/2) and H2
2σ−1(f, g) <∞, then Sg(x)� xσ.

2. If f(n) and g(n) are both completely multiplicative, then Sg(x)� xmax(α,(1+β)/2).
3. If f(n) is completely multiplicative and β ≥ 2α− 1, there is a completely multiplicative

function f ′(n) that is β-pretentious to f(n) and is such that Sf ′(x) is not Oε

(
x

1+β
2
−ε
)

.

Three remarks: While it’s perhaps unsatisfying that β-pretentiousness only detects power

savings down to O
(
x

1+β
2

)
even for completely multiplicative functions, the conclusion of the

theorem can be strengthened if f(n) and g(n) are assumed to be real-valued. The reason
for this is that our proof of optimality relies crucially on the fact that 1−Re(f(p)ḡ(p)) can
be much smaller than |f(p) − g(p)|, which is not the case if f(n) and g(n) take values in
[−1, 1]. Thus, if f(n) and g(n) are β-pretentious and real-valued, then we also have that

D̂β,1(f, g) <∞, and so Theorem 1.2 applies.
Second, as the proof of Theorem 1.5 will show, if we have the stronger condition that

Sf (x) = o(xα), then we may conclude that Sg(x) = o (xσ).
Third, there are quantitative versions of Halász’s theorem, due to Halász [8], Montgomery

[10], Tenenbaum [12], and Granville and Soundararajan [2] and [4], but all of these theorems

are essentially unable to detect cancellation below O
(
x log log x

log x

)
, and so are useless for the

question of power cancellation. There is also very recent work of Koukoulopoulos [9], who
establishes a variant of Halász’s theorem allowing detection of cancellation down to the level
of O

(
x exp

(
−c
√

log x
))

, but, again, this is insufficient for our purposes.
In view of Theorem 1.5, which implies that β-pretentiousness is enough to detect power

savings down to O(x(1+β)/2), it’s natural to ask what happens if (1 + β)/2 < α, so that
we can detect below the order of magnitude of Sf (x). That is, supposing we have precise
information about Sf (x), can we use β-pretentiousness to deduce precise information about
Sg(x)? This is the content of our final theorem. For convenience, we state the necessary
conditions on f(n) and g(n) here.

First, if f(n) and g(n) are both completely multiplicative, we only require that they are β-
pretentious to each other for some β > 0. If, however, either is not completely multiplicative,
we must also have that if Sf (x) �ε x

α+ε for all ε > 0, then α > 3/4, and that both of the
series H2

2σ−1(f, g) and H2
2σ−1(g, f) are convergent for some σ < α.

Theorem 1.6. Let f(n) and g(n) be as above.

1. If Sf (x) = xαξ(x) for some function ξ(x) satisfying ξ(t) �ε t
ε, then Sg(x) = xαξ̃(x)

for an explicitly given function ξ̃(x) also satisfying ξ̃(t)�ε t
ε.

2. If ξ(t) satisfies the mean-square lower bound∫ T

1

|ξ(t)|2dt�ε T
1−ε,

then ξ̃(t) does as well.
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We have in mind the following two applications of Theorem 1.6: First, if Sf (x) satisfies
an asymptotic formula, then so does Sg(x). For example, if the Dirichlet series associated to
f , L(s, f), has a finite number of poles on the line Re(s) = α and is otherwise analytic on
Re(s) > α − δ for some δ, then standard Tauberian theorems (for example, see [11]) show
that

Sf (x) =
∑

ρ:Re(ρ)=α
ords=ρL(s,f)<0

xρPρ(log x) +O(xα−δ+ε),

where each Pρ(log x) is a polynomial in log x. Thus, with the notation of Theorem 1.6, we
have that

ξ(x) =
∑

ρ:Re(ρ)=α
ords=ρL(s,f)<0

xIm(ρ)Pρ(log x) +O(x−δ+ε),

and it is easy to see that ξ(x) satisfies the required upper bound. Thus, we can apply

