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Abstract

Study and comparison of protein function is an important research topic in mod-

ern biology and bioinformatics. Better understanding of protein function aids in

targeting medical and pharmacological research. Ontologies of functional terms or-

ganize and give structure to possible protein functions, while annotation corpuses

apply functional labels to specific proteins. Many methods exist to compare protein

functional annotations. These methods range from simply counting the number

of overlapping functional labels to more complex methods that make use of the

structure of ontologies. Specifically, we look at the Resnik semantic similarity mea-

surement. Resnik scores make use of both the structure of an ontology and the

distribution of functional labels throughout an annotation corpus. In this thesis, we

see that incomplete data can lead to erroneous low Resnik values, while high Resnik

values are likely to be more meaningful.

Using the Gene Ontology Consortium’s ontology (GO) and annotation corpuses

from UniProt Swiss-Prot and the Saccharomyces Genome Database (SGD), we ana-

lyze Resnik scores. We create matrices of Resnik scores for each species, representing

the Resnik values between all pairs of proteins within a species. Using these matri-

ces, we show that even high quality datasets such as SGD and UniProt Swiss-Prot

do not completely label their proteins, leaving many proteins labeled with very gen-

eral functions. We go on to discuss methods for identifying high and low Resnik

values. We also show that matrix completion methods do not appear effective in

predicting functional similarity between two proteins within a species.
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Chapter 1

Protein Comparison

1.1 Introduction

1.1.1 Proteins

Proteins perform many distinct functions within cells, from metabolism to regula-

tion and production of other proteins. Any given species may have tens of thousands

of unique proteins, each with their own roles in the life and activity of a cell. Under-

standing how proteins operate and interact is vital to modern medical and biological

research.

By studying specific proteins, researchers can identify mechanisms at work in

cancers and infectious diseases. By finding proteins involved in ailments, researchers

can better target medical research or drug development. Additionally, by leveraging

the genetic similarities of different species, researchers can find proteins that fill the

same niche across multiple species. While developing a drug that targets a human

protein may be extremely expensive, it can be cheaper and faster to experiment

with proteins in a model organism that perform a similar function.

With modern technology, biologists are able to determine protein interactions

and functions at unprecedented speeds. As the size of available data grows, both the

possible benefits and the complexity of interpretation grow as well. Computational

techniques make use of standardized semantics for discussing proteins in order to
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CHAPTER 1. PROTEIN COMPARISON

compare proteins and even predict protein function.

1.1.2 Functional Annotations

In order to discuss the functions of proteins in large data sets and across species, re-

searchers have established conventions for identifying and labeling protein functions.

These standards are broken into two pieces: functional ontologies and annotation

corpuses. Ontologies represent the set of all possible functional labels, as well as

the relationships between these labels. Annotation corpuses apply specific labels to

individual proteins. Several different ontologies exist, and annotation corpuses differ

between datasets.

Ontologies

GO, from the Gene Ontology Consortium [1], is a commonly used protein functional

ontology [2]. GO provides a structured set of labels for protein function. The labels

in GO are organized as a directed acyclic graph. Each node represents a functional

label, while edges between nodes represent different relationships. GO contains

data for six relationships between terms: “is-a”, “part-of”, “regulates”, “positively-

regulates”, “negatively-regulates”, and “has-part”. For this thesis, we have only

examined “is-a” relationships; if a functional label li is a specification of another

term lj, an edge exists from lj to li. Note that any label may have multiple children

and multiple parents. GO is partitioned into three separate domains. Each of these

domains consists of its own directed acyclic graph. The root terms of these DAGs,

or domain roots, are “cellular component”, “biological process”, and “molecular

function”.

Because different child terms of a single ancestor term may differ in their speci-

ficity, the “depth” of a term in the GO graph is not necessarily meaningful. For

example, the GO terms for “single-organism organelle organization” and “transposi-

tion” are both children of the GO term “single-organism cellular process”, and both

have a depth of 4 in the GO graph. However, within the SGD annotation corpus
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used in this thesis, “single-organism organelle organization” is used to label more

than ten times the number of proteins that “transposition” labels (279 compared to

20). Even though both terms share the same depth in GO, and are in fact siblings,

they are not equally common functional labels. GO is only able to provide explicit

information on the relationships between a parent and a child. It is always true that

a child is more specific than a parent, but it is not necessarily true that a node is

equally specific as its siblings.

The terms specified in GO are not very useful by themselves. Protein functions

are more meaningful when associated with actual proteins. Annotation corpuses

contain the known associations of proteins with their functions. These associations

are determined either through biological experimentation or through computational

prediction.

Annotation Corpuses

Different groups may publish their own annotation corpuses, based on their own

experimentation or functional prediction. Different groups may also compile others’

data. Some experiments may be more error-prone than others, and computational

prediction of protein function also comes with less than complete confidence. Be-

cause of these potential errors or sources of noise, annotation corpus providers may

require different levels of confidence before approving a functional annotation and

adding it to the corpus. All these differences lead to many slightly different datasets,

potentially focusing on different species, different diseases, or proteins with specific

functions.

Annotation corpuses are also far from complete. Even if all functional anno-

tations were one hundred percent accurate, many proteins have never been tested

for function. The biological experiments to determine function take time and re-

sources, and therefore many proteins are currently overlooked and untested. Even

when proteins have labels in an annotation corpus, those labels are not always terri-

bly informative. For 1148 of 7014 proteins in the Saccharomyces Genome Database

5



CHAPTER 1. PROTEIN COMPARISON

(SGD), the most specific functional label is a domain root of GO. For roughly one

seventh of the proteins in this dataset, we can provide no function more specific

than “molecular function”, “biological process”, or “cellular component”.

In this thesis, we will primarily discuss two annotation corpuses: the SGD an-

notation corpus mentioned above, and the Swiss-Prot annotation corpus provided

by UniProt. Swiss-Prot is a multi-species annotation corpus. It contains labels for

proteins that belong to various species. Swiss-Prot includes only experimentally-

supported functional labels. SGD provides annotations solely for Saccharomyces

cerevisiae. The labels in SGD are also solely experimentally-derived.

