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Abstract

Nusselt numbers that are relevant, but not limited, to thermal management of electron-

ics are computed in this thesis. The �rst two parts of the thesis compute Nusselt numbers for

liquid �ow between parallel plates that are textured with ridges oriented parallel to the �ow.

The con�gurations analyzed are both plates textured, and one plate textured as such and

the other one smooth and adiabatic. The �ow is laminar and the liquid is in the Cassie state

on the textured surface(s). The menisci are �at and adiabatic, and the ridges are isothermal.

First, axial conduction is neglected and the three-dimensional developing temperature �eld

is computed assuming a hydrodynamically developed �ow, i.e., the Graetz-Nusselt problem

is solved. Then, the assumption of negligible axial conduction is relaxed, i.e., the Extended

Graetz-Nusselt problem is solved. E�ects of viscous dissipation and (uniform) volumetric

heat generation are also considered. The last two parts of the thesis are relevant to con-

jugate forced-convection heat transfer through longitudinal-�n heat sinks. The third part

computes and tabulates conjugate Nusselt numbers for such heat sinks. Importantly, the

analysis accounts for axial conduction in the coolant and the �n. The �ow is laminar, and

simultaneously-developing. The heat sink has an adiabatic shroud and its base is isothermal.

A conjugate boundary condition applies at the �n-coolant interface to impose continuity of

the temperature �eld and heat �ux there. In the last part of the thesis, an algorithm is pre-

sented to simultaneously optimize the geometry of an array of such heat sinks utilizing the

conjugate Nusselt number tabulations. The optimization algorithm models heat transfer in

a circuit pack using the Flow Network Modeling method. The resulting system of nonlinear

algebraic equations constitutes the implicit constraints of the optimization problem. The

objective function and the explicit constraints of the optimization problem are user de�ned

and arbitrary. The optimization problem is iteratively solved using the Barrier Function

method in conjunction with the Trust Region method.
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Chapter 1

Introduction

The thesis computes Nusselt numbers that are relevant but not limited to thermal

management of electronics. In Parts II and III, the Nusselt numbers are for �ows through

diabatic microchannels when the liquid is in the Cassie State. In Parts IV and V, the

Nusselt numbers are conjugate ones relevant to longitudinal-�n heat sinks. Although the

entire thesis focuses on Nusselt numbers, Parts II and III are not otherwise related to Parts

IV and V. The rest of this Introduction provides more high-level context about the Parts

of the thesis. We further note that each Part of the thesis corresponds to a published or

submitted paper. Speci�cally, the reference for Part II is [3] (published), that for Part III

is [4] (published), that for Part IV is [2] (submitted) and that for Part V is [5] (submitted).

Parts II and III are relevant to direct liquid cooling of electronics and compute Nus-

selt numbers for liquid �ow between parallel plates that are textured with ridges oriented

parallel to the �ow. The con�gurations analyzed are both plates textured, and one plate

textured as such and the other one smooth and adiabatic. The �ow is assumed to be laminar

with constant thermophysical properties. The liquid is assumed to be in the Cassie state on

the textured surface(s), to which a mixed boundary condition of no-slip on the ridges and

no-shear along the menisci applies. The menisci are assumed to be adiabatic too and the

ridges isothermal. In Part II axial conduction is neglected and the analysis solves for the

three-dimensional developing temperature pro�le assuming a hydrodynamically developed

�ow, i.e., it solves the Graetz-Nusselt problem. The dimensionless independent variables

are the solid fraction, the dimensionless distance between opposite plates, the dimensionless

transverse coordinate along the ridge and the dimensionless streamwise coordinate. The

hydrodynamic problem is numerically solved using the Finite Element Method. The ther-
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mal problem is reduced using the method of separation of variables to a two-dimensional

linear eigenvalue problem in the transverse coordinates which is numerically solved using

the Finite Element Method. Expressions are derived for the local and the fully developed

Nusselt number along the ridge and that averaged over the composite interface in terms of

the eigenvalues and eigenfunctions. Nusselt numbers averaged over the period and length

of the domain are also provided. In Part III the assumption of negligible axial conduction

is relaxed, i.e., the analysis considers the corresponding Extended Graetz-Nusselt problem.

E�ects of viscous dissipation and (uniform) volumetric heat generation are also considered.

The additional independent variables in this case are the Péclet and Brinkman numbers,

and a dimensionless volumetric heat generation rate. The homogeneous part of the thermal

problem is reduced using the method of separation of variables to a nonlinear eigenvalue

problem in the transverse coordinates which is numerically solved using the Finite Element

Method. Expressions are derived for the local and the fully developed Nusselt number

along the ridge and that averaged over the composite interface in terms of the eigenvalues,

eigenfunctions, Brinkman number, and dimensionless volumetric heat generation rate. Esti-

mates are provided too for the streamwise location where viscous dissipation e�ects become

important.

Insofar as to the contribution of Part III to the literature, which reduces to the less

general one of Part II when axial conduction and viscous dissipation e�ects are ignored, some

context is provided here. First, albeit not for simultaneously-developing �ow, Parts II and

III are the only published work for this microchannel con�guration where the temperature

�eld is developing rather than developed. The same holds for capturing dissipation e�ects

in the liquid in Part III. However, other studies, notably those by Kirk et al. [6] and Game

et al. [7], have captured meniscus curvature e�ects in the case of hydrodynamically and

thermally fully-developed �ow and for a constant heat �ux rather than constant temperature

boundary condition along the ridges. We note that neither of these boundary conditions is

ideal in practice where the heat is input into the solid substrate and a conjugate heat transfer

problem need be solved. However and importantly, the analyses in Parts II and III have fewer

assumptions invoked than their predecessors. It is also noted that, although the literature

review Sections of Parts II and III is not in the vein of a critical review, a more detailed

literature review of diabatic �ows of liquid in the Cassie state through microchannels is given

by Game et al. [7]. Additional e�ects such as of variable meniscus curvature, temperature-

dependent surface tension and thus of thermocapillary stress inducing a transverse velocity

3



�eld, phase change (evaporation and condensation) along menisci, convection in the sub-

phase, etc., have been treated to a limited extent as mentioned here and by Game et al. [7].

However, it is emphasized that the full, three-dimensional convective transport problem has

yet to be formulated and resolved, and the present work is the only published study where

the domain is �nite in the streamwise direction rather than restricted to a plane. Moreover,

every study to date treats certain e�ects in isolation rather than the full problem. Thus, Part

III of this thesis should be viewed as advancing the state of understanding of the diabatic

�ows of interests, but, there remains much work to be done. This is even more important

in the context of experiments than for models, as there is essentially no experimental data

to compare the results here or those of others to at present.

Regarding engineering applications of the Nusselt numbers in Parts II and III, direct

liquid cooling of microelectronics is perhaps the most obvious one. In such con�gurations

liquid is pumped through a semiconductor and the caloric rather than the convective re-

sistance is often dominant. As such, lubrication provided by superhydrophobic surfaces

is of interest as discussed by Lam et al. [8]. However, the coolant that is best suited to

such uses on these surfaces is a low temperature liquid metal, e.g., Galinstan, rather than

water as the loss of surface area for heat transfer in a poor conductor like water is not

likely to be viable [8]. Importantly, such liquid metals have essentially no vapor pressure

at temperatures of interest and thus phase change along menisci is negligible as assumed

here. Conversely, meniscus curvature is important and it will vary substantially along the

streamwise direction of the �ow, and thermocapillary stress may be important as well, but

temperature-dependent surface tension measurements of such liquids are limited. For liquids

like water, or biological �uids, the use of superhydrophobic surfaces in such microchannels

is probably more realistic when the liquid needs to be insulated from its surroundings and

the pumping power reduced, rather than being used as a coolant.

Part IV and V are relevant to heat transfer through longitudinal �n heat sinks. Part

IV computes conjugate Nusselt numbers for such heat sinks. Importantly, the analysis ac-

counts for axial conduction in the coolant and the �n. The �ow is laminar, simultaneously-

developing, with constant thermophysical properties. A no-slip boundary condition ap-

plies at the solid-coolant interfaces. The heat sink has an adiabatic shroud and its base is

isothermal. A conjugate boundary condition applies at the �n-coolant interface to impose

continuity of the temperature �eld and the heat �ux. At the outlet of the heat sink a uni-

form pressure and zero-temperature-normal-gradient applies. The independent variables are

4



the dimensionless �n thickness, spacing and length, the Reynolds number of the �ow, the

Prandtl number of the coolant, and the coolant to �n thermal conductivity ratio. The conju-

gate heat transfer problem is solved using the Finite Volume Method (CFD) over a relevant

range of values of the independent variables relevant to thermal management of electronics,

and the corresponding computed conjugate Nusselt numbers are tabulated. Part V develops

an algorithm to simultaneously optimize the geometry of an array of heat sinks (�n height,

spacing, etc.) found in, e.g., a blade server, utilizing such tabulations for the conjugate Nus-

selt number. The optimization algorithm models heat transfer in a circuit pack using the

Flow Network Modeling method where a circuit pack is discretized into multiple sub-regions

each of which is associated with a �ow and thermal resistance. The �ow and thermal resis-

tances for the heat sinks are evaluated interpolating from the CFD-precomputed results for

the Poiseuille and conjugate Nusselt numbers. The resulting system of nonlinear algebraic

equations constitutes the implicit constraints of the optimization problem. The objective

function and the explicit constraints of the optimization problem are user de�ned and can be

arbitrary. The optimization problem is iteratively solved using the Barrier Function method

in conjunction with the Trust Region method.

The practical utility of Parts IV and V of the thesis is rather signi�cant. Thermal en-

gineers that design blade servers and telecommunication circuit packs for data and telecom-

munication centers, respectively, should bene�t from this technology. At present, there is

no optimization algorithm that allows them to de�ne an objective function, e.g., have all of

the components in a circuit pack operate the same number of degrees centigrade below their

maximum operating temperature to maximize reliability, and a set of constraints, e.g., on

�n height to thickness ratio for a low-cost extrusion process, and based on them to compute

the optimal heat sink geometry. Currently, this is possible by using CFD in a brute-force

approach for one of many heat sinks in a circuit pack, but not for an array of them in

the context of simultaneous optimization of each heat sink. Once the optimal geometry is

estimated for each heat sink using the approach in this work, a detailed CFD simulation

is complimentary as it will give the �ne details of the velocity and temperature �elds and

slightly more accurate results based on the cases examined thus far.

The Parts of the thesis follow next. It is noted that the Nomenclature for each Part is

given at its end.

5



Part II

Solution of the Graetz-Nusselt Problem

for Liquid Flow over Isothermal Parallel

Ridge

6



Chapter 2

Introduction

Superhydrophobic surfaces, i.e., those with hydrophobic micro- and/or nanoscale pro-

trusions, are of interest in the context of liquid-�ow through microchannels, especially in

direct liquid cooling applications as a means to reduce �ow and thus caloric resistance [8].

When criteria are met [9, 8] the solid-liquid interfaces are con�ned to the tips of the struc-

tures, forming a composite interface along with the liquid-gas interfaces (menisci), as per

Fig. 2.1, and the liquid is said to be in the unwetted or Cassie state[10, 11]. Then, the

solid-liquid interfaces are subjected to the no-slip [12, 13] boundary condition whereas the

menisci are subjected to a low-shear boundary condition. Thus, a lubrication e�ect is pro-

vided which reduces caloric resistance. However, the reduction in the solid-liquid interface

area reduces the Nusselt number (Nu) and thus increases the convective component of ther-

mal resistance. A net reduction of the total, i.e., caloric plus convective, thermal resistance

can be achieved with proper sizing of the structures [8] and it requires knowledge of Nusselt

numbers as a function of the geometry of the channel and the structures. The surfaces can

be textured with a variety of periodic structures such as pillars, transverse ridges, or parallel

ridges relative to the �ow direction [9]. The latter con�guration for the ridges is examined

here and it is the most favorable from a heat transfer perspective [8, 14].
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Figure 2.1: Liquid in the Cassie state and the composite interface.
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The hydrodynamic e�ects of structured surfaces with parallel ridges have been studied

for �at and curved menisci[15, 16, 17, 18, 19]. However, there is a relatively limited body

of work on heat transfer e�ects. Enright et al. [14] derived an expression for the Nusselt

number for fully developed �ow through a microchannel with iso�ux structured surfaces as

a function of the (apparent) hydrodynamic and thermal slip lengths. Moreover, Enright et

al. [14] developed analytical expressions for slip lengths for structured surfaces with parallel

or transverse ridges or pillar arrays assuming �at and adiabatic menisci. Ng and Wang

[20] derived semi-analytical expressions for the thermal slip length for isothermal parallel

ridges while accounting for conduction through the gas phase. Lam et al. [21] derived

expressions for the thermal slip length for iso�ux and isothermal parallel ridges accounting

for small meniscus curvature. Hodes et al. [22] captured the e�ects of evaporation and

condensation along menisci on the thermal slip length for iso�ux ridges. Lam et al. [23]

developed expressions for the Nusselt number for Couette �ow as a function of the slip

lengths for various boundary conditions. Also, Lam et al. [23] discussed when Nu results

from the molecular slip literature can be used to capture the e�ects of apparent slip. Maynes

et al. [24] numerically investigated the thermal transport in microchannels with isothermal

transverse ridges and �at menisci taking into account the heat transfer through the gas

and/or vapor in the cavities. Maynes et al. [25] and Maynes & Crockett [26] developed

expressions for the Nusselt number and the thermal slip length for microchannels with

iso�ux transverse and parallel ridges, respectively, assuming �at menisci and using the

Navier slip approximation for the velocity pro�le. Kirk et al. [6] also developed expressions

for the Nusselt number for iso�ux parallel ridges using the fully-resolved velocity �eld in

the thermal energy equation. Furthermore, Kirk et al. [6] accounted for small meniscus

curvature using a boundary perturbation method.

The present work develops semi-analytical expressions for the Nusselt number for the

case of isothermal parallel ridges for hydrodynamically developed and thermally developing

�ow with negligible axial conduction, i.e., for the Graetz-Nusselt problem1 [28, 29, 30], and

it is emphasized that we do not assume di�usive heat transfer near the composite interface.

We consider three di�erent con�gurations for the parallel ridges: 1) one plate textured

and the other one smooth, as per Fig. 2.2; 2) both plates textured and the ridges aligned in

the transverse direction (see Fig. 2.3); 3) both plates textured and the ridges staggered in

1We use the term Graetz-Nusselt problem rather than Graetz problem because they refer to �ow between
parallel plates and through circular duct, respectively, as per the distinction made in Shah and London [27].
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Figure 2.2: Schematic of the domain when one plate is textured and the other one is smooth.

2�

2�

�

�

�

�

������

���	

�

Figure 2.3: Schematic of the domain when both plates are textured and the ridges are
aligned.

the transverse direction by half a pitch (see Fig. 2.4). The solution approach is similar in all

three con�gurations. Therefore, it su�ces to present here the detailed analyses for the �rst

one and the relevant parts of the analysis for the other two con�gurations in the Appendix.

The domain (D) for the �rst con�guration is depicted in Fig. 2.2, where |x| ≤ d and

0 ≤ y ≤ H and where 2d is the pitch of the ridges and H is the distance between the parallel

plates. The hydraulic diameter of the domain (Dh) is 2H. The width of the meniscus is

2a. The curvature of the meniscus is neglected [21, 6] and the triple contact lines coincide

with the corners of the ridges at x = |a| and y = 0. The cavities may be �lled with inert

gas and/or vapor. Along the composite interface (y = 0), a no-shear boundary condition

is applied for |x| < a and a no-slip one is imposed for a < |x| < d. A no-slip boundary

condition is also imposed on the smooth upper plate. Symmetry boundary conditions apply

at the x = |d| boundaries. The �ow is pressure driven, steady, laminar, hydrodynamically

developed, and thermally developing with constant thermophysical properties and negligible

9
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Figure 2.4: Schematic of the domain when both plates are textured and the ridges are
staggered by half a pitch.

axial conduction and viscous dissipation. The ridges on the lower plate are isothermal,

whereas the upper plate and the meniscus are considered adiabatic. The temperature pro�le

in the liquid starts developing at z = 0 from an arbitrary (unless otherwise stated) two-

dimensional distribution Tin (x, y). E�ects due to Marangoni stresses [31, 32], evaporation

and condensation [22], and gas di�usion in the liquid phase are neglected. The independent

dimensionless variables are the solid fraction of the ridge (φ = (d− a) /d) and the aspect

ratio of the domain (H/d).
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Chapter 3

Analysis

3.1 Hydrodynamic Problem

The relevant form of the streamwise-momentum equation is

∂2w

∂x2
+
∂2w

∂y2
=

1

µ

dp

dz
(3.1)

where w is the streamwise velocity, dp/dz is the prescribed pressure gradient, and µ is

the dynamic viscosity. Denoting nondimensional variables with tildes, Eq. (3.1) and the

boundary conditions imposed to it are rendered dimensionless by de�ning

x̃ =
x

a
(3.2)

ỹ =
y

a
(3.3)

H̃ =
H

a
(3.4)

w̃ =
2µw

aH (−dp/dz)
(3.5)

Then, Eq. (3.1) becomes

∂2w̃

∂x̃2
+
∂2w̃

∂ỹ2
= − 2

H̃
(3.6)

subjected to
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∂w̃

∂ỹ
= 0 for |x̃| < 1, ỹ = 0 (3.7)

w̃ = 0 for 1 < |x̃| < d̃, ỹ = 0 (3.8)

w̃ = 0 for |x̃| < d̃, ỹ = H̃ (3.9)

∂w̃

∂x̃
= 0 for |x̃| = d̃, 0 < ỹ < H̃ (3.10)

where d̃ = d/a is the dimensionless (half) pitch of the ridges.

This hydrodynamic problem has been solved analytically [15] and semi-analytically

[16, 18]. However, no analytical solutions have been found for the problems in the Appendix.

Therefore, the velocity �eld is numerically determined here for all cases, which also facilitates

the numerical solution of the thermal energy equation in Section VI. The numerical results

were validated against the analytical solution [15] using the computed Poiseuille number

(fRe), where

Re =
ρwDh

µ
(3.11)

f = −dp

dz

2Dh

ρw2 (3.12)

w =
1

2dH

∫ H

0

∫ d

−d
wdxdy (3.13)

are the Reynolds number based on the hydraulic diameter, the friction factor and the mean

velocity of the �ow, respectively, and ρ is the density. From Eqs. (3.5) and (3.11)-(3.13) it

follows that the Poiseuille number is given by

(3.14)fRe = 16
H̃

w̃

where

w̃ =
1

2d̃H̃

∫ H̃

0

∫ d̃

−d̃
w̃dx̃dỹ (3.15)

is the dimensionless mean velocity of the �ow.

3.2 Thermal Problem

The relevant form of the dimensional thermal energy equation is

12



w
∂T

∂z
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
(3.16)

where T and α are the temperature and the thermal di�usivity of the liquid, respectively.

De�ning the dimensionless temperature T̃ and the dimensionless streamwise coordinate z̃

as

T̃ =
T − Tsl

Tref − Tsl
(3.17)

z̃ =
2αµz

a3H (−dp/dz)
(3.18)

where Tsl is the constant temperature of the ridge and Tref is a reference temperature for

the problem, Eq. (3.16) becomes

w̃
∂T̃

∂z̃
=

∂2T̃

∂x̃2
+
∂2T̃

∂ỹ2
(3.19)

It is subject to the following boundary conditions

∂T̃

∂ỹ
= 0 for |x̃| < 1, ỹ = 0 (3.20)

T̃ = 0 for 1 < |x̃| < d̃, ỹ = 0 (3.21)

∂T̃

∂ỹ
= 0 for |x̃| < d̃, ỹ = H̃ (3.22)

∂T̃

∂x̃
= 0 for |x̃| = d̃, 0 < ỹ < H̃ (3.23)

T̃ = T̃in at z̃ = 0 (3.24)

where T̃in (x̃, ỹ) is the prescribed dimensionless temperature pro�le at the inlet of the domain

(z̃ = 0).

Seeking separable solutions of the form T̃ = ψ(x̃, ỹ)g(z̃), which separate the streamwise

coordinate z̃ from the transverse coordinates x̃ and ỹ, it can be shown that g(z̃) = exp(-λz̃)

and ψ(x̃, ỹ) satis�es

(3.25)∇2ψ = −λw̃ψ

with λ real and positive1. Note that ψ(x̃, ỹ) cannot be separated further into a product of

a function of x̃ and one of ỹ since the velocity �eld, w̃ = w̃(x̃, ỹ), is not separable in such a

way. Equation (3.25) satis�es the boundary conditions
1To show that λ is real and positive we multiply Eq. (3.25) by the complex conjugate of ψ, integrate

over the domain, and use the Divergence Theorem.
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∂ψ

∂ỹ
= 0 for |x̃| < 1, ỹ = 0 (3.26)

ψ = 0 for 1 < |x̃| < d̃, ỹ = 0 (3.27)

∂ψ

∂ỹ
= 0 for |x̃| < d̃, ỹ = H̃ (3.28)

∂ψ

∂x̃
= 0 for |x̃| = d̃, 0 < ỹ < H̃ (3.29)

and so constitutes a two-dimensional Sturm-Liouville eigenvalue problem for λ and the

corresponding eigenfunction ψ, with weight function w̃(x̃, ỹ). Assuming that the eigenvalues

are discrete and there are in�nitely many, let λi and ψi denote the i-th eigenvalue and

eigenfunction, respectively, ordered such that 0 < λ1 < λ2 < · · · < λi < · · · → ∞. The

eigenfunctions are orthogonal with respect to the inner product de�ned by

(3.30)〈F1, F2〉 =

∫ H̃

0

∫ d̃

−d̃
w̃F1F2dx̃dỹ

that is,

(3.31)〈ψi, ψj〉 = 0 for i 6= j

Moreover, the eigenfunctions are unique up to a multiplication by a constant. Thus, for the

rest of the present analysis we normalize ψi such that

(3.32)〈ψi, ψi〉 = 1

The eigenvalue problem is solved numerically. The calculation of ψi and λi is detailed in

Section VI, and for the rest of the present analysis they are assumed to be known.

We proceed by expressing the solution T̃ (x̃, ỹ, z̃) as a linear combination of the eigen-

functions,

(3.33)T̃ (x̃, ỹ,z̃) =

∞∑

i=1

ciψi (x̃, ỹ) exp (−λiz̃)

using the expansion coe�cients ci. The ci are determined by taking the inner product of

Eq. (3.33) with ψi at the inlet z̃ = 0, where T̃ (x̃, ỹ, 0) = T̃in (x̃, ỹ), giving

(3.34)ci =
〈
ψi, T̃in

〉

Substituting Eq. (3.34) into Eq. (3.33), the dimensionless temperature pro�le takes the form

(3.35)T̃ (x̃, ỹ, z̃) =

∞∑

i=1

〈
ψi, T̃in

〉
ψi (x̃, ỹ) exp (−λiz̃)
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Chapter 4

Nusselt Number

The local Nusselt number is de�ned as

(4.1)Nul =
hlDh

k

where hl is the local heat transfer coe�cient and k is the thermal conductivity of the liquid.

