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1 Introduction
The universe is extraordinarily diverse. Even the matter on the surface of our planet takes a seem-
ingly infinite number of forms, and can thus be measured in several different ways. Since matter
follows set laws, physical quantities have mathematical relationships between them, which them-
selves are mysterious and often surprising. The simplest and most ubiquitous of these relationships
can be calculated only with addition and multiplication. A body in free fall travels a distance pro-
portional to the square of the time elapsed since the moment it started falling. Light, sound, and
the force of gravity all diminish proportional to the square of the distance from their source. We
measure space with area and volume, which are respectively the square and cube of length. In fact,
addition and multiplication are the only kind of functions that computers can actually calculate,



and everything else is simply estimates. These functions are called polynomials, and their general
properties have been studied for thousands of years.

A polynomial in a single variable is a function of the form:

(1) P (x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n

where a0, a1, . . . , an and the variable x are all real numbers, which means they lie on the number
line and may be positive or negative. We may also assume that an 6= 0, because if an = 0, you
could then define n to be one less. When given an input x, the output P (x) is calculated using the
right-hand side of the equation. The relevant question is: for which inputs x does P (x) = 0? If
we could identify those x for any polynomial, then by varying the value of a0 we can determine
exactly when P (x) takes any given value. The values of x for which P (x) = 0 are called the roots
of P (x).

When n = 2 in Equation 1, the polynomial P (x) is called a quadratic. Methods for finding
the roots of quadratics can be found in Babylonian and Egyptian tablets dating back to 2000 BC,
in Greek literature from 300 BC, in Chinese mathematical treatises circa 200 BC, and in the rev-
olutionary work of the Indian mathematician Brahmagupta circa 600 AD. The quadratic formula,
given to us in its present day form by Descartes, but is arguably the most famous formula in all of
mathematics:

Theorem 1.1. (Quadratic formula) If a, b, c, and x are real numbers such that ax2 + bx + c = 0
and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a

The ancient mathematicians relied heavily on geometry to solve, and even to state, these alge-
braic equations. As the relationship between the visual and the symbolic deepened together with
the knowledge of polynomials, their study came to be known as algebraic geometry.

Though developments in mathematics made algebraic manipulations easier to perform, polyno-
mials remained elusive and mysterious. In the 16th century, explicit (albeit cumbersome) formulas
for the roots of P (x) when n = 3 or 4 were discovered by Italian mathematicians Tartaglia and
Cardano, but it wasn’t until the early 18th century that Évariste Galois proved that there was no
such formula in the case that n ≥ 5.

In Equation 1, we assumed that the coefficients a0, a1, . . . , an and the variable x were all real
numbers–points on the number line. This sometimes leads to situations where P (x) returns a
nonzero value for any real number input. For example, the function P (x) = x2 + 1 never equals 0
for any real number x. This is because such an x would have to satisfy x2 = −1, but both positive
and negative real numbers become positive when squared. In order to make sense of this, a new
number system was necessary to understand the behavior of polynomials. In the 17th century,
René Descartes was the first to call these new numbers imaginary, which led to the introduction
of the symbol i to denote

√
−1. An imaginary number is any real number times i, and the sum of

a real number and an imaginary number is called a complex number.
Although it seems as if introducing a new number to an impossible problem is a futile and

meaningless action, the complex numbers have found a wide variety of useful applications through-
out science and engineering. In fact, the complex numbers can be thought of as a completely
geometric object–if the real numbers lie on a number line, then the complex numbers lie on the
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complex plane, where the point (x, y) on the plane represents the complex number x + yi. So
impossible quantities can in fact be useful without really ”existing,” just like with negative num-
bers. The introduction of complex numbers was a huge leap in the field of algebraic geometry
(and mathematics in general), and paved the way for subsequent generations of mathematicians to
develop more and more sophisticated and abstract tools to understand how polynomials behaved.

If we take Equation 1, but instead assume that the coefficients are all complex numbers (often
denoted by z), we arrive at a surprising and useful property:

Theorem 1.2. If P (z) is a polynomial of degree n with complex coefficients a0, a1, . . . , an, then
there exists a list of n complex numbers α1, α2, . . . , αn such that

P (z) = a0 + a1z + a2z
2 + . . .+ anz

n = an(z − α1)(z − α2) . . . (z − αn)

This is the first of the many great miracles that make algebraic geometry such an alluring and
mysterious subject.

We only have to add and subtract using one extra symbol i, where a + bi = 0 only when both
a and b are 0. This is often referred to as the fundamental theorem of algebra. Since these early
developments, the tools used to understand polynomials have been continuously refined and the
field of algebraic geometry remains perhaps the most developed field of mathematics.

The polynomials we have considered so far only have one input variable and only return 0 for a
finite number of inputs. When we allow for more input variables, the solution sets to polynomials
become higher-dimensional objects, such as surfaces and solids. There is a special class of surfaces
called Riemann surfaces with the property that each Riemann surface is the solution set to a
complex polynomial, which makes their study quite fruitful in gaining insight to the inner workings
of polynomial equations. One effective method of better understanding the geometry of these
surfaces is to immerse them in an abstract space called projective space, the geometry of which is
already well understood.

We must then ask, for a given Riemann surface, how many ways does it fit into projective
space? It turns out that most curves are fairly predictable and follow general rules about which
ones can be placed in projective space. However, certain Riemann surfaces have more symmetries
than others and can therefore be placed in projective space in unexpected ways. The field of study
concerned with identifying these surfaces and studying their properties is called Brill-Noether
theory.

2 Discrete Graphs
For a Riemann surfaceX , elements of the free abelian group on the points ofX are called divisors,
and are used to encode a specific kind of data about which meromorphic functions exist on X .
This data is encoded in an equivalence relation on the group of divisors. For each meromorphic
function f : X → C, the divisor div(f) associated to f keeps track of the locations and orders
of the zeros and poles of f . Two divisors are equivalent if X admits a meromorphic function
whose associated divisor is equal to their difference. Tropical geometry gives us the tools to make
powerful connections between the properties of Riemann surfaces, discrete graphs, and metric
graphs. It turns out that these three wildly different classes of objects are highly analogous, and
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several concepts that guide our study of Riemann surfaces can be extended to the theory of graphs,
including the concept of a divisor.

Divisors on discrete graphs and metric graphs encode information in the same way–through an
equivalence relation. The stark simplicity of this construction makes it useful to consider the idea
of a divisor on an abstract set. This treatment not only avoids needless repetition of definitions,
but also highlights the minimal amount of information (only one choice, in fact) needed to totally
determine the structure of the divisors on any object. The approach we take here is loosely based
on the progression in the Yale course [JP17].

2.1 Divisors on sets
Let S be a set, assumed to be nonempty unless otherwise specified.

Definition 2.1. A divisor D on S is a function D : S → Z that returns 0 for all but a finite number
of elements of S. For an element s ∈ S, the value D(s) is called the degree of D at s.

Divisors on S may be conveniently expressed as a formal sum of elements of S, so that:

D =
∑
s∈S

D(s)s

For example, for s, t ∈ S, the divisor D = 2s − 4t has degree 2 at s, degree −4 at t, and degree
0 everywhere else. In fact, under pointwise addition the divisors form the free abelian group on
S, denoted Div(S). When dealing with an arbitrary choice of underlying set, we will omit the
argument of Div and other associated objects.

Definition 2.2. The degree deg(D) of a divisor D on a set is the sum of the degrees of D over all
elements, and it is clearly seen that deg : Div→ (Z,+) is a group homomorphism. For an integer
k, let Divk denote the set of divisors of degree k. Note that Div0 is a subgroup of Div.