Theorem 1.6, and it turns out that in this application, ξ̃(x) works out to be

ξ̃(x) =
∑

ρ:Re(ρ)=α
ords=ρL(s,f)<0

xIm(ρ)Qρ(log x) +O(x−δ
′
)

for some suitably small δ′ > 0, where Qρ(log x) is a polynomial in log x of the same degree

as Pρ(log x). Thus, the explicit nature of ξ̃(t) is of use.
Second, if Sf (x) exhibits a consistent level of cancellation, then so does Sg(x). In the

above situation, we made use of the explicit nature of ξ̃(x) to deduce an asymptotic formula
for Sg(x), but in many cases, we would not be lucky enough to have an asymptotic formula
for Sf (x) with which to begin. However, it is often possible to deduce the weaker statement
that Sf (x) 6�ε x

α−ε for any ε > 0 – for example, L(s, f) may have infinitely many poles
on the line Re(s) = α. In this situation, the use of the mean-square lower bound becomes
apparent - because Sf (x) exhibits cancellation without satisfying an asymptotic formula, it
is likely that Sf (x) could be exceptionally small, perhaps even 0, for some values of x, but it
also seems that this occurrence should be fairly rare. We can therefore deduce from Theorem
1.6 that if xα is the right order of magnitude of Sf (x) in this sense, then xα is also the right
order of magnitude for Sg(x).

This paper is organized as follows: In Section 2, we consider strong pretentiousness and its
relation to the Granville-Soundararajan distances, as discussed in the introduction. Thus,
this is where Theorems 1.1-1.4 are proved. In Section 3, we consider the notion of β-
pretentiousness, and establish Theorems 1.5 and 1.6

2. Strong pretentiousness

In this section, we consider the distances Hβ(f, g) and D̂β,k(f, g) and their relation to each
other. Thus, we prove Theorems 1.1-1.4, and we do so, in order, in Sections 2.1-2.4.

2.1. Detecting power cancellation. We now let f(n), g(n), and h(n) be as in the hy-
potheses of Theorem 1.1. Thus, f(n) and g(n) are multiplicative and h(n) is defined by
g(n) = (f ∗ h)(n). We now prove Theorem 1.1.
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Proof of Theorem 1.1. Suppose that Sf (x) � xα for some α > 0. We first claim that the
series

∑∞
n=1 |h(n)|/nβ is convergent. From this, we conclude that∑

n≤x

g(n) =
∑
m≤x

h(m)
∑
d≤x/m

f(d)

� xα
∑
m≤x

|h(m)|
mα

� xmax(α,β),

by partial summation. Thus, to establish the theorem, it just remains to show that the series
above is convergent. However, this, too, is straightforward, as we have that

∞∑
n=1

|h(n)|
nβ

=
∏
p

(
1 +

∞∑
k=1

|h(pk)|
pkβ

)

≤
∏
p

exp

(
∞∑
k=1

|h(pk)|
pkβ

)
= exp (Hβ(f, g)) <∞.

Thus, we have proved Theorem 1.1. �

2.2. Relation to Granville-Soundararajan distances: Proof of Theorem 1.2. We

now wish to relate the finiteness of the distance D̂β(f, g) to the finiteness of Hβ(f, g). For
convenience, we recall that

Hβ(f, g) :=
∑
p,k

|h(pk)|
pkβ

, D̂β,k(f, g) :=
∑
p

∑
j≤k

|g(pj)− f(pj)|
pjβ

,

and that D̂β(f, g) := D̂β,∞(f, g).
From the definition of h(n), we have that

g(pk)− f(pk) =
k∑
j=1

f(pk−j)h(pj),

which, by incorporating all the powers up to n, we may express in terms of the n×n matrix
A :=

(
f(pi−j)

)
i,j≤n, as

A · (h(p), · · · , h(pn))t = (g(p)− f(p), · · · , g(pn)− f(pn))t .

where we have set f(pj) = 0 if j < 0. For any k ≥ 1, define Df (k, p) to be the determinant
of the k × k matrix (aij) given by

aij =

{
f(pi−j+1) if i− j + 1 ≥ 0
0 otherwise,

so that (−1)kDf (k, p) is the (n, n− k)-th entry of the matrix A−1. We now have that

h(pn) =
n−1∑
k=0

(−1)k(g(pn−k)− f(pn−k))Df (k, p).
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Therefore for σ > 0 sufficiently large, we have that

∞∑
n=1

|h(pn)|
pnσ

≤
∞∑
n=1

(
n∑
k=1

|f(pk)− g(pk)| · |Df (n− k, p)|

)
p−nσ

=

(
∞∑
n=0

|Df (n, p)|
pnσ

)(
∞∑
m=1

|f(pm)− g(pm)|
pmσ

)
.

