Usage of Semantic Similarity Measurements Tufts University Department of Computer Science

Thomas Schaffner

 $21~\mathrm{May}~2016$

Abstract

Study and comparison of protein function is an important research topic in modern biology and bioinformatics. Better understanding of protein function aids in targeting medical and pharmacological research. Ontologies of functional terms organize and give structure to possible protein functions, while annotation corpuses apply functional labels to specific proteins. Many methods exist to compare protein functional annotations. These methods range from simply counting the number of overlapping functional labels to more complex methods that make use of the structure of ontologies. Specifically, we look at the Resnik semantic similarity measurement. Resnik scores make use of both the structure of an ontology and the distribution of functional labels throughout an annotation corpus. In this thesis, we see that incomplete data can lead to erroneous low Resnik values, while high Resnik values are likely to be more meaningful.

Using the Gene Ontology Consortium's ontology (GO) and annotation corpuses from UniProt Swiss-Prot and the Saccharomyces Genome Database (SGD), we analyze Resnik scores. We create matrices of Resnik scores for each species, representing the Resnik values between all pairs of proteins within a species. Using these matrices, we show that even high quality datasets such as SGD and UniProt Swiss-Prot do not completely label their proteins, leaving many proteins labeled with very general functions. We go on to discuss methods for identifying high and low Resnik values. We also show that matrix completion methods do not appear effective in predicting functional similarity between two proteins within a species.

Contents

1	Pro	Protein Comparison 3					
	1.1	Introduction	3				
		1.1.1 Proteins	3				
		1.1.2 Functional Annotations	4				
		1.1.3 Data Sources	6				
		1.1.4 Functional Prediction	6				
	1.2	Techniques	7				
	1.3 Information Content Comparisons						
		1.3.1 Probability	9				
		1.3.2 Information Content	9				
	1.4	The Resnik Score	10				
			10				
			11				
		1.4.3 Modifications to Resnik Scores	12				
			12				
		_ *	13				
	1.5		14				
	1.6	Discussion	14				
		1.6.1 Conditional Information Content	14				
		1.6.2 Resnik Scores	16				
		1.6.3 Resnik Scores and Data Quality	16				
2	Resnik as a Matrix 18						
	2.1	New Properties	19				
		2.1.1 Diagonals in Resnik Score Matrix	19				
		2.1.2 Distribution of Specificity	21				
	2.2	High Value Density	21				
	2.3		23				
3	Ma	rix Completion 2	24				
		-	24				
	3.2	Methods	24				
	3.3	Results	25				
	3.4		25				
A	SemSimCalculator 28						
	A.1	semsimcalc.py	28				
	Δ 2	Code	28				

Chapter 1

Protein Comparison

1.1 Introduction

1.1.1 Proteins

Proteins perform many distinct functions within cells, from metabolism to regulation and production of other proteins. Any given species may have tens of thousands of unique proteins, each with their own roles in the life and activity of a cell. Understanding how proteins operate and interact is vital to modern medical and biological research.

By studying specific proteins, researchers can identify mechanisms at work in cancers and infectious diseases. By finding proteins involved in ailments, researchers can better target medical research or drug development. Additionally, by leveraging the genetic similarities of different species, researchers can find proteins that fill the same niche across multiple species. While developing a drug that targets a human protein may be extremely expensive, it can be cheaper and faster to experiment with proteins in a model organism that perform a similar function.

With modern technology, biologists are able to determine protein interactions and functions at unprecedented speeds. As the size of available data grows, both the possible benefits and the complexity of interpretation grow as well. Computational techniques make use of standardized semantics for discussing proteins in order to

compare proteins and even predict protein function.

1.1.2 Functional Annotations

In order to discuss the functions of proteins in large data sets and across species, researchers have established conventions for identifying and labeling protein functions. These standards are broken into two pieces: functional ontologies and annotation corpuses. Ontologies represent the set of all possible functional labels, as well as the relationships between these labels. Annotation corpuses apply specific labels to individual proteins. Several different ontologies exist, and annotation corpuses differ between datasets.

Ontologies

GO, from the Gene Ontology Consortium [1], is a commonly used protein functional ontology [2]. GO provides a structured set of labels for protein function. The labels in GO are organized as a directed acyclic graph. Each node represents a functional label, while edges between nodes represent different relationships. GO contains data for six relationships between terms: "is-a", "part-of", "regulates", "positively-regulates", "negatively-regulates", and "has-part". For this thesis, we have only examined "is-a" relationships; if a functional label l_i is a specification of another term l_j , an edge exists from l_j to l_i . Note that any label may have multiple children and multiple parents. GO is partitioned into three separate domains. Each of these domains consists of its own directed acyclic graph. The root terms of these DAGs, or domain roots, are "cellular component", "biological process", and "molecular function".

Because different child terms of a single ancestor term may differ in their specificity, the "depth" of a term in the GO graph is not necessarily meaningful. For example, the GO terms for "single-organism organelle organization" and "transposition" are both children of the GO term "single-organism cellular process", and both have a depth of 4 in the GO graph. However, within the SGD annotation corpus used in this thesis, "single-organism organelle organization" is used to label more than ten times the number of proteins that "transposition" labels (279 compared to 20). Even though both terms share the same depth in GO, and are in fact siblings, they are not equally common functional labels. GO is only able to provide explicit information on the relationships between a parent and a child. It is always true that a child is more specific than a parent, but it is not necessarily true that a node is equally specific as its siblings.

The terms specified in GO are not very useful by themselves. Protein functions are more meaningful when associated with actual proteins. Annotation corpuses contain the known associations of proteins with their functions. These associations are determined either through biological experimentation or through computational prediction.

Annotation Corpuses

Different groups may publish their own annotation corpuses, based on their own experimentation or functional prediction. Different groups may also compile others' data. Some experiments may be more error-prone than others, and computational prediction of protein function also comes with less than complete confidence. Because of these potential errors or sources of noise, annotation corpus providers may require different levels of confidence before approving a functional annotation and adding it to the corpus. All these differences lead to many slightly different datasets, potentially focusing on different species, different diseases, or proteins with specific functions.

Annotation corpuses are also far from complete. Even if all functional annotations were one hundred percent accurate, many proteins have never been tested for function. The biological experiments to determine function take time and resources, and therefore many proteins are currently overlooked and untested. Even when proteins have labels in an annotation corpus, those labels are not always terribly informative. For 1148 of 7014 proteins in the Saccharomyces Genome Database

(SGD), the most specific functional label is a domain root of GO. For roughly one seventh of the proteins in this dataset, we can provide no function more specific than "molecular function", "biological process", or "cellular component".

In this thesis, we will primarily discuss two annotation corpuses: the SGD annotation corpus mentioned above, and the Swiss-Prot annotation corpus provided by UniProt. Swiss-Prot is a multi-species annotation corpus. It contains labels for proteins that belong to various species. Swiss-Prot includes only experimentally-supported functional labels. SGD provides annotations solely for *Saccharomyces cerevisiae*. The labels in SGD are also solely experimentally-derived.