Definition 2.3. For a set S, choosing a subgroup Prin ≤ Div0(S) gives S a divisor structure.
Elements of Prin are called principal divisors.

It is interesting that a nuanced study of divisors arises from such a simple choice to be made.
We now examine the way that Prin is defined on Riemann surfaces, the example that first motivated
the study of divisors.

Example 2.4. In the theory of compact Riemann surfaces, divisors are used to encode information
about which meromorphic functions exist on a given surface. Recall that for a compact Riemann
surface X , a meromorphic function f : X → C is holomorphic everywhere on X but a finite set
of points, but is not a ”function” in the strictest sense. Not only does it diverge to infinity at certain
points called the poles of f . However, every such point is isolated, which means that each point
of X has a punctured neighborhood on which f is defined and holomorphic. For any point p, this
allows us to express f via a Laurent series about p–an infinite sum that can express any function
that is holomorphic on an annulus (or punctured circle, or punctured plane) encircling p.

f(z) =
∞∑

n=−∞

an(p− z)n where an =
1

2πi

∮
γ

f(z)dz

(z − p)n+1
.
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Here, γ is a rectifiable loop going counterclockwise around p exactly once that is contained in an
annulus on which f is holomorphic. This allows us to define the order of f at p, the smallest
exponent with a nonzero coefficient in the Laurent expansion of f , denoted ordf (p) = min{n :
an 6= 0}. The Laurent series of f contains no negative terms (and is thus a Taylor series) exactly
when f is holomorphic at the point p. Furthermore, the order of f at such p is negative when
p is a pole, positive when p is a zero, and 0 otherwise [Mar73]. It is possible that a function is
holomorphic around an isolated point, but the order does not exist because an infinite number of
an 6= 0 for n < 0. These points are called essential singularities, and occur when |f(z)| has no
limit as z approaches p. We exclude these cases from the definition of meromorphicity [Mir95, pp.
24].

It is a convenient fact that for a meromorphic function on a compact Riemann surface, the
orders of all zeros and poles sum to zero [Mir95]. Since the set of zeros and poles is finite, we may
thus imbue X with a divisor structure by setting the subgroup Prin ≤ Div0(X) to the image of
the map div : M (X) → Div0(X) from the group M (X) of meromorphic functions on X to the
group of divisors given by

div(f) =
∑
p∈X

ordf (p)p ⇔ div(f)(p) = ordf (p).

The set of zeros and poles is finite. So a divisor D ∈ Div(X) is principal if and only if X admits
a meromorphic function f such that D = div(f).

Definition 2.5. For a set with divisor structure Prin, the Picard group Pic is the quotient Div /Prin
and the Jacobian group Jac is the quotient Div0 /Prin. The equivalence class of a divisor D is
denoted [D]. If [D] = [D′] for some D,D′ ∈ Div, then we write D ∼ D′ and say D and D′ are
equivalent. That is, D ∼ D′ if and only if D −D′ ∈ Prin.

We have described several groups at this point, but they are all very closely related. The
following commutative diagram illustrates their relationship, with ↪→ denoting inclusion, and φ
denoting the map that takes a divisor D to its equivalence class [D].

Prin Div0 Jac

Div Pic

Z

φ

φ

deg
deg

Definition 2.6. A divisor is effective if it has nonnegative degree at all points, and the set of
effective divisors is denoted Div+. A divisor class [D] ∈ Pic is effective if it contains an effective
divisor, and the set of effective divisor classes is denoted Pic+ ⊆ Pic.

Remark 2.7. The symmetric groups Sym(k) of permutations of k objects under composition acts
on Sk by permuting the coordinates of each element, so that

σ · (p1, . . . , pk) = (pσ(1), . . . , pσ(k))

5



for σ ∈ Sk and (p1, . . . , pk) ∈ Sk. If we take the quotient of Sk by this action, we obtain
Symk(S). Since the elements of Symk(S) are uniquely expressed as unordered k-tuples of el-
ements p1, . . . , pk ∈ S, and pi = pj is possible when i 6= j, that means that the elements of
Symk(S) are multisets of k elements of S. A multiset is a mathematical object with the same
properties as a set, except that it may contain multiple copies of the same element. Effective
divisors are the same, since they are also unordered sums of points of S.

Definition 2.8. The rank of a divisor D is defined as:

rk(D) = max{k ∈ Z : [D − E] ∈ Pic+ ∀E ∈ Div+
k }

and if no such maximum exists, we set rk(D) = −1.

Although the definition of rank is rather difficult to parse, it can be thought of as encoding the
effectiveness of a divisor (actually divisor class, as we will see). A divisor is of rank at least k if it
remains equivalent to an effective divisor no matter what combination of k points (effective divisor
of degree k) is subtracted from it. In other words, for any multiset Hp1, . . . , pkI of points in S, all
divisors D of rank at least k have D ∼

∑
i pi + E for some effective E.

Notice that the rank increases with the size of Prin; that is, for two divisor structures Prin and Prin′

with respective rank functions rk, rk′, if Prin ⊆ Prin′, then rk(D) ≤ rk′(D) for all D ∈ Div(S).
This is simply because the larger Prin is, the fewer divisor classes there are in Pic(S), so the more
divisors are equivalent to effective divisors.

Proposition 2.9. Equivalent divisors have equal rank and degree.

Proof. Let D1 ∼ D2. Since Prin ⊆ Div0, deg(D1) = deg(D2). Let rk(D1) = k, and let
E ∈ Div+

k be an effective divisor of degree k, so that there exists E ′ ∈ Div+ with D1 −
E − E ′ ∈ Prin. Since D1 − D2 ∈ Prin and Prin is a subgroup, D2 − D1 ∈ Prin and thus
(D2 − D1) + (D1 − E − E ′) = D2 − E − E ′ ∈ Prin. Therefore, rk(D2) ≥ rk(D1). If we
simply switch D1 and D2 in the above argument, we then obtain rk(D1) ≥ rk(D2), so we must
have rk(D1) = rk(D2).

Since equivalent divisors have equal rank and degree, that allows us to adopt a useful notation
for all of the sets and groups we have dealt with so far.

Definition 2.10. For r, d ∈ Z and A = Div,Div+,Pic,Pic+

1. Ad is the set of degree d divisors (or divisor classes).

2. Ard is the set of degree d and rank r divisors (or divisor classes).

2.2 Preliminaries of Graphs
A graph G is an ordered pair (V (G), E(G)) of sets of vertices and edges respectively. We often
simply write V for V (G). The graphs considered in this paper are loopless (each edge connects two
distinct vertices); however, there may still be multiple edges between two vertices. The number
of edges that meet at a vertex v is called the valency of v and is denoted val(v). For two vertices
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v, w ∈ V (G), let vw ⊆ E(G) denote the set of edges with endpoints v and w. A path is a finite
sequence of edges e1, . . . , en such that there exist distinct vertices w0, w1, . . . , wn−1, wn satisfying
ei ∈ wi−1wi for each 1 ≤ i ≤ n. Such a path is said to connect the vertices w0 and wn. A path
where w0 = wn (but all the other vertices remain distinct) is called a cycle. All graphs considered
in this paper are also connected by assumption, which means that any two vertices are connected
by at least one path.

Definition 2.11. A divisor on a graph G is a function D : V (G)→ Z.

There are several equivalent ways to conceptualize the equivalence relation of divisors on dis-
crete graphs. In order to gain a thorough understanding of this elementary concept, we will first
consider the point of view optimized for developing our intuition. This will give us easier access to
the other two points of view, one optimized for performing explicit calculations, and one optimized
for generalizing to metric graphs and beyond.