Of course, at this stage, we would like to sum over p. Lemma 2.1 below states that the first
quantity on the right hand side is uniformly bounded for p sufficiently large, say p > Y1,
provided that f(n) is not too big, say f(n) = o(nδ), and that σ > δ. Thus, if we assume
that Hσ(f, g;Y1) is finite, when we sum over p, the second summation on the right hand side

will yield D̂σ(f, g), and the first part of Theorem 1.2 follows.

Lemma 2.1. If f(n) = o(nδ) and σ > δ, then for all but finitely many p, the series

∞∑
n=0

|Df (n, p)|
pnσ

is convergent and uniformly bounded.

Proof. Let M(k, p) be the maximum of the absolute value of the determinants of the k × k
matrices (aij) which satisfy

|aij| ≤
{
p(i−j+1)δ if i− j + 1 ≥ 0
0 otherwise.

Then, we observe that

M(k + 1, p) ≤ 2pδM(k, p)

by cofactor expansion, and that M(1, p) = pδ. It therefore follows that

M(k, p) ≤ 2k−1pkδ,

which implies that the bound

|Df (n, p)| < (2pδ)n

holds for all but finitely many p. �

Now, it remains to establish the second part of Theorem 1.2. To do so, we must be able
to control the contribution of large prime powers to the sum

∞∑
m=1

|f(pm)− g(pm)|
pmσ

.

This control is provided by our assumption that f(n), g(n) = o(nδ). In particular, it is
straightforward to see that ∑

p>Y2

∞∑
m=k+1

|f(pm)− g(pm)|
pmσ

must converge for some Y2, provided that σ > 1
k+1

+ δ. Thus, the second part of Theorem
1.2 is obtained with Y = max(Y1, Y2).
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2.3. Degree d functions: Proof of Theorem 1.3. Suppose that f(n) and g(n) are mul-

tiplicative functions of degree d, and that D̂β,d(f, g) < ∞. We first show that D̂β(f, g) is
finite, and then we consider Hβ(f, g).

Lemma 2.2. Let f(n) and g(n) be degree d multiplicative functions, and suppose that

D̂β,d(f, g) <∞. Then D̂β(f, g) <∞.

Proof. We begin with some general notation. For any given pair of integers k, d ≥ 0, define
the homogeneous symmetric polynomials rdk and qdk of degree k in d variables by

rdk(x1, · · · , xd) :=


1, if k = 0∑
1≤i1<···<ik≤d

xi1xi2 · · · xik , if 1 ≤ k ≤ d

0, if k > d,

and

qdk(x1, · · · , xd) :=
∑

j1+···+jd=k

xj11 x
j2
2 · · · x

jd
d .

Then for an auxiliary variable X, we have that

∞∑
k=0

qdkX
k =

d∏
j=1

(
∞∑
k=0

xkjX
k

)

=
d∏
j=1

(1− xjX)−1

=

(
d∑

k=0

(−1)krdkX
k

)−1
,

which implies that the identity

k∑
j=0

(−1)jrdk−jq
d
j = 0

holds for all k ≥ 1.
Now, if f(n) is a multiplicative function of degree d, so that f = f1 ∗ · · · ∗ fd where each

fi is completely multiplicative, we have that f(pk) = qdk(f1(p), . . . , fd(p)). Thus, if we set
αk(f, p) = rdk(f1(p), . . . , fd(p)) for k = 0, · · · , d, we have that

d∑
k=0

(−1)kαk(f, p)f(pn−k) = 0

for any n ≥ 0, where, of course, we have set f(pr) = 0 for r < 0. In particular, for any
multiplicative functions f(n) and g(n) of degree d, since αk(f, p)�d 1, we have that

|αk(f, p)− αk(g, p)| �d |f(p)− g(p)|+ |f(p2)− g(p2)|+ · · ·+ |f(pd)− g(pd)|
9



for any k = 1, · · · , d. We are now ready to prove the lemma. Assume that n ≥ d + 1.
Observing that f(pn)�d n

d−1 and αk(f, p)�d 1, we have

|f(pn)− g(pn)| =

∣∣∣∣∣
d∑

k=1

(−1)kαk(f, p)f(pn−k) + (−1)kαk(g, p)g(pn−k)