1.1.3 Data Sources

Gene Ontology

All calculations were performed using the GO release of June 13, 2015. The file used was go.obo, downloaded from geneontology.org

Annotation Corpuses

Two annotation corpuses were used in this thesis.

The UniProt Swiss-Prot annotation corpus was downloaded from uniprot.org on June 23, 2015. The SGD annotation corpus was downloaded from yeastgenome.org on December 27, 2015.

1.1.4 Functional Prediction

Predicting the functional labels of experimentally untested proteins is an important research problem. Predictions can be used to identify potentially interesting proteins for medical or biological research, among other uses. Many algorithms exist for protein functional prediction, often using additional biological data. Various methods can be used to append predicted functional labels within an annotation corpus, such as simple majority voting [3] or more complex algorithms that make

use of local neighborhoods within the network [4, 5], clustering within the network [6, 7, 8], and more [9, 10, 11, 12].

1.2 Techniques

In order to compare proteins, researchers look at several different aspects of each protein depending on their methodology. Proteins can be compared based on genetic sequence, structure, or the function of a protein. As discussed above, data regarding protein interactions can also be used to compare proteins and find similarities.

BLAST [13] is a tool that compares gene DNA sequence or protein amino acid sequence. BLAST produces a score measuring the similarity between sequences without examining protein functional labels, and functional annotations typically transfer if the BLAST similarity score is exceeds some threshold.

Another common tool is Pfam, which compares the secondary structure of proteins using machine learning [14]. Pfam uses hidden Markov models to classify proteins into groups with similar secondary structures.

Other techniques for comparing the function of proteins rely on existing information about the function of the proteins being compared. The simplest methods compare the exact labels of multiple proteins. For example, Jaccard GO [15, 16, 17] compares the number of functional terms shared by both proteins to the number of proteins associated with either protein. If L(p) is the set of functional labels associated with protein "p", then:

$$JaccardGO(p_i, p_j) = \frac{|L(p_i) \cap L(p_j)|}{|L(p_i) \cup L(p_j)|}$$

Other techniques compare functional labels directly, relying on the structure of GO itself. Two methods SimUI and SimPE [18] make use of induced subgraphs of GO. They define the induced subgraph of a term V(t) to be all nodes and edges present in all paths from the root to the t. For example, the highlighted nodes and edges in figure 1.1 represent the induced subgraph for GO:0044700. Note that figure

1.1 refers to a partial representation of the GO DAG.

Figure 1.1: Induced Subgraph of GO:0044700 on partial GO DAG

SimUI evaluates the subgraphs based on node count

$$SimUI(t_1, t_2) = \frac{|V(t_1) \cap V(t_2)|_n}{|V(t_1) \cup V(t_2)|_n}$$

while SimPE evaluates the subgraphs based on edge count

$$SimPE(t_1, t_2) = \frac{|V(t_1) \cap V(t_2)|_e}{|V(t_1) \cup V(t_2)|_e}$$

Some techniques even make use of the distribution of functional labels within an annotation corpus. Annotation Corpuses are often used to generate information content (IC) measurements for specific terms, based on how well-represented terms are within the annotation corpus. These information content values are used in the Resnik semantic similarity comparison, as well as all of the modifications and adaptations of the Resnik comparison. IC is also widely used in other comparisons.

1.3 Information Content Comparisons

Information content is a measurement, originally from the field of natural language processing [19], used to indicate the specificity of a given functional term in GO. Information content is calculated based on a specific annotation corpus; two IC values are not comparable unless they are both calculated using the same annotation corpus.

1.3.1 Probability

The probability of a functional label, denoted P(l), is equal to the portion of proteins in the annotation corpus that perform the function of l.

$$P(l) = \frac{|proteins(l)|}{|annotation_corpus|}$$

Note that different curators may apply labels differently; given experimental evidence that a protein p_i performs function l_i , one curator may choose to add the label l_i by itself to the annotation corpus, while another curator may also add all ancestors of l_i . Either would be technically accurate, it is a matter of convention. The structure of the GO DAG means that l_i is a specification of all of the ancestors of l_i . For example, if a protein performs a function related to synaptic transmission (GO:0007268), its function must also relate to signaling (GO:0023052).

In order to maintain consistency and accuracy when calculating probability, we define proteins(l) as a function that returns all proteins in the annotation corpus that contain either l or any of the descendants of l as a functional label.

1.3.2 Information Content

If a term is close to its domain root, it is more likely to have a high probability value. Nearly all proteins in a given annotation corpus will contain the functional label "biological process" or one of biological process' descendants. Essentially, the

lower the probability of a functional label, the more specific it is likely to be. Therefore, information content is defined as

$$IC(l) = -ln(P(l))$$

The least-represented GO terms in a given annotation corpus will have a low probability and consequently a higher information content value. Because the probability of a term takes into account proteins labeled with that term's descendants, the probability of a term is always at least as large as any of the probabilities of that term's children. Therefore, a term in GO always has an information content that is at least as large as its parent term's information content value.

1.4 The Resnik Score

A Resnik similarity score is an indication of the level of similarity between two functional labels within the context of a common ontology and annotation corpus [19]. Given two functional labels l_i and l_j , the maximum informative common ancestor (MICA) of those terms is the common ancestor of l_i and l_j with the highest information content.

All common ancestors of two functional labels represent functions shared by both terms. The MICA of two terms, therefore, represents the most specific or most informative shared function between the two functional terms being compared. The Resnik score of l_i and l_j is equal to the information content of the maximum informative common ancestor of l_i and l_j .

$$simRes(l_i, l_j) = IC(MICA(l_i, l_j))$$

1.4.1 Resnik Scores Across GO Domains

Resnik scores rely on the MICA of two terms. If two functional labels are from different domains of GO, then they are part of separate DAGs. Therefore, they have no common ancestors, and no MICA. In this case, GO is treated as having a true root node with three direct children: "molecular function", "biological process", and "cellular component" (the domain roots of GO). All functional labels in GO are descendants of this dummy root. Therefore, the probability

$$P(ROOT_{dummy}) = 1$$

The information content of the dummy root consequently equals zero. This dummy root allows us to treat the Resnik score between two functional labels from different GO domains as 0.