As is the tradition in the purely combinatorial setting in which this theory was developed, we
begin by thinking of divisors as expressing the number of ”chips” on each vertex of the graph.
We then define the way that chips may move around the graph that preserve the equivalence of
divisors. Vertices with a negative number of chips may be thought of as being ”in debt,” or having
”antichips.” Under this interpretation, chips and antichips can annihilate with each other, and also
be generated in chip-antichip pairs.

Definition 2.12. A chip-firing move is made by selecting any vertex v and ”firing” one of the chips
on v down each edge incident to v, preserving the total number of chips. A divisor is principal if
it is chip-firing equivalent to 0.

Figure 1: Three chip-firing moves

We now wish to verify that the principal divisors form a subgroup of Div0(G). Since chip-
firing moves preserve the total number of chips, principal divisors always have degree 0, so Prin ⊆
Div0(G). Furthermore, since the order in which the chips are fired doesn’t matter, for two principal
divisors P and P ′ obtained by to two sequences of chip firing moves, P + P ′ corresponds to the
concatenation of these sequences. This property highlights how the free abelian group Div(G)
is straightforward to work with, since it is a direct sum of |V | copies of Z. Finally, what is the
inverse of a chip-firing move? In fact, firing every vertex besides some vertex v has the exact
opposite effect as firing just v. Each pair of vertices not containing v exchanges a chip for each
edge connecting them–with no net loss or gain–and each vertex adjacent to v gives one of its chips
to v.
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While this definition provides invaluable intuition, we must use more precise and powerful
notation to learn about the algebraic properties of divisors. Recall that divisors may be expressed
as formal sums of points with integer coefficients.

Proposition 2.13. The subgroup Prin(G) ≤ Div(G) of principal divisors on a graph G is the
image of the map div : Div(G)→ Div0(G) defined by

div(D) =
∑
v,w∈V

|vw|(D(w)−D(v))v ⇔ div(D)(v) =
∑
w∈V

|vw|(D(w)−D(v)).

Here, |vw| denotes the number of edges connecting vertices v and w.

Proof. For a divisor consisting of a single vertex v,

div(v) =
∑

w,w′∈V

|vw|(v(w)− v(w′))w =
∑

w,w′∈V


0 for w,w′ = v

−ew,w′v for w = v, w′ 6= v

ew,w′v for w 6= v, w′ = v

0 for w,w′ 6= v

=

(∑
w∈V

|vw|w

)
−

(∑
w∈V

|vw|v

)
=

(∑
w∈V

|vw|w

)
− val(v)v.

This is consistent with the definition of a chip-firing move–the term
(∑

w∈V |vw|w
)

means that for
each vertex w adjacent to v, degree (chips) equal to |vw| is moved to w, and consequently val(v)
chips are subtracted from v. Furthermore, for any two divisors D,D′ ∈ Div(G),

div(D +D′) =
∑

v,w∈V (G)

|vw|((D +D′)(w)− (D +D′)(v))v

=

 ∑
v,w∈V (G)

|vw|(D(w)−D(v))v

+

 ∑
v,w∈V (G)

|vw|(D′(w)−D′(v))v

 = div(D) + div(D′).

This amounts to the property of div : Div(G) → Div0(G) being a group homomorphism. So if
a divisor can be transformed into another by a sequence v1, v2, . . . , vn of chip-firing moves, then
div (

∑
i vi) gives their difference.

While this definition is rather difficult to parse, writing divisors using formal sums is unam-
biguous and easy to manipulate algebraically. This exactness makes this method of characterizing
principal divisors especially helpful for encoding their algebraic properties. Since divisors are
expressed as formal sums of points, manipulating divisors algebraically using chip-firing often in-
volves switching around the domains over which sums are calculated. As such, we will introduce
some notation to facilitate these calculations.

Definition 2.14. For a subset A of a set S with a divisor structure, denote by A the complement
of A in S.
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Remark 2.15. For a subset A ⊆ S, any divisor that can be expressed as the sum of the values of a
function f : S × S → Div(A) over the domain S × S may be decomposed via a simple rule:

(2)
∑
v,w∈S

f(v, w) =

(∑
v,w∈A

f(v, w)

)
+

∑
v∈A
w∈A

f(v, w) + f(w, v)

+

∑
v,w∈A

f(v, w)

 .

It is often the case that we wish to fire each vertex in a given subset A ⊆ V exactly once. We
thus introduce notation for this maneuver:

Definition 2.16. The firing divisor divA of A is the divisor obtained as a result of firing each
vertex in A exactly once. We obtain the explicit formula via Equation 2:

(3) divA = div

(∑
v∈A

v

)
=
∑
v∈A
w∈A

|vw|(w− v) ⇔ divA(v) =

{
−
∑

w∈A |vw| v ∈ A∑
w∈A |vw| v ∈ A

.

Definition 2.17. The outdegree divisor outdegA of A is the divisor with degree 0 outside of A,
and for v ∈ A has degree equal to the number of edges between v and points in A. That is,

outdegA =
∑
v∈A
w∈A

|vw|v ⇔ outdegA(v) =

{∑
w∈A |vw| v ∈ A

0 v ∈ A
.

Remark 2.18. It is a useful to note that for any subset A ⊆ V , the outdegree divisor outdegA
is effective and divA = outdegA− outdegA. Furthermore, if v ∈ A ⊆ B, then outdegA(v) ≥
outdegB(v).

Example 2.19. A graph G is a tree if for each pair of vertices v, w ∈ V (G), there is exactly one
path connecting v and w. For all trees T , the Jacobian group Jac(T ) is trivial.

Let T be a tree with vertices x, y ∈ V (T ), and let e ∈ xy be an edge. Let X ⊆ V (T ) (resp.
Y ) be connected component of x (resp. y) in the subgraph of T obtained by removing e. Since
T is a tree, e is the unique edge connecting X and Y . The divisor divX is principal by definition,
and divX = outdegX − outdegX = y − x. Therefore, any two adjacent points x, y have x ∼ y.
Since T is connected, for any two points v, w ∈ V (T ) there is a path from v to w passing through
points p1, . . . , pn for some n. We then have v ∼ p1 ∼ . . . ∼ pn ∼ w, which means that every pair
of vertices is equivalent as divisors. This is the same as saying that the set of divisors of the form
D = v − w is contained in Prin(T ). Since this set is a generating set for the group Div0(T ), that
means Div0(T ) = Prin(T ) and Jac(T ) = Div0(T )/Prin(T ) = 1.

2.3 Dhar’s Algorithm and Reduced Divisors
To determine the rank of a given divisor, we must now develop a method to test whether or not
a divisor remains effective when you subtract a given point. In fact, there is a general method
of moving as much degree as possible to a given vertex while keeping the divisor effective. The
resulting divisor is called reduced. In this section, we give two conditions for a divisor to be
reduced, prove their existence and uniqueness, and finally use reduced divisors to prove some
general results about graphs.
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Definition 2.20. For a graph G and a vertex q ∈ V (G), a divisor D is q-reduced iff:

1. D(v) ≥ 0 for all vertices v 6= q, and

2. each nonempty subset A ⊆ V (G)\{q} contains a point v such that outdegA(v) > D(v).

In the language of chip-firing, the second condition is simply stating that firing all vertices in A
will make some vertex other than q go into debt. Notice that the property of being q-reduced does
not depend on the degree of the divisor at q. That is, if a divisor D is q-reduced, then so is D + nq
for all n ∈ Z.

