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Abstract 

This work is an exploration of upper elementary studentsô sense making 

around four conventional representations of function: equations with algebraic 

notation, Cartesian graphs, function tables, and natural language. The cornerstone 

to the empirical work is a task called the Function Puzzle, where students are 

given 16 cards representing four functions across these four representation types 

and asked to make sets of cards ñthat belong together.ò Without prior instruction 

on interpreting these representations, students successfully create sets where all 

four cards represent the same function. The three empirical studies examine 

studentsô reasoning around the Function Puzzle representations by analyzing one-

on-one interviews, held after solving the puzzle, where students discuss their 

solutions.  

Study 1 is a case study which explores mediational influences of discourse 

and the representations themselves on a 4th grade studentôs developing 

understandings of algebraic notation. Study 2 examines how four 5th-grade 

students ñdiscoverò the semantic rules of algebraic notation and connects those 

discoveries with studentsô noticing of dependent and independent variables in the 

function representations. Finally, Study 3 uses discourse analysis to examine how 

studentsô patterns of discourse not only communicated their solutions of the 

Function Puzzle, but reinforced connections among representations in such a way 

as to potentially impact studentsô understandings of functions.  

Across the studies, I provide evidence that students employ sense making 

to negotiate connections and interpretations across the function representation 
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types. Students reason dynamically about covarying relationships represented in 

the task, and several students make conjectures about interpreting algebraic 

notation, an unfamiliar representation type. These ways of reasoning are 

important to developing a sense of functions and demonstrate mathematical 

disciplinary engagement. In summary, elementary students can attend to 

covariational relationships between quantities ïfunctions ï when given 

opportunities to use sense making and their propensities for generalization. I 

argue that cross-referencing activities with multiple function representations like 

the Function Puzzle are important and generative mathematical experiences for 

elementary school children. 
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1. Introduction  

Over the last ten years, there has been a shift in perspectives towards an 

earlier introduction of algebra content and practices in K ï 12 mathematics 

education. As evidence of that shift, algebra became a nationally-recognized 

content strand across studentsô K ï 12 mathematics education in the Common 

Core State Standards (CCSS; National Governors Association Center for Best 

Practices and Council of Chief State School Officers [NGA Center & CCSSO], 

2010). Foundational documents from mathematics education research were 

considered in the development of the CCSS, like the RAND study (2003), which 

proposed the teaching and learning of algebra as one of three focus areas for 

research, and the National Council of Teachers of Mathematicsô (NCTMôs) 

Principles to Actions (2000), which took the stance that algebra belonged as a 

longitudinal strand in studentsô K ï 12 mathematical education. Some algebra 

landmarks in the CCSS content standards include: notions1 of equality (1st grade), 

attending to covariation between quantities (5th grade), and functions (8th grade). 

Even with the explicit incorporation of algebra and algebraic thinking in K ï 12 

standards, there is still much to consider about incorporating algebra into the 

curriculum, especially in the elementary (K ï 6) years, where its adoption is 

relatively recent.  

                                                 
1 In the field of mathematics, the word ñnotionò is ascribed to emergent, non-rigorous 

understandings ñwhich (so far) escape rigorous definition, but which nevertheless have substantial 

mathematical content, and allow people to make computations and draw conclusions that are 

otherwise out of reachò (Emerton, 2011, Retrieved from http://tea.mathoverflow.net/discussion/ 

968/notions-used-but-not-rigorously-defined/, March, 2018). In mathematics education and in this 

dissertation, the word captures that same essence with respect to learners. For example, in the 

phrase ñstudents explored the notion of subtraction change rulesò (Warren, Cooper, & Lamb, 

2006, p. 214), the authors are not claiming subtraction change rules lack rigor, but that students 

can build their understandings from non-rigorous interactions with those rules. 
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This work examines how upper elementary students navigate the cultural 

and mathematical terrain of function representations prior to formal instruction in 

algebra through the guiding question ñHow do students make sense of function 

representations and connections between them, even those representations that are 

unfamiliar?ò The overarching theme in this dissertation is to consider all learners 

as ñsense makersò (Schoenfeld, 2014, p. 738) who engage in ñlegitimate 

peripheral participationò (Lave & Wenger, 2009, p. 167) in broader mathematical 

communities. In other words, learners use the range of their experiences in the 

world to negotiate new experiences, including experiences with culturally 

significant mathematical artifacts like graphs and equations.  

In this dissertation, 4th- and 5th-grade students were given the task of 

figuring out connections among function representations. The task I designed for 

this work, the Function Puzzle, consists of 16 cards representing four functions 

across four representation types (algebraic equations, Cartesian graphs, function 

tables and natural language contexts). Participantsô task is to make sets of cards 

that belong together, with the stipulation that each set include each of the four 

representation types. Significantly, those function representations were 

conventional function representations, meaning ñthose [representations] 

sanctioned by modern mathematicians: graphs, tables, various types of written 

notation, and so onò (Carraher, Schliemann, & Schwartz, 2008, p. 237), such that 

the studentsô sense making was around artifacts of mathematical cultural 

significance. Furthermore, studentsô cross-referencing of various function 

representations was a form of ñdisciplinary engagement,ò in that ñthere is some 
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contact between what students are doing and the issues and practices of a 

disciplineôs discourseò (Engle & Conant, 2002, p. 402). As will be described in 

more detail later, translating between function representations is considered an 

important aspect of algebraic competency (Schoenfeld, 2008; Yerulshalmy, 

2006). 

The consistent success of students in putting together the Function Puzzle 

is interesting in its own right, but what emerges on closer inspection of studentsô 

reasoning around their Function Puzzle solutions is evidence of relatively 

sophisticated understandings of function representations, particularly algebraic 

notation2, and the connections among those representations. This dissertation 

presents three studies that examine studentsô interactions with and discussion of 

the Function Puzzle. The three main research questions addressed by each of the 

studies is as follows: 

¶ Study 1: How did discourse during an interview, including 

utterances by the interviewer and student and interaction with 

function representations, mediate the studentôs awareness of 

variable notation? 

¶ Study 2: How was studentsô noticing of varying quantities 

associated with their reasoning about algebraic notation?  

¶ Study 3: What discursive strategies do students use when 

discussing multiple representations of functions and how do these 

                                                 
2 Either ñalgebraic notationò or ñvariable notationò can be used to identify the convention of using 

a letter to represent a fixed or varying unknown quantity (variable). I use the two terms 

interchangeably. In general, if discussion of the notation highlights its role as representing 

variables, I use ñvariable notation,ò whereas if it highlights its role in representing functions, I use 

ñalgebraic notation.ò 
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strategies connect and emphasize connections among 

representations? 

 

Briefly, Study 1 is a case study from early pilot testing of the Function 

Puzzle in 2014 at a suburban K ï 8 school in the northeastern United States. A 4th-

grade student participated in a one-on-one interview where she first completed the 

Function Puzzle without assistance, then she and I talked about her solution and 

the connections she noticed among the different card representations. Study 2 and 

Study 3 use data from interviews after a classroom implementation of the 

Function Puzzle. Fifth grade students worked in pairs to solve the Function 

Puzzle, and one-on-one interviews were conducted with students about their 

Function Puzzle solutions in the weeks following the classroom implementation. 

In all three studies, interview video, transcripts, and any interview artifacts were 

used to address these research questions.  

Two main arguments emerge from these studies. First is that multiple 

function representation environments like the Function Puzzle offer students 

opportunities to make substantive progress in understanding functions and 

representing functions. Second is that student sense making in these kinds of 

environments can lead to powerful emergent understandings of variable notation. 

In the following chapters, I give further detail about the theoretical 

perspectives (Chapter 2) and research literature (Chapter 3) that orient my work, 

the development of the Function Puzzle (Chapter 4), and the general methodology 

used in the analyses (Chapter 5). Each of the empirical chapters (Chapters 6, 7, 
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and 8) were written as stand-alone empirical papers. General conclusions and 

future work are discussed in the concluding chapter (Chapter 9).   
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2. Theoretical Perspective 

Fundamentally, in this dissertation I take the perspective that individuals 

are the architects of their own understandings, and construct knowledge in 

personally meaningful ways (Piaget, 1970; von Glaserfeld, 1991) through 

experiences situated in cultural, historical, and institutional contexts (Cole, 1996; 

Forman, 2003; Vygotsky, 1978, 1987; Wertsch, 1991). This situatedness implies 

that both local communities, such as a classroom, and broader arenas, such as 

conventional symbolizing systems or national education standards, may impact 

learners. Cognitive development, therefore, includes processes of self-

organization (constructivism) and enculturation (socioculturalism) (Cobb, 1994). 

Sense making, a phrase whose use is ubiquitous and somewhat 

idiosyncratic to mathematics and science education literature, describes both the 

processes and products of self-organization. Sense making is a process of 

incorporating new experiences ï ranging from formal instruction to everyday 

experiences ï into a point of view or network of understandings about the world. 

In turn, that network of understandings informs oneôs noticing about the world 

(Goodwin, 1994; Lobato, Hohensee, & Rhodehamel, 2013; Mason, 1998; Sherin, 

Russ, & Sherin, 2013). Resnick described ñthe Nature of Meaning Construction 

[sense making] for Mathematical Languageò through an analogy to language:  

Our knowledge of natural language can guide our thinking about 

mathematical language understanding. People do not understand natural 

language statements by simply registering the words. Instead they use a 

combination of what is said, what they already know, and various 

inference processes to construct a plausible mental representation 

[understandings] of what the statement refers to. This representation omits 

material that does not seem central to the message. It also adds 
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information needed to make the message coherent and sensible. (1988, p. 

152, emphasis in the original) 

 

Learners make sense of content knowledge (Hill, Rowan, & Ball, 2005; 

Ma, 2010), classroom practices and norms (Forman & Ansell, 2001; Lave & 

Wenger, 1991; Yackel & Cobb, 1996), including discourse practices (Michaels, 

OôConnor, & Resnick, 2007; Sfard, 2001, 2012; Zack & Graves, 2001), and also 

mathematicsô extensive symbol systems (Cobb, 2002; Nemirovsky, 1994; 

Radford, 2014) through participation in mathematical activities and communities. 

Furthermore, learning is not only a process of sense making through participation, 

it is mediated by that participation (Halliday, 1993; Vygotsky, 1987; Wells, 

2007). For example, participating in classroom discussion is not only something 

students learn to do, they come to be more proficient at it through their 

participation in discussions. More broadly, a studentôs understanding of 

mathematics and what it means to do mathematics is mediated by how they 

experience mathematics, whether through discussion, worksheets, interactions 

with symbol systems, or other means. 

The mediational triangle as described by Cole (1996) and shown here in 

Figure 2-1 is one way to represent mediating influences. In this simplified 

representation, there are three actors: a subject (person), an object, and a 

mediating artifact. A mediating artifact can be a physical object, like an axe in the 

system of person, tree, and axe, but is more broadly conceptualized as a ñproduct 

of human historyò (Cole, 1996, p. 118), a description which encompasses 

culturally-established patterns of behavior and symbol systems in addition to 
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material objects. For example, participating in a classroom discussion (mediating 

artifact) about graphs (object) could provide a mediating influence for how a 

student (subject) understands graphing or representing covarying quantities. 

 

 

Figure 2-1. The basic mediational triangle per Cole (1996, p. 119). 

 

The sides of the triangle in Figure 2-1 represent relationships among the 

actors. The direct relationship between subject and object can be thought of as a 

particular way that the subject might understand and interact with the object in the 

absence of influences (a purely hypothetical relationship, since in this framework 

a subject never interacts with an object without any mediation). In the mediated 

relationship, the subjectôs relationship to (and understanding of) the mediating 

artifact and the relationship of that artifact to the object influences how the subject 

comes to understand and interact with the object. Mediating artifacts, therefore, 

add new dimensions to the relationship between subject and object. 

Across the three empirical studies in this work, four function 

representation types (algebraic equations, Cartesian graphs, function tables, and 
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natural language contexts) are intended as mediating artifacts to learnersô 

understandings of algebraic functions and variable. Mathematically, functions are 

experienced through their representations (Leinhardt, Zaslavsky, & Stein, 1990) 

and, accordingly, learners experience and understand functions through 

representations. Culturally, the representational forms used in the Function 

Puzzle, as established modes of representing functions (Kaput, Blanton, & 

Moreno, 2008), are in fact ñproducts of human historyò (Cole, 1996, p. 118).   

Although representations can mediate understandings of functions and 

notions about variable quantities, they are not necessarily familiar or transparent 

to learners (Radford, 2014). Representations are therefore not only mediating 

artifacts of the mediational triangle, but also its objects. The work that learners 

did and that is analyzed in this dissertation was sense making around these 

representations ï symbolizing ï and was evidenced through their discourse. In the 

following two sections, I describe my perspective on symbolizing as it pertains to 

understandings of functions and my perspective on the role of discourse as a 

means for communicating and developing new understandings.  

A Symbolizing Perspective of Functions  

As mentioned, functions, a central object to algebra (Carraher et al., 2008; 

Chazan & Yerushalmy, 2003; Oehrtmann, Carlson, & Thompson, 2008; Schwartz 

& Yerushalmy, 1992/2003), are accessed and manipulated through 

representations in various symbol systems (Eisenberg, 1992; Kaput, 1991). The 

premise that no person-object relationship in the mediational triangle exists 

without mediation is acutely obvious in how people relate to algebraic functions, 
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as functions are inseparable from their representations (Leinhardt et al., 1990). A 

focus on functions and their representations thus warrants a more specific model 

of the person-representation-function relationships than Coleôs mediational 

triangle.  

Kaput, Blanton, and Moreno (2008) offer the analogy of a person looking 

through a window for in how people engage with mathematical objects through 

representations. In brief, the relationships between representations in a symbol 

system (such as algebraic notation, Cartesian graphs, or others) and mathematical 

objects (such as functions) can be depicted as similar to looking at an object 

through a window. As sight lines connect an observer to an object through a 

window, lines of attention connect an actor to mathematical objects in a referent 

field through a symbol system (see Figure 2-2). An actor working in this system is 

symbolizing. 

 

Figure 2-2.  In symbol system A, representation A1 changes to A2. Attention to 

the change impacts understandings of A1 and A2, but also of functions F1 and F2 

in the referent field. (Adapted from Kaput et al., 2008, p. 26.) 

 

Part of productive symbolizing is flexibly leveraging these symbol-

referent systems. In other words, actions on a symbol system can be tightly 
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coordinated to perceived actions in a referent field, such that the actor is looking 

through the symbols and envisioning actions on mathematical objects. 

Alternatively, those actions can take place in the symbol system independent of 

links to the referent, such that the actor is looking at the symbols without direct 

coordination to the mathematical objects (Kaput et al., 2008). For example, in 

looking through symbols in a representation, number patterns in a function table 

may be generalized to add new values in the table. Or, in looking at the table, 

someone might notice that there are even numbers in the table.  

Applying this window model to function representations and functions 

implies that understandings and interpretations of functions are influenced by an 

individualôs action on or experience with function representations. Each function 

representation is part of a symbol system through which functions are accessed. 

The RAND mathematical study highlights ñtabular, analytic, and graphical 

formsò (2003, p. 44) of function representations, but idiosyncratic or student-

produced representations can be considered personal symbol systems for 

engaging with ideas about generalized relationships (e.g., Brizuela & Gravel, 

2013; Brizuela & Earnest, 2008; diSessa, Hammer, Sherin, & Kolpakowski, 1991; 

Greeno & Hall, 1997; Roth & McGinn, 1998; Selling, 2016).   

Importantly, both conventional and personal symbol systems can operate 

in a stacked fashion (see Figure 2-3), such that actions and experiences in one 

symbol system may influence not only understandings of the referent field, but 

potentially understandings of other connected symbol systems. Aligned with this 

model, Leinhardt, Zaslavsky, and Stein suggested ñfunctions and graphs represent 
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one of the earliest points in mathematics at which a student uses one symbolic 

system to expand and understand another (e.g., algebraic functions and their 

graphs, data patterns and their graphs, etc.)ò (1990, p. 2).  

 

Figure 2-3. Influence of an action on representation A1 in symbol system A, 

resulting in A2, and the reflected actions (actionô) on function F1 in a referent 

field and symbols B1 and C1 in symbol systems B and C, respectively. (Adapted 

from Kaput et al., 2008, p. 26.) 

 

Additionally, each symbol system affords different insights into the 

concept of function or a specific situation at hand (Carraher & Schliemann, 2007; 

Elia, Panaoura, Eracleous, & Gagatsis, 2006). The proficient symbolizer develops 

a sense for how and when to employ various representation types (Brenner et al., 

1997; Even, 1998; Kaput, Noss, & Hoyles, 2002). 

The Role of Discourse 

From a sociocultural perspective, symbolizing and symbol practices are 

subsumed as specialized forms of discourse (Lerman, 2001; Moschkovich, 1996; 

Sfard, 2012). After all, the conventional function representations of algebraic 

equations -  Cartesian graphs, function tables, and natural language - are used to 



FUNCTION REPRESENTATIONS  13 

communicate relationships between varying quantities. The equation y = 2x, for 

example, describes a relationship between two quantities, denoted by the variables 

x and y, where each value for y is double the corresponding values for x. These 

forms of representation are a means to dialogue within mathematical communities 

and connect mathematical work with broader or historical mathematical 

communities. To borrow a phrase, ñThe act of achieving an individual voice [in 

mathematics] is accomplished through dialogue with others, those immediately 

there and those long gone whose ideas are instantiated in cultural ways of being, 

doing, and speakingò (Zack & Graves, 2001, p. 266).  