1.4.2 Resnik Scores and Distance

Note that Resnik scores between two GO terms are symmetric. However, a Resnik score is a measurement of similarity, not a distance metric. Resnik scores themselves do not obey the triangle inequality. For example, consider the terms "GO:0016075" (rRNA catabolic process), "GO:0007483" (genital disc morphogenesis), and "GO:0061558" (cranial ganglion maturation).

$$simRes(GO:0016075, GO:0007483) = 0.037477152772432756$$

 $simRes(GO:0007483, GO:0061558) = 3.7497179567995427$
 $simRes(GO:0016075, GO:0061558) = 0.037477152772432756$

This makes sense, because the Resnik comparison measures similarity rather than dissimilarity. However, even taking the multiplicative inverse of Resnik scores does not provide a true distance metric. The reciprocals of Resnik scores between the functional labels "GO:0033471" (GDP-L-galactose metabolic process), "GO:1901805" (beta-glucoside catabolic process), and "GO:1901699" (cellular response to nitrogen compound) do not obey the triangle inequality.

$$\frac{1}{simRes(GO:0033471, GO:1901805)} = 0.6011489018392736$$

$$\frac{1}{simRes(GO:1901805, GO:1901699)} = 26.682923488669466$$

$$\frac{1}{simRes(GO:0033471, GO:1901699)} = 1.908992864684634$$

Therefore, Resnik scores are not trivially interchangeable with other distance metrics between terms.

1.4.3 Modifications to Resnik Scores

Several semantic similarity measurements tweak the Resnik comparison slightly in order to normalize or adjust sensitivity. One measurement, simLin [20], uses the information contents of the terms being compared to normalize Resnik scores.

$$simLin(l_i, l_j) = \frac{simRes(l_i, l_j)}{IC(l_i) + IC(l_j)}$$

1.4.4 Relative Specificity Similarity

Wu et al. have developed several other GO-based measurements of similarity between functional labels. Relative Specificity Similarity (RSS) is a similarity measurement that does not require an annotation corpus [21]. RSS relies on the most recent common ancestor (MRCA) of two terms. Wu et al. also define α , β , and γ .

For terms l_i and l_j

$$\alpha = \max\left(|m \cap n|_n\right)$$

for all paths m from root to l_i and all paths n from root to l_j

$$\beta = (gen(l_i), gen(l_j))$$

where gen(l) is the smallest number of edges between l and any descendant of l that is a leaf (has no descendants of its own).

$$\gamma = dist(MRCA(l_i, l_j), l_i) + dist(MRCA(l_i, l_j), l_j)$$

 α is the relative specificity of l_i and l_j , β is the relative generality of l_i and l_j , and γ is the sum of distances between MRCA(l_i , l_j) and l_i and l_j . Based on these definitions, RSS is defined as

$$RSS(l_i, l_j) = \frac{maxDepth^{GO}}{maxDepth^{GO} + \gamma} * \frac{\alpha}{\alpha + \beta}$$

1.4.5 Hybrid Relative Specificity Similarity

Wu et al. also modified their RSS measurement to make use of information content. They created Hybrid Relative Specificity Similarity (HRSS) using both the most informative leaf (MIL) and MICA of terms, as well as a Resnik comparison [22]. They redefine α_{IC} , β_{IC} , and γ_{IC} for terms l_i and l_j as follows.

$$\alpha_{IC} = simRes(l_i, l_j)$$

$$\beta_{IC} = \frac{(IC(MIL(l_i)) - IC(l_i)) + (IC(MIL(l_j)) - IC(l_j))}{2}$$

$$\gamma_{IC} = (IC(l_i) - simRes(l_i, l_j)) + (IC(l_j) - simRes(l_i, l_j))$$

1.5 Protein Comparisons

Proteins in the annotation corpus often have more than one label, and can have multiple labels that are very dissimilar functionally. However, many of these semantic similarity measurements only compare individual terms. In order to apply these measurements to protein functional comparison, several "mixing methods" are commonly used. The simplest method for comparing two proteins p_i and p_j , and the method used in this thesis, is to simply take the maximum similarity score of all pairs of (l_i, l_j) , where l_i is a functional label of p_i and l_j is a functional label of p_j . Another simple method is to take the average of all pairwise comparisons.

1.6 Discussion

1.6.1 Conditional Information Content

The relationship between the information content of a functional label and the information content of one of its descendants has a special meaning. A "conditional information content" score can indicate the similarity between an ancestor functional label and one of its descendants. Bayes' theorem shows that the difference in information content between an ancestor term and a descendant term is based on a conditional probability, defined as follows.

$$P(l_i \mid l_j) = \frac{|proteins(l_i) \cap proteins(l_j)|}{|proteins(l_j)|}$$

With this definition, it is possible to consider conditional information content values, defined below.

$$IC(l_i|l_j) = -ln(P(l_i \mid l_j))$$

When comparing two functional labels l_i and l_j where one label is an ancestor of the other, the intersection $proteins(l_i) \cap proteins(l_j)$ is guaranteed to be non-empty

as long as both $proteins(l_i)$ and $proteins(l_j)$ are both non-empty. If l_i is the ancestor of l_j , note that every protein in $proteins(l_j)$ is also in $proteins(l_i)$ by definition. Therefore, the conditional probability $P(ancestor \mid descendant)$ will always be 1. According to Bayes' theorem

$$P(desc. \mid anc.) = \frac{P(anc. \mid desc.)P(desc.)}{P(anc.)}$$

Therefore

$$IC (desc. \mid anc.) = -\ln (P (desc. \mid anc.))$$

$$= -\ln \left(\frac{P (anc. \mid desc.) P (desc.)}{P (anc.)} \right)$$

$$= -1 * (\ln (P (anc. \mid desc.)) + \ln (P (desc.)) - \ln (anc.))$$

$$= -\ln (1) - \ln (P (desc.)) + \ln (P (anc.))$$

$$= IC (desc.) - IC (anc.)$$
(1.1)

This shows that the difference between the information content values of two functional labels has a special meaning if one label is the ancestor of the other. The difference in information content values represents the relative information content of the descendant with respect to the ancestor. If the difference IC (desc.)-IC (anc.) is high, then the proportion $\frac{|proteins(desc.)|}{|proteins(anc.)|}$ must be low. Therefore, this conditional information content score can be used to differentiate between functional terms that are significantly more specific than their parent, and functional terms that provide very little additional information compared to their parents.

1.6.2 Resnik Scores

Resnik scores are often discussed in relation to functional similarity problems. New measurements are often compared to the Resnik semantic similarity comparison method, which is one of the simplest information content-based measures. However, some of the issues of Resnik scores are rarely discussed.

It is important to know that Resnik scores are not true metrics. Because Resnik scores do not obey the triangle inequality (and cannot be trivially manipulated to obey the triangle inequality) they cannot be substituted for common distance metrics such as shortest path. Data quality issues are also rarely mentioned in depth. The difference in meaning and meaningfulness of high Resnik score values and low Resnik score values is often neglected. However, we have seen that many proteins in up to date annotation corpuses are only labeled with general functional terms. It is important to remember, when using Resnik scores as a comparison, that low scores do not necessarily indicate dissimilarity.

1.6.3 Resnik Scores and Data Quality

When discussing functional comparisons between proteins, the data quality issues of annotation corpuses discussed earlier impact the meaningfulness of semantic similarity measurements. In the case of Resnik scores (the primary semantic similarity measurement for the rest of this thesis), incomplete annotation corpuses lead to erroneously low estimates of the Resnik scores between some proteins.

