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Abstract

Geometric frustration occurs when a physical system’s preferred ordering

(e.g. spherical particles packing in a hexagonal lattice) is incompatible with

the system’s geometry. An example of this occurs in arrested relaxation in

Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil

and water) with colloidal particles mixed in. The particles tend to lie at an

oil-water interface, and can coat the surface of droplets within the emulsion

(e.g. an oil droplet surrounded by water.) If a droplet is deformed from its

spherical ground state, more particles adsorb at the surface, and the droplet is

allowed to relax, then the particles on the surface can become close packed and

prevent further relaxation, arresting the droplet in a non-spherical shape. The

resulting structures tend to be relatively well ordered with regions of highly

hexagonal packings; however, the curvature of the surface prevents perfect

ordering and defects in the packing are required. These defects may influence

the stability of these structures, making it important to understand how to

predict and control them for applications in the food, cosmetic, oil, and medical

industries.

In this work, we use simulations to study the ordering and stability of

sphere packings on arrested emulsions droplets. We first isolate the role of

surface geometry by creating packings on a static ellipsoidal surface. Next

we perform simulations which include dynamic effects that are present in the

experimental Pickering emulsion system. Packings are created by evolving an

ellipsoidal surface towards a spherical shape at fixed volume; the effects of

relaxation rate, interparticle attraction, and gravity are determined. Finally,

we study jamming on curved surfaces. Packings of hard particles are used to

study marginally stable packings and the role curvature plays in constraining

them. We also study packings of soft particles, compressed beyond marginal
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stability, and find that geometric frustration plays an important role in deter-

mining their mechanical properties.
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Order and Jamming on Curved

Surfaces

1



Chapter 1

Introduction

The goal of this thesis is to explore the role that geometric frustra-

tion plays in packings of spheres on ellipsoidal surfaces, which are

used to model arrested Pickering emulsion droplets. We want to

understand the role geometry plays in disrupting order and creating defects in

these packings, how the order is affected by the dynamics of droplet formation,

and how the geometry affects jamming, i.e. the mechanical rigidity of these

packings.

In emulsions, which are mixtures of two immiscible fluids such as water and

oil, it is energetically favorable to minimize the surface area at the interface

between the two fluids. This promotes coalescence of droplets of the same fluid,

leading to the fluids separating. It also creates a tendency for a droplet of one

of the fluids surrounded by the other to take on a spherical shape, as this is

the shape that minimizes surface area for a given volume. This becomes more

complicated in a Pickering emulsion, which is an emulsion containing colloidal

particles. In a Pickering emulsion, it is energetically favorable for particles to

adsorb at fluid-fluid interfaces in order to reduce interfacial tension, thereby

helping to stabilize the emulsion.

2
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One specific phenomenon which can occur in a Pickering emulsion is ar-

rested relaxation. It is possible to deform a droplet from its spherical ground

state, increasing the surface area and allowing more particles to adsorb at its

surface. When the droplet is allowed to relax back towards a spherical shape,

the particles become more densely packed. If the initial surface coverage was

high enough the particles form a close packed layer, arresting the surface evo-

lution and resulting in a non-spherical droplet coated by a shell of particles.

This phenomenon is relevant in crude oil extraction, as well as for appli-

cations in medicine, cosmetics, and the food industry. It leads to a system

with a rich microstructure that lies at the intersection of several fields of study

within physics. If the particles are all spheres of the same size, the resulting

structures consist of a relatively ordered packing on a curved surface; however,

perfect ordering is incompatible with curvature due to the phenomenon of ge-

ometric frustration. Dense packings of particles may not be perfectly rigid;

some applied load or thermal motion may lead to displacements which allow

particles more room to move. If a packing is stable against these types of

motions, it is jammed. Packing problems have been studied in a wide variety

of systems, from the infinite packing limit down to highly confined packings.

Typically the optimal arrangement of a collection of particles depends strongly

on its constraints.

In this thesis we explore how these factors influence the structure of pack-

ings of particles on ellipsoidal surfaces to better understand the structures

produced through arrested relaxation. We will begin by giving further back-

ground on the physics mentioned above in chapter 2. In chapter 3 we will

detail the numerical methods used to perform the studies presented in this

thesis.

Chapter 4 will present results on packings of particles created on static
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ellipsoidal surfaces, in order to understand the influence of surface geometry on

particle ordering. We investigate how anisotropic surface curvature influences

the placement of topological defects, how it influences the formation of excess

defects, whether it causes directional ordering of chains of defects, and finally

we carry out a search for highly symmetric packings which are found among

smaller packings. Chapter 5 will then look at packings formed on surfaces

which evolve at a constant volume in order to understand how the dynamics

of the packing formation affect the resulting packing, with a focus on the effects

of relaxation rate, interparticle attraction, and gravity.

In chapter 6 we study the rigidity of the arrested structures to determine

whether they are jammed. We find that while the initially arrested struc-

tures are not jammed, they can be further evolved to reach a jammed state,

and surface curvature plays and important role on these jammed packings.

In chapter 7 we begin looking at bidisperse packings of particles on spheres

(i.e. packings with particles of two different sizes) in order to understand how

packing structure and particle ordering are affected by curvature in bidisperse

systems.

Chapter 8 briefly describes an experimental realization of arrested Pickering

emulsions, which our collaborator Patrick Spicer’s group is able to create and

study. The thesis concludes in chapter 9 with a summary of results, a list of

remaining questions, and prospects for future work.

An appendix which briefly explores the idea of particles constrained to

curved surfaces by a soft potential is included. Additionally, papers which I

have published or submitted for review, but which are not directly related to

the rest of this thesis, are included as appendices for the sake of completeness.



Chapter 2

Background

2.1 Order and curvature

Packing particles on a curved surface is a problem that leads to ge-

ometric frustration: packing monodisperse (equal-size) spheres on

a flat surface favors an orderly hexagonal lattice, but the curvature

of the surface frustrates this ordering, introducing defects. A classic example

of this is the Thompson problem[2], which asks: what is the arrangement of

like-signed electrical charges constrained to a sphere which minimizes their en-

ergy? Solutions to this problem tend to have large regions of hexagonal lattice,

but require defects. Defects are topological in nature and can be understood

in terms of deformations in the underlying hexagonal lattice. There are two

types of defects possible in a hexagonally ordered system: disclinations and

dislocations. Disclinations correspond to an angular slice missing from, or an

extra slice added to, a hexagonal lattice: upon traversing a closed loop around

a disclination, one will have passed through less than or greater than six an-

gular portions of the lattice (fig. 2.1a and b). This deficit or excess can be

quantified as a topological charge, q = (2π − θ)/(π/3), where θ is the angular

5
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a) b) c)

Figure 2.1: a) A positive disclination, with 5-fold coordination. b) A negative
disclination, with 7-fold coordination. c) A dislocation, consisting of adjacent
positive and negative disclinations. By traversing a path consisting of equal
and opposite vectors along each lattice direction, one does not follow a closed
loop. This mismatch is given by the Burger’s vector, ~b.

portion of the lattice traversed.

Dislocations correspond to a translational mismatch after traversing a

closed loop. After circling a dislocation by moving in directions parallel to

the lattice vectors, as in fig. 2.1c, one will find that the number of lattice sites

traversed along one of the directions will not reduce to zero. The lattice vector

corresponding to this mismatch is known as the Burger’s vector. Dislocations

can be understood as pairs of positive and negative disclinations, and have

zero net topological charge.

Another way to characterize topological defects is in terms of particle coor-

dination numbers. The coordination number refers to the number of neighbors

a particle has. Given a suitable definition for neighbors, the topological charge

is given by q = 6− c where c is the coordination number. In Euclidean space

one can utilize the Voronoi diagram of a collection of particles. A Voronoi

diagram is a collection of polygons, one for each particle, such that any given

point in space lies within to the polygon of the particle to which that point

is closest (in terms of Euclidean distance to the center of the particle.)[3] For

each particle, the coordination number is given by the number of faces its
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a) b) c)

Figure 2.2: a) A set of randomly placed particles with centroids highlighted.
b) The Voronoi diagram of the same set of points. The Voronoi cells are
colored by coordination number: brown is 5, grey is 6, blue is 7. b) The
Delaunay triangulation of the same set of points. Vertices are again colored
by coordination number.

Voronoi cell shares with neighboring cells (i.e. polygons which share a face).

Thus, for example, a positive topological charge will have five neighbors, and

a negative charge will have seven neighbors. Another useful concept is the

Delaunay triangulation. The Delaunay triangulation is the dual graph to the

Voronoi diagram. To construct it from the Voronoi diagram, the center of

each cell becomes a vertex, and an edge connects each pair of vertices which

correspond to neighboring cells. Thus, a particle’s topological charge is deter-

mined by the number of edges connected to its corresponding vertex. Fig. 2.2

illustrates this duality.

Mechanically speaking, defects are associated with strain in a crystalline

structure. In flat space, a crystal’s ground state contains no defects. De-

fects can be induced by thermal fluctuations, frozen in kinetically during the

crystal’s formation, induced by mechanical strain, or created spontaneously in

non-equilibrium internally driven systems (i.e. active matter)[4, 5, 6, 7]. In

a curved space, however, there must be strain in the lattice to accommodate

curvature. More specifically, the Gaussian curvature of a surface is associated

with stretching deformations and couples to the density of defects[8]. For a 2D
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a) b)

c)

Figure 2.3: Surfaces with different types of curvature: a) positive Gaussian
curvature; b) negative Gaussian curvature; c) zero Gaussian curvature but
non-zero mean curvature.

surface, a curvature tensor can be defined at each point on the surface and its

eigenvalues, κ1 and κ2, are the local principal curvatures, i.e. the maximum

and minimum curvatures along orthogonal directions. These curvatures are

the inverse of the local radii of curvature. From the principal curvatures, two

averages can be constructed. The arithmetic mean gives the mean curvature,

H = κ1+κ2
2

and the geometric mean gives the Gaussian curvature, K = κ1κ2.

Note that these are local variables, defined for each point on the surface. Fig.

2.3 illustrates surfaces with different types of curvature. Fig. 2.3a has positive

Gaussian curvature and fig. 2.3b has negative Gaussian curvature. Fig. 2.3c

has zero Gaussian curvature but non-zero mean curvature. Gaussian curvature

is associated with in-plane stretching deformations while mean curvature is as-

sociated with out-of-plane bending deformations. An intuitive example of this

is seen in carbon fullerenes. A flat sheet of graphene will be made of hexag-

onal interstices without any defects. Carbon nanotubes are essentially rolled
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up sheets of graphene, and as such no defects need to be introduced to accom-

modate their curvature, which is purely mean curvature and not Gaussian.

Buckyballs, on the other hand, are spherical and possess Gaussian curvature,

so they must have twelve pentagonal faces, like a soccer ball.

One way to understand the coupling of defects to curvature is in terms

of the elastic theory of two-dimensional thin membranes. The goal of such a

theory is to relate the strain induced by a defect to the stresses and strains in

the surrounding membrane by minimizing the elastic energy. A membrane is

treated as a continuum rather than as a collection of discrete particles, while

the defects themselves are point-like sources of strain. For a thin membrane,

the stress tensor σ can be related to a scalar potential known as the Airy stress

function, χ, which is defined such that, in Cartesian coordinates,

σxx =
∂2χ

∂y2
, σyy =

∂2χ

∂x2
, σxy = σyx = − ∂2χ

∂x∂y
.

It can then be show that[8][9]

1

K0

∇4χ(~x) = s(~x)−K(~x) (2.1)

where K0 is the 2D Young’s modulus and s is the density of dislocations,

s(~x) =
π

3g(~x)

N∑

i=1

qiδ(~x− ~xi),

where the qi are the charges of each disclination, the ~xi are their positions, and

g(~x) is the conformal factor (the square root of the determinant of the metric).

Eq. 2.1 is an inhomogeneous biharmonic equation where the the Gaussian

curvature and the defect density act as source terms. In this way, the Gaussian

curvature can be thought of as a geometric charge. Disclinations tend to be
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attracted to regions of like-signed Gaussian curvature in order to minimize the

source term. This makes intuitive sense, as positive Gaussian curvature results

in an angular deficit when traversing a closed loop (i.e. the the circumference

of a circular path of radius r will be less than 2πr), while positive disclinations

correspond to an angular deficit in the lattice, and oppositely for negative

curvature and defects. However, the specific placements of defects will be

highly nontrivial, as not only are biharmonic equations difficult to solve, but

eq. 2.1 determines only the stress function for a given defect configuration, and

an energy minimization must be performed to find the defect configuration.

The system energy is given by

E =

∫
dAχ(~x) (s(~x)−K(~x)) ,

which must be minimized with respect to both the number of defects and the

position of those defects.

The connection between angular deficit and topological defects has deeper

implications for hexagonal order on curved surfaces. For a surface of a given

topology, the net defect charge is determined by the topology of the surface.

Specifically,
∑
qi = 6χe where χe is the Euler characteristic of the surface. The

Euler characteristic is determined by the number of handles in the surface, e.g.

a sphere has χe = 2, a torus has χe = 0, a double torus has χe = −2, etc.

Thus, an ellipsoid or any other surface which is topologically equivalent to a

sphere will have a net defect charge of 12.

This topological constraint relates to the Gauss-Bonnet theorem which

states that the integrated Gaussian curvature is a topological constant of a

surface: ∫

M

K(~x)dA+

∫

∂M

kg(~x)ds = 2πχe
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where the first and second integrals are over the surface manifold and its

boundary, respectively, and kg is the geodesic curvature of the boundary. A

discrete analogue applies the the Delaunay triangulation of a packing on a

surface (or rather a Delaunay-like triangulation, as the Delaunay triangulation

does not generalize trivially to curved surfaces; this will be addressed in the

Methods chapter.) A triangulation of a set of points is a polyhedron, and the

Gaussian curvature can be thought of as discretely localized to the vertices.

The Gaussian curvature is then given by the angular deficit at each vertex, i.e.

2π minus the sum of the angles of the corners surrounding that vertex. The

discrete version of the Gauss-Bonnet theorem for a closed surface is then

∑
αi = 2πχe

where αi is the angular deficit at each vertex.

This also relates to Euler’s theorem, which relates the number of vertices

V , edges E, and faces F of a polyhedron to its topology:

V − E + F = χe.

For a triangulation, each face has 3 edges, and each edge is shared between

two faces, giving us 2E = 3F . For a hexagonally ordered triangulation, most

vertices will be connected to 6 edges, with deviations at the defects, so a given

vertex will have ei = 6 − qi edges. Each edge is also shared between two

vertices, so
∑V

i=1 6− qi = 2E. Substituting these relations between V , E, and

F back into Euler’s theorem we recover the desired result

∑
qi = 6χe.
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a) b)

Figure 2.4: a) A packing on a sphere with the minimal number of defects
required by topology. b) A packing on a sphere exhibiting scars.

While the surface topology constrains the net charge of a packing, it does

not determine the total number of defects. Excess dislocations, neutral in

charge, can appear which act to screen out high strains in the lattice. For

example it has been predicted[9] and experimentally observed[10] in packings

on spheres that, as the system size increases (i.e. the surface radius becomes

much larger than the particle radius), excess defects begin appearing in the

form of “scars”, chains of dislocations extending out from topologically required

disclinations. For small packings, only the 12 required disclinations appear,

as in fig. 2.4a. Above a critical system size, however, scars begin to form,

and the length of the scars increase linearly with system size. A packing with

scars is shown in fig. 2.4b. A number of studies have also been done which

examine topological defects on a number of other surface geometries, include

tori, Gaussian bumps, catenoids, and paraboloids[11, 12, 13, 14]. In this thesis,

we will be extending this understanding of the effect of surface geometry on

topological defects by looking at packings on ellipsoids, which have variable

Gaussian curvature. While defects on spheres are well studied, it has not

previously been studied how the anisotropy in curvature on an ellipsoid will
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Figure 2.5: An arrested Pickering emulsion droplet, imaged using optical mi-
croscopy. Image courtesy Patrick Spicer, University of New South Wales.

effect the distribution of defects, which will be one of the goals of this thesis.

2.2 Arrested relaxation

Emulsions are mixtures of two immiscible fluids. A high surface tension be-

tween the two fluids prevents them from mixing by penalizing interfacial area

between them. For example, a single droplet of one fluid surrounded by the

other will tend to take on a spherical shape, as a sphere is the shape which

minimizes the surface area of a given volume. A droplet deformed from a

spherical shape will relax back towards the spherical ground state. Another

manifestation of this is in droplet coalescence. If two droplets come into con-

tact, they will begin to coalesce into a single droplet. Initially, this droplet

is highly deformed, being made up of two spheres connected by a capillary

bridge, and will relax to a single larger sphere. Through this mechanism, the

fluids of an emulsion can separate out into two bulk phases.

One way to prevent separation in emulsions is by including colloidal par-
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ticles, i.e. solid particles on the length scale of one micron. An emulsion

with colloids mixed in is known as a Pickering emulsion[15]. In a Pickering

emulsion, particles tend to adsorb at the fluid-fluid interface. This happens

because it reduces interfacial energy: the particle-fluid surface tensions are

low compared to the fluid-fluid surface tension, and a particle at the interface

reduces the fluid-fluid interfacial area. These particles are strongly bound to

the interface: the binding energy can be as high as 107kBT [16]. These particles

stabilize emulsions by preventing droplet coalescence, as they make it difficult

for droplets to come into contact and initiate coalescence.

One interesting phenomenon that occurs in Pickering emulsions, which is

the motivation for this thesis, is arrested relaxation. If a droplet is deformed

from its spherical ground state, its surface area increases. This allows more

particles to become adsorbed at the fluid-fluid interface. When the droplet is

then allowed to relax the particles will become more densely packed as the area

reduces, and if the initial density of surface particles is high enough, eventually

the particles will become packed together and their elastic repulsion prevents

further relaxation of the droplet. This results in a particle packing covering a

droplet arrested in a non-spherical shape.

This process has been realized in several experimental systems. A spinning

drop tensiometer can be used, in which the droplet is spun and centrifugal

forces cause the droplet to elongate along the axis of rotation, followed by

particle adsorption and droplet relaxation[17]. The deformation can also be

achieved by an applied electric field[18]. A third mechanism is through coales-

cence: if two droplets with a large enough initial surface coverage coalesce, the

initial coalescence contact acts as the deformation process and the following

relaxation drives arrest[19].

This thesis will explore the microstructure of arrested Pickering emulsion
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droplets, and particularly how the curvature of the droplet surface affects the

particle packing by exploring the ideas outlined in the rest of this chapter. We

investigate the coupling of topological defects to surface curvature, the role of

the dynamics of droplet relaxation on the arrested packing, and the rigidity of

the final packing, i.e. whether or not it is jammed.

2.3 Jamming

The concept of jamming has been used in condensed matter physics to un-

derstand systems including granular materials, foams, and glasses. Generally,

jamming deals with packings of particles that are mechanically stable and have

solid properties in the bulk, but are not necessarily ordered. Within the litera-

ture, there are multiple approaches employed to study jamming. One approach

considers packings of soft particles and their properties near the threshold of

mechanical stability[20]. The other considers hard particles and focuses on

whether they are mechanically stable[21]. Each approach has its own advan-

tages and can offer insight into the structure and stability of particle packings.

In this work we employ both approaches.

Much work on jamming in soft particles has focused on the concept of the

jamming point, which is a point in the parameter space of density, temperature,

and applied stress at which jamming is well defined. At zero temperature and

zero applied stress, there is a critical density φc above which packings are

stable and below which they are not (fig. 2.6). This is the jamming point. At

this point, packings are marginally stable to an infinitesimal applied stress.

Packings at the jamming point have a number of generic features. They

are typically disordered. This can be measured by an order parameter: in 3D,
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Figure 2.6: A schematic of the jamming phase diagram. For a packing of
particles, in the parameter space of temperature, applied stress, and inverse
density, the jamming point J occurs at zero temperature and applied stress,
at a critical packing density.

a common way to quantify ordering is by using the spherical harmonics Ylm:

Q6 =


4π

13

6∑

m=−6

∣∣∣∣∣
1

Nb

Nb∑

i=1

Y6m(θi, φi)

∣∣∣∣∣

2



1/2

where Nb is the number of neighbors of a given particle and the second sum

is over these neighbors. θi and φi are the angular positions of the neighbors

with respect to the given particle. This parameter looks at a local measure

of the angular distribution of a particles neighbors; a global average can then

be taken. Often, this quantity is normalized by the value of an ideal packing

like a face-centered cubic (FCC) crystal: Q = Q6/Q
FCC
6 . Thus, one way to

understand a disordered packing is as highly non-crystalline. An important

order parameter for 2D systems is the hexatic order parameter:

ψ6 =

∣∣∣∣∣
1

Nb

Nb∑

i=1

exp(i6θi)

∣∣∣∣∣
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which measures the degree to which, on average, the neighbors of a particle

are evenly spaced at π/3 angles around it as in a hexagonal lattice.

Jammed packings, in the disordered, soft particle sense, are also isostatic.

That is, they have the minimum number of interparticle contacts required for

stability (hence, marginal stability). In order for a packing to be stable, the

number of constraints (contacts) must equal the degrees of freedom. For a

packing of N spheres in n dimensions, there are Nn degrees of freedom. If

each particle has, on average, Z contacts with neighboring particles, there

are ZN/2 constraints (because each contact is shared between two particles).

Setting the number of degrees of freedom equal to the number of contacts,

we find Z = 2n. Thus, a jammed packing of spheres will have Z = 4 in

2D and Z = 6 in 3D. This is in contrast with crystalline packings which are

hyperstatic (they have more contacts than required for mechanical stability.)

For example a hexagonal packing in 2D has Z = 6 and an FCC packing in 3D

has Z = 12. In studying soft-particle jamming, particles are typically modeled

as having a compact interaction potential. That is, particles exert a repulsive

force on each other when they are in contact, and otherwise exert no force on

each other.

Note that contacts are not necessarily the only type of constraints on a

packing. For example, in packings of ellipsoidal particles, the relatively flat

sides of ellipsoids can prevent rotations, implicitly imposing additional con-

straints on the packing in addition to the contacts which prevent translation[22].

These rotational constraints are higher order non-linear constraints, as they

do not prevent infinitesimal rotations but do prevent finite rotations.

Another area of interest in soft particle jamming is how the properties of

a packing scale with the density around the jamming point[23]. The average

contact number per particle, at the jamming point, has an isostatic value
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Zc. Above the jamming point, the increase in the contact number scales as

Z − Zc ∝ (φ − φc)0.5. Below the jamming point, packings are not rigid, and

this is evident in the fact that they have zero elastic moduli and they have

an abundance of “floppy modes”, i.e. collective particle motions which do not

increase the energy of the packing. Even at and above the jamming point,

jammed solids have a high density of low frequency dynamical eigenmodes,

deviating from the behavior of crystalline solids.

Above the jamming point, packings have elastic properties which behave

much differently than those of crystalline solids. In calculating a bulk or shear

modulus for these systems, one can calculate an instantaneous modulus or an

infinite-time modulus: the instantaneous modulus is calculated immediately

after applying a perturbation, but the infinite-time modulus is calculated after

applying a perturbation and then minimizing the systems energy. For an affine

system like a crystal, this will not make a difference. For packings near the

jamming point it is observed that both the instantaneous bulk modulus B0 and

the infinite time modulus B∞ scale like∼ (φ− φc)α−2 (where α is a parameter

determining the particle interactions), as would also be expected for a crystal.

However, B∞ < B0, i.e. the scaling laws have a different coefficient, indicating

that jammed packings are not affine. The shear modulus behaves even more

non-affinely. The instantaneous shear modulus scales as G0 ∼ (φ−φc)α−2 but

the infinite-time shear modulus scales as G∞ ∼ (φ − φc)α−1.5. Note that the

ratio G∞/B∞ = (φ− φc)0.5 does not depend on the particle interaction.

The hard particle jamming literature defines jamming in terms of what

types of particle motions are possible in a packing. Packings can be clas-

sified into a hierarchy of jamming categories which have varying degrees of

stringency[24]. The least stringent jamming category is local jamming: a

packing is locally jammed if, for any given particle, that particle is unable to
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move if all other particles are held fixed. The next, more stringent category is

collective jamming: a packing is collectively jammed if there are no possible

collective particle motions while the boundary is held fixed. Finally, strict

jamming occurs when a packing is stable to both collective motions of parti-

cles and volume-non-increasing deformations of the packing boundary. Once a

packing has been classified according to jamming category, quantities of inter-

est including order parameters and average contact number can be calculated.

The concept of a jamming polytope is useful for analyzing a packing and

its possible motions. For a packing of N spheres, the packing is specified by

the collection of the positions of the sphere centers, R = {r1, . . . , rN}. For

a given configuration R, there is a neighborhood of points in configuration

space which are accessible from the current configuration. For packings at low

density, the configuration can access the majority of configuration space as the

particles can move freely and slip past one another. As the density increases,

the packing will become confined to a smaller region of configuration space.

For an ideal jammed packing, the available configuration space will consist

only of a single point, the jammed configuration RJ. In practice, numerical

methods cannot produce ideal packings, as there will always be some spac-

ing between particles due to limits on numerical precision. Thus, a jammed

packing will have a small neighborhood of configurations available to it, J∆R,

made up of the jammed configuration plus possible displacements, RJ+{∆R}.

This neighborhood can be linearized and approximated as a high dimensional

polyhedron, known as the jamming polytope P∆J[25]. The jamming polytope

concept is also valid when a packing is not actually jammed, and in this case

it can be used as a numerically convenient way to explore possible unjam-

ming motions, by searching for large or unbounded displacements within the

jamming polytope[26]. Details on this procedure will be given in the Methods
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a) b)

Figure 2.7: a) A hexagonal packing in 2D. b) An FCC packing in 3D.

chapter. It is important to note that

One of the goals of this thesis will be to determine whether arrested pack-

ings are jammed, and the role that surface curvature plays in jammed packings.

We explore the new concept of metric jamming, appropriate for packings on

deformable curved surfaces, and we show that while arrested packings are not

metric jammed, they can be unjammed and further surface evolution can push

them towards a metric jammed state. Additionally, we show that the curva-

ture of the surface plays an important role in constraining the metric jammed

packings. We also show that monodisperse packings of soft particles on a

curved surface, which are relatively well ordered, share many properties with

disordered jammed systems.

2.4 Packing

The densest packing of spheres in flat 2D space is a hexagonal lattice (fig.

2.7a). In 3D it is a face-centered-cubic (FCC) lattice (fig. 2.7b) and its stacking

variants (produced by translating layers within an FCC lattice). Kepler first

conjectured that the FCC lattice is the densest 3D sphere packing, but despite

this result seeming rather intuitive, it was not proven until surprisingly recently
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a) b)

Figure 2.8: Two views of a locally-dense icosahedral packing arrangement,
which is incompatible with long-range order.

in 2005[27]. Generically, questions about optimal packings are very difficult to

answer rigorously. In this work, we do not investigate optimal packings (i.e.

maximally dense packings), but rather we are interested in the ensemble of

packings produced through a given packing protocol, and how changes in the

protocol correlate to the properties of the packings produced. In this section

we briefly review some results from the packing literature.

In packings of monodisperse spheres in 3D, it is not uncommon to produce

a highly noncrystalline packing. In 2D however, packings tend to be very

crystalline. The reason for this is that the locally densest packing (i.e., how

can one pack particles densely around a single particle) in 2D is a hexagonal

arrangement, which is the same as the globally densest packing arrangement.

In 3D however, the locally densest packing is icosahedral (fig. 2.8). This is

incompatible with long-range FCC ordering. This incompatibility makes it

more difficult kinetically for a packing to reach an FCC state.

The above is true for monodisperse spheres. However, introducing poly-

dispersity, i.e. including spheres of different sizes, further promotes disor-
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Figure 2.9: The optimal configuration for 10 particles packed into a square[1].

der. While in 3D it is still possible to achieve crystallization of monodisperse

spheres, polydispersity makes this much more difficult. In 2D as well, where

crystallization is the norm for monodisperse packings, polydispersity makes it

much harder to achieve crystallization[28].

In 3D, where packings of monodisperse spheres typically do not crystallize,

the concept of “random close packing” (RCP) has been used to describe this

phenomenon. It has been observed that, using a remarkably diverse variety of

packing protocols, random packings of hard spheres typically have a density of

φ = 0.64[29]. It has been argued, however, that the RCP concept is not well

defined. It has been suggested that it should be replaced with the concept of

the Maximally Random Jammed state (MRJ)[30]. Given a packing protocol

and choosing an appropriate order parameter, an ensemble of packings can

be produced within a continuum of packing fraction and order parameter.

The MRJ is defined as the jammed packing with the lowest achievable order

parameter.

In some systems, typically where the packing size is not very large com-
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pared to the particle diameter, it is seen that compatibility between the pack-

ing and its boundary conditions become important. This effect is known as

commensurability. For instance, the optimal packing for ten particles packed

into a square has a very specific and irregular configuration, as shown in fig.

2.9[1]. Another example occurs in packings of spheres on a cylinder[31], where

it is possible to get an ideal hexagonal packing if the ratio of the particle

diameter and the cylinder diameter are commensurate; otherwise, an oblique

lattice (a stretched hexagonal lattice) can occur, or a line slip defect can occur

(a hexagonal lattice, with a mismatch between two rows which wraps around

the cylinder.) Whether an oblique lattice or a line slip occurs depends on the

particle interaction potential: softer particles tend to form an oblique lattice,

and harder particles tend to form a line slip defect.

In this thesis we draw connections between these previously observed pack-

ing phenomena and packings on curved surfaces. Given that an ellipsoid is a

compact surface, the packings must obey periodic boundary conditions and

it is expected that commensurability is important, especially at low particle

numbers. One may also wonder whether these constraints, combined with

the strain induced by the curvature, influences the formation of line slip or

oblique packing structures. Another question which is addressed is the influ-

ence of curvature in bidisperse packings. Both curvature and bidispersity tend

to frustrate the ordering of sphere packings and combining these features has

interesting effects.
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Methods

Here we describe in detail the computational methods employed

in this work. These consist of algorithms for generating particle

packings as well as analysis techniques for studying these packings.

The first algorithm is an inflation packing algorithm, which is used to cre-

ate packings of particles on static surfaces. The second is a dynamical packing

algorithm, which simulates the packing of particles on an evolving surface,

incorporating additional physical effects including interparticle attraction and

gravity. The third is a soft-particle Monte Carlo algorithm which uses the

Metropolis algorithm to generate low energy particle packings. The final algo-

rithm is another soft-particle energy minimization, which uses gradient descent

to find stable particle configurations for particles with an arbitrary interpar-

ticle potential. This is used to generate packings of soft particles, as well as

to study the stability of hard particle packings by attaching a soft effective

potential.

The analysis techniques employed are used to study the qualities of the

packings produced and to quantify their ordering. We use a Delaunay tri-

angulation to identify topological defects, employing the software Meshlab in

24
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combination with Morpho. A hexatic order parameter is calculated through

standard techniques. We also identify “rattlers” in the packings, i.e. particles

which are not locally jammed and thus have no bearing on the stability of a

packing. Finally, we employ a linear program to find motions which unjam a

packing, and we combine this with the soft particle gradient descent scheme

in order to quickly find unjamming motions.

3.1 Simulations

3.1.1 Inflation packing algorithm

We employ a stochastic inflation packing algorithm inspired by the Lubachevsky-

Stillinger (LS) algorithm, which is known to yield packings of high coverage

fraction[32]. The central concept is that particles are constrained to a fixed

surface, and their radii are increased, thus increasing the packing fraction,

until the particles become arrested, as illustrated in fig. [need to add figure

showing an initial and final configuration from inflation algorithm]. The main

difference between the LS algorithm and this inflation algorithm is that the

LS algorithm is event-driven: between collisions, particles travel at a constant

velocity, and based on this the next collision is predicted and particle posi-

tions and velocities are updated at each collision. Our inflation algorithm

employs Brownian dynamics. This is motivated by the physical system we are

modeling, in which particles diffuse at a fluid-fluid interface.

In a given simulation, a fixed ellipsoidal surface, either prolate or oblate,

is chosen with aspect ratio a and the length of the semi-minor axis is fixed

to be unity in dimensionless units. Particles are modeled as monodisperse

hard spheres of radius r which is slowly increased during the simulation. The

number of particles N is specified and particles are deposited at the start of
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the simulation by random sequential adsorption (i.e. each particle is placed

randomly, one at a time, with a uniform probability distribution across the

surface, and any placement that results in overlap between particles is rejected

and placement is attempted at another random position) such that the center

of each particle is constrained to lie on the surface of the ellipsoid. Initially, r

is such that the packing fraction is φ = 0.05.

The algorithm proceeds by two kinds of moves: i) Monte Carlo diffusion

steps where particles are moved randomly along the surface and ii) inflation

steps where the radius of all particles is increased by δr. In each diffusion step,

N individual Monte Carlo moves of randomly chosen particles are attempted.

The step size is chosen randomly using a Gaussian distribution, as described

below. Only moves that do not result in overlap are accepted, with overlaps

checked for in the 3D configuration frame.

The moves are performed in the 2D space of conformal surface parameters

(u, v). Conformal coordinates ensure a radially symmetric probability distri-

bution for moving a certain arc length s in any tangential direction from the

current location. This is because the local tangent vectors taken with respect

to either conformal coordinate have the same magnitude. This magnitude can

vary across the surface, and this is taken into account by scaling the tangent

vectors by the conformal factor (defined below) when taking steps during the

simulation. The surface is parametrized as,

x(θ, φ) = (x0 sin θ cosφ, x0 sin θ sinφ, z0 cos θ), (3.1)

where x0 = 1, z0 = a for prolate surfaces and x0 = a, z0 = 1 for oblate surfaces.

The determinant of this metric is,

g(θ) =
1

2
x0 sin(θ)2

(
z2

0 + x2
0 +

(
z2

0 − x2
0

)
cos(2θ)

)
, (3.2)
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the conformal factor is given by
√
g(θ) and the conformal parameter u is given

by the integral of the conformal factor such that u = 0 at the equator,

u(θ) =

∫ θ

π/2

√
g(θ′)dθ′, (3.3)

which can be inverted to find θ(u). We do an approximate inversion by calcu-

lating u(θ) for values of θ from 0 to π in increments of π/100 and using a 19th

order polynomial least squares fit on these points, enforcing equality between

the fit and exact values at the endpoints θ = 0 and θ = π. The conformal

coordinate v is simply v(φ) = φ.

Given the definitions above, diffusion steps are taken as follows. An un-

scaled step size is chosen for each direction, ∆uo and ∆v0, from a normal

distribution with variance 1. These are scaled by the simulation step size

σ and by the inverse of the conformal factor to give step sizes in the (u, v)

conformal space:

∆u =
σ∆u0√
g(θ(u))

(3.4)

∆v =
σ∆v0√
g(θ(u))

. (3.5)

These steps are used to update the previous u and v coordinates of the par-

ticle, which are then transformed to the θ and φ coordinates as explained

above. Finally, the surface parametrization eq. 3.1 is used to give the particle

coordinates in the 3D configuration space.

Because θ must have a value between 0 and π, we take the following step

if it falls outside this range at any point. If u is greater than u(0) (less than

u(π)), we set u = 2u(0) − u (u = 2u(π) − u) and v = mod (v + π, 2π), i.e.

we allow the particle to pass over the coordinate singularity at the poles of the
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surface.