While I concur that symbolizing and symbol practices are forms of 

discourse, I analytically disengage symbol systems from discourse in this 

dissertation to examine how learners view various representations in those 

systems ï what are the ways that they talk about them, what features do they 

notice, and how do they connect them? In essence, I assume that the learners are 

peripherally participating (Lave & Wenger, 1991, 2009) in activities of 

mathematical ñdisciplinary engagementò, in that ñthere is some contact between 

what students are doing and the issues and practices of a disciplineôs discourseò 

(Engle & Conant, 2002, p. 402), but that the representations and symbol systems 

may be unfamiliar. Splitting symbol systems and their representations from 

discourse allows an opportunity to watch for how learners integrate those systems 

and representations into their mathematical understandings and into their 

mathematical discourse.  
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Discourse, then, as it will be used in this work, refers to the immediate 

negotiation of meaning as it evolves in conversations with particular goals and 

focuses of attention (Gee, 2011; Moschkovich, 1996, 2007). It includes various 

modes of communication, not only spoken words, but also gestures (Gee, 2011; 

Sfard, 2009).3 Most directly, discourse indicates a focus of attention, such as 

saying ñthe graph on the left,ò or pointing at a graph. In fact, Sfard suggests that 

ñgestures are invaluable means for ensuring that all interlocutors óspeak about the 

same mathematical object.ôò (2009, p. 197). Additionally, words and gestures are 

a realization or instantiation of peopleôs understandings and what they notice. 

When a person runs their finger along a function line in a Cartesian graph and 

says, ñthe water height is increasing,ò they are not only pointing at the function 

line as representing that feature, but reenacting ñincreasingò with their finger. 

With these perspectives in mind, I treat discourse as a proxy for what learners 

notice, how they focus their attention, and communication of their 

understandings.  

Each empirical study in this dissertation uses a distinct lens to examine 

discourse. In Study 1 specific word choices and language use are identified in 

association with shifts of the studentôs understanding of variable notation. In 

Study 2, student discourse is used to identify student noticing of function 

representation features. Like Study 1, those noticings are compared against 

interpretations of algebraic notation. In Study 3, recurrent patterns of discourse 

are noted as ways of describing connections among function representations, but 

                                                 
3 Although written work would also be considered a form of discoure, students did not produce 

written work as part of the studies in this dissertation. 



FUNCTION REPRESENTATIONS  15 

also emphasize those connections to the benefit of the speaker. Each empirical 

chapter provides further detail for the theoretical grounding of each of these 

discourse lenses. 
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3. Literature Review 

The RAND mathematical study Mathematical proficiency for all students: 

Toward a strategic research and development program in mathematics education 

(2003) was an important milepost in establishing the role of algebra in 

mathematics education. That work digested research positions, including such 

works as NCTMôs Principles to Actions (2000) and the National Research 

Councilôs Adding It Up (Kilpatrick, Swafford, & Findell, 2001), with special 

consideration to issues of proficiency and equity, and set a course of action for 

improving mathematics education for all students. The RAND study identified the 

ñteaching and learning of algebra from kindergarten through 12th gradeò (2003, p. 

7) as one of three focus areas for a national, cohesive program of research.  

Algebraôs reputation as both a fundamental, unifying topic (Blanton, 

Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015a; Blanton & Kaput, 2011; 

Kaput, 2008; Smith, 2003) and as an institutional barrier to educational equity 

(Martin, 2009; Moses & Cobb, 2001) justified its prominence in the RAND 

studyôs recommendations. The RAND study enumerated four expectations related 

to algebraic proficiency for all students: 

¶ The ability to work flexibly and meaningfully with formulas or 

algebraic relations ï to use them to represent situations, to 

manipulate them, and to solve the equations they represent. 

¶ A structural understanding of the basic operations of arithmetic 

and of the notational representations of numbers and mathematical 

operations (for example, place value, fraction notation, 

exponentiation). 

¶ A robust understanding of the notion of function, including 

representing functions (for example, tabular, analytic, and 

graphical forms); having a good repertoire of the basic functions 

(linear and quadratic polynomials, and exponential, rational, and 



FUNCTION REPRESENTATIONS  17 

trigonometric functions); and using functions to study the change 

of one quantity in relation to another.  

¶ Knowing how to identify and name significant variables to model 

quantitative contexts, recognizing patterns, and using symbols, 

formulas, and functions to represent those contexts. (2003, p. 44 ï 

45) 

This dissertation cuts across these recommendations, seeking to address 

studentsô understandings of functions and representing functions, and studentsô 

abilities to recognize patterns in those representations and flexibly translate 

among representations while attending to the relationships between varying 

quantities. In the following sections, I review how research literature on K ï 12 

studentsô understandings of function, function representations, and algebraic 

notation intersects and informs the empirical studies and resulting analyses in this 

work.  

Functions and Functional Thinking 

The modern definition of function, known as the Dirichlet-Bourbaki 

definition, describes a function as ña correspondence between two nonempty sets 

that assigns every element in the first set (the domain) to exactly one element in 

the second set (codomain)ò (Vinner & Dreyfus, 1989, p. 357). This definition 

masks the range of ways individuals interact with functions. Selden and Selden 

summarize that ña function can be regarded as a set of ordered pairs, a 

correspondence, a graph, a dependent variable, a formula, an action, a process or 

an object (entity)ò (1992, p. 4). This complexity presents a challenge to learning 

about the concept of function. The terminology ñthe concept of functionò (e.g., 

Dubinsky & Harel, 1992) is a way to reference the totality of notions and 
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understandings associated with exploring and representing these correspondences 

between nonempty sets.  

Efforts to introduce functions and their representations at the elementary 

level are often structured around a functional thinking approach, which focuses on 

covarying relationships between quantities. The functions used in this approach, 

then, are those with predictable computational relationships between the domain 

and range such as polynomials, exponentials, and linear functions. This focus is in 

response to studentsô perceived tendency to think about functions in terms of 

symbolic manipulation or finding solutions, rather than considering a more 

coherent, generalized view of functional relationships (Oehrtman et al., 2008).  

Blanton and Kaput define functional thinking as ñbuilding and 

generalizing patterns and relationships [between covarying quantities] using 

diverse linguistic and representational tools and treating generalized relationships, 

or functions, that result as mathematical objects useful in their own rightò (2011, 

p. 7-8). In practice, students given a situation like ñthe water tank had 3 feet of 

water in it, and was filling by 2 feet each minute,ò would be encouraged to 

consider the dynamics of the system, rather than one specific water height in the 

tank for a specific time. In other words, the emphasis would not be on calculating 

pairs of time and water height values, but what those values indicate about the 

structure of the system ï the generalized relationships both within and between 

varying quantities.  

Forms of functional thinking exhibited by students can be organized by 

how they consider the relationships among quantities:  
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¶ recursively, which describes attending to variation within one 

quantity (e.g., using the situation described in the previous 

paragraph, ñthe water height increases by 2 feetò),  

¶ covariationally, which describes attending to the simultaneous 

variation in each quantity (e.g., ñfor each minute that goes by, the 

water increases by 2 feetò), or  

¶ in terms of correspondence relationships, where the covariation is 

situated in conditions of the system (e.g., ñthe height of water is 3 

feet plus 2 feet for each minuteò) (Blanton & Kaput, 2011; Smith, 

2003). 

Research has found that elementary students readily engage in functional 

thinking, given the opportunity (e.g., Blanton & Kaput, 2011; Blanton et al., 

2015a; Blanton, Stephens, Knuth, Gardiner, Isler, & Kim, 2015b; Blanton, 

Brizuela, Gardiner, Sawrey, & Newman-Owens, 2017; Brizuela, Blanton, 

Gardiner, Newman-Owens, & Sawrey, 2015a; Brizuela, Blanton, Sawrey, 

Newman-Owens, & Gardiner, 2015b; Cañadas, Brizuela, & Blanton, 2016; 

Carpenter, Franke, & Levi, 2003; Warren et al., 2006). Functional thinking 

approaches have been applied to research with a range of goals including: 

exploring studentsô generalizing functional relationships (e.g., Brizuela et al., 

2015a; Blanton et al., 2015a; Blanton et al., 2017), encouraging studentsô thinking 

about mathematical processes rather than products (Warren et al., 2006), teaching 

algebra in the elementary curriculum (Blanton et al., 2015b), and unifying student 

discourses about functions (Nachieli & Tabach, 2012).  
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Functional thinking approaches have proven powerful at encouraging 

children across early grades (kindergarten through 7th grades are represented in 

the studies referenced above) to express generalizations about mathematical 

relationships, leading to conjectures that difficulties with algebra and algebraic 

notation may be an artifact of traditional instruction (Blanton et al., 2017; 

Carraher et al., 2008). Contrarily, CCSS does not have students consider 

covariation between dependent and independent variables until 6th grade (NGA 

Center & CCSSO, CCSS.MATH.CONTENT.6.EE.C.9, Retrieved from 

http://www.corestandards.org/Math/) even though research has provided evidence 

that much younger students are capable of meaningfully engaging with 

covariation. Functional thinking research indicates that earlier exposure is not 

only possible, it may be beneficial (Blanton & Kaput, 2011; Blanton et al., 2015b; 

Carraher & Schliemann, 2007; Carraher et al., 2008; Kaput, 2008; Knuth, Alibali, 

McNeil, Weinberg, & Stephens, 2005).  

Algebraic (Variable) Notation 

Integral to expressing generalizations about mathematical relationships are 

the means to representing them. Kaput, Blanton, and Moreno describe 

generalizing as the ñact of creating [a] symbolic objectò (2008, p. 20), in that 

symbolizing compresses a range of specific instances into a single object that is 

available to be evaluated, manipulated, or explored. As was mentioned briefly in 

the theoretical perspective, symbolizing can use personal or conventional symbol 

systems, but ultimately, algebraic (variable) notation is regarded as perhaps the 
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most efficient means of representing generalizations, applicable across many 

contexts and to many situations (Blanton et al., 2017). 

Perhaps because algebraic notation was assumed to require thinking out of 

reach to younger students (Blanton et al., 2015a), it has been a marginal topic of 

elementary education, if addressed at all. Some research seemed to support this 

choice. For example, Küchemann (1981) documented the ways in which students 

first engage with variable notation. He noted that student interpretations of letters 

fell into six categories: ignoring the letter, assigning it a value, using it as 

shorthand notation for an object, or using it as a specific unknown, a generalized 

number, or a variable. Through results of a written test on a variety of algebraic 

tasks, his summary conclusion was that over half of middle school students were 

not able to successfully work with the use of letters as specific unknown numbers, 

and less than 10 percent recognized letters as representing generalized numbers or 

variables. MacGregor and Stacey (1997), in their work with 11- to 15-year-olds, 

delved into why students might interpret variable notation in these ways, 

concluding that everyday experiences and pragmatic reasoning, in addition to 

poorly-designed teaching materials, were main sources of student interpretations. 

In contrast, Knuth, Alibali, McNeil, Weinberg, and Stephens (2005) 

reexamined those conclusions through their own study of middle school student 

interpretations, reporting that students are more capable than indicated by the 

Küchemann (1981) and MacGregor and Stacey (1997) studies. In one task, they 

presented middle school students with the expression 2n + 3, and, marking the 

variable n with an arrow, asked, ñWhat does the symbol stand for?ò More than 
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half of the students suggested n could have multiple values, indicating that the 

notion of variable is not altogether unfamiliar to students before high school. In a 

similar task, the students were presented with two expressions, 3n and n + 6 and 

they were asked to decide which was larger. Almost 30 percent of the 6th grade 

students abstained on this question, but over half of the 7th and 8th grade students 

could not tell which was larger and justified their conclusion by suggesting n was 

an unknown quantity. Like the Küchemann (1981) and MacGregor and Stacey 

(1997) studies, Knuth (2005) did not have an instructional component, but simply 

assessed student understandings. One of their concluding hypotheses was that 

ñproviding students with opportunities to meaningfully encounter literal symbols 

in ways that support the development of a multiple-values understanding at an 

earlier age may be beneficial in terms of their preparation for and eventual 

success in algebraò (p. 75). 

Knuth and colleaguesô refutation of earlier research aligns with results 

from intentional introduction of algebraic notation with elementary students that 

showed young students have a strong capacity for understanding and using 

variable notation (e.g., Blanton et al., 2015a, 2015b, 2017; Brizuela et al., 2015a, 

2015b; Cañadas et al., 2016). Notably, Brizuela and colleagues (2015a, 2015b) 

found that younger studentsô work with variable notation aligned with several of 

the levels noted in K¿chemannôs study with older students, discounting the 

relevance of developmental readiness. Furthermore, Brizuela and colleagues 

(2015b) hypothesized that students benefit from early opporunities to engage with 

variable notation and that studentsô willingness to leave represented quantities 
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indeterminate was a critical first step towards building understandings of variable 

notation.  

Similarly, in a year-long intervention with 3rd grade students, Blanton and 

colleagues (2015b) found that students were able to represent quantities in 

meaningful ways with algebraic notation and further, generalize and symbolically 

represent functional relationships between covarying quantities. Tellingly, their 

data indicated that more participating students were able to represent a function 

rule with variable notation (16%) than in natural language (8%), an indication that 

even young students found algebraic notation to be an efficient means of 

generalizing. 

It is important to note that these studies did not introduce the procedural 

rules of symbol manipulation. Instead, children were encouraged to reason 

structurally about equations from understandings of equality and inverse 

operations. Blanton and colleagues described the difference in this way:   

For example, students might solve an equation such as 3(x + 5) = 36 by 

applying formal algebraic rules in which they first multiply the quantity x 

+ 5 by 3. However, if they see x + 5 as an object, it is easier (and arguably 

more meaningful) to notice an underlying structure where when an 

indicated product results in 36 and one of the factors is 3, the remaining 

factor, x + 5, must be 12. (2015b, p. 56) 

 

  It would not be unexpected for procedural rules to emerge from 

discussions of structure, in which case producing those rules would be a form of 

generalization, rather than blind adoption of an algorithmic process.  

 As will be described, the participants in the empirical studies described in 

this dissertation had relatively limited exposure to the function representations, 
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including algebraic notation. The Function Puzzle task required them to broadly 

interpret function representations without express directions on how to do so. In 

this way, their exposure was similar to participants in the Küchemann (1981), 

MacGregor and Stacey (1997), and Knuth et al. (2005) works. As upper 

elementary students, they would be expected to have similar capacities for 

understanding algebraic notation to the students described in the Blanton (2015a, 

2015b, 2017) and Brizuela (2015a, 2015b) research, but not the same 

opportunities to do so. Despite this limitation, several students expressed certain 

insights into algebraic notation which will be discussed in later chapters.  

Multiple Representations of Function 

As has already been alluded to, a goal of algebra instruction is not for 

students to work mechanically with equations, graphs, and other representations, 

but to understand those symbol systems as providing ways to handle functions as 

mathematical objects (Kaput et al., 2008). Teaching the concept of function 

through multiple representations has been advocated for 25 years or more (e.g., 

Brenner et al., 1992; Dubinsky & Harel, 1992; Schoenfeld, Smith, & Arcavi, 

1993) with the goal of encouraging student understandings of the ñnotationally 

rich web of representations and applications of functionsò (Kaput, 1991, p. 61). 

As such, there are many calls to action that learners be taught to translate between 

representations, with the end goal of productive symbolizing in mind (e.g., 

Ainsworth, Bibby, & Wood, 2002; Even, 1998; Greer, 2009; Oehrtman et al., 

2008; White & Pea, 2012). Yerushalmy (2006) depicted the ñtetrahedral relations 

of function representationsò (see Figure 3-1) and suggested that ñlearning freely 
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to move along the tetrahedral pathsò (p. 358) was an important aspect of algebraic 

competency.  

I would argue that translating between representations is already taught in 

mathematics classrooms. For example, learners practice plotting sets of 

coordinated points on a Cartesian graph or plotting a function line from an 

equation. Similarly, they may produce an equation from a series of coordinated 

points or the reverse, calculating (x, y) coordinates from an equation. These tasks 

provide practice getting from one representation type to another, Yerushalmyôs 

ñfree movementò between representations.  

 

Figure 3-1. Yerushalmyôs tetrahedral relations of function representations (2006, 

p. 358). 4  

 

However, if the pedagogical interest is in function, translating between 

representations as an end goal misses the point (Elia et al., 2006; Greeno & Hall, 

1997). That is, learners additionally need to develop their understandings of 

                                                 
4 Note that Yerushalmy suggests ña symbolic expression is a function ruleò (p. 357), thus her use 

of ñExpressionsò rather than ñEquationsò in the diagram shown in Figure 3-1. 
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function representations as devices for reasoning and sense-making about 

functional relationships. NCTMôs Principles and Standards (2000) suggest that 

representation translation is in the service of solving problems, interpreting 

phenomena, and communicating with others, not simply for the product of a 

different representational form. To return to the stacked window symbolization 

model of Figure 2-3, learners need to develop a sense for how actions in one 

symbol system echo through other symbol systems and associated referent field, 

and develop a sense for choosing which symbol system to act upon (or within) for 

any given task. Translating between representations is one piece of understanding 

the network of connections among representations, but productive symbolizing 

involves being able to use the representations with transparency, cross-referencing 

one representation against another and to the function as well.  