Several situations can result in a low Resnik score. Two proteins that are truly dissimilar will always have a low Resnik score, as long as they have at least a single correct functional label. If these similar proteins are labeled with their most specific functional terms but their MICA is a domain root, they will have an extremely low Resnik score. However, incomplete labelings of similar proteins can also lead to a low Resnik score. If a protein has multiple functions but is only labeled with one function, that protein will appear dissimilar (low Resnik score) to other proteins that share the missing label as a true function. Recall that many proteins can have

very general functional terms as their sole labels. Even if a function is not strictly missing, it is still possible that a protein is labeled with a more general version of its function. This can lead to lower Resnik scores, regardless of the true functional similarity of proteins.

Incomplete annotation corpuses cannot, however, lead to falsely high Resnik scores under the maximum mixing method. The Resnik score between two proteins under the maximum mixing method is equal to the highest Resnik score between any pair of terms across the proteins. Therefore, if two proteins have a high Resnik score, they must be labeled with two functionally similar terms. Added functional labels cannot reduce the Resnik score of two proteins. Only false annotations can create a falsely high Resnik score. Because the annotation corpuses used in this thesis exclusively use functional labels backed by experimental evidence, all functional labels that we used are more likely to be accurate than labels from annotation corpuses that allow computationally predicted annotations.

Chapter 2

Resnik as a Matrix

We have calculated Resnik scores for all yeast (Saccharomyces cerevisiae), mouse (Mus musculus), and human (Homo sapiens) proteins. Mouse and human Resnik scores were calculated using the UniProt Swiss-Prot annotation corpus, while yeast Resnik scores were calculated using the SGD annotation corpus.

For each species, we created a square matrix of Resnik scores. Table 2 shows the number of proteins and total Resnik scores for each species. Each row and column within a Resnik score matrix represents a single protein, with element (i;j) representing the Resnik score between protein i and protein j. Because $simRes(l_i;l_j) = simRes(l_j;l_i)$, these matrices are symmetric. However, not all pairs of proteins have functional labels from the same domain of GO. Consequently, table 2 shows that a number of Resnik scores within each species are cross-domain, resulting in Resnik scores of 0.

Species	Number of Proteins	Total Entries	Cross-Domain Scores
Human	20205	408242025	65409425
Mouse	16711	279257521	19243345
yeast	7014	49196196	3876

2.1 New Properties

When examining a matrix of Resnik scores, it is possible to find new patterns and properties. The distribution of values can provide a basis for differentiating "high" and "low" Resnik scores. As discussed above, low Resnik scores can arise from several situations while high Resnik scores are more likely to be accurate. Distinguishing between high and low scores in the matrix can identify high-confidence Resnik comparisons. Namely, by examining the distribution of Resnik scores, it is possible to identify the high-value Resnik scores as high confidence.

2.1.1 Diagonals in Resnik Score Matrix

Other properties of the matrix can be used to find poorly-labeled proteins and low-confidence Resnik scores. A simple indicator of a protein's labeling quality is the diagonal of the matrix. A diagonal at index i represents the Resnik score between $protein_i$ and itself. Under the maximum mixing method, this is equal to the information content of the most informative term of $protein_i$. Essentially, the diagonal at index i is equal to max(IC(l)) for all functional labels l associated with $protein_i$. If a diagonal at index i has a low value, the information content of the most informative functional label of $protein_i$ must be low. $protein_i$ cannot, therefore, be labeled with any specific functional labels. For reference, figure 2.1 shows histograms of the diagonal values for each species' Resnik matrix.

Diagonals as Upper Bound on Resnik Scores

The MICA of two functional labels l_i and l_j must be an ancestor of both l_i and l_j . The information content of $MICA(l_i, l_j)$ must be less than or equal to $min(IC(l_i), IC(l_j))$. Therefore, the Resnik similarity between two terms is bounded by the less informative term. A diagonal at index i in a Resnik matrix is an upper bound on values in column i and row i. If $protein_i$ does not have any highly informative functional labels, then $simRes(protein_i, protein_j)$ will always be low for any j. $protein_i$ can therefore be considered poorly labeled, and all comparisons with $protein_i$ (all entries

Figure 2.1: Histograms of diagonal values in Resnik matrices

in row i or column i in the matrix) are likely not meaningful.

2.1.2 Distribution of Specificity

Beyond diagonals, we can use statistics to determine low or high Resnik values. In the SGD Resnik matrix (generated using the SGD annotation corpus), Resnik values greater than 3.043 are two standard deviations above the mean. In the human matrix, the cutoff is 5.4435 while in mouse the cutoff is 5.9412. Alternately, we can classify some of the lowest values as less meaningful by comparing matrix entries to the IC values of highly-represented functional labels in the annotation corpus. The graphs in figure 2.2 show the size of proteins(label) and $proteins(label) \cap proteins(label_{child})$ for each child $label_{child}$ of label. There is one data point on the graph for each parent-child relationship within GO.

In order to make use of these graphs for preliminary testing, we chose all data points with $|proteins(parent) \cap proteins(child)| \ge 3000$ for SGD, and $|proteins(parent) \cap proteins(child)| \ge 250000$ for UniProt Swiss-Prot. This leads to IC cutoff values of roughly 0.85 and 0.74 respectively.

2.2 High Value Density

Looking at the SGD Resnik score matrix, we examined the density of high Resnik score values within each row of the Resnik score matrix. For this evaluation, a "high" Resnik score is a value greater than or equal to 3.043. For each row in the Resnik score matrix, we calculated the percentage of entries that were "high" values. Figure 2.3 shows a histogram with the distribution. For this histogram, we removed all percentages equal to 0 in order to make the rest of the graph more readable.

We noticed several outliers on the right of the graph. A few rows (corresponding to proteins) had exceptionally high percentages of high Resnik scores. The proteins five proteins with the highest percent of high Resnik scores were YBR160W, YER125W, YPL204W, YBR279W, and YER133W. According to yeastgenome.org,

(a) SGD annotation corpus

(b) UniProt annotation corpus

Figure 2.2: |proteins(parent)| vs. $|proteins(parent) \cap proteins(child)|$

all of these proteins have regulatory functions. This similarity between the outliers may be useful for identifying regulatory proteins in the future.

Figure 2.3: Distribution of high Resnik percentages in matrix rows

2.3 Resnik Score Cutoff

We have used a couple simple methods to classify Resnik scores as low or high in value. However, we have not performed experiments to determine the efficacy of the methods discussed in this thesis. In future work, we hope to refine and further study these methods. These methods would allow researchers to classify Resnik scores as high- or low-confidence with more accuracy and precision.

Chapter 3

Matrix Completion

3.1 Introduction

The problem of matrix completion, especially for matrices of low rank, has become widely studied recently. Matrix completion is applicable in several situations. Images can be represented as matrices, and matrix completion can be used to identify image subjects or components. In a more abstract setting, matrix completion can be used in the context of the Netflix prize; it can predict user preferences or ratings of movies.