As the particles diffuse, σ is varied in order to more efficiently explore rele-

vant areas of configuration space (leading to large steps when the configuration

is loosely packed and smaller, more relevant steps when tightly packed.) The

initial value of σ scales with the square root of the ellipsoid surface area A,

σinit = 1 × 10−4
√

A
4π
. After each time step, the fraction of attempted moves

that were accepted is calculated. The length scale σ is then decreased by 1%

if the acceptance fraction is < 0.5 and increased by 1% otherwise; σ is reset

after each inflation (described below) to its initial value. Bounds are imposed

such that 1×10−6 < σ < 1. Adjusting σ leads to improved performance of the

algorithm as the particles can diffuse more when they are less densely packed

and take smaller steps (which are more likely to be accepted) when they are

more densely packed. We do this as it is known that adaptive algorithms lead

to packings of higher density[33]. We emphasize that in this work the Monte

Carlo approach is used as an optimization strategy; it is not intended to, and

indeed cannot, replicate the physical process by which the structures form

since the σ updates are non-Markovian.

AfterM = 100 diffusion steps, an inflation step is performed where the par-

ticle radius is increased slightly (“inflated”) either by a specified fixed amount

∆r = 1 × 10−5
√

A
4π

or by the half of the largest amount allowed that would

not result in the overlap of any pair of particles, whichever is smaller.

The halting criteria for these simulations is as follows: every L = 100

inflation steps, the relative change in coverage fraction ∆φ is calculated. If

this is less than a specified value ∆φtol = 10−4 then the simulation halts.
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a) b)

Figure 3.1: An example of a configuration produced using the dynamic packing
algorithm. a) The initial configuration, with the surface in an elongated state.
b) An arrested packing, produced by relaxing the ellipsoidal surface.

3.1.2 Dynamic Packing Algorithm

In order to understand dynamical effects on particle ordering, we perform
simulations which model the physics of the droplet shape evolution. In these
simulations, the particles have a fixed radius, and the surface on which they
are adsorbed evolves while the particles are constrained to move with it, as
illustrated in fig. 3.1. Thus it is the decrease in area of the surface that drives
packing, as in the corresponding physical system.

Throughout a simulation, the surface relaxes from an initial aspect ratio to

a sphere at constant volume, with the full time the unimpeded relaxation would

take setting a relaxation timescale τr. As this occurs, particles experience three

forces (in addition to the surface constraint): Brownian diffusion, interparticle

attraction, and gravity, and they evolve under Stokes dynamics, i.e. non-

inertial dynamics where d~x
dt

= µ~F where µ is a the particle mobility. Each

of these forces has an associated timescale, and the strength of each force is

specified by setting the ratio of its timescale to the relaxation timescale. The

diffusion timescale τd is the time it would take, on average, for a single particle,

on a flat surface unimpeded by other particles, to diffuse a distance equal to

its diameter. Due to the linear dependence of the mean squared displacement

on time for diffusive processes, we have 2r =
√

2Dτd (where D is the diffusion

constant) so

τd =
2r2

D
.
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The attraction timescale τa is the time it would take a particle to move one

particle diameter, under the attractive force felt from a particle with which it

was in contact, if that force was held fixed. Thus, under Stokes dynamics and

based on the force given by eq. 3.7 below, 2r = α
2r
τa (where α is a constant

determining the attraction strength) so

τa =
4r2

α
.

The gravity timescale tg is the time it would take a particle to move one

particle diameter under the influence of gravity. Again from Stokes dynamics,

2r = gτg (where g is a measure of the effect of gravity) so

τg =
2r

g
.

Note that α and g are measures of the relative effect of a force on a particle.

They depend, in principle, on the particle mass and radius.

For a given simulation, τd/τr, τa/τr, and τg/τr are specified (or attraction

and/or gravity may be ignored, in which case ta = ∞ or tg = ∞.) The

diffusion constant is held the same across simulations, and thus τr, α, and g

are determined.

N particles of fixed radius r are initially placed randomly on an ellipsoid

of aspect ratio a, using a random sequential adsorption scheme, with their

centroids evenly distributed over the ellipsoid’s area. If there is any overlap, the

overlap is removed by a gradient descent relaxation, where particles interact

through the following pair potential:

Voverlap =





r2 − rx x < r

0 x ≥ r
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where x is the center-to-center distance between particles. This gives a con-

stant force proportional to the particle size if particles are overlapping, and

no force otherwise. The gradient descent uses a timestep of ∆toverlap = 0.001,

i.e. two completely overlapping particles, in the absence of any other overlaps,

would take 1000 steps to remove overlap. If it takes more than 1×106 steps to

remove all overlap between particles, the initial state is considered to be over-

crowded and the simulation is halted. After overlap is removed the particles

are then allowed to diffuse for t = 4τd, using timesteps such that the average

step distance will be 1/100 of the particle diameter.

Throughout the simulation particles evolve according to a Langevin equa-

tion, neglecting inertial effects, with the surface constraint enforced using La-

grange multipliers. The position of a particle i is updated to its unconstrained

position ~x′ by,

~x′i(t+ ∆tp) = ~xi(t) + ∆tp

(
~Fg +

∑

i 6=j

~Fij

)
+ ~ηi

√
2D∆tp (3.6)

where ~Fg = −gŷ is the downward force on a particle due to gravity (the

ellipsoid symmetry axis is oriented horizontally, perpendicular to gravity), ~Fij

is the attractive force of particle j acting on particle i, ~ηi is a noise term applied

to particle i sampled from a Gaussian distribution with unit variance along

the tangent plane of the surface at the location of particle i, D is the diffusion

constant, and ∆tp is the particle movement timestep.

Particles centroids are constrained to the ellipsoidal surface, and this is

enforced using Lagrange multipliers[?]. We define a constraint function σ(~x)

such that the constraint is satisfied when σ(~x) = 0. For particles on an ellipsoid,

σ(~x) =
x2

a1

+
y2

a1

+
z2

a2

− 1 = 0.
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where a1 and a2 are the semi-major and minor axis lengths of the ellipsoid.

By requiring this constraint to be satisfied to first order, we can update the

position to more closely follow the constraint,

~x′′(t+ ∆tp) = ~x′(t+ ∆tp)− λ∇σ(~x(t))

where λ is a Lagrange multiplier given by,

λ =
σ(~x′(t+ ∆t))

∇σ(~x′(t+ ∆t)) · ∇σ(~x(t))
.

Note that this amounts to applying a constraint force along the surface normal.

By repeatedly using the original position ~x(t) and the most recent improved

position ~x′′(t + ∆tp) in place of ~x′(t + ∆tp) , the constrained position can be

calculated iteratively until σ = 0 up to a specified tolerance, for which we use

machine precision in this work.

Attractive particles interact through a screened attractive log potential,

such that the force between particles is given by

~Fij =





−α ~rij

|~rij |2
(
1− s

2r

)
0 < s < 2r

0 s ≥ 2r

(3.7)

where ~rij = ~xi − ~xj is the particle center-to-center separation, s = |~rij| − 2r

is the particle surface-to-surface separation, and α is a factor determining

the strength of the attraction, which is set as described above. The force is

screened so that particles in contact feel the full unscreened force, and the

force decays linearly as the particle separation increases, falling off with a

decay length equal to twice the particle diameter.

The initial particle movement timestep is set to ∆tp = 1, and the diffusion
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constant is chosen so that a purely stochastic step would, on average, have a

step size ∆x = 2r
1000

in a given direction, giving D = (∆x)2. This determines

the total simulation time, τr = 2r2

D(τd/τr)
. In order to enforce hard particle

constraints and mimic particle reflections upon collision, individual particle

steps which result in overlap between particles are rejected. To this end, all

forces are calculated at the beginning of a given particle timestep, and particle

steps are attempted in a random order.

Throughout the simulation, the surface is relaxed such that it maintains

an ellipsoidal shape, the volume is conserved, and the surface area follows an

exponential decay. The decay has the form A = c + d exp(−λt) where c and

d are chosen such that when the surface reaches a spherical shape at t = τr,

the area has decreased by 90% of the total amount the decay would have led

to in the limit t → ∞ were it possible to continue an exponential decay (i.e.

at A = c + d/10); particles are then reprojected to the nearest point on the

surface. Where reprojection causes overlap of particles, the particle positions

are collectively evolved along the surface using the gradient descent method

that is also employed during the initial particle displacement, described above.

An adaptive timestep scheme is used to evolve the system. Surface evolu-

tion steps are made less often than particle movement steps. Initially, the par-

ticle movement timestep is set at ∆tp = 1, and the surface evolution timestep

is set such that it would take Nr = 105 surface relaxation steps to relax to a

spherical shape, so ∆tr = τr/Nr. We also require that there is at least one dif-

fusion step per relaxation step: if the number of diffusion steps per relaxation

step τr
Nr∆tp

is less than 1, then we set ∆tp = ∆tr. Upon a relaxation step, if

the gradient descent scheme takes more than 104 steps to undo any overlap,

then the simulation is reset to its state after the previous surface relaxation

step, and the timesteps ∆tr and ∆toverlap are all decreased by half and the
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simulation continues.

As the packing becomes closely packed, ∆tp is adjusted based on the av-

erage interparticle spacing 〈s〉. To determine the average spacing, the sepa-

ration between the three nearest neighbors of each particle are identified(as a

particle needs at least three contacts to be constrained), and the average of

these distances is taken. We then set the particle timestep so that the aver-

age particle displacement due to diffusion only will be 10 times this spacing,

∆tp = 100〈s〉2/(2D). We choose this relatively large timestep because lower

timesteps cause the simulations to run for a prohibitively long time. Having

investigated the acceptance ratio for particle moves over the course of the sim-

ulation, we find that it levels out at a value of approximately 0.1 when the

typical interparticle spacing 〈s〉 ≈ 10−4. This is acceptable, as the packing is at

a high density at this point and its evolution will be driven mainly by surface

evolution and the associated particle overlap gradient descent steps, though

some movement due to diffusion and other forces is still allowed. We also set

a minimum timestep, corresponding to a particle spacing of 〈s〉 = 10−7.

The system is considered arrested and the simulation halts when the re-

laxation timestep are reduced to 1/214 of their original value, i.e. after 14

timestep reductions. An outline of the algorithm is given in algorithm 3.1.

3.1.3 Soft Particle Monte Carlo Algorithm

In order to investigate packings of soft particles, we employ two algorithms,

the first of which is a Monte Carlo Metropolis algorithm based on the inflation

packing algorithm. We use a simulated annealing method to find near-optimal

energy minima, although it should be noted that the energy as a function of

the particle coordinates is highly complicated with many local minima and

global energy optimization is not guaranteed.
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Algorithm 3.1 Dynamic packing algorithm
if continuing from a previous simulation then
read data

else
place particles randomly
equilibrate particles

end if
while surface has not finished relaxing and packing is not jammed do
if time t > next relaxation time then
update surface shape
project particles onto new surface
attempt to use gradient descent to remove particle overlaps
if overlaps are succesfully undone then
save configuration and set next relaxation time

else
reset configuration to state after previous relaxation
reduce relaxation timestep
if the relaxation timestep has been reduced 14 times then
the packing is jammed; halt the simulation

end if
end if

end if
calculate terministic and stochastic forces on each particle
in a random order, integrate the forces on each particle, rejecting any
move that results in overlap.
calcualte typical interparticle spacing and adjust the simulation timestep
increment time t

end while
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In order to test potentials of different softness, the interparticle potentials

are set as either Uint = d−1 or Uint = d−6 (where d is the center-to-center

distance between particles). The particles diffuse similarly to the inflation

algorithm with two differences: the average step size σ is constant for all

moves, and moves are accepted or rejected using a Metropolis scheme[34],

with acceptance probability

P =





1 ∆U < 0

exp(−∆U/kBT ) ∆U > 0

(3.8)

where ∆U is the change in the system energy after a single particle move, kb

is the Boltzmann constant, and T is the temperature. The initial temperature

is set by using a rough estimate of what the energy of a single particle in

the final configuration will be assuming six-fold ordering and that nearest

neighbor interactions dominate: T0 = 6Uint(2rest)/kB, where rest =
√
A/N

is an estimate of the average particle separation. The system is annealed by

multiplying the temperature by 0.99 after every 100 sets of diffusion moves

until exp(−∆U/kBT ) → 0 within machine precision. After every 100 sets of

diffusion moves, the change in energy is recorded and the simulation halts once

this change in energy is less than 1× 10−16.

3.1.4 Soft Particle Gradient Descent Algorithm

We use a second, deterministic soft-particle packing algorithm to study the

stability of hard particle packings, as well as to generate and minimize the

energy of soft particle packings.

The algorithm takes as input an inter-particle energy function, the asso-

ciated force function, and the ellipsoid axis lengths. It can also take a pre-
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existing particle configuration, or can generate a random one using random

sequential adsorption by using a radius such that a specified coverage fraction

φ is achieved (φ = 0.35 in our simulations).

The algorithm then proceeds using either a gradient descent method or

a conjugate gradient method, as chosen for the specific application. Given a

particle configuration, the force vector on each particle is calculated, which

taken together as a 3n-dimensional vector correspond to the negative gradient

of the configuration energy, ~F . For gradient descent, steps are taken along

the direction of the gradient. For conjugate gradient, steps are taken along a

direction ~S chosen as follows. If it is the first step, set ~S1 = ~F . Otherwise, the

new step direction is ~Si = ~Fi + βi~Si−1, where ~Fi is the current gradient, and

βi is given by

βi =
~Fi · ~Fi

~Fi−1 · ~Fi−1

.

The intuition behind this approach is that information from previous steps is

used to build up information about the curvature of the objective function.

This way, for instance, if the minimum is in a long narrow valley, the min-

imization will not waste time hopping back and forth along the valley, but

will take steps along the length of the valley. For an N -dimensional objective

function, new curvature information is no longer useful after N steps, so the

process must be reset periodically to use the pure gradient. We do this every

N/3 = n steps.

A move is taken in the direction of the force, choosing a timestep ∆t

using a line search, i.e. a given a fixed direction, a minimum (or approximate

minimum) is found along that direction. For each move, an unconstrained

step ∆~x =~F∆t is performed which is then projected onto the surface using

Lagrange multipliers, as described in 3.1.2 above. The line search is first

performed using the golden bracket method to bound the timestep around an
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energy minimum, and then a parabolic interpolation is used to approximate

the minimum within that bracket[34].

The golden bracket method works as follows: the current energy E0 is

calculated. Given an initial guess for the timestep ∆ta0, the configuration

energy Ea is found at that timestep (where the energy is calculated after both

taking a gradient step and enforcing the surface constraint). A larger timestep

∆tb0 = Φ∆ta0 (where Φ = 1+
√

5
2

is the golden ratio) is then checked, with the

resulting energy Eb. If Ea > E0, then the timesteps are too large and the

timesteps ∆tb0 = ∆ta0 and ∆ta0 = ∆ta0/Φ are checked. If Eb < Ea, then

the timesteps are too small and the timesteps ∆ta0 = ∆tb0 and ∆tb0 = ∆tb0Φ

are checked. This adjustment of the timestep is repeated until Ea < E0 and

Ea < Eb, i.e. a timestep ∆tb0 is found such that there must be a local energy

minimum at some time 0 < ∆t < ∆tb0. The golden ratio is used to adjust

the timesteps as it can be shown that this is the most efficient adjustment

factor[34].

Once a minimum has been bracketed, a quadratic interpolation is used on

the bracketing points to approximate the minimum within the bracket. We do

this for only one iteration, as we find that multiple iterations does not provide

a significant increase in performance.

Once the timestep has been found, the configuration is evolved based on the

magnitude and direction of the gradient, as well as the timestep: ∆~x =~F∆t.

After each step, the energy of the configuration is recorded. If the percent

change in energy is below a specified tolerance ε∆E generally taken to be ma-

chine precision, (En − En−1)/En−1 < ε∆E, then the algorithm is determined

to have found a local minimum of the energy landscape and is halted.
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3.2 Packing analysis

3.2.1 Particle Triangulation

Topological defects in a system with six-fold ordering are identified based

on a triangulation of the particle positions. In such a triangulation, bonds

between neighboring particles are identified, and these bonds become the edges

in a graph in which triplets of neighboring particles are connected by edges

which form triangles. These triangles must tile the space in which the packing

is imbedded. For a given particle, the number of neighbors to which it is

connected is counted giving the coordination number c, and the topological

charge quantifies the deviation from six-fold ordering, q = 6− c.

For a perfect 2D hexagonal lattice, this triangulation trivially consists of

equilateral triangles. For more general packings in a flat 2D space, a Delaunay

triangulation can be used as a unique way to identify the topology of a packing.

In a Delaunay triangulation, a circle which circumscribes a given triangle will

not contain any vertices other than the three which belong to that triangle,

as illustrated in fig. 3.2a. Delaunay triangulations also have the property

that they maximize the minimum angle of all triangles. This property can be

used to build a Delaunay triangulation from a generic triangulation of a set

of points by the process of edge-flipping. Given two triangles which share an

edge (and together make up a quadrilateral) the shared edge can be removed

and an edge joining the other two vertices of the quadrilateral can be inserted.

If this edge flip increases the minimum angle within the two triangles it is

accepted (as in fig. 3.2b), otherwise it is rejected. This edge-flipping process

can be iterated over pairs of adjacent triangles until no more improvement is

possible, resulting in a Delaunay triangulation.

Delaunay triangulations, however, do not generalize straightforwardly to
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a) b)

Figure 3.2: A small Delaunay triangulation of four points. a) The two triangles
making up the triangulation can each be circumscribed by circles which contain
only the three vertices of their respective triangles and no other vertices. b)
Given an initial triangulation which is not a Delaunay triangulation, an edge-
flip can be performed to recover the Delaunay triangulation, which consists of
triangles which clearly have larger minimum angles.

sets of points on curved surfaces. In this work, we construct well-defined

triangulations through a combination of a ball-pivoting algorithm (available

in the software Meshlab) and a modified edge-flipping algorithm.

The ball-pivoting algorithm[35] is based on the intuition provided by the

first property of Delaunay triangulations explained above, i.e. that each tri-

angle can be circumscribed by a circle which contains no other points. The

algorithm uses a sphere of radius r and begins by placing the sphere so that it

is in contact with three points and contains no other points. It proceeds by ro-

tating the sphere about one edge of the contained triangle until the surface of

the sphere hits another point. The algorithm continues in this manner, rotat-

ing the sphere about the edges that make up the boundary of the triangulation

until the triangulation is complete. Occasionally the algorithm will not find a

closed triangulation. We check this by making sure all points are included in

the triangulation, and that the defect charge indicates that the mesh has the

correct topology, i.e. c = 12. If not, the algorithm is run again with a random

ball radius until a complete triangulation with the correct topology is found.

Once the ball-pivoting algorithm has been used to build an initial trian-

gulation, the software Morpho is used to perform an equiangulation through
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edge-flipping. This edge-flipping process is similar to the one described above

for Delaunay triangulations, in that it proceeds by iterating over each edge

in the triangulation and attempting to flip it until no more improvement can

occur. Here, however, the criterion for accepting or rejecting a flip is differ-

ent. An equiangulation norm which penalizes triangles which deviate from an

equilateral triangle is defined as

L =
6∑

i=1

(
π

3
− θi)2

where the sum is taken over the six angles of the two triangles adjacent to a

given edge. Any edge-flip which causes this norm to increase, or which causes

the edge length to increase is rejected. In this way, both edge flipping methods

penalize long, narrow triangles with sharp angles.

3.2.2 Hexatic Order Parameter

Hexatic order is characterized by short range six-fold rotational symmetry[4].

Hexatic order is often defined across an entire system; however we are often

interested in how ordering varies spatially and so we calculate a local hexatic

order parameter. The local hexatic order is defined for a single particle as

Ψ6 =
N∑

n=1

exp 6iθn

where the sum is taken over the neighbors of a particle, and θn is the angle

between some reference direction (here taken to be along the local tangent

vector in the polar direction) and the bond connecting the central particle and

its neighbor. This situation for one particle and its neighbors is illustrated

in fig. 3.3. There is some ambiguity in defining the neighbors of a particle.

Depending on the context, we use one of two definitions: we either take the



CHAPTER 3. METHODS 42

Figure 3.3: A schematic illustrating the calculation of a local hexatic order
parameter. The separation vectors from a given particle (red) to its neighbors
(blue) are found, and the angles from some reference direction are found and
used to calculate the order parameter. The hexatic order parameter is equiv-
alent to the amplitude of the sixth Fourier mode of the angular positions of a
particle’s neighbors.

six nearest particles to be the neighbors, or we use a particle separation cutoff,

so that all particles with a distance x < 2r+ δ are considered neighbors. Once

the local hexatic order has been calculated for each particle in a packing, the

spatial average over some regions can be calculated.

3.2.3 Rattler Removal

Generically, one finds that an arrested packing contains some number of par-

ticles which are not held in place by their neighbors, which are known as

rattlers[26]. In the language of the jamming literature, these packings are not

locally jammed, though they may contain a locally jammed sub-packing which

excludes the rattlers. In assessing the stability of a packing, rattlers do not

contribute mechanical contacts and thus are irrelevant. For this reason, it is

desirable to remove rattlers for certain packing analyses.

In order for a particle to be locally jammed in n dimensions, it must have

n + 1 contacts which are not in the same n-dimensional hemisphere. This is

illustrated in 2D in fig. 3.4. We use this criteria to check whether individual



CHAPTER 3. METHODS 43

a) b)

Figure 3.4: a) A particle which is locally jammed, as it is trapped between
three neighbors. b) A particle which is in contact with three neighbors, but
which is not locally jammed because the contacts are all within the same
hemisphere.

particles are rattlers. In a given packing, each particle is checked one-by-

one. For a given particle, all neighbors within some center-to-center distance

(1 + δ)2r are identified, where δ = 10−6 is used, as it is slightly higher than

the typical inter-particle spacing. If there are less than three neighbors, the

particle is immediately identified as a rattler. Otherwise, for each neighbor,

the separation vector from the central particle to that neighbor is found, and

projected onto the local tangent plane of the central particle. The angles

between these separation vectors are then found, and if any angle is greater

than π radians, the particle is recognized as a rattler.

Because removing a rattler which is in contact with another particle may

then cause the other particle to become a rattler, the rattler removal program

repeatedly sweeps over all particles until it completes a sweep without remov-

ing any rattlers. Once this occurs, the rattler removal program halts and a

rattler free, locally jammed packing has been produced. It is also possible

that the rattler removal program will remove all particles in the case that the

packing did not contain a locally jammed sub-packing.
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3.2.4 Linear Program for Unjamming

As discussed in the background chapter, hard particle packings can belong

do different jamming categories. Locally jammed packings are stable against

movements of single particles. A packing with all rattlers removed will be

locally jammed. Packings can also be collectively jammed, in which case

there are no collective motions of particles which can unjam the packings, and

they can be strictly jammed, in which case collective motions combined with

boundary deformations cannot unjam the packing. As will be demonstrated

in chapter [], packings can also be metric-jammed, in which case collective

particle motions plus a deformation of the underlying metric cannot unjam

the packing.

In order to uncover collective unjamming motions, we employ a linear pro-

gramming approach developed by Donev[26], which we have extended to ac-

count for curved surface constraints. Essentially, Donev’s algorithm finds al-

lowed particle motions under the application of a random load to the particle

configuration being tested. This is done while enforcing the appropriate con-

straints (i.e. particles cannot overlap) to linear order, and also ensuring the

displacement found is bounded. We extend this algorithm by enforcing that

particle motions are perpendicular to the surface normal.

More precisely, for a particle configuration R the algorithm aims to find an

allowed unjamming displacement ∆R. In order to find allowed motions of the

particles, a random load F is applied to the packing. This load consists of a

random force applied to each particle, whose cartesian components are sampled

from a Gaussian distribution of unit variance. The goal of the algorithm is to

then maximize the virtual work done by the load:

max
∆R

FT∆R. (3.9)
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This optimization is of course subject to the constraints that particles cannot

overlap, and they must move along the surface. These constraints can be

linearized, giving a linear programming problem which can be solved to find

allowed unjamming displacements.

In order to prevent overlap, neighboring particles must obey the equation

(∆ri −∆rj)
Tui,j ≤ ∆li,j (3.10)

where ∆ri is the displacement of particle i, ui,j is the unit vector separating

particles i and j, and ∆li,j is the interparticle separation between particles i

and j. This equation is only applied to particle pairs which are close to one

another and may come into contact (∆li,j/2r < δ where δ is typically chosen

to be around 0.01). This equation requires that two particles cannot move

towards each other by an amount greater than their initial separation. This

equation can be rewritten by defining a rigidity matrix A: each column of A

corresponds to a neighboring particle pair {i, j} and each row corresponds to

a particle coordinate. The only nonzero elements in a given column {i, j} are

in the rows for particles i and j: the rows for particle i will contain ui,j and

the rows for j will contain −ui,j. Then, eq. 3.10 can be written

AT∆R ≤ ∆l (3.11)

where ∆R is a vector containing the particle displacements ∆ri and ∆l is a

vector containing the ∆li,j for each particle pair.

To satisfy the surface constraint to first order, the particle displacements

must be along the local tangent plane of the surface. This condition is satisfied

when

NT∆R = 0 (3.12)
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where N is the collection of surface normal vectors at each of the particle

positions.

Finally, because spheres and ellipsoids with axial symmetry have trivial

rotational symmetries, we constrain the first moment of the motion ∆R about

the symmetry axes to suppress trivial motions. For an ellipsoid symmetric

about the z-axis, the sum of the cross products of the displacements ∆ri with

their radial components of the displacement vector from the z-axis r⊥zi must

be zero. Or,

(R⊥z)T ×∆R = 0 (3.13)

where R⊥z is the vector composed of the radial components of the particle

positions.For a packing on a sphere, the corresponding constraints are added

for rotations about the x- and y-axes.

One final constraint is imposed. Because the surface constraint is imposed

only to first order, large displacements will move particles off of the surface.

As such, we require that each component of ∆R has a magnitude less than or

equal to 0.01 (keeping in mind that that semi-major and minor axis lengths

of the surface are of order 1):

|∆Ri| ≤ 0.01. (3.14)

Eq. 3.9 combined with the constraints of eqs. 3.11-3.14 together make up a lin-

ear program which can be solved through standard software, e.g. Mathematica

to find motions which may unjam an arrested particle packing.

One finds, however, that because the linearization gives a result which only

approximately satisfies the constraints, care is needed in order to apply the

unjamming motion and find configurations which are clearly unjammed while

still obeying the constraints. In order to do this, a combination of the linear
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program and the soft-particle gradient descent method described in section

3.1.4 is used.

First, a motion ∆R found by the linear program is applied to move the

particles along the surface. A move R′ = R + α∆R, where initially α = 1, is

attempted, with the surface constraint enforced using Lagrange multipliers as

in subsection 3.1.2. If this new configuration has an overlapping particles, the

move is undone and attempted again with α reduced by half. This is repeated

until an updated configuration with no overlap is found.

After applying the unjamming motion, the soft-particle gradient descent

algorithm is applied to the new configuration for 20 gradient descent steps.

For this gradient descent method, a pairwise potential of the form

V =





∞ x ≤ 2r

(x− xc)2 (log(x− 2r)− log(xc)) 2r < x < xc

0 xc ≤ x

is used where x is the center-to-center particle distance and xc = 2.1r is a dis-

tance cutoff beyond which particles do not interact. Note that the logarithmic

form of the potential diverges as particles come in contact with one another,

preserving the hard-particle constraint.

The linear program and gradient descent methods can be applied back-

to-back repeatedly to find significant unjamming motions. The combination

of both algorithms consistently finds unjamming motions much more quickly

than repeatedly applying linear program motions alone, as illustrated in fig.

3.6. The reason for this can be understood in terms of jamming polytopes.

A jamming polytope is the region in configuration space available to a given

packing from its current state. Fig. 3.5 gives an intuitive picture of what is
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occurring in terms of the jamming polytope of a single particle surrounded by

three other fixed particles. In the linear program, solutions are constrained

to a linearized approximation of the jamming polytope. If a packing is near

the border of its polytope, the linearized polytope may be quite restricted.

However, after the gradient descent algorithm is applied, a packing will be

moved closer to the center of its jamming polytope. From here, the linearized

polytope will contain portions of configuration space which are closer to un-

jamming.
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Figure 3.5: A schematic illustrating why the linear program combined with the
gradient descent scheme works much better than the linear program alone. a)
A simple packing in which the central particle is trapped between three fixed
particles. b and c) The jamming polytope of the central particle (bordered by
the black solid lines) and the linearized version of the polytope (red dashed
lines) for two different positions of the central particles. If the particle is in
the center of the polytope (c), larger unjamming motions can be found as
compared to the when the particle is in the corner of the polytope (b). Note
that the curvature of the true polytope has been exaggerated for illustrative
purposes.
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Figure 3.6: Typical particle spacing (in units of the particle diameter) versus
unjamming iteration for a) the linear program only and b) the linear program
combined with gradient descent steps. After the same number of iterations,
while the linear program alone has led to some improvement, the combined
linear program and gradient descent method has increased the interparticle
spacing by several orders of magnitude. Here, the typical particle spacing is
calculated by finding the particle surface-to-surface distance from each particle
to its three nearest neighbors, and then taking the geometric mean of all of
these distances.



Chapter 4

The role of curvature in the

sphere packings on a static

geometry

Sphere packings on the surface of an arrested emulsion droplet are

created through a complex dynamic process, and a variety of factors

will influence their formation. These include the droplet shape evolu-

tion and forces such as interparticle attraction and gravity acting on particles.

These effects will drive the evolution of the system and thus also affect the final

particle ordering. They can, however, can be controlled to some extent and

their influence can be reduced. A more fundamental influence which cannot

be reduced is the droplet geometry. The final packing exists on a curved 2D

manifold, and the curvature and topology of this manifold are incompatible

with perfect ordering.

In this chapter we investigate the influence of geometry by creating pack-

ings on static surfaces. We do this by inflating particles on a fixed surface

until they can inflate no more. As inflation proceeds, particles are diffusing as

51
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well. The diffusion occurs on a shorter timescale than inflation — this allows

particles to more effectively explore their configuration space, and leads to

higher quality packings on average (as measured by quantities such as packing

fraction and defect count. This idea will be explored in more depth in chapter

5.)

The surfaces studied are all ellipsoids. This geometry is chosen for several

reasons. First, ellipsoidal droplets are straightforward to produce experimen-

tally, for example by simply shearing a spherical droplet. From a theoretical

standpoint, ellipsoids have interesting properties while still being relatively

easy to describe mathematically. An ellipsoid is simply a sphere scaled along

one axis. This results in varying curvature along the surface, as well as curva-

ture anisotropy (i.e. different curvatures along different directions.)

The introduction of these interesting curvature features raises a number

of questions about the packings that will be produced. How will defects be

distributed across the surface, both in terms of defect charge and total defect

count? How will defects in excess of the topologically required ones be intro-

duced? What effect will curvature variation and anisotropy have on scars?

Will it influence their length or orientation? How will the symmetry of the

surface influence the symmetry of the packing? Another important feature of

these packings is their hard-sphere nature — will hard sphere packings differ

from soft-sphere packings?

We study the structure of the defects in the resulting packings, as iden-

tified by a triangulation of the particle coordinates. The spatial distribution

of defects across the surface is measured and correlated with the Gaussian

curvature of the surface. Excess defects in the form of scars are investigated

as a function of particle number and aspect ratio. The orientation of scars

along the surface is measured in order to identify couplings of scars to the
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curvature anisotropy. We also measure the length of scars, finding that the

scar transition seen on spherical surfaces is softened by surface anisotropy. We

introduce a heuristic model to explain this. Finally, from a fine grained search

of the particle number and surface aspect ratio parameter space, we identify

a wide variety of symmetric particle packings.

To perform these analyses, we created two datasets consisting of packings of

varying particle number and aspect ratio. One data set was used for studying

the curvature-defect coupling and scar length, which consisted of packings

with aspect ratio a varying from 1.2 to 4.0 in increments of 0.2 (for both the

prolate and oblate cases: we consider the aspect ratio to be the ratio of the

semi-major to semi-minor axis.) The particle number n was varied from 10 to

800 in increments of 10. Additional prolate packings were generated to study

scar orientation, from aspect ratio 4.2 to 8.0 in increments of 0.2, from particle

number 710 to 800 in increments of 10. 50 configurations were generated for

each pair of parameters. The second data set was used for studying symmetry,

where we are interested in lower particle numbers and a more fine-grained

search of the parameter space. This data set consisted of packings with aspect

ratio varying from 1.1 to 4.0 in increments of 0.1, and particle number varying

from 3 to 200 in increments of unity. 80 configurations were generated for each

pair of parameters.

4.1 Defect Distribution

We first examined the distribution of the defects as a function of the aspect ra-

tio. Defect locations were determined by assigning a defect charge q = 6−c to

each particle, where c is the coordination number determined from the Delau-

nay triangulation of the particle positions (see Methods chapter). The surface
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Figure 4.1: Illustration of the partitioning of the surface into equal area, ax-
isymmetric regions.
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Figure 4.2: (a) Gaussian curvature as a function of position along the sym-
metry axis of a prolate ellipsoid for varying aspect ratios. (b) The integrated
Gaussian curvature in a series of equal area bins (as illustrated in fig. 4.1) for a
prolate ellipsoid. (c) and (d) show the same quantities for oblate ellipsoids. In
each plot, the light green curve corresponds to an aspect ratio of 1.2, medium
green corresponds to 2.6, and dark green corresponds to 4.0.
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Figure 4.3: Defect number density for (A) prolate and (B) oblate ellipsoids
with n = 800 varying aspect ratio: blue is 1.2; yellow 2.6; purple 4.0. Points
with solid lines represent simulation data. Dashed lines represent the predic-
tion of the model in eq. 4.2 for surfaces of aspect ratio 4.0. Note the small
secondary peak near z/z0 = 0.4 at a = 4 in the prolate case. Example con-
figurations of a = 4 are shown as insets. Defect charge density is shown for
(C ) prolate and (D) oblate ellipsoids of a = 4. The green points represent
the net charge density, and the brown and blue points represent the density
of positive and negative defects, respectively. The secondary peak in (A) is
also visible in the positive and negative charge densities in (C ). In (D), there
is a net negative defect charge density near z/z0 = 0.4, despite the Gaussian
curvature being positive. Net defect charge densities for different aspect ratios
are compared to the integrated Gaussian curvature (dashed lines) for (E) pro-
late and (F) oblate ellipsoids. In all plots, densities are given in units of defect
number or defect charge per equal-area segment, averaged over the ensemble
of simulation results, with symmetric segments on opposite halves of a surface
being combined. Lines are guides to the eye.
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was partitioned into equal-area axisymmetric regions as illustrated in fig. 4.1

and the number of defects in each region was counted. Each segment has a

different average Gaussian curvature, varying monotonically from the equator

to the poles, as illustrated in fig. 4.2. Regions near the poles having larger cur-

vature for prolate and the reverse for oblate ellipsoids. In fig. 4.3A for prolates

and fig. 4.3B for oblates, the defect number density is shown as a function

of the axial position z/z0 averaged over the ensemble of simulations at fixed

aspect ratio and particle numbers ranging from 710 < n < 800. Generically,

it is apparent that defect number density increases with the Gaussian curva-

ture, as expected. For prolate ellipsoids at low aspect ratio, the defect number

density increases monotonically with respect to the average K in each region.

At higher aspect ratios, there is a small secondary peak in segments with

low Gaussian curvature. We verified this occurs for other ranges of particle

numbers n > 210.

In order to understand this, we plot separate defect charge densities for

positive and negative defects in fig. 4.3C, as well as the net defect charge

density. The anomalous peak is apparent in both the separate positive and

negative defect charge densities, but not in the net defect charge density, in-

dicating that the excess defects are taking the form of neutral dislocations or

scars.