An energy balance at a point along the ridges yields

(4.2)−k ∂T
∂y

∣∣∣∣
y=0

= hl (Tsl − Tb)

where Tb is the bulk temperature of the liquid de�ned as

(4.3)Tb =
1

2dHw

∫ H

0

∫ d

−d
wTdxdy

Combining Eqs. (4.1)-(4.3), the Nusselt number can be written in terms of dimensionless

quantities as

Nul = 2
H̃

T̃b

∂T̃

∂ỹ

∣∣∣∣∣
ỹ=0

(4.4)

where T̃b is the dimensionless bulk temperature of the liquid de�ned as

(4.5)T̃b =
1

2d̃H̃w̃

〈
T̃ , 1

〉

Next, combining Eqs. (3.14), (3.33), (4.4) and (4.5) yields

Nul = 64
H̃3d̃

fRe

∞∑
i=1

〈
ψi, T̃in

〉
∂ψi

∂ỹ

∣∣∣
ỹ=0

exp (−λiz̃)
∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉 exp (−λiz̃)

(4.6)

15



The local Nusselt number for the limiting case of fully developed �ow (Nul,fd) follows

from the evaluation of Eq. (4.6) as z̃ → ∞. Given that the λi are real and 0 < λ1 < λ2 <

... < λi < ...→∞, upon dividing both the numerator and the denominator of Eq. (4.6) by

e−λ1z̃ and letting z̃ →∞, only the �rst term of each sum remains. It follows that

Nul,fd = 64
H̃3d̃

fRe

∂ψ1

∂ỹ

∣∣∣
ỹ=0

〈ψ1, 1〉
(4.7)

Nul,fd is a function only of the �rst eigenfunction and it is independent of the inlet temper-

ature pro�le. However, in the thermally developing region Nul is a function of T̃in.

The Nusselt number averaged over the composite interface is

(4.8)Nu =
1

2d

∫ d

−d
Nuldx

Substituting Eq. (4.6) into Eq. (4.8) and utilizing the symmetry of the eigenvalue prob-

lem with respect to the y axis and the boundary condition given by Eq. (3.26) yields

Nu = 64
H̃3

fRe

∞∑
i=1

〈
ψi, T̃in

〉 ∫ d̃
1

∂ψi

∂ỹ

∣∣∣
ỹ=0

dx̃ exp (−λiz̃)
∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉 exp (−λiz̃)

(4.9)

Next, we express the integral in the numerator of Eq. (4.9) as a function of the inner

product 〈ψi, 1〉. This is because it is more accurate to numerically evaluate 〈ψi, 1〉 than
∫ d̃

1
∂ψi/∂ỹ|ỹ=0 dx̃ as the latter requires numerical di�erentiation in order to evaluate the

derivative at the boundary. The steps are as follows. First, we rearrange Eq. (3.25) and

integrate it over the cross section of the domain to obtain

(4.10)
∫ H̃

0

∫ d̃

−d̃
− 1

λi
∇2ψidx̃dỹ = 〈ψi, 1〉

Then, applying the Divergence Theorem to the left-hand side of Eq. (4.10), we �nd that

(4.11)− 1

λi

∮

∂D

∇ψi · n̂dS̃ = 〈ψi, 1〉

where n̂ is the outward pointing unit normal vector on the boundary ∂D and S̃ is a di-

mensionless coordinate along ∂D. Then, imposing boundary conditions (3.26)-(3.29) we

obtain

(4.12)
∫ d̃

1

∂ψi
∂ỹ

∣∣∣∣
ỹ=0

dx̃ =
λi
2
〈ψi, 1〉

Inserting this result into Eq. (4.9) yields
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Nu = 32
H̃3

fRe

∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉λi exp (−λiz̃)

∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉 exp (−λiz̃)

(4.13)

The Nusselt number averaged over the composite interface for the limiting case of fully

developed �ow (Nufd) follows in the same manner as Eq. (4.7) and it is given by

Nufd = 32
H̃3λ1

fRe
(4.14)

Nufd is a function only of the �rst eigenvalue λ1 and it is independent of T̃in.

The Nusselt number averaged over the composite interface and the streamwise length

of the domain is de�ned as

(4.15)Nu =
1

z̃

∫ z̃

0

Nudz̃

Substituting Eq. (4.13) into Eq. (4.15), it follows that

Nu = 32
H̃3

fRe

1

z̃
ln




∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉

∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉 exp (−λiz̃)


 (4.16)

In the case of a uniform inlet temperature (UIT) at Tref , we have T̃in = 1. Then, the

foregoing expression reduces to

NuUIT = 32
H̃3

fRe

1

z̃
ln

(
1

T̃b

)
(4.17)

It is emphasized that Eqs (4.6), (4.13), (4.16) and (4.17) hold for all streamwise locations

z̃; however, to achieve a given accuracy, more terms are required in the evaluation of each

sum as z̃ is decreased. Moreover, expressions for the Nusselt number averaged only over the

width of the ridge rather than the composite interface follow by dividing Eqs. (4.13), (4.14),

(4.16) and (4.17) by the solid fraction.
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Chapter 5

Results

In this Section we present the results for the case at hand and some representative ones

for the cases in the Appendix for comparison. The additional results are presented in the

Appendix.

Figure 5.1 plots the fully developed Nusselt number averaged over the composite inter-

face, Nufd, versus the solid fraction φ for aspect ratios of H/d = 1, 1.5, 2, 4, 6, 10 and 100,

when the lower plate is textured with isothermal ridges and the upper one is smooth and adi-

abatic. The dashed curve corresponds to smooth plates with Nusselt number Nufd,s = 4.86.

The results obey the expected asymptotic behavior as φ→ 1, with Nufd → Nufd,s, irrespec-

tive of the aspect ratio. Additionally as φ→ 0, Nufd tends to zero because the available area

for heat transfer vanishes. Moreover, for a given φ (excluding the aforementioned limits) as

H/d → 0 and H/d → ∞, Nufd tends to zero and to Nufd,s, respectively. This is because

as H/d → 0 heat is mainly advected by the part of the �ow above the shear-free meniscus

as opposed to the relatively stagnant liquid above the ridges degrading the heat transfer.

In the other limit, as H/d → ∞ the di�erence between the temperature of the ridge and

the mean temperature of the composite interface becomes signi�cantly smaller than the

di�erence between the temperature of the ridge and the bulk temperature of the �ow.

Figure 5.2 plots the fully developed local Nusselt number, Nul,fd, versus the normalized

coordinate along the ridge (x̃− 1) /
(
d̃− 1

)
for H/d = 10 and φ = 0.01, 0.1 and 0.99. The

results show that Nul,fd increases with decreasing φ, indicating a local enhancement of heat

transfer. The same trend has been observed in previous studies [25] and it is due to the fact

that as φ → 0 the velocity of the liquid close to the ridge increases. Figure 5.3 plots the

fully developed Nusselt number averaged over the width of the ridge, Nufd,ridge, versus the
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Figure 5.1: Nufd vs. φ for selected H/d when one plate is textured with isothermal ridges
and the other one is smooth and adiabatic.
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Figure 5.2: Nul,fd vs. the normalized coordinate (x̃− 1) /
(
d̃− 1

)
along the ridge for H/d =

10 and selected values of φ when one plate is textured with isothermal ridges and the other
one is smooth and adiabatic.

solid fraction. In summary, the overall e�ect of the decrease in the available heat transfer

area and the local enhancement of heat transfer for φ < 1 is an increase in the convective

portion of the total thermal resistance that is completely captured in Fig. 5.1.

For the case of uniform inlet temperature (UIT), Figs 5.4 and 5.5 plot NuUIT and

NuUIT versus z∗ = z/(DhPe) = z̃/
(

4H̃2w̃
)
for φ = 0.01 and 0.1, respectively. We present

the results in the thermal entrance region as function of z∗ instead of z̃ to allow for direct

comparison of them with those for non-structured channels. The results were computed

using the �rst 29 eigenvalues1. The results exhibit the correct asymptotic behavior as

1If 28 eigenvalues are used instead the maximum discrepancies for the presented values of NuUIT and
NuUIT are less than 0.002% and 0.0003%, respectively, and if 25 eigenvalues are used instead the maximum
discrepancies are less than 0.09% and 0.02%, respectively.
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Figure 5.3: Nufd,ridge vs. φ for selected H/d when one plate is textured with isothermal
ridges and the other one is smooth and adiabatic.

10−2 10−1 100

z∗

0

2

4

6

8

10

N
u
U
IT

o
r
N
u
U
IT

Nufd,s = 4.86
NuUIT, H/d = 1

NuUIT, H/d = 1

NuUIT, H/d = 4

NuUIT, H/d = 4

NuUIT, H/d = 10

NuUIT, H/d = 10

Figure 5.4: NuUIT and NuUIT vs. z∗ for selected H/d when one plate is textured with
isothermal ridges and the other one is smooth and adiabatic for φ = 0.01.

z∗ → 0 and z∗ → ∞; in the former case both NuUIT and NuUIT increase monotonically

with decreasing z∗, and in the latter case they tend to Nufd. The �rst 10 eigenvalues and

the corresponding expansion coe�cients that were computed for H/d = 4 at φ = 0.01 and

0.1 are provided in Table 1.

Figures 5.6 and 5.7 compare the computed values of fRe and Nufd, respectively, for the

case when one plate is textured and the other one is smooth (solid curves), to the case in the

Appendix when both plates are textured and the ridges are aligned in the transverse direction

(dashed curves). In both cases one plate has isothermal ridges and the other one is adiabatic.

Although fRe is signi�cantly reduced if both plates are textured, especially as φ→ 0, Nufd

changes by only a small fraction due to texturing. More importantly, as per Fig. 5.7, Nufd

decreases if both plates are textured and heat is exchanged through the domain only through
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Figure 5.5: NuUIT and NuUIT vs. z∗ for selected H/d when one plate is textured with
isothermal ridges and the other one is smooth and adiabatic for φ = 0.1.

H/d = 4
φ = 0.01 φ = 0.1

λi ci λi ci
4.375E-02 3.441 6.578E-02 3.428
6.078E-01 4.248E-01 6.923E-01 6.707E-01
1.976E+00 1.309E-01 2.039E+00 2.504E-01
4.174E+00 4.645E-02 4.130E+00 9.351E-02
5.478E+00 5.006E-02 5.453E+00 5.008E-02
6.832E+00 3.990E-02 6.791E+00 2.538E-02
7.400E+00 4.909E-02 7.367E+00 7.305E-02
9.063E+00 5.237E-02 9.289E+00 8.425E-02
1.115E+01 7.095E-03 1.075E+01 7.194E-03
1.197E+01 4.493E-02 1.230E+01 8.377E-02

Table 5.1: First 10 eigenvalues and corresponding expansion coe�cients for H/d = 4 and
φ = 0.01 and 0.1 when one plate is textured with isothermal ridges, the other one is smooth
and adiabatic and T̃in = 1.

the isothermal ridges of one plate. This can be explained by comparing Figs. 5.9 and 5.8

that present the contour plots of the scaled dimensionless streamwise velocity w̃/w̃ for the

cases at hand for H/d = 4 and φ = 0.3. Indeed, when both plates are textured and the

ridges are aligned, as per Fig. 5.8, the �ow exhibits higher velocities closer to the center of

the domain, but lower velocities closer to the ridge. Thus, the convective thermal transport

is degraded. When one plate is smooth, however (see Fig. 5.9), the velocity in the vicinity

of the ridge is higher and so enhances heat transfer. This can be quanti�ed by considering

the ratio (R) of the average velocity of the �ow in an area close to the ridge, i.e., 0 ≤ x̃ ≤ d̃

and 0 ≤ ỹ ≤ H̃/2, over the mean velocity of the �ow

(5.1)R =
2
∫ H̃/2

0

∫ d̃
0
w̃dx̃dỹ

d̃H̃w̃
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Figure 5.6: fRe vs. φ for selected H/d when one plate is textured with isothermal ridges
and the other one is adiabatic and either smooth (t−s) or textured with aligned ridges (al).
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Figure 5.8: Contour plot of w̃/w̃ when one plate is textured with isothermal and the other
one with adiabatic ridges and the ridges are aligned (al) for H/d = 4 and φ = 0.3.
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Figure 5.9: Contour plot of w̃/w̃ when one plate is textured with isothermal ridges and the
other one is adiabatic and smooth (t− s) for H/d = 4 and φ = 0.3.

When both plates are textured and the ridges are aligned R is equal to 1 due to symmetry,

but, when one plate is smooth, R becomes 1.127 for the prescribed values of H/d and φ,

which indicates higher velocities close to the ridge. The same observations can be made

for the case when both plates are textured, but the ridges are staggered in the transverse

direction. The corresponding plots for fRe and Nufd and the contour plot of the scaled

dimensionless streamwise velocity are presented in the Appendix.

Finally, Fig. 5.10 compares the computed values of Nufd when both plates are textured

with isothermal aligned ridges against those calculated for the same con�guration but for

iso�ux ridges (Nufd,if) by Kirk et al. [6]. The results show that depending on the aspect

ratio H/d there is a range for φ where the fully developed Nusselt number average over the

composite interface for isothermal ridges is slightly higher than for iso�ux ridges despite the

fact that the fully developed Nusselt number for smooth isothermal plates is smaller than

for iso�ux plates.
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Chapter 6

Conclusions

We developed semi-analytical expressions for the Nusselt number for the case of hy-

drodynamically developed and thermally developing �ow between parallel plates that are

textured with ridges oriented parallel to the �ow. The ridges of one plate are isothermal

and the other plate can be smooth and adiabatic, or textured with adiabatic or isothermal

ridges. When both plates are textured, the ridges can be aligned or staggered by half a

pitch in the transverse direction. The menisci between the ridges were considered to be

�at and adiabatic. The solid-liquid interface and the menisci were subjected to no-slip and

no-shear boundary conditions, respectively. Using separation of variables, we expressed the

three-dimensional temperature �eld as an in�nite sum of the product of an exponentially

decaying function of the streamwise coordinate and a second eigenfunction depending on the

transverse coordinates. The latter eigenfunctions satisfy a two-dimensional Sturm-Liouville

problem from which the eigenvalues and eigenfunctions follow numerically.

The derived expressions for the local Nusselt number, the Nusselt number averaged

over the composite interface and the Nusselt number averaged over the composite interface

and the streamwise length of the domain, indicate that the Nusselt number is a function of

the dimensionless streamwise coordinate, the aspect ratio of the domain, the solid fraction

and the inlet temperature pro�le. Expressions were also derived for the fully developed local

Nusselt number and for the fully developed Nusselt number averaged over the composite

interface in terms of the �rst eigenfunction and of the �rst eigenvalue, respectively.

The results indicate that the Nusselt number decreases as the aspect ratio and/or the

solid fraction decrease. Moreover, it was observed that when one plate is adiabatic, the

con�guration where the adiabatic plate is smooth provides a higher Nusselt number than
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when it is textured. Finally, using the present analysis, the fully developed local Nusselt

number and the fully developed Nusselt number averaged over the composite interface, can

be computed in a small fraction of the time that is required by a general computational �uid

dynamics (CFD) solver. More importantly, the analysis provides semi-analytical expressions

to evaluate the Nusselt number averaged over the composite interface and, additionally, the

streamwise length of the domain at any location, quantities which are prohibitively expensive

to compute using a general CFD code.
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Nomenclature

Roman Symbols

a half meniscus width, m

ci expansion coe�cients

D Domain

d half ridge pitch, m

∂D boundary of the dimensionless domain

Dh Hydraulic diameter; 2H

dp/dz prescribed pressure gradient, Pa/m

d̃ dimensionless half ridge pitch; d/a

f friction factor; 2Dh (−dp/dz) /
(
ρw2

)

fRe Poiseuille number

H distance between parallel plates, m

hl local heat transfer coe�cient,W/(m2 K)

H̃ dimensionless distance between parallel plates; H/a

k thermal conductivity of liquid, W/(mK)

n̂ outward pointing unit normal vector on boundaries
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Nu Nusselt number averaged over the composite interface

Nul local Nusselt number, hlDh/k

Nu Nusselt number averaged over the composite interface and the streamwise length of

the domain

Pe Péclet number; wDh/α

R average velocity ratio close to the ridge;
(
2
∫ H̃/2
0

∫ d̃
0
w̃dx̃dỹ

)
/
(
d̃H̃w̃

)

Re Reynolds number; ρwDh/µ

S̃ dimensionless coordinate along ∂D

T temperature, ◦C

Tin inlet temperature, ◦C

Tref reference temperature, ◦C

Tsl ridge temperature, ◦C

T̃ dimensionless temperature; (T − Tsl) /(Tin − Tsl)

T̃in dimensionless inlet temperature

Tb bulk temperature

T̃b dimensionless bulk temperature

w streamwise velocity, m/s

w mean velocity

w mean velocity

w̃ dimensionless velocity; 2µw/[aH (−dp/dz)]

w̃ dimensionless mean velocity

x lateral coordinate, m

x̃ dimensionless lateral coordinate; x/a
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y vertical coordinate, m

ỹ dimensionless vertical coordinate; y/a

z streamwise coordinate, m

z∗ dimensionless streamwise coordinate for the thermal entrance region; z/(DhPe)

z̃ dimensionless streamwise coordinate;

2αµz/
[
a3H (−dp/dz)

]

Greek Symbols

α thermal di�usivity, m2/s

λi i-th eigenvalue

µ dynamic viscosity, Pa · s

φ solid fraction; (d− a)/d

ψi i-th eigenfunction

ρ density, kg/m3

Subscripts

al textured plates with aligned ridges

fd fully developed �ow

if iso�ux ridges

ridge indicates quantity based on the width of the ridge

t− s one textured and one smooth plate

UIT uniform inlet temperature
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Part III

Extended Graetz-Nusselt Problem for

Liquid Flow in Cassie State Over

Isothermal Parallel Ridges
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Chapter 8

Introduction

A sessile droplet on a structured surface characterized by small periodic length scales

compared to the capillary length may be stable in the Cassie state [10, 11] where solid�liquid

contact is exclusively at the tips of the structures. A liquid �owing through a microchannel

with structured surfaces may be as well and the necessary criteria are provided by Lam et

al. [8]. Then, a mixed boundary condition of no-slip [12, 13] and low-shear applies along the

solid-liquid and the liquid-gas1 interfaces (menisci), respectively. The low-shear boundary

condition provides a lubrication e�ect and thus reduces both the hydrodynamic resistance

and the caloric part of the thermal resistance. However, the reduction in the solid-liquid

interfacial area reduces the available area for heat transfer and thus increases the convective

part of the thermal resistance. A net reduction of the total, i.e., caloric plus convective,

thermal resistance can be achieved with proper sizing of the structures [8] and it requires

the knowledge of the Nusselt number (Nu). Such Nusselt numbers are especially relevant to

direct liquid cooling applications [8] as per Fig. 8.1 that depicts a structured microchannel

etched into the upper portion of a microprocessor die.

The channel surfaces can be textured with a variety of periodic structures such as pil-

lars, transverse ridges, or parallel ridges [9]. The latter con�guration is examined here since

it is more favorable from a heat transfer perspective [8, 14]. The hydrodynamic e�ects of

structured surfaces with parallel ridges in parallel plate channels have been studied for �at

and curved menisci[15, 16, 33, 18, 19, 17, 34, 35]. In terms of the heat transfer e�ects, Enright

et al. [14] derived an expression for the Nusselt number for fully-developed �ow through a

microchannel with iso�ux structured surfaces as a function of the apparent hydrodynamic

1In general the cavities beneath the menisci are �lled with inert gas and vapor on account of the vapor
pressure of the liquid phase and for brevity we refer to this mixture as �gas�.
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Figure 8.1: Depiction of a structured microchannel etched into the upper portion of a
microprocessor die.

and thermal slip lengths. Their analysis applies to both symmetrically and asymmetrically

heated channels with large plate spacing to structure pitch ratio. Enright et al. [14] too de-

veloped analytical expressions for apparent slip lengths for structured surfaces with parallel

or transverse ridges or pillar arrays assuming �at and adiabatic menisci. Ng and Wang [20]

derived semi-analytical expressions for the apparent thermal slip length for isothermal par-

allel ridges while accounting for conduction through the gas phase. Lam et al. [21] derived

expressions for the apparent thermal slip length for iso�ux and isothermal parallel ridges ac-

counting for small meniscus curvature. Hodes et al. [22] captured the e�ects of evaporation

and condensation along menisci on the apparent thermal slip length for iso�ux ridges. Lam

et al. [23] developed expressions for the Nusselt number for thermally developing Couette

�ow as a function of apparent slip lengths for various boundary conditions. Also, Lam et

al. [23] discuss when Nu results accounting for molecular slip can be used to capture the

e�ects of apparent slip. Maynes & Crockett [26] developed expressions for the Nusselt num-

ber and the thermal slip length for microchannels with iso�ux parallel ridges assuming �at

menisci and using the Navier slip approximation for the velocity pro�le. Kirk et al. [6] also

developed expressions for the Nusselt number for this con�guration, but without invoking

the Navier slip approximation. Kirk et al. [6] also accounted for small meniscus curvature

using a boundary perturbation method. Karamanis et al. [3] developed expressions for the

Nusselt number for the case of isothermal parallel ridges for hydrodynamically-developed

and thermally-developing �ow with negligible axial conduction, i.e., for the Graetz-Nusselt

problem [28, 29, 30].

The present work extends the analysis in [3] to the case of �ow with �nite axial conduc-

tion, i.e., to the Extended Graetz-Nusselt problem [36, 37, 38]. Viscous dissipation [39, 40]

and (uniform) volumetric heat generation [41] are also captured. The menisci are assumed

to be �at [21] and adiabatic. The con�gurations for the isothermal ridges are either both
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Figure 8.2: Schematic of the periodic domain when both plates are textured; the computa-
tional domain is indicated with red line.
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Figure 8.3: Schematic of the periodic domain when one plate is textured with isothermal
ridges and the other one is smooth and adiabatic; the computational domain is indicated
with red line.

plates textured, as per Fig. 8.2, or one plate textured and the other one smooth and adia-

batic, as per Fig 8.3. The solution approach is similar in both con�gurations. It therefore

su�ces to present the detailed analysis for the �rst con�guration. The second con�guration

is considered in Appendix A.