3.2 Methods

Essentially, the matrix completion problem takes as input a matrix with some entries missing. A solution to the matrix completion problem returns a matrix with estimates in place of missing entries. We attempt to apply an existing matrix completion solution (LMaFit, translated to Python code by Professor Mark Crovella of Boston University) [23] to the Resnik matrices. LMaFit uses the nuclear norms method [24] for matrix completion. We treat low Resnik scores in the Resnik matrices as missing data entries. We then run LMaFit to estimate the missing values. Unfortunately, the preliminary results for matrix completion on Resnik matrices (discussed below in more detail) are not promising.

3.3 Results

We ran LMaFit on the SGD matrix using an IC cutoff value of 0.85 (as discussed in chapter 2). We first set all entries in the SGD matrix below 0.85 to 0. We then considered all remaining non-zero values to be "known" values, essentially high-enough confidence to keep. For each trial, we split the known values in half to run a 2-fold cross validation. Note, because the Resnik score matrices are symmetric, entries (i, j) and (j, i) were always partitioned into the same fold. For each fold, we set the opposite fold's values to zero and used LMaFit to predict non-zero values for all zeroed values in the matrix. The maximum Resnik score in the SGD matrix is roughly 5.8599, and we found an average error of 1.738 for all predicted matrix entry values using LMaFit.

For comparison, we also randomly selected entry values between 0 and the maximum value of the matrix (5.8599) to fill all zeroed entries. The average error for random completion was 1.771. Given the large error and negligible difference between LMaFit matrix completion results and random prediction results, LMaFit does not seem to accurately predict Resnik scores based on a Resnik score matrix.

3.4 Discussion

We only have preliminary results for matrix completion of Resnik score matrices. However, these results are not promising. With high error values roughly equivalent to randomly predicting missing entries, there is no evidence that matrix completion methods can predict functional similarity between proteins with any confidence. It may be worthwhile to investigate other methods for matrix completion, but there seems to be a low probability of success.

Bibliography

- [1] Michael Ashburner et al. "Gene Ontology: tool for the unification of biology". In: *Nature genetics* 25.1 (2000), pp. 25–29.
- [2] Jiajie Peng et al. "Extending gene ontology with gene association networks". In: *Bioinformatics* (2015), btv712.
- [3] Benno Schwikowski, Peter Uetz, and Stanley Fields. "A network of protein—protein interactions in yeast". In: *Nature biotechnology* 18.12 (2000), pp. 1257—1261.
- [4] Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong. "Exploiting indirect neighbours and topological weight to predict protein function from protein—protein interactions". In: *Bioinformatics* 22.13 (2006), pp. 1623–1630.
- [5] Haretsugu Hishigaki et al. "Assessment of prediction accuracy of protein function from protein–protein interaction data". In: *Yeast* 18.6 (2001), pp. 523–531.
- [6] Vicente Arnau, Sergio Mars, and Ignacio Marin. "Iterative cluster analysis of protein interaction data". In: *Bioinformatics* 21.3 (2005), pp. 364–378.
- [7] Gary D Bader and Christopher WV Hogue. "An automated method for finding molecular complexes in large protein interaction networks". In: *BMC bioinformatics* 4.1 (2003), p. 1.
- [8] Jimin Song and Mona Singh. "How and when should interactome-derived clusters be used to predict functional modules and protein function?" In: *Bioinformatics* 25.23 (2009), pp. 3143–3150.
- [9] Elena Nabieva et al. "Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps". In: *Bioinformatics* 21.suppl 1 (2005), pp. i302–i310.
- [10] Ulas Karaoz et al. "Whole-genome annotation by using evidence integration in functional-linkage networks". In: *Proceedings of the National Academy of Sciences of the United States of America* 101.9 (2004), pp. 2888–2893.
- [11] Alexei Vazquez et al. "Global protein function prediction from protein-protein interaction networks". In: *Nature biotechnology* 21.6 (2003), pp. 697–700.
- [12] Roded Sharan, Igor Ulitsky, and Ron Shamir. "Network-based prediction of protein function". In: *Molecular systems biology* 3.1 (2007), p. 88.
- [13] Stephen F Altschul et al. "Basic local alignment search tool". In: *Journal of molecular biology* 215.3 (1990), pp. 403–410.
- [14] Alex Bateman et al. "The Pfam protein families database". In: *Nucleic acids* research 30.1 (2002), pp. 276–280.

- [15] Paul Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz, 1901.
- [16] Paul Jaccard. "The distribution of the flora in the alpine zone." In: New phytologist 11.2 (1912), pp. 37–50.
- [17] Daniele Merico et al. "Enrichment map: a network-based method for gene-set enrichment visualization and interpretation". In: *PloS one* 5.11 (2010), e13984.
- [18] Yuan-Peng Li and Bao-Liang Lu. "Semantic Similarity Definition over Gene Ontology by Further Mining of the Information Content." In: (2008), pp. 155–164.
- [19] Philip Resnik. "Using information content to evaluate semantic similarity in a taxonomy". In: arXiv preprint cmp-lg/9511007 (1995).
- [20] Pietro H Guzzi et al. "Semantic similarity analysis of protein data: assessment with biological features and issues". In: Briefings in bioinformatics 13.5 (2012), pp. 569–585.
- [21] Xiaomei Wu et al. "Prediction of yeast protein-protein interaction network: insights from the Gene Ontology and annotations". In: *Nucleic acids research* 34.7 (2006), pp. 2137–2150.
- [22] Xiaomei Wu et al. "Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge-and IC-based hybrid method". In: *PloS one* 8.5 (2013), e66745.
- [23] Zaiwen Wen, Wotao Yin, and Yin Zhang. "Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm". In: *Mathematical Programming Computation* 4.4 (2012), pp. 333–361.
- [24] Emmanuel J Candès and Benjamin Recht. "Exact matrix completion via convex optimization". In: Foundations of Computational mathematics 9.6 (2009), pp. 717–772.

Appendix A

SemSimCalculator

A.1 semsimcalc.py

I have produced a python class that can be used to calculate several semantic similarity measurements. The code is included as Appendix A, and the full README can be found on github, under TuftsBCB/semsimcalc. Given a file representing GO and an annotation corpus, the SemSimCalculator class can calculate probability and information content values, Resnik scores, conditional probabilities, conditional information content scores, and a couple other semantic similarity measurements. The SemSimCalculator class also contains two mixing methods for protein comparison: maximum and average. The relationship between proteins and GO terms is stored internally, so there is no need to look up labels of proteins separately.