In fig. 4.3B, we see that for oblate ellipsoids, the defect density again

increases near the more highly curved regions. Fig. 4.3D reveals, however,

that the coupling between defect charge and curvature is again complicated:

while there is a peak in positive defects at the highly positively curved edge of

the surface, there is a high density of negative defects surrounding this, and

the net defect charge density is actually negative near z/z0 = 0.4.

Further investigation reveals that this is a finite size effect. For n = 800 and
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Figure 4.4: For packings of n = 4000 on oblate ellipsoids of a = 4.0, observed
net charge density (points) and predicted net charge density (dashed line).
The observed defect density much more closely matches the model than does
that for n = 800.

a = 4 with 20 surface segments, the lateral size of the segments is smaller than

the particle radius (near the equator, an arc length of 0.1136 compared to r =

0.1976). Upon visual inspection, we see that on highly oblate ellipsoids, scars

tend to form along the highly curved equator (this is confirmed quantitatively

in section 4.2). These scars tend to zigzag such that positive defects occur

slightly closer to the equator.

To remove the finite size effect, 50 simulations were run with n = 4000 and

a = 4.0 (oblate). The results are shown in fig. 4.4. With the particle radius

now smaller than the size of the surface segments (r = 0.08866), the defect

charge density now follows the expected trend.

Previous studies[14] have shown that the defect charge present on a curved
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surface is determined by the integrated Gaussian curvature of that surface,

such that
1

π/3

∫
KdA =

n∑

i=1

qi. (4.1)

To test whether this model is consistent with the results seen here, we plot

the integrated curvature, normalized as in eq. 4.1, in each of the equal-area

segments described above, and compare this with the net defect charge in those

sections. The results for prolate ellipsoids of different aspect ratios are shown

in fig. 4.3E as dashed lines, and there is good agreement between the model

and the simulation data. The result for oblate ellipsoids with n = 800, shown

in fig. 4.3F, do not show agreement. This is unsurprising, given the negative

net defect charge present in the simulation results. The results for n = 4000,

with the finite size effect removed, do show agreement.

This model can be extended to attempt to account for excess dislocations

which occur in addition to the topologically required core disclinations. As

discussed in the background chapter, excess dislocations appear in the form

of scars in packings of particles on spherical surfaces when R/r, the ratio of

surface radius to particle radius, is above a critical value, and above this value

the scar length grows linearly with R/r[9, 10]. On a non-spherical surface such

as an ellipsoid, there is not a single surface radius R, but one can estimate

an effective local surface radius based on the Gaussian curvature as 1/
√
K

(because K = 1
r1r2

where r1 and r2 are the local principal radii of curvature).

One can then assume that for each core disclination (whose surface density

is predicted by K), there is a scar made up of some number of dislocations

ns given by 1/(r
√
K). We fit the scar length data for hard particles packed

on spheres (discussed below in section 4.3, illustrated in fig. 4.8) to obtain a
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function ns(R/r) and use this to model the defect number density ρn as,

ρn =
K

π/3

(
1 + 2ns

(
1

r
√
K

))
. (4.2)

This model at first glance seems like a promising candidate to explain the non-

monotonic nature of the observed defect distributions on prolate ellipsoids, as

there is a competition between high disclination density and low scar length in

regions of high K, and low disclination density and high scar length in regions

of low K. Upon calculating the defect density, shown in fig. 4.3A, we see

that, while this model accurately predicts the magnitude of the defect number

density across much of the surface for prolate ellipsoids, it fails to capture the

anomalous bump. The model does not accurately predict the defect number

density for oblate ellipsoids; it under-predicts it across the entire surface (fig.

4.3B).

One possible explanation for the secondary peak in the defect distribution

on highly prolate ellipsoids is that it is due to the hard-particle nature of the

packings. To test this, we generate packings of soft particles and investigate

the defect distribution. We employ the gradient-descent energy minimization

program described in the methods chapter to generate packings of soft par-

ticles, with interaction energy of the form V (r) = 1
r6
. 500 simulations were

run, and the 50 results with the lowest energy were analyzed. The resulting

defect number density is shown in fig. 4.5. There is no secondary bump in

the soft particle defect distribution, but we also see other differences between

the soft and hard particle packings. The soft particle defect distribution has a

much sharper drop-off and then begins to level off as one moves away from the

ends of the ellipsoid. The model in eq. 4.2 can be used to predict the defect

number density of soft particles, by using the data for scar length on spherical
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Figure 4.5: Observed defect number distribution (points) and model (dashed
line). The model predicts the sharp change in the distribution near z/z0 = 0.9.
However, it under-predicts the number of defects closer to z/z0 = 0. No
secondary peak is observed.

packings of soft particles, shown in fig. 4.8 in section 4.3. The prediction is

plotted alongside the observed distribution in fig. 4.5. It does predict the lack

of a secondary peak and the sharper drop off. However, it under-predicts the

defect density over much of the flatter regions of the surface, making it diffi-

cult to compare to the hard particle case and determine whether the secondary

peak is due to the hard particle nature of the packings.

4.2 Scar Orientation

We next determine whether the scars are oriented by the curvature anisotropy

of the surface. To do so, we consider a local scar orientational distribution

function (ODF) f(α) where the angle α is measured locally in the tangent

plane of the surface, relative to the polar direction (i.e. the direction pointing
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Figure 4.6: Orientation of the scars relative to the curvature anisotropy. (A)
A configuration with a typical scar. (B) Close-up of the scar. Black lines show
edges in a graph comprising the scar. The red dashed line shows a chain of
length 3. Results are shown for (C -E ) prolate and (F -H ) oblate ellipsoids. The
C2 (D, G) and C4 (E, H ) order parameters for prolate and oblate ellipsoids,
respectively, are plotted as a function of aspect ratio for different regions along
the symmetry axis of the ellipsoid: green corresponds to the center, orange to
the mid-region, and blue to the ends. (C ) and (F ) show the ODF of chains
in the center, mid-regions, and ends of the ellipsoid, respectively, for prolate
ellipsoids of aspect ratio 8 in (C ) and oblate ellipsoids of aspect ratio 4 in (F ).
Insets of (C ) and (F ) illustrate the regions used for spatial binning.
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along the uniaxial axis of the ellipsoid). The ODF may be expanded as a

Fourier series,

f(α) =
∑

n

Cn cos(nα). (4.3)

The average value of the first two non-zero coefficients, C2 = 〈cos(2α)〉 and

C4 = 〈cos(4α)〉, were calculated for our ensemble of packings (odd coefficients

are zero due to the symmetry of scars under rotation by π). These quantities

are order parameters for orientational order as they vanish if the scars align

isotropically with the curvature. C2 quantifies nematic order, i.e. uniaxial

orientational order and C4 quantifies quadrupolar order.

To determine the scar orientation, we studied contiguous chains of defects

as shown in fig. 4.6A and B. Given a packing and its Delaunay triangulation,

the neighboring defects around each defect are identified. These adjacent pairs

become the edges of graphs of contiguous defects. Two defects are identified

as the ends of a chain of length l if they are within a connected graph of

defects and the shortest path between them contains l edges. Note that a

single defect graph can contain multiple chains. For example, the graph in

fig. 4.6 contains 4 chains of l = 3. Once a chain of length l is identified,

its orientation relative to the local principal directions—i.e. the polar and

azimuthal tangent vectors ~tθ and ~tφ, respectively (see eq. 3.1 in the Methods

chapter for the parametrization of the surface)—is calculated thus: given a

pair of chain endpoints, their separation vector is projected onto the local

tangent plane at each endpoint, giving components along ~tθ and ~tφ. These

components are then averaged between the endpoints, and the angle α that

the resulting vector makes with ~tθ is recorded as the orientation of the chain.

The z-component of the midpoint of each chain (the average of it endpoints

taken in 3D space) is recorded as the chain’s position and this is used to

examine how the coupling varies across the surface.
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The analysis was applied to an ensemble of simulation results as follows:

For a given aspect ratio, the orientations of all chains of length l are col-

lected across simulations with N ∈ [710, 800] in increments of ∆N=10 (with

50 results at each N resulting in 500 simulations per aspect ratio). Order

parameters C2 and C4 are then calculated from this ensemble. Because the

curvature anisotropy varies with the z-coordinate along the surface, results can

be divided according to their position in order to measure effects due to the

variation in curvature across the surface. In our analysis, we exclude scars in

the regions near the poles which make up 10% of the surface area as here the

curvature tensor is degenerate and the alignment is undefined. The remainder

of each half of the surface is broken into three equal-area, azimuthally sym-

metric regions, as illustrated in the insets of fig. 4.6 C and F, and data from

symmetric regions on opposite halves of the ellipsoid are combined. A chain

length of l=3 was used as this is long enough to capture scar behavior while

having enough chains for statistical purposes. Shorter chain lengths show a

weaker tendency to orient.

The behavior exhibited by prolate ellipsoids is rather complicated, as seen

in the plots of order parameter versus aspect ratio in fig. 4.6 D and E. In

the center region near the equator, scars are nematic along the ~tθ direction

between aspect ratio 3.6 and 6. At higher aspect ratio this center region is

very flat, leading to fewer scars, and so any orientational order is insignificant.

In the mid-regions between the equator and poles, scars become nematic along

the ~tφ direction at aspect ratio 4.4, and then transition to nematic along the

~tθ direction at aspect ratio 6.4. Scars near the poles show nematic order along

~tθ above aspect ratio 2, although this order peaks near aspect ratio 5, then

drops to C2=0 at aspect ratio 6.4 before increasing again. Interestingly, scars

on highly prolate ellipsoids can also show C4 order. This appears in the mid
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regions above aspect ratio 5.2, and in the end regions above aspect ratio 6.

The chain ODFs for prolate ellipsoids of aspect ratio a = 8 in fig. 4.6C

illustrate the trends that appear at high aspect ratio. It is apparent from the

green curve that that there are few chains in the relatively flat center of the

ellipsoid. The orange curve shows a high degree of nematic order directed

along the polar direction in the mid-region, and the blue curve for the ends

shows nematic order along the polar direction, as well as a peak between the

directions of principal curvature, which is indicative of negative C4 order.

The case of scar orientation on oblate ellipsoids is more straightforward.

The order parameters are plotted as a function of aspect ratio for different

azimuthally symmetric regions across the surface, in fig. 4.6 G and H. Scars

at the equator exhibit a high degree of nematic order in the ~tφ direction,

which increases linearly with aspect ratio up to a = 4. This is unsurprising,

because the curvature on highly oblate ellipsoids is localized to a nearly one-

dimensional region around the equator of the ellipsoid, so one expects the scars

to form there, aligned along the equator. There is also a small degree of C4

ordering. In the regions midway between the equator and poles, there is a

weak coupling of scars along the ~tθ direction. These trends are illustrated for

a = 4 in fig. 4.6F: the green curve for the edges displays a peak near the

azimuthal direction, whereas the orange and blue curves show that there are

fewer chains without much order in the flatter regions.

While the scar orientation results for the oblate case are easily understood,

the ordering of the scar orientation on prolate ellipsoids is far more compli-

cated. The orientation varies greatly depending on chain position and ellipsoid

aspect ratio. Especially surprising is the emergence of C4 ordering, which cor-

responds to a tendency for chains to align in a direction intermediate to the

directions of principal curvatures.
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Figure 4.7: The number of excess dislocation defects per scar on (A) prolate
ellipsoids and (B) oblate ellipsoids. Points and white surface represent the
simulation data. The blue surface represents the prediction of the model in
eq. 4.6. For low aspect ratio near 1, there is a clear scar transition, which
is not present at aspect ratios far from 1. The inset in (B) shows a highly
commensurate oblate packing with n = 140 and a = 2.6. Note that data for
oblate ellipsoids with n = 10, a ≥ 2.0 and n = 20, a ≥ 3.0 has been excluded.

4.3 Scar Transition

As discussed in the background chapter, packings of spheres on spherical sur-

faces exhibit a transition: For low particle numbers, only the twelve defects

required by topology are present; above a critical particle number nc, it is fa-

vorable for larger defect structures to occur, typically chains of scars extending

from a core disclination. Increasing n above nc leads to a monotonic increase

in average scar length[9, 10].

From our simulation results of packings with 10 ≤ n ≤ 800, we calculated

the average number of excess dislocations per topologically required disclina-

tion for each (a, n). Defects were weighted in the analysis by the absolute value

of their charge. Given that there are two disclinations per dislocation, and 12

core disclinations, the number of excess dislocations per scar is calculated thus,

nd =
1

2

(∑
i |qi|
12

− 1

)
, (4.4)
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where the sum is taken over all defects. This quantity captures the same

information as the scar length but is easier to calculate, as individual scars are

often not well defined.

Results of the analysis are displayed in fig. 4.7. Prolate ellipsoids [fig.

4.7A] show the experimentally observed behavior for low aspect ratio: for

n < 100 particles there are few excess defects, but at higher particle numbers

there is a roughly linear increase in the number of excess defects. As aspect

ratio increases, however, the transition is softened such that there is a smooth

increase in excess defects with n. This is reminiscent of how applied fields

soften phase transitions[?]; here the anisotropy of the curvature seems to play

a similar role.

The oblate packings show the same trends [fig. 4.7B]. There is, however,

an additional feature that stands out. At n = 140, a > 2, there is a set

of nearly scar-free configurations. This is due to commensurability, as the

particle number and surface geometry for these cases are compatible with a

highly symmetric packing with only the minimally required defects, as seen in

the inset of fig. 4.7B. Similar commensurability issues occur in other systems,

e.g. sphere packings on cylinders[31].

The model for defect number density developed above in the Defect Distri-

bution subsection can be applied to predict the average scar length for a given

aspect ratio and particle number. For each point in our parameter space, we

integrate eq. 4.2, estimating r by assuming a packing fraction of φ = 0.86,

where the packing fraction is given by

φ =
nπr2

A
, (4.5)

where A is the area of the underlying surface. This formula assumes that the
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Figure 4.8: Excess dislocations per scar as a function of particle number for
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(A) is a hard particle packing and inset (B) is a soft particle packing. The
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area on the surface taken up by a particle is equal to its projection onto a

flat surface. More comments on this approximation can be found in the next

section. Our result for scar length is given by,

nd =
1

2

(∫
ρndA

12
− 1

)
. (4.6)

The results are plotted in fig. 4.7A and B, alongside the simulation data. For

prolate ellipsoids, we see excellent agreement. Perhaps most importantly, the

scar transition is softened at high aspect ratios, as in the simulation results.

For oblate ellipsoids, the model does not fit the simulation results quite as well;

it tends to under-predict the scar length, especially at higher aspect ratio. It

does, however, exhibit softening of the scar transition.

A striking difference between these results and those from a previous study

is that here, for hard particles, the transition occurs at a lower particle number;

in ref. [10] it was seen at nc ≈ 400 using colloidal particles with a soft repulsive
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interaction. We therefore performed simulations (see the Methods chapter)

using two different particle pair potentials, V = d−1 and V = d−6 (where

d is the interparticle separation), the results of which are shown in fig. 4.8.

For soft particle packings, we take the average scar length of the five lowest

energy configurations obtained out of an ensemble of 50. For the hard spheres,

nc ≈ 80, while for the two soft potentials the transition occurs around nc ≈ 200

(which appears to be within the uncertainty of the result presented in ref.

[10]). The defect number increases at the same rate with respect to particle

number for both soft potentials. This supports the conclusion in ref. [10] that,

for soft particles, the scar transition does not depend on the specific form

of the particle potential. For hard particles we have quantitatively different

behavior. Visual inspection of hard and soft sphere configurations reveals that

hard sphere configurations possess gaps (fig. 4.8A). It is rare to find a lone

disclination; it is much more common to find a disclination attached to one

dislocation (i.e. a small 5-7-5 scar) adjacent to a gap in the packing. This is

not seen in soft particle configurations (fig. 4.8B), as the energy penalty is

too high, rather a particle can be squeezed to fill in the gaps. The fact that

hard particle packings tend to have gaps makes them especially suitable for

chemical functionalization as described in ref. [36].

4.4 Packing Fraction and Symmetry

We now turn to how the packing fraction varies with respect to particle number

and ellipsoid aspect ratio. To simplify the calculation we make the approxi-

mation, valid for large N , that the area covered by a particle is its projection

onto a flat 2D surface,

φ =
nπr2

A
, (4.7)
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where A is the area of the underlying surface. We checked the validity of

this estimate by numerically integrating the area of intersection between the

surface and the spheres on oblate surfaces of aspect ratio 4.0, and found that

the difference between our estimate and the true value is very small: using the

projected area underestimates the packing fraction by approximately 1% for

packings with n = 100 and 0.1% for packings with n = 800.

For large n, the packing fraction increases slightly with aspect ratio. This is

because for large a the curvature—and hence the defects—are mainly localized

to the poles on prolate surfaces or the equator on oblate surfaces and so more of

the surface can be covered by the planar hexagonal packing, consistent with the

results of the above sections on the Defect Distribution and Scar Transition.

For low n, the opposite tends to be true; the packing fraction decreases with

aspect ratio. However, the trend is more complex and the packing fraction is

sensitive to both n and a at low n. Visual inspection of these configurations

reveals that for specific combinations of n and a, the packings have a high

degree of symmetry, suggesting a commensurability effect, such as that seen

in the Scar Transition subsection above.

To identify these commensurate combinations, we conducted a more thor-

ough search for symmetric packings using the second data set. An arbitrary

packing must break the ellipsoidal symmetry group of the surface and hence

must belong to some finite subgroup of D∞h; most packings at high particle

number do so trivially, retaining only the identity element. Defining a suit-

able inner product (A,B) that measures the distance between two packings,

a packing possesses a symmetry C if (A, CA) = 0 where C is a group element

of D∞h. The elements C can be constructed from the group generators: i) an

infinitesimal rotation about the ellipsoid symmetry axis; ii) spatial inversion,

and iii) a rotation by π about an axis perpendicular to the symmetry axis.
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a) b) c) d)

e) f)

g) h)

Figure 4.11: A selection of symmetric packings: (a) an achiral packing with
n = 74, a = 2.5; (b) a chiral packing with n = 74, a = 1.5 — note that (a) and
(b) have the same particle number, but show different chirality for different
aspect ratio; (c) a packing with fourfold rotational symmetry with n = 69,
a = 1.4; (d) a packing with fivefold symmetry n = 76, a = 2.4. (e-h) A series
of packings which occur in the diagonal band of fourfold rotational symmetry
in the top left of fig. 4.9 and 4.10 e) n = 30, a = 2.4; f) n = 34, a = 2.5; g)
n = 38, a = 2.7; h) n = 46. Note that Light brown particles have coordination
c = 4.
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We used a norm (A,B) defined such that,

(A,B) =

√√√√√ 1

n

n∑

i



minj

∣∣∣~ai −~bj
∣∣∣

r




2

, (4.8)

where the ~ai and ~bj are the positions of particles in packings A and B, re-

spectively: for each particle in A, the closest particle in B is found and the

separations between these pairs are divided by the particle radius. The root

mean square of these normalized separations is then taken as the inner prod-

uct. From this, together with the group generators, all symmetries such that

(A, CA) ≤ ε,a threshold separation were found. From this catalog of sym-

metries, for a particular configuration the appropriate group was determined.

From a collection of configurations with a given (n, a), the most symmetric

configuration was chosen by the following procedure. First, the configurations

with the largest symmetry group were identified. Then, for each of these con-

figurations, the symmetry group element with the highest symmetry norm was

identified and the configuration with the minimum highest symmetry norm was

chosen as the most symmetric.

The results of this analysis are displayed in fig. 4.9 showing the order and

chirality of the symmetry group of the best packing for each combination of

particle number and aspect ratio. The degree of rotational symmetry for each

packing is shown in fig. 4.10. One striking feature is that, for certain particle

numbers, long vertical stripes appear in the plots representing commensurate

aspect ratios for that particle number. Furthermore, low n favors achiral

packing while chiral packings occur more often for higher particle number.

We do, however, see packings that are either chiral or achiral at the same

particle number, as shown in fig. 4.11 a and b. For prolates the stripes occupy

a narrow range of aspect ratio and occur in band-like sequences described by a
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straight line a = mn with some slope m. Each of these sequences corresponds

to a different degree of rotational symmetry nr, and the particle numbers in

the sequence are separated by nr. Inspecting the configurations in a single

sequence, the difference between a configuration with n particles and the next

with n+nr particles is that an additional row of nr particles has been inserted

in the space created by the longer aspect ratio. This is illustrated by a sequence

of configurations with fourfold rotational symmetry in fig. 4.11(e-h).

For oblate ellipsoids, the symmetric configurations for n particles occur

at a much broader range of aspect ratios and symmetric configurations are

observed at much higher n and tend to have six-fold rotational symmetry. The

reason for this is that the high curvature at the end of the prolate ellipsoids

accommodates nr-fold defects at the poles, and these appear to determine

the rotational symmetry for the entire configuration; for oblates, the poles

have low curvature and promote hexagonal packing, hence causing six-fold

rotational symmetry to be more common. Interestingly, other degrees are

present including nr = 4 and nr = 5 and these configurations contain regions

of highly oblique packings (fig. 4.11 c and d).

In general, these symmetric packings are notable because they contain a

high degree of hexagonal ordering over much of their surface, with evenly

spaced defects throughout. This high degree of regularity should provide sta-

bility to the packed structure, and reduce the likelihood of failure from irreg-

ularly spaced defects.

4.5 Discussion

In this chapter we explored the structure of hard spheres packed onto static

ellipsoidal surfaces. It was observed that the defect charge density is given
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by the Gaussian curvature of the surface, as expected. The defect number

density is roughly predicted by a heuristic model that combines the influence

of the Gaussian curvature on core disclination density with the influence of

Gaussian curvature on scar length. Unexplained by this model, however, is

the appearance of a secondary peak in the defect number distribution.

The coupling of scar orientation and curvature was investigated and found

to be highly nontrivial for prolate ellipsoids; it is much simpler on oblate ellip-

soids. For prolate ellipsoids, we see varying degrees of nematic and quadrupo-

lar orientational order both for varying surface aspect ratio and in different

regions across the surface. On oblate ellipsoids, the majority of scars occur at

the highly curved rim of the surface and lie along this rim.

The above heuristic model is also used to predict the average scar length

across an ellipsoidal surface. The model accurately predicts the softening of

the scar transition. However, it begins to fail for packings on highly oblate

ellipsoids. We also see that hard particle and soft particle packings differ in

their scar transition: hard particles lead to a scar transition at lower particle

number due to their tendency not to accommodate lone 5-fold disclinations.

Finally we identified symmetric packings that occur across a range of par-

ticle numbers and aspect ratios. This search revealed a variety of packings in

which the particle number is commensurate with the surface geometry, leading

to highly symmetric packings. Several trends were identified, including several

families of similar prolate packings, and the fact that symmetric packings can

occur at higher particle number for oblate packings.



Chapter 5

The influence of dynamics on

arrested emulsion droplets

5.1 Introduction

Having investigated sphere packings on static ellipsoids to under-

stand the influence of geometry in, we now turn our attention to

the dynamical effects involved in the creation of an arrested droplet

in a Pickering emulsion. A number of factors may influence the formation of

these structures, moving the problem beyond the scope of a standard sphere

packing problem. The most obvious difference is the fact that the surface of

an emulsion droplet is changing shape at a constant volume as it evolves. An-

other way to express this is that the metric of the space in which the packing

lies is changing. Thus, a different packing protocol must be used to generate

these packings and it is well known that different packing protocols can result

in packings with different qualities[?].

In addition to the surface evolution, the physics of particle motion may also

play an important role in determining the structure of the packing. Colloids on

75
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the order of a micron will undergo Brownian motion, so the rate at which they

diffuse compared to the timescale at which the surface relaxes could affect the

quality of the packing. In the static simulations, particles were highly diffusive

and were able to rearrange as the packing density increased. It may be the

case the the surface relaxation happens much faster than particle diffusion,

preventing particles from rearranging and causing a less ordered packing.

Other forces may act on particles as well. In the experimental system, it

is observed that particles are attracted to one another. This causes “rafts” to

form which are then pushed together. It is also observed that gravity tends

to pull particles downward, creating an uneven initial coverage. These forces

which alter the ordering and distribution of particles before arrest may have

an influence on the evolution of the packing and the final arrested state.

In this chapter, we will investigate how these dynamical effects and their

relatives strengths affect the structure of the arrested packing. We do this using

packings generated by the dynamic packing algorithm outlined in section 3.1.2.

To briefly review, these simulations take as input an initial surface aspect ratio

a, the number of particles n, and the particle radius r. To specify the system

dynamics, a timescale associated with each dynamical effect is also given:

diffusion timescale τd, attraction timescale τa, and gravity timescale τg. These

timescales determine the typical time it would take for a particle to move a

distance of one particle diameter under the influence of the associated force,

given in units of the relaxation timescale (i.e. the time it takes for the surface

to evolve from its initial shape to a sphere). A shorter timescale corresponds to

a stronger force. The surface evolves such that its area follows an exponential

decrease. More details can be found in the Methods chapter.
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5.2 Relaxation rate

To investigate the effect of relaxation rate on packings with purely diffusive

particles (i.e. no attraction or gravity) a dataset was generated consisting of

2500 packings with n = 800, a = 8, and r = 0.148316. This radius was chosen

so that arrest would occur at an aspect ratio of roughly 4. The diffusion

timescale ranged from τd = 1 down to τd = 4−4, at five values of τd each

differing by a factor of four, with 500 configurations at each value.

We first examine the distribution of packing fractions (as defined by 4.7)

at which arrest occurs for each τd. As the final aspect ratio is directly related

to the density of the arrested packing, the aspect ratio is one indicator of

the quality of the packing. Because of this, one might expect that for higher

τd, when the particles have less time to rearrange by diffusion, lower quality

packings will form resulting in a lower packing fraction at arrest, invoking an

analogy to quenching a system by rapid cooling leading to the formation of a

glassy state[37]. This is in fact what we find. Histograms of the final packing

fraction are shown in fig. 5.1a for each τd. We see that the mean packing

fraction shifts to a higher value as τd decreases, i.e. a slower relaxation rate

results in arrest at a higher packing fraction. Note, however, that this effect

is subtle: the size of the shift of the mean is roughly as large as the width of

the distribution at fast relaxation rates. We see also that as relaxation rate

decreases, the width of the distribution of aspect ratios gets narrower.

We can also consider the quality of the packing in terms of the number of

defects. Fig. 5.1b shows a scatter plot of the packing fraction and total de-

fect number at arrest for packings produced through fast and slow relaxation.

We see the same trend for defect number as we do for packing fraction: fast

relaxation results in more defects, and a wider distribution of defect numbers.

Because of the wide range in the quality of packings produced by fast relax-
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Figure 5.1: a) For varying relaxation rates (as indicated by τd), histograms
of the packing fraction at arrest. We see that as the relaxation rate slows,
higher packing fractions are achieved and the distribution of aspect ratios
becomes narrower. b) A scatter plot of packing fraction versus total defect
number for fast relaxation (τd = 4, brown) and slow relaxation (τd = 4−5,
blue). The two quantities are correlated, though the variation is low enough
for the slow relaxation case the the correlation is not apparent within the
resulting configuration. c) Packing fraction versus defect number for packings
on a static geometry produced by the inflation algorithm, from the dataset
studied in chapter 4
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Figure 5.2: For varying relaxation rates (as indicated by τd) we plot number
density of topological defects along the surface (from the center to the ends)
averaged over 500 configurations. We also include the defect density produced
on a static geometry by the inflation algorithm, from chapter 4 for comparison.
We see that for slow relaxation rates (e.g. τd = 4−5) the defect distribution
shows qualitative similarities to that produced by the inflation algorithm, with
secondary peaks between the center and the ends, though it differs in magni-
tude. For fast relaxation (e.g. τd = 1) there is a single secondary peak in the
defect distribution near the center of the droplet.

ation, the correlation between packing fraction and defect number is apparent.

Within the set of packings produced through slow relaxation, this correlation

is not apparent, though taken together with the fast relaxation results, the

correlation becomes even more clear. We also show the

Next we investigate the distribution of topological defects as a function of

relaxation rate, using the same type of analysis as in chapter 4. The average

defect number density, as a function of axial position z/z0, is plotted in fig.

5.2 for each τd, as well as as the results for the inflation algorithm presented in
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chapter 4. A clear qualitative difference is present in the defect distributions

for different τd. For low τd, where the relaxation proceeds slowly compared to

diffusion, we see qualitatively the same features in the defect distribution that

we see for packings on a static surface produced by the inflation algorithm.

However, the distribution is not exactly the same: in packings produced by

the relaxation algorithm in the slow relaxation limit the secondary peak in

the defect density is much more exaggerated. The overall defect density is

also lower around the secondary peak, compared to the inflation algorithm.

This suggests that, even in the slow relaxation limit which one might expect

to approach the static limit, the dynamics of the surface evolution has an

influence on the spatial distribution of ordering.

For higher τd i.e. faster relaxation rates, the secondary peaks in the defect

distribution shift towards the center of the droplet and become one peak at the

center of the droplet. In order to understand this shift, we track the evolution

of the hexatic order as surface relaxation occurs. To do this, we calculate a

local measure of the hexatic order for each particle as defined by the expression

ψi6 =
1

N i
b

N i
b∑

j=1

exp(i6θij)

where i is a particle label, N i
b is the number of neighbors of particle i (deter-

mined by a center-to-center cutoff distance, here 1.3 times the particle diam-

eter), and θij is the angle of the line connecting particle i to particle j with

respect to the local surface coordinate frame. We split the surface into 20

segments with boarders of equal spacing along the ellipsoid symmetry axis,

and take the average of the local hexatic order of the particles within each

bin. We then average these averages over a set of 100 simulations, and plot

the order across the surface at equally spaced timesteps (note that each simu-
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Figure 5.3: The local average hexatic order across the surface for different
τd throughout surface evolution. tf is the time at which arrest occurs. τd
ranges from 4−0 (fast relaxation, brown) to 4−4 (slow relaxation, blue). For
fast relaxation, order propagates in from the ends, while for slow relaxation
order is allowed to develop more uniformly.

lation arrests at a slightly different time, but there is a small enough variation

in this time that taking equally spaced timesteps for each simulation and then

average the results at each step across simulations is sufficient for investigating

the average behavior.)

These results are shown in fig. 5.3 for four timesteps, for τd = 1 to τd = 4−4.

We see that generically, the order first increases most rapidly towards the

ends of the droplets (though not at the ends, where geometric frustration

dominates.) This is because as the surface begins to relax, the ends of the

droplet are pulled inward rapidly. The surface area near the ends shrinks as the

ends are pulled inward while the surface area grows towards the center of the

droplet as the center expands. Order propagates inward as a crystalline growth

front expands from the droplet ends. For slower relaxation, we don’t see a clear

growth front. Instead, ordering develops more uniformly across the surface as

it evolves. Essentially, the higher relative rate of diffusion allows particles to

rearrange themselves more efficiently as the density increases, promoting order

more evenly across the surface. The slower rate of relaxation allows diffusion

to dominate and more closely mimics the static surface limit, i.e. the inflation

algorithm. For fast relaxation, this rearrangement does not have time to occur
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Figure 5.4: The local average hexatic order across the surface for different τd
at arrest, scaled to emphasize variation. The hexatic order shows the same
patterns as the defect number density. For fast relaxation, the order is typically
lower across most of the surface, and single secondary minimum in order is
seen at the center of the droplet. For slow relaxation, there are two secondary
minima in the order between the center and the ends of the droplet.
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Figure 5.5: The coverage fraction across the surface for varying τd throughout
surface evolution. tf is the time at which arrest occurs. τd ranges from 4−0 (fast
relaxation, brown) to 4−4 (slow relaxation, blue). For fast relaxation, particles
are densified first towards the ends, while for slow relaxation particles are
allowed to diffuse towards the center as relaxation occurs.

and the center is still disordered as the crystalline growth front moves in. In the

end, this center becomes more ordered to a significant degree, but comparing

the final distribution of hexatic order, we see that for the fast relaxation case

the relative disorder has been quenched in to some extent. The distribution of

hexatic order at arrest is shown in fig. 5.4, scaled to emphasize the differences.

It is instructive to see how the local particle density evolves during relax-

ation as well. In fig. 5.5 we show, for four timesteps, the packing fraction in

bins across the surface (averaged using the same method as was used for hex-

atic order.) We see that, similar to the hexatic order, the density increases the

most rapidly at the ends for fast relaxation. A high density front then moves

in from the edges towards the center until the density is nearly uniform across

the surface. This effect is much more subtle for slow relaxation. Note that in

the final arrested state, the density distribution across the surface shows the

same qualitative features as the hexatic order distribution for each relaxation

rate, verifying the correlation between them.
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5.3 Attractive particles

In experiments, as discussed in chapter 8, it is observed that particles are at-

tracted to one another, often forming well-ordered aggregates which are pushed

together as relaxation proceeds. To investigate the effect attraction has, we

include attractive interactions between particles as described in the chapter 3.

To reiterate, the attractive force is given by an inverse-distance potential with

a linear screening factor. It takes the form

~Fij =





−α ~rij
|~rij |2

(
1− s

2r

)
0 < s < 2r

0 s ≥ 2r

where ~rij = ~xi − ~xj is the particle center-to-center separation, s = |~rij| − 2r

is the particle surface-to-surface separation, and α is a factor determining the

strength of the attraction, which is set by fixing an attractive timescale τa

related to the the time it would take a particle to move a distance of one

diameter under the influence of attraction from another particle (using the

force felt between two particles in contact) with τr = 1:

τa =
4r2

α
.

We run simulations with both weak and strong diffusion, at τd = 4−1 and

τd = 4−3 respectively. At each τd, we run simulations at five values of τa: for

weak diffusion,τa varies from 4−1 to 4−5, and for strong diffusion τa varies from

4−3 to 4−7, so that the ratio of attraction to diffusion strengths is the same

for both strong and weak diffusion. Thus it is again the relaxation rate that

is different for the different τd. The remaining parameters are the same as in

the diffusive case, n = 800, a = 8, and r = 0.148316. We run 200 simulations
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Figure 5.6: The local average hexatic order along the surface at arrest for
different attraction strengths for (a) fast relaxation (τd = 4−1) and (b) slow
relaxation (τd = 4−3). In both cases, we see that as the influence of attraction
in increased relative to diffusion, the ordering becomes more uniform across
the surface, and we also see ordering of the same magnitude regardless of
relaxation rate.

for each combination of diffusion and attraction timescale parameters.

Fig. 5.6 shows the distribution of hexatic order across the surface for the

strongest and weakest attraction strengths, for weak diffusion (a) and strong

diffusion (b). The weak attraction limit recovers the purely diffusive limit.

The strong attraction case, for both weak and strong diffusion, shows much

more uniform hexatic order.

To investigate this, we again look at the evolution of the hexatic order as

surface relaxation proceeds, as shown in fig. 5.7. We see that initially (after a

period of equilibration but before surface relaxation), the hexatic order is very

high across the entire surface. This is consistent with previous studies of crystal

growth on curved surfaces[38], where attractive particles crystallizing on a

curved surface form defect-free structures with a high perimeter-to-area ratio.

We display an example of an equilibrated, pre-relaxation surface in fig. 5.8.

Because the initial surface coverage is high, our structure is not totally defect

free, but the presence of gaps allows for fewer defects. As relaxation proceeds,
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Figure 5.7: The local average hexatic order across the surface for varying
(a) fast relaxation (τd = 4−1) and (b) slow relaxation (τd = 4−3) throughout
surface evolution. tf is the time at which arrest occurs. τa ranges from 4−1

(brown) to 4−5 (blue) for fast relaxation and 4−3 (brown) to 4−7 (blue) for
slow relaxation. For both relaxation rates, the strong attraction cases are very
ordered across the surface initially and this uniform order is largely preserved
(slightly less so towards the ends for the fast relaxation case.)