Studentsô abilities to cross-reference algebraic notation, tables, and 

graphical representations has been explored with high school students. A seminal 

work in this area was Schoenfeld, Smith, and Arcaviôs (1993) microgenetic 

exploration of one studentsô exploration of algebraic equations and graphs. An 

outcome of that study was the finding that the ñCartesian Connectionò 

(Schoenfeld, et al., 1993, p. 108) was taken for granted in instruction and was 

lacking in some studentsô understandings of functions. They described the 

"Cartesian Connectionò as encapsulated in two understandings: ña point [in the 

plane] is on the graph of line L if and only if its coordinates satisfy the equation of 

Lò (p. 108) and ñalgebraic expressions [such as ñy1 ï y2ò] have graphical 

identitiesò (p. 109). In other words, the Cartesian Connection is the stacking of 
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Cartesian plane representations with algebraic notation: the act of considering two 

distinct representations at once. 

Knuth (2000) explored the Cartesian Connection by having high school 

students solve problems with both graphical and algebraic representations 

available. He found that students deferred to using algebraic representations, even 

when graphical solutions were more efficient. In both the Knuth (2000) and 

Schoenfeld, Smith, and Arcavi (1993) studies, students were comfortable 

manipulating equations to simplify or solve for specific values, but it was not 

clear that they attended to the functional relationships in a general way ï perhaps 

an artifact of their previous instruction, as described above. Sauriol (2013) 

disrupted the emphasis on symbolic manipulation of algebraic equations by 

prioritizing graphical representations in Algebra I classes for language-based 

learning-disabled students. Across three studies, she found the new emphasis gave 

them deeper insight into notions of function. With the works of Knuth, Sauriol, 

and Schoenfeld and colleagues in mind, the empirical studies in this dissertation 

brought a cross-referencing activity to upper elementary students.  
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4. Function Puzzle Task Design 

In teachersô and curriculum developersô efforts to help students develop a 

feel for different sorts of symbol strings and various uses of the notions of 

variable, equals sign, and Cartesian coordinate system, does it make a 

difference how they come to grips with these notions? Does the order of 

introduction matter? What are the relative merits of gradual immersion 

versus jumping into the deep end? (Chazan & Yerushalmy, 2003, p. 132, 

emphases in the original) 

 

The quote above could have been my call to action, with its questions 

about how students are introduced to functional thinking and notions of function. 

Functional approaches to algebra for younger learners are often based in rich 

problem contexts, explored through everyday, story-like problems (Carraher et 

al., 2008). In these approaches, focusing students on covarying relationships is a 

matter of facilitating studentsô mathematization of the language-based situations. 

As such, natural language representations dominate young studentsô introduction 

to funcitons. For example, some authors have suggested that symbolic 

representations of mathematical relationships be withheld from students until they 

are ready (Linchevsky, 2001) or until they have fully explored verbal 

representations of the given context (Russell, Schifter, & Bastable, 2011). Some 

research asserted that students produce personal representations from their 

understandings of a given context (Greeno & Hall, 1997; Roth & McGinn, 1998; 

diSessa et al., 1991). Other research introduced representational forms, like tables, 

graphs, and equations, one representation at a time with classroom instruction to 

facilitate studentsô use of them (Blanton et al., 2015a, 2015b, 2017; Brizuela & 

Earnest, 2008; Earnest, 2014; Warren et al., 2006). In all these approaches, the 
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initial engagement of the learners with functions or functional thinking was 

language-based, and creating or using other representations was a guided activity.  

This work takes a different perspective on studentsô introduction to 

functions. Considering students as capable sense makers who could navigate 

through a variety of situations and contexts, I was interested in what would 

happen if students were immersed in a ñfully engaging environmentò (Resnick, 

1988, p. 37) of conventional function representations. The intention of such 

activities would be ñproductive disciplinary engagementò where students ñmake 

intellectual progressò (Engle & Conant, 2002, p. 403) in mathematical discourses. 

Or, as Gee would suggest, mathematical ñDiscoursesò with a capital D ï ways of 

dialoguing ñthat enact specific identities and activitiesò (2005, p. 7), such as 

mathematicians participating in mathematical activities.  

Content-specific Design Goals 

 Within the broad principles of having students interact with sanctioned 

function representations as a route to participating in mathematical Discourses, 

there were more immediate design concerns. As mentioned in Chapter 2, 

functions are inseparable from their representations, thus encouraging notions of 

function meant encouraging interactions with function representations. The 

guiding question leading the design was ñHow do students make sense of function 

representations and connections between them, even those representations that are 

unfamiliar?ò Pedagogically, any function representation task needed to be 

relatable and ñexperientially realò (Cobb, 2000, p. 318) in that it was an 

environment meant for exploration and engagement. The initial inspirations for 
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the task design as a card sort activity were tasks out of Sauriolôs dissertation work 

(2013) to reorient 9th-grade algebra curriculum. Her curriculum, designed for 

students with language-based learning disabilities, was an effort to move away 

from equation manipulation and towards understandings of function. An 

additional resource was Tufts Universityôs Early Algebra Project, specifically the 

activity ñWho Shares Your Functionò (http://ase.tufts.edu/education/ 

earlyalgebra/materials.asp).5 

The Function Puzzle was designed to ñtie together graphical and analytical 

representationsò of functions (Eisenberg, 1992, p. 154) by having students match 

different function representation types. Importantly, the studentsô task was to 

make sense of connections between function representations, thus the studentsô 

task aligns with a design goal: ñto make mappings [between function 

representations] evidentò (White & Pea, 2012, p. 494).  

Function Puzzle Card Design 

The result of these design considerations was the Function Puzzle (see 

Figure 4-1), a matching task with four representation types (equation, function 

table, Cartesian graph, and natural language) and four functions. Students were 

tasked with figuring out sets of four cards they felt belonged together. The 4 x 4 

format of the Function Puzzle was established early in the design process. The 

specific design shown in Figure 4-1 evolved iteratively from a design-based 

research type approach (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003), with 

                                                 
5 Sauriol pointed out to me that desmos, an online source of digital mathematics tools, has a 

similar card sort activity for linear functions with Cartesian graphs, equations with algebraic 

notation, and function tables which can be found at 

https://teacher.desmos.com/activitybuilder/custom/5785081e72fcab925a4ef95f (personal 

communication, January 2018). 
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the caveat that the design changes came from impressions from pilot testing, 

rather than rigorous analysis.  

The represented functions were affine functions (functions of the form y = 

A + Bn, where n and y are variables, and A and B are constants): one constant (y 

= 5), one ratio relationship (y = 2n), and two with a non-zero translation (y = 3 + 

2n and y = 16 ï n). The natural language cards described changing height in a 

water tank over time, similar to contexts used in other algebra research (Boaler & 

Humphreys, 2005; Leinhardt et al., 1990; Lobato et al., 2013; Oehrtman et al., 

2008). Throughout this dissertation, the relationships are identified by behavior 

and state of water in the tank, as listed in Table 4-1. 

 

Figure 4-1. Function Puzzle Cards. 

Natural Language

(language)

Function Table

(table)

Cartesian Graph

(graph)

Algebraic Equation

(equation)

Constant Water 

Height

 y  = 5

CON

The water height does 

not change.

Time      Height

1          5

2          5

3          5

4          5

8          5

12         5

y = 5

Filling Empty 

Tank

y = 2n

FIL0

The water tank had a 

few feet of water in it 

when someone turned 

the hose on to fill it.

Time      Height

0          3

1          5

2          7

3          9

4          11

8          19

y = 3 + 2n

Filling Non-

Empty Tank

y = 3+2n

FIL3

The water tank was full 

and then someone 

pulled the plug out to 

drain it.

Time      Height

0          16

1          15

2          14

3          13

4          12

6          10

y = 16 - n

Draining Tank

y  = 16 - n

DRN

The water tank began 

empty and someone 

turned the hose on to 

fill it.

Time      Height

0          0

1          2

2          4

3          6

4          8

8          16

y = 2n
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Table 4-1 

Naming conventions for Function Puzzle Cards 

 

Each representation was printed on colored, heavyweight, 2ò x 2İò cards. 

A minimalist design aesthetic was used on the cards, with the intention of 

highlighting the varying quantities and their general relationship. For example, the 

language cards did not mention the rate of filling or draining in the water tanks, or 

even whether those rates were constant. The graphs and tables did not include 

units for time and height, and the graph axes were marked with hatch marks, but 

no numbers. Additionally, multiplication was represented in the equations as 

number directly followed by a letter (i.e., 3n for ñthree times nò), even though this 

convention would likely be unfamiliar to elementary school students. The reasons 

for the minimalist design were to enable several cards to be quickly considered. 

Representation 

Type:

Natural 

Language
Function TableCartesian Graph

Algebraic 

Equation

Constant Water 

Height

 y  = 5

CON-language CON-table CON-graph CON-equation

Filling Empty 

Tank

y = 2n

FIL0

FIL0-language FIL0-table FIL0-graph FIL0-equation

Filling Non-

Empty Tank

y = 3+2n

FIL3

FIL3-language FIL3-table FIL3-graph FIL3-equation

Draining Full 

Tank

y  = 16 - n

DRN

DRN-language DRN-table DRN-graph DRN-equation
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Along the same lines, data in the function tables was listed in order of increasing 

time to facilitate noticing covariation between time and height. 

There were other subtle influences on the design of the algebraic notation 

cards that developed through pilot testing. To avoid students considering the 

variables as labels, the variable letters were not the same as the first letters of 

ñtimeò and ñheight.ò The use of ñnò as the independent variable came from Knuth 

and colleaguesô (2005) work, since ñxò could be confounded with the 

multiplication symbol ( ) commonly used in elementary schools. Additionally, 

using the format ñA + Bnò instead of ñAn + Bò allowed the DRN equation to be 

written as ò16 ï nò instead of  ñ-n + 16ò. Finally, pilot testing indicated that 

students did not say the independent variable when they read algebraic notation 

cards. In an effort to circumvent this behavior, one of the functions was given a B 

constant of 1 (y = 16 -  n ), hoping to encourage students to say ñsixteen minus n.ò 

Overall, the puzzle was designed such that every card had a place in the 

solution. This design choice meant that participants were not only choosing cards 

that belonged in any given set, but they may have been ñnot choosingò cards 

which they thought ñdidnôt belong.ò In other words, students may have been 

choosing the least wrong card rather than what they viewed to be a correct card. 

Further, reasoning through the appropriateness of their choices may have 

happened a posteriori, on reflection of the sets they had already created. 

Function Puzzle Implementation 

The Function Puzzle was implemented in two ways in the empirical 

studies. In the pilot phase (Study 1), students participated in one-on-one 
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interviews where they solved the Function Puzzle, describing each set that they 

put together to the interviewer as they worked through the puzzle. At the end of 

each interview, the cards were shuffled to randomize their order in preparation for 

the next interview.  

In the main study, the Function Puzzle was implemented as a classroom 

activity. Students were put into partnerships of two or three people by the 

classroom teacher, and the task was introduced in the context of helping me with 

some research on how students think about mathematical relationships. 

Intentionally, the introduction was very brief. I had a large set of cards, so they 

were easy to see, and I said, ñThese are different ways of showing mathematical 

relationships. Have you seen things like this before?ò After following answers to 

that question, I suggested that the studentsô job was to create four sets, ñfinding 

reasons the cards belong together,ò with the stipulation that each set contain one 

card of each color. With that, students were given a set of cards and worked on 

the task. Once a partnership was satisfied with the sets they had made, they 

showed their solution to myself or the classroom teacher to get a paper backing 

and glue, then glued their solution to a piece of paper.  
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5. Methods 

 Activities were implemented in a design-based research approach (Cobb, 

Confrey, diSessa, Lehrer, & Schauble, 2003) where earlier implementations 

influenced later implementations. Throughout, the research was led by the guiding 

question, ñHow do students make sense of function representations and 

connections between them, even those representations that are unfamiliar?ò  

In the pilot phase of this project, twelve 4th grade students participated in 

one-on-one interviews where they solved the Function Puzzle and discussed their 

solutions in June of 2014. Study 1 (Chapter 6) is a case study from a pilot phase 

interview with ñKara.ò As will be discussed in further detail, Kara was chosen 

because she exhibited the behavior of interest (not saying the independent 

variable aloud when reading an equation), talked a lot, which provided discourse 

data to work with, and she took about the average length of time to complete the 

puzzle. 

In the main study phase, the Function Puzzle was implemented in three 

classrooms: one third grade classroom, one fourth grade classroom, and one fifth 

grade classroom. Fifty students across the three classrooms participated in the 

classroom activity, and 16 students participated in one-on-one interviews after 

activity implementation. Studies 2 and 3 (Chapters 7 and 8) are analyses of 

individual interviews following classroom implementation of the Function Puzzle 

in a 5th grade classroom. As will be discussed further in chapters 7 and 8, the 5th 

grade data set was the most extensive with eight interview participants with 

varying mathematical expertise.  
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This chapter broadly describes the methods used in the three studies. Each 

of the empirical chapters (Studies 1, 2, and 3 in Chapters 6, 7, and 8, respectively) 

reiterates and expands on the information in this chapter. 

Methodological Framework 

 Broadly, all three empirical studies used a grounded theory approach 

(Charmaz, 2010; Glaser, 1992; Strauss & Corbin, 1990). The analytical 

techniques of constructivist grounded theory as described by Charmaz (2010) 

were used across all three studies. In contrast to the positivist grounded theory of 

Glaser (1992) or the prescriptive techniques of Strauss and Corbin (1990), 

Charmaz fully recognizes that ñdata are narrative constructionsò (p. 187), 

impossible to fully untangle from broader contexts of participantsô or researchersô 

points of view. Originally intended to explicate and map complex social processes 

(Willig, 2013), grounded theoryôs emergent analytical techniques are well-suited 

for examining young studentsô often idiosyncratic and nonconventional ways of 

sharing their mathematical experiences and understandings.  

Student Participants in the Empirical Studies 

The pilot study and main study were held in two different schools in 

different districts in Massachusetts. This section describes general characteristics 

of the schools and student participants.  

For the pilot study (Study 1 described in Chapter 6), student participants 

were from one of three fourth-grade classrooms in a K-8 school. The school had 

over 1200 students and roughly 130 of them were in fourth grade. Almost half of 

the school (43%) is identified as ñhigh needs,ò which includes characteristics such 
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as free or reduced lunch, learning disability, limited English language proficiency, 

or combinations of such characteristics. The district has a relatively stable student 

population, where there is less than 5 percent attrition rate in the upper grades (3rd 

through 7th) (Massachusetts Department of Elementary and Secondary Education 

(MA DESE), 2014).  

The mathematics curriculum for fourth grade at this school was 

established by the cohort of fourth grade teachers in alignment with mathematics 

standards from the CCSS (NGA Center & CCSSO, 2010) and by using online 

resources for class work and project ideas. The curriculum heavily emphasized 

development of studentsô computation skills and mathematics vocabulary. While 

the studentsô mathematics curriculum included working with word problems and 

data tables, it did not include Cartesian graphs or equations with variable notation 

(C. Olszowy, personal communication, May 2014).  

The main study was held mid-year at a 3rd ï 5th grade public elementary 

school in suburban Massachusetts. The school has a student population of 388 

students, a student to teacher ratio of 24.3 to 1, and a high needs population of 

20.8%, which includes characteristics such as free or reduced lunch, learning 

disability, limited English language proficiency, or combinations of such 

characteristics (MA DESE, 2016).  

Although the Function Puzzle was implemented across three classrooms in 

the main study, the data corpus was reduced to the 5th-grade implementation and 

interviews (Miles & Huberman, 1994). The fifth-grade data was chosen for this 

study because the consistency and availability of the students for interviews 
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resulted in a more complete and diverse data set. Out of 18 students in that 

classroom, 12 agreed to interviews, and nine were interviewed in the time allowed 

by the classroom teacher. In comparison, only three students agreed to interviews 

from the 3rd-grade classroom and, due to scheduling difficulties, only four 

students were available for interviews from the 4th-grade classroom. 

Data Collection 

 Interview data including video, transcripts, and any student-produced 

artifacts are the data for all three studies. The interview protocols are in Appendix 

B, interview transcripts of student participants whose interviews are included in 

these studies are in Appendix C. Discourse, as it will be used in this work, refers 

to the immediate negotiation of meaning as it evolves in conversations with 

particular goals and focuses of attention (Gee, 2011; Moschkovich, 1996, 2007), 

situated by the available artifacts and contexts. Following Gee, I take ñcontextò to 

include all aspects of ñthe physical setting in which the communication takes 

placeò and ñshared cultural knowledgeò (Gee, 2011, p. 6). In these studies, the 

common understanding that the research had a mathematical basis is an example 

of shared cultural knowledge. 

Across the three studies, two cameras captured each interview: one 

focused on the work space in front of the student and interviewer, and one 

focused on the student participant. Paper and pencil were available to students 

during the interviews, but students did not use these supplies. Broadly speaking, 

students described their choices in building sets for a Function Puzzle solution, 



FUNCTION REPRESENTATIONS  39 

using a mixture of talk and gesture to express themselves. Interviews in both the 

pilot study and the main study lasted between 25 and 40 minutes.  

Data Analysis 

Video processing began within a week of when an interview was 

completed by transcribing and memo writing for each interview (Charmaz, 2010). 

This initial screening process allowed for minor adjustments to the interview 

protocols including how questions were phrased and placement of the cameras. 

Memos served as interview summaries and helped to highlight common or 

idiosyncratic themes across interviews. As a means for examining the interview 

discourse, all interviews were transcribed verbatim and annotated for touch or 

gesture as warranted by the analysis (see Appendix C).  