A.2 Code

```
#!/usr/bin/python
1
2
3
    # See http://bib.oxfordjournals.org/content/13/5/569.full
    # For definitions
4
6
    import sys
    import time
    import networkx as nx
9
    import math
10
    import pickle
    import numpy
11
12
    # Helper functions
13
    def announce(message):
14
            """ Timestamped output to stdout """
15
16
            print time.strftime('%H:%M'),message
            sys.stdout.flush()
17
18
    def open_or_abort(filename, option='r'):
19
             """ Output error message to stderr if file opening failed """
20
21
22
                     newfile = open(filename, option)
23
            except IOError:
24
                    sys.stderr.write("Could not open {} -- Aborting\n".format(filename))
25
                    raise IOError
26
            return newfile
28
   # NOTE(tfs): Accepted GO file format:
29
30
   #
             ! comments
31
32
    #
```

```
33
     #
               [Term]
34
               id: GO\_term
35
36
    #
              is_a: GO_term
              is_a: GO_term
37
    #
38
39
    #
              [Term]
    #
40
41
    #
               [Typedef]
42
43
44
    # The [Typedef] tag signals end of GO terms.
    # It is necessary in the current implementation
45
46
47
     def parse_go_file(go_file_name):
              """ Parses and returns (does not natively store) GO data """
48
49
50
              go_file = open_or_abort(go_file_name)
51
52
              # Setup
53
              go_file.seek(0)
              go_graph = nx.DiGraph()
54
55
              alt_ids = {}
56
57
              go_term = ''
58
              parents = []
59
60
              is_obsolete = False
61
              \# Don't start paying attention until we see '[Term]'
62
63
              valid_to_read = False
64
              # Main parsing loop
65
66
              for line in go_file:
67
68
                      # Only if we're within a '[Term]' header
                      if valid_to_read:
69
                              if line.startswith('alt_id:'):
70
71
                                       alt_id = line.strip()[8:]
                                       alt_ids[alt_id] = go_term
72
73
74
                               elif line.startswith('id:'):
75
                                       # Only log if the entry is valid
76
                                       if not is_obsolete:
77
                                               if go_term != '':
78
79
                                                        # Only add connected node
80
81
                                                        if len(parents) > 0:
82
                                                                go_graph.add_node(go_term)
83
84
                                                                for parent in parents:
85
                                                                         if parent != '':
86
                                                                                 go_graph.add_edge(parent, go_term)
87
                                       # Reset regardless of logging status
88
                                       parents = []
89
90
                                       is_obsolete = False
91
                                       go_term = line.strip()[4:]
92
                               elif line.startswith('is_a:'):
93
94
                                       # Store is_a as a parent
95
                                       parents.append(line.split('!')[0].strip()[6:])
96
97
98
                               elif line.startswith('is_obsolete: true'):
99
                                       # Do not store the data under this '[Term]' header
100
                                       is_obsolete = True
101
102
                               elif line.startswith('[Typedef]'):
103
                                       # Write if the previous entries were valid
104
105
```

```
106
                                         # Only log if the entry is valid
107
                                         if not is_obsolete:
                                                 if go_term != '':
108
109
                                                          # Only add connected node
110
                                                          if len(parents) > 0:
111
112
                                                                   go_graph.add_node(go_term)
113
114
                                                                   for parent in parents:
115
                                                                           if parent != '':
116
117
                                                                                    go_graph.add_edge(parent, go_term)
118
                                         # Reset regardless of logging status
119
120
                                         parents = []
                                         is_obsolete = False
121
122
123
                                         go_term = '' # No valid ID to reset with under a '[Typedef]' header
124
125
                                         # Stop paying attention
126
                                         valid_to_read = False
                       else:
127
128
                                if '[Term]' in line:
129
                                         # Start paying attention
130
                                         valid_to_read = True
131
132
133
              go_file.close()
134
135
              return (go_graph, alt_ids)
136
137
     # NOTE(tfs): Accepted AC file format:
138
139
     #
140
141
     #
               protein_name
               GO_term
142
     #
               GO\_term
143
144
     #
               GO\_term
     #
145
146
147
     def parse_annotation_corpus(ac_file_name, alt_ids=None):
148
149
                       Parses annotation corpus. Returns a dictionary of { gene: [terms] }.
                       If a term is a key in alt_ids, saves the associated value instead (if provided).
150
151
152
              ac_file = open_or_abort(ac_file_name)
153
154
155
              # Setup
              prot_to_gos = {}
156
157
              go_to_prots = {}
158
              ac_file.seek(0)
159
160
              curr_prot = ''
161
              curr_gos = []
162
              new_entry = True
164
165
              for line in ac_file:
166
                       # Start information from new entry
167
                       if line.startswith('-'):
168
169
                                # Only update if we have enough information for the last entry
if curr_prot != '' and len(curr_gos) > 0:
170
171
172
173
                                         # Update prot_to_gos
                                         if curr_prot in prot_to_gos:
174
                                                 prot_to_gos[curr_prot] = prot_to_gos[curr_prot] + curr_gos
175
176
                                         else:
177
                                                 prot_to_gos[curr_prot] = curr_gos
178
```

```
179
                                       # Update go_to_prots
180
                                       for go in curr_gos:
181
                                               if go in go_to_prots:
                                                        go_to_prots[go].append(curr_prot)
182
                                                else:
183
                                                        go_to_prots[go] = [curr_prot]
184
185
                               # Reset, regardless of whether or not we updated
186
187
                               curr_prot = '
                               curr_gos = []
188
                              new_entry = True
189
190
                      # If we've just started looking at a new entry, parse as protein name
191
                      # DON'T do this if we're still on the delimiter line ('-')
192
193
                      elif new_entry:
                              curr_prot = line.strip().strip(';')
194
195
                              new_entry = False
                      # Otherwise, parse as GO term
196
                      else:
197
                               if ("GO:" in line):
198
                                       new_go = line.strip().strip(';')
199
                                       if alt_ids is not None:
200
                                                if new_go in alt_ids:
201
                                                        new_go = alt_ids[new_go]
202
203
                                       curr_gos.append(line.strip().strip(';'))
204
              ac_file.close()
205
206
              return (prot_to_gos, go_to_prots)
207
208
209
     # Load a saved SemSimCalculator
210
211
     def load_semsimcalc(saved_path):
                      Loads (unpickles) a saved SemSimCalculator
213
214
215
             return pickle.load(open(saved_path, 'rb'))
216
217
218
219
221
222
     ######################################
     ### SemSim_Calculator class ###
     ###################################
224
225
226
     class SemSimCalculator():
227
228
                      Stores GO and annotation corpus data internally.
229
230
                      Calculates different semantic similarity metrics.
231
232
              def __init__(self, go_file_name, ac_file_name):
233
                       """ Initialize using GO and annotation corpus files (pass in file name, not file object) """
234
235
                      self._go_graph, self._alt_list = parse_go_file(go_file_name)
                      self._prot_to_gos, self._go_to_prots = parse_annotation_corpus(ac_file_name, self._alt_list)
237
238
                      self._proteins = [x[0] for x in self._prot_to_gos.items()]
239