Figure 5.8: An image of an equilibrated configuration with τd = 4−1 and
τa = 4−5. Large gaps are present within a highly ordered packing, removing
the need for defects within the packing.
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the order begins lowering near the ends of the droplet, where area is being

depleted and the crystal structure is being pushed and deformed by droplet

evolution. The variation in hexatic order across the packing is, however, much

smaller than in the purely diffusive case: the strong attraction makes it difficult

for particles to rearrange and the initial uniform hexatic order is only slightly

disrupted. In the final arrested state, the hexatic order has been reduced across

the entire surface, as the increased packing fraction no longer allows gaps in

the packing which reduce the need for defects, introduces geometric frustration

of the packing. On average, the order is lower in the strongly attractive case as

compared to the diffusive case, again because attraction prevents particles from

rearranging and arresting in a higher-density, higher-order state, analogous to

the purely diffusion, fast relaxation case.

5.4 Gravity

In experiments, it is also observed that gravity plays an important role: before

relaxation, particles tend to accumulate at the bottom of the droplet. As this

initial crowding will affect how the particle configuration evolves and even-

tually arrests, we perform relaxation simulations with gravity acting on the

particles.

Gravity acts on each particle with a force acting downward (which we

define to be in a direction perpendicular to the ellipsoid symmetry axis) with

a magnitude g which is determined by setting a gravity timescale,

τg =
2r

g
.

This timescale determines how long it would take a particle to fall a distance of

2r under the influence of gravity only (if it were undeterred by other particles
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Figure 5.9: The local average hexatic order across the surface for varying
(a) fast relaxation (τd = 4−1) and (b) slow relaxation (τd = 4−3) throughout
surface evolution. tf is the time at which arrest occurs. τa ranges from 1
(brown) to 4−6 (blue) for fast relaxation and 4−2 (brown) to 4−8 (blue) for
slow relaxation.

or the droplet surface), again with τr = 1.

As before for attraction, we run simulations with both weak and strong

diffusion, at τd = 4−1 and τd = 4−3 respectively. At each τd, we run simulations

at seven values of τg: for weak diffusion,τg varies from 1 to 4−6, and for strong

diffusion τa varies from 4−2 to 4−8. The remaining parameters are the same as

in the diffusive case, n = 800, a = 8, and r = 0.148316. We run 200 simulations

for each combination of diffusion and gravity timescale parameters.

In fig. 5.9 we show the distribution of hexatic order along the surface for

arrested droplets under the influence of gravity for both strong diffusion (a)

and weak diffusion (b). We see in both cases that strong gravity has the effect

of lowering the order slightly and leading to more uniform ordering. This

is because, similar to the attractive particle case, gravity has the effect of

promoting early ordering by packing particles together towards the bottom of

the surface. This is seen in fig. 5.10 where we show a packing which has been

equilibrated before relaxation, leaving a large gap at the top of the packing.
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b)

a)

Figure 5.10: a) Side view and b) top view of an equilibrated configuration with
τd = 4−1 and τg = 4−6.

As the surface evolves, this even ordering is preserved and “locked in” to some

extent at arrest.

In fig. 5.11 we show the final distribution of hexatic ordering, this time

averaged in bins in azimuthal segments around the ellipsoid symmetry axis

in order to investigate how the broken azimuthal symmetry introduced by

gravity affects the azimuthal ordering. We see that for strong gravity the

order is increased at the bottom of the droplet (φ = ±π) and decreased at

the the top of the droplet (φ = 0). This is consistent with the fact that

gravity promotes ordering early towards the bottom of the surface (fig. 5.10).

A relatively well ordered packing covers some fraction of the surface, with

an empty gap at the top of the packing. As the surface approaches arrest,

the boundary of the packing closes in on itself and because gravity suppresses

the effect of diffusion, the particles at the boundary are unable to rearrange

themselves and are left in a relatively disordered state. We see, comparing

the weak and strong diffusion cases (which should be interpreted as fast and

slow relaxation, respectively, as the relative strengths of gravity and diffusion

are kept the same between the two) that slower relaxation promotes a larger

variation in order. This is because for slower relaxation, the dominant effect
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Figure 5.11: The local average hexatic order around the surface for varying
(a) fast relaxation (τd = 4−1) and (b) slow relaxation (τd = 4−3) throughout
surface evolution. tf is the time at which arrest occurs. τa ranges from 1
(brown) to 4−6 (blue) for fast relaxation and 4−2 (brown) to 4−8 (blue) for
slow relaxation.

(gravity in this case) has a larger influence.

5.5 Discussion

By including and varying the relative strengths of different dynamic effects,

we see a variation in the ordering of the resulting arrested packings.

In the limit of slow relaxation, in which diffusion is the primary dynamic

effect driving the packing evolution, the distribution of hexatic order is de-

termined primarily by the surface geometry (although, interestingly, we see

that surface evolution does have an effect even for very slow relaxation.) As

the influence of relaxation rate, attraction, or gravity is increased, however,

these effects dominate the particle ordering. In each case, the dynamic effect

promotes earlier ordering over all or some of the surface: a fast relaxation rate

promotes order near the ends, gravity promotes order near the bottom, and

attraction promotes uniform ordering. As the surface evolves and eventually

arrests, a signature of this earlier ordering remains: lower order persists in the
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areas in which order was not promoted. In all non-diffusive cases, the over-

all average hexatic order is lower than for the diffusive case. This is because

diffusion allows the packing to better explore its configuration space, and on

average arresting in a more ordered state.



Chapter 6

Metric jamming on arrested

emulsion droplets

Jamming refers to the concept of rigidity in particle packings. Packings

at low densities are not rigid; they are not stable under applied stress

and they can flow. As the density is increased and particles are forced

into contact, the packing becomes constrained and eventually rigid as the

packing jams. In the context of hard particle packings, a jammed packing

is truly rigid - no further compression is possible. Thus, for hard particle

packings, the relevant questions are whether a packing truly jammed (and

to what extent - multiple categories of jamming are possible based on the

types of particle motions which are or are not allowed), and if it is jammed,

what is the structure of the packing and its contact network? Packings of soft

particles can, of course, be compressed beyond the jamming point. In this

case, it is interesting to ask how the packings behave as they are compressed.

In particular, jamming often deals with packings of disordered particles, so

the contrast between disordered jammed packings and crystalline materials

has been a central focus.

92
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In this chapter the rigidity of arrested packings on relaxing ellipsoids is

addressed. The surface relaxation packing protocol produces structures which

are densely packed and appear stable over short timescales, but due to the

non-equilibrium nature of these systems, one may wonder whether any further

particle motions and surface relaxation are possible, i.e., whether they age.

This question can be approached in terms of the concept of jamming. There

are well established protocols for testing for jamming in packings in Euclidean

space, which we have adapted for packings on curved surfaces. By applying

these protocols to find unjamming motions, we can determine whether our

packings are jammed, and if not, we can unjam them and continue to evolve

the surface until true jamming has been reached.

It is important to be precise about what we mean by “true jamming” in this

system, as compared to what it means for systems that have been studied in

the past[21]. Jamming has been studied in packings in Euclidean space, where

the most extreme category of jamming is strict jamming, in which a packing is

stable to both collective motions of particles and deformations of the packing

boundary. Here we are studying packings in a compact non-Euclidean space

and as such there is no boundary to deform. However, the underlying metric

of the space changes as surface relaxation occurs. Thus, we propose a new

jamming classification called “metric jamming” in which a packing is stable to

both collective particle motions as well as changes in the underlying metric.

In jammed sphere packings in N dimensional Euclidean space, it is well

understood that in order for a packing to be stable, the average contact number

Z must be at least 2N , i.e. each particle must have on average 2N contacts

with its neighbors[39]. In the case of marginally stable jammed packings,

it is found that the contact number is exactly 2N , and hence the packings

are isostatic. For monodisperse sphere packings on a 2D ellipsoidal surface,
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which tend to be largely crystalline, one then might expect a contact number

of Z ≥ 4. Interestingly, we do not see this. The metric jammed packings

produced here appear to be hypostatic, i.e. Z < 4. In effect, the curvature of

the surface is imposing extra constraints on the packing.

A note on terminology: we are careful to distinguish between “arrested” and

“jammed” packings. Arrested packings are stable to surface evolution. The

surface evolution imposes a specific stress field on the packing. The output

of the surface relaxation packing simulations are arrested packings. Jammed

packings are characterized according to the jamming categories outlined in the

Background chapter and are stable to more general stresses.

In addition to studying packings of hard particles which approach jamming

from an under-constrained state, we also study packings of soft particle and

their properties as the density is increased above the jamming point. Packings

of monodispersed particles in flat 2D space tend to be highly crystalline, unless

extreme measures are taken to avoid crystallization[40]. However, due to the

geometric frustration imposed by the curved surface, some degree of disorder

is induced, as well as strain in the crystalline regions of the packing, and it is

not clear what effect this will have on the mechanical properties of soft-particle

packings above the jamming point.

In this chapter, we first deal with the details of identifying and treating

“rattlers” during the analysis of packings. We then show that a repeated un-

jamming and surface relaxation scheme produces jammed packings, and that

these packings are indeed metric jammed. Ee show that these metric jammed

packings have a deficit in the number of interparticle contacts which grows

linearly with the number of particles, causing the packings to appear hypo-

static when they are actually stable. The contact deficit is due to constraints

imposed by the curvature of the surface. Finally, soft particle packings at and
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above the jamming point are studied. We focus on their elastic properties

above the jamming point, and compare monodisperse and bidisperse packings

to understand the extent to which frustrated monodisperse packings behave

like disordered packings.

6.1 Identifying rattlers

As discussed in the Background chapter, jammed packings of hard particles

typically contain rattlers, which are individual particles that are not locally

constrained by their neighbors, while the rest of the packing excluding these

rattlers is jammed. Because these particles are under-constrained, they are

able to move and the contacts they make with other particles do not contribute

to the overall stability of the packing.

For a numerically produced packing, there will necessarily be finite gaps

between particles which are effectively in contact, due to limitations on the

numerical precision of the packing algorithm. Ideally there would be a clearly

defined interparticle distance below which particles are in contact, and above

which particles are not in contact. After determining this contact length scale,

rattlers can be identified based on whether they have sufficient contacts, or

based on the distance available for them to move. Using the latter method,

one must choose a cutoff for the size of the displacement a particle can make

before it is considered at rattler. One expects this rattler-distance to coincide

roughly with the contact length scale, and indeed we see that this distance is

of similar magnitude but somewhat higher. We find, however, that the contact

and rattler length scales themselves are somewhat ambiguous.

A metric used to determine the contact length scale the can be found in

ref [41]. A plot of average contact number Z versus contact cutoff δ (where δ
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Figure 6.1: The average contact number per particle versus contact cutoff
distance for an initially arrested packing. The curve rises quickly from δ = 10−9

to 10−8 and then slowly increases without a clear plateau.

is the interparticle separation divided by the particle diameter), for a jammed

packing with a well defined contact length scale, will show a very distinct

plateau: Z = 0 for low δ, and Z quickly rises to the isostatic value at the

contact length scale and levels off. The sizes of the contacts are roughly log-

normally distributed around this value.

For packings on ellipsoids we find that, while there is a clear peak in the

distribution of contact distances, Z slowly and steadily increases as δ increases

above the initial large jump, as seen in fig. 6.1 for a packing of n = 800. Thus,

the packing is somewhat sensitive to the chosen contact cutoff. This will affect

which particles are identified as rattlers and which are part of the jammed

packing.

To identify rattlers, one must choose a cutoff δr for the distance a particle
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Figure 6.2: For particle numbers n=10, 100, and 800, a comparison of the
average contact number as a function of the contact cutoff and the number
of locally jammed particles as a function of the rattler cutoff. We see that
generally, the ratter length scale is slightly higher than the contact length
scale across all particle numbers.

is able to move (normalized by the particle diameter) before it is considered

a rattler. In order to determine what this cutoff should be, we use the linear

programming rattler protocol described in the Methods chapter to find the

largest distance each particle can move, with all other particles held fixed.

For a given δr we count the number nj of particles which are locally jammed;

i.e. cannot move more than this cutoff distance. One might expect that

this distance should be the same as the contact cutoff distance: the distance

available for a jammed particle to move should be on the same order as the

spacing between particles.

We plot nj as a function of δr, and compare this to Z as a function of the

contact cutoff δ. Results are shown in fig. 6.2 for configurations with varying

n, with vertical axes scaled so that nj = n coincides with Z = 4. We find that

the rattler length scale, i.e. the length scale where the the majority of the

particles in the packing becomes locally jammed, is slightly higher than the

contact length scale, typically by a factor of 2.5. This is reasonable based on

the fact that a particle must be held in place by at least 3 contacts, and the

allowed displacement will be at least as large as the largest gap among these

contacts. Interestingly, the rattler and contact length scales are the smallest
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for packings with particle numbers near n = 100, with typical values near

δ = 10−10. At higher and lower particle numbers, the rattler and contact

length scales are typically near δ = 10−8.

While the complication of the tail in the distribution of contact lengths

persists, we see that the majority of contacts occur near some length scale in

each packing. Although this length scale varies from packing to packing, the

largest is below δ = 10−7. As such, we set a cutoff distance for both contacts

and rattlers of δ = δr = 10−6 which is safely above the range of distances in

which we see the contact and rattler length scales, but not so high that we

include “contacts” with spuriously large interparticle distances.

Once rattlers are identified, they can be excluded from the contact count-

ing analysis. This must be done with care, however. We find that while

rattlers themselves have freedom to move a significant distance and are thus

unstable, they can still contribute to the stability of the rest of the jammed

packing. This is demonstrated by applying a standard method of rattler re-

moval which is considered suitable for ideal packings[26]. In this method, the

rattler identification scheme is applied and the rattlers identified based on a

set distance cutoff are removed, and then this is repeated (as some of the ini-

tially found rattlers may have been preventing other particles from moving)

until no more rattlers are found. For our packings we find that generically, this

iterative scheme will find more and more rattlers each iteration as particles are

removed and more space is opened up, until the entire packing is dismantled.

However, this is not because the packing is not actually jammed (the linear

program unjamming technique confirms this as discussed below), but because

of the finite nature of the interparticle gaps. It is possible, for instance, that a

rattler may be able to move some significant distance in one direction, while

still remaining within the contact cutoff distance with particles which are po-
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Figure 6.3: A schematic of a rattler (purple) which is under-constrained but
still provides constraints on nearby particles. While the purple particle can
move by some distance left and right, it is still always within some much
smaller distance of the particles above and below it. Thus there exists some
contact cutoff for which this particle is considered a rattler but still provides
constraints on the rest of the packing.

sitioned in the perpendicular direction. This is illustrated schematically in fig.

6.3.

Because of these, when counting contacts, we do not remove rattlers from

the packing. Rather, we count the contacts other particles make with rattlers,

but we do not include rattlers and their contact numbers when calculating

the average contact number. Thus the constraints imposed by rattlers are ac-

counted for, but because rattlers are unstable we do not consider their degrees

of freedom.

6.2 Metric jamming

To test for jamming, we apply the unjamming protocol described in the Meth-

ods chapter, which consists of a series of particle moves along directions found

by the unjamming linear program as well as conditioning steps using the soft-

particle energy minimization. Generically, we find that the initial arrested
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Figure 6.4: For a packing of n = 800, Z versus δ curve for the initially arrested
packing (blue) and after an unjamming step (brown). There is a shift of 4
orders of magnitude in the spacing before and after unjamming, indicating
that the initially arrested packing was not jammed.
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Figure 6.5: a) The decrease in surface area, as a fraction of the area at initial
arrest, for a series of unjamming and relaxation steps. Most of the decrease
occurs in the first few steps. b) Z vs δ curves after a series of unjamming
steps. The earlier unjamming steps uncover significant unjamming motions

packings generated by the surface relaxation simulations are not collectively

jammed. Significant unjamming displacements can be found resulting in an

increase in the average spacing between particles as demonstrated by the Z

versus δ curves in fig. 6.4.

After unjamming a packing, surface relaxation can be performed until the

packing is arrested again. By repeatedly applying unjamming and surface re-

laxation steps, we can move the packing closer to a jammed state. To measure

the progress made by this process, we calculate the decrease in ellipsoid surface

area after each relaxation step, as a fraction of the initially arrested surface

area (an example for a packing of n = 800 is given fig. 6.5a). For packings

of n > 100, it is not uncommon to find unjamming motions which allow for a

1% decrease in surface area. For lower n the unjamming motions are typically

much smaller, resulting in fractional decreases in surface area on the order of

10−8. For n = 800, we see that the first iteration of unjamming and relax-

ation results in a decrease in ellipsoid surface area of between 0.05% and 1%.

Successive iterations produce further decrease in the surface area, i.e. produce
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denser packings, though the size of the successive relaxation steps tend to be

much smaller. The decrease in relaxation resulting from the first iteration

accounts for, on average, 72% of the total decrease in area. We consider pack-

ings to be jammed once no further significant surface relaxation can occur. We

find that the decrease in surface area between steps tends to approach a value

below 10−10, representing convergence up to numerical limitations. To deter-

mine when our configurations are jammed, we run the iterative unjamming

and relaxation process until 10 iterations in a row result in a fractional area

decrease of less than 10−8. In addition to the linear programming unjamming

scheme, a full minimization of the soft external potential can be performed,

which also finds significant unjamming motions but is typically very slow. A

full performed in place of the linear program after iterations which result in

an area decrease of less than 10−8, but are never performed twice in a row.

To investigate the structure of the packing after each unjamming step, we

plot Z versus δ for each iteration, as in fig. 6.5b. We see that after the

initial unjamming step, the typical interparticle contact spacing is δ = 10−5.

Successive iterations push the spacing to lower values of δ. Note that the curve

does not shift monotonically towards lower δ. This is due to the iterations

which employ the full energy minimization. The earlier full-minimization steps

find relatively large unjamming motions which lead to a larger increase in

spacing. Closer to jamming, the full-minimization steps result in more even

spacing between particles, leaving the curves for these steps slightly to the

right of the final curves for linear programming steps. Regardless, the Z

versus δ curves converge to a static shape by the time the packing is jammed

as determined by the criteria explained above, further confirming that these

packings are indeed jammed.

Given the convergence of the surface evolution and the Z vs δ curves, we
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can be confident that this method produces jammed packings, and furthermore

these packings are metric jammed. In ideal packings, the unjamming linear

program can find only unjamming motions for packings which are not locally or

collectively jammed. To unjam a packing which is collectively jammed but not

metric jammed would require motions of the particles along the direction of the

evolving surface. However, due to the numerical nature of our packings, any

packing is only jammed up to some numerical tolerance. Given this, a packing

which is collectively jammed but not metrically jammed will allow motions

with sizes on the order of this tolerance both in the unjamming and in the

relaxation phase. By repeatedly applying these phases as we do, any metric

unjamming motions should be uncovered after several iterations. Because

we consider our packings jammed when repeated unjamming and relaxation

no longer accomplishes anything, we can be confident that our packings are

metrically jammed

6.3 Apparent hypostaticity: constraints induced

by surface curvature

After confirming that a metric jammed state has been found, we identify rat-

tlers and exclude them from the average contact number calculations (while

still counting the contacts that other particles make with them.) Plotting Z

versus δ without rattlers, in fig. 6.6, we see that at the value of δ = 10−6

chosen as the cutoff for rattler identification, the jammed packing has a con-

tact number of Z = 3.956 and has not reached the expected isostatic value of

Z = 4. As δ is increased, we do not see Z = 4 until δ = 2.5× 10−5, well above

the rattler cutoff.

The first striking feature of this result is that for a system with a high
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Figure 6.6: a) Plot of Z versus δ for a packing of n = 800 with rattlers excluded
from contact counting. b) A close up of the highlighted region of (a). The
vertical dashed line indicates the value of the imposed rattler cutoff. At this
value, the packing has a value of Z < 4.

degree of hexatic order, one might expect an average contact number near

Z = 6. This is not the case due to the fact that the curvature of the surface

induces strain in the crystalline regions of the packing[8], combined with the

hard contact constraints: because there can be no overlap, the obliqueness of

the packing results in each particle having only 4 contacts in the crystalline

regions of the packing.

The second, more significant feature of this result is that the packing ap-

pears to be hypostatic with a contact number of Z < 4. Packings in 2D require

Z = 4 in order to be stable, so a value of Z < 4 appears to be at odds with

the fact that these packings are metric jammed.

To further explore this apparent deficit in required contacts, we plot the

number of missing contacts, (4−Z)nj + 2 (where, as earlier, nj is the number

of non-rattlers that make up the jammed sub-packing) as a function of nj

in fig. 6.7. The reason for the +2 comes from a careful degree of freedom

counting argument and is especially relevant for low particle numbers. For

a packing of n particles, there are 2n particle coordinates. The ellipsoidal
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Figure 6.7: The number of missing contacts as a function of nj (the number of
non-rattlers), for 30 packings at each n. Note that the magnitude of the lower
bound of this dataset increases roughly linearly with nj.

surfaces studied here have a trivial rotational symmetry, reducing the number

of relevant degrees of freedom to 2n−1. The surface evolution motions that we

allow for introduce an addition degree of freedom, bringing the number back

to 2n. Because the impenetrability constraints are inequality constraints, to

constrain a point in an N dimensional configuration space, N + 1 contacts are

needed (e.g. 3 contacts are needed to hold a disk in place in 2D.) Thus, a

total of 2n+1 contacts are needed, and because each contact is shared between

two particles we expect to count 4n + 2 contacts. In fig. 6.7 we focus on the

lower bound of this data as it is the fewest number of contacts that is most

interesting, while anything with more contacts may be over-constrained due

to states of self-stress[42]. We see that the deficit in the number of contacts

grows roughly linearly with nj, with a slope of 0.033.

Because we have confirmed that these packings are stable, there must be

some additional constraints not accounted for solely by contact counting. To

investigate the nature of these constraints, we focus on a simple ideal packing
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a) b)

Figure 6.8: A simple jammed packing of five particles. a) The particle con-
figuration, with five particles packed on a surface with an aspect ratio of

√
2.

b) An unjamming motion found by the linear program for this packing, which
appears allowed to first order, but any finite displacement in these directions
is prevented by the surface curvature.
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of five particles on a commensurate ellipsoid, pictured in fig. 6.8. The particle

coordinates lie on the vertices of a triangular bipyramid with equilateral faces

(i.e. two tetrahedra on top of one another) and the surface aspect ratio is
√

2.

If we consider a fixed surface, this packing requires ten contacts for collective

jamming, using the contact requirements outlined above. However, two par-

ticles have three neighbors and three particles have four neighbors, giving a

total of nine interparticle contacts, falling short of the ten constraints required.

Applying the unjamming linear program to this configuration uncovers an ap-

parent unjamming motion which attempts to rotate the configuration in a

uniform circular motion about an axis lying in the ellipsoid’s equatorial plane.

We find, however, that motion along this unjamming direction is impossible.

The reason for this is that although this motion appears possible to first or-

der, the surface imposes high order constraints which are not accounted for

in the linearization of the system’s constraints. As the particles try to move,

the curvature of the surface causes them to change direction and collide with

their neighbors, preventing motion. Thus we see that the curvature of the

surface is the source of these additional constraints, resulting in the apparent

hypostaticity.

Similar nonlinear constraints have been seen in other particle packings.

For packings of ellipsoids and other non-spherical particles in Euclidean space,

it is well understood that the non-spherical nature of the particles imposes

higher order constraints on particle motions[22]. The reason for this is that to

first order, the surface of these particles at a contact point is indistinguishable

from a sphere and thus an infinitesimal rotation will not result in a collision.

However, to higher order, a particle’s surface at a contact point can look

flatter, and the flattened surface will tend to collide with neighbors as it rotates

(illustrated in fig. 6.9). In these systems, the linearization of constraints does



CHAPTER 6. JAMMING 108

a) b)

Figure 6.9: a) A spherical particle is rotationally symmetric, and so rotational
degrees of freedom do not matter. b) Non-spherical particles can appear un-
derconstrained to first order, in that infinitesimal rotations do not immediately
result in overlap. However, finite rotations will cause overlap due to the rela-
tive flatness of the particle compared to a sphere.

not capture the variation in curvature of the particles’ surfaces. For packings

in curved space, it fails to capture the curvature of the space because locally

the space looks flat.

6.4 Soft particles

As discussed in the Background chapter, packings of particles with soft, finite

range potentials can be compressed beyond the point at which they become

stable, i.e. the jamming point, with packing fraction φc at zero temperature

and applied stress. For disordered packings (typically bidispersed packings in

2D or 3D, or monodipsersed packings which are able to avoid crystallization in

3D), as the density is increased above the jamming point, a number of specific

mechanical properties are observed which distinguish them from crystalline

packings. They show an excess of low-frequency vibrational modes (in contrast

to the Debye law for ordered solids[]), as seen in a number of glassy and

disordered systems[]. They also exhibit critical scaling laws as the density is

increased above the jamming point. This is true for the contact number Z, as



CHAPTER 6. JAMMING 109

well as the bulk modulus B and the shear modulus G. These scaling properties

reveal the nonlinear nature of packings near the jamming point.

To generate packings of soft particles, we again employ the dynamic pack-

ing algorithm, replacing the hard particle interactions with a compact Hertzian

interaction,

Vij =
ε

2/5

(
1− rij

σij

)2/5

Θ

(
σij
rij
− 1

)

where ε determines the energy scale, rij is the distance between the centroids of

particles i and j, σij is the sum of the radii of the particles, and Θ is the Heav-

iside step function enforcing a finite interaction range. Both monodispersed

packings and bidipsersed packings with a radius ratio of 1.4 are produced.

The surface relaxation proceeds past the point where all particles are overlap-

ping, creating overjammed configurations. We apply an energy minimization

to snapshots of the configuration taken throughout the relaxation process, fix-

ing surface geometry and using a conjugate gradient method[]. From these

energy minimized configurations, we expand the packing quasi-statically (i.e.

minimizing the energy after each small expansion step) at fixed aspect ratio.

This allows us to find the jamming point packing fraction φc corresponding

to the initial energy minimized configuration (as φc is a property specific to a

given packing, not a universal value[]), while also generating packing fractions

in the intermediate range to study the mechanical behavior of the packings as

a function of φ− φc.

First we investigate the vibrational modes of the packings. To calculate

vibrational modes along the surface, we impose a harmonic energy penalty

for particle motions normal to the surface, with an energy scale much larger

than the particle interaction energy scale. We then calculate the Hessian

matrix of the packing energy with respect to the particle coordinates in 3D

and diagonalize it to find eigenfrequencies and eigenmodes, and ignore modes
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Figure 6.10: The density of states of vibrational modes at various packing
fractions, for (a) monodispersed and (b) bidispersed packings. As the packings
approach the jamming point, there is an abundance of low frequency modes.

normal to the surface which are easily identifiable due to their much larger

magnitude.

Figure 6.10 shows the density of vibrational frequencies for packings at

various values of φ− φc. We see that as φ approaches φc, the so-called boson

peak[?], an excess of low frequency modes, shifts towards ω = 0, and at very

low packings fractions (φ− φc = 10−5), there is a significant density of states

extending down to ω = 0.. This is a signature of marginal stability: below φc,

the particles are not in contact and all vibrational modes are zero-frequency

modes. As a packing approaches the jamming point from above, it develops an

abundance of very low frequency modes. Both monodispersed and bidispersed

packings show similar behavior.

Next we look at the scaling of Z − Zc with respect to φ− φc, where Zc is

the contact number at which packings are marginally stable. For bidipsersed

packings, we see a power law behavior with exponent 0.50 ± 0.03 (mean and
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Figure 6.11: Scaling of contact number above the jamming point for (a) a
monodispersed packing and (b) a bidispersed packing, with power law fits
displayed. For the bidisperse packing, the power law fit is for data above
(φ− φc) = 10−3.

standard deviation, based on 9 packings), at least at higher packing fractions

(φ − φc > 10−3), consistent to the value of 0.5 seen for bidisperse packings

in Euclidean space[?]. Bidispersed packings deviate from this behavior at

lower packing fraction. For monodisperse packings, we see a slightly higher

exponent of 0.58±0.04 (based on 10 packings). The changing contact number

is an indication of nonlinear behavior: as the packing is compressed, packings

that were not in contact start interacting, changing the structure of the energy

landscape.

Finally, we investigate the scaling of the elastic moduli of packings near

jamming. Disordered jammed systems exhibit a number of nonlinear elas-

tic behaviors. These can be seen by comparing the instantaneous response

and infinite-time response of their bulk and shear moduli. The instantaneous

moduli are calculated by applying a uniform compression or shear and then

calculating the response of the system pressure. The infinite-time moduli are

calculated by applying the same deformation, but then minimizing the config-

uration energy before calculating the system response. If the system is linear,

then the deformation will scale or shear the configuration’s local energy land-
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scape but will not change its structure and the configuration will still be at a

local energy minimum. In disordered jammed materials, however, a difference

is observed between the instantaneous and infinite-time response. For the bulk

modulus, both the instantaneous response B0 and the infinite-time response

B∞ show a power law which scales as (φ− φc)α−2, where α is the exponent of

the interaction potential (e.g. 5/2 for Hertzian interactions.) Despite having

the same power law exponent, the power laws have different coefficients such

that B∞ < B0. The difference is more extreme for the shear moduli G0 and

G∞ which actually have different power law exponents: G0 ∝ (φ− φc)α−2 and

G∞ ∝ (φ− φc)α−1.5.

The bulk and shear moduli can be derived from the pressure tensor. The

pressure tensor of the packing can be calculated by[]

pαβ = A−1
∑

rijα
rijβ
rij

dV

drij

where A is the surface area, V is the full configuration energy, and rijα is the

component of ~rij along the surface coordinate alpha (we take ~rij in 3D and

take the projection along the surface tangent vectors ~tθ and ~tφ in the polar

and azimuthal directions, respectively, at both positions ~ri and ~rj and use the

average between the two points.) From this, the bulk modulus can be calcu-

lated from the pressure, B = φ dp
dφ
, where p = 1

2

∑
α pαα . The shear modulus

is given by G = dΣ
dγ

where Σ = pθφ and γ is the applied shear. The shear

is applied by twisting the configuration around the ellipsoid symmetry axis

such that dsφ
dsθ

(where sθ and sφ are arclengths along the polar and azimuthal

directions) is constant, i.e. there is a uniform shear rate across the surface.

After applying a shear we fix the positions of several particles near the poles

of the surface to ensure that the packing will not relax back completely after
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Figure 6.12: (a) Bulk and (b) shear modulus for a monodisperse packing. (c)
Bulk and (d) shear modulus for a bidispersed packing. In all cases, we see a
downward shift between the instantaneous and infinite-time moduli, indicating
nonlinear behavior. For the shear moduli, we also see a change in the scaling
exponent. The change is not as extreme for the monodispersed packing as in
the bidispersed packing, indicating behavior intermediate between that seen
for crystalline and random jammed packings.

the energy minimization, and we exclude the fixed particles (and the area they

cover) from the pressure tensor calculation.

For the bulk modulus, we see the same behavior in monodispersed packings

as that expected for disordered packings: we see an exponent of about 0.5

(as expected for a Hertzian potential) for both B0 and B∞, and we see that

B∞ < B0. For the shear modulus, we do see a change in the exponent, but

not as large of a change as is expected for disordered packings. We see power

laws of G0 ∝ (φ − φc)
0.53 and G∞ ∝ (φ − φc)

0.67, while for a disordered
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packing one would expect a power law of G∞ ∝ (φ − φc)1. In the bispersed

case, interestingly, we see the exponent increase to 0.74 rather than 1. This is

higher than the monodispersed case, but lower than usually seen in disordered

packings.

It is rather surprising that monodipsersed packings on a 2D surface share so

many properties with disordered packings, given that the monodisperse pack-

ings are relatively well ordered. There are two effects, both stemming from

geometric frustration, which lead to the packings exhibiting these properties

near the jamming point. First, the surface curvature necessitates topological

defects in the packing. These defects correspond to localized regions of dis-

order. Second, the curvature causes strain in the nearly-hexagonal packing.

Thus, instead of the surface being covered by a perfect hexagonal lattice with

each particle in contact with six neighbors, the lattice is slightly oblique and

most particles have four contacts — allowing for the average contact number

Z ≈ 4. The fact that the lattice is still largely well ordered, but with localized

regions of disorder, may explain why the shear modulus scaling laws appear

to be intermediate between what one would expect for a fully ordered and a

fully disordered system.



Chapter 7

Percolation transition in the

packing of bidispersed particles

on curved surfaces

Bidispersed hard spheres provide a simple model of a glass tran-

sition[], at high temperature they flow freely, but as the temper-

ature is reduced they become kinetically arrested and form rigid

but highly disordered structures[28]. At zero temperature and stress, a similar

jamming transition to rigidity occurs as a function of density[20], in 2D this

tends to occur near a packing fraction of φ = 0.84[43].

Sphere packings, the high density and zero temperature limit of these pro-

cesses, have been extensively studied in both 2D and 3D Euclidean space[20,

21, 28, 44] revealing strong dimensional dependence: 2D monodispersed spheres

tend to crystallize readily, because the locally dense hexagonal packing fills

space; in 3D the locally dense tetrahedral packing cannot fill space, permit-

ting a random close packed structure that is the subject of much debate[].

Even in 2D, however, disorder can be induced in bidispersed systems. Molec-

115



CHAPTER 7. BIDISPERSITY 116

ular dynamics simulations have shown that there is a transition from order

to disorder as the degree of bidispersity is increased[45, 46, 47, 48], and sta-

tistical models of bidispersed particle packings have been used to predict the

local features of disordered bidispersed packings[49, 50]. The degree of order

or disorder can be measured by an order parameter such as the hexatic bond

orientational order[4].

As discussed in the Background chapter, monodispersed packings on spheres

undergo a scar transition. They are mainly crystalline with a transition be-

tween isolated defects for small particle number and chains of defects or scars

akin to grain boundaries in bulk systems that occur above a critical number

of particles Nc ≈ 110 and grow with system size[10, 9]. The scars may join in

a asterisk-like motifs[?] and are aligned by anisotropic curvature[51].

In this chapter, we investigate the packing of bidispersed particles on a

spherical surface as a simple model of how glasses interact with curvature. We

determine the packing fraction as a function of particle number N , bidispersity

b = (r1 − r2) / (r1 + r2) where r1 ≥ r2 and fraction of large particles χ =

N1/N . We determine the packing fraction and connectivity as a function of

these parameters, and by identifying topological defects from the neighbor

graph show that variation in these parameters is explained by a percolation

transition due to growth of the scars.

7.1 Simulation parameters

Packings with high coverage packings were created using a modified version

of the dynamic packing algorithm described in subsection 3.1.2. We use the

same particle dynamics (including only diffusion), but generate the packing

on a shrinking spherical surface, whose radius starts at R = 1 and decreases
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at a constant rate. The surface relaxation timescale τr is given by the time

it takes the radius to shrink to R = 0. Particles are randomly assigned to

two categories corresponding to the larger and smaller radii respectively. The

larger particle radius is set at r1 = 0.03. The radius of the smaller particles

is calculated from r2 = r1(1 − b)/(1 + b). The simulation proceeds until the

surface can no longer shrink without creating particle overlaps as outlined in

3.1.2.

As in chapter 7, configurations produced by this procedure are referred

to as arrested, because they remain metastable if the simulation is restarted,

however eventually a stochastic diffusion move will unjam the arrested config-

uration, potentially facilitating further inflation and a consequent increase in

the packing fraction. This process occurs in real glasses and is known as aging.