∣∣∣∣∣
�d

d∑
k=1

∣∣αk(f, p)f(pn−k) + αk(g, p)g(pn−k)
∣∣

�d

d∑
k=1

∣∣αk(f, p) (f(pn−k)− g(pn−k)
)
|+ |g(pn−k) (αk(f, p)− αk(g, p))

∣∣
�d

d∑
k=1

∣∣f(pn−k)− g(pn−k)
∣∣

+ nd−1
(
|f(p)− g(p)|+ · · ·+ |f(pd)− g(pd)|

)
,

Since
∞∑
n=1

|f(pn)− g(pn)|
pnσ

�d

∞∑
n=1

nd−1

pnσ

is convergent, this inequality leads to

∞∑
n=d+1

|f(pn)− g(pn)|
pnσ

�d

d∑
k=1

∞∑
n=d+1

|f(pn−k)− g(pn−k)|
pnσ

+
∞∑

n=d+1

nd−1

pnσ
(
|f(p)− g(p)|+ · · ·+ |f(pd)− g(pd)|

)
�d

1

pσ

∞∑
n=1

|f(pn)− g(pn)|
pnσ

.

Therefore for all sufficiently large p, we have

∞∑
n=d+1

|f(pn)− g(pn)|
pnσ

�d

d∑
n=1

|f(pn)− g(pn)|
pnσ

.

By summing over p, we get the conclusion. �

It remains to show that Hβ(f, g) is finite. Recall for each prime p, that

∞∑
n=1

|h(pn)|
pnβ

≤

(
∞∑
n=0

|Df (n, p)|
pnβ

)(
∞∑
m=1

|f(pm)− g(pm)|
pmβ

)
,

where Df (n, p) is as in Section 2.2. We will show that the first summation on the right hand

side is uniformly bounded, so that by summing over p and using the finiteness of D̂β(f, g),
the result follows.
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Lemma 2.3. If f(n) is a degree d multiplicative function and σ > 0, then, for all p, the
series

∞∑
n=0

|Df (n, p)|
pnσ

converges and is bounded independent of p.

Proof. Recall that we defined Df (k, p) so that the equation,

h(pn) =
n−1∑
k=0

(−1)k(g(pn−k)− f(pn−k))Df (k, p),

holds. We may think of this as a linear polynomial in the variables g(pi) for i = 1, . . . , n,
and we note that the coefficient of g(pn−j) is Df (j, p) for all j. On the other hand, from the
definition of h(n), we have the Euler product identity∏

p

(
∞∑
n=0

h(pn)p−ns

)
=
∏
p

(
∞∑
n=0

g(pn)p−ns

)(
1− f1(p)p−s

)
. . .
(
1− fd(p)p−s

)
,

where the fi(n) are the constituent completely multiplicative functions of f(n). Thus, h(pn)
can be expressed as a linear combination of the variables g(pi) for i = n−d, . . . , n. Combining
these two observations, we conclude that Df (k, p) = 0 for k ≥ d + 1. The result follows by
noting that each of the Df (k, p) for k ≤ d can be bounded independent of p. �

2.4. Good functions. Recall that a multiplicative function f(n) of modulus bounded by
1 is good at p if there are no multiplicative functions g(n), of modulus bounded by 1, such
that the series

∞∑
k=0

|h(pk)|
pkσ

diverges for any σ > 0, and that f(n) is good if it is good at each prime p. This condition
ensures that Hσ(f, g;Y ) is finite for every Y > 0, so the first part of Theorem 1.4 is imme-

diate, that the finiteness of D̂β(f, g) implies the finiteness of Hβ(f, g). The second part, the
classification of functions which are good at p, is proved along the following lines.

