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ABSTRACT   

Work in piezoelectric vibration energy harvesting has typically focused on single member cantilevered structures 
with transverse tip displacement at a known frequency, taking advantage of the optimal coupling characteristics of 
piezoceramics in the 3-1 bending mode. Multi-member designs could be advantageous in delivering power to a load 
in environments with random or wide-band vibrations.  
 
The design presented in this work consists of two hinged piezoceramic (PZT-5A) beams x-poled for series 
operation. Each beam measures 31.8mm x 12.7mm x 0.38mm and consists of two layers of nickel-plated 
piezoceramic adhered to a brass center shim. The hinge device consists of two custom-machined aluminum 
attachments epoxied to the end of a beam and connected using a 1.59mm diameter alloy steel dowel. A stainless 
steel torsion spring is placed over the pin and attached to the aluminum body to provide a restoring torque when 
under rotation. The design is modeled using the piezoelectric constitutive equations to solve for voltage and power 
for a set of electromechanical boundary conditions. Experimental measurements on the design are achieved by 
bolting one end of the structure to a vibration shaker and fixing the other to a rigid framework of industrial 
aluminum framing material. For a given frequency of vibration, power output of the structure can be obtained by 
measuring voltage drop across a resistive load. 
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1. INTRODUCTION 
 
The use of piezoelectric structures to harvest energy from ambient vibrations is an enticing solution to increase the 
lifespan of low-power sensors in remote locations.  Previous work in the field has focused primarily on bimorph 
piezoceramic cantilevers. These structures are well-suited for energy harvesting in environments in which vibration is 
transverse to the tip of the cantilever bimorph, as they take advantage of the optimal coupling characteristics of 
piezoceramic materials in the 3-1 bending mode.  Many authors have presented rigorous mathematical models for these 
structures under base excitation with thorough experimental validation [2,8].   

While well suited for harvesting energy from transverse vibrations at constant frequency, cantilever beam energy 
harvesters do not perform well under random vibration.  Cantilever structures suffer extensively from the “Gain-
Bandwidth Dilemma,” whereby the response of the structure is largely attenuated at frequencies other than resonance 
[7].  Solutions have been proposed to widen the bandwidth of vibration energy harvesters by implementing active 
control mechanisms [6,9,14].  Active control mechanisms seek to vary the resonant frequency of cantilever energy 
harvesters through a variety of methods, including moving the location of a proof mass or varying device stiffness 
through electrostatic comb drives in response to time-varying vibrations [9].  While generally effective, the added 
complexity and power requirements required for these systems often renders their utility less than optimal for power-
stringent energy harvesting applications. Solutions that forgo use of active components in favor of passive ones are thus 
very attractive for low power and ultra-low power systems.   
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The constitutive equations can be expressed in tensor strain-charge form as, 
 
 D E dε σ= +   (1.1) 
 
 

Where  is electric displacement ,  is the permittivity of the piezoelectric material ,  is the electric 

field , d is the piezoelectric coupling coefficient 
C
N

⎛
⎝⎜

⎞
⎠⎟

, and  is stress . 

 
For the plane stress case of a thin piezoelectric harvester in pure bending, the constitutive equation takes the form  
 
  (1.2) 
         
The stress in the piezoelectric layer can be expressed as a function of the Young’s Modulus, radius of curvature, and 
distance from the neutral bending axis, such that  
 

  (1.3) 

  
where is the Elastic Modulus of the layer , is the radius of curvature , is the distance to the torque 

neutral axis  from the origin, and  is the distance to the center of the ith layer from the origin. For simplicity, 

the term  will henceforth be represented by the more compact term . 

 

The curvature mC  is related to the radius of curvature by and , where w  is the 

deflection of the piezoelectric layer perpendicular to the axial direction. The longitudinal stress can therefore be 
expressed as  

  (1.4) 

 
Inserting equation (1.4)into (1.2) yields [13] 

  (1.5) 

 
To measure the electrical response of a piezoelectric harvester subject to prescribed boundary conditions, a load of 
known impedance Z  is often wired in series with its positive and negative surfaces and the voltage drop across its two 
leads measured. This setup can be modeled as the simple circuit shown in Figure 3. 
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The Euler Bernoulli beam expression is now a 4th order linear, ordinary differential equation, for which the 
homogeneous solution is known 
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For each bimorph, a set of three boundary conditions can be defined, two at the clamped end for displacement and slope 
and one at the hinged end for moment.  For the first bimorph these are, 
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Where  X1 and X2 are the forced normal deflections of the beams at either end,  κ is the constant force torsional spring 
torque, and YI1 and YI2 are the effective stiffenss of the beams.  The term Θ0 can be expressed as 
 