1.1.3 Data Sources

Gene Ontology

All calculations were performed using the GO release of June 13, 2015. The file used

was go.obo, downloaded from geneontology.org

Annotation Corpuses

Two annotation corpuses were used in this thesis.

The UniProt Swiss-Prot annotation corpus was downloaded from uniprot.org on

June 23, 2015. The SGD annotation corpus was downloaded from yeastgenome.org

on December 27, 2015.

1.1.4 Functional Prediction

Predicting the functional labels of experimentally untested proteins is an important

research problem. Predictions can be used to identify potentially interesting pro-

teins for medical or biological research, among other uses. Many algorithms exist

for protein functional prediction, often using additional biological data. Various

methods can be used to append predicted functional labels within an annotation

corpus, such as simple majority voting [3] or more complex algorithms that make
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use of local neighborhoods within the network [4, 5], clustering within the network

[6, 7, 8], and more [9, 10, 11, 12].

1.2 Techniques

In order to compare proteins, researchers look at several different aspects of each

protein depending on their methodology. Proteins can be compared based on genetic

sequence, structure, or the function of a protein. As discussed above, data regarding

protein interactions can also be used to compare proteins and find similarities.

BLAST [13] is a tool that compares gene DNA sequence or protein amino acid

sequence. BLAST produces a score measuring the similarity between sequences

without examining protein functional labels, and functional annotations typically

transfer if the BLAST similarity score is exceeds some threshold.

Another common tool is Pfam, which compares the secondary structure of pro-

teins using machine learning [14]. Pfam uses hidden Markov models to classify

proteins into groups with similar secondary structures.

Other techniques for comparing the function of proteins rely on existing infor-

mation about the function of the proteins being compared. The simplest methods

compare the exact labels of multiple proteins. For example, Jaccard GO [15, 16, 17]

compares the number of functional terms shared by both proteins to the number

of proteins associated with either protein. If L(p) is the set of functional labels

associated with protein “p”, then:

JaccardGO(pi, pj) =
|L(pi) ∩ L(pj)|
|L(pi) ∪ L(pj)|

Other techniques compare functional labels directly, relying on the structure of

GO itself. Two methods SimUI and SimPE [18] make use of induced subgraphs

of GO. They define the induced subgraph of a term V (t) to be all nodes and edges

present in all paths from the root to the t. For example, the highlighted nodes and

edges in figure 1.1 represent the induced subgraph for GO:0044700. Note that figure
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1.1 refers to a partial representation of the GO DAG.

Figure 1.1: Induced Subgraph of GO:0044700 on partial GO DAG

SimUI evaluates the subgraphs based on node count

SimUI(t1, t2) =
|V (t1) ∩ V (t2)|n
|V (t1) ∪ V (t2)|n

while SimPE evaluates the subgraphs based on edge count

SimPE(t1, t2) =
|V (t1) ∩ V (t2)|e
|V (t1) ∪ V (t2)|e

Some techniques even make use of the distribution of functional labels within

an annotation corpus. Annotation Corpuses are often used to generate information

content (IC) measurements for specific terms, based on how well-represented terms

are within the annotation corpus. These information content values are used in

the Resnik semantic similarity comparison, as well as all of the modifications and

adaptations of the Resnik comparison. IC is also widely used in other comparisons.
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1.3 Information Content Comparisons

Information content is a measurement, originally from the field of natural language

processing [19], used to indicate the specificity of a given functional term in GO.

Information content is calculated based on a specific annotation corpus; two IC val-

ues are not comparable unless they are both calculated using the same annotation

corpus.

1.3.1 Probability

The probability of a functional label, denoted P (l), is equal to the portion of pro-

teins in the annotation corpus that perform the function of l.

P (l) =
|proteins(l)|

|annotation corpus|
Note that different curators may apply labels differently; given experimental

evidence that a protein pi performs function li, one curator may choose to add the

label li by itself to the annotation corpus, while another curator may also add all

ancestors of li. Either would be technically accurate, it is a matter of convention.

The structure of the GO DAG means that li is a specification of all of the ancestors

of li. For example, if a protein performs a function related to synaptic transmission

(GO:0007268), its function must also relate to signaling (GO:0023052).

In order to maintain consistency and accuracy when calculating probability, we

define proteins(l) as a function that returns all proteins in the annotation corpus

that contain either l or any of the descendants of l as a functional label.

1.3.2 Information Content

If a term is close to its domain root, it is more likely to have a high probability

value. Nearly all proteins in a given annotation corpus will contain the functional

label “biological process” or one of biological process’ descendants. Essentially, the
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lower the probability of a functional label, the more specific it is likely to be. There-

fore, information content is defined as

IC(l) = −ln(P (l))

The least-represented GO terms in a given annotation corpus will have a low

probability and consequently a higher information content value. Because the prob-

ability of a term takes into account proteins labeled with that term’s descendants,

the probability of a term is always at least as large as any of the probabilities of

that term’s children. Therefore, a term in GO always has an information content

that is at least as large as its parent term’s information content value.

1.4 The Resnik Score

A Resnik similarity score is an indication of the level of similarity between two

functional labels within the context of a common ontology and annotation corpus

[19]. Given two functional labels li and lj, the maximum informative common an-

cestor (MICA) of those terms is the common ancestor of li and lj with the highest

information content.

All common ancestors of two functional labels represent functions shared by both

terms. The MICA of two terms, therefore, represents the most specific or most in-

formative shared function between the two functional terms being compared. The

Resnik score of li and lj is equal to the information content of the maximum infor-

mative common ancestor of li and lj.

simRes(li, lj) = IC(MICA(li, lj))

1.4.1 Resnik Scores Across GO Domains

Resnik scores rely on the MICA of two terms. If two functional labels are from dif-

ferent domains of GO, then they are part of separate DAGs. Therefore, they have
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no common ancestors, and no MICA. In this case, GO is treated as having a true

root node with three direct children: “molecular function”, “biological process”,

and “cellular component” (the domain roots of GO). All functional labels in GO are

descendants of this dummy root. Therefore, the probability

P (ROOTdummy) = 1

The information content of the dummy root consequently equals zero. This

dummy root allows us to treat the Resnik score between two functional labels from

different GO domains as 0.