We employ the unjamming linear program outlined in subsection 3.2.4 to ar-

tificially age the arrested structures, by finding and executing an unjamming

motion of the particles and further inflating them. Iterative unjamming and

inflation guides the packing toward a state that is collectively jammed with

respect to movement of the particles and further inflation. Each arrested struc-

ture was subjected to this artificial aging process to produce a corresponding

ensemble of jammed structures.

7.2 Packing fraction

An ensemble of simulations was run for values of bidispersity on the interval

b ∈ [0, 1] with N = 800 particles and χ = 1/2; the packing fraction Φ, i.e. the

ratio of surface area of the sphere enclosed by the particles to the total area, was

calculated for each configuration and the a fraction of the best were selected

for each value of b. The mean of this restricted set is shown as a function of
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Figure 7.1: Packing fraction as a function of bidispersity b =
(r1 − r2) / (r1 + r2) where r1 > r2 for several values of particle number N .
The maximum near b = 0.73 occurs for an Apollonian packing, i.e. where
smaller particles fit in the interstices of the larger particles as depicted in the
inset.
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b in fig. 7.1. From the monodispersed case, a small amount of bidispersity

immediately introduces disorder and reduces the packing fraction as expected.

Above a critical value of bidispersity bc ∼ 0.2, however, this trend reverses

and Φ increases again up to a maximum value of 0.858 at b = bA ∼ 0.7 and

then decreases as b → 1. The maximum at b = bA is immediately explicable:

it corresponds to the special ratio of radii at which the smaller particles fit

exactly in the interstices between the larger particles [fig. 7.1 inset]; we call

this the Apollonian point in reference to the tiling. The packing fraction at

b = 1 corresponds exactly with that for N/2 particles. No such immediate

explanation is obvious for the low bidispersity results, which appear to be well

mixed; we therefore seek a more detailed understanding of the structure.

7.3 Scar Percolation

For monodispersed particles, neighbors are assigned by constructing a Voronoi

tessellation from the particle centers of mass, partitioning the surface into N

polygonal regions closest to a particular particle[3]. Two particles are consid-

ered to be neighbors if they share an adjacent edge on the Voronoi tessella-

tion. Generalizing this construction to bidispersed particles using a weighted

distance fails to uniquely assign all points on the surface to a particle; two

alternatives that have been proposed[?] are the radical tessellation and the

navigation map, both of which recover the Voronoi tessellation in the limit of

monodispersed spheres. The radical tessellation utilizes the radical plane as

a separatrix between each pair of particles; the navigation map partitions the

surface into regions closest to the surface of the particles rather than their cen-

ter of mass. We found little difference between quantities calculated from these

constructions and use the radical tessellation exclusively in the remainder of
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Figure 7.2: a) Average coordination number for large-large, large-small and
small-small inter-particle contacts respectively; b) Number of particles with
coordination number C 6= 6 as a function of bidispersity; c) Representative
defect subgraphs for i) b = 0; ii) b = 0.1, iii) b = 0.2 and iv) b = 0.4 illustrating
growth of the scar network.
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the chapter.

From the radical tessellation, the adjoint neighbor graph was constructed

for each packing and the coordination number determined for each particle.

In fig. 7.2(a) we plot the average coordination number per particle, separated

into large-large, large-small and small-small contacts. At infinitesimal b, each

particle has six neighbors, three smaller and three larger on average. With

increasing b, the number of large-small contacts per particle remains a con-

stant value of three; larger particles gain more large neighbors while smaller

particles lose small contacts. At the Apollonian point, the smaller particles are

surrounded by three larger neighbors, while the larger particles are on average

surrounded by six large neighbors and three smaller neighbors. For b > bA, the

coordination numbers remain constant, consistent with the discussion above

whereby the smaller particles simply are caged within the interstices of the

larger particles.

In fig. 7.2(b), we plot the number of particles that possess a non-hexagonal

coordination number as a function of bidispersity. This reveals that a tran-

sition is occurring: As b increases from zero, this number rises slowly until

a point b ≈ 0.1, when it increases much more rapidly. This point coincides

with the position of the minimum in the packing fraction in fig. 7.1. Above

bidispersity b ≈ 0.5, essentially none of the particles possess six neighbors. To

determine the nature of this transition, it is necessary to examine the detailed

evolution of the structure. A useful tool to do this is to take the defect sub-

graph of the connectivity graph by deleting all vertices that have six neighbors.

Illustrative examples of these subgraphs for different values of b are depicted

in fig. 7.2(c). At b = 0, [fig. 7.2(c)(ii)] the subgraph is disconnected; the small

connected subgraphs correspond to the previously-studied scars, and are essen-

tially linear in morphology, with a small number of branches. As bidispersity
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increases to b = 0.1 [fig. 7.2(c)(ii)] the connected subgraphs are still recogniz-

ably scar-like in nature, though many have a more branching morphology, but

substantially longer. By b = 0.2. [fig. 7.2(c)(iii)], the defect subgraph remains

disconnected, but is now dominated by a few largely connected graphs that are

mostly linear with branches. For b = 0.4 [fig. 7.2(c)(iv)] the defect subgraph is

mostly a single connected structure with a small number of additional isolated

defects; it is no longer branching, but consists of linear elements that link into

a foam-like structure. For b > 0.4, the defect subgraph retains this structure,

but becomes more dense.



Chapter 8

Experiments

The simulations studied in this thesis model the phenomenon of ar-

rest relaxation in Pickering emulsions. As discussed in section 2.2,

a Pickering emulsion is a mixture of two immiscible fluids plus

colloidal particles. Arrested emulsion droplets are created by a process of

deformation, adsorption, relaxation, and arrest: some deformation is applied

to an emulsion droplet driving it into a non-spherical shape with increased

surface area; because of the increased surface area, more colloidal particles

can adsorb at the droplet interface; the deforming force is removed and the

droplet begins to relax towards an area-minimizing spherical shape; finally,

if the surface coverage of the colloidal particles is large enough, the particles

become densely packed as the surface area is reduced and elastic contact forces

between particles prevent the surface from relaxing any further. This results

in a droplet held in a non-spherical shape which is covered in a dense particle

monolayer.

In this chapter we describe the creation of arrested emulsion droplets, as

done by Patrick Spicer’s group in the Department of Chemical Engineering at

the University of New South Wales. The system components are described as
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Figure 8.1: Elongated pickering emulsion droplets being created by a microflu-
idics device. Image courtesy Patrick Spicer.

well as the specific mechanisms by which droplets are deformed and relaxed.

We also discuss various physical effects which influence droplet formation as

well as challenges in creating the droplets. Finally, we present an image anal-

ysis applied to a few example droplets, to demonstrate how these experiments

can be compared to the simulations presented in the rest of this thesis.

8.1 Pickering emulsion preparation

Pickering emulsions are composed of two immiscible fluids (typically an aque-

ous and oil-based phase) and colloidal particles. The Spicer group uses hex-

adecane as the oil phase, carbopol (a yield stress fluid) as the aqueous phase,

and silica colloids, slightly larger than 1 micron in diameter. The colloids are

first dispersed within the oil phase and allowed to equilibrate. A coaxial-flow

microfluidic setup[52] is then used to extrude oil droplets into a surrounding

carbopol phase. Oil is ejected from a central syringe, while carbopol is flowed

past this syringe. A Plateau–Rayleigh instability causes the stream of oil to

separate into distinct droplets; however, they are held in an elongated shape

by the yield stress of the carbopol. The colloids which are initially held inter-

nally in the oil phase can then adsorb at the droplet interface. An image of
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elongated droplets in production is given in fig. 8.1.

8.2 Droplet relaxation

Once elongated droplets have been formed, they can be relaxed by altering

the carbopol so that the droplet surface tension overcomes the carbopol’s yield

stress. Carbopol is an aqueous suspension of high molecular weight cross-linked

poly(acrylic acid) polymers[53]. By changing the chemical environment, the

polymer network can swell or deswell, changing the rheological properties of the

carbopol fluid[54]. Thus, by adding salt to the carbopol matrix surrounding

an elongated droplet, the yield stress is reduced and the droplet can then

relax towards a spherical shape. By lowering the concentration of added salt

(which slows its diffusion diffusion into the carbopol), the relaxation rate of

the droplet can be slowed.

8.3 Other physical effects and complications

As discussed in chapter 5, a number of phenomena affect the Pickering emul-

sion systems and may influence the ordering of the particles on the final ar-

rested droplet. The most prominent effects observed in the experimental sys-

tem are interparticle attraction and gravity.

Interparticle attractions are clearly present in the system, as evidenced by

particles aggregating into rafts before arrest. An example of these aggregates

is shown in fig. 8.2 for a sparsely covered droplet. Interparticle attractions

are most likely due to capillary effects[55]. If a particle induces a deformation

in the fluid-fluid interface around it, this deformation will increase the surface

area of the interface. If two nearby particles do this, the area added by the

induced deformations can be reduced by moving the particles closer together.
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Figure 8.2: Aggregates of particles form due to attractive interactions. Image
courtesy Patrick Spicer.

Thus, surface tension drives attractive forces between particles.

The question then arises of what causes the particles to deform the surface.

Particles on a spherical interface, in the absence of gravity, will not deform

the interface[55]. However, when gravity is significant, this will pull particles

downward and induce a surface deformation. This would cause particles on the

top and bottom of the surface to be attracted to one another, but would not

affect particles on the side of the droplets. Due to constraints on imaging, it is

more difficult to view the sides of the droplets than the tops and bottoms, so

this behavior has not been confirmed. On a surface with anisotropic curvature,

quadrupolar interactions will be induced[56], although this effect is likely small

for the system at hand. Quadrupolar interactions can lead to square-lattice

ordering being induced in packings on curved surfaces, but this requires careful

tuning[?].

Gravity is observed to cause particles to sink towards the bottom of a

droplet before arrest. While thermal effects in colloidal suspensions often

overcome gravitational effects, the density and size of the silica particles used

prevents this.
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Figure 8.3: An asymmetrically relaxed droplet. Image courtesy Patrick Spicer.

One challenge to creating symmetric ellipsoidal droplets is achieving uni-

form addition of salt to the surrounding carbopol matrix. If the salt is not

added uniformly, it may cause one part of the droplet interface to yield sooner,

leading to asymmetric relaxation as pictured in fig. 8.3.

8.4 Image analysis

Given a bright-field microscope image of an arrested droplet, an image analysis

can be performed to identify defects in the packing. This is done by identifying

particles based on brightness maxima in the image. Once particle locations

have been determined, a Delaunay triangulation is performed to determine

coordination numbers and thus defect charges for each particle.

Figure 8.4 shows three experimental images, as well as the same images

with particles colored by coordination number. Note that coordination num-

bers for particles near the edge of the image are not shown, due to spurious

defects being detected at the boundary of the packing, as well as the fact that

near the edges, the droplet surface is being viewed at an angle. It is clear in

each image that there is a high degree of hexagonal ordering. However, there

appear to be more defects in these packings that observed in the static simula-
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A C E

Figure 8.4: Experimental data for particle-stabilized droplets of aspect ratio
(A, B) 1.6, (C, D) 5.1,and (E, F) 3.0. Scale bars represent 15 mm. (A, C,
E) Microscope images; (B, D, F) reconstructed particle positions, colored by
coordination number as determined by Delaunay triangulation of the particle
centroids—4: light brown, 5: dark brown, 6: white, 7: dark blue, 8: light blue,
9: purple. In general, defects appear to be more common and are more likely
to be found at low- curvature regions of the droplet in the experiments than
in static simulations. Microscopy images courtesy Patrick Spicer.

tions. It may be possible that this is due to the dynamical effects discussed in

chapter 5. A large scale comparison of theoretical and experimental droplets

is underway to determine which effects dominate in the experiments.



Chapter 9

Conclusion

9.1 Summary of results

In chapter 4, we studied the role of geometry on hard sphere packings

by using an inflation algorithm to generate packings of spheres on el-

lipsoidal surfaces with fixed aspect ratio, and investigated the structure

of topological defects in these packings. We found, as expected, that the de-

fect charged density is predicted by Gaussian curvature. However, finite size

effects can be observed which cause deviations at fine length scales. For pack-

ings on highly prolate ellipsoids (aspect ratios above 2.6), there is a secondary

peak in the defect number density, between the low-curvature center and the

high-curvature ends. This excess in the number of defects does not correspond

to any obvious feature of the surface geometry. It may, however, be due to

the hard-particle nature of these packings, as packings of soft-particles do not

exhibit a clear secondary peak.

We see a scar transition on spherical surface, as expected, although we see

that for hard particles the scar transition occurs at a lower particle and is much

sharper than for soft particles. A heuristic model is posited which accounts for
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“core” defect charges, favored in regions of high curvature, plus scars attached

to these core defects, whose lengths grow as the inverse of curvature. This

model does well at capturing the the defect number distribution for low aspect

ratio surfaces, and roughly captures the defect number distribution for highly

prolate ellipsoids while not accounting for the secondary peak. The model

correctly predicts a softening of the scar transition as the aspect ratio increases.

We find that scars have a directional coupling to curvature, although this

coupling is highly nontrivial. On prolate ellipsoids, coupling is observed to

directions of both high and low principal curvatures at different aspect ratios

and surface regions. For very high aspect ratio (greater than 5), we observe

quadrupolar order, in which scars tend to lie along directions between the

directions of principal curvature. On oblate ellipsoids, the coupling is simpler,

as scars tend to form chiefly along the high-curvature central rim.

Finally in chapter 4, we perform a thorough search of our aspect ratio and

particle number parameter space at low particle number in order to build a

catalog of symmetric packings. We find a number of patters: packings of n-

fold rotational symmetry occur in bands along increasing particle number and

aspect ratio, as extra rows of n particles are added and the surface elongates;

low particle numbers are more likely to be achiral; and oblate packings are

capable of high symmetry at higher particle number than are prolate packings.

In chapter 5, we study packings created using a dynamic surface evolution

algorithm, developed for this work, which incorporates additional physical

forces, namely interparticle attraction and gravity. We see qualitatively differ-

ent results for varying relaxation rates (i.e. by varying the diffusion timescale

relative to the relaxation timescale.) For slow relaxation, higher quality pack-

ings are produced, as measured through both packing fraction and defect num-

ber. Slower relaxation rates result in a secondary peak in the defect density,
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although this peak is much more pronounced than for packings on static sur-

face, indicating that the surface evolution plays a critical role in ordering. For

fast relaxation, the defect density instead shows a secondary peak at the mid-

dle of the droplet rather than between the middle and the ends. We find that

this is due to surface evolution causing particles to densify towards the ends

of the droplet due to surface deletation, causing a front of order that moves in

from the ends to the center.

For attractive particles, a well-ordered packing with gaps and few defects

forms early on and persists throughout droplet evolution, resulting in more

uniform ordering but lower order on average than for the purely diffusive slow

relaxation case. For significant gravity, we again see more uniform ordering

along the axis of surface in the arrested state due to gravity promoting early

ordering, though we see a significant variation in ordering around between the

top and bottom of the surface.

The generic trends we see with different dynamical effects are that: 1)

these effects suppress diffusion, resulting in lower order on average; 2) they

favor densification according to some spatial distribution early in the surface

evolution, which translates into order which is quenched to some extent into

the final packing.

Finally, in chapter 7 we examine the rigidity of packings produced by ar-

rested relaxation and study the concept of jamming on curved surfaces. Be-

cause these packings are produced on an evolving surface with no boundary, we

introduce the concept of metric jamming to describe packings of hard spheres

which are stable to both collective particle motions combined with surface

evolution. By adapting Donev’s linear program[?] for unjamming to work on

curved surfaces, we are able to show that generically the arrested packings

produced by the relaxation algorithm are not collectively jammed, but a com-
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bination of unjamming and further surface relaxation can be used to age them

into a metric jammed state. The metric jammed states appear to be hypostatic

based on their average contact number; this is due to the surface curvature

imposing non-linear constraints on the packing. The deficit in the number of

contacts grows linearly with the number of particles; the lower bound in con-

tact number of shared between monodispersed and bidispersed packings. It

is especially interesting that monodisperse packings can be marginally stable,

as monodisperse packings in flat space are typically crystalline and overcon-

strained. While the monodispersed packings we see on curved surfaces are

largely crystalline, geometric frustration causes strain within the crystalline

regions, allowing for a low contact number.

We also investigate packings of particles with soft Hertzian interactions

in order to study the behavior of packings near the jamming point. In a

number of ways, the monodispersed packings resemble disordered jamming

packings much more than crystalline packings, despite their high degree of

order. We see that for for monodisperse packings, the spectra of dynamical

modes resembles those seen in packings in flat space near the jamming point:

packings just above the jamming point have an excess of low frequency modes,

which reduces as the packing is compressed above the jamming point. We also

find that the elastic properties exhibit nonlinear behavior: the infinite-time

bulk and shear moduli are lower than the instantaneous bulk modulus, and

the infinite-time shear modulus has a different scaling exponent, although the

exponent is between that expected for crystalline and disordered materials.



CHAPTER 9. CONCLUSION 133

9.2 Open questions and future work

Regarding the geometric effects in packings on static surfaces, two major ques-

tions remain. One is the origin of the excess defects seen on highly prolate

ellipsoids. This effect is not explained by Gaussian curvature, and there is evi-

dence that it is due to hard particle interactions. Why this should be the case

is not clear. The highly complex directional coupling of scars to curvature

anisotropy is also intriguing, and a simpler analytical model which predicts

this would be satisfying.

The dynamic simulations make a number of very clear predictions, as out-

lined above. However, many of these are yet to be verified. As our experimen-

tal collaborators are able to produce and analyze larger numbers of arrested

droplets, and better control the relative strengths of different dynamic effects,

it will be interesting to see how the experiments compare to the simulations

presented here.

In terms of jamming, it is unclear why the contact deficit scales with par-

ticle number. There are clear connections between contact deficit and surface

topology: the curved surfaces appear to allow for larger arching structures

within the contact network, but the distribution of the size of these arches

(i.e. the number of sides of the polygons within the contact network) has not

been quantitatively predicted.

An important new direction that this work could be taken involves model-

ing the deformation of the surface on which the packing lies, for example due

to feedback from particles. We have begun work on this by studying packings

in which particles are held on the surface by a harmonic potential. Preliminary

findings are presented in appendix A.



Appendix A

Buckling with soft surface

constraints

All the work in this thesis has dealt with particles constrained ex-

actly to lie on a specified surface, either a surface that is fixed

or evolves through some predetermined family of shapes. While

this model helps us understand the effects of curvature on particle packings, a

more robust model would allow the surface to deform more freely. The surface

might evolve based on surface tension, and particles could introduce feedback

on the surface. One simple step in this direction is to still specify the shape of

the surface, but to relax the constraint holding particle on the surface. This

can be acheived, for example by using a surface-particle potential which is

harmonic in the particle’s distance from the surface.

The dynamic relaxation algorithm can be easily modified to accomodate

soft surface constraints. We have done so and run preliminary simulations to

see what effect these soft particle constraints have. Fig. A.1 shows an example

of one result. This simulation includes Hertzian inter-particle interactions,

diffusion, and a harmonic surface constraint. It is apparent that packing is
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Figure A.1: A packing in which the particles are held to the surface by a
harmonic constraint acting normal to the surface. Color indicates displacement
from the surface: red particle have been pushed towards the interior of the
droplet and blue particles have been pushed outwards.

buckling near defects and scars in the packing. In future work, we plan on

exploring this idea more deeply and quantifying the correlation between defects

and buckling. This is an important step in understanding the connection

between the ordering of the packing on an arrested emulsion drop and its

structural stability.



Appendix B

Optimizing the second

hyperpolarizability with

minimally parametrized

potentials

In this appendix and the following two appendices, I include papers which I

have published or have submitted for publication for the sake of completeness,

as a record of the other contributions I have made over the course of my Ph.D.

This paper, published in the Journal of the Optical Society of America

B, is an attempt to understand what features of a molecule lead to optimal

nonlinear optical properties. Specifically, we use a simple parametrization of a

1D quantum mechanical potential to model molecules and attempt to optimize

the second hyperpolarizability of this potential. We find that it takes a small

number of parameters to create optimal potentials, and that the parameters

chosen are well aligned with the structure of the objective function, providing

design advice for tuning molecules to achieve optimal nonlinear properties.
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The dimensionless zero-frequency intrinsic second hyperpolarizability γint = γ/4E−5
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was optimized for a single electron in a 1D well by adjusting the shape of the potential. Optimized
potentials were found to have hyperpolarizabilities in the range −0.15 / γint / 0.60; potentials
optimizing gamma were arbitrarily close to the lower bound and were within ∼ 0.5% of the upper
bound. All optimal potentials possess parity symmetry. Analysis of the Hessian of γint around
the maximum reveals that effectively only a single parameter, one of those chosen in the piecewise
linear representation adopted, is important to obtaining an extremum. Prospects for designing new
chromophores based on the design principle here elucidated are discussed.

PACS numbers: 190.0190, 160.0160, 160.4330.

I. INTRODUCTION

Developing materials with high electronic nonlinear
susceptibilities is of fundamental importance for a wide
variety of applications such as optical solitons, phase con-
jugate mirrors and optical self-modulation[1, 2]. These
susceptibilities are defined by considering a material in
the presence of an electric field E and expanding the in-
duced polarization in a Maclaurin series,

P = αE + βEE + γEEE +O(E4), (1)

where α is the linear susceptibility encountered in simple
dielectrics and β and γ are the nonlinear susceptibili-
ties, referred to as the first and second hyperpolarizabil-
ities respectively. Each of these quantities is generally
a tensor whose components depend on the frequency of
the incident electromagnetic radiation. Here, we consider
the zero-frequency limit of these quantities, and neglect
the motion of the nuclei due to changes in the electronic
wavefunction as a result of the applied field. The coeffi-
cients α, β and γ are material properties which depend
on the electronic structure of the constituent molecules,
the degree to which they are ordered, and symmetries
present either in the molecules or in their arrangement.
Due to these many factors, the synthesis of new materials
with high values of β and γ as demanded by applications
is highly nontrivial. A remarkable result due to Kuzyk
[3, 4] is that quantum mechanics requires that the first
and second hyperpolarizabilities β and γ are bounded:
specifically, γ obeys the inequality,

−
(
e~√
m

)4
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E5
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≤ γ ≤ 4
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)4
N2

E5
10

≡ γmax
0 , (2)

where N is the number of electrons, E10 is the energy
difference between the ground and first excited states and
m is the electron mass. It is natural to define the intrinsic
hyperpolarizability as a figure of merit to characterize the
proximity of a particular system to this limit,

γint = γ/γmax
0 (3)

and to ask: how to create materials that achieve opti-
mal γint? The discovery of the bounds (2) has moti-
vated a number of experimental studies that have demon-
strated that carefully tuning the electronic states and
geometry of chromophores can lead to higher second
hyperpolarizabilities[5–8]. Generic design principles mo-
tivated by fundamental theory would therefore be desir-
able. Unfortunately, the procedure used to derive the
bounds (2) cannot directly provide these; they were ob-
tained by optimizing γ for a three-level ansatz with re-
spect to the dipole matrix elements and energy level spac-
ings E = E10/E20 and not by constructing an explicit
potential. Indeed, the assumptions behind the derivation
have been questioned[9, 10] and the limits need not be
achievable with a local potential; it has been speculated
recently these may require exotic Hamiltonians[11].

Subsequent work, following approaches developed in
earlier studies of β[12, 13], has attempted to address
this in two ways: First, by identifying universal fea-
tures of Hamiltonians with γ near γmax

0 by a Monte Carlo
search[14] and, secondly, by numerically optimizing γint
with respect to the shape of a local potential[11]. This
latter work found potentials which have second hyperpo-
larizabilities in the range −0.15 ≤ γint ≤ 0.60, which
represents an apparent bound that is more restrictive
than the bound of (2). Moreover it was demonstrated
that the optimized potentials spectra and dipole mo-
ments were broadly consistent with those identified in
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the earlier Monte Carlo study.
While these strategies provide useful goals for chemists

attempting to design new nonlinear chromophores, they
do not provide insight into which features of the potential
are necessary to optimize γint, or how many free parame-
ters should be necessary to achieve optimal or near opti-
mal γ. In a previous paper[15], we developed a technique
to examine the analogous question for β: by optimizing
potentials described by increasing numbers of free param-
eters and examining the eigenvalues of the Hessian matrix
at each maximum, we identified the combinations of pa-
rameters most important to the optimization. The anal-
ysis revealed that effectively only two parameters were
necessary to maximize β, and hence that a surprisingly
broad range of potentials with high β exists around each
maximum.

In this work, we apply the same technique to the prob-
lem of optimizing γ. At first sight, the problem appears
to be more difficult than that for β since the expression
for γ is much more complicated and the bounds for pos-
itive and negative γ are different. Remarkably, however,
we will show that effectively only one parameter is neces-
sary to optimize γ in either direction and, moreover, that
in each case it is one of the parameters utilized in our rep-
resentation of the potential. In this sense, we are able to
suggest much more clearly a possible design strategy for
materials with high γ than for β within the limitations
of the model. At least within our representation of the
potentials, we find that the potential that maximizes γ
is rapidly varying, while for negative γ, as for β, quite
generic, slowly varying potentials are adequate. The pa-
per is organized as follows: in section II the calculations
performed are described; the results are presented and
discussed in section III; conclusions are drawn in section
IV.

II. MODEL

It is first necessary to generalize the method described
our previous paper on optimizing the intrinsic first hy-
perpolarizability βint [15]: in the present work, γint is to
be optimized by adjusting the shape of a one-dimensional
piecewise-linear potential. Such a potential with N + 1
segments may be represented,

V (x) =





A0x+B0 x < x0
Anx+Bn xn−1 < x < xn, n ∈ {1, ...N − 1}
ANx+BN x > xN−1,

(4)
with the positions xn and slopes An as the adjustable pa-
rameters and where the Bn are chosen to enforce conti-
nuity. Because γint is invariant under trivial translations
and rescalings of the potential, some of these parameters
were fixed x0 = 0, B0 = B1 = 0, and A1 = ±1. These
choices, together with a change of origin and rescaling
allow for any potential. Thus maximizing with these
constraints allows faster optimization. Furthermore, the

left- and right-most slopes are required to be negative
and positive, respectively, ensuring only bound electron
states. Finally, for technical reasons, having to do with
the asymptotic behavior of the Airy functions introduced
in eq. 7 below, it is difficult to allow the sign of any slope
to change during an optimization. In consequence, we
have chosen to restrict | Ai |> .005, and, as appropriate
to do separate optimizations for each interesting sign of
each slope.

A second representation for the potential was also con-
sidered where parity symmetry was specifically enforced.
This was motivated by previous work[16] which identifies
parity as important for optimizing γint, particularly for
the lower bound. The potentials with enforced P sym-
metry were constructed on the half line x ≥ 0 with N
segments,

V (x) =

{
Anx+Bn xn−1 < x < xn, n ∈ {1, ...N − 1}
ANx+BN x > xN−1

(5)
with x0 = 0 and requiring V (−x) = V (x). Again xn and
An are adjustable parameters and x0 = 0, B0 = B1 = 0
are fixed. The parameter A1 was set to either −1 or +1
to study the consequences of both cases.

For such a potential with a uniform applied elec-
tric field of strength ε, the wavefunction obeys the
Schrödinger Equation in each segment,

[
−1

2

d2

dx2
+ (An + ε)x+Bn

]
ψn = Eψn, (6)

in units such that e = 1, ~ = 1, and me = 1. The
solution in each segment is written in terms of the well-
known Airy functions,

ψn(x) = CnAi

[
3
√

2(Bn − E + x(An + ε))

(An + ε)2/3

]
+

+DnBi

[
3
√

2(Bn − E + x(An + ε))

(An + ε)2/3

]
. (7)

To solve for the coefficients Cn and Dn the usual bound-
ary conditions are imposed, i.e. that the wavefunc-
tion ψ(x) and its derivative ψ′(x) are continuous at the
boundary between segments. Additionally, in the end
segments, the wavefunction must vanish as x goes to ±∞
fixing DN = 0. There are a total of 2N linear equations
in the coefficients for the arbitrary case and 4N−2 equa-
tions and coefficients for the P-symmetric case, which can
be written in matrix form

W · u = 0 (8)

where u is a vector comprised of the Cn and Dn coeffi-
cients and W is a matrix which depends on E, ε and the
parameters An and xn.

The allowed energy levels are found by numerically
finding the roots of

detW = 0 (9)
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with ε = 0. It is readily possible, as previously done
for β, to obtain from (8) an expression for the second
hyperpolarizability,

γ ≡ 1

6

d4E0

dε4

∣∣∣∣
ε=0

; (10)

this is achieved by repeatedly differentiating the matrix
W using the Jacobi formula,

d

dε
detW = Tr

(
adjW · dW

dε

)
, (11)

where adjW is the adjugate of W (since W is singular),
and applying the chain rule

dW

dε
=
∂W

∂ε
+
∂W

∂E

dE

dε
. (12)

Having performed similar calculations to those in [15],
we arrive at the expression

d4E

dε4
= −

Tr
[(

d3

dε3 adjW
)
· dWdε + 3

(
d2

dε2 adjW
)
· d2W

dε2 + 3
(

d
dεadjW

)
· d3W

dε3 + adjW ·W ′′′
]

Tr
(
adjW · ∂W∂E

) , (13)

where

W ′′′ =
d4W

dε4
− ∂W

∂E

d4E

dε4
. (14)

From this, γ is readily obtained and the intrinsic second
hyperpolarizability γint = γ/γmax

0 calculated for a given
set of parameters.

The quantity γint was optimized numerically for both
arbitrary and P-symmetric potentials with varying num-
bers of segments using the FindMaximum function of
Mathematica 8, an implementation of the Interior Point
method for constrained optimization. Both maxima and
minima of γint were obtained from a large number of
randomly generated starting points, and also manually
chosen starting points with large values for γint. Once
an optimum γint was found, the extent to which each
of the parameters was important to the extremum was
characterized by calculating the Hessian matrix,

Hij =
∂2

∂Pi∂Pj
γint,

where the Pi are the parameters, and calculating its
eigenvalues and eigenvectors. Since the Hessian matrix
characterizes the local curvature of the objective func-
tion in the parameter space around the extremum, these
quantities give the magnitudes and directions of the prin-
cipal curvatures. As stressed in previous work[15] these
curvatures implicitly depend on a measure implied by
this equation that is peculiar to our numerical parame-
terization of the problem. More physically relevant mea-
sures can also be used to calculate eigenvalues. While
these make quantitative changes in the eigenvalues and
vectors, they do not make qualitative changes, and we
give results for this “numerically natural” measure below.

III. RESULTS AND DISCUSSION

Our optimized potentials, together with the ground
and first excited state wavefunctions, are displayed in
Fig. 1 for both arbitrary (eq. 4) and P-symmetric (eq.
5) parametrizations. The associated parameter values
are listed in Table I. The potentials and wavefunctions
are displayed on a transformed position and energy scale,

x̄ = (x− 〈x〉)/(E1 − E0)1/2

V̄ (x̄, {P}) = (V (x̄, {P})− E0)/(E1 − E0) (15)

such that the ground state energy is E0 = 0, the differ-
ence between the ground and first excited state energy is
E1 − E0 = 1 and the position expectation value for the
ground state is 〈x0〉 = 0. This rescaling does not change
γint and permits convenient comparison of the results of
each optimization. To identify the relative importance of
each of the parameters to the optimization, the results of
the eigenanalysis of the Hessian matrix are also displayed
for selected potentials in Fig. 1; the j-th eigenvalue of
the Hessian, hj , is listed alongside a plot of the variation
in the potential ∆V j(x) in the direction of the associated
eigenvector,

∆V j(x) =
∂V̄ (x̄, {Pi + αvji })

∂α

∣∣∣∣∣
α=0

, (16)

where vji is the ith component of the j-th eigenvector.
Note that the values of V and x in the right hand side
of (16) are renormalized as a function of α using (15) so
that the variations presented automatically preserve the
properties 〈x0〉 = 0 and E1 − E0 = 1. In order to assist
in interpreting these plots, we include a detailed example
of how these quantities are calculated in the appendix.

The first set of results displayed in Fig. 1(a) are op-
timized potentials with no enforced symmetry and spec-
ified by 3 or 5 free parameters. The optimized γint for
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Bound Description Ref. γint A0 A2 A3 x1 x2

Upper

3 param. arb. 1(a)(i) 0.43277 2.33932 0.10189 — 1.04960 —
5 param. arb. 1(a)(ii) 0.43602 4.28494 0.08829 0.37688 1.42131 3.95728
2 param. P 1(b)(i) 0.58220 — 0.00550 — 0.57426 —
3 param. P 1(b)(ii) 0.59707 — 0.00500 — 0.88533 7.95755

Lower 3 param. arb. 2(a) −0.11409 82.471 237.57 — 1.25227 —
2 param. P 2(b) −0.14996 — 31.6157 — 1.48005 —

Table I: List of parameters of optimized potentials. Here the Ref. column refers to the subfigures in the present paper where
the respective potentials are displayed.
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Figure 1: Optimized potentials for the upper bound of γint

with (a) no enforced symmetry and (b) P-symmetry. The
energies of the ground and first excited state are indicated by
horizontal lines; the corresponding wavefunctions are also dis-
played. The plots have been rescaled to facilitate comparison
by ensuring E1 − E0 = 1 and 〈x0〉 = 0 while preserving γint.

both the lower and upper bounds of γint potentials fall
somewhat below the apparent bounds observed in [14].
For the upper bound, the best results assuming all slopes
except the first are positive are what appears to be a lo-
cal maximum value of γint w 0.43 [Fig. 1(a)(ii)]. A
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Figure 2: Optimized potentials for the lower bound of γint

with (a) no enforced symmetry and (b) P-symmetry.

similar value was also found in [11] for potentials with
no constrained symmetry, but the potentials found here
do not closely resemble those found in that work. The
eigenvalues and eigenvectors displayed below the poten-
tial in [Fig. 1(a)(ii)] show that only two of the eigenvalues
are significant in magnitude and are associated with the
shape of the potential in the middle while the small eigen-
values are associated with the outer slopes. These results
are reminiscent of those found for the first hyperpolariz-
ability, where βint was found to approach its maximum
value for the same class of potentials with a similarly
small number of parameters and analysis of the Hessian
revealed that only effectively two parameters were im-
portant to the maximization. For the lower bound, the
3 parameter system [Fig. 2(a)] converges on a shape ap-
proaching a square well. The 5 parameter system also
converges on a P-symmetric potential and, because of
this, further discussion of the lower bound is deferred to
a subsequent paragraph.

A possible explanation for the fact that the optimized
positive γint for arbitrary potentials in Fig. 1 falls short
of the bounds established in [3, 11, 14] is that the hyper-
polarizability is sensitive only to some features of the
potential and that many local extrema exist. Rather
than making extensive runs starting from a variety of
potentials, we chose to use the more constrained subset
of P-symmetric potentials (5) and found that, indeed,
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Figure 3: Five parameter potentials with no enforced symme-
try optimized using two-parameter P-symmetric optima as
the starting point. (a) Upper and (b) lower bounds.

even with only 2-3 parameters, much higher values of
γint could be obtained as shown in Fig. 1(b). This is
reminiscent of the observation in [11] that these bounds
could only be reached if a P-symmetric starting point
was used for the search; in this work, we not only enforce
the symmetry of the starting point but at all times in the
optimization.