 0 1 2' ' 'θ π θ θΘ = − + +  
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Where θ’ is the natural rest angle of the spring and θ1’, θ2’ are the inner rest angles as defined in Figure 7.  A set of two 
compatibility conditions can be defined for the displacement of the hinge, as translation of each beam must be equal at 
that point, 
 
 

 1 1 2 2

1 1 2 2
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1 1 1 1 2 2 2 2

cos( ') sin( ') cos( ') sin( ')

sin( ') cos( ') sin( ') cos( ')
x L x L

x L x L

L W L L W

L W h L W

θ θ θ θ

θ θ θ θ
= =

= =

− = − +

+ = − + +  (3.8)
 

 
 

where the various lengths are taken from Figure 7, and the angles are the undeflected angles, also taken from Figure 7.  
Finally, taking force balances on the hinge element, including two new variables to represent the axial forces carried by 
the beams, F1 and F2,. 
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where m is the mass of the hinge fixture, and v1 and v2 are the shear at the end of the beams, which are related to the third 
derivative of the deflection, 
 

 1 1

2 2

3
1

1 3
1

3
2

2 3
2

x L

x L

Wv YI
dx

Wv YI
dx

=

=

∂
=

∂
=

 (3.10) 

 
 

Finally, the complete electromechanical system can be solved for the 12 unknowns,   
 
 [ ]1 2 3 4 5 6 7 8 1 2 1 2c c c c c c c c V V F F  
 

where the algebraic equations are  (3.1), (3.6), (3.7), (3.8), and (3.9).  This results in a 12 by 12 linear algebraic system to 
be solved at each frequency ω. 

3. EXPERIMENTAL SETUP AND RESULTS 

3.1 Single Bimorph Experimental Setup 

To assess the validity of the theoretical analysis presented in Section 2, a bimorph piezoelectric beam with a brass center 
shim was purchased from Piezo Systems, Inc. and tested.  The piezoelectric bimorph consisted of two layers of PZT-5A 
adhered to a brass center shim, as seen in Figure 5. The PZT-5A was fully Nickel-electroded to allow for charge 
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collection across the entire surface.   The two layers are wired for series connection and oppositely poled, as modeled in 
Figure 6. 

 

 

 

Table 1. Dimensions of  bimorph and relevant piezoelectric parameters [11] 

Length 31.8 mm 
Width 6.4 mm 
Thickness Piezo .14 mm 
Thickness Shim .10 mm 
Youngs Modulus Piezo 50 GPa 
Youngs Modulus Shim 40 GPa 
Piezoelectric Coupling Coefficient ( 31d ) 

-190
pC

N
 

Relative Permittivity of Piezo 1800 
 

To test the frequency response of the bimorph, a clamping device was designed and fabricated using Type 6061 
Aluminum Alloy. The clamping device consisted of two pieces of equal dimensions. A small groove with the same 
width as the piezoelectric bimorph was milled out of the bottom piece, and the bimorph was placed in the groove and 
epoxied in place.  The top and bottom pieces were screwed together, securing the piezoelectric bimorph.  To prevent 
against electrical shorting between the bimorph and the aluminum, the clamping device was coated with 1.5 microns of 
Parylene-C, an insulating polymer, using vapor phase deposition techniques. 

The clamping mechanism was attached to an impedance head for a B& K Type 1809 Vibration Exciter.  The clamping 
mechanism was capable of rotating with respect to the impedance head so that the angle between the clamp and the 
vibration exciter could be changed between tests, but could be tightened by two screws and fixed during tests.  For 
testing of the single cantilever bimorph, the clamping device was fixed perpendicular to the vibration exciter. 

3.2 Results and Discussion 

A frequency sweep was taken on the bimorph using data acquisition hardware and National Instruments LabVIEW 2009.   
A B&K Type 8001 accelerometer was placed between the shaker and the adaptive head to measure the acceleration at 
the base of the cantilever bimorph.  Two wire leads were soldered to either side of the Nickel-plated PZT surfaces and 
the voltage across the bimorph was measured.    