1.4.2 Resnik Scores and Distance

Note that Resnik scores between two GO terms are symmetric. However, a Resnik

score is a measurement of similarity, not a distance metric. Resnik scores themselves

do not obey the triangle inequality. For example, consider the terms “GO:0016075”

(rRNA catabolic process), “GO:0007483” (genital disc morphogenesis), and “GO:0061558”

(cranial ganglion maturation).

simRes(GO:0016075,GO:0007483) = 0.037477152772432756

simRes(GO:0007483,GO:0061558) = 3.7497179567995427

simRes(GO:0016075,GO:0061558) = 0.037477152772432756

This makes sense, because the Resnik comparison measures similarity rather

than dissimilarity. However, even taking the multiplicative inverse of Resnik scores
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does not provide a true distance metric. The reciprocals of Resnik scores be-

tween the functional labels “GO:0033471” (GDP-L-galactose metabolic process),

“GO:1901805” (beta-glucoside catabolic process), and “GO:1901699” (cellular re-

sponse to nitrogen compound) do not obey the triangle inequality.

1

simRes(GO:0033471,GO:1901805)
= 0.6011489018392736

1

simRes(GO:1901805,GO:1901699)
= 26.682923488669466

1

simRes(GO:0033471,GO:1901699)
= 1.908992864684634

Therefore, Resnik scores are not trivially interchangeable with other distance

metrics between terms.

1.4.3 Modifications to Resnik Scores

Several semantic similarity measurements tweak the Resnik comparison slightly in

order to normalize or adjust sensitivity. One measurement, simLin [20], uses the

information contents of the terms being compared to normalize Resnik scores.

simLin(li, lj) =
simRes(li, lj)

IC(li) + IC(lj)

1.4.4 Relative Specificity Similarity

Wu et al. have developed several other GO-based measurements of similarity be-

tween functional labels. Relative Specificity Similarity (RSS) is a similarity mea-

surement that does not require an annotation corpus [21]. RSS relies on the most

recent common ancestor (MRCA) of two terms. Wu et al. also define α, β, and γ.
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For terms li and lj

α = max (|m ∩ n|n)

for all paths m from root to li and all paths n from root to lj

β = (gen(li), gen(lj))

where gen(l) is the smallest number of edges between l and any descendant of l

that is a leaf (has no descendants of its own).

γ = dist(MRCA(li, lj), li) + dist(MRCA(li, lj), lj)

α is the relative specificity of li and lj, β is the relative generality of li and lj,

and γ is the sum of distances between MRCA(li, lj) and li and lj. Based on these

definitions, RSS is defined as

RSS(li, lj) =
maxDepthGO

maxDepthGO + γ
∗ α

α + β

1.4.5 Hybrid Relative Specificity Similarity

Wu et al. also modified their RSS measurement to make use of information content.

They created Hybrid Relative Specificity Similarity (HRSS) using both the most

informative leaf (MIL) and MICA of terms, as well as a Resnik comparison [22].

They redefine αIC , βIC , and γIC for terms li and lj as follows.

αIC = simRes(li, lj)

βIC =
(IC(MIL(li))− IC(li)) + (IC(MIL(lj))− IC(lj))

2

γIC = (IC(li)− simRes(li, lj)) + (IC(lj)− simRes(li, lj))

13



CHAPTER 1. PROTEIN COMPARISON

1.5 Protein Comparisons

Proteins in the annotation corpus often have more than one label, and can have

multiple labels that are very dissimilar functionally. However, many of these se-

mantic similarity measurements only compare individual terms. In order to apply

these measurements to protein functional comparison, several “mixing methods” are

commonly used. The simplest method for comparing two proteins pi and pj, and

the method used in this thesis, is to simply take the maximum similarity score of

all pairs of (li, lj), where li is a functional label of pi and lj is a functional label of

pj. Another simple method is to take the average of all pairwise comparisons.

1.6 Discussion

1.6.1 Conditional Information Content

The relationship between the information content of a functional label and the in-

formation content of one of its descendants has a special meaning. A “conditional

information content” score can indicate the similarity between an ancestor func-

tional label and one of its descendants. Bayes’ theorem shows that the difference in

information content between an ancestor term and a descendant term is based on a

conditional probability, defined as follows.

P (li | lj) =
|proteins(li) ∩ proteins(lj)|

|proteins(lj)|

With this definition, it is possible to consider conditional information content

values, defined below.

IC(li|lj) = −ln(P (li | lj))

When comparing two functional labels li and lj where one label is an ancestor of

the other, the intersection proteins(li)∩ proteins(lj) is guaranteed to be non-empty

14
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as long as both proteins(li) and proteins(lj) are both non-empty. If li is the ances-

tor of lj, note that every protein in proteins(lj) is also in proteins(li) by definition.

Therefore, the conditional probability P (ancestor | descendant) will always be 1.

According to Bayes’ theorem

P (desc. | anc.) =
P (anc. | desc.)P (desc.)

P (anc.)

Therefore

IC (desc. | anc.) = −ln (P (desc. | anc.))

= −ln

(
P (anc. | desc.) P (desc.)

P (anc.)

)
= −1 ∗ (ln (P (anc. | desc.)) + ln (P (desc.))− ln (anc.))

= −ln (1)− ln (P (desc.)) + ln (P (anc.))

= IC (desc.)− IC (anc.)

(1.1)

This shows that the difference between the information content values of two

functional labels has a special meaning if one label is the ancestor of the other. The

difference in information content values represents the relative information content of

the descendant with respect to the ancestor. If the difference IC (desc.)−IC (anc.) is

high, then the proportion
|proteins (desc.)|
|proteins (anc.)|

must be low. Therefore, this conditional

information content score can be used to differentiate between functional terms that

are significantly more specific than their parent, and functional terms that provide

very little additional information compared to their parents.
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1.6.2 Resnik Scores

Resnik scores are often discussed in relation to functional similarity problems. New

measurements are often compared to the Resnik semantic similarity comparison

method, which is one of the simplest information content-based measures. However,

some of the issues of Resnik scores are rarely discussed.