The cross-sectional view of one period of the domain (D) considered is depicted in

Fig. 8.2 where it is colored in light blue. It extends from minus to plus in�nity in the

streamwise direction z, and |x| ≤ d and 0 ≤ y ≤ H, where 2d is the pitch of the ridges

and H is the distance between the ridge tips on opposing plates. The hydraulic diameter of

the domain (Dh) is 2H. The width of the meniscus is 2a. The triple contact lines coincide

with the corners of the ridges at |x|= a at both y = 0 and y = H. Along the composite

interfaces at y = 0 and y = H, a no-shear boundary condition applies for |x| < a and a

no-slip one is imposed for a < |x| < d [12, 13]. Symmetry boundary conditions apply along
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the boundaries at x = |d|. The temperature of the ridges is Tr− and Tr+ for z ≤ 0 and z > 0,

respectively. The �ow is pressure driven, steady, laminar, hydrodynamically developed, and

thermally developing with constant thermophysical properties. The temperature pro�le

becomes uniform throughout the cross-section as z → −∞ and z → +∞, where it is Tr− and

Tr+, respectively. E�ects due to Marangoni stresses [31, 32], evaporation and condensation

[22], and gas di�usion in the liquid phase are neglected. The independent dimensionless

geometric variables are the solid fraction of the ridge, φ = (d− a) /d, and the aspect ratio

of the domain, H/d. Finally, the analysis utilizes the symmetry of the domain with respect

to the yz and zx planes through x = 0 and y = H/2, respectively, and therefore we further

restrict to 0 ≤ x ≤ d and 0 ≤ y ≤ H/2.
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Chapter 9

Analysis

9.1 Hydrodynamic Problem

Assuming hydrodynamically-developed laminar �ow with constant thermophysical prop-

erties, the streamwise-momentum equation takes the form

∇2w =
1

µ

dp

dz
(9.1)

where w is the streamwise velocity, µ is the dynamic viscosity and dp/dz is the prescribed

(constant) pressure gradient. Denoting nondimensional variables with tildes, Eq. (9.1) is

rendered dimensionless by de�ning

x̃ =
x

Dh
(9.2)

ỹ =
y

Dh
(9.3)

w̃ =
µ

D2
h

(
−dp

dz

)−1

w (9.4)

It becomes

∇2w̃ = −1 (9.5)

subjected to

35



∂w̃

∂ỹ
= 0 for 0 < x̃ < ã, ỹ = 0 (9.6)

w̃ = 0 for ã < x̃ < d̃, ỹ = 0 (9.7)

∂w̃

∂ỹ
= 0 for 0 < x̃ < d̃, ỹ = 1/4 (9.8)

∂w̃

∂x̃
= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/4 (9.9)

where d̃ = d/Dh and ã = a/Dh are the dimensionless (half) pitch of the ridges and width of

the meniscus, respectively. This hydrodynamic problem has been studied analytically [35],

semi-analytically [18, 34] and numerically [33] in the past. Here, we solve it numerically (see

Appendix B) to facilitate the solution of the thermal energy equation.

To proceed with the formulation of the Nusselt number, we �rst compute the Poiseuille

number fRe where

Re =
ρwDh

µ
(9.10)

f =
2Dh

ρw2

(
−dp

dz

)
(9.11)

w =
2

dH

∫ H/2

0

∫ d

0

wdxdy (9.12)

are the Reynolds number based on hydraulic diameter, the friction factor and the mean

velocity of the liquid, respectively, and ρ is the density. Combining Eqs. (9.2)-(9.4) and

(9.10)-(9.12), it follows that

fRe =
2

w̃
(9.13)

where

(9.14)w̃ =
4

d̃

∫ 1/4

0

∫ d̃

0

w̃dx̃dỹ

is the dimensionless mean velocity of the �ow. Henceforth, w̃ (x̃, ỹ) and thus fRe are

considered to be known given that the hydrodynamic problem can be solved independently

from the thermal one.

9.2 Thermal Problem

Capturing axial conduction, viscous dissipation and volumetric heat generation, the

relevant form of the thermal energy equation is
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ρcpw
∂T

∂z
= k

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)

+µ

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]

+ q̇ (9.15)

where T , k and cp are the temperature, thermal conductivity and speci�c heat at constant

pressure of the liquid, respectively, and q̇ is the (constant) volumetric heat generation rate

within the liquid.

Next, we introduce the dimensionless streamwise coordinate z̃ and temperature T̃ , as

per

z̃ =
z

PeDh
(9.16)

T̃ =
T − Tr−
Tr+ − Tr−

(9.17)

respectively, where

Pe = RePr (9.18)

is the Péclet number, i.e., the scale of the ratio of advective to axially-di�usive heat transfer

and

Pr =
cpµ

k
(9.19)

is the Prandtl number of the liquid. Combining Eqs. (9.2)-(9.4), (9.13) and (9.15)-(9.19),

the dimensionless form of the (inhomogeneous) thermal energy equation is

fRe

2
w̃
∂T̃

∂z̃
=

∂2T̃

∂x̃2
+
∂2T̃

∂ỹ2
+

1

Pe2

∂2T̃

∂z̃2

+
Br (fRe)

2

4

[(
∂w̃

∂x̃

)2

+

(
∂w̃

∂ỹ

)2
]

+ ˜̇q (9.20)

where

Br =
µw2

k (Tr+ − Tr−)
(9.21)

˜̇q =
q̇D2

h

k (Tr+ − Tr−)
(9.22)
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are the Brinkman number and the dimensionless heat generation rate. It is subjected to the

following boundary conditions

∂T̃

∂ỹ
= 0 for 0 < x̃ < ã, ỹ = 0 (9.23)

T̃ = 0 for ã < x̃ < d̃, ỹ = 0, z̃ ≤ 0 (9.24)

T̃ = 1 for ã < x̃ < d̃, ỹ = 0, z̃ > 0 (9.25)

∂T̃

∂ỹ
= 0 for 0 < x̃ < d̃, ỹ = 1/4 (9.26)

∂T̃

∂x̃
= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/4 (9.27)

T̃ = 0 for 0 < x̃ < d̃, 0 < ỹ < 1/4, z̃ → −∞ (9.28)

T̃ = 1 for 0 < x̃ < d̃, 0 < ỹ < 1/4, z̃ → +∞ (9.29)

The dimensionless temperature �eld is decomposed as

(9.30)T̃ = T̃h + T̃p

where T̃h (x̃, ỹ, z̃, H/d, φ,Pe) and T̃p

(
x̃, ỹ, H/d, φ,Br, ˜̇q

)
are the homogeneous and particular

solutions, respectively. Thus, T̃h satis�es the homogeneous form of Eq. (9.20), with viscous

dissipation and heat generation absent, and T̃p satis�es Eq. (9.20) but with homogeneous

boundary conditions.

9.2.1 Homogeneous Solution

Here we consider the homogeneous form of Eq. (9.20), i.e., Br and ˜̇q are set to zero.

We seek solutions of the form

T̃h (x̃, ỹ, z̃) =





ψ− (x̃, ỹ) g− (z̃) for z̃ ≤ 0

1− ψ+ (x̃, ỹ) g+ (z̃) for z̃ > 0

(9.31)

which separate the dependence of T̃ on the streamwise coordinate z̃ from that on the trans-

verse coordinates x̃ and ỹ. It follows that

g± (z̃) = exp(-λ±z̃) (9.32)

and ψ± (x̃, ỹ) satis�es
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∇2ψ± = −λ±
(
fRe

2
w̃ +

λ±
Pe2

)
ψ± (9.33)

subject to the boundary conditions

∂ψ±
∂ỹ

= 0 for 0 < x̃ < ã, ỹ = 0 (9.34)

ψ± = 0 for ã < x̃ < d̃, ỹ = 0 (9.35)

∂ψ±
∂ỹ

= 0 for 0 < x̃ < d̃, ỹ = 1/4 (9.36)

∂ψ±
∂x̃

= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/4 (9.37)

Therefore, (ψ+, λ+) and (ψ−, λ−) are solutions of the same nonlinear eigenvalue problem,

given by Eqs. (9.33)-(9.37). The eigenvalues are real. We assume they are discrete and

there are in�nitely many and let λi and ψi denote the i-th eigenvalue and eigenfunction,

respectively, ordered such that −∞ ←< · · · < λ−2 < λ−1 < 0 < λ1 < λ2 < · · · → +∞.

Then, the eigensolutions for z̃ > 0 and z̃ ≤ 0 correspond to those with λi > 0 and λi < 0,

respectively, so that there is exponential decay in the upstream (z̃ → −∞) and downstream

(z̃ → +∞) directions. The set of ψi and λi are determined numerically (see Appendix B)

and henceforth assumed to be known.

We proceed by expressing the general homogeneous solution T̃h (x̃, ỹ, z̃) as a linear

combination of the appropriate eigenfunctions in each region, i.e.,

T̃h (x̃, ỹ, z̃) =





−1∑
i=−∞

ciψi (x̃, ỹ) exp (−λiz̃) for z̃ ≤ 0

1−
+∞∑
i=1

ciψi (x̃, ỹ) exp (−λiz̃) for z̃ > 0

(9.38)

The expansion coe�cients ci follow from the requirement that both temperature and heat

�ux are continuous at z̃ = 0, for 0 < x̃ < d̃ and 0 < ỹ < 1/4, i.e.,

lim
z̃→0−

T̃h = lim
z̃→0+

T̃h (9.39)

lim
z̃→0−

∂T̃h

∂z̃
= lim

z̃→0+

∂T̃h

∂z̃
(9.40)

Substituting Eq. (9.38) in Eqs. (9.39) and (9.40), the latter become, respectively
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+∞∑

i=−∞,i6=0

ciψi = 1 (9.41)

+∞∑

i=−∞,i6=0

ciλiψi = 0 (9.42)

Given that the eigenvalue problem is nonlinear, we lack a natural orthogonality condition

for the eigenfunctions ψi. Therefore, we modify the analysis by Deavours [37] to derive an

orthogonality condition, to enable us to determine the expansion coe�cients from Eqs. (9.41)

and (9.42). First, we multiply both sides of the equation for the i-th eigenvalue by λjψj to

give

(9.43)λjψj∇2ψi = −λjψjλi
(
fRe

2
w̃ +

λi

Pe2

)
ψi

Interchanging i and j in Eq. (9.43) and subtracting the result from Eq. (9.43), it follows

that

(9.44)λjψj∇2ψi − λiψi∇2ψj =
λiλj

Pe2 (λj − λi)ψiψj

Using the identity

ψj∇2ψi = ∇ · (ψj∇ψi)−∇ψj · ∇ψi (9.45)

Eq. (9.44) can be rewritten

(9.46)λj∇ · (ψj∇ψi)− λi∇ · (ψi∇ψj) = (λj − λi)
(
λiλj

Pe2 ψiψj +∇ψi · ∇ψj
)

Integrating Eq. (9.46) over the domain yields

λj

∫ 1/4

0

∫ d̃

0

∇ · (ψj∇ψi) dx̃dỹ − λi
∫ 1/4

0

∫ d̃

0

∇ · (ψi∇ψj) dx̃dỹ =

(λj − λi)
∫ 1/4

0

∫ d̃

0

(
λiλj

Pe2 ψiψj +∇ψi · ∇ψj
)

dx̃dỹ (9.47)

However, employing the Divergence Theorem and utilizing Eqs. (9.34)-(9.37), we can show

that

∫ 1/4

0

∫ d̃

0

∇ · (ψi∇ψj) dx̃dỹ = 0 (9.48)

Hence, from Eq. (9.48) and given that λj 6= λi, Eq. (9.47) yields
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(9.49)
∫ 1/4

0

∫ d̃

0

(
λiλj

Pe2 ψiψj +∇ψi · ∇ψj
)

dx̃dỹ = 0, i 6= j

or, in vector notation,

∫ 1/4

0

∫ d̃

0




λiψi

∂ψi/∂x̃

∂ψi/∂ỹ




T 


1
Pe2

0 0

0 1 0

0 0 1







λjψj

∂ψj/∂x̃

∂ψj/∂ỹ




dx̃dỹ = 0 (9.50)

Thus, the required orthogonality condition is that the vectors [λiψi, ∂ψi/∂x̃, ∂ψi/∂ỹ]
T and

[λjψj , ∂ψj/∂x̃, ∂ψj/∂ỹ]
T are orthogonal with respect to the matrix

(9.51)B =




1
Pe2

0 0

0 1 0

0 0 1




With this orthogonality relation, we can now proceed to compute the expansion coe�-

cients ci. We multiply each vector [λjψj , ∂ψj/∂x̃, ∂ψj/∂ỹ]
T by the corresponding expansion

coe�cient cj and sum the resulting expressions over all indices j. Then, it follows from

Eq. (9.42) that

+∞∑

j=−∞,j 6=0

cj




λjψj

∂ψj/∂x̃

∂ψj/∂ỹ




=

+∞∑

j=−∞,j 6=0

cj




0

∂ψj/∂x̃

∂ψj/∂ỹ




(9.52)

Next, taking the dot product of both sides of Eq. (9.52) with the vectorB [λiψi, ∂ψi/∂x̃, ∂ψi/∂ỹ]
T

and integrating the resulting expression over the domain, it follows that

∫ 1/4

0

∫ d̃

0

+∞∑

j=−∞,j 6=0

cj

(
λjλi

Pe2 ψjψi +∇ψj · ∇ψi
)

dx̃dỹ =

∫ 1/4

0

∫ d̃

0

+∞∑

j=−∞,j 6=0

cj (∇ψj · ∇ψi) dx̃dỹ (9.53)

Switching the order of integration and summation on the left-hand side of Eq. (9.53) and

employing Eq. (9.49), yields

ci

∫ 1/4

0

∫ d̃

0

(
λ2
i

Pe2ψ
2
i +∇ψi · ∇ψi

)
dx̃dỹ =

∫ 1/4

0

∫ d̃

0

+∞∑

j=−∞,j 6=0

cj (∇ψj · ∇ψi) dx̃dỹ (9.54)
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Then, using Eq. (9.45) (which is valid for i = j as well as i 6= j), Eq. (9.54) becomes

ci

∫ 1/4

0

∫ d̃

0

[
λ2
i

Pe2ψ
2
i +∇ · (ψi∇ψi)− ψi∇2ψi

]
dx̃dỹ =

∫ 1/4

0

∫ d̃

0

+∞∑

j=−∞,j 6=0

cj
[
∇ · (ψj∇ψi)− ψj∇2ψi

]
dx̃dỹ (9.55)

Switching the order of integration and summation on the �rst term of the right-hand side

of Eq. (9.55) and employing Eqs. (9.33) and (9.48), yields

ci

∫ 1/4

0

∫ d̃

0

(
2λi

Pe2 +
fRe

2
w̃

)
ψ2
i dx̃dỹ =

∫ 1/4

0

∫ d̃

0

(
λi

Pe2 +
fRe

2
w̃

)
ψi




+∞∑

j=−∞,j 6=0

cjψj


 dx̃dỹ (9.56)

Then, using condition Eq. (9.41), it follows that

ci

∫ 1/4

0

∫ d̃

0

(
2λi

Pe2 +
fRe

2
w̃

)
ψ2
i dx̃dỹ =

∫ 1/4

0

∫ d̃

0

(
λi

Pe2 +
fRe

2
w̃

)
ψidx̃dỹ (9.57)

Thus, rearranging Eq. (9.57) gives the expansion coe�cients as per

(9.58)ci =

∫ 1/4

0

∫ d̃
0

[
w̃ + 2λi/

(
fRePe2

)]
ψidx̃dỹ

∫ 1/4

0

∫ d̃
0

[
w̃ + 4λi/

(
fRePe2

)]
ψ2
i dx̃dỹ

Finally, our attention shifts to compute the integral over the ridge of ∂ψi/∂ỹ|ỹ=0 that is

used later in the formulation of the Nusselt number. Integrating Eq. (9.33) over the domain

yields

(9.59)
∫ 1/4

0

∫ d̃

0

∇2ψidx̃dỹ = −λi
∫ 1/4

0

∫ d̃

0

(
fRe

2
w̃ +

λi

Pe2

)
ψidx̃dỹ

Applying the Divergence Theorem on the left-hand side and utilizing Eqs. (9.34)-(9.37),

Eq. (9.59) becomes

(9.60)
∫ d̃

ã

∂ψi
∂ỹ

∣∣∣∣
ỹ=0

dx̃ = λi

∫ 1/4

0

∫ d̃

0

(
fRe

2
w̃ +

λi

Pe2

)
ψidx̃dỹ

9.2.2 Particular Solution

We choose the particular solution to be the solution constant in z̃ of Eq. (9.20) (the

inhomogeneous equation) with homogeneous boundary conditions. Viscous dissipation and
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volumetric heat generation are considered separately and the solutions are superimposed.

Therefore, we express the particular solution as

(9.61)T̃p =
Br (fRe)

2

4
T̃p,Br + ˜̇qT̃p,˜̇q

The quantity T̃p,Br satis�es

∇2T̃p,Br = − |∇w̃|2 (9.62)

with boundary conditions

∂T̃p,i

∂ỹ
= 0 for 0 < x̃ < ã, ỹ = 0 (9.63)

T̃p,i = 0 for ã < x̃ < d̃, ỹ = 0 (9.64)

∂T̃p,i

∂ỹ
= 0 for 0 < x̃ < d̃, ỹ = 1/4 (9.65)

∂T̃p,i

∂x̃
= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/4 (9.66)

where i = Br. Recall that once the velocity �eld is computed from Eqs. (9.5)-(9.9) the right-

hand side of Eq. (9.62) is known. An important result for the formulation of the Nusselt

number follows by combining Eqs. (9.5), (9.45) and (9.62) to show that

∇2T̃p,Br = − [∇ · (w̃∇w̃) + w̃] (9.67)

Then, integrating both sides of Eq. (9.67) over the domain, applying the divergence theorem

utilizing the boundary conditions in Eqs. (9.6)-(9.9) and (9.63)-(9.66), and using Eq. (9.13),

it follows that

∫ d̃

ã

∂T̃p,Br

∂ỹ

∣∣∣∣∣
ỹ = 0

dx̃ =
d̃

2fRe
(9.68)

It follows, from Eqs. (9.20) and (9.61) that T̃p,˜̇q satis�es

∇2T̃p,˜̇q = −1 (9.69)

with boundary conditions given by Eqs. (9.63)-(9.66) where i = ˜̇q. Comparing Eqs. (9.69)

with Eqs. (9.5), it follows that the problem for T̃p,˜̇q is identical to the hydrodynamic problem.
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However, this is not the case for the second con�guration considered in Appendix A, where

one plate is smooth. Next, integrating both sides of Eq. (9.69) over the domain and applying

the divergence theorem utilizing the boundary conditions in Eqs. (9.63)-(9.66), yields

∫ d̃

ã

∂T̃p,˜̇q

∂ỹ

∣∣∣∣∣
ỹ = 0

dx̃ =
d̃

4
(9.70)

We note that T̃p,Br and T̃p,˜̇q are only functions of the transverse coordinates, the aspect

ratio and the solid fraction of the domain. They are determined numerically (see Appendix

C) and for the rest of the analysis they are assumed to be known.
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Chapter 10

Nusselt Number

10.1 Local Nusselt Number

The local Nusselt number is de�ned as

(10.1)Nul± =
hl±Dh

k

where hl± is the local heat transfer coe�cient for z̃ > 0 and z̃ ≤ 0, respectively. An energy

balance at a point along the ridges yields

−k ∂T−
∂y

∣∣∣∣
y=0

= hl− (Tr− − Tb−) for z ≤ 0 (10.2)

−k ∂T+

∂y

∣∣∣∣
y=0

= hl+ (Tr+ − Tb+) for z > 0 (10.3)

where Tb± is the bulk temperature of the liquid de�ned as

(10.4)Tb± =
2

dHw

∫ H/2

0

∫ d

0

wT±dxdy

Substituting Eqs. (10.2)-(10.4) into Eq. (10.1) yields

Nul− =
1

T̃b−

∂T̃−
∂ỹ

∣∣∣∣∣
ỹ=0

for z̃ ≤ 0 (10.5)

Nul+ =
1(

T̃b+ − 1
) ∂T̃+

∂ỹ

∣∣∣∣∣
ỹ=0

for z̃ > 0 (10.6)

where
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T̃b− =
2fRe

d̃

−1∑

i=−∞
ci exp (−λiz̃)

∫ 1/4

0

∫ d̃

0

w̃ψidx̃dỹ

+ T̃p,b (10.7)

T̃b+ = 1− 2fRe

d̃

+∞∑

i=1

ci exp (−λiz̃)
∫ 1/4

0

∫ d̃

0

w̃ψidx̃dỹ

+ T̃p,b (10.8)

are the dimensionless bulk temperatures of the liquid for z̃ ≤ 0 and z̃ > 0, respectively, and

T̃p,b =
2fRe

d̃
×

∫ 1/4

0

∫ d̃

0

w̃

[
Br (fRe)

2

4
T̃p,Br + ˜̇qT̃p,˜̇q

]
dx̃dỹ (10.9)

is the contribution to these quantities from the particular solution.