                      self._num_proteins = len(self._proteins)
                      self._ic_vals = {} # For memoizing IC values (they are unchanging given an ontology and annotation corpus,
240
241
                      self._go_terms = self._go_graph.nodes()
242
243
                      self._mica_store = None
244
245
246
              def link_mica_store(self, mica_store):
                       """ Stores a reference to a MicaStore instance """
247
248
249
                      self._mica_store = mica_store
250
             def unlink_mica_store(self):
251
```

```
252
                       """ Removes link to a MicaStore instance (sets to None) """
253
                       self._mica_store = None
254
255
              def save(self, filepath):
256
257
                               Saves (pickles) to filepath
259
260
                               NOTE: Does not save reference to MicaStore instance (as this will likely be broken on load)
261
262
263
                       # Do not store reference to MicaStore instance
264
                      temp = self._mica_store
                      self._mica_store = None
265
266
                      pickle.dump(self, open(filepath, 'wb'))
267
268
                       # Restore _mica_store reference
269
                      self._mica_store = temp
270
271
              def get_go_graph(self):
272
                        """ Return nx graph for GO """
273
274
275
                      return nx.DiGraph(self._go_graph)
276
              def get_alt_list(self):
277
                       """ Return alt_list """
278
279
                      return dict(self._alt_list)
280
281
282
              def get_ptg(self):
                       """ Return copy of prot_to_gos """
283
284
285
                      return dict(self._prot_to_gos)
286
287
              def get_gtp(self):
                       """ Return copy of go_to_prots """
288
289
290
                      return dict(self._go_to_prots)
291
292
              def get_proteins(self):
                       """ Return copy of proteins """
294
295
                      return list(self._proteins)
296
              def get_num_proteins(self):
297
                       """ Return number of proteins """
298
299
300
                      return int(self._num_proteins)
301
              def get_ic_vals(self):
302
303
304
                               Return all stored ic_vals.
305
                               Not all values are guaranteed to exist.
306
                               {\it Consider \ running \ precompute\_ic\_vals \ first.}
307
308
                      return dict(self._ic_vals)
309
310
311
              def get_go_terms(self):
                       """ Return list of GO terms """
312
313
314
                      return list(self._go_terms)
315
              def get_mica_store(self):
316
317
                       """ Returns copy of mica_store """
318
319
                      return self._mica_store
320
              def calc_term_prob(self, term):
321
                       """ Probability of term or {	t desc(term)} to occur as a label within the annotation corpus """
322
323
                      if term == None or (not term in self._go_graph):
324
```

```
325
                               return None
326
                       # Find all descendants of term, including term
327
                      terms = nx.algorithms.dag.descendants(self._go_graph, term)
328
                      terms.add(term)
329
330
                      annotated_proteins = {}
331
332
333
                       # Mark any protein labeled with term or a descendant of term
334
                      for term in terms:
                               if term in self.\_go\_to\_prots:
335
336
                                       for prot in self._go_to_prots[term]:
337
                                               annotated_proteins[prot] = True
338
339
                      prob = float(len(annotated_proteins.items())) / float(self._num_proteins)
340
341
                      return prob
342
              def calc_conditional_prob(self, term, condition):
343
344
                              Probability that term or desc(term) appears
345
                              as label in annotation corpus,
346
                               given that condition appears as a term.
347
348
349
                      if term == None or (not term in self._go_graph):
350
                               return None
351
352
                      # Find all descendants of condition, including condition
353
354
                      cond_terms = nx.algorithms.dag.descendants(self._go_graph, condition)
355
                      cond_terms.add(condition)
356
357
                      # Find all descendants of term, including term
358
                      terms = nx.algorithms.dag.descendants(self._go_graph, term)
                      terms.add(term)
359
360
361
                      conditional_proteins = {}
                      for cond_term in cond_terms:
362
                               if cond_term in self._go_to_prots:
363
                                       for prot in self._go_to_prots[cond_term]:
364
365
                                                conditional_proteins[prot] = True
366
                      restricted_term_proteins = {}
367
368
                      for r_term in terms:
                               if r_term in self._go_to_prots:
369
                                       for prot in self._go_to_prots[r_term]:
370
371
                                                if prot in conditional_proteins.keys():
                                                        restricted_term_proteins[prot] = True
372
373
                      if len(conditional_proteins.items()) == 0:
374
375
                               return None
376
                      else:
377
                               prob = float(len(restricted_term_proteins.items()))
                               prob = prob / float(len(conditional_proteins.items()))
378
379
                               return prob
380
381
              def IC(self, term):
                       """ Information content: IC(c) = -log(p(c)) """
383
384
                       # Check if IC has been computed for term already
                      if not (term in self._ic_vals):
385
386
                               # If not seen before, compute IC
387
                               prob = self.calc_term_prob(term)
388
                               if prob == 0 or prob == None:
389
                                       self._ic_vals[term] = None
390
                                       return None
391
392
                               else:
                                       ic = (-1) * math.log(prob)
393
                                       self._ic_vals[term] = ic # Memoize IC value
394
395
                                       return ic
396
                      else:
                               # If seen before, return memoized value
397
```

```
398
                               return self._ic_vals[term]
399
              def conditional_IC(self, term, condition):
400
                       """ Conditional Information Content: cIC(t \mid c) = -log(p(t \mid c)) """
401
402
                       # Too many values to memoize
403
                      cond_prob = self.calc_conditional_prob(term, condition)
404
405
406
                      if cond_prob == 0 or cond_prob == None:
                               return None
407
                      else:
408
409
                               cic = (-1) * math.log(cond_prob)
410
                               return cic
411
412
              def precompute_ic_vals(self):
                       """ Compute and store IC values for all ontology terms """
413
414
                      for term in self._go_graph.nodes():
415
                               self.IC(term)
416
417
              def MICA(self, left, right):
418
419
                              Maximum Informative Common Ancestor:
420
                              MICA(t1, t2) = arg max, IC(tj)
421
                                                                tj in ancestors(t1, t2)
422
                               (returns a term, common ancestor of left and right)
424
425
                              NOTE: If a MicaStore instance is linked, first try querying the stored instance
426
427
428
                      if not left in self._go_terms:
429
430
                               if left in self._alt_list:
431
                                       left = self._alt_list[left]
                               else:
432
433
                                       return None
434
                      if not right in self._go_terms:
435
                               if right in self._alt_list:
436
                                       right = self._alt_list[right]
437
438
                               else:
                                       return None
439
440
441
                       # Attempt lookup in linked MicaStore instance
                      if (self._mica_store != None):
442
                              mica = self._mica_store.mica_lookup(left, right)
443
444
                               if (mica != None) and (mica != '') and (mica != 'None'):
445
446
                                       return mica
                                       #if (mica == ','):
447
                                                # MICA is stored, but does not exist (None is a possible MICA value)
448
449
                                       #
                                                 return None
                                       #else:
450
451