In fact, there is an algorithm for determining whether a divisor D is q-reduced. It is called
Dhar’s burning algorithm, introduced first by Deepak Dhar in [Dha90], and first used in the
setting of divisor theory on graphs by Ye Luo in [Luo11]. The effectiveness of this algorithm
is truly remarkable–not only does it determine if a divisor is q-reduced, it constructively locates
the ”loose chips” that can be pulled closer to q. It even generalizes naturally to the case of metric
graphs. Dhar’s algorithm is defined recursively. We think of each chip on V (G)\{q} as a firefighter
that is able to stave off the flames of exactly one adjacent edge. We then set a fire at the vertex q.
The fire then spreads until the whole graph burns, or a team of firefighters halts its advance. That
is:

1. The vertex q burns.

2. If a vertex burns, all adjacent edges burn.

3. A vertex v burns if D(v) is less than the number of adjacent burning edges.

Definition 2.21. The set of burned vertices after n steps of Dhar’s algorithm is ∆q
n(D) ⊆ V (G)

(or simply ∆n) given by

∆0 = {q} and ∆n+1 = {v ∈ V (G) : outdeg∆n
(v) > D(v)} ∪∆n.

Furthermore, we denote N = min{n : ∆n = ∆n+1} and δ(v) = min{n : v ∈ ∆n} for vertices
v ∈ ∆N .

Proposition 2.22. The whole graph burns if and only if D is q-reduced.

Proof. Suppose the whole graph burns, and let A ⊆ V \{q} be nonempty, and let ∆n = ∆q
n(D) as

written above. We may define a function

δ(v) = max{n : v 6∈ ∆n},

and let {v1, . . . , vn} be an enumeration of V (G) such that v1 = q and δ(vi) ≤ δ(vj) for any indices
i < j. Let v ∈ A be the vertex with lowest index in A and let n = δ(v), so that A ⊆ ∆n and thus

D(v) < outdeg∆n
(v) ≤ outdegA(v),

guaranteeing that D is q-reduced.
Otherwise, let A ⊂ V \{q} be the set of unburnt vertices. By virtue of being unburnt, each

vertex v ∈ A has D(v) ≥ outdegA(v), which means that

D(v) + divA(v) = D(v)− outdegA(v) ≥ 0.
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Furthermore, each vertexw ∈ A\{q} hasD(w)+divA(w) = D(w)+outdegA(w) ≥ 0. Therefore,
D + divA is effective outside q, and D is not q-reduced.

In fact, a strong result that we can prove about q-reduced divisors which will guide our study
from this point onward. The following three proofs are based on [BN06, Proposition 3.1].

Lemma 2.23. Each divisor D is equivalent to a divisor effective outside q.

Proof. For n ≥ 0, let Qn = {w ∈ V |d(q, w) ≤ n} be the set of vertices whose distance from q is
at most n. SinceG is finite and connected, we may let N be the smallest integer withQN = V (G).
For 1 ≤ n ≤ N , each vertex inQn\Qn−1 is adjacent to at least one vertex inQn−1 and 0 vertices in
Qn. By Proposition 13, div(Qn−1) = outdeg(Qn−1) − outdeg(Qn−1), so div(Qn−1) has positive
nonzero degree on Qn\Qn−1 and degree 0 on Qn. Therefore, given a divisor D effective on Qn,
there is some positive integer m such that D′ = D + div (m(Qn−1)) is effective on (Qn\Qn−1) ∪
Qn = Qn−1. Since each divisor D is effective on Qn = ∅, we may repeat this process N times to
obtain a divisor effective on Q0 = V (G)\{q}.

Lemma 2.24. Each divisor D is equivalent to a q-reduced divisor.

Proof. By the preceding lemma, we may select a divisor D effective outside of q. Let A1, . . . , An
be an enumeration of the nonempty subsets of V \{q}. If for each index i there is a vertex v ∈ Ai
with outdegA(v) > D(v), then D is q-reduced. Otherwise we cycle through the indices and
for each index i, fire all points in a set Ai if the resulting divisor remains effective outside of
q. Each iteration of this process sends degree to q (since G is connected), but since q itself is
never chip-fired, the sum

(∑
v∈V \{q}D(v)

)
decreases with each iteration, and since it must remain

nonnegative, this procedure terminates with a q-reduced divisor.

Proposition 2.25. There is exactly one q-reduced divisor in each divisor class.

Proof. Let D ∼ D′ be two q-reduced divisors with D 6= D′, so that D′ = D + div(C) for some
non-constant divisor C, chosen so that C(q) > C(v) for some v. Let m be the minimum of C, and
let A = {v ∈ V : C(v) = m} ⊂ V \{q} be the set on which C achieves its minimum. For each
v ∈ A,

outdegA(v) =
∑
w∈A

|vw| ≤
∑
w∈A

|vw|(C(w)− C(v)) =
∑
w∈V

|vw|(C(w)− C(v)) = div(C)(v).

This means that

0 ≤ D(v) = D′(v)− div(C)(v) ≤ D′(v)− outdegA(v).

Since D′(v) ≥ outdegA(v) is true for all v ∈ A, then D′ can not be q-reduced. Therefore there
can be at most one q-reduced divisor in each divisor class, and by the preceding lemma, there is
exactly one.

This is an essential result, and an invaluable way to characterize the Picard group Pic(G) of
divisor classes.

Proposition 2.26. A divisor class is effective if and only if its q-reduced representative is effective.
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Let D be q-reduced. If D is effective, then [D] is by definition effective. Now assume that D
is not effective, let C ∈ Div(G) be any divisor, and let A ⊆ V be the set at which C achieves its
maximum, so that div(C)(v) ≤ − outdegA(v) for all v ∈ A. If q ∈ A, then (D + div(C))(q) <
0. If q 6∈ A, since D is q-reduced, there is some v ∈ A with outdegA(v) > D(v), so (D +
div(C))(v) < 0, so D + div(C) is not effective.

2.4 Riemann-Roch for Sets
This section uses results and proofs from [BN07, Section 2], in which Matthew Baker and Ser-
guei Norine use the theory of divisors on abstract sets to formulate a condition equivalent to the
Riemann-Roch formula. They then show that graphs satisfy this condition using the results con-
cerning reduced divisors.

Definition 2.27. For a divisor D, define the plus-degree (resp. minus-degree) as the sum of the
degrees of D at all points where it is positive (resp. negative). That is:

deg+(D) =
∑
v∈V

D(v)>0

D(v) and deg−(D) =
∑
v∈V

D(v)<0

D(v).

Definition 2.28. In this section, let N denote Div−1
g−1(S), as in Definition 2.10. We say a divisor

structure Prin on a set S is special if for all D ∈ Div(S), there exists a divisor ν ∈ N such that
exactly one of the two divisor classes [D] and [ν −D] is effective. z

Lemma 2.29. For divisor D ∈ Div(S), if S has a special divisor structure then rk(D) = r, where

r = min
D′∈[D]
ν∈N

{deg+(D′ − ν)} − 1.

Proof. If rk(D) < r, then there exists an effective divisor E ∈ Div+
r such that [D − E] is not

effective. By assumption, there is then a divisor ν ∈ N such that ν −D+E is equivalent to some
effective E ′ ∈ Div+. However, this means that E − E ′ + ν = D′ ∼ D, and

deg+(D′ − ν) = deg+(E − E ′) < deg(E) + 1 = min
D′∈[D]
ν∈N

{deg+(D′ − ν)},

which is a contradiction. Therefore, rk(D) ≥ r.
Now, let D′ ∈ [D] and ν ∈ N be divisors such that deg+(D′ − ν) = r + 1. Therefore, there

exists an effective divisor E ∈ Div+
r+1 such that D′− ν = E−E ′ for another effective E ∈ Div+.