For the upper bound, we found a two-parameter po-
tential close to the apparent maximum but below the
theoretical maximum [Fig. 1(b)(i)]. The shape is char-
acterized by shallow outer slopes with a divot in the cen-
ter; the ground state wave function is localized to the
divot with the highly delocalized first excited state above
the divot. It was found to be necessary to constrain the
slope A2 > 0.005 since the method of calculating γint pre-
sented in section II fails for shallow slopes. To avoid the
unphysical feature of delocalized higher excited states, a
distant wall was added to construct a three-parameter
potential [Fig. 1(b)(ii)]. Such a change is expected a
priori from previous work[17] to make no significant dif-
ference to γint as it is far from the region where ψ0 and
ψ1 are large. For this well-like potential, we performed
a maximization, adjusting A2, x1, and x2 while fixing
the outer walls to have a large slope (A3 = 100). The
best potential found possesses γint = 0.59707, and has
A2 = 0.005 which is the shallowest slope allowed by
the constraint. To facilitate comparison with optimiza-
tion methods that study the energy spectrum e.g. [18],
we include the rescaled energy levels of this potential:
E2 = 1.144, E3 = 1.775, and E4 = 2.179. The eigenvec-
tors of the Hessian, calculated for the subspace excluding
A2, are well aligned with the parameters: the most sig-
nificant eigenvector corresponds to x1, the outer bound-

ary of the divot. The other eigenvector corresponds to
x2, the position of the outer walls; this would be ex-
pected to have relatively little influence on γint since it
controls a feature where the ground state wavefunction
is small. Fixing the outer slopes at A3 = 100 as above,
we also attempted to optimize γint with A2 constrained
to be negative. It was found that γint increased as the
slope approached zero, until a point was reached where
the calculations became numerically unstable due to the
asymptotic properties of the Airy functions. The highest
value of γint which was found within a region of param-
eter space for which the calculation was still stable was
γint = 0.5915, lower than the current maximum. We
then performed similar optimizations on potentials with
strict hard wall boundary conditions. The calculations
for these potentials were numerically stable in all regions
of parameter space which were explored: For A2 > 0,
a maximum of γint = 0.5959 was found. For A2 < 0 a
higher maximum of γint = 0.5968 was found, though this
is still lower than the current maximum of γint = 0.5971.
Since a higher γint is found in potentials with A2 < 0
than for potentials with positive A2 in cases with strict
hard wall boundary conditions, we speculate that a value
of γint higher than the current maximum found might be
found for the finite A3 case. Nonetheless, we do not ex-
pect to see a significant improvement as the current max-
imum is already within ∼ 0.5% of the maximum value
found in previous studies.

For the lower bound, a potential with the best value
of γint = −0.1500 was found using only two parameters
[Fig. 2(b)]. This potential is characterized by steep outer
walls and a “bump” in the middle: the ground state and
first excited state wavefunctions cover the same spatial
extent, but the bump causes the ground state to become
spread out and relatively flat. The rescaled energy lev-
els of this potential are E2 = 3.502, E3 = 6.660, and
E4 = 10.65. Eigenanalysis of the Hessian of γint about
this solution shows that one eigenvalue is significantly
larger than the other, indicating that only one of the pa-
rameters is physically relevant. Moreover, the eigenvec-
tors of the Hessian for this potential are aligned with the
parameter space chosen to represent the potential. The
higher eigenvalue is associated with an eigenvector along
the x1 direction, which determines the position of the
outer walls; the smaller eigenvalue is associated with the
parameter that controls the slope of the outer walls. Be-
cause γint is invariant under rescalings of the form (15),
a potential with identical γint can be constructed for a
well of arbitrary width by tuning the slope of the bump.

The two parameter P-symmetric potentials identified
as the satisfying the apparent lower bound can be equiva-
lently represented by a five parameter arbitrary potential.
Optimization of the five parameter potential indeed finds
this potential as the apparent global maximum. There
are therefore no directions in this new parameter space
which lead to a higher γint, despite relaxing the require-
ment that x−n = −xn and A−n = −An. While the
existence of asymmetric potentials with more negative
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γint cannot be ruled out, our analysis confirms that a P-
symmetric potential satisfies the apparent lower bound.
We repeated this procedure for the upper bound using
the two parameter P-symmetric potential displayed in
Fig. 2(b) as the starting point for optimization. It was
found that despite relaxing the symmetry constraint no
further improvement could be made so that the potential
of Fig. 2(b) is also a local optimum with respect to the
expanded parameter space. Analysis of the hessian was
also performed on both of these five parameter optima.
The eigenvalues and associated eigenvectors, shown in
Fig. 3, reveal that for both upper and lower bounds
the variation in the potential associated with the largest
eigenvalue is indeed asymmetric.

The fact that we are able to achieve optimized γint
within 1% of previous limits with far fewer parameters
than in other representations of the potential[11], and
also fewer parameters than required to numerically opti-
mize βint, is surprising since the calculated expressions
for γint are far more complicated than those for βint.
Since the dimensionality of this parameter space is so
small, it is instructive to visualize it directly: For our
two-parameter optimizations, the value of γint is plot-
ted over a portion of the parameter space [Fig. 4(a) and
(b)]. The plot for the lower bound merely illustrates the
results obtained from analysis of the Hessian, i.e. that
the minimum is strongly curved about the optimal value
of x1 but shallow with respect to A2. The plot for the
upper bound is more interesting: the region of parameter
space for which γint is within 2% of the maximum value
obtained is highlighted showing a clear ridge.

By calculating values of X = x01/x
max
01 and E =

E01/E02, the natural parameters of the three-level
ansatz[4], as a function of (A2, x1), we are able to dis-
play γint re-parametrized in (E,X) space [Fig. 4(c) and
(d)]. Here, xmax01 = 1/

√
2E10 in our units. Notice that

the entire region explored in the numerical parametriza-
tion (A2, x1) collapses onto a narrow, elongated region
in (E,X) space for the upper bound [Fig. 4(c)] and a
complicated curved line for the lower bound[Fig. 4(d)].
These plots confirm the results of eigenanalysis of the
Hessian: that essentially only a single parameter (or 2
for the upper bound) characterizes optimal γint.

The results of the three-parameter optimization and
the plot in fig. (4) both suggests that the truly optimal
P-symmetric potential for the upper bound has shallow
outer slopes A2 → 0. Such a potential can be trans-
formed, using (15), to a potential of equivalent γint but
where the outer slope is unity and the central well is far
narrower and sharper. Since the central divot for the
transformed potential resembles a Dirac delta function,
we studied the second hyperpolarizability of the family
of potentials

V (x) = |x| − αδ(x) (17)

where α is the single adjustable parameter. Values of γint
as a function of α are displayed in fig. 5 and the max-
imum value is found to be γint = 0.58194 which occurs
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Figure 4: Visualization of the variation of γint as a function
of the parameters x1 and A2 of a two-parameter P-symmetric
potential for the (a) upper bound and (b) lower bound. The
region of parameter space where γint is within 2% of the max-
imum value is highlighted in (a) and indicated by an arrow.
γint is also shown in the (E,X) parameter space for the (c)
upper bound and (d) lower bound.
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Figure 5: Plot of γint, E = E10/E20 and X = x10/x
max
10 as a

function of α for the for the potential V = |x| − αδ(x).

when α = 1.69552. Despite the simplicity of this one-
parameter potential, the result is only 3% smaller than
the best reported so far and only fractionally smaller than
those found with the two and three parameter potentials
above. This family of potentials is less satisfactory for
optimizing the negative γint, achieving γint = −0.1236
which is ∼ 18% short of the best potential. Another
interesting feature of this parametrization is that by ad-
justing α, one can obtain an arbitrary value of the energy
ratio E for the first three energy levels. The energy lev-
els of the first and second excited states are fixed, and
adjusting α changes only the ground state. This is illus-
trated by the plot of E in fig. 5: its range contains all
values from 0 to 1 as α varies from −∞ to +∞.

We now turn to the question of whether the simple, but
optimal or nearly so, potentials that were identified above
resemble either those previously found [11] or possess the
universal features identified in [14]. Comparing our best
optimized potentials and wavefunctions to those in [11],
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Bound Potential γint E f(E) X

Upper

3-level ansatz[4] 1 0 1 0
Best from [11] 0.5993 0.5767 0.7009 0.5150
Arb. 5 param. 0.43601 0.5765 0.7012 0.6512
P 3 param. 0.59707 0.8741 0.2504 0.7468
|x| − αδ 0.58194 0.6842 0.5354 0.7385

Triangle well |x| 0.1392 0.5918 0.6836 0.9911

Lower

3-level ansatz[4] −0.25 0 1 ±1
Best from[11] −0.1500 0.1493 0.982447 0.6658
P 2 param. −0.1500 0.2855 0.93298 0.9416
|x| − αδ −0.1236 0.2438 0.951765 0.9222

Infinite square well −0.1262 0.3750 0.881103 0.9801

Table II: Second hyperpolarizabilities and physical parame-
ters X = x01/x

max
01 and E = E01/E02 for the optimized po-

tentials obtained in this work.

some qualitative similarities are apparent. For the upper
bound, the potentials in Watkins et al. are roughly sym-
metric near their lowest point. They feature a central
divot within a wider well where the ground state wave
function is localized within the central divot and the first
excited wave function is relatively delocalized compared
to the ground state. For the lower bound, the potentials
feature a steep well within which both the ground state
and first excited state are localized, and a central bump
which causes the ground state to be spread out within the
well. These qualitative features are shared by the poten-
tials obtained in this work, but many extraneous details
are removed by the highly constrained, judiciously chosen
representation.

In table II we display values of X and E, together with
the values of these parameters that extremize γint for the
three-level ansatz[4] and those possessed by the best pre-
viously found potentials[11]. We also display the value of
the energy function fγ(E) defined in eq. 26 of reference
[18] which has been shown to characterize some features
of the energy spectrum that are relevant to high γint.
Values are also shown for two elementary potentials, the
triangle well and infinite square well. The results for the
upper bound are quite consistent with those of Watkins
et al. if the breadth in the range of these values identified
by the Monte Carlo study[14] is taken into account. The
values of f(E) obtained are consistent with the results of
[18] that suggest a value of fγ(E) approaching 1 typically
occurs for potentials associated with large γint; our result
for the 3 parameter P symmetric potential seems to be
an interesting exception. The values of E and X are also
displayed in Fig. 5 as a function of α, the strength of the
δ function, in the potential (17); E is a monotonically
increasing function of α while X is a monotonically de-
creasing function. Crudely, these explain the existence of
a maximum γint as representing the trade-off between in-
creasing the motion of the electron (associated with high
X) versus enhancing transitions to other states (associ-
ated with low E).

IV. CONCLUSION

We have optimized the intrinsic second hyperpo-
larizability γint of a piecewise linear potential well
with respect to parameters that control the shape of
the potential. We found solutions that lie within
the range −0.15 ≤ γint / 0.60 in agreement with
the apparent bounds established in previous numerical
optimizations[11]; these both fall short of the Kuzyk
limits[4]. By using two types of potential, one where
all slopes were allowed to vary and another with ex-
plicitly enforced symmetry, we demonstrated that P-
symmetric potentials satisfy the apparent lower bound
for γint and come within ∼ 0.5% of the apparent upper
bound. The parametrization used constrains the poten-
tial to be smooth, preventing the occurrence of rapid
oscillations which do not affect γint [17]. Because of
this and the strong symmetry constraint, the optimal P-
symmetric potentials found were characterized by only
2 − 3 parameters. Of these, a posteriori analysis of the
Hessian revealed that effectively only one or two, for the
lower and upper bound respectively, were important

These results are reminiscent of those obtained ear-
lier for βint[15], yet the number of parameters required
to optimize γint appears to be smaller even though it is
a more complex object, containing more terms and in-
volving higher derivatives. At least part of the reason
for this is that for γint there exists a “compatible” sym-
metry operator, P, which can be used to constrain the
shape of the potentials; this was not possible for βint
where P-symmetric potentials automatically have β = 0.
However, even though we have shown that P-symmetric
potentials can have optimal or near-optimal second hy-
perpolarizabilities, it is not clear whether the apparent
upper bound γint ∼ 0.6 achieved by Watkins and Kuzyk
can be achieved with a P-symmetric potential or whether
a small amount of asymmetry is necessary. Moreover,
the reason why local potentials fall short of the Kuzyk
bounds remains opaque.

The small parameter space allows us to propose a clear
design paradigm for new chromophores, within the limi-
tations of the model one-electron 1D system studied. Ne-
glected here, for example, are multi-electron interactions,
molecular ordering and inter-molecular electron hopping.
Nonetheless, the potentials obtained could be realized,
for example, by a centrosymmetric molecule with a cen-
tral attractive or repulsive group—for positive or nega-
tive γint respectively. The strength/electronegativity of
the central group and the ratio of the length of the cen-
tral and peripheral groups can then be tuned to give high
γint. Unfortunately, most practical chromophores are π
conjugated systems in which there are approximately as
many electrons as there are sites on the molecule, thus
the consequences for them from this single electron cal-
culation are clearly very speculative. Nevertheless, ho-
mologous sequences already studied for high γ as a func-
tion of chain length, e.g. [7] could likely be enhanced by
including such a central group with different electroneg-
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ativity. Any other means of achieving a potential well or
inducing a significant phase shift in wavefunctions pass-
ing through the center of the molecule is also likely, even
in multi-electron systems, to offer a route for achieving
larger γint. The present analysis provides other impor-
tant insights: first, that since the “true” parameter space
for γint is so small, only rough tuning of the molecular
design ought to be necessary. Secondly, this work again
confirms that there are a large set of modifications to op-
timized potentials, e.g. rapid oscillations, that will not
change γint and need not be considered in planning what
molecules to synthesize. As has been previously noted,
materials with high γint could also be realized more di-
rectly in other ways, such as through composite materi-
als.

Appendix

To illustrate how the Hessian reveals which features of
the potential that are important to optimal γint, and to
assist in interpreting the variations of the potential de-
picted in figures 1-3, we develop a simple example for
a given point in parameter space. Consider the two-
parameter P-symmetric potential at minimum γint [Fig.
2(b)]. The Hessian of γint at the minimum is

H =

(
∂2

∂A2
2

∂2

∂A2∂X1

∂2

∂X1∂A2

∂2

∂X2
1

)

γint =

(
1.54× 10−6 −4.70× 10−4

−4.70× 10−4 0.165

)
.

The eigenvalues of this matrix are 0.165 and 2.01× 10−7

and their respective eigenvectors are
(
−0.002843
0.999996

)
,

(
−0.999996
−0.002843

)
.

The larger eigenvalue corresponds to an eigenvector
pointing almost exactly along the X1 direction in pa-
rameter space, and the smaller one points along the A2

direction. This is clearly illustrated in fig. 4(b), where
there is a valley along the A2 direction, while moving
along the X1 direction leads to a less negative value of
γint.

It should be noted that during optimization, in order
to fix the scaling(15) which is irrelevant to the hyper-
polarizability, the arbitrary constraint was imposed that

A1 = −1. In plotting the local variation in the potential
associated with the eigenvectors described by (16) and
displayed in the bottom of fig. 2(b), we ease this con-
straint and instead apply a post-hoc scaling such that
E10 = 1 and require that E10 remains equal to 1 as
the potential is varied away from the extremum. This
new constraint is more natural because E10 defines the
characteristic energy scale of problem as seen from (2).
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Figure 6: Examples of constructing variations in the potential
away from a given point in parameter space. (a) Original
unrescaled potential at minimum γint (solid blue line) and a
perturbation (in the −X1 direction) of this potential (dashed
black line). (b) The difference between the optimum potential
and the perturbation. (c) Rescaled versions of the potentials
in (a) along with (d) their difference.

This scaling is a unique, one-to-one mapping between the
two spaces of potentials with the different constraints im-
posed; it allows one to identify the features of the poten-
tial which are most relevant to optimizing γint unencum-
bered with features associated with the irrelevant scaling.

Fig. 6 shows an example variation of the potential in
both the original parametrization and after rescaling to
fix E10. The variation is in the −X1 direction and is
exaggerated (i.e. it is not a small local variation as in
(16)) so that it is clearly visible. In fig. 6(b) there is a
sharp jump between the inner and outer segments which
is indicative of a change in the X1 parameter. Note that
in general, the size of the jump depends not just on the
variation in Xn but also on the surrounding slopes. In
fig. 6(d) we see that upon rescaling, the slopes of the
piecewise segments also contribute to the change in γint.
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Appendix C

Maximizing the

hyperpolarizability of 1D

potentials with multiple

electrons

This paper, published in the Journal of the Optical Society of America B, is a

follow up to the paper in the previous appendix. Here, we explore potentials

with multiple elections. We study both the first and second hyperpolarizability.

We again find that very simple potentials are able to give high non-linear

responses, and we correlate properties of the wavefunction to a high nonlinear

response, which is useful information for chemists trying to design molecules.
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We optimize the first and second intrinsic hyperpolarizabilities for a 1D piecewise linear potential
dressed with Dirac delta functions for N non-interacting electrons. The optimized values fall rapidly
for N > 1, but approach constant values of βint = 0.40, γ+

int = 0.16 and γ−int = −0.061 above N & 8.
These apparent bounds are achieved with only 2 parameters with more general potentials achieving
no better value. In contrast to previous studies, analysis of the hessian matrices of βint and γint

taken with respect to these parameters shows that the eigenvectors are well aligned with the basis
vectors of the parameter space, indicating that the parametrization was well-chosen. The physical
significance of the important parameters is also discussed.

I. INTRODUCTION

Nonlinear optical materials are the active constituent
for many applications such as light modulators, contrast
agents for medical imaging and therapy, optical solitons,
phase conjugation mirrors and optical self-modulation.
In each of these, the performance of the system is im-
proved by using a material with a stronger nonlinear
response, quantified by various nonlinear susceptibilities
defined by expanding the induced polarization P in a
power series in the applied electric field,

P = αE + βEE + γEEE +O(ε4). (1)

Here, α is the linear susceptibility familiar from dielectric
materials; β and γ are the nonlinear susceptibilities and
are referred to as the first and second hyperpolarizability
respectively. These quantities are in general frequency-
dependent tensors that depend on the electronic struc-
ture of the constituent molecules, their symmetry, order-
ing and the material in which they are embedded. In
the present work we focus on the off-resonant molecular
contribution. Much effort has been expended over the
years in synthesizing new molecules with higher β or γ.
Comparisons between materials must be made carefully
however, because these quantities increase trivially with
the size of the molecule.

Important progress on developing suitable figures-of-
merit for comparison was made by Kuzyk, who showed
that fundamental quantum mechanics requires that β
and γ for the off-resonant case are bounded by the in-
equalities,

|β| ≤ 3
√

4

(
e~√
m

)3
N3/2

E
7/2
10

≡ βmax0 , (2)

(
e~√
m

)4
N2

E5
10

≤ γ ≤ 4

(
e~√
m

)4
N2

E5
10

≡ γmax0 (3)
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where E10 is the difference between the ground and first
excited state and N is the number of electrons partici-
pating. From the maximum values βmax0 and γmax0 , one
defines intrinsic hyperpolarizabilities,

βint = β/βmax0 , γint = γ/γmax0 . (4)

The intrinsic quantities have the property that they re-
main invariant under a simultaneous rescaling of energy
and length,

x→ x′E1/2, V (x)→ V ′(x′)E (5)

and hence are useful quantities for comparing materi-
als because they remove the irrelevant scaling with size.
Analysis of extant materials following the derivation of
the bounds in eq. (3) revealed that all of them fell short
of the fundamental limits by more than an order of mag-
nitude, an observation that has catalyzed a great deal of
research over the past decade on how to create materials
that approach these fundamental limits. The derivation
of the bounds provides some guidance—for optimal β
and γ only three states are assumed to significantly con-
tribute to the hyperpolarizabilities and the optimum can
be achieved by tuning the dipole transition matrix ele-
ments and energy level spacings—but does not construct
an explicit molecule or potential that has these proper-
ties.

Subsequent work, thoroughly reviewed in [1] has at-
tempted to determine whether these predictions are uni-
versal and to explicitly construct potentials that ap-
proach them. One approach has been to conduct Monte
Carlo searches of Hamiltonians with arbitrary spectra
and dipole transition elements to identify those with large
βint and γint. The results support the three-state hy-
pothesis, though the optima found in such calculations
need not correspond to a local potential. To address this,
several authors have numerically optimized the intrinsic
hyperpolarizabilities with respect to the potential func-
tion for 1 electron, using various representations of the
potential, including power laws[2], elementary functions
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with a superimposed Fourier series[3], piecewise linear
potentials[4, 5] and quantum graphs[6–9]. The best po-
tentials from these different studies possess hyperpolariz-
abilities within the bounds of eq. (3) with the best known
values found of βint ∼ 0.71 and γint ∼ 0.60 achieved in
several studies with qualitatively different potentials. It
has therefore been speculated that the fundamental limits
may require exotic potentials and not be achievable with
local potential functions. The effect of including multi-
ple electrons on the optimized potentials has, however,
received relatively little attention. Watkins and cowork-
ers [10] found for N = 2 electrons that the best intrin-
sic hyperpolarizabilities are somewhat lower than for the
N = 1 electron case, but even with electron-electron in-
teractions included, the universal features identified in
other studies remained the same.

In this paper, we apply the potential optimization tech-
nique to potentials with N > 2 electrons that interact
only through Pauli exclusion. This is a key step towards
simulating realistic molecules. We find that the best val-
ues of βint and γint fall off with increasing N from the
N = 1 electron case, but rapidly converge to a universal
value. The small number of parameters in our potentials
allows a detailed exploration of the “landscape” of βint
and γint around the maximum. As in previous work, the
hyperpolarizabilities are more sensitive to one parameter
than the other. Dimensional and approximate analytical
arguments allow us to provide physical interpretations of
these two parameters in terms of the wavefunctions of
the highest occupied molecular orbital.

The paper is organized as follows: in section II the
choice of potential, calculation and optimization tech-
niques are briefly reviewed; in section III we present re-
sults for βint and γint separately together with some dis-
cussion of the implications of our results for identifying
the features of potentials most important to the hyper-
polarizabilities; brief conclusions are presented in section
IV.

II. MODEL

Following a similar approach to that established in our
earlier papers[4, 5], we optimize βint and γint with re-
spect to the shape of a piecewise linear potential dressed
with Dirac delta functions for N electrons interacting
only through Pauli exclusion. We perform this optimiza-
tion for two carefully chosen potentials depicted in Fig.
1 as well as a more general potential. The first type is an
asymmetric triangular well with a delta function at the
center [fig. 1(a)],

V1(x) = −αδ(x) +

{
−A0x, x < 0

x x ≥ 0
, (6)

parametrized by the left hand slope A0 > 0 and the
strength of the δ-function α. The effect of the δ func-
tion is to introduce a sudden change in the phase of the
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Figure 1. Schematics of the potential classes in which βint
and γint are optimized. (a) Asymmetric triangle will with a
delta function at the center. The slope on the right side is
fixed at 1 while the slope of the side A0 and the strength of
the delta function α can be varied. A0 can be fixed at 1 to
study a symmetric 1-parameter potential. (b) a 2 parameter
symmetric linear piecewise potential. The first slope to the
right of the origin is fixed at 1. The position of the boundary
between the first and second elementsX1 and the second slope
A2 can be varied. The left side of the potential is constrained
to be the reflection of the right side.

wavefunction. Lytel et al. [9] recently showed that the
addition of a δ function to a 1D potential has an equiva-
lent effect on the wavefunction to adding a side chain on
a quantum graph. This correspondence suggests that 1D
potentials dressed with δ-functions could be engineered
in molecules by the addition of appropriate side groups.

The second type of potential we consider, depicted in
fig. 1(b), contains only linear elements defined for x > 0,

V2(x) =

{
x 0 < x < X1

A2(x−X1) +X1 x ≥ X1
, (7)

and for x < 0 defined by enforcing P symmetry, i.e.
V (−x) = V (x); this potential is specified by two pa-
rameters X1 the position of the boundary between the
two elements and A2 the slope of the outermost element.
These potentials were motivated by our results in [4, 5]
that only 2 parameters at most were important to the op-
timization of both βint and γint; they have been designed
to achieve the known limits for N = 1 electrons with
residual flexibility. For example, we showed in [5] that a
triangular well with a δ-function of variable strength at
the center, i.e. taking the potential (6) and fixing A0 = 1,
was able to reach within 3% of the upper bound for γint
with λ as the only free parameter. The parametrization
has also been chosen to eliminate variables irrelevant to
βint and γint associated with translations of the potential
and rescalings of the form (5).

We also minimized βint for a piecewise linear potential
with m elements,

V (x) =





A0x+B0 x < x0
Anx+Bn xn−1 < x < xn
Amx+Bn x > xm−1

, (8)

with positions xn and slopes An as the parameter set de-
scribing the potential. We used this potential in our ear-
lier paper on maximizing βint for one electron[4]. There
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are some necessary constraints on the parameters: the xn
are strictly ascending; x0 = 0 and B0 = 0 with no loss
of generality and B1 = B0 with the remaining constants
Bn given by,

Bn =
n−1∑

m=1

(Am −Am+1)xm. (9)

The energy scale associated with the potential is also
fixed, as in the previous paper, by setting A1 = 1. Hav-
ing imposed these constraints, there remain 2N − 1 free
parameters.

For each of these potentials, βint and γint were calcu-
lated for N electrons as follows: first, the Schrödinger
equation is written for each segment as,

[
−1

2

d

dx2
+ (An + ε)x+Bn

]
ψn = Eψn (10)

where An and Bn are the slope and offset in the nth
segment and ε is the applied electric field. This can be
solved analytically using the well-known Airy functions,

ψn(x) = CnAi

[
3
√

2 (Bn − E + x (An + ε))

(An + ε)
2/3

]

+DnBi

[
3
√

2 (Bn − E + x (An + ε))

(An + ε)
2/3

]
. (11)

To solve for the coefficients Cn and Dn in each element,
a set of boundary conditions are assembled at the edge
of each element from the usual conditions, i.e.,

ψn+1(Xn)− ψn(Xn) = 0 (12)
ψ′n+1(Xn)− ψ′n(Xn) = αnψn(Xn) (13)

where αn is the strength of the delta function centered at
Xn. The requirement that ψ → 0 as x→ ±∞ eliminates
two coefficients. The boundary conditions can be written
as a set of linear equations,

W · u = 0 (14)

where u is a vector comprised of the Cn and Dn coef-
ficients and W is a matrix that depends on E, ε and
the parameters An and Xn. The single electron energy
levels λi for the potential are determined by numerically
finding the roots of,

detW = 0, (15)

setting ε = 0. Having determined these, we construct the
non-interacting N electron ground state from the single
electron states by successively filling the energy levels us-
ing the aufbau principle; we similarly determine the first
excited state by promoting an electron from the highest
occupied orbital to the lowest unoccupied orbital. In this
work we focus only on even values of N , as this simplifies
determining which electron to promote. The N -electron
ground state energy E0, and that of the first excited state

E1, are then determined by summing over the energies
of the individual single electron energies,

En =
∑

i

νni λi, (16)

where νni is the occupation number for the i-th single
electron level in the n-th multi-electron state.

The hyperpolarizabilities β and γ are obtained by dif-
ferentiating the ground state energy as a function of ε,

β ≡ 1

2

d3E0

dε3
, γ ≡ 1

6

d4E0

dε4
. (17)

The necessary derivatives can be related to the single-
electron energy levels by differentiating (16) with respect
to ε. An important advantage of the piecewise linear
potential is that the necessary derivatives of the single
electron energy levels λi are conveniently obtained by
repeated differentiation of the determinant eq. (15) using
the Jacobi formula,

d

dε
detW = Tr

(
adjW · dW

dε

)
,

where adjW is the adjugate matrix of W , together with
the chain rule,

dW

dε
=
∂W

∂ε
+
∂W

∂λi

dλi
dε
. (18)

To avoid repetition, formulae are available for these
derivatives in references [4] and [5]. Having evaluated
these derivatives, the intrinsic hyperpolarizabilities are
easily calculated numerically and a program to do so was
implemented in Mathematica 10. In subsequent sections,
we present the optimized results as a function of N , to-
gether with the corresponding best potentials.

III. RESULTS

A. First hyperpolarizability

We optimized βint with respect to the parameters of
the asymmetric δ-function potential of eq. (6) as well as
the more general piecewise linear potential with of eq. (8)
with four linear elements and 6 parameters. The number
of linear elements was chosen because earlier work showed
no improvement in βint after 6 parameters[4]. The high-
est values found for increasingN are displayed in fig. 2(a)
for both of these. It is apparent that the best achievable
result diminishes for N > 2 but rapidly reaches a plateau
of βint ∼ 0.4 and that both potentials give consistent re-
sults.

For N ≤ 8 electrons, the two choices of potential give
very consistent results, suggesting that we have indeed
found a likely global optimum. For N > 8 electrons,
however, the optimization procedure failed to find a max-
imum of βint for the general linear potential that ap-
proached that of the asymmetric δ-function potential.
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Value of
βint

Potential and
wavefunctions A0 α

Hessian
Eigenvalues

Hessian
Principal

Eigenvector
xnm X E

0.404
(100%) 1.334 -2.229 -6.84, -0.099

(
0.999
0.035

)
0.573 0.500

-0.372
(96%) 1.227 1.928 7.70, 0.130

(
0.999
0.027

)
0.570 0.500

0.370
(92%) 2.568 2.307 -1.24, -0.014

(
0.986
−0.162

)
0.569 0.523

Table I. Asymmetric δ-function potentials with locally optimal βint. Results for each potential are shown columnwise: the
value of βint , and the fraction of the globally optimum value; the potential and wavefunctions with black lines indicating states
that are occupied and light gray lines indicated unoccupied states in the ground state configuration; optimized values of the
parameters A0 and δ; the eigenvalues and eigenvectors of the Hessian matrix of βint with respect to the parameters; a plot of
the dipole transition matrix xnm = 〈n |x|m〉 with the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied
Molecular Orbital (LUMO) indicated by H and L respectively, coloring described in the text; the energy ratio E and dipole
transition moment X for the Kuzyk three-state model.

We speculate that this is because the number of local
maxima increases with N ; we shall show that this is true
later for the more carefully chosen potentials at least. Be-
cause of this, we did not consider the general piecewise
linear potential further but display the optimized poten-
tial and wavefunctions for N = 2 and N = 8 respectively
in fig. 2(b) and (c). That these potentials achieve similar
values of βint to the asymmetric δ-function potentials, de-
spite visually appearing very different, supports our con-
clusion in previous work[4] that βint is poorly determined
in potential space with many irrelevant directions.

Due to the small parameter space of the asymmetric
δ-function potential, it is possible to directly visualize
the objective function; this is displayed in fig. 2(d) for
N = 1 or 2 electrons (the magnitude is scaled by 2−1/2

for the N = 2 electron case), with corresponding opti-
mized potential and wavefunctions shown in fig. 2(e).
The objective function for N = 8 electrons and the opti-
mized potential and wavefunctions are shown in fig. 2(f)
and (g) respectively. It is immediately apparent that as
N increases, the objective function acquires additional
local extrema.

For the N = 1 case, the global optimum found is
βint = 0.701632 at A0 = 35.283 and α = 1.1189,
which is only marginally short of the best known value
of βint = 0.708951 found from optimizing many differ-

ent classes of potential [4]. The global maximum lies at
the top of the long, narrow ridge viewed in fig. 2(d), a
feature of the objective function that was also seen in
earlier studies of more complicated potentials [4]. Its
presence implies that βint is much less sensitive to one of
the parameters than the other, which can be quantified
by computing the hessian matrix of βint with respect to
the parameters,

h =

(
∂2

∂2A0

∂2

∂A0∂α
∂2

∂A0∂α
∂2

∂2α

)
,

and finding the eigenvalues and eigenvectors. These
quantities respectively measure the curvature and prin-
cipal directions of the objective function around the
maximum. We previously used this technique in [4] to
show that that while the best known value of βint =
0.708951 was obtained by optimizing a piecewise linear
potential with 6 free parameters, in fact βint was effec-
tively only sensitive to 2-3 parameters at the optimum.
Here, the eigenvalues of the hessian evaluated at the
global maximum of βint are −0.32277 and −0.00066 and
the associated eigenvectors are (0.00965,−0.99995) and
(0.99995, 0.00965). Hence, βint is very sensitive to the
value of α, the second parameter and much less sensi-
tive to the value of A0; Since the eigenvectors are nearly
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Figure 2. (a) Maximum βint achieved in 2-parameter asym-
metric δ-function potential. Results for the asymmetric delta
function potential are shown as grey circles; results for an ar-
bitrary linear potential are shown as red crosses. The dashed
line represents the largest values of βint for one electron found
to date. Optimized potential and wavefunctions for the ar-
bitrary linear potential with (b) N = 2 electrons and (c)
N = 8 electrons. For the asymmetric δ-function potential
and N = 2, (d) the objective functions βint plotted versus
the δ-function potential shape parameters A0 and α and (e)
the optimized potential and wavefunctions. Corresponding
plots for N = 8 electrons are shown in (f) and (g). For all
subfigures, wavefunctions plotted in black are occupied in the
ground state; those in grey correspond to the two lowest un-
occupied states.

parallel to basis vectors (1, 0) and (0, 1) in parameter
space—as is visible from the orientation of the ridge in
fig. 2(d)—it is clear that βint is sensitive to these fea-
tures of the potential specifically, and not some com-
bination of them. In contrast, the eigenvectors in [4]
were not well aligned with the parameter space and so
it was not possible to ascribe high βint to particular fea-
tures of the potential. The design advice from this study
is much clearer: to optimize βint, create an asymmet-
ric potential well with a steep wall on one side, i.e. set
A0 � 1; then add an attractive group in the center and
tune the strength of attraction, i.e. carefully adjust α as
this largely determines βint.

A similar analysis was applied to the multi-electron
case. In table I, we display the three extrema with
largest βint for N = 8, together with a plot of the po-
tential and wavefunctions; parameter values of A0 and
δ at the optimum and the results of the eigenanalysis.
Unlike the N = 1 case, the global optimum has a re-
pulsive δ-function; the next two solutions have attractive
δ-functions. The existence of both attractive and repul-
sive extrema supports the paradigm proposed by Lytel et
al. [9] in their work on optimization of quantum graphs.
They suggest that large βint is achieved by introducing
a disturbance at some point in the π-electron chain of
molecule, e.g the addition of a side group. The distur-
bance then induces a phase shift in the wavefunction, pro-
ducing a change in dipole moments sufficient to achieve
large βint. In our work, the δ-function serves to provide
the disturbance; the insight of Lytel et al. is that it is the
overall phase shift at the disturbance that is the relevant
parameter, not its detailed nature. Hence both attractive
and repulsive features can provide an appropriate phase
shift.

Just as for the N = 1 case above, eigenanalysis of
the hessian for the multi-electron case shows that the
eigenvectors remain well aligned with the parameter basis
vectors for the multi-electron case. Surprisingly, while
α was found to be the most important parameter for
N = 1, it is A0 that appears to be most significant for the
N = 8 case. The ratio of eigenvalues is also less extreme,
around 10−2 rather than 10−4 as before. These results
suggest that when applying the design approach herein
proposed, i.e. an asymmetric well with a phase shift-
inducing feature, to real systems, tuning both parameters
may be important to achieve high βint.