Thus, from Eqs. (9.30), (9.38), (9.61) and (10.5)-(10.9), it follows that the local Nusselt

number is given by

Nul± =
d̃ (Fl,1± ∓ Fl,2)

2fRe (F3± ∓ F4)
(10.10)

where1

Fl,1± =

±∞∑

i=±1

ci exp (−λiz̃)
∂ψi
∂ỹ

∣∣∣∣
ỹ=0

(10.11)

Fl,2 =
Br (fRe)

2

4

∂T̃p,Br

∂ỹ

∣∣∣∣∣
ỹ=0

+ ˜̇q
∂T̃p,˜̇q

∂ỹ

∣∣∣∣∣
ỹ=0

(10.12)

F3± =

±∞∑

i=±1

ci exp (−λiz̃)
∫ 1/4

0

∫ d̃

0

w̃ψidx̃dỹ (10.13)

F4 =

∫ 1/4

0

∫ d̃

0

w̃

[
Br (fRe)

2

4
T̃p,Br + ˜̇qT̃p,˜̇q

]
dx̃dỹ (10.14)

We note that Fl,1± and Fl,2 are functions of x̃, but that F3± and F4 are not; therefore, only

the former have subscript l. The Nusselt number averaged over the composite interface is

(10.15)Nu± =
1

d

∫ d

0

Nul±dx

1The notation convention is that the summations in F− and F+ are from −∞ to −1 and from 1 to ∞,
respectively.
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Combining Eqs. (10.10)-(10.15) and utilizing Eqs. (9.60), (9.68) and (9.70) yields

Nu± =
F1± ∓ F2

4 (F3± ∓ F4)
(10.16)

where

F1± =

±∞∑

i=±1

λici exp (−λiz̃)×

∫ 1/4

0

∫ d̃

0

(
w̃ +

2λi

fRePe2

)
ψidx̃dỹ (10.17)

F2 =
d̃

4

(
Br +

2˜̇q

fRe

)
(10.18)

10.2 Fully-Developed Nusselt Number

In this section our attention shifts to the asymptotic values that the Nusselt number

attains in the streamwise direction as a function of the Péclet and Brinkman numbers and

the dimensionless volumetric heat generation rate. Two regions can be identi�ed where the

Nusselt number does not depend on z̃. First, where aside from geometrical e�ects, those of

Pe are dominant and, secondly, when those of Br and ˜̇q are dominant. First, notice that

Fl,1±, F1± and F3± decay exponentially with increasing |z̃|. Comparing the two leading

terms of Fl±, it follows that when |z̃| � |z̃Pe±|, where

(10.19)z̃Pe± =
ln |λ±2| − ln |λ±1|

(λ±2 − λ±1)

Fl,1±, F1± and F3± can be approximated with their leading term. Next, comparing the

leading terms of F1± and F3± with F2 and F4, respectively, it follows that when |z̃| �

min
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
where

z̃Br± =
1

λ±1
ln

(
1

Br

)
(10.20)

z̃˜̇q± =
1

λ±1
ln

(
1
˜̇q

)
(10.21)

respectively, F1± � F2 and F3± � F4.
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10.2.1 Regions where Pe E�ects Are Dominant

From Eqs. (10.10)-(10.14) and (10.16)-(10.18), it follows that when |z̃Pe±| � |z̃| �

min
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
, the fully-developed local Nusselt number (Nul,fd,Pe±) and the fully-

developed Nusselt number averaged over the composite interface (Nufd,Pe±) are given by

Nul,fd,Pe± =
d̃ ∂ψ±1

∂ỹ

∣∣∣
ỹ=0

2fRe
∫ 1/4

0

∫ d̃
0
w̃ψ±1dx̃dỹ

(10.22)

and

Nufd,Pe± =
λ±1

4


1 +

2λ±1

fRePe2

∫ 1/4

0

∫ d̃
0
ψ±1dx̃dỹ

∫ 1/4

0

∫ d̃
0
w̃ψ±1dx̃dỹ


 (10.23)

respectively.

10.2.2 Regions where Br and ˜̇q E�ects Are Dominant

When |z̃| � max
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
such that the e�ects of Br and/or ˜̇q are dominant,

the corresponding fully-developed local Nusselt number
(

Nul,fd,Br,˜̇q±

)
and fully-developed

Nusselt number averaged over the composite interface
(

Nufd,Br,˜̇q±

)
are found to be

Nul,fd,Br,˜̇q± =
d̃Fl,2

2fReF4
(10.24)

and

Nufd,Br,˜̇q± =
F2

4F4
(10.25)

respectively.

Equations (10.24) and (10.25) indicate that when |z̃| � max
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
, the fully-

developed Nusselt number is independent of the Péclet number. Moreover, when ˜̇q � Br,

Eq. (10.25) becomes

Nufd,˜̇q± =
d̃

8fRe
∫ 1/4

0

∫ d̃
0
w̃T̃p,˜̇qdx̃dỹ

(10.26)

and if ˜̇q = 0, it becomes
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Nufd,Br± =
d̃

4 (fRe)
2 ∫ 1/4

0

∫ d̃
0
w̃T̃p,Brdx̃dỹ

(10.27)

Equations (10.26) and (10.27) state that when volumetric heat generation is either absent or

much larger than viscous dissipation, and |z̃| � |z̃Br±|, the fully-developed Nusselt number

is a function of the geometry of the domain, but independent of the Péclet and Brinkman

numbers.
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Chapter 11

Results

This section contains three subsections. The �rst two consider separately the e�ects

of axial conduction, and of viscous dissipation and volumetric heat generation, respectively,

on the fully-developed (local and averaged over the composite interface) Nusselt number.

The third one considers the combined e�ects of axial conduction and viscous dissipation on

the developing Nusselt number averaged over the composite interface. The results are for

the �rst con�guration of the ridges, and those for the second con�guration are presented in

Appendix A. When a variable
(
Pe,Br, ˜̇q

)
appears as a subscript of Nu, it signi�es that the

corresponding physical e�ects is dominant in that scenario or at that streamwise location.

Two subscript variables signi�es that both are equally important. Note however that a

subscript variable may not appear in the corresponding Nu expression, see for example

Eqs. (10.26) and (10.27).

11.1 E�ects of Axial Conduction on Fully-Developed Nusselt

Number

11.1.1 E�ects of φ and H/d for Pe = 1

Figures 11.1 and 11.2 plot the fully-developed Nusselt number averaged over the com-

posite interface versus the solid fraction φ for aspect ratios of H/d = 1, 2, 4, 6, 10 and

100, and Pe = 1. They apply when min
(
z̃Br−, z̃˜̇q−

)
� z̃ � z̃Pe− and z̃Pe+ � z̃ �

min
(
z̃Br+, z̃˜̇q+

)
, i.e., they provide Nufd,Pe− and Nufd,Pe+, respectively. Recall that in this

part (when it exists) of the fully-developed region the e�ects of Br and ˜̇q on the fully-

developed Nusselt number are negligible. The dashed curves correspond to smooth plates

50



0 0.2 0.4 0.6 0.8 1

φ

0

2

4

6

8

N
u
fd
,P
e
−

Nufd,Pe−,s = 8.26
H/d = 1

H/d = 2

H/d = 4

H/d = 6

H/d = 10

H/d = 100

Figure 11.1: Nufd,Pe− vs. φ for Pe = 1 and selected H/d when both plates are textured
with isothermal ridges.
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Figure 11.2: Nufd,Pe+ vs. φ for Pe = 1 and selected H/d when both plates are textured
with isothermal ridges.

with Nusselt numbers Nufd,Pe−,s = 8.26 and Nufd,Pe+,s = 8.01 [38], respectively. This dif-

ference between Nufd,Pe− and Nufd,Pe+ was also observed by Agrawal [36] for the case of

smooth parallel plates. Physically, this is expected since advection prevents symmetry ar-

guments to be used pertaining to the upstream and downstream portions of the domain.

Moreover, the di�erence between the computed Nufd,Pe+,s = 8.01 and the corresponding

value of 7.54 when Pe → ∞ is a manifestation of the e�ects of axial conduction which

provides an additional path to heat transfer as discussed in Section 11.1.2.

The results obey the same trends with respect to H/d and φ as observed in [3]. In

the limit as φ → 1, Nufd,Pe± → Nufd,Pe±,s, irrespective of the aspect ratio, as they should.

Additionally, as φ → 0, both Nufd,Pe− and Nufd,Pe+ tend to zero because the available
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(x̃− ã)/(d̃− ã)
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Pe = 1, H/d = 10 and selected values of φ when both plates are textured with isothermal
ridges.

area for heat transfer vanishes. Furthermore, and excluding the aforementioned limits, for

�xed φ as H/d → 0 and H/d → ∞, both Nufd,Pe− and Nufd,Pe+ tend to zero and to their

corresponding counterparts for smooth plates, respectively. This is because as H/d→ 0 and

H/d→∞, the di�erence between the temperature of the ridge and the mean temperature

of the composite interface becomes signi�cant and negligible, respectively, compared to the

di�erence between the temperature of the ridge and the bulk temperature of the liquid.

Figure 11.3 plots the fully-developed local Nusselt number (Nul,fd,Pe+) versus the nor-

malized coordinate along the ridge (x̃− ã) /
(
d̃− ã

)
for Pe = 1, H/d = 10 and φ = 0.01, 0.1

and 0.99. The maximum and minimum values of Nul,fd,Pe+ in each case are observed at the

triple contact line (x̃ = ã) and at the center of the ridge
(
x̃ = d̃

)
, respectively. Moreover,

Nul,fd,Pe+ increases with decreasing φ indicating a local enhancement of heat transfer due

to the higher velocities of the liquid close to the ridge as φ→ 0. Both trends are consistent

with previous studies [25, 3]. In summary, the overall e�ect of the decrease in the available

heat transfer area and the local enhancement of heat transfer for φ < 1 is an increase in the

convective portion of the total thermal resistance that is completely captured in Figs. 11.1

and 11.2.

11.1.2 E�ects of φ and Pe for H/d = 1 and 10

Figures 11.4 and 11.5 plot the computed Nufd,Pe− and Nufd,Pe+, respectively, versus

the solid fraction for Pe = 0.01, 1 and 10 for H/d = 1. The latter also includes the Pe→∞

limit [3] for comparison. Figures 11.6 and 11.7 apply when H/d = 10. The results show
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Figure 11.5: Nufd,Pe+ vs. φ for Pe = 0.01, 1, 10 and Pe → ∞, and H/d = 1 when both
plates are textured with isothermal ridges.

that as Pe → 0, Nufd,Pe−,s approaches Nufd,Pe+,s and they become approximately equal to

8.12 [38]. This is expected as in this limit the primary mode of heat transfer is conduction

and thus the problem becomes antisymmetric with respect to z̃ = 0, where T̃ = 0.5.

Comparing Figs. 11.4 and 11.6 with Figs. 11.5 and 11.7, respectively, shows that as

the Péclet number increases, Nufd,Pe− and Nufd,Pe+ respond di�erently. Nufd,Pe− tends

to in�nity as Pe increases because the temperature �eld for z̃ ≤ 0 becomes essentially

isothermal and thus T̃− → 0 and ∂T̃−/∂ỹ
∣∣∣
ỹ=0
→ 0. Note that despite the fact that Nufd,Pe−

tends to in�nity in this case, there is no heat transfer from the ridge to the liquid given that

∂T̃−/∂ỹ
∣∣∣
ỹ=0
→ 0. This behavior is consistent with the trends observed by Agrawal [36] for

the case of smooth isothermal plates. Contrary, Nufd,Pe+ decreases as Pe increases because
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Figure 11.7: Nufd,Pe+ vs. φ for Pe = 0.01, 1, 10 and Pe → ∞, and H/d = 10 when both
plates are textured with isothermal ridges.

the axial conduction enhancement to heat transfer is reduced, and in the limit Pe → ∞,

Nufd,Pe+,s tends to �nite values. These trends are reversed, however, when only one plate

is textured with isothermal ridges and the other one is smooth and adiabatic. The slower

velocity �eld in this case causes ∂T̃−/∂ỹ
∣∣∣
ỹ=0

to tend to zero faster than T̃− does [3] and

therefore Nufd,Pe− → 0, as Pe → ∞ as per the corresponding results in Appendix A. Also,

the adiabatic boundary condition along the smooth plate leads to convection dominated

heat transfer and thus Nufd,Pe+ increases as Pe increases with Nufd,Pe+ tending to �nite

values as Pe → ∞. For both ridge con�gurations, the change of Nufd,Pe− and Nufd,Pe+ for

an increase of the Péclet number is small for Pe < 1 as in this region the heat transfer is

predominantly di�usive, but the change becomes large when Pe > 1 and advection becomes
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important.

Finally, comparing Figs. 11.4 and 11.6 with Figs. 11.5 and 11.7, respectively, it follows

that the e�ects of Péclet number become important as the solid fraction increases and for

Nufd,Pe+ the range of values of φ where change is observed increases with H/d. Moreover,

the e�ects are more pronounced on Nufd,Pe− which, as explained above, has a stronger

dependence on Pe than Nufd,Pe+.

11.2 E�ects of Viscous Dissipation and Volumetric Heat

Generation on Fully-Developed Nusselt Number

The computed fully-developed Nusselt numbers averaged over the composite interface

when |z̃| � max
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
, Nufd,Br± and Nufd,˜̇q±, are presented in Figs. 11.9 and

11.8, respectively. The results present the same trends with respect to φ and H/d as those

described for Nufd,Pe±, i.e., irrespective of H/d as φ → 0, both Nufd,Br± and Nufd,˜̇q± tend

to zero and as φ → 1, Nufd,Br± → Nufd,Br±,s = 17.5[39] and Nufd,˜̇q± → Nufd,˜̇q±,s = 10[41],

respectively.

11.3 Combined E�ects of Axial Conduction and Viscous

Dissipation on Developing Nusselt Number

Here, we present results for the combined e�ects of the Péclet and Brinkman numbers

on the Nusselt number averaged over the composite interface for z̃ > 0 (Nu+). Figure 11.10
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presents Nu+ versus the dimensionless streamwise coordinate for φ = 0.01, H/d = 10,

Pe = 1, ˜̇q = 0 and for three di�erent values of the Brinkman number, namely Br = 2.71 ×

10−5, 2.71×10−8 and as Br→ 0. The second value of Br is relevant to �ow of liquid metals

though textured microchannels [8]. In this �gure we can identify the two asymptotic values of

Nu+. First, as z̃ increases and becomes larger than z̃Pe+, Nu+ approaches Nufd,Pe+ = 4.33.

Then, as z̃ continues to increase, the e�ects of the step change of the ridge temperature decay

signi�cantly and become of the same order as the viscous dissipation e�ects. Thus, in the

region where z̃ ≈ z̃Br+, Nu+ starts to increase until z̃ � z̃Br+ where Nu+ → Nufd,Br± = 8.92.

Also, as Br increases, the location of the transition moves further upstream but its limiting

value remains 8.92. The same trends were reported in [40] for the case of smooth plates.

Figure 11.11 presents Nu+ versus z̃ for the same domain geometry and Br as in Fig. 11.10,

but for Pe = 10. Comparing Figs. 11.10 and 11.11 we see that as Pe increases the transitions

of Nu+ to Nufd,Pe+ and then to Nufd,Br± occur further upstream given that the �ow becomes

thermally-developed faster with increasing Pe.
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Chapter 12

Conclusions

We considered the Extended Graetz-Nusselt problem, i.e., hydrodynamically-developed

and thermally-developing �ow with �nite axial conduction, for the case of textured plates

(or plate) with isothermal parallel ridges. We developed semi-analytical expressions for

the Nusselt number in an in�nite domain, before and after a jump in ridge temperature.

E�ects of viscous dissipation and volumetric heat generation were included. Two di�erent

con�gurations for the ridges were analyzed: 1) both plates textured and 2) one plate textured

and the other one smooth and adiabatic. The menisci between the ridges were considered to

be �at and adiabatic. The solid-liquid interfaces and the menisci were subjected to no-slip

and no-shear boundary conditions, respectively. Using separation of variables, we expressed

the homogeneous part of the solution as an in�nite sum of the product of an exponentially

decaying function of the streamwise coordinate and a second eigenfunction depending on

the transverse coordinates. The latter eigenfunctions satisfy a two-dimensional non-linear

eigenvalue problem from which the eigenvalues and eigenfunctions follow numerically. The

particular solution accounting for viscous dissipation and volumetric heat generation is also

determined numerically.

The derived expressions for the local Nusselt number and the Nusselt number averaged

over the composite interface indicate that the Nusselt number is a function of the transverse

(along the ridge) and streamwise coordinates, the aspect ratio of the domain, the solid

fraction of the ridges, the Péclet and Brinkman numbers, and the dimensionless volumetric

heat generation rate. Expressions were also derived for the fully-developed local Nusselt

number and for the fully-developed Nusselt number averaged over the composite interface.

Two asymptotic limits were identi�ed for the fully-developed Nusselt number and expressions
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were derived to estimate the streamwise locations where they occur. The �rst limit is

relevant to the e�ects of axial conduction, and the corresponding fully-developed Nusselt

number is a function of the geometry and the Péclet number. The second limit is relevant

to viscous dissipation and volumetric heat generation e�ects, and the corresponding fully-

developed Nusselt number is a function of the geometry, the Brinkman number and the

dimensionless volumetric heat generation rate. If volumetric heat generation is absent, the

aforementioned Nusselt number is a function of the geometry only.

The results indicate that the Nusselt number averaged over the composite interface de-

creases as the aspect ratio and/or the solid fraction decreases. Moreover, the fully-developed

Nusselt number averaged over the composite interface in the region after the temperature

change tends to a �nite value as the Péclet number tends to in�nity for both geometries

studied. On the contrary, in the region before the temperature change, the fully-developed

average Nusselt number tends to in�nity when both plates are textured with isothermal

ridges, and to zero when one plate is smooth and adiabatic, as the Péclet number tends to

in�nity.

Using the present analysis, the fully-developed local Nusselt number and the fully-

developed Nusselt number averaged over the composite interface can be computed in a

small fraction of the time that is required by a general computational �uid dynamics (CFD)

solver. More importantly, the analysis provides semi-analytical expressions to evaluate the

local Nusselt number and the Nusselt number averaged over the composite interface at any

location, which are prohibitively expensive to compute using a general CFD code.
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Nomenclature

Roman Symbols

a half meniscus width, m

ã dimensionless half meniscus width; a/Dh

B orthogonality matrix

Br Brinkman number;
(
µw2

)
/[k (Tr+ − Tr−)]

ci expansion coe�cients

cp speci�c heat at constant pressure, J/(kgK)

D domain

d half ridge pitch, m

d̃ dimensionless half ridge pitch; d/Dh

Dh hydraulic diameter; 2H

dp/dz prescribed pressure gradient, Pa/m

f friction factor; 2Dh (−dp/dz) /
(
ρw2

)

fRe Poiseuille number

H distance between parallel plates, m

h heat transfer coe�cient, W/(m2 K)
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hl± local heat transfer coe�cient, W/(m2 K)

k thermal conductivity, W/(mK)

Nu Nusselt number; hDh/k

Nul± local Nusselt number; hl±Dh/k

Nu± Nusselt number averaged over the composite interface;
∫ d
0
Nul±dx/d

Nul,fd,Pe± fully-developed local Nusselt number when the e�ects of Br and ˜̇q are negligible,

i.e., when |z̃Pe±| � |z̃| � min
(
|z̃Br±|,

∣∣∣z̃˜̇q±
∣∣∣
)

Nul,fd,Br,˜̇q± fully-developed local Nusselt number when the e�ects of Br and ˜̇q are dominant,

i.e., when |z̃| � max
(
|z̃Br±|,

∣∣∣z̃˜̇q±
∣∣∣
)

Nufd,Pe± fully-developed Nusselt number averaged over the composite interface when the

e�ects of Br and ˜̇q are negligible, i.e., when |z̃Pe±| � |z̃| � min
(
|z̃Br±|,

∣∣∣z̃˜̇q±
∣∣∣
)

Nufd,Br,˜̇q± fully-developed Nusselt number averaged over the composite interface when the

e�ects of Br and ˜̇q are dominant, i.e., when |z̃| � max
(
|z̃Br±|,

∣∣∣z̃˜̇q±
∣∣∣
)

Nufd,Br± fully-developed Nusselt number averaged over the composite interface when the

e�ects of Br are dominant, i.e., when |z̃| � |z̃Br±| and Br� ˜̇q

Nufd,˜̇q± fully-developed Nusselt number averaged over the composite interface when the

e�ects of ˜̇q are dominant, i.e., when |z̃| �
∣∣∣z̃˜̇q±

∣∣∣ and ˜̇q � Br

Pe Péclet number; RePr

Pr Prandtl number; (cpµ) /k

q̇ volumetric heat generation rate, W/m3

˜̇q dimensionless heat generation rate;

q̇D2
h/[k (Tr+ − Tr−)]

Re Reynolds number; ρwDh/µ

T temperature, ◦C

T̃ dimensionless temperature;

(T − Tr−) /(Tr+ − Tr−)
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T̃h homogeneous solution

T̃p particular solution

Tb bulk temperature; 2 (dHw)
−1 ∫H/2

0

∫ d
0
wTdxdy

T̃p,b dimensionless bulk temperature of particular solution

T̃b dimensionless bulk temperature

Tr ridge temperature

w streamwise velocity, m/s

w mean streamwise velocity, m/s

w̃ dimensionless streamwise velocity;

(µw) (−dp/dz)−1 /D2
h

w̃ dimensionless mean streamwise velocity;

(µw) (−dp/dz)−1 /D2
h

x lateral coordinate, m

x̃ dimensionless lateral coordinate; x/Dh

y vertical coordinate, m

ỹ dimensionless vertical coordinate; y/Dh

z streamwise coordinate, m

z̃ dimensionless streamwise coordinate; z/(PeDh)

z̃Pe± estimate of the dimensionless streamwise location where Nu becomes fully de-

veloped and the e�ects of Br and ˜̇q are negligible compared to those of Pe;

(ln |λ±2| − ln |λ±1|) /(λ±2 − λ±1)

z̃Br± estimate of the dimensionless streamwise location where the e�ects of Br and

Pe become of the same order; ln
(
Br−1

)
/λ±1

z̃˜̇q± estimate of the dimensionless streamwise location where the e�ects of ˜̇q and Pe

become of the same order; ln
(
˜̇q−1
)
/λ±1
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Greek Symbols

λi i-th eigenvalue

µ dynamic viscosity, Pa · s

φ solid fraction; (d− a)/d

ψi i-th eigenfunction

ρ density, kg/m3

Subscripts

fd fully developed conditions

i indicator

− refering to streamwise location z ≤ 0

+ refering to streamwise location z > 0

s smooth plates
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Part IV

Conjugate Nusselt Numbers for

Simultaneously-Developing Flow through

Rectangular Ducts
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Chapter 14

Introduction

Flow through rectangular ducts is common in heat transfer applications; consequently

its thermal characteristics have been quanti�ed in terms of various Nusselt numbers (Nu) for

a wide range of �ow conditions and aspect ratios [42, 27]. The common boundary conditions

applied are those of uniform wall temperature T and of uniform heat rate per unit length

of the duct with either circumferentially uniform wall temperature H1 or uniform heat �ux

H2 in each cross section [27]. Here we focus on the case of laminar forced convection with

constant thermophysical properties and negligible viscous dissipation. An overview of the

relevant previous work follows.

Clark and Kays [43] studied the case of hydrodynamically and thermally fully-developed

�ow through rectangular ducts of arbitrary aspect ratio when a T or H1 boundary condition

applies on all four walls of the duct. Savino and Siegel [44] also considered fully-developed

�ow with H1 boundary condition but the heat �ux applied on the shorter walls was set to

be an arbitrary fraction of that applied along the longer walls. Schmidt and Newell [45]

considered fully-developed conditions too but allowed one or more walls to be subjected to

a T or H1 boundary condition while the rest of them were insulated. Shah [46] studied

the case of an H2 boundary condition for fully-developed �ow. Montgomery and Wibul-

swas [47] and Montgomery and Wibulswas [48] considered hydrodynamically-developed and

thermally-developing �ow, and simultaneously-developing �ow, respectively, when a T or

H1 boundary condition applies on all four walls.