However, this means that D − E ∼ ν − E ′, and since [ν] and thus [ν − E ′] are ineffective, so is
[D − E]. Therefore, rk(D) ≤ r.

Theorem 2.30. For a set S with special divisor structure and a divisor K ∈ Divg−1
2g−2(S),

(4) rk(D)− rk(K −D) = deg(D)− g + 1

for all D ∈ Div(S).

12



Proof. For ν ∈ N and D′ ∈ [D], write ν = K − ν and D′ = K −D′. Since ν −D′ = D′− ν, we
then have:

deg+(D′−ν)−deg+(D′−ν) = deg+(D′−ν)−deg+(ν−D′) = deg(D′−ν) = deg(D)−g+1.

Since deg(ν) = g−1 and rk(K) = g−1, if ν ∼ E for someE ∈ Div+
g−1(S), thenK−ν = ν ∼ E ′

for some E ′ ∈ Div+, which is a contradiction. Therefore, rk(ν) = −1, which means that ν ∈ N .
By Lemma 2.25, we may choose D′1, D

′
2 ∈ [D] and ν1, ν2 ∈ N such that

deg+(D′−ν) ≥ deg+(D′1−ν1) = rk(D) and deg+(D′−ν) ≥ deg+(D′2−ν2) = rk(K−D)

for all ν ∈ N and D′ ∈ [D]. We may then combine the inequalities above to obtain

deg+(D′1 − ν1)− deg+(D′ − ν) ≤ rk(D)− rk(K −D) ≤ deg+(D′ − ν)− deg+(D′2 − ν2),

Finally, taking D = D1 and ν = ν1 on left hand side and next taking D = D2 and ν = ν2 on the
right hand side gives us the necessary bounds to complete the proof.

2.5 Riemann-Roch for Discrete Graphs
An orientation on a graph G is a function O : E(G)→ V (G) that ”orients” each edge e ∈ E(G)
to one of its endpoints O(e). A graph together with an orientation is called a directed graph.
A path e1, . . . , en connecting vertices w0 and wn with ei ∩ ei+1 = {wi} is a directed path if it
satisfiesO(ei) = wi for each 1 ≤ i ≤ n. A cycle satisfying the same condition is called a directed
cycle. An orientation is acyclic if it contains no directed cycles. For an orientation O, the dual
orientation O is the orientation obtained by reversing the direction of each edge. A source (resp.
sink) is a vertex with all adjacent edges oriented outward (resp. inward). Given an orientation
O with no sinks, the finiteness of V (G) allows us to extend each directed path until it becomes a
directed cycle. Therefore each acyclic orientation O has at least one sink, and if we reverse the
orientation, the same argument also guarantees at least one source.

Definition 2.31. For an orientation O, the indegree divisor indegO counts the number of edges
oriented towards each vertex. That is:

indegO =
∑
e∈E

O(e) ⇔ indegO(v) = |O−1(v)|

Definition 2.32. For an orientationO on a graph G, the moderator νO ∈ Div(G) ofO is a divisor
defined as:

νO = indegO−
∑
v∈V

v ⇔ νO(v) = indegO(v)− 1

Proposition 2.33. For each acyclic orientationO, the moderator νO has degree g−1 and rank−1.

Proof. Since each edge is oriented towards precisely one vertex,

deg(vO) = deg(indegO) + deg

(∑
v∈V

v

)
= |E| − |V | = g − 1.
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We will now show that νO + div(D) is not equivalent to an effective divisor for all D ∈ Div(G).
Let A ⊆ V be the set at which D achieves its maximum, so that div(D)(v) ≤ − outdegA(v)
for all v ∈ A. The orientation O is still acyclic when restricted to A, and must therefore have a
source vertex v ∈ A, so that indegO(v) ≤ outdegA(v). Finally, (νO + div(D))(v) ≤ indegO(v)−
outdegA(v)− 1 < 0, so [vO] is not effective.

Lemma 2.34. If D1, D2 are two divisors of nonnegative rank, rk(D1 +D2) ≥ rk(D1) + rk(D2).

Proof. Let divisor D1 and D2 have nonnegative ranks k1 and k2 respectively. For each effective
divisor E of degree k1 + k2, decompose E into two effective divisors E1 and E2 of degrees k1

and k2 respectively, so that E = E1 + E2. By assumption, there exist effective E ′1, E
′
2 such that

D1 ∼ E1 +E ′1 and D2 ∼ E2 +E ′2. Let E ′ = E ′1 +E ′2, so that D1 +D2 ∼ E1 +E2 +E ′1 +E ′2 =
E + E ′.

Proposition 2.35. For each divisor D, there is an orientation O such that [νO −D] is effective if
and only if [D] is not effective.

Proof. By Proposition 2.22, we may choose D to be the unique q-reduced representative of its
divisor class. If [D] is effective, then rk(D) ≥ 0. If [νO−D] were effective, then rk(D− νO) ≥ 0,
which by the previous lemma implies 0 ≤ rk(D) + rk(νO −D) ≤ rk(νO) = −1, a contradiction.

Conversely, in the case that [D] is not effective, D(q) ≤ −1 by Proposition 2.23. Since D
is q-reduced, if we run Dhar’s algorithm, the entire graph will burn. We will now construct an
acyclic orientationO by orienting edges in the direction that the fire spreads. To make this precise,
let ∆n = ∆q

n(D) as in Definition 2.21 and Proposition 2.22, again letting {v1, . . . , vn} be an
enumeration of V (G) such that v1 = q and δ(vi) ≤ δ(vj) for any indices i < j. Define an
orientation O by O(e) = vmax{i,j} for each edge e ∈ vivj , an orientation clearly seen to be acyclic.
For each vi 6= q, since {vj : j ≥ i} ⊆ ∆δ(vi)−1, we have

indegO(vi) =
∑
j<i

|vivj| = outdeg{vj :j≥i}(vi) ≥ outdeg∆δ(vi)−1
(vi) > D(vi),

which means indegO(v) − 1 = νO ≥ D(vi). Since D(q) ≤ −1 = νO(q), we know that νO − D
and thus [νO −D] is effective.

Definition 2.36. For a graph G, the canonical divisor KG is given by:

KG =
∑
v∈V

(val(v)− 2)v ⇔ KG(v) = val(v)− 2.

Proposition 2.37. The canonical divisor KG has degree 2g − 2 and rank g − 1.

Proof. Let E ∈ Div+
g−1(G) be an effective divisor of degree g − 1, and assume for purposes of

contradiction that [KG − E] is not effective. Then by Proposition 2.32, there exists an orientation
O such that [vO −KG + E] is effective. Since indegO(v) + indegO(v) = val(v), we have [vO −
KG+E] = [E−νO], and since deg(E−νO) = 0, that means that vO ∼ E, which is a contradiction
since rk(νO) = −1.

Theorem 2.38. (Riemann-Roch) For all divisors D on a graph G:

rk(D)− rk(KG −D) = deg(D) + 1− g.
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Proof. By Propositions 2.31 and 2.32, G has a special divisor structure. The theorem then follows
from Propositions 2.34 and 2.27.