Study 1 is a case study from one of the 4th grade pilot interviews which 

explores mediational influences of discourse and the function representations 

themselves on the studentôs developing understandings of algebraic notation. 

Study 2 analyzes the eight 5th-grade studentsô interviews to explore student 

ñdiscoveriesò about the semantic rules of algebraic notation and connects those 

discoveries with studentsô noticing of dependent and independent variables in the 

function representations. Finally, Study 3 uses examines how studentsô patterns of 

discourse not only communicated their solutions of the Function Puzzle, but 

reinforced connections among representations in such a way as to potentially 

impact studentsô understandings of functions. Data analysis for each of the three 

empirical studies were unique and are presented in each of the empirical chapters, 

to provide proximity to the corresponding results.  
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6. Study 1: A Case Study of a Studentôs Awareness of Algebraic Notation 6 

In a synthesis of research and policy regarding implementation of algebra 

throughout studentsô K ï 12 education, the RAND mathematical study 

Mathematical proficiency for all students: Toward a strategic research and 

development program in mathematics education (2003) highlighted three 

expectations related to algebraic proficiency, one of which was ña robust 

understanding of the notion of function, including representing functions (for 

example, tabular, analytic, and graphical forms)ò (p. 44). Teaching the concept of 

function through multiple representations has been advocated for 25 years or 

more (e.g., Brenner et al., 1992; Dubinsky & Harel, 1992; Schoenfeld, Smith, & 

Arcavi, 1993). Whereas many students seem to have an impoverished 

understanding of functions based in procedures of symbol manipulation 

(Oehrtman, Carlson, & Thompson, 2008), a goal in teaching functions through 

multiple representations is to encourage student understanding of the 

ñnotationally rich web of representations and applications of functionsò (Kaput, 

1991, p. 61). The case study presented in this paper evolved out of interviews 

with 4th grade students who had limited to no exposure to algebra around a task 

linking multiple representations of functions. Here, I examine how one studentôs 

interpretation of variable notation7 was mediated by discourse during the 

                                                 
6 A version of this chapter was accepted as a qualifying paper titled, ñA Fourth Grade Studentôs 

Exploration of Variable Notation Through a Function Representation Taskò in partial fulfillment 

of my Ph.D. requirements and can be found in Tufts Digital Library at 

https://dl.tufts.edu/catalog/tufts:sd.0000690. 
7 In this paper, ñvariable notationò is the convention of using a letter to represent variables, which 

in turn refer to both varying and fixed unknown quantities (Blanton, 2008; Blanton, Levi, Crites, 

& Dougherty, 2011; Brizuela, Blanton, Sawrey, Newman-Owens, & Gardiner, 2015). 
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interview, including utterances by the interviewer, utterances by the student, and 

interactions with the different function representations presented in the task. 

In a landmark paper, Küchemann (1981) documented the ways in which 

students first engage with variable notation. Küchemann noted that student 

interpretations of letters fell into six categories: ignoring the letter, assigning it a 

value, to using it as shorthand notation for an object, or using it as a specific 

unknown, a generalized number, or a variable. Through results of a written test on 

a variety of algebraic tasks, his summary conclusion was that over half of middle 

school students were not able to successfully work with the use of letters as 

specific unknown numbers, let alone generalized number or variable. MacGregor 

and Stacey (1997), in their work with 11- to 15-year-olds, delved into why 

students might interpret variable notation in these ways, concluding that everyday 

experiences and pragmatic reasoning, in addition to poorly-designed teaching 

materials, were main sources of student interpretations. In a more recent survey of 

middle school students, Knuth and colleagues (Knuth, Alibali, McNeil, Weinberg, 

& Stephens, 2005), through their own study of student interpretations, reported 

that students are more capable than these reports. Almost half of sixth grade 

students and close to 80 percent of 8th grade students seemed to understand letters 

in an algebraic expression as at least generalized numbers, potentially as a 

variable (Knuth et al., 2005). They credited this finding to studentsô classroom 

experiences learning about the use of variables and suggested that meaningful 

exposure to variable notation at earlier grades would likely benefit students. 
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Recent work in student understandings of variable notation comes from a 

perspective that recognizes symbolization and generalization as the heart of 

algebraic reasoning (Kaput, Blanton, & Moreno, 2008). From this point of view, 

studies have found that young students can and do use variable notation to 

represent their generalizations of functions. Elementary studentsô learning and 

adopting variable notation has been found in work which emphasized: young 

studentsô abilities to generalize functional relationships (Brizuela et al., 2015a; 

Blanton, Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015a), encouraging 

students to think about mathematical processes rather than products (Warren, 

Cooper, & Lamb, 2006), the effectiveness of teaching algebra in the elementary 

curriculum (Blanton, Stephens, Knuth, Gardiner, Isler, & Kim, 2015b), and 

unifying student discourses about functions (Nachieli & Tabach, 2012). In each of 

these studies, students were introduced to equations with variable notation in 

classroom lessons, and student-produced equations are motivated by an intent to 

generalize from values in a data table or on a graph. This method has proved 

powerful at encouraging children across younger grades (kindergarten through 7th 

grade are represented in these studies) to adopt equations with variable notation as 

a way of expressing generalizations. 

In the work reported here, rather than arriving at variable notation after 

exploring other representations, students with limited to no formal exposure to 

variable notation were given a task, called the Function Puzzle, which required 

them to interpret algebraic equations without express directions on how to do so. 

This approach is similar to that of Knuth et al. (2005), Küchemann (1981), and 
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MacGregor and Stacey (1997).  Here, students were given four types of function 

representations (natural language, tabular, Cartesian graphs, and equations that 

included variable notation) with the assignment of finding connections across the 

different types. The Function Puzzle did not necessarily give students insight into 

different affordances of the representations, nor did it motivate them to generalize 

relationships from data, but as a potential opening activity for exploring functions, 

it primed them to consider connections across representations of functions 

(Brenner et al., 1992) and encouraged them to draw on personal resources 

(Moschkovich, 2007; Pratt & Noss, 2009) to construct their own understandings. 

Similar to some students in both Küchemannôs (1981) and MacGregorôs and 

Staceyôs (1997) studies, several students in this study seemed to ignore the 

independent variable when they worked with the equations. The phenomenon was 

recurrent enough to warrant investigation through a case study of Kara (a 

pseudonym), one of the task participants.  

This case study presents a ñthick descriptionò (Geertz, 1973) of Karaôs 

discourse during the interview about and experiences with representations of 

function in the Function Puzzle, where the analysis looks for meaningfulness not 

only in what Kara said and did, but in how the experience of the interview and the 

artifact of the Function Puzzle was a part of and influenced what Kara said and 

did. In keeping with the phenomenon of interest, studentôs awareness and 

impressions of variable notation, I pay particular attention to how Kara talked 

about equation representations that included variable notation. In those utterances, 

she both said and did not say the independent variable. As will be developed, my 
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argument is that Karaôs statements and conjectures about these equations were 

acts of sense-making through which Kara began to build understandings of the 

symbolizing significance of variable notation. My analysis will address the 

research question: how did discourse during the interview, including utterances by 

the interviewer, utterances by Kara, and interaction with function representations, 

mediate Karaôs awareness of variable notation?  

Study 1 Theoretical Perspective 

Fundamentally, I take the perspective that individuals are the architects of 

their own understandings, and construct knowledge in personally meaningful 

ways (Piaget, 1970; von Glaserfeld, 1991) through experiences situated in 

cultural, historical, and institutional contexts (Cole, 1996; Forman, 2003; 

Vygotsky, 1978, 1987; Wertsch, 1991). This situatedness implies that both local 

communities, such as a classroom, and broader arenas, such as conventional 

symbolizing systems or national education standards, may impact learners. 

Cognitive development, therefore, includes processes of self-organization 

(constructivism) and enculturation (socioculturalism) (Cobb, 1994).  

Similarly, both individual and sociocultural understandings form the basis 

for studentsô mathematical activity. For example, learners gain mathematical 

content knowledge (Hill, Rowan, & Ball, 2005; Ma, 2010) and understandings of 

classroom practices and norms (Forman & Ansell, 2001; Lave & Wenger, 1991; 

Yackel & Cobb, 1996), but also experience mathematics through extensive 

symbol systems (Cobb, 2002; Nemirovsky, 1994; Radford, 2014) and discourse 

practices (Michaels, OôConnor, & Resnick, 2007; Sfard, 2001, 2012; Zack & 
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Graves, 2001). Learning is not only a process of increasingly proficient 

participation in mathematical practices, it is mediated by that participation 

(Halliday, 1993; Vygotsky, 1987; Wells, 2007). Participation in classroom 

discussion, for example, is not only something students learn to do, they come to 

be more proficient at it through their participation in discussions. More broadly, a 

studentôs understanding of mathematics and what it means to do mathematics is 

mediated by how they experience mathematics, whether through discussion, 

worksheets, projects, or other means.   

The mediational triangle as described by Cole (1996) and shown here in 

Figure 6-1 is one way to represent mediating influences. In this simplified 

representation, there are three actors: the subject, the object, and the mediating 

artifact. A mediating artifact can be a physical object, like an axe in the system of 

person, tree, and axe, but is more broadly conceptualized as a ñproduct of human 

historyò (Cole, 1996, p. 118), a description which encompasses culturally-

established patterns of behavior or systems of meaning in addition to material 

objects (such as a system of student, mathematics, and classroom discussion). The 

sides of the triangle represent relationships among the actors. The direct 

relationship between the subject and object can be thought of as a particular way 

that the subject might understand and interact with the object in the absence of 

influences (a purely hypothetical relationship, since a subject never interacts with 

an object without any mediation). In the mediated relationship, on the other hand, 

the subjectôs relationship to (and understanding of) the mediating artifact and the 

relationship of that artifact to the object influences how the subject comes to 
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understand and interact with the object. Mediating artifacts, therefore, add new 

dimensions to the relationship between subject and object.  

  

Figure 6-1. The basic mediational triangle per Cole, 1996, p. 119. 

In this work, I examine the ways discourse in the interview mediated 

Karaôs sense-making of variable notation in the Function Puzzle task. The three 

particular aspects of discourse are utterances by the interviewer, utterances by 

Kara, and interactions with function representations as a symbol system. In a 

sociocultural perspective, symbolizing and symbol practices are subsumed as a 

specialized form of discourse (Lerman, 2001; Moschkovich, 1996; Sfard, 2012), 

as symbolizing is a form of communication. Here, however, I differentiate 

between Karaôs discourse as talk and Karaôs symbolizing as work with the 

function representations to examine each formôs unique contributions to Karaôs 

interpretations of variable notation.  

Discourse as talk or conversation. Discourse as explicit communication 

between participants in a conversation centers around spoken words, talk, and 

conversation, as opposed to broader discourses that could include ñthose who are 

long gone whose ideas are instantiated in cultural ways of being, doing, and 
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speakingò (Zack & Graves, 2001, p. 266). It is the immediate negotiation of 

meaning as it evolves in conversations with particular goals and focuses of 

attention (Moschkovich, 1996, 2007).  

Two aspects from semiotic mediation are relevant here. The first is that an 

individualôs interpretation of meaning, or meaning-making, is not adopted from 

social interaction alone, but is incorporated into that personôs worldview as 

established by their past experiences (Wells, 2007). In this sense, understandings 

of discourse norms (Sfard, 2001; Yackel & Cobb, 1996) and forms of discursive 

activity (Moschkovich, 2007) inform how an individual might use discourse for 

their own sense-making. Secondly, there is the self-mediative role that speech can 

play in a personôs understandings (Teasley, 1995; Wertsch, 1991). Vygotsky 

wrote, ñSpeech does not merely serve as the expression of developed thought. 

Thought is restructured as it is transformed into speech. It is not expressed but 

completed in the wordò (1987, p. 251 as cited in Wells, 2007, p. 264). In this 

analysis, I look for evidence that discourse or conversation with the interviewer 

influenced how Kara worked with the representations in front of her, and how her 

own utterances may have been a resource for new understandings.  

Symbolizing. Mathematics is rife with established specialized notation 

and representations. Viewing these established systems as opaque or immutable 

attends to a limited perspective on their utility for meaning-making. Although a 

symbol system is indeed ña rule-governed set of elementsò (Nemirovsky, 1994, p. 

390), individuals understand, interact with, and perceive these symbols in ways 
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that are personally meaningful. Attending simply to symbols as a system with 

fixed rules ignores how individuals use that system for their own purposes.  

 ñSymbol-use,ò on the other hand, refers to the use of a given symbol 

system for a purpose in ña chain of meaningful eventsò (Nemirovsky, 1994, p. 

390). Drawing meaningful use from variable notation could include generalizing a 

relationship between two quantities, such as the relationship between time and the 

height of water in a tank as it is emptied or filled, or more broadly, understanding 

that an algebraic expression does not just connect the domain to co-domain, but it 

is a mathematical object that can be manipulated, transformed, or analyzed for a 

specific intent. In other and recent literature, ñsymbolizingò is interchangeable 

with Nemirovskyôs ñsymbol-useò (e.g., Brizuela, 2006; Cobb, 2002; Cobb, 

Yackel, & McClain, 2000; Sfard, 2000).  

For the learner, engaging with a new symbol system may be learning the 

rules of the system and aligning oneôs practices to match those rules or it may be a 

process of symbolizing, where negotiating meaning between the symbol system 

and the situation context is oneôs central purpose (Kaput, 1998; Moschkovich, 

1990; Nemirovsky, 1994). It may be a little bit of both. In her interview, Kara was 

both sense-making across various function representations, which may have 

included working to understand the rules of those symbol systems and 

interpreting those symbols in terms of a context of water in a bucket. My analysis 

examines whether the function representations had a mediational influence on her 

interpretation of variable notation in equation representations. 
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Study 1 Methods 

The Function Puzzle Task Design. I designed the Function Puzzle to 

elicit a ñsense of functionsò by which students would ñincorporat[e] many ideas 

and skills éto tie together graphical and analytical representationsò (Eisenberg, 

1992, p. 154). The inspiration for this puzzle came from a theoretical belief in 

young studentôs capacity to engage in algebraic activity (Carraher & Schliemann, 

2007), Tufts Universityôs Early Algebra activities such as ñWho Shares Your 

Functionò (http://ase.tufts.edu/education/earlyalgebra/materials.asp), and Jennifer 

Sauriolôs dissertation work (2013) to reorient ninth-grade algebra curriculum to 

encourage students to visualize functional relationships, shifting away from 

equation manipulation.  

In this function representations task, students are given 16 cards (see 

Figure 6-2) with representations of four different functions. The representation 

types are natural language descriptions, data tables, Cartesian graphs, and 

equations that include variable notation.8 The natural language cards described 

changes over time in the height of water in a tank. The represented functions are 

affine functions (functions of the form y = Aw + B, where w and y are variables, 

and A and B are constants): one constant (y = 7), one purely linear (y = 3w), and 

two with a non-zero translation (y = 3w + 4 and y = 30 ï 2w). The design of the 

cards is minimalist, such that many cards can be quickly considered. For example, 

the cards do not mention whether water fills or drains at a constant rate, nor what 

units for time and height belong on the graph and the data table. Additionally, 

                                                 
8 The independent variable was represented by w instead of the more conventional use of x 

because preliminary screening showed that elementary students interpreted x as representing 

multiplication. 
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multiplication is represented in the equations as a number directly followed by a 

letter (i.e., 3w for ñthree times wò), recognizing that this convention may be 

unfamiliar to elementary school students.  

 

 

Figure 6-2. Study 1 Function Puzzle Cards. 

 

I use a naming convention to more easily reference the Function Puzzle 

cards. The convention is based on a relationship acronym from Figure 6-2 (CON, 

FIL0, FIL4, or DRN) and the representation type (language, table, graph, or 

equation). Coordinating relationship and representation types creates the name for 

a particular card. For example, the card that shows ñy = 3w +4ò is called FIL4-
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equation. Another convention used is to capture the progression of the interview 

in minutes in the header of each section.  

The students were encouraged to make four sets, a set having one card of 

each color (or type of representation), and to share ña reason the cards belong 

together.ò The fact that there are four correspondence relationships relating time 

and height (Smith, 2003) across each set of representations was not shared with 

the students. For this work, a student is considered to have ñsolvedò the Function 

Puzzle if the shared attribute in each of their final sets of 4 cards is the same 

correspondence relationship. Figure 6-2 shows a possible configuration for ñthe 

solutionò to the Function Puzzle. 

 The Function Puzzle design, where a final solution contains all 16 cards, 

constrains options that the students have available to create sets. This aspect 

entails that participants are not only choosing cards that belong in any given set, 

but they may be ñnot choosingò cards which they think ñdonôt belong.ò In other 

words, students may be choosing the least wrong card rather than what they view 

to be a correct card. Further, reasoning through the appropriateness of their 

choices may happen a posteriori, on reflection of the sets they have already 

created, which, in itself, is an opportunity for students to exercise sense-making. 

Data collection and case selection. For this study, the Function Puzzle 

was presented in a semi-clinical, one-on-one interview. In the interview protocol 

(see Appendix A), the students completed the Function Puzzle and then were 

asked questions about their mathematical experiences in school and their thoughts 

about mathematics in general. Throughout each interview, the protocol was 
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loosely followed, with the intention of following topics and ideas expressed by 

the student participant. Generally, students were invited to use any rationale to put 

sets of cards together, as long as there was one card of each color in a set. As they 

finished each set, students were asked to explain why they put the set of cards 

together, but requests for extended justification were limited to establish a ñtaken-

as-sharedò (Cobb, Stephan, McClain, & Gravemeijer, 2001, p. 119) atmosphere, 

minimizing the interviewerôs influence in the studentôs execution of the task.9 The 

protocol questions about mathematical experiences were included to potentially 

gauge whether and how studentsô epistemological and emotional outlook towards 

mathematics might influence their approach to novel mathematical experiences 

like the Function Puzzle. In this paper, those questions served as the source for 

Karaôs description of herself as a learner of mathematics. 