Conjugate e�ects under hydrodynamically and thermally fully-developed conditions

were �rst studied by Han [49]. Heat was exchanged through two opposite sides of the duct

subjected to an H1 boundary condition, both where they were wetted by the �uid and
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Figure 14.1: Rectangular duct under consideration.

formed the roots of extended surfaces [49]. Sparrow et al. [1] also considered this case but

one side of the duct, i.e., the base of it, was subjected to an either T or H1 boundary

condition and the opposite one was covered by an adiabatic shroud. Karamanis and Hodes

[50] extended the available results of Sparrow et al. [1] for the T boundary condition and

provided a framework to use them to minimize the thermal resistance of longitudinal-�n heat

sinks. Siegel and Savino [51] considered the same duct con�guration and fully-developed

conditions but heat was internally generated in part of the extended surfaces. Lyczkowski et

al. [52] considered the case of hydrodynamically-developed and thermally-developing �ow

for this duct con�guration for a variety of thermal boundary conditions. Moharana et al.

[53] also studied this duct con�guration but for simultaneously-developing �ow when a H2

boundary condition applies on the base of the duct. Finally, Moharana et al. [53] considered

conduction e�ects within the heat-exchanging base too.

The present work complements the existing literature for the aforementioned duct con-

�guration studying the case of conjugate heat transfer under conditions of simultaneously-

developing �ow when a T boundary condition applies along the base of duct and the

opposite side is covered by an adiabatic shroud as per Fig. 14.1. The external faces of the

side walls are adiabatic; in the context of longitudinal-�n heat sinks that can be because

of symmetry considerations as a series of these ducts are stacked in parallel. The height

and length (perpendicular to the page) of the duct, the width of the wetted portion of the

isothermal base, and the thickness of the extended surfaces are H, L, s, and, t, respectively.

The �ow is assumed to be steady and laminar, and the �uid and solid have constant thermo-

physical properties. There is no viscous dissipation and heat is transferred solely by forced

convection.

The analysis is comprised of �ve parts. In Section 15, we identify the relevant di-
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mensionless parameters and present the corresponding dimensionless formulation. Next,

Section 16 provides the relevant de�nitions of the local conjugate Nusselt number along the

extended surface, the local transversely-averaged one over the isothermal base, the average

of that in the streamwise direction, and, �nally, the average over the whole area of the

isothermal base conjugate Nusselt number. Section 17 discusses the solution process of the

dimensionless conjugate heat transfer problem, and results are presented in Section 18. Ad-

ditional results for the average over the whole area of the isothermal base conjugate Nusselt

number are provided in the Appendix. The results are relevant to, e.g., longitudinal-�n heat

sinks [54, 55], catalytic reactors for micro fuel processors and biological sensors [56, 57].
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Chapter 15

Analysis

15.1 Governing Equations and Dimensional Analysis

Given conditions of steady and hydrodynamically-developing laminar �ow, a �uid with

constant thermophysical properties and forced convection, the relevant forms of the conti-

nuity and the Navier-Stokes equations are, respectively,

∇ ·U = 0 (15.1)

ρ (U · ∇)U = −∇p+ µ∇2U (15.2)

where p, ρ, and µ are the pressure, density, and dynamic viscosity, respectively, and

(15.3)U =




u

v

w




is the velocity vector where u, v, and w are the velocity components in the x, y, and z-

direction, respectively. Utilizing the symmetry of the problem with respect to the plane

through x = s/2, as per Fig. 14.1, the boundary conditions for the hydrodynamic problem

are, as per the computational domain depicted in Fig. 15.1,

u = v = 0, w = win for z = 0 (15.4)

u = v = w = 0 for x = 0, y = 0 and y = H (15.5)

u =
∂v

∂x
=
∂w

∂x
= 0 for x =

s

2
(15.6)

p = 0 for z = L (15.7)
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Figure 15.1: Computational domain.

where win is the uniform inlet streamwise velocity.

The relevant forms of the thermal energy equation for the �uid and the extended surface

are, respectively,

ρcpU · ∇T = k∇2T (15.8)

∇2Te = 0 (15.9)

where T and Te are the �uid and extended surface temperatures, respectively, and k and cp

are the thermal conductivity and speci�c heat at constant pressure of the �uid, respectively.

The boundary conditions for the thermal energy equation for the �uid are

T = TB for y = 0 (15.10)

∂T

∂y
= 0 for y = H (15.11)

T = Ti for z = 0 (15.12)

∂T

∂z
= 0 for z = L (15.13)

∂T

∂x
= 0 for x =

s

2
(15.14)

T = Te for x = 0 (15.15)

k
∂T

∂x
= ke

∂Te

∂x
for x = 0 (15.16)

where TB and Ti are the temperature of the isothermal base and the uniform temperature

of the �uid at the inlet of the duct, respectively, and ke is the thermal conductivity of the

extended surface. Equations (15.15) and (15.16) are the two conjugate boundary conditions
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that impose continuity of temperature and heat �ux at the �uid-extended surface interface.

The other boundary conditions for the extended surface are

Te = TB for y = 0 (15.17)

∂Te

∂y
= 0 for y = H (15.18)

∂Te

∂z
= 0 for z = 0 and z = L (15.19)

∂Te

∂x
= 0 for x = −t (15.20)

along with the two conjugate boundary conditions at the �uid-extended surface interface

given by Eqs. (15.15) and (15.16).

Equations (15.1)-(15.20) show that the conjugate heat transfer problem involves four

geometric parameters (H, s, L, t), four thermophysical properties of the �uid (ρ, µ, cp, k), one

thermophysical property of the extended surface (ke), and one external parameter (win).

Therefore, the Buckingham Pi Theorem dictates that the conjugate Nusselt number for the

case at hand is a function of six independent dimensionless parameters and a valid set of

them is

s̃ =
s

Dh
(15.21)

L̃ =
L

Dh
(15.22)

t̃ =
t

Dh
(15.23)

ReDh
=

ρwinDh

µ
(15.24)

Pr =
cpµ

k
(15.25)

Ke =
k

ke
(15.26)

where s̃, L̃, and t̃ are the dimensionless width of the wetted portion of the base, the di-

mensionless length of the duct, and the dimensionless thickness of the extended surface,

respectively. ReDh
is the Reynolds number based on the hydraulic diameter

Dh =
2sH

s+H
(15.27)

Pr and Ke are the Prandtl number of the �uid and the �uid-to-extended surface thermal

conductivity ratio, respectively. Finally, it is emphasized that the present analysis is valid
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for arbitrary values of the Péclet number (Pe = ReDh
Pr) because it takes into consideration

the axial conduction term in both the thermal energy equation for the �uid and the di�usion

equation for the extended surface.

15.2 Dimensionless Hydrodynamic and Thermal Problems

Denoting nondimensional variables with tildes and de�ning

x̃ =
x

Dh
(15.28)

ỹ =
y

Dh
(15.29)

z̃ =
z

Dh
(15.30)

Ũ =
U

win
(15.31)

p̃ =
Dh

µwin
p (15.32)

Equations (15.1) and (15.2) become, respectively,

∇ · Ũ = 0 (15.33)

ReDh

(
Ũ · ∇

)
Ũ = −∇p̃+∇2Ũ (15.34)

subject to

ũ = ṽ = 0, w̃ = 1 for z̃ = 0 (15.35)

ũ = ṽ = w̃ = 0 for x̃ = 0, ỹ = 0 and ỹ = H̃ (15.36)

ũ =
∂ṽ

∂x̃
=
∂w̃

∂x̃
= 0 for x̃ =

s̃

2
(15.37)

p̃ = 0 for z̃ = L̃ (15.38)

where H̃ = H/Dh. De�ning the dimensionless temperature for the �uid and the extended

surface as

T̃ =
T − Ti

TB − Ti
(15.39)

T̃e =
Te − Ti

TB − Ti
(15.40)
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respectively, the dimensionless thermal energy equation for the �uid becomes

Ũ · ∇T̃ =
1

Pe
∇2T̃ (15.41)

subject to

T̃ = 1 for ỹ = 0 (15.42)

∂T̃

∂ỹ
= 0 for ỹ = H̃ (15.43)

T̃ = 0 for z̃ = 0 (15.44)

∂T̃

∂z̃
= 0 for z̃ = L̃ (15.45)

∂T̃

∂x̃
= 0 for x̃ =

s̃

2
(15.46)

T̃ = T̃e for x̃ = 0 (15.47)

Ke
∂T̃

∂x̃
=

∂T̃e

∂x̃
for x̃ = 0 (15.48)

The dimensionless thermal energy equation for the extended surface becomes

∇2T̃e = 0 (15.49)

and the corresponding boundary conditions are

T̃e = 1 for ỹ = 0 (15.50)

∂T̃e

∂ỹ
= 0 for ỹ = H̃ (15.51)

∂T̃e

∂z̃
= 0 for z̃ = 0 and z̃ = L̃ (15.52)

∂T̃e

∂x̃
= 0 for x̃ = −t̃ (15.53)

along with the two conjugate boundary conditions at the �uid-extended surface interface

given by Eqs. (15.47) and (15.48).

The solution process of the conjugate problem described by Eqs. (15.33)-(15.38) and

Eqs. (15.41)-(15.53) is comprised of two parts. First, Eqs. (15.33) and (15.34) are solved

subject to the boundary conditions given by Eqs. (15.35)-(15.38) to compute the dimen-

sionless velocity �eld. Then, Eqs. (15.41) and (15.49) are solved simultaneously subject
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to the boundary conditions given by Eqs. (15.42)-(15.48) and (15.50)-(15.53) utilizing the

previously computed Ũ to determine the dimensionless temperature �elds of the �uid and

the extended surface. Once, T̃ is known the various conjugate Nusselt numbers follow from

an energy balance as per Section 16.1.

In the present analysis, the conjugate problem was solved numerically using the general

CFD solver FLUENT® in conjunction with ANSYS Workbench® for multiple sets of

values of the of dimensionless parameters. Details of the numerical method and the results

are presented in Sections 17 and 18, respectively.

73



Chapter 16

Conjugate Nusselt Number

16.1 Local conjugate Nusselt Number along the extended surface

The local thermal performance of the extended surface can be quanti�ed by the corre-

sponding local conjugate Nusselt number de�ned as

(16.1)Nue (ỹ, z̃) =
heDh

k

where he is the local heat transfer coe�cient along the extended surface. An energy balance

at a point along the extended surface yields

−k ∂T
∂x

∣∣∣∣
x=0

= he (T |x=0 − Tb) (16.2)

where Tb is the bulk temperature of the �uid at the corresponding streamwise location

de�ned as

(16.3)Tb (z) =
2

sHwin

∫ H

0

∫ s/2

0

wTdxdy

Substituting Eqs. (16.2) and (16.3) into Eq. (16.1) yields

Nue (ỹ, z̃) = − 1(
T̃
∣∣∣
x̃=0
− T̃b

) ∂T̃

∂x̃

∣∣∣∣∣
x̃=0

(16.4)

where

T̃b (z̃) =
2

s̃H̃

∫ H̃

0

∫ s̃/2

0

w̃T̃dx̃dỹ (16.5)
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We emphasize that Nue is the only conjugate Nusselt number de�ned in this analysis

based on the temperature di�erence (T |x=0 − Tb) because this is the relevant driving force

for heat transfer to investigate the relative thermal performance between di�erent locations

along the height and length of the extended surface. To quantify the actual local thermal

performance of the extended surface, we de�ne the dimensionless local heat �ux as

q̃′′e = − ∂T̃

∂x̃

∣∣∣∣∣
x̃=0

(16.6)

which is essentially a local Nusselt number based on the constant temperature di�erence

(TB − Ti), but we choose not to call it as such to avoid confusion with Nue. The di�erent

nature of Nue and q̃′′e can be illustrated by the fact as z̃ →∞ and thus the �ow becomes fully-

developed, Nue asymptotically converges to a distribution along the height of the extended

surface that is independent of z̃ [1] and which quanti�es the relative performance to heat

transfer along the height of the extended surface. To the contrary, q̃′′e → 0, as z̃ →∞ given

that at this limit the �ow becomes essentially isothermal and minimal heat transfer occurs.

The remaining de�nitions for the Nusselt number are based on the constant temperature

di�erence (TB − Ti) which is the relevant driving force for heat transfer to investigate the

thermal performance of the rectangular duct as a whole.

16.2 Local transversely-averaged conjugate Nusselt Number of

the isothermal base

The local, in terms of the streamwise direction, thermal performance of the rectangular

duct can be quanti�ed using the local transversely-averaged conjugate Nusselt Number of

the isothermal base de�ned as

(16.7)NuB (z̃) =
hBDh

k

where hB is the transversely-averaged heat transfer coe�cient of the isothermal base. An

energy balance at a streamwise location along the isothermal base yields

∫ 0

−t
−ke

∂Te

∂y

∣∣∣∣
y=0

dx+

∫ s/2

0

−k ∂T
∂y

∣∣∣∣
y=0

dx =

(
t+

s

2

)
hB (TB. − Ti) (16.8)

Substituting Eq. (16.8) into Eq. (16.7) yields
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NuB (z̃) = −
1
Ke

∫ 0

−t̃
∂T̃e

∂ỹ

∣∣∣
ỹ=0

dx̃+
∫ s̃/2

0
∂T̃
∂ỹ

∣∣∣
ỹ=0

dx̃
(
t̃+ s̃/2

) (16.9)

16.3 Average conjugate Nusselt Number of the isothermal surface

The average conjugate Nusselt Number of the isothermal base between the duct inlet

and a dimensionless distance z̃ from it, is

(16.10)NuB (z̃) =
1

z

∫ z

0

NuBdz

Thus, from Eqs. (16.9) and (16.10), it follows that

NuB (z̃) = −

∫ z̃
0

(
1
Ke

∫ 0

−t̃
∂T̃e

∂ỹ

∣∣∣
ỹ=0

dx̃+
∫ s̃/2

0
∂T̃
∂ỹ

∣∣∣
ỹ=0

dx̃

)
dz̃

z̃
(
t̃+ s̃/2

)

(16.11)

Finally, we denote NuB

(
L̃
)
by NuB,L̃; this is the average conjugate Nusselt Number over

the total area of the isothermal base of the duct.
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Chapter 17

Solution of the conjugate heat transfer

problem

The conjugate heat transfer problem de�ned by Eqs. (15.33)-(15.38) and (15.41)-(15.53)

was solved in the present study for multiple sets of values of the dimensionless independent

variables using the Finite Volume Method implemented in FLUENT®, in conjunction with

ANSYS Workbench®. The large number of cases considered were coded into parametric

models. Each parametric model had �xed values of s̃, L̃, t̃, Pr, and Ke, and the value

of ReDh
was varied. Results have been computed for s̃ = [0.5125, 0.6], L̃ = [5.5, 52.5],

t̃ = [0.01375, 0.2625], Pr = 0.71, Kes = 6.56e−5 and 11.1e−5, and ReDh
= [51.68, 7627.46].

Note that for the operating points with ReDh
> 2300, the local Reynolds number at the

outlet of the duct ReL = (ρwinL) /µ was below 5e5. As such, given that the �ow at the

duct inlet is laminar, it remains so throughout the computational domain [42]. The selected

ranges of values of the dimensionless parameters are relevant to thermal management of

electronics applications and correspond to ducts with H = [2 cm, 4 cm], s = [1 mm, 4 mm],

L = [4 cm, 10 cm], t = [0.1 mm, 0.5 mm], with copper or aluminum extended surfaces, air for

the �uid, and a pressure drop across the duct between 10 Pa and 60 Pa.

The execution process of the parametric models was as follows. For of each model,

ANSYS Workbench® de�nes the geometry of the domain using the prescribed s̃, L̃ and

t̃. Then, it discretizes the resulting domain with a structured mesh; the number of dis-

cretization cells for each model was between 184800 to 735000 elements to ensure grid

independence. Next, ANSYS Workbench® creates the corresponding FLUENT® model

using the resulting mesh and the prescribed ReDh
, Pr and Ke. FLUENT® iteratively solves
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the conjugate problem employing the Coupled Pseudo Transient solver and Second-Order

Upwind Scheme [58], until convergence. The convergence criterion was that the computed

residual for NuB,L̃ to be less than 1E− 6. Then, the above process is repeated for the next

higher value of ReDh
of the parametric model.
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Chapter 18

Results

Figure 18.1 presents the computed dimensionless temperature of the extended surface
(
T̃e

)
versus ỹ for s̃ = 0.525, L̃ = 26.25, ReDh

= 882.92, Ke = 11.1e − 5 and Pr = 0.71, at

di�erent streamwise locations and selected values of t̃. As expected, for every given location

ỹ, T̃e increases monotonically as z̃ increases. Moreover, the rate at which the extended

surface tends to become isothermal increases as t̃ increases from 0.026 to 0.053, because as

t̃ increases the conduction resistance of the extended surface decreases.

Figure 18.2 presents the computed dimensionless local heat �ux (q̃′′e ) versus ỹ for the

aforementioned values of the dimensionless independent variables. It shows that for every

given location ỹ, q̃′′e decreases monotonically as z̃ increases as expected since the temperature

of the �uid increases. The two local maxima of each curve indicate the locations of the

corresponding developing thermal boundary layers. They show that the no-slip boundary
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Figure 18.1: T̃e versus ỹ for s̃ = 0.525, L̃ = 26.25, ReDh
= 882.92, Ke = 11.1e − 5 and

Pr = 0.71, at di�erent streamwise locations and selected values of t̃.
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Figure 18.2: q̃′′e versus ỹ for s̃ = 0.525, L̃ = 26.25, ReDh
= 882.92, Ke = 11.1e − 5 and

Pr = 0.71, at di�erent streamwise locations and selected values of t̃.

condition that applies along the wetted part of the base and the adiabatic shroud degrades

signi�cantly the local heat transfer from the extended surface due to the slow moving �uid

in these areas. This is more pronounced as ỹ → 0 where the �uid temperature is close to

that of the isothermal base and as such q̃′′e → 0. Also, note that close to the isothermal

base, q̃′′e is approximately the same at each streamwise location for both values of t̃. This

is because heat transfer from the lower portion of the extended surface is predominantly

governed by the aspect aspect ratio of the duct and its e�ects on the velocity �eld. However,

heat transfer from the upper portion of the extended surface is predominantly governed by

the conduction resistance of the extended surface, and as such lower values of t̃ provide

smaller q̃′′e at that area for the same z̃. Similar behavior was observed by Sparrow et al. [1]

for the case of fully-developed �ow.

Figure 18.3 presents the local conjugate Nusselt number along the extended surface

(Nue) versus ỹ for the same values of the independent variables as those for Figs. 18.1

and 18.2. Recall that Nue represents the relative local e�ciency to heat transfer along the

extended surface. Figure 18.3 indicates that the local e�ciency to heat transfer from the

lower part of the extended surface decreases monotonically as z̃ increases. This is because

this part of the extended surface operates at temperatures close to that of the isothermal

base. As such, as the temperature of the �uid increases as z̃ increases, the local heat transfer

from the lower part of the extended surface degrades for given ỹ as z̃ increases. However,

the opposite is true for the the local e�ciency to heat transfer from the upper part of the

extended surface. There, Nue increases as z̃ increases for given ỹ, albeit not monotonically

for every t̃. This is because in this part of the extended surface T̃e increases as z̃ increases
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Figure 18.3: Nue versus ỹ for s̃ = 0.525, L̃ = 26.25, ReDh
= 882.92, Ke = 11.1e − 5 and

Pr = 0.71, at di�erent streamwise locations and selected values of t̃.

for given ỹ.

Overall, Figs. 18.1, 18.2 and 18.3 show the strong coupling between the heat conduction

within the extended surface and the convective heat transfer occurring in the �ow, and

their e�ects on the overall heat transfer characteristics of the duct. If, e.g., we draw our

attention on the solid green curve corresponding to z̃ = 13.13 and t̃ = 0.053 in these three

�gures, despite the fact that the extended surface is far from being isothermal due to its

�nite thermal conductivity, as per Fig. 18.1, the local dimensionless heat transfer along the

extended surface away from the isothermal base and the adiabatic shroud is approximately

uniform, as per Fig. 18.2, because the local e�ciency to heat transfer increases as ỹ increases,

as per Fig. 18.3. However, for streamwise locations closer to the inlet of the duct where

the e�ects of the �nite thermal conductivity of the extended surface are dominant, per the

blue solid curve corresponding to z̃ = 2.63 and t̃ = 0.053 in the aforementioned �gures,

the modest increase of the local e�ciency to heat transfer along the extended surface as ỹ

increases, as per Fig. 18.3, cannot compensate for the sharp decrease of T̃e along the height

of the extended surface, as per Fig. 18.1, resulting to a highly non-uniform decreasing

distribution for the dimensionless local heat �ux along the height of the extended surface,

as per Fig. 18.2.

Figure 18.4 presents the local transversely-averaged (NuB) and the average
(
NuB

)
con-

jugate Nusselt number of the isothermal base versus z̃ for the aforementioned values of the

dimensionless independent variables. Both, NuB and NuB exhibit the anticipated trends

for an internal forced convection �ow with NuB < NuB at each streamwise location, and

NuB → NuB,L̃ as z̃ → L̃.
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Figure 18.5: NuB,L̃ versus ReDh
for s̃ = 0.525, L̃ = 26.25, Ke = 11.1e− 5 and Pr = 0.71 for

selected values of t̃.

Figure 18.5 presents the average over the total area of the isothermal base conjugate

Nusselt Number
(

NuB,L̃

)
versus ReDh

for s̃ = 0.525, L̃ = 26.25, Ke = 11.1e − 5, and

Pr = 0.71, for selected values of t̃. The results indicate that there exists an optimal t̃ in

each case that maximizes NuB,L̃ for the prescribed s̃, L̃, Ke, Pr, and ReDh
. Similarly, if

only Ke, Pr and ReDh
are prescribed, an optimization can be performed using the provided

tabulation of the NuB,L̃ in the Appendix to determine the optimal s̃, L̃, and t̃ that maximize

NuB,L̃ as per the approach proposed by Karamanis and Hodes [55]. Such optimizations are

relevant to thermal management of electronics applications.
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Chapter 19

Conclusions

The analysis considered the case of conjugate forced-convection heat transfer through

a rectangular duct. Heat was exchanged through the isothermal base of the duct, i.e., the

surface area comprised of the wetted portion of its base and the roots of its two side walls,

which are extended surfaces within which conduction is three-dimensional. The opposite

side of the duct was covered by an adiabatic shroud and the external faces of the side walls

were adiabatic. The �ow was steady, laminar and simultaneously-developing and the �uid

had constant thermophysical properties. Prescribed were the width of the wetted portion

of the base, the length of the duct, and the thickness of the extended surfaces, all three

of them non-dimensionalized by the hydraulic diameter of the duct, and, additionally, the

Reynolds number of the �ow, the Prandtl number of the �uid, and the �uid-to-extended

surface thermal conductivity ratio. The dimensionless temperature �elds in the �uid and

the extended surfaces were computed for multiple sets of values of the prescribed quantities.