It is important to know that Resnik scores are not true metrics. Because Resnik

scores do not obey the triangle inequality (and cannot be trivially manipulated

to obey the triangle inequality) they cannot be substituted for common distance

metrics such as shortest path. Data quality issues are also rarely mentioned in

depth. The difference in meaning and meaningfulness of high Resnik score values

and low Resnik score values is often neglected. However, we have seen that many

proteins in up to date annotation corpuses are only labeled with general functional

terms. It is important to remember, when using Resnik scores as a comparison, that

low scores do not necessarily indicate dissimilarity.

1.6.3 Resnik Scores and Data Quality

When discussing functional comparisons between proteins, the data quality issues

of annotation corpuses discussed earlier impact the meaningfulness of semantic sim-

ilarity measurements. In the case of Resnik scores (the primary semantic similarity

measurement for the rest of this thesis), incomplete annotation corpuses lead to

erroneously low estimates of the Resnik scores between some proteins.

Several situations can result in a low Resnik score. Two proteins that are truly

dissimilar will always have a low Resnik score, as long as they have at least a single

correct functional label. If these similar proteins are labeled with their most specific

functional terms but their MICA is a domain root, they will have an extremely low

Resnik score. However, incomplete labelings of similar proteins can also lead to a

low Resnik score. If a protein has multiple functions but is only labeled with one

function, that protein will appear dissimilar (low Resnik score) to other proteins

that share the missing label as a true function. Recall that many proteins can have
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very general functional terms as their sole labels. Even if a function is not strictly

missing, it is still possible that a protein is labeled with a more general version of

its function. This can lead to lower Resnik scores, regardless of the true functional

similarity of proteins.

Incomplete annotation corpuses cannot, however, lead to falsely high Resnik

scores under the maximum mixing method. The Resnik score between two proteins

under the maximum mixing method is equal to the highest Resnik score between any

pair of terms across the proteins. Therefore, if two proteins have a high Resnik score,

they must be labeled with two functionally similar terms. Added functional labels

cannot reduce the Resnik score of two proteins. Only false annotations can create

a falsely high Resnik score. Because the annotation corpuses used in this thesis

exclusively use functional labels backed by experimental evidence, all functional

labels that we used are more likely to be accurate than labels from annotation

corpuses that allow computationally predicted annotations.
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Chapter 2

Resnik as a Matrix

We have calculated Resnik scores for all yeast (Saccharomyces cerevisiae), mouse

(Mus musculus), and human (Homo sapiens) proteins. Mouse and human Resnik

scores were calculated using the UniProt Swiss-Prot annotation corpus, while yeast

Resnik scores were calculated using the SGD annotation corpus.

For each species, we created a square matrix of Resnik scores. Table 2 shows the

number of proteins and total Resnik scores for each species. Each row and column

within a Resnik score matrix represents a single protein, with element (i; j) repre-

senting the Resnik score between protein i and protein j. Because simRes(li; lj) =

simRes(lj; li), these matrices are symmetric. However, not all pairs of proteins have

functional labels from the same domain of GO. Consequently, table 2 shows that a

number of Resnik scores within each species are cross-domain, resulting in Resnik

scores of 0.

Species Number of Proteins Total Entries Cross-Domain Scores

Human 20205 408242025 65409425

Mouse 16711 279257521 19243345

yeast 7014 49196196 3876

18
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2.1 New Properties

When examining a matrix of Resnik scores, it is possible to find new patterns and

properties. The distribution of values can provide a basis for differentiating “high”

and “low” Resnik scores. As discussed above, low Resnik scores can arise from

several situations while high Resnik scores are more likely to be accurate. Distin-

guishing between high and low scores in the matrix can identify high-confidence

Resnik comparisons. Namely, by examining the distribution of Resnik scores, it is

possible to identify the high-value Resnik scores as high confidence.

2.1.1 Diagonals in Resnik Score Matrix

Other properties of the matrix can be used to find poorly-labeled proteins and

low-confidence Resnik scores. A simple indicator of a protein’s labeling quality

is the diagonal of the matrix. A diagonal at index i represents the Resnik score

between proteini and itself. Under the maximum mixing method, this is equal to

the information content of the most informative term of proteini. Essentially, the

diagonal at index i is equal to max (IC(l)) for all functional labels l associated

with proteini. If a diagonal at index i has a low value, the information content

of the most informative functional label of proteini must be low. proteini cannot,

therefore, be labeled with any specific functional labels. For reference, figure 2.1

shows histograms of the diagonal values for each species’ Resnik matrix.

Diagonals as Upper Bound on Resnik Scores

The MICA of two functional labels li and lj must be an ancestor of both li and lj. The

information content ofMICA(li, lj) must be less than or equal tomin (IC(li), IC(lj)).

Therefore, the Resnik similarity between two terms is bounded by the less informa-

tive term. A diagonal at index i in a Resnik matrix is an upper bound on values

in column i and row i. If proteini does not have any highly informative functional

labels, then simRes(proteini, proteinj) will always be low for any j. proteini can

therefore be considered poorly labeled, and all comparisons with proteini (all entries
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(a) SGD diagonals

(b) Human diagonals

(c) Mouse diagonals

Figure 2.1: Histograms of diagonal values in Resnik matrices
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in row i or column i in the matrix) are likely not meaningful.

2.1.2 Distribution of Specificity

Beyond diagonals, we can use statistics to determine low or high Resnik values.

In the SGD Resnik matrix (generated using the SGD annotation corpus), Resnik

values greater than 3.043 are two standard deviations above the mean. In the

human matrix, the cutoff is 5.4435 while in mouse the cutoff is 5.9412. Alter-

nately, we can classify some of the lowest values as less meaningful by comparing

matrix entries to the IC values of highly-represented functional labels in the an-

notation corpus. The graphs in figure 2.2 show the size of proteins(label) and

proteins(label) ∩ proteins(labelchild) for each child labelchild of label. There is one

data point on the graph for each parent-child relationship within GO.