We also performed eigenanalysis for the more
general linear potential; as a prototypical exam-
ple for N = 8 electrons the eigenvalues were(
−458,−0.4,−0.1,−3× 10−3, 1× 10−4, 4× 10−6

)
indi-

cating that only one parameter is important. Interest-
ingly, with increasing N the lowest 7 eigenvalues re-
mained roughly constant while the largest eigenvalue
strongly increased: For N = 2; the principal eigenvalue
was found to be −2.7, for N = 4 it was −196 and for
N = 6 it was −320. This progression is interesting be-
cause it suggests that for large N , the problem in some
sense becomes simpler as the important parameter dom-
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inates the others to an ever increasing extent. Unfortu-
nately, as with previous work[4], the eigenvectors are not
clearly aligned with the parameter space, so the general
linear potential provides less useful information than the
highly constrained asymmetric δ-function potential.

We also display for each potential a visualization of
the first few position matrix elements xnm = 〈n |x|m〉.
These are important because, as discussed more fully in
the appendix below, the hyperpolarizabilities can be ex-
pressed as a sum over states involving xnm as well as the
energy-level differences Enm = En − Em. It is therefore
natural to examine this matrix to determine which tran-
sitions contribute most to the hyperpolarizabilities. The
interpretation of this matrix is, however, complicated by
the fact that many combinations of these parameters are
individually irrelevant to the hyperpolarizabilities. As is
well-known, for example, the three state model[3, 11, 12]
achieves the bounds quoted in equation (3), and only re-
quires two parameters E = E10

E20
and X = |x01|

|xMAX
01 | with∣∣xMAX

01

∣∣ =
√

~N
2mE10

.
The xnm matrices are dominated by the tridiagonal

terms, and the diagonal elements can be eliminated from
the expressions for the hyperpolarizabilities, e.g. by us-
ing the dipole-free sum over states (DFSOS) formula. To
aid inspection, we have therefore omitted the diagonal
terms and plotted the first off-diagonal terms, i.e. those
with |n−m| = 1, in greyscale. The remaining terms are
plotted in a scheme where intensity corresponds to mag-
nitude and red or blue refers to the positive or negative
sign of the term respectively. Reflecting the potential
in space and changing the signs of odd-indexed wavefuc-
tions changes such plots only by changing the signs, and
for n − m 6= 0 the colors of xnm for n − m even. To
avoid confusion, we have chosen the potential or its mir-
ror image in such a way that xnm is positive for n the
HOMO and m the LUMO+1. The off-tridiagonal terms
are important to βint, because a tridiagonal matrix would
yield βint = 0 as for the Harmonic Oscillator. Clearly,
however, for all the local optima displayed in table I, the
|n−m| = 2 terms are much larger than the remaining
|n−m| > 2 terms.

For each local maximum in table I, we display calcu-
lated values of the E and X parameters. For the three
state model, these parameters yield optimal βint = 1 for
values of E = 0 and X = 3−1/4 = 0.760. However, past
studies[13] of optimized potential functions for N = 1
electrons find values of E ≈ 1/2 and X≈0.789 regard-
less of the starting potential. Optimization of Quantum
graphs[7] produces mildly different values of E ≈ 0.4
and X ≈ 0.79. For the optima presented here, we also
find E = 1/2, but the results seem to favor a value of
X = 0.57. This result is consistent with the results of
eigenanalysis of the hessian, which suggests only one of
the parameters E and X can be important.

The dipole matrix plots, together with the value of
X or X ′ = xHOMO,LUMO+1/xHOMO,LUMO allows us
to appreciate the compromises made in this optimiza-

tion. All contributions to β in the dipole-free SOS for-
mula involve three states, the product of the transition
moments between them and a function of the energies.
From the x-matrix plots it is clear that matrix elements
become smaller very quickly moving away from the diag-
onal. Thus the SOS for β is expected to be dominated
by contributions from terms that involve only one off-
tridiagonal element. There are exactly two sets of three
states involving only the one off-tridiagonal matrix ele-
ment: the ground state, the excited state in which one
electron has been excited from the HOMO to the LUMO
and one of two doubly excited states: the state in which
one electron has been excited from the HOMO to the
LUMO+1 or that in which one electron has been ex-
cited from the HOMO-1 to the LUMO. As the HOMO
to LUMO+2 and HOMO-1 to LUMO transition matrix
elements have opposite signs, these contributions have
opposite signs. Generically the transition moments are
larger between higher energy states to the HOMO to
LUMO+1 and so are expected not to dominate.

The smaller result for many electrons seems, at least
in part, to be explained by the negative contribution of
the HOMO-1 to LUMO contribution. This contribution
is lacking for 1 or two electrons when there is no HOMO-
1. Other than this, the pattern of matrix elements looks
substantially similar for all the maxima—including ones
we have not displayed. Thus it seems that the smaller
results for βint for more than two electrons may be ex-
plained by the need to include four states rather than
two, given the near degeneracy of the two doubly excited
states.

B. Second hyperpolarizability

The symmetric triangular well with a δ-function, i.e.
eq. (6) with A0 = 1, is known to achieve near-optimal
results for γint for N = 1 despite only containing one free
parameter. Due to the simplicity of this potential, it is
possible to directly visualize γint as a function of this pa-
rameter, the strength of the delta function α, for different
values of N . The results are displayed in fig. 3(a). Imme-
diately apparent is an alternation of the sign of the γint
curves as N is increased by 2: for N = 2, 6, 10... the max-
imum value of γint occurs for positive α—corresponding
to a δ-function wall in the middle of the well, while for
N = 4, 8... the maximum value of γint occurs for nega-
tive α. The magnitude of α for which the maxima occur
increases only slightly with N , however. The behavior of
the minimum value of γint is similar, but shifts even less.

Some insight into these results is obtained by examin-
ing the effect of the δ-function on the single electron en-
ergy level spectrum for the potential, shown in fig. 3(b).
Clearly, only the even wavefunctions are affected by the
δ-function due to the P-symmetry of the potential. While
the placement of λ0 can be freely adjusted by changing
α, the higher even energy levels are bounded by their in-
variant odd neighbors, e.g. λ1 < λ2 < λ3. The freedom
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Figure 3. (a) γint versus δ function strength α for varying elec-
tron number N in the symmetric δ function potential. Each
time N is increased by 2, the sign of α for which the maxi-
mum or minimum occurs changes sign. (b) The energy level
structure of the symmetric δ function potential as a function
of δ function strength α.

of selecting λ0 relative to λ1 allows the N = 2 case to
achieve γ a high fraction of the Kuzyk maximum, while
the restricted higher levels only permit a lower value of
γint to be achieved. The reason for the alternation is
also apparent. For N = 2, the Highest Occupied Molec-
ular Orbital (HOMO) in the ground state is λ0 while the
Lowest Unoccupied Molecular Orbital (LUMO) is λ1; in-
creasing α serves to widen the HOMO-LUMO gap. On
the other hand, for N = 4 the HOMO is λ1 and the
LUMO is λ2; increasing α for this case serves to narrow
the HOMO-LUMO gap. This trend continues with α
widening the HOMO-LUMO gap for N = 2, 6, 10... and
narrowing the HOMO-LUMO gap for N = 4, 8; the al-
ternating effect of α explains the different signs of γint
with N .

To determine whether these results are universal, we
also optimized γint for the asymmetric δ-function poten-
tial eq. (6) as well as the linear piecewise potential given
by eq. (7). Shown in fig. 4(a) and (b) are the best max-
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Figure 4. Maximum (a) and minimum (b) γint achieved for
varying increasing numbers of electrons; results for the sym-
metric linear piecewise potential are shown in red and for
the symmetric δ function potential in black. (c) For N = 8,
the objective function γint plotted versus the linear piecewise
potential shape parameters A2 and X1 for positive A1 and
(d) the best potential and wavefunctions obtained. (e) Re-
sults for negative A1 and (f) the corresponding potential and
wavefunctions. (g) Results for the δ function potential shape
parameters α and A2 and (h) optimized wavefunctions and
potential.

imum and minimum γint obtained as a function of N .
Although there are small differences between results ob-
tained with different potentials, the same trend is clear:
that the best γint falls off with increasing N but rapidly
reaches a constant value, yielding an apparent feasible
range of −0.05 < γmaxint < 0.2. These apparent bounds
are shared by all three potentials.

We plot the objective function results for N = 8 for
several different scenarios: For the linear piecewise po-
tential, the sign of A1 must be chosen to be positive or
negative prior to optimization. The objective function is
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shown for A1 = +1 in fig. 4(c) revealing several local
maxima; the corresponding optimized potential, which
maximizes γint , and wavefunctions are shown in fig.
4(d). If alternatively, A1 = −1, a minimum of γint is
obtained; the objective function is rather simpler as ap-
parent in fig. 4(e) and the corresponding potential and
wavefunctions are shown in fig. 4(f). Note that despite
the arbitrariness of the linear potential, the optimized po-
tentials strongly resemble the symmetric δ-function po-
tential, validating its use as ansatz earlier.

The asymmetric δ-function potential has a much more
complicated landscape for γint as is evident in fig. 4(g).
Many local minima and maxima exist. The best three
for both positive and negative γ are displayed in table
II, together with the parameter values and results of the
hessian eigenanalysis. Many of the results above for β are
also seen for γ: both attractive and repulsive δ-functions
lead to large γ, in agreement with the phase interruption
paradigm. Eigenvalues of the hessian differ by a simi-
lar ratio of ∼ 10−2 and again the eigenvectors are well
aligned with the basis vectors of the parameter space.
Just as for the first hyperpolarizability with N = 8 elec-
trons, it appears that A0 is the most important parame-
ter.

Intriguingly, the best negative γint obtained does not
possess P symmetry in sharp contrast to the N = 1 case,
although a P-symmetric solution within 1% of this value
also exists. It is possible this is due to the freedom of
choosing the relative position of the lowest energy level
λ0 relative to λ1; less freedom exists for the higher single
particle energy levels.

Position matrix elements xnm are shown in II for each
potential. Note that these matrices for P symmetric
potentials have a characteristic checkerboard structure.
Elements immediately off the diagonal |n−m| = 1 are
plotted on a greyscale while non-tridiagonal elements are
plotted in red and blue and it is evident, as for βint, that
the matrices are diagonally dominant. For positive γint
, the P-symmetric global optimum has large terms on
the |n − m| = 3 off diagonal, which is consistent with
a few-state hypothesis; here the HOMO→LUMO+2 and
HOMO-1→LUMO+1 terms make the strongest contribu-
tion. The transition matrices for the non P-symmetric
solutions, however, seem to have little in common with
the global optimum, which is perhaps to be expected
since the values of γint for these secondary maxima fall
some 20% below it.

For negative γint, where the two best solutions
have nearly identical values, the transition matrix for
the P-symmetric optimum resembles the solution for
positive γint, i.e. HOMO→LUMO+2 and HOMO-
1→LUMO+1 are the dominant off-tridiagonal terms.
The non P-symmetric solution has an interesting struc-
ture: the HOMO→LUMO element is large, while the
HOMO→LUMO+1 and HOMO-1→LUMO elements are
significantly weaker than the other |n−m| = 2 elements.
A similar pattern, where off-tridiagonal elements are sup-
pressed around the Fermi surface, is also seen in the third

highest optimum that is also non P-symmetric. It is for
negative γint, therefore, that we find the clearest cor-
respondence with the transition matrix elements of the
three-state ansatz.

We now connect these results to the Sum-Over States
Formula for γ, which includes two types of terms: There
are both terms involving the ground state and three other
states, m, n, and l, energy factors and the matrix el-
ement product x0lx0nxlmxnm or x0mxmlxln which we
shall hereafter call “four state” terms. There are also
terms involving the ground state and two excited states,
n, m, referred to hence as “three state” terms. A three
state term proportional to (x0nxnm)2 makes a positive
contribution to γ, one proportional to (x0nx0m)2 will
make a negative contribution. This is more easily seen
from eq. (73) in [1], if m is considered the unconstrained
summation variable, n and l are (as before) both con-
sidered to be different from m, and the energy factors
are made symmetric in n and l. Moreover, only three
state terms involving at least one off-tri-diagonal matrix
element can contribute. If there are no off-tri-diagonal
matrix elements, the matrix elements and energies are
constrained to be those for the harmonic oscillator, for
which γ = 0. The largest terms in γ from four-state terms
involves three excited states, three-tridiagonal matrix el-
ements and one matrix element for which |n − m| = 3.
The largest contributions to γ from three state terms in-
volves the square of a tri-diagonal matrix element and
the square of an |n−m| = 2 matrix element. These last
matrix elements, and so also these terms, are forbidden
by P symmetry.

Now looking at the x matrices, we see that the the P-
symmetric potentials have three large contributions, with
the signs of these three contributions oscillating with pe-
riod 2 in the empty state in the highest or lowest singly
occupied state. The resultant cancellations may again
partly explain the smaller γint achieved for these poten-
tials. The difference between positive and negative γ is
not the kinds of terms involved (as suggested in [14])
but rather in the signs of the off-tridiagonal matrix el-
ements. The three-state terms that are allowed for non
P-symmetric potentials are more similar to those consid-
ered in [14], except that these can have either sign.

To facilitate comparisons with other work, we again
computed values of the Kuzyk three-state model param-
eters E and X. For the lower bound, all three extrema
favor E = 0.5 andX ≈ 0.65. An earlier study byWatkins
et al.[3], who optimized γint for different potentials and
N = 1, found for negative γint X ≈ 0.66 and two clusters
of solutions with E ≈ 0.15 or E ≈ 0.53. Our results are
therefore in excellent agreement. For the upper bound,
our results display more variation with E = 0.765 and
X = 0.615 for the best potential found. Watkins et al.
similarly found more variation in positive γint, obtaining
results around E ≈ 0.57 with X ≈ 0.5. As for β, the dis-
crepancy is explicable because eigenanalysis reveals that
effectively only one parameter is truly important, seem-
ingly the slope of the left hand boundary.
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Value of
γint

Potential and
Wavefunctions A0 α

Hessian
eigenvalues

Hessian
eigenvectors xnm X E

0.161
(100%) 1.000 -2.963 -0.597, -0.048

(
−0.999
0.053

)
0.615 0.765

0.134
(83%) 1.375 2.534 -1.926, -0.039

(
−0.999
−0.004

)
0.516 0.638

0.127
(79%) 2.043 -3.765 -1.597, -0.039

(
−0.999
0.024

)
0.511 0.638

-0.0613
(100%) 1.630 -2.107 6.970, 0.0187

(
0.999
−0.016

)
0.655 0.500

-0.0609
(99%) 1.000 1.524 13.78,

0.0311

(
0.999
−0.0006

)
0.654 0.500

-0.0502
(82%) 3.260 2.467 1.162,

0.0123,

(
0.997
−0.069

)
0.639 0.500

Table II. Asymmetric δ-function potentials with locally optimal γint. Results for each potential are shown as follows, columnwise:
the value of γint , and the fraction of the globally optimum value; the potential and wavefunctions; optimized values of the
parameters A0 and δ; the eigenvalues and eigenvectors of the Hessian matrix of γint with respect to the parameters; a plot of
the dipole transition matrix xnm = 〈n |x|m〉 with the HOMO and LUMO indicated by H and L respectively and coloring as
described in the text; the energy ratio E and dipole transition moment X for the Kuzyk three-state model.

C. Discussion

The above subsections have presented optimized po-
tentials for βint and γint with increasing N , expressed in
a parameter space that a posteriori is found to coincide
with what is important to the hyperpolarizabilities. As
discussed, this is a significant development over previous
work, where the parameter space was larger the opti-

mized potentials gave a less clear sense of which features
are important. Nonetheless, the parameters A0 and α
are an artifact of the parameterization chosen, and it is
therefore desirable to identify quantities that are invari-
ant under reparametrization and rescaling of the form in
eq. (5). This is particularly important because, if we
generalize to the space of arbitrary potentials, there are
many other solutions with identical values of the hyper-
polarizability. For the N = 1 case, we know that the hy-
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Figure 5. Objective functions (a) βint and (b) γint for the
asymmetric δ-function potential shown in the natural pa-
rameter space A0 and α; wavefunction parameters at the
classical turning points (c) p = ψ′l/ψ

′
r − ψ′r/ψ

′
l and (d)

q = −∆x2 |ψ′lψ′r|2/3 plotted with respect to A0 and α. A
selected region of the objective function, enclosed in the grey
volume in (a) and (b), is show replotted with respect to p and
q in (e) and (f) respectively.

perpolarizabilities can be completely reconstructed from
the ground state wavefunction[15]. Extending this to the
N > 1 case, it is easy to see that the hyperpolarizablities
can be constructed for this problem as appropriate inte-
grals of the occupied single particle wavefunctions alone.
As the largest term is expected to the HOMO, the im-
portant parameters ought to be expressible in terms of
parameters crucial to the HOMO.

Moreover, there is a need to connect the dipole-free
sum-over-states view, which prescribes certain values of
the dipole transition matrix elements, and the potential
view that we pursued above. We therefore performed
an approximate analysis of the problem, inserting WKB
ansatz wavefunctions into expressions for Enm and xnm
to determine what details of these wavefunctions most
significantly affect these parameters. The full calcula-
tions presented in the Appendix below support this ar-
gument and suggest that the three parameters introduced
in the next paragraph are the crucial ones..

On the basis of approximate analytic arguments made
in the appendix, and a numerical experiment that fol-
lows, we believe that there are three length scales that are

important to the hyperpolarizabilities around the max-
imum. One is ∆x, the separation between the turning
points of the HOMO. The other two are length scales Lk
for k and an element of {r, l} that characterizes the rate
at which the wavefunction varies near the right and left
turning points of the HOMO. A variety of nearly equiv-
alent forms can be given for these lengths and dimen-
sionless ratios containing them, including L = (V ′)−1/3,
and more global formulae related the derivatives of the
wavefunction at the turning points or to the normaliza-
tion of the HOMO. From these three lengths, it is pos-
sible to construct two dimensionless parameters that are
arguably important to the hyperpolarizability, for exam-
ple,

p = ψ′l/ψ
′
r − ψ′r/ψ′l

q = −∆x2 |ψ′lψ′r|
2/3 (19)

are invariant under reparameterization and rescaling.
Here ∆x is the distance between the turning points, ψ′l
and ψ′r are the slopes of the wavefunctions where the sub-
scripts l and r refer to the left and right turning point re-
spectively. As some of the definitions of L are zero when
V ′ is infinite at the turning points, and it is still possible
for the hyperpolarizabilities to approach the maximum in
this case, appropriate dimensionless combinations should
not be infinite in this limit. As βint requires asymmetry
in the potential, it is expected that a parameter odd un-
der P symmetry, such as p, mostly controls β while one
even under P symmetry, such as q, mostly controls γint.

In fig. 5 we show the objective functions (a) βint and
(b) γint plotted in the parameter space of the asymmetric
δ-function potential, i.e. A0 and α. In the same param-
eter space, we show in 5(c) and (d) the values of the
wavefunction parameters p and q from eq. (19). From
these plots, we see that much of the structure in the ob-
jective functions βint and γint is attributable to these
new parameters: notice that the position of the ridges
in 5(c) corresponds to the ridges in 5(a), while those in
5(d) corresponds, more roughly, those in 5(b). In figs.
5(e) and (f), the portion of the objective function in figs.
5(a) and (b) that is enclosed within the grey cuboid is
reprojected into the new (p, q) parameter space. Plots of
the objective functions—not shown here—in (p, q) space
for the full range of (A0, α) from fig. 5(a) and (b) closely
resemble the structure observed in this reduced reduced
region.

From these results, we conclude that βint is largely
determined by p while γint is largely determined by q,
and the remaining parameter in each case must be tuned
less precisely to achieve the optimum. It is also now clear
that the asymmetric δ-function performs so well due to
a fortuitous correspondence: the A0 parameter directly
controls the ratio of the slope of the potentials at the
turning points, which is readily related to the slope of
the wavefunctions at the classical turning points, i.e A0

and p are simply related.
We display in table III the values of p and q calcu-

lated for each of the optima of βint and γint shown in
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Optimum value p q

βint

0.403 1.69 −8.99
−0.372 −1.28 −7.66
0.370 2.11 −9.26

γint> 0
0.161 0 −9.30
0.134 −1.85 −6.40
0.126 −1.88 −6.95

γint < 0
−0.0613 0.456 −10.54
−0.0610 −1.02× 10−5 −9.30
−0.0503 1.214 −10.54

Table III. Values of dimensionless parameters p and q con-
structed from the HOMO wavefunction for each of the opti-
mized N = 8 solutions displayed in tables I and II

N
2 4 6 8 10

βint
p −4.17 1.94 −2.52 1.69 −1.96
q −1.37 −4.00 −7.11 −8.99 −12.6

γint> 0
p 5.15× 10−3 2.08 0 1.92
q −3.64 −4.97 −9.30 −9.62

γint < 0
p 0 0 0.456 0
q −3.65 −7.35 −10.5 −13.2

Table IV. Dimensionless parameters p and q calculated from
the best solution found as a function of N .

table I and II. For each of the optimization problems,
i.e. |βint|, γint > 0 and γint < 0 the values of at least one
of these parameters are internally quite consistent with
each other. This is particularly so for the negative γint
results where the secondary optima are close to the global
optimum. Values of p and q for the global optimum as a
function of N are shown in table IV. These reveal sev-
eral trends: First sgn(βint) = sgn(p)(−1)nnh where nnh
is the number of nodes in the HOMO. Otherwise, it is ex-
pected that P symmetry just changes the sign of βint and
p. Also, a sign alternation occurs in p for βint; q seems to
increase with N for γint, while p is found alternately 0 or
some small value. The a posteriori consistency of these
parameters supports the argument above that these are
the “real” parameters of the optimization problem.

IV. CONCLUSION

We have optimized the intrinsic hyperpolarizabilities
βint and γint for non-interacting multi-electron systems
with respect to the shape of several classes of potential:
a piecewise linear potential, and an asymmetric trian-
gular well with a δ-function. The best values obtained
for βint and γint drop from the N = 1 case and ap-
proach an apparent feasible range of |βint| < 0.4 and
−0.05 < γmaxint < 0.2 for N larger than around eight
electrons. The asymmetric δ-function potential achieves
these bounds and, due to the small number of parame-
ters, and a posteriori verification that the parameters are
indeed relevant, provides a design prototype for synthesis
of new chromophores. For βint, a molecule should have

asymmetric walls and possess an attractive or repulsive
feature in the middle—a main chain functional group or
side-chain—that promotes a rapid change in the phase of
the wavefunction. The asymmetry of the boundary and
the strength of the attraction or repulsion should then be
tuned to achieve high βint. For γint, the molecule should
be essentially P-symmetric with a central attractive or
repulsive feature that should similarly be tuned.

By approximate analysis, we also determined that the
ad hoc parameters of our potential can be re-expressed
in terms of the dimensionless, scale invariant parameters
derived from the shape of the HOMO wavefunction at
the classical turning points. These new parameters are
important both because they explain the success of our
original parametrization and because they provide a new
wavefunction-centered approach to screen potential chro-
mophores for large hyperpolarizabilities.

The results also provide important information on how
well the many theoretical studies of single electron sys-
tems might describe real molecules that posses multiple
electrons. While the apparent bounds quoted above are
more restrictive than the N = 1 case, it seems, encourag-
ingly, that the overall design paradigms described above
apply equally well to both cases. Information from other
studies on target values of the E andX parameters of the
three state model for N = 1 also seems to remain valid
with increasing N . The insights of [4, 5] that only a very
small number of parameters are required remain valid,
and happily, this appears to be increasingly so with large
N . Because of this and because the objective function
for multiple electrons acquires many more local extrema,
it should in principle be easier to tune multi-electron
systems.

Appendix A: Approximate Analysis

In this appendix we use approximate techniques to ar-
gue that the dimensionless parameters identified in the
main text constructed from the separation between the
turning points of the HOMO and the slopes of the poten-
tial at these turning points ought to mostly explain the
hyperpolarizability. The simple, zeroth order argument
is given in the next two paragraphs. A more detailed but
still very approximate calculation follows.

For all potentials with large hyperpolarizabilities, the
transition matrix elements between the frontier wave-
functions—those that are close to the Fermi level—must
be large. When these matrix elements are large, there
are very strong constraints on the energy differences be-
tween the various states, and hence we can regard these
parameters are fixed by the matrix elements and we need
only calculate the transition matrix elements to predict
the hyperpolarizabilities.

In order to calculate these transition matrix elements
approximately, we note that wavefunctions fall rapidly in
the classically forbidden region and oscillate in the clas-
sically allowed region. Thus most of the transition ma-
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trix integral between two states necessarily comes from
the region between or very close to the turning point of
the lower energy state. Moreover, far from the turning
points, each wavefunction becomes relatively small, in
effect because the particles are (classically) moving rela-
tively quickly. Thus most of the contribution to these in-
tegrals comes from the region close to the turning point of
the lower energy wavefunction. From this it is clear that
the distance between the turning points of the HOMO is
an important parameter.

The wavefunction near a turning point is constrained
by the slope of the potential at the turning point. More-
over, the ratio of the amplitudes of the wavefunction at
the two turning points is limited by general principles,
described below. While the wavefunction of the higher

energy state near the turning points of the lower energy
states is more free to vary, provided the potential is not
too far from linear, they are still largely constrained by
the slope of the potential. Thus the slopes of the poten-
tial at the turning points of the HOMO also seems to
be a very important parameter. From these parameters,
it is possible to construct two dimensionless parameters,
and it is known from numerical experiments that only
two parameters seem to be important to maximizing hy-
perpolarizabilities for model potentials.

We now provide a more detailed, but nonetheless ap-
proximate, analysis. We begin with the sum-over-states
formulae for the hyperpolarizabilities. For instance, the
off-resonant expression for the second hyperpolarizability
is,

γxxxx = 2e4

(
2
∞∑

lmn

′ x0lx̄lmx̄mnxn0
El0Em0En0

−
∞∑

mn

′
x20mx

2
0n

{
1

E2
m0En0

+
1

E2
n0Em0

})
, (A1)

which contains three kinds of quantity: the energy level
differences Enm = En − Em, matrix elements xnm =
〈n |x|m〉 and barred quantities x̄nm that contain dipole
terms,

x̄nm =

{
∆xn0 = xnn − x00 , n = m

xnm , n 6= m
. (A2)

As is well known, the dipole terms can be eliminated
from these expressions using the sum rules[16, 17], leav-
ing only the transition elements xnm and energy level dif-
ferences Enm. Numerous previous studies, as well as the
results above, have shown that only a few states—in fact
2-3—near the Fermi energy contribute significantly to the
hyperpolarizabilities. Hence, the question of what is im-
portant to the hyperpolarizability maybe be addressed
by understanding how the potential and wavefunctions
affect these quantities. In the remainder of the appendix,
we will answer this question by constructing WKB ansatz
wavefunctions, inserting them into expressions for these
quantities and examining the form of the results.

In order to proceed, we make some simplifying assump-
tions. First, we assume that the true optimum poten-
tial is sufficiently smooth that the WKB approximation
yields good approximations, at least near the turning
points, to the relevant wavefunctions, i.e. those near the
Fermi surface. This is justified by previous studies[15]
that have shown the addition of small rapidly varying
perturbations to the potential doesn’t affect the hyper-
polarizabilities. The ansatz potentials studied in this
work, with delta functions and changes in slope at iso-
lated points, all satisfy this criterion.

Second, we shall assume that for wavefunctions near
the Fermi energy there are only two classical turning
points, except possibly for isolated delta functions in the

potential that may violate this rule. We justify this be-
cause the presence of multiple turning points would re-
sult, at least approximately, in roughly independent par-
ticles in the separate classically allowed regions. This
would lead to hyperpolarizabilities that grow ∝ N rather
than ∝ N 3

2 (for β) or ∝ N2 (for γ) as the Kuzyk bounds
imply. The turning points shall be denoted xln and xrn,
corresponding to the left and right turning point respec-
tively, and are found by solving V (xln) = En . In this
expression, and hereafter, l indexes the left or right turn-
ing point.

Within the above assumptions it is possible to write an
ansatz wavefunction for the nth state that is valid except
for the region near the classical turning points,

ψn(x) =

{
An(x) cos [φn(x)−∆φn(x)] , E > V

An(x) exp
[
−γln(x)

]
, E < V

(A3)

where E > V and E < V refer to the classically allowed
and forbidden regions respectively. The functions γln are
defined by,

γln(x) =

∣∣∣∣∣

ˆ x

xl
n

(V (x′)− En)
1
2 dx′

∣∣∣∣∣ , (A4)

and the function φn(x) is given by,

φn(x) =
π

4
+

ˆ x

x<
n

(En − V (x′))
1
2 dx′. (A5)

The remaining functions An(x) and ∆φn(x) are smooth
and slowly varying, except where the potential has delta
functions or sharp changes; nonetheless they are neces-
sarily smoother than the potential. For the smooth po-
tentials considered here, ∆φ(x) is of order π or smaller.
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A(x) is relatively close to the semiclassical result A(x) ≈
a(x)v(x)

1
2 where v(x) is the classical velocity and a(x)

changes only by amounts that are asymptotically small
where the WKB approximation is valid, except very close
to the turning points. The dependence of a(x) can easily
be made more precise by using the uniform asymptotic
WKB approximation to the wavefunction[18] though this
does little to illuminate the discussion. Moreover, even if
WKB is invalid somewhere between the turning points,
the magnitude, |a(x)| is, roughly speaking, the rate at
which the electron "turns" at the turning point and so is

expected to be the same at both turning points. In WKB
there is no reflection in classically allowed regions and
hence it is obvious that |a(x)| cannot change. More gen-
erally, however, any structure between the turning points
must have equal magnitude for the transmission and re-
flection from each side. This implies that |a(x)| must
have the same values at both turning points. Moreover,
a(x) can be chosen to be real near both turning points,
and the ratio of a near the two turning points alternates
sign as we increase the energy of the wavefunctions.

The approximate energies are found, as usual, by solving

n+
1

2
= φ(x>n ) =

ˆ xr
n

x
nl

(En − V (x′))
1
2 dx′. (A6)

Combining copies of the WKB equation (A6) for two different states n and m, we obtain,

n−m =

ˆ xr
n

x
nl

(En − V (x′))
1
2 dx′ −

ˆ xr
m

xl
m

(Em − V (x′))
1
2 dx′. (A7)

These integrals may be combined by making a linear change of variable x′ → xlp + y∆xp where y ∈ [0, 1] and
∆xp = xrp − xlp.

n−m =

ˆ 1

0

dy
[
∆xp

[
En − V

(
xln + y∆xp

)] 1
2 −∆xp

[
Em − V

(
xlm + y

)] 1
2

]
. (A8)

The square roots in the integrand can be combined by completing the square,

n−m =

ˆ 1

0

dy
∆x2n

[
En − V (∆xny + xln)

]
−∆x2t,m

[
Em − V (∆xmy + xlm

]

∆xn [En − V (∆xny + xln)] + ∆xt,m [Em − V (∆xmy + xlm)]
. (A9)

The form of the integrand in (A9) is instructive: near the turning points, i.e. as y → 0 and y → 1, the numerator
goes to zero linearly in y while the denominator goes to zero as a square root; the integrand therefore vanishes like
y1/2 near the turning points. Hence, the majority contribution to this integral comes from the spatial region far from
the classical turning points, particularly if the two energies are similar and the potential near the turning points is
slowly varying. Moreover, this integral tends to smooth out small, high frequency variations in the potential; it follows
that if |n−m| is small, then En −Em is largely determined by the form of the potential far from the turning points.

We now turn to the dipole matrix elements xnm, which can be computed using the position formula,

xnm =

ˆ ∞

−∞
dxxψnψm. (A10)

We shall restrict our analysis to small values of |n−m|, because only these states contribute significantly to the
hyperpolarizability. Moreover, approximate analysis of these integrals is complicated for large |n−m| because, while
small, they are strongly dependent on the detailed analytic behavior of the potential and wavefunctions.

Substituting the ansatz wavefunction (A3) into the position formula (A10),

xnm ≈
ˆ x>

m

x<
m

dx
1

2
AnAm

[
x− 1

2
(xrt,m + xlt,n)

]
cos(φn − φm + ∆φm −∆φm), (A11)

. This integral is then the integral of a function that has
n−m−1 nodes, roughly evenly spaced through the inter-
val, and has a somewhat (algebraically) larger magnitude

near the turning points. From this formula, it is appar-
ent that the transition matrix elements depend primar-
ily on the nature of the wavefunctions near the classical
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turning points, i.e. separation between the two turning
points and as well as the shape of the wavefunctions in
their vicinity. As the shape of the wavefunctions are most
dependent on the slopes of the potential at the turning
points and there must be a connection between the en-

ergy differences and the transition matrix elements, this
strongly argues that the separation between the turning
points of the HOMO and the slopes of the potential at
these turning points should be among the most impor-
tant heuristic parameters that determine the hyperpolar-
izabilities.
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Appendix D

Developing a project-based

computational physics course

grounded in expert practice

In this paper, submitted to the American Journal of Physics, we present a

computational physics course which we designed and taught. We explain the

process by which we designed the course, using interviews with computational

experts to guide us. We outline the structure of the course, present examples

of student work and feedback, and perform a study using independent analysis

by computational experts to assess student progress throughout the course.
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Developing a project-based computational physics course grounded in expert practice

Christopher Burke and Timothy J. Atherton∗
Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA 02155

We describe a project-based computational physics course developed using a backwards course
design approach. From an initial competency-based model of problem solving in computational
physics, we interviewed faculty who use these tools in their own research to determine indicators of
expert practice. From these, a rubric was formulated that enabled us to design a course intended
to allow students to learn these skills. We also report an initial implementation of the course and,
by having the interviewees regrade student work, show that students acquired many of the expert
practices identified.

I. INTRODUCTION

Computers have been used to solve physics problems
since they were first created[1], and with their ever in-
creasing ubiquity, computing has become a fundamental
scientific practice in Physics. Some brief examples[2]:
in High Energy Physics, computers automatically select
detected events for recording, store them and allow pro-
cessing of the results on large-scale compute Grids; more-
over, theoretical predictions are made by simulations. In
Astronomy, formation processes are simulated at mul-
tiple length scales from star formation to galaxy evolu-
tion. In Condensed Matter Physics, many-body quantum
mechanics simulations predict the electronic structure
of crystals and molecules, bulk properties from molecu-
lar dynamics and continuum behavior by solving PDEs.
Moreover, almost since they became available, comput-
ers have been used in Physics Education for visualization
and simulation[3], and their immense potential as educa-
tional tools was recognized early on[4, 5]. This tradition
is continued today in projects such as the PhET[6] sim-
ulations, designed for classroom use.

Given the central importance of computation to
physics research, and hence the need for appropriately
trained students and professionals to perform it, it is
perhaps surprising that computing is often only weakly
integrated into the physics curriculum. Several ap-
proaches have been tried to remedy this[7]: At the largest
scale, whole majors on Computational Science have been
created[8]; courses[9] or sequences of courses[10, 11] have
been created within departments; computational projects
and homework problems have also been integrated into
existing courses and laboratories, both for majors[12] and
at the introductory level[13, 14]. Encouragingly, a large-
scale survey performed about a decade ago[15], showed
widespread support for these efforts. A valuable starting
point for those seeking to implement one of these ap-
proaches is a special double volume[16] of the American
Journal of Physics on Computation published in 2008 and
including several of the articles cited above. Of particu-
lar practical help is the extensive Resource Letter[17], an
updated version of[18].

∗ timothy.atherton@tufts.edu

In this work, we discuss a Computational Physics class
recently created at Tufts University. Central to our vision
was a desire to ground the course in actual professional
practice, following a movement to refocus science edu-
cation around real scientific practices[19]. We therefore
conducted interviews of scientists, mathematicians and
computer scientists to determine these practices. The re-
sults of the these interviews were distilled into a rubric
that aims to describe indicators of expert practice in com-
putational physics. From the rubric, we used a backwards
course design approach to create a sequence of projects
that allow students to acquire these practices in a struc-
tured manner. We gave the course for the first time in the
Spring 2015 semester, and conducted an after-delivery as-
sessment exercise to determine whether student work did
indeed contain evidence of expert practice. We report in
detail the design process in the hope it might be of use to
others planning project-based courses with other subject
matter.