Corresponding results for the local conjugate Nusselt number along the extended surface

(Nue), the local transversely-averaged one over the isothermal base of the duct (NuB), the

average of that in the streamwise direction
(
NuB

)
, and the average one over the whole area of

the isothermal base of the duct
(

NuB,L̃

)
were discussed. The local conjugate Nusselt number

along the extended surface was shown to have strong dependence on the location along the

extended surface. Nue monotonically decreases in the streamwise direction for locations

close to the isothermal base given that at these locations the temperature of the extended

surface is close to that of the isothermal base and that the temperature of the �uid increases

in the streamwise direction. To the contrary, Nue increases in the streamwise direction for

locations far from the isothermal base given that at these locations the temperature of the
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extended surface increases in the streamwise direction. The latter trend becomes more

pronounced as the thickness of the extended surface decreases and thus the resistance to

conduction of the extended surface increases. The results for the average over the whole

area of the isothermal base of the duct conjugate Nusselt number show that for prescribed

�uid-to-extended surface thermal conductivity ratio, and Reynolds and Prandtl numbers,

there exist an optimal combination of the dimensionless width of the wetted portion of

the base of the duct, duct length, and extended surface thickness, that maximize the heat

transfer per unit area from the isothermal base. A dense tabulation of the average over the

whole area of the isothermal base conjugate Nusselt number is provided in the Appendix to

facilitate such optimizations.
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Nomenclature

cp speci�c heat at constant pressure, J/(kgK)

Dh hydraulic diameter of the channel;

(2sH) /(s+H)

H rectangular duct height, m

hB local transversely-averaged heat transfer coe�cient of the isothermal base,W/(m2 K)

he local heat transfer coe�cient along the extended surface, W/(m2 K)

H̃ rectangular duct dimensionless height; H/Dh

k thermal conductivity of �uid, W/(mK)

Ke �uid-to-extended surface thermal conductivity ratio; k/ke

ke thermal conductivity of extended surface, W/(mK)

L rectangular duct length, m

L̃ rectangular duct dimensionless length; L/Dh

NuB local transversely-averaged conjugate Nusselt Number of the isothermal base; hBDh/k

NuB average conjugate Nusselt Number of the isothermal base;
∫ z
0
NuBdz/z

NuB,L̃ average conjugate Nusselt Number over the total area of the isothermal base; NuB

(
L̃
)

Nue local conjugate Nusselt number along the extended surface; heDh/k

p pressure, Pa

p̃ dimensionless pressure; (Dhp) /(µwin)
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Pe Péclet number; ReDh
Pr

Pr Prandtl number; cpµ/k

q̃′′e dimensionless local heat �ux along the extended surface; −∂T̃ /∂x̃ |x̃=0

ReDh
Reynolds number based on Dh; (ρwinDh) /µ

ReL local Reynolds number at the outlet of the duct; (ρwinL) /µ

s width of the wetted portion of the isothermal base, m

s̃ dimensionless width of the wetted portion of the isothermal base; s/Dh

T �uid temperature, ◦C

t extended surface thickness, m

t̃ extended surface dimensionless thickness; t/Dh

TB temperature of the isothermal base, ◦C

Tb �uid bulk temperature; 2
∫H
0

∫ s/2
0

wTdxdy/(sHwin)

T̃b dimensionless �uid bulk temperature;

2
∫ H̃
0

∫ s̃/2
0

w̃T̃dx̃dỹ/
(
s̃H̃
)

Ti �uid uniform inlet temperature, ◦C

Te extended surface temperature, ◦C

T̃e dimensionless extended surface temperature; (Te − Ti) /(TB − Ti)

T̃ dimensionless �uid temperature; (T − Ti) /(TB − Ti)

U velocity vector, m/s

u velocity component x-direction, m/s

Ũ dimensionless velocity vector; U/win

v velocity component y-direction, m/s

w velocity component z-direction, m/s

win uniform inlet streamwise velocity, m/s
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w̃ dimensionless streamwise velocity;

w/win

x lateral coordinate, m

x̃ dimensionless lateral coordinate; x/Dh

y vertical coordinate, m

ỹ dimensionless vertical coordinate; y/Dh

z streamwise coordinate, m

z̃ dimensionless streamwise coordinate; z/Dh

Greek Symbols

µ dynamic viscosity, Pa s

ρ �uid density, kg/m3
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Part V

Simultaneous Optimization of an Array

of Heat Sinks
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Chapter 21

Introduction

E�ective thermal management of heat-dissipating microelectronic components requires

addressing three primary resistances. They account for conduction in the semiconductor

die and its package, thermal interfaces, and, our focus here, heat sinks. In general, a heat

source is imposed along the bottom side of the base of a �nned heat sink of equal or larger

footprint. The thermal resistance between it and the coolant �owing through the heat

sink follows from the solution of a conjugate heat transfer problem. A rigorous analysis to

compute this parameter captures heat spreading in the base of the heat sink (if relevant),

conduction along the �ns and coolant-side convective heat transfer. It is rarely possible

to perform this task analytically; consequently, Computational Fluid Dynamics (CFD), a

laborious and slow process, is used. Hence, although it may be used to optimize the geometry

of an isolated heat sink, a brute-force approach based upon it is impractical to optimize an

array of them.

It is relevant to consider various approaches to heat sink optimization before describing

our new one. We limit our discussion and the new results provided here to the case when

the side of the base opposite the heat source, i.e., the plane of the base of the �ns and

the prime surface, is essentially isothermal. This is a valid assumption in many high-

performance heat sinks as they often have heat pipes running along their length, or their

base itself is one in the form of a vapor chamber. We further restrict our attention to

forced convection in laminar �ow through fully-shrouded longitudinally-�nned heat sinks

as per Fig. 21.1, which is a very common con�guration in practice. A simple and often

used approach is to assume hydrodynamically and thermally developed �ow through an

isothermal heat sink, and compute the thermal resistance based on a log-mean temperature
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Figure 21.1: Longitudinal-�n heat sink (HS).

di�erence, where the mean heat transfer coe�cient assumes a parallel plate con�guration

between �ns. However, it is well known that 100% e�cient �ns do not minimize thermal

resistance [59]. The accuracy of such a problem may be improved by using a semi-analytical

approach to capture two-dimensional conduction along the �ns, and, for the convective part,

by assuming simultaneously developing �ow between isothermal parallel plates, as per the

method described by Holahan et al. [60].

Sparrow et al. [1] solved the full conjugate problem, i.e., conduction in the �n coupled

to convection in the �ow, for hydrodynamically and thermally developed �ow. They ne-

glected edge e�ects, a generally valid assumption due to the large number of �ns on heat

sinks. Hence, their domain consisted of half of a �n and half of an adjacent gap through

which coolant �ows, as per Fig. 21.2, where s, t and H are the �n spacing, thickness and

height, respectively. The velocity and temperature pro�les in the coolant, and the tem-

perature pro�le in the �n were fully resolved. They concluded that the assumption of a

uniform heat transfer coe�cient is generally invalid. Indeed, they showed that for realistic

�n thickness and thus e�ciency, the heat transfer coe�cient based on the bulk temperature

of the coolant is often negative near the tip of the �n. Karamanis and Hodes [50] utilized the

conjugate formulation developed by Sparrow et al. [1] to develop a procedure to optimize �n

thickness, spacing, height and length for hydrodynamically and thermally developed �ow.

Also, Karamanis and Hodes [50] computed an extensive tabulation of the conjugate Nusselt

number for heat sink-coolant combinations of copper-air, copper-water, aluminum-air and

silicon-water. The dimensional �ow and thermal resistances of a heat sink under these �ow

conditions follow directly from these tabulations.

Karamanis and Hodes [2] extended the conjugate formulation of Sparrow et al. [1] to

simultaneously developing �ow. The domain also consisted of half of a �n and half of an

adjacent gap through which coolant �ows, but, as per Fig. 21.3, it had a �nite length L in
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Figure 21.2: Computational domain of Sparrow et al. [1].

the streamwise direction because the transport problem is three-dimensional. Importantly,

as in Sparrow et al. [1], the heat transfer coe�cient used to de�ne the conjugate Nusselt

number is based on the total rate of heat �ow along the prime surface and the �n, and on the

temperature di�erence between the domain base and the coolant at the inlet. Karamanis

and Hodes [2] show that per the Pi Theorem, the conjugate Nusselt number is a function of

six independent dimensionless parameters, namely,

s̃ =
s

Dh
(21.1)

t̃ =
t

Dh
(21.2)

L̃ =
L

Dh
(21.3)

ReDh
=

ρw̄Dh

µ
(21.4)

Pr =
cpµ

k
(21.5)

Kf =
k

kf
(21.6)

where s̃, t̃, and L̃ are the dimensionless �n spacing, dimensionless �n thickness and dimen-

sionless heat sink length, respectively. ReDh
is the Reynolds number based on the hydraulic

diameter

Dh =
2sH

s+H
(21.7)

Pr andKf are the Prandtl number of the coolant and the coolant-to-�n thermal conductivity

ratio. ρ, µ, cp, and k are the density, dynamic viscosity, speci�c heat at constant pressure,

and thermal conductivity of the coolant, respectively. kf and w̄ are the thermal conductivity

of the �n and the mean velocity of the �ow, respectively. Karamanis and Hodes [2] computed
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an extensive tabulation of the corresponding conjugate Nusselt numbers for heat sink-coolant

combinations of copper-air and aluminum-air.

Here, we present a novel approach using such Poiseuille and conjugate Nusselt numbers

[2] to simultaneously optimize the �n geometries of an array of longitudinal-�n heat sinks

such as those found in, e.g., circuit packs, as per Fig. 21.4. Our method embeds the Poiseuille

and conjugate Nusselt numbers in Flow Network Modeling (FNM) representations of such

circuit packs in the form of look-up tables and, in turn, embeds the corresponding FNMs in

a Multi-Variable Optimization framework (MVO) to optimize the �n geometries. We refer

to this hybrid numerical scheme as CFM as per the �rst letter of the three existing schemes

that it is based upon.

The remainder of this paper is divided into two sections. Section 22 provides background

material on CFD, FNM, and MVO. Section 23 presents the hybridization approach and

concludes with an example. Finally, we note that the present method is applicable to other

types of heat sink geometries and for turbulent �ow as well, provided that the corresponding

Poiseuille and conjugate Nusselt numbers are available.
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Figure 21.4: Schematic of a circuit pack with �ve longitudinal-�n heat sinks and several
passive components.
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Chapter 22

Enabling Methods

22.1 Computational Fluid Dynamics (CFD)

In CFD simulations, the governing nonlinear partial di�erential equations (PDEs) of the

hydrodynamic and conjugate thermal problems are solved numerically on a computational

domain that comprises of the geometry of the �ow path and that of the heat sinks [61,

58]. For the case at hand, the governing equations for the hydrodynamic problem are the

following forms of the continuity and Navier-Stokes Equations

∇ ·U = 0 (22.1)

ρ (U · ∇)U = −∇p+ µ∇2U (22.2)

respectively, where p is the pressure and

(22.3)U =




u

v

w




is the velocity vector where u, v and w are the velocity components in the x, y and z-

direction, respectively. The boundary conditions are determined based on the characteristics

of each particular application and usually include that of no-slip along the solid-coolant

interfaces, and those of a prescribed velocity pro�le and pressure at the inlet and outlet of

the computational domain, respectively.

The governing equations for the conjugate thermal problem for the coolant and the

solid, i.e, the heat sinks in this case, are
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ρcpU · ∇T = k∇2T (22.4)

∇2Tf = 0 (22.5)

respectively, where T and Tf are the coolant and �n temperature �elds, respectively. Com-

mon boundary conditions for the conjugate thermal problem include that of prescribed

temperature pro�le and zero temperature gradient at the inlet and outlet of the computa-

tional domain, respectively, and those of prescribed temperature or heat �ux at the rest of

the external boundaries. At the internal boundaries formed at the solid-coolant interfaces a

conjugate boundary condition applies that imposes continuity of the temperature and heat

�ux �elds, i.e., T = Tf and Kf∂T/∂n = ∂Tf/∂n, where n is the unit normal vector along

these interfaces. As such, CFD simulations fully resolve the velocity and temperature �elds

within a circuit pack.

The aspect of CFD that allows the numerical solution of the governing PDE's is a step

where the equations are discretized spatially (and temporally when applicable) to be trans-

formed into a linear system of equations. The two most common discretization techniques

are the Finite Volume Method (FVM) and the Finite Element Method (FEM). Despite the

apparent �exibility that the discretization lends to CFD, however, it is also its bottleneck.

The accuracy of CFD simulations is based upon factors such as the quality, distribution

and density of the discretization, i.e., the mesh. Of them, the mesh density is the factor

with the highest impact on the computational time and resources needed. A circuit pack

typically needs to be discretized with a few hundred thousand to up to tens of millions of

computational elements with each solid and coolant computational element contributing one

and �ve equations, respectively, to the system of equations to be solved. Thus, the resulting

system of equations is very cumbersome and time consuming to solve, requiring from tens

of minutes to days per simulation. As such, although a rigorous brute-force optimization

of all the heat sinks in a circuit pack is in principle possible by performing a series of CFD

simulations, the computational time is prohibitively long. For example, if such an optimiza-

tion considers only two di�erent values for the �n spacing, thickness, and length of each of

the �ve heat sinks in the circuit pack of Fig. 21.4, a total of 32,768 CFD models needs to

be executed.

However, the approach presented in Karamanis and Hodes [2] allows one to perform

banks of CFD simulations to compute accurate conjugate Nusselt numbers for simultane-
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ously developing �ows for the computational domain in Fig. 21.3, over a wide range of

operating conditions of longitudinal-�n heat sinks in circuit packs. These results, then, al-

low one to perform a rigorous multi-variable optimization as discussed in the following two

subsections. Of course, the computational domain in Fig. 21.3 does not capture minor losses

as does a CFD simulation of the full circuit pack. Instead, it was chosen to maximize the

accuracy of the computed conjugate Nu for half of a �n and half of an adjacent gap through

which coolant �ows, which is used to estimate the thermal resistance of a heat sink during

the optimization. As such, if minor losses are important, the results from the proposed

optimization algorithm can be further re�ned using CFD.

22.2 Flow network modeling (FNM)

In FNM, a circuit pack is separated into distinct sub-regions [62], as per Fig. 22.1a. A

�ow (Rh,i) and a thermal (Rt,i) resistance is computed for each sub-region, and the circuit

pack is mathematically represented as networks of them, as per Fig. 22.1b.

The resulting system of equations is small since each sub-region contributes only two

equations to the system of equations to be solved, one to the hydrodynamic problem, and

one to the thermal one as per

Vi =
pin,i − pout,i

Rh,i
(22.6)

qi =
Tmax,i − Tin,i

Rt,i
(22.7)

respectively, where pin,i, pout,i, and Vi are the inlet and outlet pressures of the i-th sub-region

and the corresponding volumetric �ow rate, respectively. Tmax,i is the maximum temper-

ature occurring at the boundaries of the i-th sub-region, e.g., the prescribed temperature

TB,HSi of the isothermal base of the i-th heat sink. Tin,i and qi are the bulk temperature of

the coolant at the inlet of the i-th sub-region and the corresponding heat rate, respectively.

Additionally, each node at the interface between sub-regions contributes to the system of

equations to be solved, one equation to conserve mass and one more to conserve thermal

energy as per

∑
Vi = 0 (22.8)

∑
qi = 0 (22.9)
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Figure 22.1: (a) FNM sub-regions and (b) �ow resistance network representation of circuit
pack in Fig. 21.4.

respectively. The bulk temperature of the coolant at the outlet of each sub-region follows

from an energy balance per

Tout,i = Tin,i +
qi

ρcpVi
(22.10)

Despite Rh,i and Rt,i being nonlinear with respect to Vi, such systems of algebraic equations

are trivial to solve numerically.

The �ow and thermal resistances of each sub-region, e.g., 1 − 16 in Fig. 22.1a, are

computed using correlations for major and minor losses [63, 64] or CFD results. The heat

sinks can be further subdivided as per HS5a and HS5b in Fig. 22.1a to increase accuracy.

The �ow and thermal resistances of the heat sinks are commonly acquired either from

experimental measurements that are accurate but apply over limited parameter ranges, or
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they are computed based on the often-poor assumption of a uniform heat transfer coe�cient

along the �ns [1]. As such, an optimization of a circuit pack based upon conventional brute-

force FNM executions is limited by the accuracy of the expressions used to predict the �ow

and thermal resistances of the heat sinks for arbitrary �n geometry.

Here, we increase the accuracy of FNM by using accurate CFD-precomputed conjugate

Nusselt numbers for the heat sinks from Karamanis and Hodes [2]. The corresponding

Poiseuille numbers can be computed from available expressions in the literature[42], but

here they are obtained from the CFD models that were executed to tabulate the conjugate

Nusselt number. The Poiseuille and conjugate Nusselt numbers of the i-th heat sink are

de�ned by the expressions

PoHSi = 2
Acs,HSiD

2
h,HSi (pin,HSi − pout,HSi)

µLHSiVHSi
(22.11)

NuHSi =
qHSiDh,HSi

kAfp,HSi (TB,HSi − Tin,HSi)
(22.12)

respectively, where

Acs,HSi =
(WHSi − tHSi) sHSiHHSi

(sHSi + tHSi)
(22.13)

Afp,HSi = WHSiLHSi (22.14)

are the cross-sectional area of the �ow and the footprint of the heat sink, respectively. WHSi

is the width of the i-th heat sink. Combining Eqs. (22.6) and (22.11) and Eqs. (22.7) and

(22.12), it follows that the dimensional �ow and thermal resistances of the i-th heat sink

are given by the expressions

Rh,HSi =
µLHSiPoHSi

2Acs,HSiD2
h,HSi

(22.15)

Rt,HSi =
Dh,HSi

kAfp,HSiNuHSi
(22.16)

respectively.

22.3 Multi-Variable Optimization (MVO)

Both CFD and FNM are methods to compute the thermal performance of circuit packs,

but they do not inherently provide a means to rigorously optimize �n geometries. Even a
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brute-force approach is too slow with CFD and not accurate with FNM, as previously

explained. Here we complement their utility with MVO by which we refer to the suite of

mathematical methods that solve problems of the form

(22.17)min
x
F (x1, x2, . . . , xn)

subject to

c (x1, x2, . . . , xn) = 0 (22.18)

g (x1, x2, . . . , xn) ≤ 0 (22.19)

where F , x, c, and g are the scalar-valued objective function, and the vectors of the inde-

pendent variables and of the equality and inequality constraints, respectively, and F , c and

g are nonlinear in general.

In the context of the thermal management of electronics, F can be, e.g., the inverse

of the total heat dissipated by a circuit pack, if the objective is to maximize the total heat

dissipated from the circuit pack for prescribed pressure drop across the circuit pack and

inlet coolant temperature. In such a case, c will be comprised of the system of equations

for the hydrodynamic and thermal problems, i.e., the so called implicit constraints, along

with any equality constraints that are relevant to the particular case, e.g., �xed heat sink

footprint. Moreover, g will be comprised of the set of the relevant inequality constraints to,

e.g., satisfy manufacturing and/or cost constraints, on, e.g., the �n spacing and thickness.

A large number of mathematical methods can be used to perform such an optimization

[65]. Here, we use the Barrier Function method (or Interior Point method) in conjunction

with the Trust Region method and the Conjugate Gradient method [66] for three reasons.

The �rst one is that this approach makes no assumptions about the objective function and

the constraints, hence, they can be arbitrary and non-linear. The second reason is that

this method accommodates the usually large number of inequality constraints for typical

thermal management applications. The third reason is that this approach is numerically

robust [65].
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Chapter 23

CFM

Having discussed the three enabling methods in CFM, we proceed with an example to

demonstrate it. Figure 23.1 shows the circuit pack under consideration where two fully-

shrouded, longitudinal-�n heat sinks are mounted in series. We emphasize that we use this

simple example here as opposed to the circuit pack in Fig. 21.4 to reduce the number of equa-

tions involved in the optimization for demonstration purposes, but we do not lose generality.

The upstream and downstream heat sinks are made out of copper (kHS1 = 401 W/(mK)) and

aluminum (kHS2 = 237 W/(mK)), respectively. They are cooled by air (ρ = 1.1614 kg/m3,

cp = 1007 J/kgK, k = 26.3E− 3 W/(mK), µ = 1.85E − 05 Pa · s) with Tin,CP = 27 ºC at the

inlet of the circuit pack. The pressure drop across the circuit pack is pin,CP−pout,CP = 40 Pa.

The bases of the heat sinks are isothermal at TB,HS1 = 52 ºC and TB,HS2 = 62 ºC. The width

and height of the heat sinks are WHS1 = WHS2 = 55.2 mm and HHS1 = HHS2 = 30.0 mm.

The objective here is to compute the �n spacing, thickness and length for each heat sink,

i.e., the values of the independent variables x = [sHS1, sHS2, tHS1, tHS2, LHS1, LHS2]
T , that

maximize the total heat dissipated by the two heat sinks, i.e., (qHS1 + qHS2), while maintain-

ing the values for the aforementioned independent variables within the operating envelope

covered by the tabulations for PoHSi and NuHSi in [2], i.e., using the box constraints

smin,HSi = 1 mm ≤ sHSi ≤ smax,HSi = 4 mm (23.1)

tmin,HSi = 0.2 mm ≤ tHSi ≤ tmax,HSi = 1 mm (23.2)

Lmin,HSi = 40 mm ≤ LHSi ≤ Lmax,HSi = 100 mm (23.3)
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Figure 23.1: CFM example circuit pack.

h,HS1R h,HS2R

out,HS1 in,HS2p p=
in,CP in,HS1p p= out,HS2 out,CPp p=

HS1V → HS2V →

Figure 23.2: Hydrodynamic FNM representation of circuit pack in Fig. 23.1.

t,HS1R

B,HS1T in,HS1 in,CPT T=HS1q →

t,HS2R

B,HS2T out,HS1in,HS2T T=HS2q →

Figure 23.3: Thermal FNM representation of circuit pack in Fig. 23.1.

Also, for simplicity, the secondary pressure losses and heat transfer upstream, midway, and

downstream of the heat sinks are assumed to be negligible. The hydrodynamic and thermal

FNM representations of the circuit pack are presented in Figs. 23.2 and 23.3, respectively.