In order to make use of these graphs for preliminary testing, we chose all data

points with |proteins(parent)∩proteins(child)| ≥ 3000 for SGD, and |proteins(parent)∩

proteins(child)| ≥ 250000 for UniProt Swiss-Prot. This leads to IC cutoff values of

roughly 0.85 and 0.74 respectively.

2.2 High Value Density

Looking at the SGD Resnik score matrix, we examined the density of high Resnik

score values within each row of the Resnik score matrix. For this evaluation, a

“high” Resnik score is a value greater than or equal to 3.043. For each row in the

Resnik score matrix, we calculated the percentage of entries that were “high” values.

Figure 2.3 shows a histogram with the distribution. For this histogram, we removed

all percentages equal to 0 in order to make the rest of the graph more readable.

We noticed several outliers on the right of the graph. A few rows (corresponding

to proteins) had exceptionally high percentages of high Resnik scores. The pro-

teins five proteins with the highest percent of high Resnik scores were YBR160W,

YER125W, YPL204W, YBR279W, and YER133W. According to yeastgenome.org,
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(a) SGD annotation corpus

(b) UniProt annotation corpus

Figure 2.2: |proteins(parent)| vs. |proteins(parent) ∩ proteins(child)|
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all of these proteins have regulatory functions. This similarity between the outliers

may be useful for identifying regulatory proteins in the future.

Figure 2.3: Distribution of high Resnik percentages in matrix rows

2.3 Resnik Score Cutoff

We have used a couple simple methods to classify Resnik scores as low or high in

value. However, we have not performed experiments to determine the efficacy of the

methods discussed in this thesis. In future work, we hope to refine and further study

these methods. These methods would allow researchers to classify Resnik scores as

high- or low-confidence with more accuracy and precision.
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Chapter 3

Matrix Completion

3.1 Introduction

The problem of matrix completion, especially for matrices of low rank, has become

widely studied recently. Matrix completion is applicable in several situations. Im-

ages can be represented as matrices, and matrix completion can be used to identify

image subjects or components. In a more abstract setting, matrix completion can

be used in the context of the Netflix prize; it can predict user preferences or ratings

of movies.

3.2 Methods

Essentially, the matrix completion problem takes as input a matrix with some en-

tries missing. A solution to the matrix completion problem returns a matrix with

estimates in place of missing entries. We attempt to apply an existing matrix com-

pletion solution (LMaFit, translated to Python code by Professor Mark Crovella

of Boston University) [23] to the Resnik matrices. LMaFit uses the nuclear norms

method [24] for matrix completion. We treat low Resnik scores in the Resnik ma-

trices as missing data entries. We then run LMaFit to estimate the missing values.

Unfortunately, the preliminary results for matrix completion on Resnik matrices

(discussed below in more detail) are not promising.
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3.3 Results

We ran LMaFit on the SGD matrix using an IC cutoff value of 0.85 (as discussed

in chapter 2). We first set all entries in the SGD matrix below 0.85 to 0. We then

considered all remaining non-zero values to be “known” values, essentially high-

enough confidence to keep. For each trial, we split the known values in half to run

a 2-fold cross validation. Note, because the Resnik score matrices are symmetric,

entries (i, j) and (j, i) were always partitioned into the same fold. For each fold, we

set the opposite fold’s values to zero and used LMaFit to predict non-zero values

for all zeroed values in the matrix. The maximum Resnik score in the SGD matrix

is roughly 5.8599, and we found an average error of 1.738 for all predicted matrix

entry values using LMaFit.

For comparison, we also randomly selected entry values between 0 and the max-

imum value of the matrix (5.8599) to fill all zeroed entries. The average error for

random completion was 1.771. Given the large error and negligible difference be-

tween LMaFit matrix completion results and random prediction results, LMaFit

does not seem to accurately predict Resnik scores based on a Resnik score matrix.

3.4 Discussion

We only have preliminary results for matrix completion of Resnik score matrices.

However, these results are not promising. With high error values roughly equivalent

to randomly predicting missing entries, there is no evidence that matrix completion

methods can predict functional similarity between proteins with any confidence. It

may be worthwhile to investigate other methods for matrix completion, but there

seems to be a low probability of success.
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Appendix A

SemSimCalculator

A.1 semsimcalc.py

I have produced a python class that can be used to calculate several semantic simi-
larity measurements. The code is included as Appendix A, and the full README
can be found on github, under TuftsBCB/semsimcalc. Given a file representing GO
and an annotation corpus, the SemSimCalculator class can calculate probability and
information content values, Resnik scores, conditional probabilities, conditional in-
formation content scores, and a couple other semantic similarity measurements. The
SemSimCalculator class also contains two mixing methods for protein comparison:
maximum and average. The relationship between proteins and GO terms is stored
internally, so there is no need to look up labels of proteins separately.

A.2 Code
1 #!/usr/bin/python

2

3 # See http://bib.oxfordjournals.org/content/13/5/569.full

4 # For definitions

5

6 import sys

7 import time

8 import networkx as nx

9 import math

10 import pickle

11 import numpy

12

13 # Helper functions

14 def announce(message):

15 """ Timestamped output to stdout """

16 print time.strftime(’%H:%M’),message

17 sys.stdout.flush()

18

19 def open_or_abort(filename, option=’r’):

20 """ Output error message to stderr if file opening failed """

21 try:

22 newfile = open(filename, option)

23 except IOError:

24 sys.stderr.write("Could not open {} -- Aborting\n".format(filename))

25 raise IOError

26 return newfile

27

28

29 # NOTE(tfs): Accepted GO file format:

30 #

31 # ! comments

32 #
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33 # [Term]

34 # id: GO_term

35 # ...

36 # is_a: GO_term

37 # is_a: GO_term

38 #

39 # [Term]

40 # ...

41 #

42 # [Typedef]

43 #

44 # The [Typedef] tag signals end of GO terms.