Recall that we defined

Fp(z) :=
∞∑
k=0

f
(
pk
)
zk,

and we wish to show that f(n) is good at p if and only if Fp(z) has no zeros in the open unit
disc. To do this, we observe that Gp(z) = Fp(z)Hp(z), where Gp(z) and Hp(z) are defined
analogously to Fp(z). Since g(n) is bounded by 1, we must have that Gp(z) is holomorphic
in the disc. Now, the convergence of

∞∑
k=0

|h(pk)|p−kσ

is equivalent to the statement that Hp(z) is holomorphic. Thus, the result follows.
11



3. β-pretentiousness

In this section, we consider the notion of β-pretentiousness in some detail. Recall that
two multiplicative functions f(n) and g(n), both of modulus bounded by 1, are such that
the series

Dβ(f, g) =
∑
p

1− Re(f(p)ḡ(p))

pβ

converges, then they are said to be β-pretentious. In Section 3.1, we establish that if f(n) and
g(n) are β-pretentious and if Sf (x) � xα, then we can detect power cancellation in Sg(x).
In Section 3.2, we construct a function f ′(n) which is β-pretentious to f(n) and exhibits
as little cancellation as possible in view of the estimates established in Section 3.1, thereby
establishing their optimality. Thus, these two sections comprise the proof of Theorem 1.5. In
Section 3.3, we establish Theorem 1.6 regarding what happens if we are permitted to detect
more cancellation than exists.

3.1. Detecting power cancellation. The key result which we use to exhibit cancellation
in Theorem 1.5 is the following proposition, which of course is reminiscent of the proof of
Theorem 1.1.

Proposition 3.1. Let f(n) g(n) be as above, and let h(n) be defined by g(n) = (f ∗ h)(n).
If the series

∞∑
n=1

|h(n)|2

nσ

is convergent for some σ > 0, then Sg(x)� xmax(α,(1+σ)/2). Moreover, if Sf (x) = o(xα), then
Sg(x) = o(xmax(α,(1+σ)/2)).

Proof. From the definition of h(n), we have that∑
n≤x

g(n) =
∑
m≤x

h(m)
∑
d≤x/m

f(d)

� xα
∑
m≤x

|h(m)|
mα

≤ xα

(
∞∑
m=1

|h(m)|2

mσ

)1/2(∑
m≤x

1

m2α−σ

)1/2

� xmax(α,(σ+1)/2).

If we have the stronger assumption that Sf (x) = o(xα), by splitting the sum over m on the
first line according to whether m is large and proceeding in the same way, it is easily seen

that Sg(x) = o
(
xmax(α, 1+σ2 )

)
. �

In light of Proposition 3.1, to prove the first part of Theorem 1.5, it suffices to establish
the following lemma.
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Lemma 3.1. If f(n), g(n), and h(n) are as above, |f(n)|, |g(n)| ≤ 1 for all n, f(n) and
g(n) are β-pretentious for some β > 0, and σ > 1/2 is such that σ ≥ β, then the series

∞∑
n=1

|h(n)|2

nσ

converges if the quantity

H(σ) =
∑
p≤41/σ

∞∑
k=0

|h(pk)|2

pkσ

is finite.

Proof. Since |g(n)| ≤ 1 and |f(n)| ≤ 1, we have that

|h(pk)| ≤ 2k

for all p and all k. Therefore for p > 41/σ, one has

∞∑
k=1

|h(pk)|2

pkσ
≤ 1− Re(f(p)g(p))

pσ
+

16

p2σ
(1− 4/pσ)−1.

Thus, our assumption that σ ≥ β and that

Dβ(f, g) =
∑
p

1− Re(f(p)g(p))

pβ

is finite, together with the assumptions of the lemma, guarantee that the series

∞∑
n=1

|h(n)|2

nσ
=
∏
p

(
∞∑
k=0

|h(pk)|2

pkσ

)

is absolutely convergent. �

To establish the cancellation for completely multiplicative functions claimed in the second
part of Theorem 1.5, we have the following lemma.

Lemma 3.2. If f(n),g(n), and h(n) are as in Lemma 3.1 and f(n) and g(n) are completely
multiplicative, then the series

∞∑
n=1

|h(n)|2

nβ

is convergent.

Proof. Since h(pk) = g(pk−1)(g(p)− f(p)) for all primes p and all k ≥ 1, we have that

|h(pk)|2 ≤ |g(p)− f(p)|2 ≤ 2(1− Re(f(p)ḡ(p))).
13



Therefore, we have that

∞∑
n=1

|h(n)|2

nβ
=
∏
p

(
1 +

∞∑
k=1

|h(pk)|2

pkβ

)

≤
∏
p

(
1 +

2(1− Re(f(p)ḡ(p)))

pβ
(1− p−β)−1

)

≤ exp

(∑
p

2(1− Re(f(p)ḡ(p)))

pβ
(1− 2−β)−1

)
= exp

(
2(1− 2−β)−1Dβ(f, g)

)
<∞,

exactly as desired. �

To establish Theorem 1.5, it now remains to establish the optimality of the bound for
completely multiplicative functions.