To proceed with the CFM optimization, the mathematical description of the optimiza-

tion problem has to be constructed �rst. For the case at hand, the optimization problem

takes the form

(23.4)min
x

[
1

qHS1 + qHS2

]

subject to the equality constraints
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pin,CP − pin,HS1 = 0 (23.5)

pin,HS1 − pout,HS1 −Rh,HS1VHS1 = 0 (23.6)

VHS1 − VHS2 = 0 (23.7)

pout,HS1 − pin,HS2 = 0 (23.8)

pin,HS2 − pout,HS2 −Rh,HS2VHS2 = 0 (23.9)

pout,HS2 − pout,CP = 0 (23.10)

Tin,HS1 − Tin,CP = 0 (23.11)

TB,HS1 − Tin,HS1 −Rt,HS1qHS1 = 0 (23.12)

Tout,HS1 − Tin,HS1 −
qHS1

ρcpVHS1
= 0 (23.13)

Tin,HS2 − Tout,HS1 = 0 (23.14)

TB,HS2 − Tin,HS2 −Rt,HS2qHS2 = 0 (23.15)

and to the inequality constraints

smin,HS1 − sHS1 ≤ 0 (23.16)

sHS1 − smax,HS1 ≤ 0 (23.17)

smin,HS2 − sHS2 ≤ 0 (23.18)

sHS2 − smax,HS2 ≤ 0 (23.19)

tmin,HS1 − tHS1 ≤ 0 (23.20)

tHS1 − tmax,HS1 ≤ 0 (23.21)

tmin,HS2 − tHS2 ≤ 0 (23.22)

tHS2 − tmax,HS2 ≤ 0 (23.23)

Lmin,HS1 − LHS1 ≤ 0 (23.24)

LHS1 − Lmax,HS1 ≤ 0 (23.25)

Lmin,HS2 − LHS2 ≤ 0 (23.26)

LHS2 − Lmax,HS2 ≤ 0 (23.27)

The equality constraints given by Eqs. (23.5)-(23.15) are implicit constraints; Eqs. (23.5)-

(23.10) and Eqs. (23.11)-(23.15) follow from the hydrodynamic and thermal FNM repre-
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sentations of the circuit pack, as per Figs. 23.2 and 23.3, respectively. They constitute a

well posed system of 11 nonlinear algebraic equations with 11 unknowns, namely: pin,HS1,

pout,HS1, VHS1, pin,HS2, pout,HS2, VHS2, Tin,HS1, Tout,HS1, qHS1, Tin,HS2 and qHS2. It is noted

that an additional equation for Tout,HS2 is not required. The inequality constraints given

by inequalities (23.16)-(23.27) follow from the box constraints for the independent variables

given by inequalities (23.1)-(23.3).

Next, the original equality-inequality-constrained optimization problem described by

Eqs. (23.4)-(23.27) is transformed into a solely equality-constrained problem using the Bar-

rier Function method. As such, Eq. (23.4) becomes

(23.28)min
x

[
1

qHS1 + qHS2
− κ

12∑

m=1

ln (βi)

]

where κ > 0 and βi > 0 are the barrier parameter and slack variables, respectively. Equa-

tion (23.28) is subject to the original equality constraints given by Eqs. (23.5)-(23.15), to

the equality constraints following from the transformed inequality constraints given by in-

equalities (23.16)-(23.27)

smin,HS1 − sHS1 + β1 = 0 (23.29)

sHS1 − smax,HS1 + β2 = 0 (23.30)

smin,HS2 − sHS2 + β3 = 0 (23.31)

sHS2 − smax,HS2 + β4 = 0 (23.32)

tmin,HS1 − tHS1 + β5 = 0 (23.33)

tHS1 − tmax,HS1 + β6 = 0 (23.34)

tmin,HS2 − tHS2 + β7 = 0 (23.35)

tHS2 − tmax,HS2 + β8 = 0 (23.36)

Lmin,HS1 − LHS1 + β9 = 0 (23.37)

LHS1 − Lmax,HS1 + β10 = 0 (23.38)

Lmin,HS2 − LHS2 + β11 = 0 (23.39)

LHS2 − Lmax,HS2 + β12 = 0 (23.40)

and to the equality constraints that follow from the fact that the βi associated with the

lower and upper boundary of each original box constraint are linearly dependent, i.e.,
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β1 + β2 + smin,HS1 − smax,HS1 = 0 (23.41)

β3 + β4 + smin,HS2 − smax,HS2 = 0 (23.42)

β5 + β6 + tmin,HS1 − tmax,HS1 = 0 (23.43)

β7 + β8 + tmin,HS2 − tmax,HS2 = 0 (23.44)

β9 + β10 + Lmin,HS1 − Lmax,HS1 = 0 (23.45)

β11 + β12 + Lmin,HS2 − Lmax,HS2 = 0 (23.46)

This transformation essentially introduces convexity at the boundaries of the original

optimization problem given that as we approach a boundary, i.e., βi → 0, − ln (βi)→ +∞.

Moreover, the intensity of the added convexity is controlled by the value of the barrier

parameter µ which is gradually reduced to zero during the iterative solution of the modi�ed

optimization problem such that the computed optimal values of the independent variables

converge to those of the original optimization problem.

The steps of the solution algorithm follow. First, determine an initial set of the estimates

of the optimal values of the independent variables x0, choose an initial value for the barrier

parameter κ0 that ensures numerical stability for the particular problem at hand, and set

a convergence threshold e. Then, solve the modi�ed optimization problem described by

Eqs. (23.5)-(23.15) and (23.28)-(23.46) to determine the new estimates xj using the Trust

Region method in conjunction with the Conjugate Gradient method as described in Byrd

et al. [66] and employed in MATLAB® [67]. Next, determine if the maximum value of the

di�erence |xj − xj−1| is greater than the convergence threshold e. If it is, set κj+1 = ακj ,

where 0 < α < 1, and proceed from step two; if not, the computed estimates are deemed

converged. The value of α is heuristically determined and follows from a trade-o� between

convergence speed and numerical stability for lower and higher values of α, respectively.

Table 23.1 provides the baseline and the optimized �n geometries of the heat sinks along

with the computed qHS1 and qHS2. The results indicate that the optimized �n geometries

increased the total heat dissipation of the circuit pack by 5.24%. However, it is emphasized

here that the e�cacy of an optimization algorithm should not be evaluated on the achieved

change of the objective function, given that the baseline is arbitrary and, as such, large

performance improvements can be demonstrated by just starting an optimization from a

poorly designed baseline. To the contrary, the e�cacy of an optimization algorithm should
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Baseline Optimal
sHS1 2.10 mm 3.60 mm
sHS2 2.00 mm 1.90 mm
tHS1 0.40 mm 0.60 mm
tHS2 0.60 mm 0.58 mm
LHS1 60.0 mm 51.5 mm
LHS2 60.0 mm 93.4 mm
qHS1 71.09 W 37.05 W
qHS2 64.79 W 105.95 W

qHS1 + qHS2 135.89 W 143.00 W

Table 23.1: Fin geometries and optimization example results.

be evaluated based upon its speed and accuracy. Regarding speed, the optimization for the

case at hand required less than �ve minutes on a common desktop computer. Regarding

accuracy, the results of the baseline and the optimized geometries were validated using the

general CFD solver FLUENT [58], and the maximum discrepancy was found to be less than

4%. Precisely, the discrepancies for qHS1 and qHS2 for the baseline geometries were found

to be 1.34% and 0.18%, respectively, and for the optimized geometries 1.56% and 3.71%,

respectively. The larger discrepancy of qHS2 for the optimized geometries is because the

tables of PoHSi and NuHSi are not dense enough at that particular parameter space.

Overall, the example demonstrates how CFM can be implemented to perform a rigorous

optimization of an array of heat sinks using an arbitrary objective function and constraints.

However, care should be exercised when using this algorithm for two reasons. The �rst reason

is that the algorithm makes no assumptions and as such both the objective function and the

constraints should be carefully determined for the optimization to be practically successful.

The presented example was selected particularly to demonstrate this issue; despite the fact

that the total heat dissipation of the circuit pack, i.e., (qHS1 + qHS2), increased after the

optimization, qHS1 actually decreased. If such a decrease is unacceptable in a di�erent

scenario, an additional inequality constraint must be included for each heat sink to impose

that the heat dissipation rate of the optimized geometry must be higher than that of its

baseline. The second reason that care should be exercised is that CFM does not guarantee

convergence towards the global optimum. Therefore, the optimization should be executed

starting from di�erent initial values of the independent variables to ensure that the computed

optimum is indeed the global one.
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Chapter 24

Conclusions

We have shown that the hybridization of Computational Fluid Dynamics (CFD), Flow

Network Modeling (FNM), and Multi-Variable Optimization (MVO) enables one to opti-

mize the geometry of an array of longitudinal-�n heat sinks in a laminar �ow. The CFD

part of the algorithm computes dimensionless �ow resistances (Poiseuille number) and di-

mensionless thermal resistances (Nusselt number) for the heat sinks as a function of the

relevant geometric, thermophysical, and external parameters. Then, a circuit pack, e.g., a

blade server, is represented as a FNM, as is common practice. The heat sinks within this

FNM are linked to the precomputed Poiseuille and conjugate Nusselt numbers such that

the FNM may be rapidly solved for arbitrary heat sink geometry. Indeed, the solutions

to the governing nonlinear partial di�erential equations are precomputed, and solving the

FNM only requires the solution to an algebraic system of equations. Thus, the presented

approach preserves much of the accuracy of CFD, within rapidly-soluble FNM models. This,

in turn, makes it realistic to embed FNM models in an MVO to simultaneously optimize

the �n thickness, spacing, height and length in an array of heat sinks, as was shown by an

example. This is not possible to do with a brute-force CFD approach, and not su�ciently

accurate with a conventional FNM approach. Moreover, CFD can be used to further re�ne

the predicted optimal �n geometries from CFM.
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Nomenclature

Acs,HSi heat sink cross-sectional area of �ow, m2

Afp,HSi heat sink foot-print, m2

W heat sink width, m

c vector of equality constraints

cp speci�c heat at constant pressure, J/(kg K)

Dh hydraulic diameter;

(2sH) /(s+H)

F objective function

g vector of inequality constraints

H �n height, m

k thermal conductivity of �uid, W/(m K)

Kf coolant-to-�n thermal conductivity ratio; k/kf

kf �n thermal conductivity, W/(m K)

L heat sink length, m

L̃ dimensionless heat sink length; L/Dh

NuHSi heat sink conjugate Nusselt number de�ned by Eq. 19

p pressure, Pa

pin,i i-th sub-region inlet pressure, Pa
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pout,i i-th sub-region outlet pressure, Pa

PoHSi heat sink Poiseuille number de�ned by Eq. 18

Pr Prandtl number; cpµ/k

qi i-th sub-region heat rate, W

ReDh
Reynolds number based on Dh; (ρw̄Dh) /µ

Rh,i i-th sub-region �ow resistance, Pa/(m3/s)

Rt,i i-th sub-region thermal resistance, ◦C/W

s �n spacing, m

s̃ dimensionless �n spacing; s/Dh

T �uid temperature, ◦C

t �n thickness, m

Tin,i i-th sub-region inlet temperature, ◦C

Tout,i i-th sub-region outlet temperature, ◦C

TB,HSi temperature of heat sink base, ◦C

Tf �n temperature, ◦C

Tmax,i maximum temperature on boundaries of i-th sub-region, ◦C

t̃ dimensionless �n thickness; t/Dh

u velocity component x-direction, m/s

v velocity component y-direction, m/s

Vi i-th sub-region volumetric �ow rate, m3/s

w velocity component z-direction, m/s

w̄ �ow mean velocity, m/s

x vector of independent variables

x lateral coordinate, m
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y vertical coordinate, m

z streamwise coordinate, m

Greek Symbols

β slack variable

κ barrier parameter

µ dynamic viscosity, Pa · s

ρ �uid density, kg/m3
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Appendix A

The following two Subsections of the Appendix provide the necessary information for

the extension of the present analysis to the con�gurations when both plates are textured with

parallel ridges and the ridges are either aligned or staggered, respectively. Each subsection

covers the cases when the ridges of one plate are isothermal and those of the other one are

either adiabatic or isothermal.

Both Plates Textured, Aligned Ridges

When both plates are textured and the ridges are aligned as indicated in Fig. 2.3,

the boundary conditions for the hydrodynamic problem given by Eqs. (3.7) and (3.8) apply

rather than Eq. (3.9) at ỹ = H̃. The computed Poiseuille numbers are presented in Fig. 25.1.

If only the lower plate has isothermal ridges and the upper one has adiabatic ridges, the

boundary conditions for the thermal problem and for the eigenvalue problem are identical to

those in Section 3.2. The expressions for Nul, Nul,fd, Nu, Nufd, Nu and NuUIT are identical

to those given by Eqs. (4.6), (4.7), (4.13), (4.14), (4.16), (4.17) and the reader is referred to

those expressions for their detailed form. The computed Nufd is presented in Fig. 25.2.

If the ridges of both plates are isothermal, the thermal boundary conditions given by

Eqs. (3.20) and (3.21) apply rather than Eq. (3.22) at ỹ = H̃. In terms of the eigen-

value problem, the boundary conditions given by Eqs. (3.26) and (3.27) apply rather than

Eq. (3.28) at ỹ = H̃.

In this case, the expressions for Nul and Nul,fd are identical to those given by Eqs. (4.6)

and (4.7). However, the Nusselt number averaged over the composite interfaces is

(25.1)Nu =
1

2d

∫ d

−d
Nul|ỹ=0 dx+

1

2d

∫ d

−d
Nul|ỹ=H̃ dx

Moreover, following the same steps as in Section 4, it follows that

(25.2)
∫ d̃

1

∂ψi
∂ỹ

∣∣∣∣
ỹ=0

dx̃ =
λi
4
〈ψi, 1〉
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Figure 25.1: fRe vs. φ for selected H/d when both plates are textured and the ridges are
aligned.
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Figure 25.2: Nufd vs. φ for selected H/d when the ridges of one plate are isothermal and
the ridges of the other one are aligned and adiabatic.

Thus, the expressions for the values of the Nusselt numbers take the form

Nu = 16
H̃3

fRe

∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉λi exp (−λiz̃)

∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉 exp (−λiz̃)

(25.3)

Nufd = 16
H̃3

fRe
λ1 (25.4)

Nu = 16
H̃3

z̃fRe
ln




∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉

∞∑
i=1

〈
ψi, T̃in

〉
〈ψi, 1〉 exp (−λiz̃)


 (25.5)

NuUIT = 16
H̃3

z̃fRe
ln

(
1

T̃b

)
(25.6)

The computed Nufd is presented in Fig. 25.3.
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Figure 25.3: Nufd vs. φ for selected H/d when the ridges of both plates are isothermal and
aligned.

Both Plates Textured, Staggered Ridges

When both plates are textured and the ridges are staggered in the transverse direction

by half a pitch as shown in Fig. 2.4, the relevant boundary conditions for the hydrodynamic

problem become

∂w̃

∂ỹ
= 0 for |x̃| < 1, ỹ = 0 (25.7)

w̃ = 0 for 1 < |x̃| < d̃, ỹ = 0 (25.8)

∂w̃

∂ỹ
= 0 for d̃− 1 < |x̃| < d̃, ỹ = H̃ (25.9)

w̃ = 0 for |x̃| < d̃− 1, ỹ = H̃ (25.10)

∂w̃

∂x̃
= 0 for |x̃| = d̃, 0 < ỹ < H̃ (25.11)

The computed Poiseuille numbers are presented in Fig. 25.4. Figure 25.5 presents the

contour plot of the scaled dimensionless streamwise velocity w̃/w̃ for this case.

If only the lower plate has isothermal ridges and the upper one has adiabatic ridges, the

boundary conditions for the thermal problem and for the eigenvalue problem are identical to

those in Section 3.2. The expressions for Nul, Nul,fd, Nu, Nufd, Nu and NuUIT are identical

to those given by Eqs. (4.6), (4.7), (4.13), (4.14), (4.16), (4.17). The computed Nufd is

presented in Fig. 25.6.

When the ridges on both plates are isothermal, the boundary conditions for the thermal

problem become
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Figure 25.4: fRe vs. φ for selected H/d when both plates are textured and the ridges are
staggered by half a pitch.
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Figure 25.5: Contour plot of w̃/w̃ when both plates are textured and the ridges are staggered
by half a pitch for H/d = 4 and φ = 0.3.
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Figure 25.6: Nufd vs. φ for selected H/d when the ridges of one plate are isothermal and
the ridges of the other one are staggered by half a pitch and adiabatic.
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Figure 25.7: Nufd vs. φ for selected H/d when the ridges of both plates are isothermal and
staggered by half a pitch.

∂T̃

∂ỹ
= 0 for |x̃| < 1, ỹ = 0 (25.12)

T̃ = 0 for 1 < |x̃| < d̃, ỹ = 0 (25.13)

∂T̃

∂ỹ
= 0 for d̃− 1 < |x̃| < d̃, ỹ = H̃ (25.14)

T̃ = 0 for |x̃| < d̃− 1, ỹ = H̃ (25.15)

∂T̃

∂x̃
= 0 for |x̃| = d̃, 0 < ỹ < H̃ (25.16)

T̃ = T̃in for z̃ = 0 (25.17)

while those of the eigenvalue problem read

∂ψi
∂ỹ

= 0 for |x̃| < 1, ỹ = 0 (25.18)

ψi = 0 for 1 < |x̃| < d̃, ỹ = 0 (25.19)

∂ψi
∂ỹ

= 0 for d̃− 1 < |x̃| < d̃, ỹ = H̃ (25.20)

ψi = 0 for |x̃| < d̃− 1, ỹ = H̃ (25.21)

∂ψi
∂x̃

= 0 for |x̃| = d̃, 0 < ỹ < H̃ (25.22)

The expressions for Nul, Nul,fd, Nu, Nufd, Nu and NuUIT are identical to those given by

Eqs. (4.6), (4.7), (25.3), (25.4), (25.5) and (25.6). The computed Nufd is presented in

Fig. 25.7.

115



Appendix B

The two-dimensional eigenvalue problem de�ned by Eqs. (3.25)-(3.29) was numerically

solved for multiple values of the aspect ratio and the solid fraction of the domain using a

�nite element method. The solution process is iterative and it was coded in MATLAB®

employing the Partial Di�erential Equation (PDE) Toolbox[68]. The algorithm exploits

the symmetry of the hydrodynamic and the eigenvalue problems with respect to the y axis

in order to increase computational e�ciency; therefore, the boundary conditions given by

Eqs. (3.10) and (3.29) were both modi�ed to apply at the x̃ = 0 and x̃ = d̃ boundaries.

The steps of the algorithm are as follows. First, the half domain is discretized with

an initial number of �nite elements. Next, Eq. (3.6) is solved subject to the new form of

the boundary conditions given by Eqs. (3.7)-(3.9) to determine the two-dimensional velocity

pro�le w̃ (x̃, ỹ) required in Eq. (3.25). Then, Eq. (3.25) subject to the new form of the

boundary conditions (3.26)-(3.28) is solved to determine all the eigenvalues in the interval

0 ≤ λi ≤ UB along with their corresponding eigenfunctions ψi [68]. The upper bound

(UB) was varied depending on the number of the eigenvalues sought. (MATLAB® requires

prescription of the aforementioned interval for the sought λi because it solves the discretized

eigenvalue problem by applying the Arnoldi algorithm to a shifted and inverted version of

the original pencil [68].) Next, mesh re�nement is implemented and the algorithm proceeds

from step two until the change in the computed value of Nufd is less than 0.01% - typically

this required 3.5 × 105 elements that were adaptively placed in regions of sharp gradients.

Finally, the computed eigenfunctions are normalized to satisfy Eq. (3.32).

The computations were validated in four ways. First, computed Poiseuille numbers were

compared against those that follow from an analytical solution for the velocity pro�le by

Philip [15] at a solid fraction φ = 0.25 and various values of H/d as per Fig. 25.8; agreement

was within 0.006%. Secondly, fRe and Nufd were computed in the limit of φ → 1, i.e., for

fully developed �ow between two smooth parallel plates where one is isothermal and the
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Figure 25.8: fRe vs. φ for selected values of H/d when one plate is textured and the other
one is smooth.

other is adiabatic and fRes = 96 and Nufd,s = 4.86 [69]. Agreement was within 0.03% of

fRe and 0.009% of Nufd. Thirdly, the boundary condition at ỹ = H̃ was changed to an

isothermal one and NuUIT and NuUIT were computed at various streamwise locations in the

limit φ → 1. The results were compared with those provided by Shah and London [70].

We �nd that if only 10 terms are used in the series given by Eqs. (4.13) and (4.17), the

di�erence between our results and those provided in [70] were found to be less than 1.4%

and 0.3%, respectively, even down to thermal entrance lengths z∗ = 1.5× 10−4.

Lastly, semi-analytical values of Nufd were compared with those obtained using FLU-

ENT® [58] which is a general three-dimensional computational �uid dynamics (CFD)

solver. This was done for the present case and for those in the Appendix when only one plate

has isothermal ridges. Conditions of hydrodynamically and thermally developed �ow were

imposed by using translational periodic boundary conditions between the inlet and outlet -

for details see [71, 58, 31]. The governing equations were discretized using a second-order

upwind scheme and were solved using the Pressure-Based Coupled algorithm provided by

FLUENT®. The aspect ratio, solid fraction, Reynolds number, and Péclet number were

taken to be H/d = 4, φ = 0.3, Re = 2342.89 and Pe = 100.87, respectively. This value

of the Péclet number was chosen to enable comparisons with the present analysis which

assumes Pe� 1 given that FLUENT® accounts for axial conduction. This study considers

steady �ows only and so the solutions obtained are laminar even at Reynolds numbers as

high as 2342.89. Adaptive mesh re�nement was employed, with the �nal computational

mesh containing as many as 9× 105 hexahedral elements. The computed Nufd for the three

geometries mentioned above are 4.124, 3.836 and 3.836 correct to three decimals, and the
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discrepancy with the predicted values from the analysis are 0.12%, 0.19% and 0.19%. (The

aligned and staggered values are almost identical since H/d is large enough and makes the

alignment unimportant - see Appendix for more details.)

It is important to note that the present analysis produces results for the Nufd in less

than 3 minutes on a desktop computer, whereas FLUENT® requires several hours to con-

verge. Furthermore, it provides the means to evaluate the Nusselt number averaged over

the composite interface and, additionally, the streamwise length of the domain at any z̃,

quantities which are prohibitively expensive to compute using a general CFD code.
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Appendix C

This section provides the necessary information for the extension of the present analysis

to the con�guration when one plate is textured with isothermal parallel ridges and the other

one is smooth and adiabatic, as per Fig. 8.3. The domain in the present case is symmetric

with respect to the yz plane through x = 0 and therefore we further restrict to 0 ≤ x ≤ d

and 0 ≤ y ≤ H.

The relevant boundary conditions for the hydrodynamic problem are comprised by

Eqs. (3.7), (3.8) and

w̃ = 0 for 0 < x̃ < d̃, ỹ = 1/2 (25.23)

∂w̃

∂x̃
= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/2 (25.24)

This hydrodynamic problem has been solved analytically by Philip [15]. However, here,

as in the original case, we solve it numerically (see Appendix B) to facilitate the solution of

the thermal energy equation.