3 Metric Graphs
In the previous section, we looked at the equivalence of divisors on discrete graphs from two
equivalent points of view: as arrangements of chips that could be transformed into one another via
sequences of chip-firing moves, and as the equivalence relation induced by a subgroup of Div0(G),
which was defined as the image of a map div : Div(G) → Div0(G). While these are certainly
useful ways to conceptualize the equivalence of divisors, there is another viewpoint that most
accurately foreshadows the generalization to metric graphs, and even to Riemann surfaces.

In all three settings, the set of principal divisors is formulated as the image of a map div from
the group of rational functions to the group of degree 0 divisors. For discrete graphs, rational
functions have the same definition as divisors, so to avoid confusion no distinction between them
was made in the previous section. However, they actually encode less information than divisors.
We can condense the information by examining the kernel of div, which would be 0 were it an
injective map. In the case of discrete graphs, a divisor C is constant if and only if div(C) = 0 if
and only if F is a constant divisor; that is, if it has the same degree at each vertex. We can then
define the set Rat(G) of rational functions on G as

Rat(G) =
Div(G)

1GZ
where 1G =

∑
v∈V

v.

In fact, a rational function f on a discrete graph is in fact completely determined by the integer
slope it takes on each edge, provided that it has the same slope on multiple edges. This information
requires an orientation to be expressed.

3.1 Properties of Metric Graphs
Definition 3.1. A metric graph is the metric space obtained by gluing together a finite number of
closed real intervals at a finite set of points.

While this is arguably the simplest definition of a metric graph, we may think of a metric graph
Γ as finite underlying graphG together with a function ` : E(G)→ R>0 assigning to each edge a
positive real length, so that Γ is obtained by identifying each edge e of G with an interval of length
`(e) and gluing the intervals together at the vertices of G. As in the previous section, all metric
graphs are assumed to be connected.

It is immediately noticeable that there is not a unique underlying discrete graph for a given
metric graph. As we move from the world of the discrete to that of the continuous, we treat each
point on the interior of an edge in Γ as a vertex of valency 2. For two discrete graphs G,G′, we
call G′ a subdivision of G if G′ can be obtained by introducing new vertices into edges of G. Two
graphs can be the underlying graph for the same metric graph Γ if and only if they have a common
subdivision.

As the name would suggest, metric graphs are metric spaces with the distance between two
points defined as the length of the shortest path between them. Now that we have defined the set
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Γ, we may imbue it with a divisor structure. As we mentioned before, this requires the notion of a
rational function on Γ.

Definition 3.2. A rational function on a metric graph Γ is a continuous function f : Γ → R that
is linear with integer slope at all but a finite number of points of Γ. Let Rat(Γ) denote the set of
rational functions on Γ.

Definition 3.3. For a rational function f on a metric graph Γ, we define the order ordx(f) of f at
a point x ∈ Γ as the sum of the incoming slopes of f at x. The group Prin of principal divisors
on Γ is the image of the map div : Rat(Γ)→ Div0(Γ) given by:

div(f) =
∑
x∈Γ

ordx(f)x ⇔ div(f)(x) = ordx(f).

Given here are two of the most useful properties of metric graphs, both of which were first
proven in [Luo11].

Theorem 3.4. (Riemann-Roch for metric graphs) For a metric graph Γ, each divisor D ∈ Div(Γ)
satisfies

rk(D)− rk(KΓ −D) = deg(D)− g + 1,

where the canonical divisor KΓ is equal to
∑

v∈Γ(val(v)− 2)v.

Definition 3.5. For a divisor D ∈ Div(S) and a subset A ⊆ S, the A-rank of D is defined as:

rkA(D) = max{k ∈ Z : [D − E] ∈ Pic+(S) ∀E ∈ Div+
k (A)}

and if no such maximum exists, we set rkA(D) = −1. The setA is rank-determining if rkA(D) =
rk(D) for all divisors D ∈ Div(S).

Theorem 3.6. Let Γ be a metric graph with underlying graph G. Then V (G) ⊆ Γ is a rank-
determining set. [Luo11, Theorem 1.5]

While we will not examine the proofs of these theorems in this paper, we will rely on the
following two results in the final sections.

Definition 3.7. For two distinct points x and y on a set with a divisor structure, the torsion order
m(x, y) of x and y is defined as

m(x, y) = min{m ∈ Z>0 : mx ∼ my},

with m(x, y) = 0 if no such minimum exists.

Proposition 3.8. On a metric graph Γ, two points x, y ∈ Γ have x ∼ y if and only if there is a
unique path connecting x and y.

Proof. If there is a unique path γ connecting x and y, the function f with slope 1 on γ, orientation
x → y, and slope 0 everywhere else is well defined with div(f) = y − x. Conversely, let γ1 and
γ2 be two distinct geodesics connecting x and y. Let γx, γy be the connected components of x and
y respectively in γ1 ∩ γ2, and let x0 and y0 be the endpoints of γx and γy farthest from x and y, so
that x ∼ x0 and y ∼ y0. Let f be a function such that div(f) = y0 − x0. There are multiple paths
to y0 emanating from x0, but div(f)(x0) = −1, so f must have a slope of 1 on one of the paths but
a slope of 0 on the rest. But since supp(div(f)) = {x0, y0}, f cannot change slope on these paths
and would have to be discontinuous at y0, so we have arrived at a contradiction.
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Proposition 3.9. Let x and y be two distinct points in the metric graph Γ, let P be the set of all
paths from x to y, and let

Γ′ =
⋃
p∈P

p ⊆ Γ,

be the subgraph of Γ made up of all paths in P . Then the torsion order of x and y is the same in Γ
and Γ′.

Proof. Let x and y have torsion order m and m′ in Γ and Γ′ respectively, let f ∈ Rat(Γ) be a
rational function with div(f) = m(y − x), and let A be the subgraph of Γ obtained by removing
each edge of Γ′ and vertex v ∈ Γ′ with outdegΓ′(v) = 0. Each connected component U ⊆ A is a
subgraph of Γ that meets Γ′ at a unique point u, since if it met Γ′ at two points, it would constitute
another path from x to y. Now since f |U ∈ Rat(U), we have deg(div(f |U)) = 0, so if f is
nonconstant on U , there must be at least two points v, w ∈ U at which div(f |U)(v), div(f |U)(w) 6=
0. Since div(f) = m(y − x) however, and we may not have both x, y in any such U , this forces f
to have slope zero outside of Γ′. So there is in fact a bijection

{f ∈ Rat(Γ) : div(f) = m(y − x)} ⇔ {f ′ ∈ Rat(Γ′) : div(f ′) = m(y − x)},

so that m = m′.

3.2 A Single Loop
In this section, let Γ be the metric graph of a single loop, so that points x, y are connected by clock-
wise and counterclockwise edges, chosen such that the clockwise edge is longer. Since scaling the
loop has no effect on the divisor structure, we set the length of the shorter edge to 1, and denote by
` ≥ 1 the length of the longer clockwise edge. Furthermore, for a ∈ R, we denote by wa the point
a counterclockwise distance

d = a− (`+ 1)

⌊
a

`+ 1

⌋
from x so that x = w0, y = w1, and wa = wb if a ≡ b mod `+ 1.

By Dhar’s algorithm, a divisor is q-reduced for any point q ∈ Γ if it has at most 1 degree on
points other than q.

The following proposition is adapted from [Pfl17].

Proposition 3.10. On the single loop Γ above,

m(x, y) =

{
α + β if ` ∈ Q
0 if ` 6∈ Q

.

where α/β = ` and gcd(α, β) = 1.