 Students were selected for participation from one of three fourth-grade 

classrooms in a K-8 school through random draw from students who had returned 

consent forms. The school has over 1200 students and roughly 130 of them were 

in fourth grade. Almost half of the school (43%) is identified as ñhigh needs,ò 

which includes characteristics such as free or reduced lunch, learning disability, 

limited English language proficiency, or combinations of such characteristics. The 

district has a relatively stable student population, where there is less than 5 

percent attrition rate in the upper grades (3rd through 7th) (Massachusetts 

Department of Elementary and Secondary Education, 2014). The mathematics 

curriculum for fourth grade at this school was established by the cohort of fourth 

grade teachers, in alignment with mathematics standards from the Common Core 

                                                 
9 On reflection, this choice has left some gaps in the narrative of Karaôs work with the task. 
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State Standards Initiative (CCSSI; NGA Center & CCSSO, 2010) and by using 

online resources for class work and project ideas. The curriculum heavily 

emphasized development of studentsô computation skills and mathematics 

vocabulary. While the studentsô mathematics curriculum included working with 

word problems and data tables, it did not include Cartesian graphs or equations 

with variable notation (C. Olszowy, personal communication, May 2014).  

In the time made available by the school, I conducted twelve interviews 

over three days towards the end of the school year at the participating school. 

Two video cameras were used to capture the interviews: one of the work space in 

front of the student, and one of the student, including face and work space. Most 

interviews were between 15 and 30 minutes where the time was generally split 

between completing the puzzle and answering questions about mathematical 

experiences and perspectives. In the beginning of the interview, before any 

directions were given, the students were asked if they were familiar with what 

was shown on the cards. All students expressed familiarity with the data tables 

and the natural language statements. None of the students were familiar with the 

Cartesian graphs, and students recognized the equations as equations, but claimed 

to be unfamiliar with equations with letters. 

Out of the twelve students who participated in the interviews, six solved 

the puzzle, creating four sets of cards whose shared attribute was a 

correspondence relationship. Seven out of the twelve were noted to overlook the 

independent variable, the w, meaning they either did not say the w out loud when 

they read the equation cards, or they evaluated the expression as if the w were not 
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there. The assumption here is not that the students did not see or consider the w, 

but that if someone were listening to what a student said as they read or evaluated 

an equation card, that listener would not know there was a w in the written 

equation. Four students both solved the puzzle and seemingly overlooked the 

independent variable. Karaôs interview was chosen for this analysis because, of 

the four students who both solved the puzzle and were noted as not always 

attending to the independent variable, she most consistently shared what she was 

thinking as she worked through the Function Puzzle task. Further, she was not the 

quickest at the task, nor was she the slowest. It may be worth noting that Kara 

identified herself as a top performer in mathematics and had not had any trouble 

with topics in mathematics in her fourth-grade year. She is recognized for her 

mathematical abilities by others at the school, as her third-grade Massachusetts 

Comprehensive Assessment System (MCAS) exam scores were high enough to 

qualify her to participate in Competitive Math League (CML) and she earned a 

medal for her high scores on the CML tests. One implication of developing a case 

study on a strong student is that the results may be more indicative of what 

students can possibly achieve with this task, as opposed to what most students 

will typically do.  

Analysis methods. This case study is a descriptive, instrumental case 

study wherein ñit is hoped that the detail provided by the description will generate 

new insights into, and a better understanding of, the nature of the phenomenon 

under investigationò (Willig, 2013, p. 103). Specifically, the object of study is 

Karaôs work with and talk about the equation cards, and mediating influences of 
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discourse during the interview and function representations on her understandings 

of variable notation.  

The analytical techniques of constructivist grounded theory as described 

by Charmaz (2010) were used for Karaôs work on the Function Puzzle. In contrast 

to the positivist grounded theory of Glaser (1978, 1992) or the prescriptive 

techniques of Strauss and Corbin (1990), Charmaz fully recognizes that ñ[d]ata 

are narrative constructionsò (p. 187), impossible to fully untangle from broader 

contexts of participantsô or researchersô points of view. Originally intended to 

explicate and map complex social processes (Willig, 2013), grounded theoryôs 

emergent analytical techniques are well-suited for examining young studentsô 

often idiosyncratic and nonconventional mathematical experiences and 

understandings.  

Karaôs interview was transcribed verbatim (see Appendix B). 

Microanalysis (Nemirovsky, Kelton, & Rhodehamel, 2013) of non-verbal aspects 

of the interview, such as touching and moving of cards were also included in the 

transcript, as they were considered relevant to gain insight into Karaôs thinking. 

From the transcript and viewing and reviewing of the interview video, a narrative 

account of Kara working on the Function Puzzle with close attention to her work 

and discourse about the equation cards was created. All of the interview 

artifactsðthe videos, the transcript, and the narrativeðwere then used to build 

perspectives inductively (Charmaz, 2010) about Karaôs understandings of the 

equation cards and variable notation. Transcript alone was not sufficient to 

complete this work, as both Kara and the interviewer used gesture or words like  
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ñthisò and ñthatò to obliquely reference cards from the Function Puzzle task.  

To address this studyôs research question (ñHow did discourse during the 

interview, including utterances by the interviewer, utterances by Kara, and 

interactions with function representations, mediate Karaôs work with variable 

notation in linear equations?ò) I carried out a line-by-line coding of the interview 

transcripts that captured and categorized Karaôs discourse about the equation 

cards using emergent codes. Specifically, I focused on how (a) utterances by the 

interviewer, (b) Karaôs own utterances, and (c) representations of functions other 

than the equation cards (i.e., natural language, data tables, and Cartesian graphs), 

mediated her work with variable notation. The first step in this process was to 

identify every utterance she made related to the equation cards. The second step 

was to characterize in what ways (a), (b), and (c) mediated her work with variable 

notation.  

Study 1 Results 

The narrative account used in my analysis and described above is the first 

part of the Results section. While this account does include some analysis and 

conjectures regarding Karaôs thinking, the main task of this section is to portray 

the original enactment of the interview as that underscores ñwhat makes her 

actions meaningful and how they are a part of a personal history with a past and a 

futureò (Nemirovsky, 1994, p. 392).  

Narrative of Karaôs Function Puzzle work.  

Karaôs first set (1:27 ï 2:35 in interview). Students were invited to use 

any rationale when combining cards into a set, as long as the sets were composed 
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of one card of each color. Before I had finished introducing the Function Puzzle, 

Kara said, ñI think I found a match,ò and she paired together the CON-language 

and CON-table, added CON-graph, then looked through the equation cards and 

found CON-equation (see Figure 6-3). It took Kara 30 seconds to build the set 

from her first exclamation to having all four cards in front of her. Each of these 

cards represent a constant function y = 7.  

Figure 6-3. Karaôs first set. All four cards represent a constant function, y= 7. 

Kara used both language and gesture to justify her set, saying, ñThe water 

height does not change [touched CON-language], does not change [ran finger 

down the height column of CON-table], does not change [ran finger along 

horizontal function on CON-graph], and the height is seven [ran finger down the 

height column of CON-table], so y equals seven [touched each symbol in the 

equation as she said it].ò I interpret Karaôs statement ñso y equals sevenò as she 

touched CON-equation as a justification of her choosing CON-equation to belong 

with that set of cards. Those cards were put to the side, and Kara looked for other 

associations to make from the remaining 12 cards.  

Karaôs second set (2:35 ï 6:04 in interview). In making a second set of 

cards, Kara first chose the natural language card that was closest to her, FIL0-

language, which describes filling an empty tank, and almost immediately paired it 

with FIL0-graph. The table card DRN-table was closest to her, and she spent 35 
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seconds looking between this card and FIL0-graph, at times counting tick marks 

on the graphôs axes, or moving her finger from a tick mark on the y-axis across to 

the function line. Eventually, Kara included DRN-table in the set (the first three 

cards from left to right of Figure 6-4).  

Figure 6-4. Karaôs second set. The data table represents a function with negative 

slope and non-zero intercept, y = 30 ï 2w; the other three cards represent a 

multiplicative function, y = 3w. 

 

 With the partial set of three cards lined up in front of her, Kara touched 

each remaining equation card, then asked, ñThe y equals the height, right?ò After 

the interviewer responded, ñYup, it does,ò Kara contemplated the equation cards 

for about 30 seconds, before suggesting, ñThis one [FIL4-equation] could also go 

with that [the constant function cards in Figure 6-3] because y = 3 + 4 [ran thumb 

along the equation as she speaks].ò Although the card showed y = 3w + 4, Kara 

did not say the w when she read the card, like the adolescents in K¿chemannôs 

(1981) study. Her suggestion that FIL4-equation belonged with the set she had 

created earlier implied that Kara thought FIL4-equation and CON-equation were 

interchangeable in this set. The opportunity to explore Karaôs interpretation of 

these cards was missed by the interviewer, who thought not saying w was simply 

an oversight by Kara and pointed out the w on FIL4-equation saying, ñExcept that 



FUNCTION REPRESENTATIONS  59 

there's that w in there.ò The interviewerôs remark was enough for Kara to retract 

her suggestion that FIL4-equation belonged with the constant function set. 

Kara eventually settled on a set of FIL0-language, FIL0-graph, DRN-

table, and FIL0-equation (see Figure 6-4 above). She made a justification for 

connections among the first three cards by inferring that the bottom left corner of 

the graph indicated zero and thus an empty tank, and that the function line ended 

at the eighth tick mark of both axes and there was a time value of eight in the 

table. When it came to how FIL0-equation belonged with the set, she said ñAndé 

I donôt know how I got that,ò emphasizing her discomfort by covering the card 

with her right hand and laughing in a self-deprecating way. As a note, this 

situation is an example of a postieri reasoning, where Karaôs idea of how the 

cards belong in the set changed as she talked through the set she created.   

Before the interviewer made any substantive response, Kara switched out 

the equation cards, putting DRN-equation in place of FIL0-equation. When the 

interviewer asked why she made the change, she suggested, ñBecause ó30 ï 2w,ô 

Iôm gonna guess, is either 28 [pointed at 28 in the height column of the table] 

oré like, itôs probably one of these [waved her hand over the right ïhand column 

of DRN-table].ò Here she read the w aloud as part of the expression, and 

evaluated the expression as ñtwenty-eight,ò as if w was not in the expression or 

equal to 1, and 28 matched a value on DRN-table at (1, 28). In this instance, even 

though Kara included the w when she read the expression, it is not evident 

whether she did or did not consider w in her calculation of the expressionôs value. 
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Kara did make a mild allusion to potentially alternate values for 30 ï 2w when she 

stated that it was ñeither 28 or one of these [other values].ò  

The interviewer accepted Karaôs response, but then asked how DRN-table 

fit Karaôs previous description of an empty tank, since that had been her 

justification for FIL0-graph. This question led Kara to reassess DRN-table, and 

she changed that card out for FIL0-table because it was the only table, according 

to Kara, that began empty; the first entry in FIL0-table is (0, 0). As she was 

justifying her choice of data table, she remarked, ñThe height is multiplied by 

three every time,ò and she ran her fingers across each row, from left to right. In 

actuality, multiplying time (on the left-hand side) by three every time produced 

values for height (on the right-hand side). This type of faulty analysis, where 

students interchange the product and one of the factors, has been documented 

elsewhere (e.g., Clement, 1982). On the other hand, Kara was noticing the 

consistent multiplying-by-three pattern in the table. Without comment or 

prompting from the interviewer, she said, ñand this [DRN-equation] wouldnôt 

make any sense. So, I think it would be this [FIL0-equation] because itôs 

multiplied by three every time [touched the equation on the card while 

speaking].ò Kara made the association between the table, where height values 

were three times larger than time values, and the equation y = 3w, which may 

indicate that she recognized the notation 3w as multiplication of three and w (see 

Figure 6-5).   
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Figure 6-5. Karaôs second set, revised. All cards represent a multiplicative 

function y = 3w. 

 

Karaôs third set (6:04 ï 7:25 in interview). It took Kara less than 30 

seconds to pull the next set of four cards from the remaining eight, pulling 

together FIL4-language, FIL4-table, FIL4-graph, and FIL4-equation (see Figure 

6-6). When she was justifying how FIL4-equation was connected to the set, she 

said, ñAnd the ó3 + 4ô ócuz itôs seven [touched the 7 in row (1, 7) in FIL4-table],ò 

and gave a little self-conscious giggle. When the interviewer asked for 

clarification of the connection, Kara reiterated her point by reading, ñthe ó3w + 4ô 

[touched FIL4-equation], I was thinking, because of the seven there [touched row 

(1, 7) in FIL4-table].ò In this instance, Kara evaluated y as equal to seven, or three 

plus four, which could result from ignoring the w or assigning it a value of 1. 

Assigning it a value of 1 would link to the row Kara touched in the table. 

Figure 6-6. Karaôs third set. All cards represent a function with positive slope and 

non-zero intercept, y = 3w + 4. 

 

Almost without hesitation, however, Kara changed out FIL4-equation for 

DRN-equation, suggesting, ñor, I could do the ô30 ï 2ô [touched DRN-equation] 
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because of the ó28ô there [pointed to ó28ô at (8, 28) of FIL4-table].ò In the table, 

the height value of 28 corresponds to a time value of 8. If she were considering 

time in calculating height (i.e., w = 1) she would not have removed FIL4-equation 

for DRN-equation , because the height value she noticed in the table corresponded 

to a height value of 8. This choice seems in line with what Küchemann (1981) 

described, and what MacGregor and Stacey (1997) noted with some Year 7 

students, where students ignore the letter. MacGregor and Stacey noted that some 

older students seemed to assign letters a value of 1, but Kara does not seem to be 

doing that here, as noted above. Kara considered this set of cards complete (see 

Figure 6-7) and moved on to verifying that she would be satisfied with the last 

four cards as a set.  

 
Figure 6-7. Karaôs third set, revised. Three cards represent a function with 

positive slope and non-zero intercept, y = 3w + 4 while the equation represents a 

function with negative slope and non-zero intercept, y = 30 - 2w. 

 

Karaôs fourth set (7:25 ï 9:12 in interview). She looked over the cards in 

Figure 6-8, murmuring to herself for about 45 seconds, and eventually told the 

interviewer, ñI think these all make sense.ò In that private murmuring, she 

touched three of the cards, DRN-language, DRN-table, and DRN-graph, but did 

not touch FIL4-equation. The interviewer then asked how the equation fit with the 

rest of the cards. Kara contemplated the set for over 20 seconds, then replied, ñI 

donôt know.ò  
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Figure 6-8. Karaôs fourth set. Three cards represent a function with a negative 

slope and non-zero intercept, y = 30 ï 2w; the equation card represents a function 

with positive slope and non-zero intercept, y = 3w + 4. 

 

The interviewer pulled over Karaôs third set (Figure 6-7) so Kara could 

look at both sets together. Kara did not take long (less than 10 seconds) to switch 

the two equation cards, saying, ñThis one (DRN-equation) makes more sense 

down here (with first three cards of Figure 6-8). When asked by the interviewer, 

ñand why is that?ò She responded: 

Because ...  30 - 2w equals 28 and 2w could be like... it could be like two 

times two, so, four, and "24" and "14" [put her finger on these numbers in 

the left hand column of DRN-table]. Or it could just be plain two, and 

"22" [put her finger on ñ22ò in the left hand column of DRN-table]. Or it 

could be times three, "26" [put her finger on ñ26ò from the left hand 

column of DRN-table].  

 

This series of ñit could be likeò phrases are Karaôs thoughts about different 

possible values for 2w from DRN-equation. While the specifics of her 

calculations are not completely clear, Kara explicitly connected 2w to 

multiplication when she said, ñit could be two times two é or it could be times 

three,ò indicating she did seem to think that w could have more than one value 

and those values would be multiplied by two. The mention of ñplain twoò as a 

part of the above response is interesting because if she consistently or rigorously 

believed that 2w represented two times a value for w then 22 would result from w 

=  1, and maybe she would have said, ñtimes oneò instead of ñplain two.ò Perhaps 
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she was reading 2w as two place values: two tens and w ones. This interpretation 

would match with her statement, ñOr it could just be plain two, and ó22ô.ò Perhaps 

she was both using the 2 as the tens place and to multiply by w. This 

interpretation matches with her saying ñtwo times two, and 24ò and ñtwo times 

three, 26,ò but does not explain the connection between ñtwo times twoò and 

ñ14.ò In each of these cases, it seems that the correspondence relationship 

between y and w was not part of Karaôs interpretation of the connections between 

cards. Although she mentioned values of 2 and 3 for w explicitly, her calculation 

with 2 resulted in ñ24ò or ñ14ò while (2, 26) is the row in the table. Similarly, her 

calculation with 3 resulted in ñ26ò while (3, 24) is the row in the data table. 

Finally, any of these ways of linking the algebraic expression with values from 

the data table may be a trial-and-error approach to sense-making around 

coordinating the cards together.  

 Lastly, the interviewer asked about the other half of the switch: how FIL4-

equation fit in with the set in Figure 6-6. Kara responded, ñBecause um, the ó7ô as 

I said earlier.ò This response did not demonstrate consideration of the w but was a 

return to an earlier justification from her work with this card on the third set.  