                                                 return mica
452
                      # Fall through and calculate MICA
453
454
                      # Find common ancestors as intersection of two ancestor sets
                      # NOTE(tfs): Python sets are very slow. List comprehensions are faster
456
457
                      left_ancs = nx.algorithms.dag.ancestors(self._go_graph, left)
458
                      left_ancs.add(left)
459
                      right_ancs = nx.algorithms.dag.ancestors(self._go_graph, right)
460
                      right_ancs.add(right)
                      ancestors = [a for a in left_ancs if a in right_ancs]
461
462
                       # Edge case where left and right are the same. Treat left and right as a common ancestor
463
                      #if left == right:
464
465
                               ancestors.append(left)
466
                      max term = None
467
468
                      max_IC = 0
469
                       \# Calculate IC for all ancestors; store maximum IC value and term
470
```

```
471
                      for ancestor in ancestors:
                               anc_IC = self.IC(ancestor)
472
                               if anc_IC != None and anc_IC > max_IC:
473
474
                                       max_IC = anc_IC
                                       max_term = ancestor
475
476
                      return max_term
477
478
479
              def simRes(self, left, right):
480
                               simRes(t1, t2) = IC[MICA(t1, t2)]
481
482
                               Returns a value (IC result)
483
484
485
                      return self.IC(self.MICA(left, right))
486
487
              def simLin(self, left, right):
488
                              simLin(t1, t2) = [IC[MICA(t1, t2)]] / [IC(t1) + IC(t2)]
489
490
                              Returns a value
                              Currently untested
491
492
493
                      leftIC = self.IC(left)
494
495
                      rightIC = self.IC(right)
496
                      if leftIC == None or rightIC == None:
497
498
                               return None
                      else:
499
                               return self.IC(self.MICA(left, right)) / (leftIC + rightIC)
500
501
502
              def simJC(self, left, right):
503
504
                               simJC(t1, t2) = 1 - IC(t1) + IC(t2) - 2xIC[MICA(t1, t2)]
505
506
                              Returns a value
507
                              Currently untested
508
509
                      leftIC = self.IC(left)
510
                      rightIC = self.IC(right)
511
                      if leftIC == None or rightIC == None:
513
514
                               return None
                      else:
515
                               return 1 - self.IC(left) + self.IC(right) - (2*self.IC(self.MICA(left, right)))
516
517
              def pairwise_average_term_comp(self, lefts, rights, metric):
518
519
                               Compares each pair of terms in two sets or lists of terms.
520
                              Returns the average of these comparison scores.
521
522
                              Uses metric(left, right) to make each comparison.
523
                              metric must take in two ontology terms (left and right) and return a numeric score.
524
525
                      total_score = 0
526
                      num_scores = 0
527
                      for left in lefts:
                              for right in rights:
529
530
                                       new_score = metric(left, right)
531
                                       \# Count a new_score of None in the denominator, but treat it as a value of O
532
533
                                       # This mimics a dummy root node if there are multiple roots in the GO DiGraph
                                       if new_score != None:
534
535
                                               total_score += new_score
                                       num_scores += 1
536
537
538
                      if total_score == 0:
539
                               return None
540
                      else:
541
                               return total_score / num_scores
542
              def pairwise_max_term_comp(self, lefts, rights, metric):
543
```

```
544
545
                             Compares each pair of terms in two sets or lists of terms.
                             Returns the maximum score found in these comparisons.
546
547
                             Uses metric(left, right) to make each comparison.
                             metric must take in two ontology terms (left and right) and return a numeric score.
548
549
550
                     if (len(lefts) == 0) or (len(rights) == 0):
551
552
                             return None
553
                     max_score = 0
554
555
                     for left in lefts:
556
557
                             for right in rights:
558
                                     temp_score = metric(left, right)
                                     if temp_score != None and temp_score > max_score:
559
560
                                             max_score = temp_score
561
                     return max score
562
563
             def average_protein_comp(self, left_prot, right_prot, metric):
564
565
                             Looks up all go terms for left_prot and right_prot.
566
567
                             Uses pairwise_average_term_comp to compare the above sets of terms.
568
                             metric must take in two ontology terms (left and right) and return a numeric score.
569
570
571
                     left_terms = self._prot_to_gos[left_prot]
                     right_terms = self._prot_to_gos[right_prot]
572
573
574
                     return self.pairwise_average_term_comp(left_terms, right_terms, metric)
575
576
             def max_protein_comp(self, left_prot, right_prot, metric):
577
                             Looks up all terms for left_prot and right_prot.
578
579
                             Uses pairwise_max_term_comp to compare the above sets of terms.
                             metric must take in two ontology terms (left and right) and return a numeric score.
580
581
582
                     left_terms = []
583
584
                     right_terms = []
585
                     if (left_prot in self._prot_to_gos):
586
587
                             left_terms = self._prot_to_gos[left_prot]
588
                     if (right_prot in self._prot_to_gos):
589
590
                             right_terms = self._prot_to_gos[right_prot]
591
592
                     return self.pairwise_max_term_comp(left_terms, right_terms, metric)
593
594
595
596
     ### End SemSim Calculator class ###
597
     598
599
600
601
602
603
604
     605
606
     ### MicaStore class ###
     #######################
607
608
609
    class MicaStore():
610
611
                     Loads a matrix of MICA scores (and a list of GO term indices),
612
                     Provides accessors for MICA score lookup
613
614
615
             def __init__(self, matrix_filename, ordering_filename):
616
```

```
617
                              Loads the .npy numpy array, matrix_filename,
618
                              Stores the indices for each GD term in ordering_filename
619
620
621
                      orderfile = open_or_abort(ordering_filename)
622
623
                      self._micas = numpy.load(matrix_filename)
                      self._go_to_index = {}
624
625
                      index = 0
626
627
                      for line in orderfile:
628
                               self._go_to_index[line.strip()] = index
629
630
631
                      orderfile.close()
632
633
              def get_micas(self):
634
                              Returns reference to numpy matrix of MICA values.
635
636
                              NOTE: This is a large matrix
637
638
639
                      return self._micas
640
641
              def get_ordering(self):
                              Returns copy of the dictionary mapping
643
644
                              GO terms to indices in the _micas matrix
645
646
647
                      return dict(self._go_to_index)
648
649
              def get_index(self, term):
650
                              Returns the index of a GO term in the ordering of _micas (using _go_to_index)
651
652
                              Returns None if term is not in _go_to_index
653
654
655
                      if (term in self._go_to_index):
                              return self._go_to_index[term]
656
657
                      else:
                              return None
659
660
              def mica_lookup(self, left, right):
661
                              If a MICA value can be found in \_micas, return that MICA
662
663
                              Else, return None
664
665
666
                      left_index = self.get_index(left)
                      right_index = self.get_index(right)
667
668
669
                      if (left_index != None) and (right_index != None):
                              mica = self._micas[left_index, right_index]
670
671
                      else:
672
                              mica = None
673
                      if (mica == ''):
674
675
                               \# Indicates that the mica was found, but does not exist (None is a valid MICA value)
                              mica = ''
676
677
678
                      return mica
679
680
     #############################
681
     ### End MicaStore class ###
     ############################
683
```