45 # It is necessary in the current implementation

46 #

47 def parse_go_file(go_file_name):

48 """ Parses and returns (does not natively store) GO data """

49

50 go_file = open_or_abort(go_file_name)

51

52 # Setup

53 go_file.seek(0)

54 go_graph = nx.DiGraph()

55

56 alt_ids = {}

57

58 go_term = ’’

59 parents = []

60 is_obsolete = False

61

62 # Don’t start paying attention until we see ’[Term]’

63 valid_to_read = False

64

65 # Main parsing loop

66 for line in go_file:

67

68 # Only if we’re within a ’[Term]’ header

69 if valid_to_read:

70 if line.startswith(’alt_id:’):

71 alt_id = line.strip()[8:]

72 alt_ids[alt_id] = go_term

73

74 elif line.startswith(’id:’):

75

76 # Only log if the entry is valid

77 if not is_obsolete:

78 if go_term != ’’:

79

80 # Only add connected node

81 if len(parents) > 0:

82 go_graph.add_node(go_term)

83

84 for parent in parents:

85 if parent != ’’:

86 go_graph.add_edge(parent, go_term)

87

88 # Reset regardless of logging status

89 parents = []

90 is_obsolete = False

91

92 go_term = line.strip()[4:]

93 elif line.startswith(’is_a:’):

94

95 # Store is_a as a parent

96 parents.append(line.split(’!’)[0].strip()[6:])

97

98 elif line.startswith(’is_obsolete: true’):

99

100 # Do not store the data under this ’[Term]’ header

101 is_obsolete = True

102

103 elif line.startswith(’[Typedef]’):

104 # Write if the previous entries were valid

105
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106 # Only log if the entry is valid

107 if not is_obsolete:

108 if go_term != ’’:

109

110 # Only add connected node

111 if len(parents) > 0:

112

113 go_graph.add_node(go_term)

114

115 for parent in parents:

116 if parent != ’’:

117 go_graph.add_edge(parent, go_term)

118

119 # Reset regardless of logging status

120 parents = []

121 is_obsolete = False

122

123 go_term = ’’ # No valid ID to reset with under a ’[Typedef]’ header

124

125 # Stop paying attention

126 valid_to_read = False

127 else:

128 if ’[Term]’ in line:

129

130 # Start paying attention

131 valid_to_read = True

132

133 go_file.close()

134

135 return (go_graph, alt_ids)

136

137

138 # NOTE(tfs): Accepted AC file format:

139 #

140 # -

141 # protein_name

142 # GO_term

143 # GO_term

144 # GO_term

145 # -

146 #

147 def parse_annotation_corpus(ac_file_name, alt_ids=None):

148 """

149 Parses annotation corpus. Returns a dictionary of { gene: [terms] }.

150 If a term is a key in alt_ids, saves the associated value instead (if provided).

151 """

152

153 ac_file = open_or_abort(ac_file_name)

154

155 # Setup

156 prot_to_gos = {}

157 go_to_prots = {}

158

159 ac_file.seek(0)

160

161 curr_prot = ’’

162 curr_gos = []

163 new_entry = True

164

165 for line in ac_file:

166

167 # Start information from new entry

168 if line.startswith(’-’):

169

170 # Only update if we have enough information for the last entry

171 if curr_prot != ’’ and len(curr_gos) > 0:

172

173 # Update prot_to_gos

174 if curr_prot in prot_to_gos:

175 prot_to_gos[curr_prot] = prot_to_gos[curr_prot] + curr_gos

176 else:

177 prot_to_gos[curr_prot] = curr_gos

178
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179 # Update go_to_prots

180 for go in curr_gos:

181 if go in go_to_prots:

182 go_to_prots[go].append(curr_prot)

183 else:

184 go_to_prots[go] = [curr_prot]

185

186 # Reset, regardless of whether or not we updated

187 curr_prot = ’’

188 curr_gos = []

189 new_entry = True

190

191 # If we’ve just started looking at a new entry, parse as protein name

192 # DON’T do this if we’re still on the delimiter line (’-’)

193 elif new_entry:

194 curr_prot = line.strip().strip(’;’)

195 new_entry = False

196 # Otherwise, parse as GO term

197 else:

198 if ("GO:" in line):

199 new_go = line.strip().strip(’;’)

200 if alt_ids is not None:

201 if new_go in alt_ids:

202 new_go = alt_ids[new_go]

203 curr_gos.append(line.strip().strip(’;’))

204

205 ac_file.close()

206

207 return (prot_to_gos, go_to_prots)

208

209

210 # Load a saved SemSimCalculator

211 def load_semsimcalc(saved_path):

212 """

213 Loads (unpickles) a saved SemSimCalculator

214 """

215

216 return pickle.load(open(saved_path, ’rb’))

217

218

219

220

221

222 ###############################

223 ### SemSim_Calculator class ###

224 ###############################

225

226

227 class SemSimCalculator():

228 """

229 Stores GO and annotation corpus data internally.

230 Calculates different semantic similarity metrics.

231 """

232

233 def __init__(self, go_file_name, ac_file_name):

234 """ Initialize using GO and annotation corpus files (pass in file name, not file object) """

235

236 self._go_graph, self._alt_list = parse_go_file(go_file_name)

237 self._prot_to_gos, self._go_to_prots = parse_annotation_corpus(ac_file_name, self._alt_list)

238 self._proteins = [x[0] for x in self._prot_to_gos.items()]

239 self._num_proteins = len(self._proteins)

240 self._ic_vals = {} # For memoizing IC values (they are unchanging given an ontology and annotation corpus)

241

242 self._go_terms = self._go_graph.nodes()

243

244 self._mica_store = None

245

246 def link_mica_store(self, mica_store):

247 """ Stores a reference to a MicaStore instance """

248

249 self._mica_store = mica_store

250

251 def unlink_mica_store(self):
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252 """ Removes link to a MicaStore instance (sets to None) """

253

254 self._mica_store = None

255

256 def save(self, filepath):

257 """

258 Saves (pickles) to filepath

259

260 NOTE: Does not save reference to MicaStore instance (as this will likely be broken on load)

261 """