The relevant boundary conditions for the thermal problem are comprised of Eqs. (9.23)-

(9.25) and

∂T̃

∂ỹ
= 0 for 0 < x̃ < d̃, ỹ = 1/2 (25.25)

∂T̃

∂x̃
= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/2 (25.26)

T̃ = 0 for 0 < x̃ < d̃, 0 < ỹ < 1/2, z̃ → −∞ (25.27)

T̃ = 1 for 0 < x̃ < d̃, 0 < ỹ < 1/2, z̃ → +∞ (25.28)

and the two continuity conditions are identical with those provided by Eqs. (9.39) and (9.40)

but they apply for 0 < x̃ < d̃ and 0 < ỹ < 1/2.
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The boundary conditions for the eigenvalue problem are comprised of Eqs. (3.26), (3.27)

and

∂ψ±
∂ỹ

= 0 for 0 < x̃ < d̃, ỹ = 1/2 (25.29)

∂ψ±
∂x̃

= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/2 (25.30)

and for the particular solution are comprised of Eqs. (9.63), (9.64) and

∂T̃p,i

∂ỹ
= 0 for 0 < x̃ < d̃, ỹ = 1/2 (25.31)

∂T̃p,i

∂x̃
= 0 for x̃ = 0, x̃ = d̃, 0 < ỹ < 1/2 (25.32)

where i = Br or ˜̇q.

Then, following the same procedure as in Sections 3.2, 10 and 10.2, it can be shown

that the corresponding expression for the expansion coe�cients is

(25.33)ci =

∫ 1/2

0

∫ d̃
0

[
w̃ + 2λi/

(
fRePe2

)]
ψidx̃dỹ

∫ 1/2

0

∫ d̃
0

[
w̃ + 4λi/

(
fRePe2

)]
ψ2
i dx̃dỹ

The local Nusselt number is given by the expression

Nul± =
d̃ (Fl,1± ∓ Fl,2)

fRe (F3± ∓ F4)
(25.34)

where

Fl,1± =

±∞∑

i=±1

ci exp (−λiz̃)
∂ψi
∂ỹ

∣∣∣∣
ỹ=0

(25.35)

Fl,2 =
Br (fRe)

2

4

∂T̃p,Br

∂ỹ

∣∣∣∣∣
ỹ=0

+ ˜̇q
∂T̃p,˜̇q

∂ỹ

∣∣∣∣∣
ỹ=0

(25.36)

F3± =

±∞∑

i=±1

ci exp (−λiz̃)
∫ 1/2

0

∫ d̃

0

w̃ψidx̃dỹ (25.37)

F4 =

∫ 1/2

0

∫ d̃

0

[
Br (fRe)

2

4
T̃p,Br + ˜̇qT̃p,˜̇q

]
w̃dx̃dỹ (25.38)

The Nusselt number averaged over the composite interface is

Nu± =
F1± ∓ F2

2 (F3± ∓ F4)
(25.39)
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where

F1± =

±∞∑

i=±1

λici exp (−λiz̃)×

∫ 1/2

0

∫ d̃

0

[
w̃ +

2λi

fRePe2

]
ψidx̃dỹ (25.40)

F2 =
d̃

2

(
Br +

2˜̇q

fRe

)
(25.41)

The fully-developed local Nusselt number and the fully-developed Nusselt number av-

eraged over the composite interface when |z̃Pe±| � |z̃| � min
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
are given by

the expressions

Nul,fd,Pe± =
d̃ ∂ψ±1

∂ỹ

∣∣∣
ỹ=0

fRe
∫ 1/2

0

∫ d̃
0
w̃ψ±1dx̃dỹ

(25.42)

and

Nufd,Pe± =
λ±1

2


1 +

2λ±1

fRePe2

∫ 1/2

0

∫ d̃
0
ψ±1dx̃dỹ

∫ 1/2

0

∫ d̃
0
w̃ψ±1dx̃dỹ


 (25.43)

respectively. When |z̃| � max
(
|z̃Br±| ,

∣∣∣z̃˜̇q±

∣∣∣
)
, the expression for the corresponding fully-

developed local Nusselt number and the fully-developed Nusselt number averaged over the

composite interface become

Nul,fd,Br,˜̇q± =
d̃Fl,2
fReF4

(25.44)

and

Nufd,Br,˜̇q± =
F2

2F4
(25.45)

respectively. Moreover, when ˜̇q � Br or ˜̇q = 0, Eq. (25.45) yields

Nufd,˜̇q± =
d̃

2fRe
∫ 1/2

0

∫ d̃
0
w̃T̃p,˜̇qdx̃dỹ

(25.46)

and
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Figure 25.9: Nufd,Pe− vs. φ for Pe = 1 and selected H/d when one plate is textured with
isothermal ridges and the other one is smooth and adiabatic.
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Figure 25.10: Nufd,Pe+ vs. φ for Pe = 1 selected H/d when one plate is textured with
isothermal ridges and the other one is smooth and adiabatic.

Nufd,Br± =
d̃

(fRe)
2 ∫ 1/2

0

∫ d̃
0
w̃T̃p,Brdx̃dỹ

(25.47)

respectively.

Finally, we present the corresponding computed Nufd,Pe±, Nufd,Br±, Nufd,˜̇q± and Nu±

in Figs. 25.9-25.18 for the same prescribed parameters as those in Figs. 11.1, 11.2, 11.4-11.11,

respectively. Overall the results exhibit the same trends with those described in Section 5

with the exception that Nufd,Pe− tends to zero as Pe→∞.
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Figure 25.11: Nufd,Pe− vs. φ for Pe = 0.01, 1, 10 and H/d = 1 when one plate is textured
with isothermal ridges and the other one is smooth and adiabatic.
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Figure 25.12: Nufd,Pe+ vs. φ for Pe = 0.01, 1, 10 and Pe→∞, H/d = 1 when one plate is
textured with isothermal ridges and the other one is smooth and adiabatic.
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Figure 25.13: Nufd,Pe− vs. φ for Pe = 0.01, 1, 10 and H/d = 10 when one plate is textured
with isothermal ridges and the other one is smooth and adiabatic.
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Figure 25.14: Nufd,Pe+ vs. φ for Pe = 0.01, 1, 10 and Pe → ∞, and H/d = 10 when one
plate is textured with isothermal ridges and the other one is smooth and adiabatic.
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Figure 25.15: Nufd,Br± vs. φ for selected H/d when one plate is textured with isothermal
ridges and the other one is smooth and adiabatic.
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Figure 25.16: Nufd,˜̇q± vs. φ for selected H/d when one plate is textured with isothermal
ridges and the other one is smooth and adiabatic.
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Figure 25.17: Nu+ vs. z̃ for φ = 0.01, H/d = 10, Pe = 1 and ˜̇q = 0 when one plate is
textured with isothermal ridges and the other one is smooth and adiabatic; z̃Pe+ = 0.24,
z̃Br+,1 = 5.03 and z̃Br+,2 = 8.34.
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Figure 25.18: Nu+ vs. z̃ for φ = 0.01, H/d = 10, Pe = 10 and ˜̇q = 0 when one plate is
textured with isothermal ridges and the other one is smooth and adiabatic; z̃Pe+ = 0.05,
z̃Br+,1 = 1.65 and z̃Br+,2 = 2.74.
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Appendix D

The non-linear eigenvalue problem presented in Section 9.2.1 was solved numerically

using the Finite Element Method. The algorithm was coded in MATLAB® and results

were obtained for multiple values of the aspect ratio of the domain (H/d), solid fraction of

the ridges (φ) and Péclet number of the �ow.

An overview of the algorithm is presented here and the detailed steps follow. For

each pair of H/d and φ values, the algorithm initially solves the hydrodynamic problem to

compute w̃ and the corresponding fRe. Then, for the prescribed value of Pe, the i − th

eigenvalue of interest (λi) is computed by carrying out iterations on inner and outer loops.

Each iteration of the outer loop (indexed by m) re�nes the spatial discretization of the

domain (mesh) to ensure mesh independence of the �nal results. Each iteration of the

inner loop (indexed by j) computes a re�ned estimate of λi for the current mesh. This is

accomplished by linearizing and solving Eq. (9.33) in the form

∇2ψi,m,j = −λi,m,j
(
fRem

2
w̃m +

λi,m,j−1,est

Pe2

)
ψi,m,j (25.48)

where w̃m and fRem are the previously computed dimensionless velocity and Poiseuille

number, respectively, from the current mesh, and λi,m,j−1,est is an estimate of λi from the

previous (j − 1) inner iteration.1 This approach allows use of linear eigenvalue problem

theory to solve the problem at hand at the expense that the process is iterative and only the

computed eigenvalue of interest λi is valid, i.e., the solution process needs to be repeated if,

for example, λi+1 is also of interest. Moreover, in order to use the same code to calculate

both the positive and negative eigenvalues, Eq. (25.48) is written in the form

∇2ψi,m,j = −λ∗i,m,j
(
i

|i|
fRem

2
w̃m +

λ∗i,m,j−1,est

Pe2

)
ψi,m,j (25.49)

1Note λi,m,j−1,est 6= λi,m,j−1.
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where

(25.50)λ∗i,m,j =
i

|i|λi,m,j

The detailed steps of the solution process are as follows. In the �rst iteration of

the outer loop (m = 1) the domain is discretized with an initial number of �nite ele-

ments. Next, Eq. (9.5) is solved subject to the boundary conditions given by Eqs. (3.7)-

(3.10) to determine w̃m (x̃, ỹ) and, subsequently, fRem required in Eq. (25.49). Then,

Eq. (25.49) subject to the boundary conditions given by Eqs. (3.26)-(3.29) is solved it-

eratively within the inner loop to compute the eigenvalue of interest λi and the corre-

sponding eigenfunction ψi for the current spatial discretization. At each iteration j of

the inner loop, the code �rst uses the Arnoldi algorithm [68] to compute λ∗i,m,j . Then, if

λ∗i,m,j > λ∗i,m,j−1,est, the new estimate is λ∗i,m,j,est = λ∗i,m,j−1,est + β, where β > 0, and if

λ∗i,m,j < λ∗i,m,j−1,est, the new estimate is λ∗i,m,j,est = λ∗i,m,j and β = β/10. The inner loop

stops when
∣∣λ∗i,m,j − λ∗i,m,j−1,est

∣∣ /λ∗i,m,j−1,est ≤ 0.01% and the corresponding value of j is

recorded as j − final. Next, the mesh is re�ned by adaptively placing elements in regions

of sharp gradients and the algorithm proceeds from step two. The outer loop stops when
∣∣∣λ∗i,m,j−final − λ∗i,m−1,j−final

∣∣∣ /λ∗i,m−1,j−final ≤ 0.01%.

The code was validated by computing λi and Nufd,Pe± in the limit φ → 1 for the �rst

ridge con�guration, i.e., for smooth isothermal parallel plates, for di�erent values of the

Péclet number. The results are compared with those available in the literature in Tables

1 and 2. It is noted that due to a di�erent nondimensionalization scheme, the results in

Agrawal [36] and in Deavours [37] correspond to Pe/4 and to Pe/2, respectively, and the

eigenvalues in both cases are multiplied by a factor of 1/16. The discrepancies are less than

0.1%, except for the case of Nufd,Pe− for Pe = 2, where it is 1.17%. This is attributed to the

lack of more signi�cant digits in the Nusselt number provided in [36], since the discrepancy

in the corresponding eigenvalue is 0.02%.
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Pe = 2
Code [37] %

λ1 10.2236 10.2235 0.00
λ−1 15.4358 15.4358 0.00

Pe = 4
Code [36] %

λ1 16.7665 16.7664 0.00
λ−1 37.5717 37.5776 0.02
λ2 67.5856 67.5943 0.01
λ3 117.8576 117.8707 0.01
λ4 168.1265 168.0928 0.02
λ5 218.4054 218.4320 0.01

Table 25.1: Comparison of computed λi for φ→ 1 against literature.

Pe = 0.01
Code [38] %

Nufd,Pe+ 8.1160 8.1155 0.01
Pe = 2

Code [36] %
Nufd,Pe+ 7.7909 7.7960 0.07
Nufd,Pe− 8.9030 8.8 1.17

Table 25.2: Comparison of computed Nufd,Pe± for φ→ 1 against literature.
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Appendix E

The two-dimensional particular problems for T̃p,Br and T̃p,˜̇q presented in Section 9.2.2

were numerically solved in an iterative manner using the Finite Element Method. The

corresponding algorithms were coded in MATLAB® and results were obtained for multiple

values of the aspect ratio of the domain (H/d) and the solid fraction (φ). Recall that T̃p,˜̇q

is identical to w̃ for the �rst ridge con�guration and thus the corresponding problem does

not need to be solved.

The steps of the algorithm for T̃p,Br are as follows. First, the domain is discretized

with an initial number of �nite elements. Next, Eq. (9.5) is solved subject to the boundary

conditions in Eqs. (3.7)-(3.10) to compute w̃ (x̃, ỹ) and then ∇w̃ (x̃, ỹ) that is required in

Eq. (9.62). Then, Eq. (9.62) is solved subject to the boundary conditions in Eqs (9.63)-(9.66)

to compute T̃p,Br (x̃, ỹ) and consequently Nufd,Br±. Next, the mesh is re�ned by adaptively

increasing the element density in regions of sharp gradients of T̃p,Br, and the algorithm

proceeds from step two. The process is repeated until the change in the computed value of

Nufd,Br± is less than 0.01%. The code was validated by computing Nufd,Br± at the limit

φ → 1 for the �rst ridge con�guration, i.e., for smooth isothermal parallel plates, and the

discrepancy with the corresponding result in the literature Nufd,Br±,s = 17.5[39] was found

to be less than 0.05%.

The steps of the algorithm for T̃p,˜̇q are as follows. First, the domain is discretized with

an initial number of �nite elements. Next, Eq. (9.69) is solved subject to the boundary

conditions given by Eqs. (9.63)-(9.66) where i = ˜̇q, to compute T̃p,˜̇q (x̃, ỹ) and consequently

Nufd,˜̇q±. Then, the mesh is adaptively re�ned and the algorithm proceeds from step two.

The process is repeated until the change in the computed value of Nufd,˜̇q± is less than 0.01%.
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Appendix F

This sections contains the computed tabulation of NuB,L̃ for s̃ = [0.5125, 0.6], L̃ =

[5.5, 52.5], t̃ = [0.01375, 0.2625], Pr = 0.71, Ke = 6.56e − 5 and 11.1e − 5, and ReDh
=

[51.68, 7627.46].

NuB,L̃

s̃ L̃ t̃ ReDh
Ke = 6.56e− 5 Ke = 11.1e− 5

0.5125 20.50 0.05125 126.53 65.93 60.28
0.5125 20.50 0.05125 329.29 128.52 108.77
0.5125 20.50 0.05125 623.01 172.45 140.68
0.5125 20.50 0.10250 126.53 60.65 57.72
0.5125 20.50 0.10250 329.29 128.32 115.07
0.5125 20.50 0.10250 623.01 181.24 156.36
0.5125 20.50 0.25625 126.53 44.40 43.48
0.5125 20.50 0.25625 329.29 100.25 95.10
0.5125 20.50 0.25625 623.01 149.03 137.71
0.5125 51.25 0.05125 53.78 13.52 13.37
0.5125 51.25 0.05125 152.18 35.41 34.37
0.5125 51.25 0.05125 304.44 65.98 61.04
0.5125 51.25 0.10250 53.78 11.68 11.62
0.5125 51.25 0.10250 152.18 30.90 30.54
0.5125 51.25 0.10250 304.44 59.51 57.50
0.5125 51.25 0.25625 53.78 8.22 8.20
0.5125 51.25 0.25625 152.18 21.82 21.74
0.5125 51.25 0.25625 304.44 42.72 42.25
0.5250 10.50 0.02625 664.31 151.08 126.14
0.5250 10.50 0.02625 1471.90 190.88 155.72
0.5250 10.50 0.02625 2501.59 221.47 178.38
0.5250 10.50 0.05250 664.31 164.56 145.36
0.5250 10.50 0.05250 1471.90 215.27 185.19
0.5250 10.50 0.05250 2501.59 255.52 215.98
0.5250 10.50 0.13125 664.31 149.94 140.77
0.5250 10.50 0.13125 1471.90 203.49 187.43
0.5250 10.50 0.13125 2501.59 248.30 225.34

Table 25.3: Computed NuB,L̃ for di�erent values of s̃, L̃, t̃, ReDh
, Ke, and Pr = 0.71.
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NuB,L̃

s̃ L̃ t̃ ReDh
Ke = 6.56e− 5 Ke = 11.1e− 5

0.5250 21.00 0.05250 121.73 35.86 35.20
0.5250 21.00 0.05250 316.63 80.04 75.47
0.5250 21.00 0.05250 598.86 117.71 107.47
0.5250 21.00 0.10500 121.73 31.13 30.86
0.5250 21.00 0.10500 316.63 71.70 69.54
0.5250 21.00 0.10500 598.86 108.52 103.11
0.5250 21.00 0.26250 121.73 21.95 21.87
0.5250 21.00 0.26250 316.63 51.56 50.92
0.5250 21.00 0.26250 598.86 79.62 77.89
0.5250 26.25 0.02625 359.17 75.63 68.55
0.5250 26.25 0.02625 882.92 121.32 103.85
0.5250 26.25 0.02625 1608.20 149.95 125.26
0.5250 26.25 0.05250 359.17 74.75 70.93
0.5250 26.25 0.05250 882.92 127.66 115.73
0.5250 26.25 0.05250 1608.20 162.87 144.20
0.5250 26.25 0.13125 359.17 62.59 61.29
0.5250 26.25 0.13125 882.92 112.42 107.40
0.5250 26.25 0.13125 1608.20 147.71 139.04
0.5250 52.50 0.05250 51.68 6.58 6.56
0.5250 52.50 0.05250 146.33 17.53 17.49
0.5250 52.50 0.05250 292.89 34.41 34.08
0.5250 52.50 0.10500 51.68 5.66 5.65
0.5250 52.50 0.10500 146.33 15.05 15.03
0.5250 52.50 0.10500 292.89 29.65 29.55
0.5250 52.50 0.26250 51.68 3.96 3.96
0.5250 52.50 0.26250 146.33 10.55 10.54
0.5250 52.50 0.26250 292.89 20.80 20.78

Table 25.4: Computed NuB,L̃ for di�erent values of s̃, L̃, t̃, ReDh
, Ke, and Pr = 0.71.
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NuB,L̃

s̃ L̃ t̃ ReDh
Ke = 6.56e− 5 Ke = 11.1e− 5

0.5500 5.50 0.01375 2272.67 175.89 146.31
0.5500 5.50 0.01375 4699.40 221.03 180.54
0.5500 5.50 0.01375 7627.46 256.72 207.78
0.5500 5.50 0.02750 2272.67 201.60 176.61
0.5500 5.50 0.02750 4699.40 261.45 223.55
0.5500 5.50 0.02750 7627.46 309.80 260.73
0.5500 5.50 0.06875 2272.67 204.70 190.86
0.5500 5.50 0.06875 4699.40 275.42 251.83
0.5500 5.50 0.06875 7627.46 335.44 302.12
0.5500 11.00 0.02750 611.90 94.88 88.20
0.5500 11.00 0.02750 1355.18 128.81 117.25
0.5500 11.00 0.02750 2302.55 156.92 140.62
0.5500 11.00 0.05500 611.90 92.14 88.49
0.5500 11.00 0.05500 1355.18 127.53 120.80
0.5500 11.00 0.05500 2302.55 157.74 147.79
0.5500 11.00 0.13750 611.90 76.48 75.17
0.5500 11.00 0.13750 1355.18 107.31 104.79
0.5500 11.00 0.13750 2302.55 134.24 130.38
0.5500 13.75 0.01375 1559.48 114.99 99.52
0.5500 13.75 0.01375 3331.16 148.02 125.03
0.5500 13.75 0.01375 5525.11 174.40 145.07
0.5500 13.75 0.02750 1559.48 124.82 113.91
0.5500 13.75 0.02750 3331.16 165.64 147.78
0.5500 13.75 0.02750 5525.11 199.54 175.07
0.5500 13.75 0.06875 1559.48 120.22 115.15
0.5500 13.75 0.06875 3331.16 163.95 154.91
0.5500 13.75 0.06875 5525.11 201.92 188.63

Table 25.5: Computed NuB,L̃ for di�erent values of s̃, L̃, t̃, ReDh
, Ke, and Pr = 0.71.

132



NuB,L̃

s̃ L̃ t̃ ReDh
Ke = 6.56e− 5 Ke = 11.1e− 5

0.5500 27.50 0.02750 333.41 39.71 38.80
0.5500 27.50 0.02750 815.93 71.05 67.35
0.5500 27.50 0.02750 1481.73 93.37 86.97
0.5500 27.50 0.05500 333.41 36.99 36.58
0.5500 27.50 0.05500 815.93 67.82 65.94
0.5500 27.50 0.05500 1481.73 90.47 87.03
0.5500 27.50 0.13750 333.41 29.86 29.74
0.5500 27.50 0.13750 815.93 55.63 54.99
0.5500 27.50 0.13750 1481.73 74.96 73.74
0.6000 6.00 0.01500 1953.91 110.52 102.2
0.6000 6.00 0.01500 4051.44 148.93 135.06
0.6000 6.00 0.01500 6587.88 181.46 162.14
0.6000 6.00 0.03000 1953.91 112.34 107.49
0.6000 6.00 0.03000 4051.44 154.31 145.63
0.6000 6.00 0.03000 6587.88 190.93 178.19
0.6000 6.00 0.07500 1953.91 102.97 101.02
0.6000 6.00 0.07500 4051.44 143.44 139.77
0.6000 6.00 0.07500 6587.88 179.62 174.01
0.6000 15.00 0.01500 1333.70 64.30 61.19
0.6000 15.00 0.01500 2857.62 88.19 82.69
0.6000 15.00 0.01500 4749.35 108.84 100.83
0.6000 15.00 0.03000 1333.70 63.75 62.08
0.6000 15.00 0.03000 2857.62 88.56 85.47
0.6000 15.00 0.03000 4749.35 110.47 105.81
0.6000 15.00 0.07500 1333.70 57.45 56.82
0.6000 15.00 0.07500 2857.62 80.48 79.28
0.6000 15.00 0.07500 4749.35 101.15 99.28

Table 25.6: Computed NuB,L̃ for di�erent values of s̃, L̃, t̃, ReDh
, Ke, and Pr = 0.71..
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Nomenclature

LB lower bound of λi

UB upper bound of λi

i indicator

j indicator

m indicator

est estimate

s smooth plates
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