Results summary.  

Karaôs work on the Function Puzzle. Kara created four sets of cards in 

roughly eight minutes (see Table 6-1). In the final configuration, the four cards in 

each of the sets shared the same correspondence relationship. In building each of 

her sets, Kara started with a natural language card. In all cases except her second 

set, a data table card was chosen second, followed by a Cartesian graph card. In 
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the second set, a Cartesian graph was chosen second and a data table was chosen 

third. In all cases, the equation card was selected last. Interestingly, the 

progression through natural language, data table, graph then equation is a parallel 

sequence to functional thinking studies mentioned earlier (Blanton et al., 2015a; 

Blanton et al., 2015b; Nachieli & Tabach, 2012; Warren et al., 2006). In those 

studies, the task starts with a presentation of a situation in natural language, then a 

data table of values is produced, which motivates the development of a symbolic 

generalization. 

 

Table 6-1  

Time Kara Spent Creating Sets During Her Interview 

  Type of 

Correspondence 

Relationship 

Interview 

Time 

Duration of 

work 

Number of 

Card 

Revisions 

First Set  Constant 1:27 ï 2:03 0:36 0 

Second Set Multiplicative 2:03 ï 5:42 3:39 3 

Third Set Positive Slope 5:42 ï 7:07 1:25 1 

Fourth Set Negative Slope 7:07 ï 9:12 2:05 1 

  

What is of further interest here is that the data tables were the linchpin to 

link representations together: Kara would link a data table to a natural language 

description, then, in her first, third, and fourth sets, she used values in the data 

tables to choose graphical and equation representations for the set. One 

interpretation of this sequence is that the natural language description established 

a context for Kara to imagine the dynamics of the situation, then a data table 

confirmed those dynamics with particular instantiations of the context. When 
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considering the graphs and equations, representations that Kara was least familiar 

with, Kara perhaps had two tasks in front of her: figuring out which representation 

fits in a set and the representationsô symbol system rules.  

Kara built the constant set first and quickly, making no revisions to her 

initial card choices. She was quick to point out ñno changeò on each of the cards 

in her constant set, indicating that constancy was a salient quality of each of those 

representations to her, and she picked out representations with this quality quickly 

from the entire set of 16 cards. She spent the most time and made the most 

revisions on her second set, the multiplicative set, perhaps because there were 

many cards to choose from as compared with the third and fourth sets. She spoke 

about all three available equation cards as she built her second set and made three 

revisions to her card choices before finishing the set. The third set came together 

in about one and one-half minutes, and the fourth set in two minutes. In each of 

these cases, she made one revision before deciding the set was finished and spoke 

about both FIL4-equation and DRN-equation while working on each of these sets.  

Karaôs talk about the equation cards. Over the course of the interview, 

there were eleven instances where Kara articulated conjectures or statements 

regarding an equation card (Table 6-2). Across the interview, she pronounced the 

independent variable three times when she read the card aloud (at 4:42, 6:49, and 

8:50), whereas she did not say the independent variable at three other 

opportunities (at 3:32, 6:32, and 6:56). She also indicated that the dependent 

variable could or did have multiple values three times (at 4:42, 5:24, and 8:50). In 

the four instances Kara indicated awareness of variable notation, either through 
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reading the independent variable out loud or indicating that the dependent 

variable could have multiple values (at 4:42, 5:24, 6:49, and 8:50), she was 

speaking in direct response to a request for clarification by the interviewer.  

 

Table 6-2  

Karaôs utterances about the equation cards. 

 

Study 1 Discussion 

Karaôs talk, gestures such as touching cards, and her card selections in 

making sets during the interview are the data available to gauge her sense-making 

Equation Time Set Utterance

y = 7 2:03 First
ñso the y  = seven [constant-Eqn]. [pointing finger at the equation 

as she reads].ò

y = 3w+4 3:32 Second
ñThis one [positive-Eqn] could also go with that [constant set in 

Figure 2] because [reading] óy equals 3 plus 4.ôò
*

y = 3w 4:29 Second ñAnd, I donôt know how I got that [covering multiplicative-Eqn],ò

y = 30 - 2w 4:42 Second
ñBecause 30 ï 2w, Iôm gonna guess, is either 28 oré like, itôs 

probably one of these [gesturing vaguely to negative-Tbl].ò

y = 3w 5:24 Second

"and this [negative-Eqn] wouldn't make any sense. So I think it 

would be this [multiplicative-Eqn] because it's multiplied by three 

every time."

y = 3w+4 6:32 Third
ñAnd the 3 + 4  [on positive-Eqn] óCuz itôs seven [touching 7 in 

positive-Tbl at (1,7)]ò

y = 3w+4 6:49 Third
ñthe 3w + 4, I was thinking, because of the seven there [in positive-

Tbl at (1,7)].ò

y = 30 - 2w 6:56 Third
ñOr I could do the 30 ï 2 because of the 28 there [in negative-Tbl 

at (8, 28)].ò

y = 3w+4 8:22 Fourth
ñI donôt know.ò [In response to the interviewerôs question of how 

positive-Eqn fits with the rest of the set.]

y = 30 - 2w 8:50 Fourth

ñBecause 30 ï 2w equals 28 and 2w could be two times two, so 

fouré or it could be just plain twoéor it could be times threeéò 

[edited]

y = 3w+4 9:06 Fourth ñBecause um, the ó7ô as I said earlier.ò
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around the Function Puzzle. Throughout Karaôs interview, she intermittently 

talked in ways that indicated she was considering possible implications of 

variable notation, despite having had no formal education or experiences in 

algebraic symbolizing. Three ways in which she indicated awareness of variable 

notation in her talk were: 

¶ saying the w when she read the equation aloud,  

¶ indicating that y could have multiple values, and  

¶ indicating that w has a role in evaluating y.  

This section will summarize the ways in which these ways of talking about the 

equations were mediated by utterances by the interviewer, Karaôs own utterances, 

and interactions with the function representations.  

Mediating influences of the interviewerôs utterances. There were two 

ways that the interviewerôs utterances mediated Karaôs awareness of variable 

notation. I will talk about each influence in this section. In one sense, the 

interviewerôs utterances implied that variable notation was a part of the Function 

Puzzle task space. For example, when Kara was building the second set and 

suggested that y = 3w + 4 could belong with the constant set, the interviewer 

suggested, ñYes, but thereôs that w in there,ò which indicated to Kara that ñ3w + 

4ò was different from ñ3 + 4.ò Similarly, when Kara was reviewing the fourth set 

of cards on her own, she touched all the cards in the set except for the equation 

card. The interviewer, noticing that omission, brought Karaôs attention to the 

equation card by asking, ñCan you tell me how the equation card fits in?ò In both 

of these cases, the interviewerôs utterances implied that the equations and 
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independent variable were important and needed to be considered. The 

interviewerôs utterances therefore mediated the way that Kara focused her 

attention during the task, and this may have impacted how she considered the 

equations and variable notation.  

In another sense, the interviewerôs requests for clarification seemed to 

initiate a heightened attention to detail in Kara, which was reflected in how she 

read the equations cards aloud. As noted in the results section and in Table 2, 

Kara did not say the independent variable aloud half of the times she read the 

equations that contained a w. For example, she read 30 ï 2w from DRN-equation 

as ñthirty minus two.ò When she did not say the w, she calculated values for y as 

if the independent variable did not exist. For example, she thought y would be 7 

for equation y = 3w + 4 (for example, at 6:32 in Table 2) and 28 for equation y = 

30 ï 2w (for example, at 6:56 in Table 6-2). Küchemann noticed a similar 

phenomenon and classified this interpretation as ñLetter not usedò (1981, p. 106). 

As mentioned in the results section, MacGregor and Stacey (1997) concluded that 

some of the Year 7 students in their study ignored the letter in the calculation, 

whereas older students often assigned it a value of 1. 

The three instances where Kara did explicitly read the w were cases where 

the interviewer had asked for clarification of her thinking. In one case at 4:42, the 

interviewer asked her to share the reason she switched out DRN-equation for 

FIL0-equation, and Kara responded by suggesting that 30 ï 2w could be 28, 

which coordinated with the ordered pair (1, 28) on DRN-table. In another at 6:49, 

the interviewer had asked Kara to reiterate how FIL4-equation (y = 3w + 4) 
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connected to FIL4-table, and Kara pointed to the 7 in the height column on the 

table and said, ñthe 3w + 4, I was thinking, because of the seven there.ò In the 

third instance at 8:50, Kara had just switched DRN-equation from her third set to 

her fourth set ñbecause it made more sense,ò and the interviewer asked why that 

was the case. Kara began her explanation with, ñBecause. 30 ï 2w equals...ò 

Saying the independent variable aloud was something Kara did when the 

interviewer asked for clarification or justification by asking ñwhy.ò In fact, Kara 

consistently included the w in how she read the equation cards after a request for 

clarification. Sfard calls this kind of response ña mechanism of interactionò (2001, 

p. 39), where the social positioning of participants and/or the context of the 

situation invite a particular response. In this case, an implicit understanding in 

Karaôs mind could have been that one responds to a query for clarification by 

paying close attention to the task at hand, which meant she read each of the 

symbols aloud when reading the equations on the cards. In this way, the 

interviewerôs request precipitated pronunciation of the independent variable, 

which mediated increased sensitivity to its role.  

Mediating influences of Karaôs own utterances. Although Karaôs 

additional precision in reading the cards cannot be said itself to constitute a 

change in her understandings of how to read them (she did not consistently start to 

say the w at a certain point in the interview, for example), this precision did seem 

to influence how she evaluated equations. Two of the times when she did read the 

w were the instances that she seemed to give y multiple values. For example, 

when she suggested that 30 ï 2w might be 28, and said the w, she went on to say, 
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ñ[itôs] either 28 or Iôm gonna guess, one of these [other values in the data table on 

DRN-table],ò indicating that 30 ï 2w might be one of the other values in the 

height column. There was therefore a chain of events: Kara would adopt a more 

conventional way of saying what was written on the equation cards, which then 

may have influenced how she interpreted the significance of the symbols in the 

equation, as if ñthought is restructured as it is transformed into speechò 

(Vygotsky, 1987, p. 251, as cited in Wells, 2007, p. 264).  

Mediating influences of function representations. In Karaôs first set, the 

constancy of the water height was readily noticeable to Kara in the natural 

language, data table, and graph cards, as can be inferred from how quickly she 

pulled the cards together (30 seconds) and how she justified her choices by 

moving her finger along the representation to accentuate ñno change.ò When she 

got to justifying her choice of CON-equation, she said, ñso y equals seven.ò Her 

use of ñsoò seems to indicate that she is making a conclusion about the choice of 

equation, whereas the other representations were the data or facts that led to ñy = 

7.ò In considering CON-equation, Kara saw that y does not change; it is seven. 

The set of cards seemed to mediate her understanding that y represented height for 

this context, something she clarified with the interviewer in her work on the 

second set.  

In constructing her second set, Kara had noticed and said aloud the 

consistent pattern of multiplying by three across each row in FIL0-table . In 

finalizing her equation card choice, Kara had the equations y = 3w, y = 3w + 4, 

and y = 30 ï 2w in front of her. Inferring her perspective, FIL4-equation was the 
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best choice of the three, as it was the only equation card (at this point in her work) 

that did not include addition or subtraction and, conveniently, it also had a three 

on it. In other words, it is possible that rather than choosing y = 3w, Kara was not 

choosing y = 3w + 4 or y = 30 ï 2w. This choice or not-choice, paired with the 

three-fold relationship between columns in the data table, could then suggest to 

Kara that 3w is a way of notating three times a number.10 In this sense, the 

numerical pattern in the data table may have mediated her understandings about 

how multiplication is notated for letters representing variables.  

In the explanation that Kara provided to establish that DRN-equation 

belonged with the other negative-slope cards, she both said the w and gave it a 

role in evaluating the equation card. In that explanation, Kara coordinated 

between the equation card DRN-equation and several values on the data table 

card: 28, 24, 14, 22, and 26, saying, ñ2w could be like two times two, so, four, and 

ó24ô and ó14ô [put her finger on these numbers in DRN-table]. Or it could just be 

plain two, and ó22ô [put her finger on ñ22ò in DRN-table]. Or it could be times 

three, ó26ô [put her finger on ñ26ò in DRN-table].ò As highlighted in the results 

section, there are several possible interpretations for Karaôs thoughts at that 

moment. She made some association with multiplication when she suggested the 

2w could be ñtwo times two,ò ñplain two,ò or ñtimes three.ò Alternatively, she 

may have interpreted the ñ2ò of the 2w as two tens, evidenced by when she 

included 24, 22, and 26 as part of her justification for linking DRN-equation with 

                                                 
10 In fourth grade generally and in Karaôs school specifically, multiplication is represented by the 

symbol ñx.ò Some teachers may show alternate formats of representing multiplication, such as * 

or Ā, but do not represent it without a symbol. 

 



FUNCTION REPRESENTATIONS  73 

DRN-table . Or, it could have been some combination of these conjectures. In this 

moment, Kara was having to revise her third set to use DRN-equation in the 

fourth set, and she had already justified the third set. Thus, the challenge was not 

simply reasoning how DRN-equation fits in the fourth set but coming to have a 

more rigorous argument than what she used for the third. This additional rigor 

stands in contrast to the first time she paired DRN-equation with DRN-table, in 

building the second set. At that point, she only made vague reference to possible 

multiple values, saying, ñ30 ï 2 w is either 28 or one of those [other values in 

DRN-table].ò Kara pushed into new territory with her justification by noticing the 

w, assigning it multiple values, and attributing the notation of ñ2wò to some kind 

of multiplying-by-two process. There is evidence of all three mediating influences 

in this final example: the interviewer asked her to clarify her justification, she 

read the w aloud in response to that request, and she linked several of the height 

values on the DRN-table. 

Study 1 Conclusion 

Carraher, Schliemann, and Schwartz (2008) point out, ñTeachers need to 

introduce unfamiliar terms, representations, and techniques, despite the irony that 

in the beginning students will not understand such things as they were intendedò 

(p. 237). Warren, Cooper, and Lamb (2006) asserted that students need activities 

that require moving among different representations of functions, as student 

learning about functions is complex and non-linear. Knuth and colleagues (2005) 

felt that students would benefit from meaningful exposure to the use of letters as 

variables in their preparation for algebra. The Function Puzzle addresses these 
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concerns, as four types of representations are presented together, and it is the 

studentsô task to meaningfully make connections among them. Further, the 

presentation of the four function representation types together is unique to 

functional thinking studies with young children (e.g., Blanton et al., 2015a; 

Blanton et al., 2015b; Nachieli & Tabach, 2012; Warren et al., 2006), where 

teaching variable notation usually follows other representations of functions. Even 

with this very different context, Kara became more aware of variable notation 

through her experience with the Function Puzzle.   

Her work with the equation representations was quite surprising, 

considering she was unfamiliar with variable notation. In her eight minutes of 

completing and justifying the Function Puzzle, Kara was able to intuit that 3w was 

a likely representation for ñthree times something,ò 2w was a likely representation 

for ñtwo times something,ò and she indicated a willingness to consider the 

dependent variable, y, as having multiple values, making some effort to give the 

independent variable a role in calculating values for the dependent variable. 

Additionally, she was able to reason how given equations fit with other function 

representations. Here, I argued that this new awareness was mediated by aspects 

of her interview. Specifically, utterances by the interviewer maintained Karaôs 

attention on sense-making around the equations and triggered Kara to use 

precision in justifying her answers, which encouraged her to saying the w out 

loud. Saying the w out loud then seemed to impact her interpretation of y as 

having multiple values. Finally, Kara worked to resolve the information in the 

data tables with the formats of the equations. 
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Mediation through spoken discourse is perhaps not such a novel finding, 

but the role of conventional function representations in scaffolding someoneôs 

understanding of those forms deserves some extra attention. Radford (2014) 

makes an interesting claim via Vygotsky (1994) that conventional forms ñexert a 

real influenceò (p. 274) on learnersô thinking. I claim it is not so much that 

conventional forms exert influence, but that these forms have matured through 

historical use to be easily recognizable, even by young learners. Kaput, Blanton, 

and Moreno (2008) put it this way: ñAnd, of course, the main reason that they 

have become conventional is that they are very useful across a wide variety of 

situations. Each is powerful in its own way. Each is a highly efficient way of 

symbolizing, the result of an historic process of refinement ï contributing to 

algebraôs identity as a cultural artifactò (p. 22). 

Karaôs success with this task was two-fold: she linked together sets of 

cards by their underlying mathematical relationships, and through that activity she 

broadened her awareness of variable notation. Kara reasoned and talked through 

which representations might belong together and successfully solved the Function 

Puzzle, potentially gaining some insights into the nature of letters in algebraic 

equations and the symbolizing significance of letters in equations.  Although 

Karaôs achievement should not be overly generalized, it does indicate that upper 

elementary students have the personal resources to make sense of function 

representations and the connections between them. 
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7. Study 2: Making Sense of Algebraic Notation 

Algebra has a mixed reputation as both a fundamental, unifying topic 

(Blanton, Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015a; Blanton & 

Kaput, 2011; Kaput, 2008; Smith, 2003) and as an institutional barrier to 

educational equity (Martin, 2009; Moses & Cobb, 2001). As such, improving K ï 

12 algebraic proficiency has been identified as critical to mathematical success for 

all students in the study Mathematical proficiency for all students: Toward a 

strategic research and development program in mathematics education (RAND, 

2003) and in the K ï 12 Common Core State Standardsô (CCSS) mathematics 

standards (NGA Center & CCSSO, 2010). Since ñalgebraic thinking is a 

particular form of mathematical sense making related to symbolizationò 

(Schoenfeld, 2008, p. 482), this proficiency includes effective use of conventional 

algebraic representations, such as data tables, Cartesian graphs, algebraic 

equations, and natural language descriptions, and translating among them 

(RAND, 2003). In practice, although conventional function representations are 

ñculturally endowed with specific ways of use, their use is not necessarily 

transparent to studentsò (Radford, 2003, p. 44). In this paper, I explore 5th-grade 

studentsô sense making related to symbolization ï specifically, how they reason 

about algebraic notation ï in the context of a task linking multiple algebraic 

function representations.  