3.2. Optimality. It is worth noting at this point that there is another natural approach
to proving the theorem, albeit one that is not entirely within the bounds of the pretentious
philosophy. From the relation g(n) = (f ∗ h)(n), we have the Dirichlet series identity

L(s, g) = L(s, f)L(s, h).

The assumption that Sf (x)� xα translates to L(s, f) being analytic in the right half-plane
Re(s) > α and the assumption that g(n) is β-pretentious to f(n), in light of Lemma 3.1
and the Cauchy-Schwarz inequality, implies that L(s, h) is analytic in the region Re(s) >
max

(
3/4, 1+β

2

)
. Standard arguments (e.g. Perron’s formula) then imply the desired bound

for Sg(x). Our proof of optimality will proceed along similar lines. While it is somewhat
unfortunate that we have to use this mildly non-pretentious argument, it is not entirely clear
how to avoid its use.

Lemma 3.3. Given any β > 0 and a completely multiplicative function f(n) of modulus
bounded by 1 such that f(n) is 1-pretentious to itself, there is a completely multiplicative
function g(n) that is β-pretentious to f(n), and which does not satisfy Sg(x) � x(1+β)/2−ε

for any ε > 0.

Proof. First, we may assume that L(s, f) is analytic in the region Re(s) > (1 + β)/2− δ for
some δ > 0, otherwise we could simply take g(n) to be f(n). Let

g(p) := e

(
ωp

p
1−β
2 log log p

)
f(p),

where ωp = ±1 is a system of signs to be specified later and, as is standard, e(x) := e2πix.
It is easy to verify that g(n) is β-pretentious to f(n). Our goal is to force L(s, h) to have a
singularity at s = 1+β

2
. We compute the Euler product for L(s, h) using the Taylor expansion
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of e(x), getting that

L(s, h) =
∏
p

(
1 +

g(p)− f(p)

ps
+O

(
p−2s

))

=
∏
p

(
1 +

2πiωpf(p)

ps+
1−β
2 log log p

+O
(
p−2s + p−s−1+β

))
.

The convergence of L(s, h) at s = 1+β
2

is thus dictated by the behavior of the series

Pf (τ) :=
∑
p

iωpf(p)

pτ log log p

as τ tends to 1 from the right. In particular, L(s, h) will have a singularity at s = 1+β
2

if we
can force either the real part of Pf (τ) to tend to infinity, accounting for a (possibly fractional
order) pole, or, failing that, to have the real part of Pf (τ) converge but the imaginary part
diverge to infinity, accounting for an essential singularity. Obviously, we now choose ωp to
ensure one of these situations. If the series∑

p

Im(f(p))

p log log p

is not absolutely convergent, we choose ωp = −sign(Im(f(p))), forcing Re(Pf (τ)) to diverge
to infinity. If the series is absolutely convergent, we choose ωp = sign(Re(f(p))), observing
that ∑

p

|Re(f(p))|
pτ log log p

+
∑
p

|Im(f(p))|
pτ log log p

≥
∑
p

Re(f(p))2 + Im(f(p))2

pτ log log p

=
∑
p

|f(p)|2

pτ log log p

≥
∑
p

1

pτ log log p
− D1(f, f),

which tends to infinity as τ → 1+. We thus have that

Im

(∑
p

iωpf(p)

p log log p

)
=
∑
p

|Re(f(p))|
p log log p

=∞,

from which we conclude that Im(Pf (x)) tends to infinity. We have thus constructed g(n)

so that L(s, h) has a singularity at s = 1+β
2

, so provided that L
(
1+β
2
, f
)
6= 0, we obtain

the result. If L
(
1+β
2
, f
)

= 0, there is a t ∈ R such that L
(
1+β
2

+ it, f
)
6= 0. We make

the obvious modifications to the construction above to force L(s, h) to have a singularity at
s = 1+β

2
+ it. �

3.3. Asymptotic formulae. We now suppose we are in the situation of Theorem 1.6. That
is, we assume that f(n) is multiplicative, of modulus bounded by 1, and is such that

Sf (x) = xαξ(x)
15



for some function ξ(x) satisfying ξ(t)�ε t
ε for all ε > 0, and we also assume that β < 2α−1.