The frequency response of the bimorph from both the experimental and analytical cases was taken over a range of 
frequencies.  The ratio of voltage response from the piezo in Volts to acceleration of the clamped base in m/s2 was 

plotted in decibels as 
10 220 log

/

Piezo Voltage in V

Base Accleration in m s
⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  The device was swept through a frequency band of 10 Hz – 

680 Hz to produce the wide-band response presented in Figure 9.   

The first resonance of the piezoelectric bimorph was observed at ~233 Hz, with an amplitude of approximately -1.3 dB.  
This is equivalent to a voltage sensitivity of  8.46 V/g.  Power output is not reported, as power is being dissipated across 
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Figure 8. Connection between accelerometer, adaptive head, and clamping mechanism. 
 

 

Figure 9. Theoretical vs. Experimental response of series-connected piezoelectric bimorph from 10 Hz – 680 Hz 
 

3.2  Two Bimorph Experimental Setup 

The two bimorph energy harvester is composed of two of the bimorphs used in section 3.1 connected by a hinge.  Each 
bimorph is clamped at one of its ends, with the other attached to the hinge, two small pieces of machined aluminum--
each the width of a single piezo--with a 1.59mm diameter aluminum dowel and torsion spring connecting them.  The 
aluminum pieces were required in order to provide a large epoxy contact surface for the bimorphs and to restrict out-of-
plane motion.  The aluminum portions of the apparatus—those that came in contact with the PZT—were coated with 1.5 
microns of Parylene-C to prevent electrical shorting. 
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3.2 Two Bimorph Results and Discussion 

The two bimorph energy harvester was tested in a flat-flat configuration with the same data acquisition hardware and 
processing software discussed in Section 3.1.2.  The flat-flat configuration is characterized by the inner angles 1 'θ and 

2 'θ in Figure 7 set to zero.  In this configuration, the energy harvester  is subject to a base excitation from the shaker at 

one end and fixed at the other, and  the torsion spring rotates in accordance with the curvature of the bimorph at their 
attachment point.  The voltage across each bimorph is measured as well as the base acceleration of the bimorph attached 
to the shaker and the ratio of piezo voltage in volts to acceleration of the clamped base in m/s2 is plotted in decibels as 

10 220 log
/

Piezo Voltage in V

Base Accleration Exciter Bimorph in m s
⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

The wideband frequency response of the two bimorph device is similar in shape to the single bimorph device, but with 
several key differences.  First, at low frequencies, the two bimorph device has a larger amplitude response that decreases 
at a steep ~10 dB/decade.  At approximately 100 Hz, a small peak occurs similar to the one seen in the single bimorph, 
but with half the amplitude.  The response flattens slightly but still decreases at ~2 dB/decade before hitting another 
small 5 dB peak at approximately 180 Hz.  This peak was not observed in the case of the single bimorph.  At 250 Hz, a 
strong peak is observed in both bimorphs, with a 15 dB amplitude for the bimorph attached directly to the shaker and a 5 
dB amplitude for the other.  The response flattens after this, until the final peak is reached at approximately 500 Hz.  
Here, the peak amplitude for both bimorphs is approximately 10 dB.  Of additional note is a small 2 dB peak in the 
bimorph clamped to the rigid aluminum framework at approximately 350 Hz.  

Analysis of this data, in particular the differentiation between peaks caused by the response of the test structure and 
those of the actual energy harvester, is ongoing. 

 

Figure 12. Response of both bimorphs in two bimorph device to base excitation from 10 Hz – 1000 Hz 
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4. CONCLUSION 

Piezoelectric bimorph energy harvesters are widely studied and thoroughly understood [2,8].  Cantilever bimorph energy 
harvesters are the most common devices found in the literature, but suffer extensively from the “Gain-Bandwidth 
Dilemma” [7].  Generator arrays and clamped-clamped beams are alternative structures that have been shown to widen 
the bandwidth of energy harvesters [5, 7, 12, 15].  The energy harvester presented in this paper is a novel two-bimorph 
device with a connecting hinge.  The hinge consists of a dowel pin and torsion spring that produces an additional 
moment on the bimorphs in response to rotation.  To derive theoretical expressions for the two-bimorph device, a single 
bimorph cantilever is first modeled and tested.  Good agreement is achieved for the single cantilever bimorph between 
model and experiment, although power dissipated in the measurement load is paltry without optimization.  The two-
bimorph device is modeled as an extension of the single bimorph device using Euler-Bernoulli Beam Theory and Circuit 
Laws.  Modeling of the device is ongoing.  The two-bimorph device is subject to a frequency sweep and the voltage 
response is obtained for known base excitation.  Analysis of the response is ongoing, with particular interest in 
differentiating between features caused by the test structure and those caused by the energy harvester. 
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