Proof. The torsion order m(x, y) is the smallest positive integer m such that there is a rational
function f : Γ → Z such that div(f) = m(y − x). This function is completely determined by
its slopes α, β ∈ Z on the counterclockwise and counterclockwise edges respectively, oriented
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x → y. Since f is continuous, the slopes must satisfy α = f(y) − f(x) = β`. If ` 6∈ Q, then no
such integers exist and m(x, y) = 0. Otherwise, the torsion order is given by

m(x, y) = min

{
α + β : ` =

α

β

}
.

This is achieved when α/β is a fraction in lowest terms.

Remark 3.11. On the single loop Γ above, if ` is rational, let α/β express ` as a fraction in lowest
terms. The expression for the torsion order of x and y is then:

m(x, y) = α + β = β(`+ 1).

Furthermore, if ` + 1 | k for some integer k, we may then express ` as a quotient of two integers
(k − n)/n, where n = k/(` + 1) ∈ Z. This means β | n, and thus β(` + 1) = m | k. So for all
integers k, we in fact have (`+ 1 | k)⇔ (m | k).

The following proof is based on [CDPR10 Example 2.1]. Here we offer explicit constructions
of each equivalence, and expand the scope by removing the genericity condition, which ensures
`+ 1 - βk.

Proposition 3.12. On the single loop Γ above, let D = kx + u be an x-reduced divisor where
k ≥ 0 and u is either the zero divisor or u = wa for a ∈ (0, ` + 1), and let m = m(x, y) be the
torsion order of x and y. Let D′ be the unique y-reduced divisor equivalent to D. We then have

D′ =


ky if u = 0 and m | k
(k − 1)y + w1−k if u = 0 and m - k
(k + 1)y if u = wk+1

ky + wa−k otherwise

.

Proof. First, we consider the case that m | k. By Dhar’s algorithm, ky + u ∼ D is a y-reduced
divisor no matter the value of u. We can simplify this to (k + 1)y if and only if u = w1 = y.

In the case that m - k and u = 0. The distance going clockwise from x to w1−k is

d = 1− k − (`+ 1)n, where n =

⌊
1− k
`+ 1

⌋
∈ Z.

We obtain D + div(f) = (k − 1)y + w1−k, and we know that w1−k 6= y, because if d = 1 then
`+ 1 | k, which by the remark above contradicts our assumption that m - k.

In the case that m - k and u = wa for some a ∈ (0, `+ 1). The distance going clockwise from
x to wa−k is

d = a− k − (`+ 1)n where n =

⌊
a− k
`+ 1

⌋
∈ Z.

We obtain D + div(f) = ky + wa−k, where wa−k = y if and only if d = 1, which is true exactly
when a ≡ k+1 mod `+1. Since a 6= 0, this is not possible in the case that k+1 ≡ 0 mod `+1.
If d = a then k ≡ 0 mod `+ 1, again contradicting our assumption that m - k.

It can quickly be seen by Dhar’s algorithm that the resulting divisors are y-reduced.

Since this proof is central to the subsequent material, the explicit formula for the rational func-
tion f in each separate case is given at the end of the paper. The separate cases depend on which
edge of the loops and in which order the points in question fall.
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3.3 Chains of Loops
In this section, let the metric graph Γ be a chain of g loops, denoted γ1, . . . , γg. The loops are
joined at vertices v1, . . . , vg−1. By [Luo11, Theorem 1.5], for any choice of v0 ∈ γ1\{v1} and
vg ∈ γg\{vg−1}, the set {v0, . . . , vg} will be a rank-determining set. We therefore choose v0 and vg
to lie in the midpoints of γ0 and γg respectively. Since the divisor structure of a single loop remains
invariant under scaling, by Proposition 3.9, we may set the length of the shorter edge in γi to 1,
and denote the length of the longer edge by `i > 1 for each i ∈ {1, . . . , g}, so that `1 = `g = 1.
Furthermore, for a ∈ R and i ∈ {1, . . . , g}, we denote by wia ∈ γi the point a counterclockwise
distance

d = a− (`i + 1)

⌊
a

`i + 1

⌋
from vi−1 so that vi−1 = wi0, vi = wi1, and wia = wib if and only if a ≡ b mod `i + 1.

Definition 3.13. The torsion profile of a chain of loops g loops Γ is the g-tuple (m1, . . . ,mg),
where mi is the torsion order m(vi−1, vi) for each index i ∈ {1, . . . , g}.

By Dhar’s algorithm, it is clearly seen that a divisor is vi-reduced if and only if it is effective
outside of vi and there is at most one degree on each γj\vj for indices j ≤ i and also on each
γj\vj−1 for indices j > i. This gives us the following characterization of v0-reduced divisors:

Remark 3.14. We may write each v0-reduced divisor D ∈ Div(Γ) as (d0; a1, . . . , ag), with d0 ∈ Z
and aι ∈ R/((`i + 1)Z) for each index i ∈ {1, . . . , g}, where

D = d0v0 +

g∑
i=1

{
wiai if ai 6= 0

0 if ai = 0
.

This defines a bijection between the following sets:

Pic(Γ)↔ {v0-reduced divisors on Γ} ↔ Z× R
(`1 + 1)Z

× · · · × R
(`g + 1)Z

.

Given a vi-reduced divisor D, Proposition 4.3 allows us to calculate the unique vi+1-reduced
divisor equivalent to D. Note that a divisor moving along the chain of loops leaves at most one
chip behind on each loop, which is a necessary condition for this technique to work. In order to
keep track of how much degree is left behind as we move the divisor along the chain of loops, we
introduce a sequence associated to each v0-reduced divisor.

Definition 3.15. The lingering lattice path P0, . . . , Pg ∈ Z associated to a v0-reduced divisor
D = (d0; a1, . . . , ag) on Γ has P0 = d0 and

Pi − Pi−1 =


−1 if m - Pi−1 and ai = 0

1 if m - Pi−1 + 1 and ai ≡ Pi−1 + 1 mod `i + 1

0 otherwise

for each i ∈ {1, . . . , g}.
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The ith entry Pi of the lingering lattice path associated to a divisor D is the degree at vi of
the unique vi-reduced divisor equivalent to D. Therefore, a v0-reduced divisor with associated
lingering lattice path P0, . . . , Pg is rank at least 1 if and only if Pi > 0 for each index 0 ≤ i ≤ g.
αi = 0.

Definition 3.16. A set with divisor structure is called k-gonal if it admits a divisor of rank 1 and
degree k. If 2-gonal set is called hyperelliptic and a 3-gonal set is called trigonal.

Proposition 3.17. A chain of g ≥ 2 loops Γ is hyperelliptic if and only if `i = 1 for all 2 ≤ i ≤
g − 1. There is then exactly one divisor class of degree 2 and rank 1.

Proof. Let D = (d0; a1, . . . , ag) be a v0-reduced divisor with associated lingering lattice path
P0, . . . , Pg. If P0 = d0 = 1, since P0 + 1 = 2 ≡ 0 mod `1 + 1, the next entry P1 cannot exceed
P0. In fact, P1 = 1 if and only if D = (1; 1, 0, . . . , 0), in which case P2 = 0, so that rk(D) = 0.
If P0 = d0 = 2, there are no more chips to spare, so D is rank 1 if and only if mi = 2 for all
2 ≤ i ≤ g − 1.