The topic of introducing algebraic notation to young learners has been a 

source of much debate. Landmark studies such as K¿chemannôs (1981) 

examination of adolescentsô difficulties interpreting and using algebraic notation 
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have fostered concerns about premature formalism leading to empty symbol 

manipulation (Blanton, Brizuela, Gardiner, Sawrey, Newman-Owns, 2017). The 

past two decades of research, however, have shown that young learners can 

productively engage in algebraic thinking (e.g., Blanton et al., 2015a; Brizuela, 

Blanton, Gardiner, Newman-Owens, & Sawrey, 2015a; Brizuela, Blanton, 

Sawrey, Newman-Owens, & Gardiner, 2015b; Brizuela & Lara-Roth, 2002; 

Carpenter, Francke, & Levi, 2003; diSessa, Hammer, Sherin, Kolpakowski, 1991; 

Knuth, 2000; Martí, 2009), leading to conjectures that difficulties with algebraic 

notation may be an artifact of instruction (Blanton et al., 2017; Carraher, 

Schliemann, & Schwartz, 2008). Further, that body of research has found that 

multiple representation activities can facilitate studentsô algebraic thinking 

(Brenner et al., 1997; Friedlander & Tabach, 2001; Moschkovich, Schoenfeld, & 

Arcavi, 1993; Nachlieli & Tabach, 2012; Warren, Cooper, & Lamb, 2006). 

Broadly, this work explores the question ñHow do students make sense of 

function representations and connections between them, even those 

representations that are unfamiliar?ò Students with limited to no formal exposure 

to algebra were given four time versus height functions displayed across four 

representation types (natural language, tabular, Cartesian graphs, and equations 

that included variable notation), with the task of connecting different 

representation types. As such, it required them to interpret function 

representations ï including algebraic equations ï without express instruction on 

how to do so, an approach similar to Knuth, Alibali, McNeil, Weinberg, and 

Stephens (2005). Interestingly, in one-on-one interviews after the activity, 
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students shared insights into algebraic notation as it applied to the varying 

quantities of time and height from the puzzle. Student insights shared in the 

interviews led to the following research question: ñHow was studentsô noticing of 

varying quantities associated with reasoning about algebraic notation, an 

unfamiliar representation?ò Specifically, I characterize student insights into 

algebraic notation and associations between those insights and how students 

referenced time and height in their discussions about various representations. 

Study 2 Theoretical Perspective 

Functions, a central object to algebra (Carraher & Schliemann, & 

Schwartz, 2008; Oehrtmann, Carlson, & Thompson, 2008; Schwartz & 

Yerushalmy, 1992), are accessed and reasoned with through representations in 

various symbol systems (Eisenberg, 1992; Kaput, 1991). The relationships 

between representations in a symbol system and mathematical objects (such as 

functions) can be depicted as similar to looking at an object through a window 

(Kaput, Blanton, & Moreno, 2008). As sight lines connect an observer to an 

object through a window, lines of attention connect an actor to mathematical 

objects in a referent field through a symbol system (see Figure 7-1).  

Actions in a symbol system, ñboth physical and mentalò (Kaput et al., 

2008, p. 26), relate to actions on those mathematical objects. An example of a 

physical action could be changing a function equation from y = 3 + 2n to y = 6 + 

2n, thereby physically enacting a change on the representation (and function). 

Analogously, I interpret ñmental actionò to be ñthought experimentsò (Tall, 

Nogueira de Lima, & Healy, 2014) around a representation. For example, while 
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looking at the equation y = 3 + 2n, one might envision the form of a graph on the 

Cartesian plane. Thus ñactionsò incorporate any interaction or experience with a 

symbol-referent system, not just those with a physical manifestation, and 

understandings of a referent can be influenced by actions or experiences with 

representations in a symbol system. 

Figure 7-1. Model depicting that action in a symbol system on representation R1 

has implications for function F1 in referent field. (Adapted from Kaput et al., 

2008, p. 26). 

 

Applying this window model to conventional function representations and 

functions implies that understandings and interpretations of functions are 

influenced by an individualôs action on or activity with function representations. 

Part of productive symbolizing is flexibly leveraging these symbol-referent 

systems. Schoenfeld suggests, ñthinking algebraically means...being able to 

operate on the symbols meaningfully in context when called for, and according to 

the relevant syntactical rules when called forò (2008, p. 482). In other words, 

actions on a symbol system can be tightly coordinated to perceived actions in a 

referent field, such that the actor is looking through the symbols and envisioning 

actions on mathematical objects. Alternatively, those actions can take place in the 
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symbol system independent of links to the referent, such that the actor is looking 

at the symbols without direct coordination to implications on the mathematical 

objects (Kaput et al., 2008). For example, in looking through symbols in a 

representation, number patterns in a function table may be interpreted as a 

representation of a covarying relationship between variables. Or, in looking at the 

table, that same pattern may be used to fill in a table value, without a generalized 

interpretation of the represented function. Proficient actors or users can do both 

and have a sense for when either strategy is useful.  

The approach in this study was to design an ecology of multiple 

representations, where several representation types and multiple functions were 

used within one task. In part, this design created a ñfully engaging environment in 

[its] own rightò (Resnick, 1988, p. 37), to encourage ñexperientially realò (Cobb, 

2000, p. 318) sense-making about functions and their representations ï almost as 

if the study was one of naturalistic inquiry (Lincoln & Guba, 1985). Knuth et al. 

(2005) used a similar instruction-free approach in exploring middle schoolersô 

understandings of variable notation. In one task, they presented middle school 

students with an expression 2n + 3, and, marking the variable n with an arrow, 

asked, ñWhat does the symbol stand for?ò More than half of the students 

suggested n could have multiple values, indicating that the notion of variable is 

not altogether unfamiliar to students before high school. 

Studentsô abilities to cross-reference algebraic notation, tables, and 

graphical representations has been explored with high school students. A seminal 

work in this area was Schoenfeld, Smith, and Arcaviôs (1993) microgenetic 
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exploration of one studentsô exploration of algebraic equations and graphs. An 

outcome of that study was the finding that the ñCartesian Connectionò 

(Schoenfeld, et al., 1993, p. 108) was taken for granted in instruction but lacking 

in some studentsô understandings of functions. They described the "Cartesian 

Connectionò in two understandings: 1) ña point [in the plane] is on the graph of 

line L if and only if its coordinates satisfy the equation of Lò (p. 108) and 2) 

ñalgebraic expressions [such as ñy1 ï y2ò] have graphical identitiesò (p. 109). 

Knuth (2000) explored the Cartesian Connection by having high school students 

solve problems with both graphical and algebraic representations available. He 

found that students deferred to using algebraic representations, even when 

graphical solutions were more efficient. Sauriol (2013) disrupted the emphasis on 

algebraic equation representations by prioritizing graphical representations in 

Algebra I classes for language-based learning-disabled students. Across three 

studies, she found the new emphasis gave them deeper insight into notions of 

function.  

As will be described, this study brought a cross-referencing activity to 

upper elementary students. Findings indicate that students established and 

rationalized connections among function representations, even those 

representations that were unfamiliar to them. Further, the ways in which students 

noticed the varying quantities of time and height as a feature of the tasks seemed 

indicative of looking at or looking through function representations and were 

associated with varying degrees of insight into algebraic notation.  
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Study 2 Methods 

Classroom activities involving multiple representations of functions were 

implemented in a 5th grade classroom in early 2017 to explore the guiding 

question, ñHow do students make sense of function representations and 

connections between them, even those representations that are unfamiliar?ò In the 

weeks following activity implementation, I conducted one-on-one interviews with 

students, as time and consent allowed, to gain more complete understandings of 

studentsô reasoning about connecting and interpreting function representations. As 

will be described below, the interviews reviewed the classroom activities and 

introduced a new task. What emerged in the interviews was that students 

interacted with algebraic notation in a range of ways. Intrigued by this variation, I 

used a grounded theory approach (Charmaz, 2010) to analyze available student 

interviews to address the research question, ñHow was studentsô noticing of the 

varying quantities time and height associated with reasoning about algebraic 

notation, an unfamiliar representation?ò 

The Function Puzzle as a classroom activity. The Function Puzzle was a 

multiple representation activity conducted with the entire class. It was designed to 

ñtie together graphical and analytical representationsò of functions (Eisenberg, 

1992, p. 154) by having students match different function representation types. 

The tasks were inspired by similar tasks in Sauriolôs 2013 thesis, and Tufts 

Universityôs Early Algebra Project activity ñWho Shares Your Functionò 

(http://ase.tufts.edu/education/earlyalgebra/materials.asp).  
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In the Function Puzzle activity, partnerships of two or three students were 

given a bag containing 16 unorganized cards of four representation types (natural 

language, algebraic equation, Cartesian graph, and function table) and four 

functions (see Figure 7-2). Each representation was printed on colored, 

heavyweight, 2ò x 2İò cards. 

 

Figure 7-2. Function Puzzle Cards.11 

 

 

The situation contexts were scenarios of changing water height over time. 

Similar contexts have been used in other algebra research (Boaler & Humphreys, 

2005; Leinhardt, Zaslavsky, & Stein, 1990; Lobato, Hohensee, & Rhodehamel, 

                                                 
11 For this paper, function representations are referenced by combining a descriptor (CON, FIL0, 

FIL3, or DRN) and the representation type (language, table, graph, or equation). For example, 

ñCON-tableò is a reference to the top table in Figure 7-2. 
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2013; Oehrtman et al., 2008). The studentsô job was to create four sets, ñfinding 

reasons the cards belong together,ò with the stipulation that each set contain one 

card of each color.  Intentionally, the activity introduction was very brief. I had a 

large set of Function Puzzle cards, so they were easy to see, and I said, ñThese are 

different ways of showing mathematical relationships. Have you seen things like 

this before?ò After following answers to that question, I suggested that the 

studentsô job was to create four sets, ñfinding reasons the cards belong together,ò 

with the stipulation that each set contain one card of each color. With that, 

students started to work on the cards. Once a partnership was satisfied with the 

sets they had made, they showed their solution to myself or the classroom teacher 

to get a paper backing and glue, then glued their solution to a piece of paper.  

Interview protocol. The individual interview protocol (see Appendix A) 

first reviewed studentsô classroom work on the Function Puzzle, and then 

followed with another card task, the One Set Function Puzzle. Paper and pencil 

were available to students during the interviews, but no students used the 

available supplies.  

In the One Set Function Puzzle Task, students were given a bag containing 

16 unorganized cards (see Figure 7-3). Students were instructed, ñFind the one set 

of four cards that you think belongs together.ò The top row in Figure 7-3 is the 

only set where all four cards represent the same function. This puzzle removed the 

constraint that all 16 cards were part of the solution, thus presenting students with 

different challenges than the Function Puzzle implemented as part of the 

classroom activities. 



FUNCTION REPRESENTATIONS  85 

 

Figure 7-3. One Set Function Puzzle (presented as unordered group of cards). 

 

Study participants. The study was held mid-year at a 3rd ï 5th grade 

public elementary school in a suburban town in the northeast of the United States. 

The school has a student population of 388 students, a student to teacher ratio of 

14.3 to 1, and a high needs population of 20.8%, which includes characteristics 

such as free or reduced lunch, learning disability, limited English language 

proficiency, or combinations of such characteristics (Massachusetts Department 

of Elementary and Secondary Education (MA DESE), 2017). At this school, 5th 

grade students were tracked in mathematics into ñstandardò or ñacceleratedò 

mathematics classes. The participating 5th grade classroom had 18 students and 

was not an accelerated class. In fact, the students as a group were considered 
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lower ability, showing general anxiousness or lack of confidence about 

mathematics. This class was not an inclusion class, although four students were 

on individualized education plans (IEPs).  

Mrs. F, the participating teacher, was passionate about changing studentsô 

relationship with mathematics for the better, having been someone who struggled 

with mathematics as a young student. She focused her instruction on connecting 

mathematics to real world contexts, particularly to scientific phenomena, and 

enjoyed project-based explorations. The school used a packaged curriculum, 

Everyday Mathematics (University of Chicago Standards Mathematics Project, 

2010), and Mrs. F augmented or changed the curriculum to suit the needs of her 

students. Cartesian graphs and equations with algebraic notation were unfamiliar 

to the students and had not been taught at the time of the classroom activities 

according to Mrs. F, the curriculum, and the students.  

Out of the 18 students in the classroom, 12 agreed to interviews, and nine 

were interviewed in the time allotted by the classroom teacher. The pseudonyms 

of the nine interviewed students are: Amanda, Brittany, Eliza, Jack, Jenna, 

McKenzie, Nan, Olivia, and Riana. Eight of these interviews are included in this 

analysis. Jennaôs interview, the ninth interview, was excluded from the data set. 

Her interview was conducted almost two months after the classroom activities and 

more than three weeks after the other eight interviews due to the classô schedule. 

In the interim, Mrs. F had started instruction on Cartesian graphs, and the data 

from her interview were no longer relevant to the study.  
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Data collection. Interviews began the week following the implementation 

of classroom activities. I interviewed students every Friday during mathematics 

block, completing two semi-clinical, one-on-one interviews each week. 

Interviews were held in a relatively quiet corner of the classroom. Interviews 

lasted between 25 and 35 minutes each. Two cameras captured the interview: one 

focused on the work space in front of the student and interviewer, and one 

focused on the student participant.  

Video processing began within a week of when an interview was 

completed by transcribing and memo writing for each interview (Charmaz, 2010). 

This initial screening process allowed for minor adjustments to the interview 

protocol including how questions were phrased and placement of the cameras. 

Memos served as interview summaries and helped to highlight common or 

idiosyncratic themes across interviews.  

In this paper, pointing or touching a card or feature on a card is noted in 

transcript by square brackets around the name of a card, as in [FIL3-table] or [first 

height value on FIL3-table], rather than the more cumbersome [Pointing at the 

FIL3-table.] or [Touching the first height value in the FIL3-table.]. In cases where 

there is movement of the fingers beyond touching or pointing, that movement is 

noted within the brackets, as in [running fingers down the height values in DRN- 

table]. Additionally, in a break from American Psychological Association (2001) 

standards, references in the text to numbers printed on the representation cards are 

written as the numeral, regardless of their value. On the other hand, when a 

student says a number in quoted transcript, the number name is written out. 
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Data analysis. The complex task ecology of the Function Puzzle, with 

multiple representation types and multiple functions, presented abundant 

information in concise representational forms. It is likely that students did not 

attend to all the information available to them in the function representations. 

From the perspective that ñwhat students notice mathematically has consequences 

for their subsequent reasoningò (Lobato et al., 2013, p. 809), noticing was a 

ñsensitizing conceptò (Charmaz, 2010, p. 187) for the analysis. In other words, the 

construct of student noticing informed my perspective and was a starting point for 

building my analysis. I use ñnoticingò as defined by Lobato and colleagues: 

ñselecting, interpreting, and working with particular mathematical features or 

regularitiesò (2013, p. 809). Studentsô highlighting (Goodwin, 1994) through talk 

and gesture was used to infer what students noticed about the cards.  

Two analytical passes were made through the data to address the research 

question, ñHow was studentsô noticing of varying quantities associated with 

reasoning about algebraic notation, an unfamiliar representation?ò The first 

analytical pass identified how students noticed algebraic notation: which features 

of the equations they mentioned, when and how they talked about the equation 

cards and how they connected the equations to other function representations. The 

second analytical pass identified how students noticed the varying quantities of 

time and height as represented on the cards.  

First analytical pass: Students noticing of algebraic notation. The first 

analytical pass through the data identified how students interacted with algebraic 

notation on the equation cards. These interactions included how they connected 
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the equation cards to the other function representations, conjectures they made 

about interpreting the equations, and their use of algebraic notation to describe 

patterns in other representations. Strikingly, several students experienced a 

moment of discovery, an ñAha!ò moment (Liljedahl, 2004), in how algebraic 

notation might work. This pass was essentially descriptive in nature, although it 

did loosely categorize how students talked about the equations on the cards.  

Second analytical pass: Studentsô noticing of varying quantities. 

Continuing to consider student talk and gesture as a proxy for student noticing, it 

became clear that there was a spectrum to the level of detail that students paid to 

the varying quantities of time and height. Studentsô references to these quantities 

were categorized by four characteristics. The first two characteristics, function 

and representation type, catalog which card(s) were the focus of attention when 

the student made a particular reference. The other two characteristics consider 

how the student was referencing the varying quantities: whether the reference was 

qualitative or quantitative in nature, and whether one or two varying quantities 

were included in the reference (see Table 7-1). Since students often referred to 

features of the cards indeterminately, as in the examples in Table 7-1, attending to 

touch annotations in the transcripts and re-watching video excerpts were 

important techniques for completing the analysis. 