In addition, if f(n) is not completely multiplicative, we assume that α > 3/4 and that the
series H2

2σ−1(f, g) and H2
2σ−1(g, f) are convergent. To establish a formula for Sg(x), we note

that ∑
n≤x

g(n) =
∑
m≤x

h(m)
∑
d≤x/m

f(d)

= xα
∑
m≤x

h(m)

mα
ξ(x/m),

and so we naturally define ξ̃(x) to be the convolution

ξ̃(x) :=
∑
m≤x

h(m)

mα
ξ(x/m).

To see that ξ̃(x)� xε, we merely note that

|ξ̃(x)| ≤
∑
m≤x

|h(m)|
mα

|ξ(x/m)| �ε x
ε
∑
m≤x

|h(m)|
mα+ε

.

Our assumptions guarantee that the series on the right is convergent, whence the claimed
bound. Now, suppose that ∫ T

1

|ξ(t)|2dt�ε T
1−ε.

Möbius inversion gives that

ξ(x) =
∑
m≤x

h̃(m)

mα
ξ̃(x/m),

where h̃(n) is the Dirichlet inverse of h(n) (i.e., (h ∗ h̃)(1) = 1 and (h ∗ h̃)(n) = 0 for n > 1).
Using this and the Cauchy-Schwarz inequality in the above, we obtain that

T 1−ε �ε

∫ T

1

(∑
m≤t

|h̃(m)|2

mβ

)(∑
m≤t

|ξ̃(t/m)|2

m2α−β

)
dt

≤
∞∑
m=1

|h̃(m)|2

mβ

∫ T

1

∑
m≤t

|ξ̃(t/m)|2

m2α−β dt

=
∞∑
m=1

|h̃(m)|2

mβ

∑
m≤T

1

m2α−β−1

∫ T/m

1

|ξ̃(t)|2dt

� T 2−2α+β
∫ T

1

|ξ̃(t)|2 dt

t2−2α+β
,

where the infinite series is convergent by assumption, so we have absorbed it into the implied
constant. Now, let

I :=

∫ T

1

|ξ̃(t)|2dt,
16



and apply Hölder’s inequality to get that∫ T

1

|ξ̃(t)|2 dt

t2−2α+β
≤ I

2α−β−1
2

(∫ T

1

|ξ̃(t)|2

t
2(2−2α+β)
3−2α+β

dt

) 3−2α+β
2

�ε I
2α−β−1

2

(∫ T

1

t
−2(2−2α+β)

3−2α+β
+εdt

) 3−2α+β
2

� I
2α−β−1

2 T
2α−β−1

2
+ε.

Using this in the above, we obtain that

I
2α−β−1

2 T
3−2α+β

2
+ε �ε T

1−ε,

and so we have that

I
2α−β−1

2 �ε T
2α−β−1

2
−ε,

and the result follows, concluding the proof of Theorem 1.6.
Since the Dirichlet series L(s, h) for Re(s) ≥ α plays a critical role in the definition of

ξ̃(x), it is useful to know whether it is 0. In particular, in applying Theorem 1.6 in the case
when Sf (x) satisfies an asymptotic formula, we might potentially lose a term in our formula
if L(ρ, h) = 0 for some pole ρ of L(s, f). However, we have the following simple observation.

Lemma 3.4. If f(n) and g(n) are completely multiplicative and as above, then the Dirichlet
series L(s, h) associated to h(n) is non-zero in the region Re(s) > (1 + β)/2.

Proof. Since h(n) is defined by the relation g = f ∗ h, we have the Dirichlet series formula

L(s, h) =
L(s, g)

L(s, f)
.

By Lemma 3.2, this is absolutely convergent in the region Re(s) > (1 + β)/2. If we define

h̃(n) by f = g ∗ h̃, the same argument applies to L(s, h̃). Since we also have that

L(s, h̃) =
1

L(s, h)
,

this immediately yields the result. �

Of course, if f(n) and g(n) are not completely multiplicative, the analog of Lemma 3.4
can still be obtained with Lemma 3.1 replacing Lemma 3.2.
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