Let D = (d0; a1, . . . , ag) be a v0-reduced divisor of degree k and rank at least 1 with associated
lingering lattice path P0, . . . , Pg. Let H, I, J ⊆ {1, . . . , g} be given by:

H = {ι : aι 6= 0 and Pι − Pι−1 = 0}

I = {ι : Pι − Pι−1 = 1}

J = {ι : Pι − Pι−1 = −1}

and write
Πι = d0 + |{i ∈ I : i ≤ ι}| − |{i ∈ J : j ≤ ι}|

By expressing the changes in the lingering lattice path as sets of indices, it becomes easier
to consolidate the conditions that we impose on a chain of loops by assuming the existence of a
divisor of rank at least 1. Defined as above, H, I, J satisfy the following conditions for all indices
ι ∈ {1, . . . , g}:

1. mι - Πι−1 + 1 for all ι ∈ I ,

2. mι - Πι−1 for all ι ∈ J ,

3. mι | Πι−1 for all ι 6∈ H ∪ I ∪ J ,

4. Πι = Pι ≥ 1 for all ι.

Searching for a rank 1 divisor can then begin with searching for a triple of sets (H, I, J) satis-
fying the above conditions.

Remark 3.18. For a v0-reduced divisor of rank 1 on a chain of g loops Γ with sets H, I, J ⊆
{1, . . . , g} defined as above, since mι 6= 1 for each index ι ∈ {1, . . . , g}, we have ι ∈ H ∪ I
whenever Pι−1 = 1.

Proposition 3.19. Let Γ be a chain of g ≥ 3 loops with torsion profile (m1, . . . ,mg), let ι, i, j ∈
{1, . . . , g}.
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1. rk(d0 + w1
a + w2

2) = 1 with a ∈ (0, `1 + 1) if and only if m2 6= 2 and mι = 2 for ι ≥ 3.

2. rk(2d0 + wia) = 1 with a ∈ (0, `i + 1) if and only if mι = 2 for ι 6= i.

3. rk(2d0 + wι3) = 1 if and only if there is an index j > i such that

(a) mι = 2 for each index ι < i and ι > j,

(b) mι = 3 for each index i < ι < j.

(c) mi - 3.

4. rk(2d0 + wi2) = 1 if and only if

(a) mι = 2 for each index ι 6= i, i− 1,

(b) mi - 2.

5. rk(3d0) ≥ 1 if and only if mι = 2 for each ι.

Furthermore, all divisors of rank 1 and degree 3 on Γ are equivalent to one of these Γ is trigonal if
and only if either 2, 3, or 4 is satisfied.

Proof. LetD = (d0; a1, . . . , ag) be a q-reduced divisor on Γ of degree 3 and rank 1 with associated
lingering lattice path P0, . . . , Pg, and let H, I, J ⊆ {1, . . . , g} be defined as above.

In the case that d0 = 1, since m1 = 2, we have 1 6∈ I , which forces 1 ∈ H . Since g ≥ 3, we
must have 2 ∈ I . Since we have no remaining chips, this forces mι|2 for all ι ∈ {3, . . . , g − 1}.

In the case that d0 = 2, if the one extra chip be placed on loop h ∈ H , then Pι = 2 and thus
mι | 2 for all ι ∈ {2, . . . , g − 1} other than h. Otherwise if it is placed on i ∈ I , there are two
possibilities. We may have some index i < j ≤ g − 1 with j ∈ J , in which case mι = 2 for each
index ι < i and ι > j, and mι = 3 for each index i < ι < j. However, if i > 2 we could also have
j = i− 1, in which case mι = 2 for all indices besides i, j.

In the case that d0 = 3, we must have 1 ∈ J , forcing mι = 2 for each ι ∈ {2, . . . , g − 1}.
The condition for trigonality follows since 2⇒ 1, 5 and 2, 3, 4 do not imply each other.

We have arrived at the necessary and sufficient conditions guaranteeing the trigonality of a chain
of loops.

4 Appendix: Proposition 3.12
1. If m | k, then f takes

slope k`/(`+ 1) on x→ y which has length 1,

and slope k(`− 1)/(`+ 1) on y → x which has length `.

2. If m - k and u = 0, let

d = 1− k − (`+ 1)n, where n =

⌊
1− k
`+ 1

⌋
∈ Z.

Since m - k, we cannot have d = 1. There are three cases:
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(a) If d = 0, then f takes

slope k + n− 1 on x→ y which has length 1,

and slope n on y → x which has length `.

(b) If 0 < d < 1, then f takes

slope k + n on x→ w1−k which has length d,

slope k + n− 1 on w1−k → y which has length 1− d,
and slope n on y → x which has length `.

(c) If d > 1, then f takes

slope k + n on x→ y which has length 1,

slope n+ 1 on y → w1−k which has length d− 1,

and slope n on w1−k → x which has length `+ 1− d.

3. If m - k and u = wa for some a ∈ (0, `+ 1), let

d = a− k − (`+ 1)n where n =

⌊
a− k
`+ 1

⌋
∈ Z.

By assumption a 6= 0, and since m - k, we cannot have a = d.

(a) If d = 1, there are two cases:

i. If a < 1, then f takes

slope k + n on x→ wa which has length a,

slope k + n+ 1 on wa → y which has length 1− a,
and slope n on y → x which has length `+ 1− d.

ii. If a > 1, then f takes

slope k + n on x→ y which has length 1,

slope n− 1 on y → wa which has length a− 1,

and slope n on wa → x which has length `+ 1− a.

(b) If d 6= 1, there are eleven cases:

i. If a < d < 1, then f takes

slope k + n on x→ wa which has length a,

slope k + n+ 1 on wa → wa−k which has length d− a,
slope k + n on wa−k → y which has length 1− d,

and slope n on y → x which has length `.
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ii. If a < 1 < d, then f takes

slope k + n on x→ wa which has length a,

slope k + n+ 1 on wa → y which has length 1− a,
slope n+ 1 on y → wa−k which has length d− 1,

and slope n on wa−k → x which has length `+ 1− d.

iii. If a = 1 < d, then f takes

slope k + n on x→ y which has length 1,

slope n+ 1 on y → wa−k which has length d− 1,

and slope n on wa−k → x which has length `+ 1− d.

iv. If 1 < a < d, then f takes

slope k + n on x→ y which has length 1,

slope n on y → wa which has length a− 1,

slope n+ 1 on wa → wa−k which has length d− a,
and slope n on wa−k → x which has length `+ 1− d.

v. If d = 0 and a < 1, then f takes

slope k + n− 1 on x→ wa which has length a,

slope k + n on wa → y which has length 1− a,
and slope n on y → x which has length `.

vi. If d = 0 and a = 1, then f takes

slope k + n− 1 on x→ y which has length 1,

and slope n on y → x which has length `.

vii. If d = 0 and a > 1, then f takes

slope k + n− 1 on x→ y which has length 1,

slope n− 1 on y → w1−k which has length d− 1,

and slope n on w1−k → x which has length `+ 1− d.

viii. If 0 < d < a < 1, then f takes

slope k + n on x→ wa−k which has length d,

slope k + n− 1 on wa−k → wa which has length a− d,
slope k + n on wa → y which has length 1− a,

and slope n on y → x which has length `.

ix. If 0 < d < a = 1, then f takes

slope k + n on x→ wa−k which has length d,

slope k + n− 1 on wa−k → y which has length a− d,
and slope n on y → x which has length `.
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x. If 0 < d < 1 < a, then f takes

slope k + n on x→ y which has length d,

slope k + n− 1 on y → wa−k which has length 1− d,
slope n− 1 on wa−k → wa which has length a− 1,

and slope n on wa → x which has length `+ 1− a.

xi. If 1 < d < a, then f takes

slope k + n on x→ y which has length 1,

slope n on y → wa−k which has length d− 1,

slope n− 1 on wa−k → wa which has length a− d,
and slope n on wa → x which has length `+ 1− a.
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