262

263 # Do not store reference to MicaStore instance

264 temp = self._mica_store

265 self._mica_store = None

266

267 pickle.dump(self, open(filepath, ’wb’))

268

269 # Restore _mica_store reference

270 self._mica_store = temp

271

272 def get_go_graph(self):

273 """ Return nx graph for GO """

274

275 return nx.DiGraph(self._go_graph)

276

277 def get_alt_list(self):

278 """ Return alt_list """

279

280 return dict(self._alt_list)

281

282 def get_ptg(self):

283 """ Return copy of prot_to_gos """

284

285 return dict(self._prot_to_gos)

286

287 def get_gtp(self):

288 """ Return copy of go_to_prots """

289

290 return dict(self._go_to_prots)

291

292 def get_proteins(self):

293 """ Return copy of proteins """

294

295 return list(self._proteins)

296

297 def get_num_proteins(self):

298 """ Return number of proteins """

299

300 return int(self._num_proteins)

301

302 def get_ic_vals(self):

303 """

304 Return all stored ic_vals.

305 Not all values are guaranteed to exist.

306 Consider running precompute_ic_vals first.

307 """

308

309 return dict(self._ic_vals)

310

311 def get_go_terms(self):

312 """ Return list of GO terms """

313

314 return list(self._go_terms)

315

316 def get_mica_store(self):

317 """ Returns copy of mica_store """

318

319 return self._mica_store

320

321 def calc_term_prob(self, term):

322 """ Probability of term or desc(term) to occur as a label within the annotation corpus """

323

324 if term == None or (not term in self._go_graph):
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325 return None

326

327 # Find all descendants of term, including term

328 terms = nx.algorithms.dag.descendants(self._go_graph, term)

329 terms.add(term)

330

331 annotated_proteins = {}

332

333 # Mark any protein labeled with term or a descendant of term

334 for term in terms:

335 if term in self._go_to_prots:

336 for prot in self._go_to_prots[term]:

337 annotated_proteins[prot] = True

338

339 prob = float(len(annotated_proteins.items())) / float(self._num_proteins)

340

341 return prob

342

343 def calc_conditional_prob(self, term, condition):

344 """

345 Probability that term or desc(term) appears

346 as label in annotaiton corpus,

347 given that condition appears as a term.

348 """

349

350 if term == None or (not term in self._go_graph):

351 return None

352

353 # Find all descendants of condition, including condition

354 cond_terms = nx.algorithms.dag.descendants(self._go_graph, condition)

355 cond_terms.add(condition)

356

357 # Find all descendants of term, including term

358 terms = nx.algorithms.dag.descendants(self._go_graph, term)

359 terms.add(term)

360

361 conditional_proteins = {}

362 for cond_term in cond_terms:

363 if cond_term in self._go_to_prots:

364 for prot in self._go_to_prots[cond_term]:

365 conditional_proteins[prot] = True

366

367 restricted_term_proteins = {}

368 for r_term in terms:

369 if r_term in self._go_to_prots:

370 for prot in self._go_to_prots[r_term]:

371 if prot in conditional_proteins.keys():

372 restricted_term_proteins[prot] = True

373

374 if len(conditional_proteins.items()) == 0:

375 return None

376 else:

377 prob = float(len(restricted_term_proteins.items()))

378 prob = prob / float(len(conditional_proteins.items()))

379 return prob

380

381 def IC(self, term):

382 """ Information content: IC(c) = -log(p(c)) """

383

384 # Check if IC has been computed for term already

385 if not (term in self._ic_vals):

386 # If not seen before, compute IC

387 prob = self.calc_term_prob(term)

388

389 if prob == 0 or prob == None:

390 self._ic_vals[term] = None

391 return None

392 else:

393 ic = (-1) * math.log(prob)

394 self._ic_vals[term] = ic # Memoize IC value

395 return ic

396 else:

397 # If seen before, return memoized value
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398 return self._ic_vals[term]

399

400 def conditional_IC(self, term, condition):

401 """ Conditional Information Content: cIC(t | c) = -log(p(t | c)) """

402

403 # Too many values to memoize

404 cond_prob = self.calc_conditional_prob(term, condition)

405

406 if cond_prob == 0 or cond_prob == None:

407 return None

408 else:

409 cic = (-1) * math.log(cond_prob)

410 return cic

411

412 def precompute_ic_vals(self):

413 """ Compute and store IC values for all ontology terms """

414

415 for term in self._go_graph.nodes():

416 self.IC(term)

417

418 def MICA(self, left, right):

419 """

420 Maximum Informative Common Ancestor:

421 MICA(t1, t2) = arg max, IC(tj)

422 tj in ancestors(t1, t2)

423

424 (returns a term, common ancestor of left and right)

425

426 NOTE: If a MicaStore instance is linked, first try querying the stored instance

427 """

428

429 if not left in self._go_terms:

430 if left in self._alt_list:

431 left = self._alt_list[left]

432 else:

433 return None

434

435 if not right in self._go_terms:

436 if right in self._alt_list:

437 right = self._alt_list[right]

438 else:

439 return None

440

441 # Attempt lookup in linked MicaStore instance

442 if (self._mica_store != None):

443 mica = self._mica_store.mica_lookup(left, right)

444

445 if (mica != None) and (mica != ’’) and (mica != ’None’):

446 return mica

447 #if (mica == ’’):

448 # MICA is stored, but does not exist (None is a possible MICA value)

449 # return None

450 #else:

451 # return mica

452

453 # Fall through and calculate MICA

454

455 # Find common ancestors as intersection of two ancestor sets

456 # NOTE(tfs): Python sets are very slow. List comprehensions are faster

457 left_ancs = nx.algorithms.dag.ancestors(self._go_graph, left)

458 left_ancs.add(left)

459 right_ancs = nx.algorithms.dag.ancestors(self._go_graph, right)

460 right_ancs.add(right)

461 ancestors = [a for a in left_ancs if a in right_ancs]

462

463 # Edge case where left and right are the same. Treat left and right as a common ancestor

464 #if left == right:

465 # ancestors.append(left)