The structure of the paper follows our design and as-
sessment exercise: the rubric and its development is de-
scribed in section II; the course design process is ex-
plained in section III; brief comments on the initial im-
plementation are given in section IV; our a posteriori
analysis of the success is presented in section V. We fin-
ish with discussion and conclusions in section VI.

II. RUBRIC DEVELOPMENT

The initial phase of our design process was to develop
a rubric for the course, capturing in a single document
indicators of expert practice in Computational Physics.
The purpose of this was threefold: First, and most ob-
viously, the rubric would be a tool to help assess the
quality of student work submitted in the course. Second,
by making this document available to students during
the course, we wished to convey these excellent practices
as a norm and engender a climate of professionalism in
the classroom. Finally, we anticipated that by distilling
the practices into a rubric, the resulting document would
be a powerful tool to assist in the design of the course,
ensuring that the content and assessment would be mu-
tually aligned, and that both would prepare students to
solve computational problems in actual physics research.
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Figure 1. Initial model of expert problem solving in Compu-
tational Physics.

We began by determining the typical content of Com-
putational Physics courses. We examined course syl-
labi from a range of institutions, Boston University, Uni-
versity of Connecticut, East Tennessee State University,
Northeastern University and Oregon State University.
From these syllabi, and our own experiences as profes-
sionals, we proposed an initial set of competencies that
seem essential to the practice of computational physics:
Physical transcription, the formulation of the physical
system of interest into a mathematical problem and cre-
ation or selection of algorithm(s) to solve it; Planning, or-
ganizing the overall program into modules and selecting
appropriate data structures; Programming, implementa-
tion of the approach; Visualization, post-processing of
the results and selection of the appropriate representa-
tions to interpret them; Numerical analysis, assessing er-
ror and stability of the program; Physical analysis, relat-
ing the results of the program back to the initial problem
and determining whether the approach has provided the
required insight.

Our initial model of how these competencies were used
by experts to solve problems in physics research is shown
in figure 1. We anticipated a formulation phase, in which
the physical system and research questions of interest
were transcribed into a math problem and then an al-
gorithm developed or selected to solve the problem. Fol-
lowing this, the program is implemented. Having run the
program, the results are evaluated both to assess whether
the results were numerically meaningful, i.e. whether
the program gave stable, repeatable results, and physi-
cally meaningful, i.e. whether they answered the origi-
nal research questions. We envisioned that these activ-
ities would be repeated iteratively several times, as the
initial product may not fully address the original ques-
tions, or the results may lead to new questions. This
sequence mirrors famous work on problem solving[20]
as well as physics-specific research[21]. We particularly
note the parallel with the Integrated Problem-Solving

Implementing

Physical transcription

Planning

Numerical 
analysis

Physical 
analysis

Visualization

Running

Testing

Ite
ra
tio
n

Figure 2. Evidence-based model of expert problem solving in
Computational Physics.

model[22, 23], which divides the problem-solving process
into framing, implementation and evaluation, and was
recently adapted to assess student learning in Computa-
tional Materials Science[24].

From our initial list of competencies and problem solv-
ing model, we devised interview questions (listed in Ap-
pendix I) to determine actual professional practices asso-
ciated with these competencies. We selected five faculty
and postdocs from Physics, Computer Science and Math-
ematics who actively use computation in their research
and have published refereed papers involving computa-
tion. These five were interviewed by one of the authors
(CJB) and these interviews transcribed. The two au-
thors then coded the transcripts separately according to
the prompt “identifiable items we could look for in stu-
dent work”. Following this step, the coded items were
compared and only common items retained. We then
categorized the coded items according to our initial com-
petency model.

In performing this exercise, we identified additional
competencies that we had not proposed in our initial
model: Running, incorporating the ability to create
scripts and file structures to execute the program and
collect the data, and Testing, incorporating comparison
of the output of the program against known solutions
as well as profiling the program to assess performance.
We renamed the competency Programming in the initial
model to Implementation to reflect our inclusion of im-
portant non-programming practices associated with im-
plementation, e.g. creation of external documentation
and use of version control.

Furthermore, the evidence of the interviews forced us
to abandon our initial cyclic model of how Computa-
tional Physics programs are created and instead create
a more highly connected and iterative model, depicted
in fig. 2. Of particular note, we found evidence that
ideas from numerical analysis inform almost every as-
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pect of computational physics problem solving, and that
experts typically use these ideas as a sub-step in each
of the Physical Transcription, Planning, Implementing,
Testing and Visualization steps. Testing and Numeri-
cal Analysis proceed in a closely iterative fashion. The
Numerical analysis, Visualization and Physical Analysis
steps of evaluating the program output are also highly
interconnected and mutually inform the selection of rep-
resentations to plot and how to interpret the results. Per-
haps our most surprising result is that Visualization was
shown not to be limited to assessing the program output,
but also a key tool to plan and implement effective pro-
grams. Overall, the evidence suggests that while experts
do indeed solve Computational Physics problems itera-
tively, the execution of their strategy does not involve a
clearly defined sequence of steps but rather invocation
of different competencies as required. While the num-
ber of interviewees in this study is small, their nonlinear
approach to problem solving parallels that seen in other
domains[25].

A draft rubric was prepared from the coded items, or-
ganized along the new competency model, which seeks to
define expert practice through the indicators identified
from the interviews. The participants interviewed were
invited to give feedback on the rubric draft at a panel,
together with representatives from the Tufts Center for
the Enhancement of Learning and Teaching (CELT) and
Tufts Technology Services Educational Technology group
who both possessed relevant expertise in computing edu-
cation. Following the recommendations of the group, we
constructed the final version of the rubric shown in table
II.

III. COURSE DESIGN

Having created the rubric described in section II, we
set out to design a course in which students could learn
the expert practices identified in a structured manner.
Following other studies[9], we decided to adopt a project-
based approach. Our overall vision for the course was
that students would complete a structured sequence of
projects to acquire the practices from the rubric in a
scaffolded manner. We proposed to spend the majority
of the class time—2 1

2 hours per week—with the students
working in groups, guided by the instructor and TA; we
would introduce each class with a short “micro lecture”
introducing each project and its associated concepts and
algorithms. We also anticipated that the students would
create a final term project where they would select and
formulate the physics problem to be solved themselves.

First, we sought to distill the essence of the rubric fur-
ther into a small number of overall course goals for stu-
dents to learn in the course:—

1. Develop mathematical and computational models
of physical systems.

2. Design, implement and validate a functioning code

for such a model.

3. Understand the role of numerical analysis in formu-
lating, designing and interpreting computer mod-
els.

4. Use visualization and physical analysis to test hy-
potheses.

5. Connect theory, experiment and simulation.

To identify possible projects, we surveyed 17 faculty from
the Astronomy, High Energy Physics, Cosmology and
Condensed Matter Physics research groups in the Tufts
Physics and Astronomy department. For each of the pro-
posed projects—which we supplemented with some of our
own—we selected practices from the rubric that might
be particularly important. While good programming is
a ubiquitous requirement, for example, the Ising model
is a suitable problem to study random numbers and is-
sues of repeatability. We then ordered this collection of
projects to determine those that could be completed with
little specialist knowledge to those requiring more, and
identified dependencies between projects.

Following the backward course design approach[26],
we selected a subset of projects that allowed us to span
the full list of practices and constructed the course plan
shown in table IV. Reading column-wise for each project
is an estimate of the time required—1 or two weeks—the
practices we intended to focus on in the project, the
project title, the content of the project as viewed from
a traditional course, and any additional skills that may
be required for successful completion of the project.
From this overall plan, we developed project descriptions,
available as supplementary material[27], as well as brief
“micro-lectures” to communicate both the content (i.e.
algorithms and concepts) and the Learning Objectives
(i.e. the professional practices). The problems them-
selves will be described in more detail in the following
section concerning our initial implementation.

IV. IMPLEMENTATION

A. Student backgrounds

1. Demographics

An initial implementation of the course ran in the
Spring semester of 2015 and was ultimately completed
by n = 22 students out of 23 registrants. The course
contained 7 women and 14 men. Some 13 were Physics
or Astronomy majors, 8 were Computer Science majors
with some double majoring in both Physics and Com-
puter Science, 3 were graduate students in Physics and
Education.
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Competency Indicators
Physical
Transcription

Analytical methods are first employed to understand the problem to the greatest extent possible,
including identification of symmetries, length scales and timescales. An appropriate mathematical
model and computational representation are chosen including choice of algorithm and discretization.
Multiple methods are considered and their strengths, limitations and complexity are evaluated using
literature where appropriate. Important physical constraints and conserved quantities are identified,
and the approximations made are clearly stated. The purpose of the calculation and desired results are
clearly articulated.

Planning The program to be written is broken into modules and functions that can be designed, tested and
debugged independently. A suitable and efficient representation of the data, such as classes and data
structures, is chosen appropriately for the algorithm. Relevant libraries, software packages and existing
code are identified. The need for parallelization is considered and incorporated into the design if
necessary. An appropriate language is chosen based on needs of the problem, ease of implementation,
maintainability and performance.

Implementation The code can be easily understood and convinces the reader it works through careful commenting,
descriptive variable and function names and validation of input. Coding standards are developed and
obeyed amongst the implementation team. Comments document the physics, are in proportion to the
complexity of the section, and identify input and output to functions. Outside documentation
thoroughly describes how the program works and how to run it such that future users and maintainers
can easily work with the program. The code is efficient but not at the expense of readability and
maintainability. Professional programming tools, e.g. version control and debuggers are used where
available.

Testing Each element of the program is carefully tested separately and together at each step. The program is
verified on test cases with known solutions identified in the planning process. Appropriate metrics are
used to analyze performance and identify need for optimization. Visualization is used to provide insight
into whether the algorithm is working.

Running Initial conditions are chosen judiciously. Output is organized and labeled and input parameters used in
each run are recorded. Multiple runs, if necessary, are automated efficiently through scripts.

Visualization Visualization is used to gain intuition regarding the output and to present final results in a compelling
way. Important results are visualized so that they require little effort to decipher and are appropriate
for the given data. Relevant tools are used to make the visualization. Strengths and limitations of the
choice of representation and alternatives are discussed. Visualization, including physical objects, may
also be used to display program and data structures if necessary.

Numerical
Analysis

The source and nature of all approximations made are identified and their impact on the result
discussed. The most significant sources of error are carefully analyzed and estimates of the error are
given; ideally these are used to guide the algorithm, e.g. in refining the discrete representation.
Conditions for stability are identified and quoted. The scaling of computational time with problem size
is understood. Reproducibility is verified for non-deterministic algorithms. Floating point arithmetic is
used carefully.

Physical Analysis Results are compared to hypotheses. Adherence to physical constraints (e.g. energy conservation) is
verified. Possible improvements or alternate implementations are identified. The results are cross
checked with alternative simulation strategies.

Table II. Rubric based on expert practice.

2. Prior experience

In this section, we discuss the prior experience of stu-
dents in the class. We first address the issue of pro-
gramming language. The course design presented above
is intentionally language independent because evidence
from our interviews indicates that good programming
practices are largely independent of the language chosen.
Moreover, language selection for a given problem is an
important skill. The language chosen should be one used
by professional physicists; within the general family of
languages familiar to the students; have good quality de-
velopment tools and have libraries or intrinsic functions
to support useful algorithms and visualization.

To aid this decision, and generally guide our prepa-
ration, we circulated a brief survey before the course to
assess student course preparation in physics, computer
science and math as well as programming language fa-
miliarity and confidence in programming. The questions
are listed in Appendix II. From the 14 responses, we
coded student preparation in each subject as Introduc-
tory, Intermediate, Advanced or Graduate depending on
the highest level course taken by the student. The courses
General Physics 1 and 2, Calculus 2, Multivariable Cal-
culus and Introduction to Programming were classified
as Introductory. Modern Physics, Linear Algebra, Dif-
ferential Equations and Data Structures were classified
as Intermediate. Any courses with higher numbers were
classified as Advanced.
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Week Learning Objectives Assignments Content Additional skills
1-2 Documenting code Double pendulum Discretization — ODEs —

Integration
Group work

Testing each component separately
Version control

3-4 Dividing code into functions 1D quantum mechanics Eigensystems — Root
finding — Shooting

Reading papers

Identifying sources of error
5 Selecting a model or algorithm Model fitting Optimization — Statistics Consulting

textbook/internet
resources

Identifying improvements
6 Identifying sources of

approximation
Linear combination of
atomic orbitals

Linear Algebra

Using visualization to analyze
results

7-8 Scripting Ising model of magnetism Monte Carlo — Random
NumbersReproducibility

9-10 Identify symmetries / conserved
quantities

Time dependent
Schrödinger equation

PDEs

Test physical acceptability of sol’n
11-12 Identify existing packages Laplace’s equation Relaxation —

Interpolation/ExtrapolationChoose representation of data
structures
Analyze stability/scaling Finite Differences
Analyze and optimize performance Finite Elements

ongoing Develop a hypothesis Final project
Choose language
Use visualization to present a
compelling case

Table IV. Course plan

None Intro. Inter. Adv. Grad.
Physics 0 1 7 4 2
CS 4 6 3 1 0

Math 0 3 7 4 0

Table V. Subject preparation.

Physics
Intro. Inter. Adv.

CS

None 0 1 3
Intro. 1 3 2
Inter 0 2 1
Adv.. 0 1 0

Table VI. Correlations between subject preparation in Physics
and Computer Science.

The results for subject preparation are shown in ta-
ble V. Most obviously, students were best prepared in
Physics, but only slightly less well prepared in Math.
While most students had some familiarity with Computer
Science, it is very clear that preparation in this subject
was weaker than the other two subjects. A table of stu-
dent numbers sorted by both Physics and Computer Sci-
ence preparation, displayed in table VI, shows that the
majority of students had an intermediate or better prepa-
ration in Physics and only introductory or no preparation
in computer science. A small minority, however, had an

Language Familiar Confident
C++ 10 8

Mathematica 9 4
Python 9 4
Java 6 3

MATLAB 5 3
FORTRAN 1 0

Table VII. Language familiarity.

intermediate or better preparation in in both subjects.
No students had taken advanced or graduate classes in
both subjects.

Languages with which students expressed familiarity or
confidence are shown in table VII. The list is somewhat
abbreviated: exactly one student each expressed famil-
iarity with Javascript, Lua, Objective-C, Ruby, Scheme,
SQL, Swift and Visual Basic. All respondents self-
assessed their own experience with programming as fa-
miliar or better. Interestingly, all students provided con-
crete examples of programming tasks they had completed
outside Introductory Computer Science classes, referring
to data analysis, simulations and programs written for
research purposes.

With this information, we decided to use both Math-
ematica and Python for the course as these were both
near the top of languages students were already famil-
iar with. Both of these languages are high level, easy to
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Preferred group size No. respondents
2 4
3 6
4 2
5 0

Table VIII. Preferred group size.

learn and provide rich visualization tools; Mathematica
also provides access to many useful algorithms. Because
Mathematica is better suited to short programs and has
the shallower learning curve, it was used in the first half
of the class; we then switched to Python for the Ising
model and subsequent projects, except for the project on
Laplace’s equation. Additionally, we allowed students to
use other languages if they wished, though this option
was only utilized for the final projects. By giving stu-
dents the experience of using more than one language,
we were able to explicitly compare and contrast their
strengths and weaknesses.

B. Logistics

In this section, we describe our approach to organi-
zational matters. The class met twice a week for 1 1

4
hour sessions. As noted above, the typical class struc-
ture involved short presentations by the instructor on the
project physics background, a numerical analysis topic,
or one of the competencies identified in the rubric. Nu-
merical Recipes[28] was recommended as a textbook, and
was used by students as a reference for standard algo-
rithms. Support was provided through portions of class
time dedicated to student group work during which the
instructor and TA were available to help troubleshoot
issues, as well as traditional office hours. A Piazza fo-
rum was also provided for the course which received 2-3
posts per week. Questions on the forum were typically
answered quickly, on average within half an hour. Stu-
dents tended to use the forum to share links to helpful
resources, organize groups for the final project, and pose
syntax questions.

A key issue in designing the class was the choice
of group size. Following generic advice, the first two
projects listed below were executed in teams of 4 or 5;
project 3 was performed in pairs; project 4 was performed
in teams of 4. At this point in the semester, we circu-
lated a mid-semester survey with one question that asked
students what they thought the optimal group size was
based on their experiences. We had 12 responses, which
are summarized in table VIII. Students were also asked
to explain the reasons for their selection, which revealed
two opposing effects: logistics, such as finding convenient
times to meet physically and synchronizing efforts favor
smaller group sizes while division of labor tends to favor
larger group sizes. However, students reported that in
larger groups, there tended to be people who didn’t con-
tribute significantly. We therefore concluded that groups

of 3 were preferable for this course and used this size for
the remainder of the semester with occasional groups of
4 where required to accommodate the whole class.

Another important matter is the issue of grading in
a team-based class. As described above in section III,
the instructors gradually scaffolded in the competencies
during the course and this was reflected in the grad-
ing. For example, the first project was graded pri-
marily on the quality of the code as well as success-
ful completion of the project. A key mechanism we es-
tablished to provide accountability was to require short
individual self-assessments to be completed after each
project online through Tufts’ Course Management Sys-
tem (Sakai). The questions asked are listed in appendix
III. These submissions allowed the instructors to under-
stand who had done what as well as where students felt
their own work stood in comparison to the grading cri-
teria. Project submissions were graded as a team, but
each student received an individual grade and feedback
form—collated and emailed automatically by a Mathe-
matica script—including their own self-assessment as a
component. The instructor occasionally modified grades
if there were sufficient evidence that an individual had
failed to contribute meaningfully to a project, though
this was used very sparingly.

An overview of the projects, as well as the project
descriptions themselves, is provided in supplementary
material[27]. A final project, performed in parallel with
the last third of the class, was intended as the summa-
tive assessment, allowing students to attempt a problem
of their own choosing and replacing the final exam of a
typical class. A list of project ideas was provided, largely
connecting with TJAs research in Condensed Matter
Physics, but included the option to formulate a prob-
lem that connected with student’s research field. Some
students chose to work individually, others in teams of up
to four. The class concluded with a mini research sym-
posium where each group gave a short five minute pre-
sentation showcasing their findings. Each student was
required to fill out a self-assessment different from the
other projects, asking instead how the project demon-
strated their professional practice in each competency.

C. Student work

We present two brief case studies of student work
that illustrate some of the ways groups creatively en-
gaged with the projects and used visualization to ana-
lyze the performance of their program. The first exam-
ple comes from project 1, the Double Pendulum. In this
project, each group implemented a different algorithm,
and the project was performed in two stages: first, stu-
dents used their assigned algorithm to solve the simple
harmonic oscillator equations and presented their find-
ings to the class, afterwards they extended their code to
solve the double pendulum. The numerical analysis con-
cepts of Error, Order and Stability were introduced in
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Figure 3. Examples of student-generated visualizations. (a)
Finding the dependence of the error in a Runge-Kutta inte-
gration of the simple pendulum; (b) a similar plot for the
double pendulum. (c) and (d) Comparing the performance of
two different algorithms for integrating the TISE.

class, but only the performance of the Euler algorithm
was discussed in detail. The group that used the Runge-
Kutta algorithm spontaneously conducted an analysis of
the discrepancy between their numerical solution and the
analytical solution as a function of time-step. They pre-
sented the graph shown in fig. 3(a) to the class after the
first part of the project, and used the FindFit function of
Mathematica to verify that the error was ∝ (∆t)

4 as ex-
pected. In the second part of the project, they created a
similar plot [fig. 3(b)], comparing the solution at a spec-

ified ∆t to that with much smaller ∆t = 0.0005. The
graph was annotated in their notebook by the comment,

“show max error and the convergence fit
for small dt, which is actually of order 5 in
this case. Note that the error is considerably
larger, even at small dts, than the more well-
behaved single pendulum, and also that the
chaos in the system is very evident at larger
dt”

indicating that this group had appreciated that the
Runge-Kutta algorithm was performing as expected in
some regime of ∆t, but failing in others, and that the
highly nonlinear double pendulum equations were more
challenging to solve.

The second example comes from project 6, the Time
Dependent Schrödinger Equation, in which students
solved a number of classic 1D problems. For their re-
port, most groups presented snapshots of the wavefunc-
tions at different times. One group, however, utilized
a kymograph representation to show both spatial and
temporal evolution. Two examples taken from their re-
port are shown in fig. 3(c) and (d), both showing the
propagation of a gaussian wavepacket as a function of
time. Periodic boundary conditions are enforced, so the
wavepacket exits from the right and re-enters from the
left during the simulation. The two figures represent dif-
ferent algorithms, fig. 3(c) is a non-unitary cell-centered
finite difference scheme; fig. 3(d) is a unitary scheme.
Paired with these figures was the text,

“By applying periodic boundary condi-
tions, we see the particle exit the frame on
the right and reappear on the left, as expected.
The results from the two different algorithms
are shown in Figure X. Notice how the first
algorithm gives undesirable results, such as
dissipation and a non-constant velocity of the
wavepacket. The second algorithm, however,
gives the expected results.”

showing that the students selected this representation to
make such comparisons straightforward. The wavepacket
in fig. 3(c) clearly changes velocity as the slope of the line
changes. The students went on to use this representation
to verify time-invariant behavior, i.e. eigenfunctions, as
well as reflection from a barrier and crystal.

V. ANALYSIS

In this section, we present feedback on the initial im-
plementation of the course from several sources. An in-
formal feedback session was held during class and stu-
dents completed the usual course evaluation required by
the university. Furthermore, we asked the experts in-
terviewed to develop the rubric in section II to regrade
student work to determine whether it aligned with their
conception of professional practice.
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A. Informal feedback

Students in the final class were asked to collabora-
tively construct ideas for things to do differently in future
classes. First among these were the course requirements,
which were kept deliberately minimal in the first itera-
tion. Students thought that the requirements should be
Modern Physics due to the presence of Quantum Me-
chanics projects, an intermediate math class such as Lin-
ear Algebra and the second Computer Science class, i.e.
Data Structures. We note that many, but not all, stu-
dents would have met these requirements given the back-
grounds presented in section IVA. A second important
issue was the level of course credit and class time. The
course was initially offered as a Special Topics class worth
1 course credit (equivalent to 3 Semester Credit Hours);
students felt that 1 1

3 or 1 1
2 might be more appropriate

given the workload, similar to a lab course, and that ad-
ditional class time e.g. through an associated recitation
would be valuable. When prompted by the instructor,
students preferred to increase the course credit rather
than delete projects. It was felt that an opportunity to
cross-examine other groups work would be helpful, first
by having students upload their work to a repository, and
second by incorporating an after project de-brief. Finally,
students requested more structure and scaffolding in the
initial projects, including internal deadlines and clearer
stages. Following the class, several students noted that
they had continued to work on projects initiated in the
class; we are aware of at least one project that resulted
in a journal publication.

B. Course evaluations

The course evaluation was completed by 15 students.
Tufts course evaluation questions use a 5 point scale
(Very poor—Less than satisfactory—Satisfactory—Very
good—Excellent). Students’ overall evaluation of the
course was a mean of 4.47 corresponding to Excellent and
compared to a departmental average for undergraduate
major courses of 4.1, weighted by enrollment. The mean
response to the question “How would you rate the success
of the course in accomplishing its objectives as stated on
the course syllabus” was 4.40 and “How would you rate
the use of out-of-class activities to promote your learning”
yielded a mean of 4.20, indicating that the project-based
approach was well received. Of mild concern is that stu-
dents’ responses to a question on the use of in-class time
received a lower mean score of 3.73, suggesting that some
reorganization of this aspect might be necessary.

Written response questions provided more detail to
these views. In response to the question, “In what
ways has this course made you think differently or more
deeply?”, most students commented on the subject mat-
ter, for example,

“this class gave me a glimpse of many dif-

ferent types of interesting physics problems.
The range of problems tackled during the class
gave me a sense of the range of applications
of computation in physics”

“The projects were felt ’real’. They were non-
trivial and felt like the kinds of problems a
real computational physicist might work on”

or the problem-solving aspects,

“It was really amazing to get to learn about
this approach to solving problems—how to ap-
proximate solutions, how to tell how accu-
rate the approximation is, and how to make
physics so much more accessible with comput-
ers”

“The class made me think more deeply about
computation. Instead of being content to
write code that gets something done, I think
about how the code is getting something done
and what methods will be best to reduce error,
runtime, etc. This is an extremely useful and
marketable class. I could have used this ages
ago.”

but also group work,

“Combining coding skills with communication
skills was a new and different task for me.”

“I am better at working in groups and I now
have an idea of what it is like to do computa-
tional physics as a profession.”

In response to “What aspects of this course worked best
to facilitate your learning?”, students universally men-
tioned the projects, which were “super interesting and
well thought out”. However, positive experiences with
group work was also a theme, in spite of the challenges,

“Group work was great. I say this in spite of
my complaints about certain group members.
Students were forced, in these projects, to go
out and discover how to make a certain ap-
proach work. This led to strong engagement
and lasting impression.”

“Different groups worked together in different
ways, and not all of them were great. But I
feel like I really know and like a ton of the
people in the class because we were together
through the hardest of times. I also feel like I
was able to learn a lot of different things from
everyone I worked with.”

The final question on how to improve the course provoked
a great deal of responses. The vast majority of these
repeated topics in the in-class discussion, including the
need for prerequisite courses, additional class time and
managing group size. Many of the remainder touched
on more delicate themes about group work. Challenges
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identified included that “there was a TON of variance in
ability” as well as others referring to differing levels of
effort put in by some students. One student felt that,

“[The instructor should] more clearly ad-
just grades of students who don’t participate
equally in groups. I have a sense that it was
2-3 students who were consistently bad group
members, but it was a definite problem. With-
out the grade incentive, I honestly think that
there’s a portion of students who will just not
do the work and coast along.”

Another student suggested additional structure for group
work,

“[People] need to be taught time management
if they are going to be working in groups.
In order to do this, I think that you should
have intermediate deadlines for the first few
projects (not just the first one), and you
should require that students turn in a work
plan (including internal deadlines) before they
do anything else for each project. Without
an authority endorsing this sort of behavior,
responsible group members are unlikely to be
able to hold other group members account-
able.”

Several students also mentioned the need for additional
supporting resources,

“I would make sure those of us with less expe-
rience have clear resources for information.
It seemed like I had no way of figuring out
what to do or where to turn sometimes.”
“[I’d like to see] Reading recommendations to
get necessary mathematical background”
“I would provide some more background infor-
mation for people who may not have exten-
sive math or programming background. The
Mathematica and python tutorials that were
posted were really helpful, so more online re-
sources or ’crash course’ type things for some
of the computational and mathematical meth-
ods we used would have been great to get ev-
eryone on the same page.”

Overall, feedback from students in both formal and in-
formal contexts suggests that the course was a success,
that this form of pedagogy is effective, if intensive, but
needs additional support to accommodate students with
different course backgrounds as well as more structure in
managing group dynamics.

C. Post course grading study

From the initial implementation of the course, we
wished to determine whether student work produced in

Submission A Submission B
1 2 3 4 5 1 2 3 4 5

Phys. Trans. F F F P P G G G G G
Planning — G G G F G G G G G

Implementation — F F G F G F G G G
Testing F — — G — G — — G G
Running F P — P F G G G G G

Visualization P F F — — G G G G G
Num. Ana. P — P P P F G G G G
Phy. Ana. P P P P — G G G G G

Table IX. Comparison of expert grading of two projects.

the class satisfied the views on professional practice held
by the experts whom we interviewed to create the rubric.
Moreover, we wished to establish whether there was evi-
dence that these were acquired during the class itself.

To test inter-grader consistency, we selected two sub-
missions from project 5 that the we felt displayed a large
difference in quality, receiving a C grade and an A grade
respectively. We asked the experts to grade these two
projects, for each competency assigning a label from the
categorizations Good—Fair—Poor as well as Insufficient
Evidence. The results are shown in table IX. Submis-
sions A and B were clearly distinguished from one an-
other in quality by the graders, but the degree of con-
sistency is different between the two. To find out why,
we held a panel with four of the experts in attendance
and invited them to discuss their rationale where there
seemed to be discrepancies. In discussion, it seemed
that most of the difference between graders could be at-
tributed to whether or not they looked at the code to
make their distinction or just looked at the report. For
example, grader 4 felt that the quality of the implemen-
tation for submission A was good, having looked at the
code and noted extensive commenting. The other graders
had given more weight to the quality of the report. The
experts all agreed that submission B represented work
of a high quality. In the panel, we asked all the graders
whether they felt that submission B accorded with their
own vision of expert practice and they answered affir-
matively. We therefore established that at least some
students displayed evidence of expert practice as articu-
lated by our rubric, and determined additional guidance
necessary to promote inter-grader consistency.

To track the work longitudinally, we amended our
grading instructions to require examination of the code
and asked the graders to grade other projects from the
course. Project 3 involving data fitting was not graded
because it was substantially shorter and more prescrip-
tive than the other projects. The projects were stripped
of information that identified their ordering, and ran-
domly assigned to different graders; each submission was
graded by a single grader, and each competency was
graded on the same Good—Fair—Poor scale above. In
total, 24 submissions from possible total of 49 were re-
graded.

From these, a mean grade was calculated for each
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Figure 4. Post-course grading study. Project submissions
were regraded after the class by the expert participants

project that is displayed in the visualization in fig. 4.
This is intended to provide a snapshot of how well stu-
dents acquired the competencies during the class. Some
trends are immediately clear: happily, it appears that
after the initial project, the quality of work rapidly
improved, and continued to improve up to the last
class project (Laplace’s equation). The very swift im-
provement after the first project suggests that the stu-
dents already possessed relevant abilities—whatever they
were—to do this kind of work, but needed to find out
how to apply them. It is possible that the presence of
the rubric helped this.

There are differences between the skills: some such
as Planning, Implementation and Running seem to have
been picked up without trouble. Visualization improved
substantially later in the class. Two skills, however, Test-
ing and Numerical Analysis seem to have presented more
difficulty. It is important to be careful in interpreting
this: it is not necessarily the case that students failed
to test their code adequately, though this may be true,
but rather that the evidence of testing was insufficiently
detailed to the graders. Physical transcription and Phys-
ical analysis were also somewhat inconsistent, suggesting
that the more abstract competencies are more challeng-
ing for students to acquire. In future iterations of the
class, additional scaffolding and emphasis should be in-
troduced to address these competencies. It is also clear
that the final projects were substantially weaker, in the
eyes of the graders, than most of the class projects. In
part, this is because the write-ups for these projects were

kept very short; it is also inevitable that formulating and
executing a project is a much more complex task than
solving a prescribed problem. While the instructors were
very pleased with the results of the final projects, it ap-
pears that in future classes additional time, support and
reporting requirements should be introduced to improve
the final projects.

VI. CONCLUSION

We present a project-based Computational Physics
Course that was designed around expert practice ob-
tained from interviewing faculty and distilled into a
rubric that summarizes identifiable features of this prac-
tice. A successful initial implementation of the course,
together with extensive post course analysis, was also
presented as well as matters to consider in future itera-
tions of the course. By having the expert interviewees
grade student work produced in the class, it is clear they
found evidence of excellent practices that were acquired
by students in the class. It is furthermore clear that the
rubric can be used as a tool to separate a strong submis-
sion from a weak one.

Our work builds upon previous studies of Comput-
ing in Physics Undergraduate Education and proposed
course structures by providing an concise version of what
constitutes expert practice in this discipline, a tool to
measure it and a reference implementation. Due in part
to the small size of this study, there are remain numer-
ous avenues for further investigation. For instance, a key
limitation is that expert practices were self reported and
not directly observed. Even so, our interviews complicate
simplistic models of expert problem solving originally for-
mulated for introductory classes. At the very least, such
models may simply be inapplicable to complex research-
oriented problems such as those attempted by students in
this class. There is a clear need for more realistic models,
of which that presented in fig. 2 is likely to prove a crude
initial sketch. Of course, a scaled-up multi-class multi-
university study on project-based approaches to Com-
putational Physics is likely to prove deeply informative,
particularly since similar techniques are now being tried
in introductory classes. Given the central importance of
group dynamics to this strategy, which we have shown
to be both challenging and rewarding, micro-level ap-
proaches such as video observation and interviews with
students might help untease how students participate in
group work in this context. Our work also provides a
valuable example of backwards course design that may
be applicable in physics to domains other than computa-
tion, such as laboratories or graduate classes focussed on
preparing students for research.

While our study has shown that students taking a sin-
gle course on Computational Physics can acquire expert
practice, the broader question of the role of Computation
in Physics Education remains open. Is it best to have a
small number of courses such as the one presented that fo-
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cus primarily on Computation, is it better to intersperse
Computation into many classes, or is a mixed approach
needed? Identifying strategies that produce graduates
and PhD students well prepared to perform computa-
tional work that meets the needs of future research, in-
dustry and other careers is surely of considerable benefit
to the community of Physicists.
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I. APPENDIX: EXPERT INTERVIEW
QUESTIONS

The following sequence of questions was asked in the
expert interviews.

1. Can you think of a problem in your research area
that might be suitable for an undergraduate com-
putational physics course?

2. Could you explain the physics of the problem?

3. What are the possible computational approaches to
solve this problem?

4. What are the advantages and disadvantages of
these approaches?

5. Can you tell me what you see as the issues in-
volved in transforming a physics problem into an
algorithm or set of equations to solve?

6. Thinking about the problem from earlier, how
would you go about planning a computer program
to solve this problem?

7. Could you sketch a flowchart for this program?

8. I’m going to show you a page of code. Tell me what
you like about the programming, and what things
would you change?

9. What do you think constitutes good programming?

10. What sort of visualization strategies do you think
are useful? Which do you use and what challenges
do you come across?

11. What sort of visualization might you use for the
example problem?

12. Using numerical analysis strategies, for example
thinking about error, order, and stability, how
would you assess the numerical performance of your
algorithm?

13. More generally, what types of numerical analysis
do you use to analyze the algorithms you employ
in your work?

14. How would you use the results of your hypotheti-
cal program to perform a physical analysis of the
system you are modeling?

15. What else might you consider while trying to come
to physical conclusions from a set of computational
results?

II. APPENDIX: STUDENT BACKGROUND
SURVEY QUESTIONS

This short survey was circulated before the course.

1. What Physics Courses have you taken?

2. What Computer Science or Applied/Numerical
Math courses have you taken?

3. What Computer Languages have you used? Which
do you feel confident in?

4. Describe your overall experience and familiarity
with programming. Feel free to cite projects you’ve
undertaken.

III. APPENDIX: INDIVIDUAL SELF
ASSESSMENTS

Self assessments were required after each project.

1. Describe your contribution to the project. Identify
things that you yourself did.

2. Overall, what grade would you give to your own
contribution to the project? (A—Mastery. I think
I did this to a professional level; B—Solid under-
standing. I got this, though there may be still resid-
ual mistakes; C—Progress. I’m still working on
learning this.)

3. How well did your team achieve the goals of the
project? Explain briefly each member’s contribu-
tion. Identify any challenges your team faced and
how you overcame them.

4. Overall, what grade to your team’s project submis-
sion as a whole? (A—Mastery. I think I did this
to a professional level; B—Solid understanding. I
got this, though there may be still residual mistakes;
C—Progress. I’m still working on learning this.)
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5. Did your team do anything over and above that
required in the project description?

6. If you have other comments on your group’s
project, please write them here.
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