466

467 max_term = None

468 max_IC = 0

469

470 # Calculate IC for all ancestors; store maximum IC value and term
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471 for ancestor in ancestors:

472 anc_IC = self.IC(ancestor)

473 if anc_IC != None and anc_IC > max_IC:

474 max_IC = anc_IC

475 max_term = ancestor

476

477 return max_term

478

479 def simRes(self, left, right):

480 """

481 simRes(t1, t2) = IC[MICA(t1, t2)]

482 Returns a value (IC result)

483 """

484

485 return self.IC(self.MICA(left, right))

486

487 def simLin(self, left, right):

488 """

489 simLin(t1, t2) = [IC[MICA(t1, t2)]] / [IC(t1) + IC(t2)]

490 Returns a value

491 Currently untested

492 """

493

494 leftIC = self.IC(left)

495 rightIC = self.IC(right)

496

497 if leftIC == None or rightIC == None:

498 return None

499 else:

500 return self.IC(self.MICA(left, right)) / (leftIC + rightIC)

501

502

503 def simJC(self, left, right):

504 """

505 simJC(t1, t2) = 1 - IC(t1) + IC(t2) - 2xIC[MICA(t1, t2)]

506 Returns a value

507 Currently untested

508 """

509

510 leftIC = self.IC(left)

511 rightIC = self.IC(right)

512

513 if leftIC == None or rightIC == None:

514 return None

515 else:

516 return 1 - self.IC(left) + self.IC(right) - (2*self.IC(self.MICA(left, right)))

517

518 def pairwise_average_term_comp(self, lefts, rights, metric):

519 """

520 Compares each pair of terms in two sets or lists of terms.

521 Returns the average of these comparison scores.

522 Uses metric(left, right) to make each comparison.

523 metric must take in two ontology terms (left and right) and return a numeric score.

524 """

525

526 total_score = 0

527 num_scores = 0

528 for left in lefts:

529 for right in rights:

530 new_score = metric(left, right)

531

532 # Count a new_score of None in the denominator, but treat it as a value of 0

533 # This mimics a dummy root node if there are multiple roots in the GO DiGraph

534 if new_score != None:

535 total_score += new_score

536 num_scores += 1

537

538 if total_score == 0:

539 return None

540 else:

541 return total_score / num_scores

542

543 def pairwise_max_term_comp(self, lefts, rights, metric):
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544 """

545 Compares each pair of terms in two sets or lists of terms.

546 Returns the maximum score found in these comparisons.

547 Uses metric(left, right) to make each comparison.

548 metric must take in two ontology terms (left and right) and return a numeric score.

549 """

550

551 if (len(lefts) == 0) or (len(rights) == 0):

552 return None

553

554 max_score = 0

555

556 for left in lefts:

557 for right in rights:

558 temp_score = metric(left, right)

559 if temp_score != None and temp_score > max_score:

560 max_score = temp_score

561

562 return max_score

563

564 def average_protein_comp(self, left_prot, right_prot, metric):

565 """

566 Looks up all go terms for left_prot and right_prot.

567 Uses pairwise_average_term_comp to compare the above sets of terms.

568 metric must take in two ontology terms (left and right) and return a numeric score.

569 """

570

571 left_terms = self._prot_to_gos[left_prot]

572 right_terms = self._prot_to_gos[right_prot]

573

574 return self.pairwise_average_term_comp(left_terms, right_terms, metric)

575

576 def max_protein_comp(self, left_prot, right_prot, metric):

577 """

578 Looks up all terms for left_prot and right_prot.

579 Uses pairwise_max_term_comp to compare the above sets of terms.

580 metric must take in two ontology terms (left and right) and return a numeric score.

581 """

582

583 left_terms = []

584 right_terms = []

585

586 if (left_prot in self._prot_to_gos):

587 left_terms = self._prot_to_gos[left_prot]

588

589 if (right_prot in self._prot_to_gos):

590 right_terms = self._prot_to_gos[right_prot]

591

592 return self.pairwise_max_term_comp(left_terms, right_terms, metric)

593

594

595

596 ####################################

597 ### End SemSim_Calculator class ###

598 ####################################

599

600

601

602

603

604

605 #######################

606 ### MicaStore class ###

607 #######################

608

609

610 class MicaStore():

611 """

612 Loads a matrix of MICA scores (and a list of GO term indices),

613 Provides accessors for MICA score lookup

614 """

615

616 def __init__(self, matrix_filename, ordering_filename):
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617 """

618 Loads the .npy numpy array, matrix_filename,

619 Stores the indices for each GO term in ordering_filename

620 """

621 orderfile = open_or_abort(ordering_filename)

622

623 self._micas = numpy.load(matrix_filename)

624 self._go_to_index = {}

625

626 index = 0

627 for line in orderfile:

628 self._go_to_index[line.strip()] = index

629 index += 1

630

631 orderfile.close()

632

633 def get_micas(self):

634 """

635 Returns reference to numpy matrix of MICA values.

636 NOTE: This is a large matrix

637 """

638

639 return self._micas

640

641 def get_ordering(self):

642 """

643 Returns copy of the dictionary mapping

644 GO terms to indices in the _micas matrix

645 """

646

647 return dict(self._go_to_index)

648

649 def get_index(self, term):

650 """

651 Returns the index of a GO term in the ordering of _micas (using _go_to_index)

652 Returns None if term is not in _go_to_index

653 """

654

655 if (term in self._go_to_index):

656 return self._go_to_index[term]

657 else:

658 return None

659

660 def mica_lookup(self, left, right):

661 """

662 If a MICA value can be found in _micas, return that MICA

663 Else, return None

664 """

665

666 left_index = self.get_index(left)

667 right_index = self.get_index(right)

668

669 if (left_index != None) and (right_index != None):

670 mica = self._micas[left_index, right_index]

671 else:

672 mica = None

673

674 if (mica == ’’):

675 # Indicates that the mica was found, but does not exist (None is a valid MICA value)

676 mica = ’’

677

678 return mica

679

680

681 ###########################

682 ### End MicaStore class ###

683 ###########################
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