In the example of qualitative one variable given in Table 7-1, both ñstartsò 

and ñgoesò indicate the studentôs interpretation about the behavior of a function 

line. Knowing the context of the language cards, it is easy to assume that ñstartsò 

and ñgoesò are implicit references to time as a varying quantity. However, that 
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Table 7-1  

Studentsô Ways of Referencing Varying Quantities 

Code Code Description Example 

Qualitative one 

variable 

Student remarked on the general 

behavior of one quantity.  

This one [function line 

on DRN-graph] starts 

way up high and goes 

down. 

Quantitative one 

variable 

Student quantified a change b in 

one variable but did not 

coordinate the change with 

another varying quantity.  

We noticed it [height in 

FIL0-table] increased by 

two feet. 

Qualitative two 

variable 

Student remarked that two 

quantities vary together. Usually 

the two quantities time and height 

are explicitly mentioned but not 

quantified. 

The time [DRN-table] is 

going up while the height 

was sinking lower. 

Quantitative two 

variable 

Student remarked on a 

quantitative relationship between 

time and height. 

Because it [height in 

DRN-table] started with 

sixteen and it minused by 

one each minute. 

 

language could also apply to location on the page: the function line starts in the 

upper left-hand corner of the graph card and goes down to the bottom right 

corner. Ultimately, however, the student is describing the behavior of one varying 

quantity.  Within this excerpt, each phrase ï ñstarts way up high,ò and ñgoes 

downò - counted as one instance of qualitative one variable, since they could each 

stand alone as a description of behavior.  

The quantitative one variable code was used for those instances where 

students identified the magnitude of a change between or among rows of a table 

but did not acknowledge more than one quantity in their description. In the 

example given in Table 7-1, the student touched the height column of the FIL3- 
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table while she said ñit increased by two feet.ò Two is the step size between 

height values in the FIL3-table, although the table does not specify units. Since 

she did not mention corresponding changes in time values, her reference was as 

quantitative one variable. Note that students refer to the variations by touching 

the cards, so capturing gestures was an an important part of the interpretation 

work here.  

Qualitative two variable was applied to statements that indicated two 

quantities varied together in a consistent way. For example, both quantities 

increased, one decreased while the other increased, or one was constant while the 

other increased. Although students remarked on covarying behavior, they did not 

quantify variation or covariation. Quantitative two variable, on the other hand, 

was applied to statements that recognized a quantitative relationship between two 

quantities, whether it was recognizing covariation in incremental changes of the 

two quantities (as in the example in Table 7-1), or a correspondence from one 

quantity to the other (Smith, 2003), such as noticing a doubling relationship 

between time and height in the ratio table.  

The results section reviews the findings of the two analytical passes as 

applied to the eight interviews. In light of the research question, it brings together 

summaries of the passes to consider how studentsô noticing of varying quantities 

was associated with their reasoning about algebraic notation.  

Study 2 Results  

 The Function Puzzle solutions built by the 5th grade students as a 

classroom activity show sets of representations grouped by function. A sample 
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solution is reproduced in Figure 7-4 and images of the student solutions are 

provided in Appendix C. Although the format for these solutions variedðeach 

group had their own preference for putting sets in rows or columns and how they 

ordered the cardsðall the partnerships except one had correctly matched all four 

representation types together by function. One solution showed a misalignment of 

the graph cards to other cards. Regardless, the evidence of several successful 

solutions suggests that students were able to discern enough information to 

connect these representations of functions, even without previous algebra 

instruction or experiences. The more significant considerations, then, are whether 

and how these types of activities facilitate understandings of function 

representations and the connections among them. 

Figure 7-4. A Sample Function Puzzle Solution. 

The water height does 

not change.
y = 5

Time      Height

1          5

2          5

3          5

4          5

8          5

12         5

The water tank had a 

few feet of water in it 

when someone turned 

the hose on to fill it.

y = 3 + 2n

Time      Height

0          3

1          5

2          7

3          9

4          11

8          19

The water tank was full 

and then someone 

pulled the plug out to 

drain it.

y = 16 - n

Time      Height

0          16

1          15

2          14

3          13

4          12

6          10

The water tank began 

empty and someone 

turned the hose on to 

fill it.

y = 2n

Time      Height

0          0

1          2

2          4

3          6

4          8

8          16
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As part of those bigger considerations, I summarize how students engaged 

with algebraic notation during the interviews, and then describe how students 

noticed the varying quantities of time and height. This evidence leads to some 

claims about how studentsô noticing of varying quantities was associated with 

reasoning about algebraic notation.  

Students noticing algebraic notation. Across all of the Function Puzzle 

solutions, the equation cards (see Figure 7-5) were put with other cards of the 

same function. This section explores how students described matching equations 

with variable notation to the other function types and highlights the various ways 

student did this work.  

 

Figure 7-5. Function Puzzle Equation Cards 

 

Feature-to-feature matching across all eight interviews. Students 

highlighted both numbers and operations in certain equations when they described 

connecting the equation cards with other types of representations. The number 16 

in the DRN-equation was often matched with the first height value of 16 in the 

DRN-table. Similarly, the number 3 in the FIL3-equation was often matched with 

the first height value of 3 in the FIL3-table. Students also consistently attributed 

the subtraction symbol with decreasing and the addition symbol with increasing. 

y = 3 + 2n y = 2n y = 5 y = 16 - n

FIL3-Equation FIL0-Equation CON-Equation DRN-Equation
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Interestingly, associations of increasing and decreasing were equally likely to be 

matched to any of the other three representation types: to the tilt of the function 

line on the graph cards, to the trend in height values on the table cards, or to the 

language of ñfillingò or ñdrainingò from the language cards. There were some 

students who matched the constant, ñ3,ò from the FIL3-equation with the non-

zero y-intercept of the FIL3-graph. For example, in describing connections 

between the FIL3-graph and FIL3-equation, McKenzie reasoned that, ñwell, the 

three and the two donôt start at zero.ò while she touched the y-intercept on the 

graph, indicating that these non-zero numbers belonged with a graph that didnôt 

start at the origin (see Figure 7-6).  

Figure 7-6. Studentsô Interpretation of Connections between the FIL3-equation 

and the Non-Zero Intercept on the FIL3-graph. 

 

 The type of matching described above was not possible with the FIL0-

equation, as there was no addition or subtraction, and the number in the equation, 

ñ2,ò did not match a starting height value. Not many students explained how the 

FIL0-equation fit with its set, but several students said that the FIL0-equation was 

put with its set as a last available equation.   

  In the connections described in this section, students were making what 

seemed to be one-to-one correspondences between features of the equations cards 
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and features of other cards. Subtraction and addition were aligned with decreasing 

or increasing trends in the other cards, and constants were associated with starting 

height values or non-zero intercepts. I characterize this feature-to-feature 

matching as looking at (Kaput et al., 2008) the function representations because 

students are connecting individual features between representations and not 

compiling those features into a single object in their discourse.  

Students making sense of algebraic notation. Four students showed 

insights that went beyond feature-to-feature matches in that they described 

equations ñas general processes that accept input and produce outputò (Oehrtman, 

et al., 2008, p. 154; see also Sfard, 1991) that could be applied to multiple values 

in a function table. As will be described, Amanda and Jack applied the equation 

format recursively to multiple table values, Jack additionally indicated a notion of 

a standard equation format, Nan deciphered algebraic syntax for one of the 

functions, and Brittany generalized interpretations of algebraic notation syntax 

and applied those interpretations to more than one equation.  

Amanda and Jack iteratively applied algebraic notation to table values. 

When Amanda was describing how the DRN-equation connected to the DRN-

table, she elaborated on the notion of subtraction indicating decrease. She 

suggested, ñThis [minus symbol on the DRN-equation] could mean that itôs 

decreasing. Because it [first height value in the DRN-table] started with sixteen 

and it minused by one each minute [finger moves along the height values in DRN- 

table].ò She did not explicitly suggest that ñï nò indicated a step size of negative 

one, but she interpreted the minus sign to indicate decrease, which explained the 
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consistent step size of negative one. Similarly, when Amanda described how the 

FIL3-equation fit with the FIL3 set, she said, ñit [first height value of the FIL3-

table] starts with three and it kept on adding two over time.ò In other words, she 

did not just consider the initial value of 3 and the trend of increase, she considered 

the initial value of 3 and the consistent step size of two going down the height 

column. 

Amanda made similar interpretations in the One Set Function Puzzle task. 

Amanda figured out the set of cards that showed the same function (see Figure 7-

7) for the One Set Function Puzzle solution. In describing how she chose to put 

the equation and table together for this solution, she said, ñIt [the equation] had 

two, and then I noticed [the language card] the bucket had a few inches in it. And 

so, two [the first value in the table], and then it started adding four [running finger 

down the height column] at each minute [touching equation card].ò  

Figure 7-7. One Set Function Puzzle Solution 

In this task, Amanda was looking at a new set of cards in a different 

puzzle context, one in which there was no constraint that each card had a place in 

the solution, but she applied her method for connecting equations to tables. She 

looked for a starting height value that matched an equation constant and looked 

for a step size that matched the coefficient of n (or, less formally, the number next 

to n). If Amanda were simply doing feature-to-feature matching, she may have 
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remarked only on the starting height value of 2 and the ñ2ò in the equation. 

Instead, Amandaôs description here went beyond matching features from equation 

to table; she aligned the syntax of the equation to patterns in the height values. 

In justifying that the FIL3-equation belonged with the FIL3-table, Jack 

started with a feature-to-feature match, saying ñThere's a three here at the 

beginning [of height column in FIL3-table]. And there's a three here at the 

beginning [of expression on the right-hand side of the equals sign].ò Then he 

noticed, ñIt [FIL3-equation] says plus two. Thatôs plus two [indicating the step 

size between 3 and 5 in the first and second height values]. And then all the way 

up until here [running his finger down the height column], it fills by two feet.ò 

Jack coordinated the coefficient, 2, in the equation with the step size in height. 

Further, he noticed that the pattern of adding two to the height values was 

consistent up until the last value in the table.  

Jack, like Amanda, indicated he was thinking of the equation as applying 

to all the height values in the table. Blanton et al. identify this kind of thinking as 

ñrecursive-generalò (2015a, p. 530). Jack and Amanda had noticed iterating 

patterns down the column of height values but had not linked that generalized 

process of a consistent step size within the height column to correspondence 

relationships between time and height. On the other hand, the links they made 

between the sets of values in the tables to forms of the equation indicate that they 

were understanding equations as general processes for generating values.  

Jack coordinated equation forms with values in the tables. In addition to 

linking the iterative patterns in the table to the equation, Jack gave some evidence 
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that he considered a generalized form of the algebraic equations. In discussing 

how he and his partner decided between the FIL0- and FIL3-equations in the FIL0 

and FIL3 sets, Jack suggested that the FIL3-equation, y = 3 + 2n, ñhas a three 

there [the constant in the equation] instead of a zero [emphasis added], and that 

means that it starts above zero and then goes up.ò With the phrase ñinstead of 

zero,ò Jack effectively created a straw man equation, y = 0 + 2n, to justify his 

choice of y = 3 + 2n as a good match for the FIL3-table. This impromptu 

comment indicated that Jack had a sense of a general equation structure like y = A 

+ Bn. Additionally, he was interpreting meaning within that structure: a constant 

in an equation indicated the starting value for a function.  

Nan deciphered multiplication in algebraic notation. In the excerpt 

presented here, Nan made a discovery about algebraic notation, as if interpreting 

text on the Rosetta stone. As will be presented, Nan does not simply connect cards 

based on superficial features, as is the case with feature-to-feature matching, but 

instead runs through a series of possibile connections between cards, then reasons 

that ñ2nò shows multiplication. I suggest her process is a form of deciphering. I 

present the conversation leading up to Nanôs discovery, then explain my rationale 

for why I consider her interpretation of algebraic notation to have a different 

quality than feature-to-feature matching.  

Nan had just asserted that the FIL0-equation, y = 2n ñdoesnôt add 

anything, it just goes up,ò to which the interviewer asked how the FIL0-equation 

card belonged with the rest of the cards in the FIL0 set: 

Interviewer: Do you see any reason that this [circling the equation, y = 2n] 

connects to any of the other three [other FIL0 representations]? 
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Nan: Well, I mean, this isnôt really that big of a deal, but thereôs a two 

[first height value of FIL0-table]. 

Interviewer: Yes. 

Nan: And itôs going up by two [taps down the table on the height column].  

Interviewer: Yes.  

Nan: And it timeses two right there [finger moves across the last row of 

the FIL0-table]. Well, and this is times by two, thatôs times by two, 

thatôs times by two, and thatôs times by two, [moving finger from left 

to right at each value pair]. 

Interviewer: So, are those connections- 

Nan: Wait! I think I have something to say! I donôt really- Because 

maybe- I think because two n is like two times n? Like something 

equals two times n? 

Nan offered a series of possibilities for connections between the 2 in the 

equation and the FIL0-table card. She first remarked on the first value, 2, in the 

height column of the FIL0-table. She then noticed the consistent step size of two 

going down the height column. She then noticed that the last height value in the 

table was two times larger than the last time value, and quickly realized that 

relationship applied to each row in the FIL0-equation. In this excerpt, Nan seemed 

to be theorizing about various connections that could explain why the FIL0-

equation, y = 2n, belonged with the rest of the FIL0 cards. Specifically, her efforts 

were focused on linking the 2 in the equation to the FIL0-table card.  

Unlike other students who suggested the FIL0-equation card belonged 

with the FIL0 set because it didnôt belong anywhere else or because no other 

equation card belonged with the FIL0 set, Nan attempted to rationalize 

mathematically how the FIL0 card did fit.  This rationalizing led her to a 

conjecture about the syntax of the equation y = 2n: that it indicated something was 
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equal to two times n. Nanôs work using the table values had a different depth of 

focus than the sense making based on matching numbers between cards, and she 

did essentially discover or decipher the meaning of 2n from her exploration. 

Brittany developed robust, generalized interpretations of algebraic 

syntax. In her interview, Brittany did some feature matching with the equation 

cards similar to other students, but she also made conjectures for how algebraic 

syntax might be used to generate height values. In this section, I describe the 

development of her conjectures to capture how she consistently used the table 

values as data to develop and test her conjectures. In the end, her work in this vein 

provided her with a robust explanation for how algebraic notation could be used.  

During Brittanyôs discussion of the Function Puzzle solution, she made a 

conjecture about how the FIL0-equation applied to values in the FIL0-table. She 

said:  

So, y equals two n [finger tapping the equation y = 2n]. So, each minute 

[tapping the height column in FIL0-table] the height goes up by two, so 

the time [finger under y in FIL0-equation] equals [finger under equals 

sign] two plus [finger under 2, then n]. I think we thought of it that way; 

like two plus the original height. So, zero plus two is two, two plus two is 

four, four plus two is six [finger travels down the height column, stopping 

at each value 0, 2, 4, 6, as she mentions it].  

 

In this first conjecture, Brittany suggested that ñ2nò meant ñ2 plus the 

previous height.ò Although an unconventional interpretation, Brittany 

incorporated height values and step size in her conjecture. Further, she supported 

that conjecture with evidence from the FIL0-table. Although Brittany did 

acknowledge time in her opening statement, ñeach minute the height goes up by 
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two,ò she think of the 2n in the equation being applied iteratively to height values. 

This way of interpreting the equation focused on change within the height column 

and did not consider a relationship between time and height. 

Later in the interview, Brittany explained the connection between the 

FIL3-equation and FIL3-table, saying, ñIt [the height column of FIL3-table] starts 

with three and then plus two, plus two, plus two [finger running down the height 

column].ò Brittany then exclaimed: 

Brittany: Ooo! I noticed something!  

Interviewer: What? 

Brittany: Um, this [FIL3-equation] could also work if I think of it as y 

equals three plus two times. Because. Um. One times two equals two 

plus three is five and then- two times two equals four plus three is 

seven and then- three times two is six and then plus three is nine, and 

then so on.  

 

In this instance, Brittany coordinated specific values for time and height, 

row by row, with a conjecture about what the algebraic notation syntax might be 

indicating. As with her earlier discussion, she supported that conjecture with 

evidence from the table. The difference with this interpretation of algebraic syntax 

was that both time and height were part of the equation, and the equation no 

longer had to be applied iteratively to generate height values. It is worth noting 

that Brittany shared a sense of discovery and her interpretation work deciphered 

algebraic notation, paralleling Nanôs experience described in the previous section. 

Brittany and the interviewer then examined the FIL0-equation and FIL0-

table in light of her new interpretation.  

Interviewer: Would the logic you used here [on FIL3-equation and FIL3-

table], would it work here [FIL0-equation and FIL0-table]? 
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Brittany: [Slight pause.] Yes. óCause that [FIL0-equation] could be a times 

symbol and one times two is two, two times two is four, three times 

two is six, four times two is eight, and eight times two is sixteen 

[finger travels across the rows, stopping at each value as she mentions 

it]. So [thumbs up, both hands, signaling success]. 

 

Brittanyôs latter interpretation of algebraic syntax, that 2n could be a 

ñtimes symbol,ò worked for both cases she examined. Her interpretation 

explained the time and height value pairs in the tables, and worked for both the 

FIL3- and FIL0-equations. Brittany deciphered algebraic notation from the FIL3 

set and had the opportunity to check her interpretation using the FIL0 set. 

Summary of generalizations about algebraic notation. All eight students 

made feature-to-feature connections between the equation cards and other 

representations. I consider these techniques a way of looking at representations in 

a symbol system. There is no evidence from the descriptions of matching that 

interpretations of the representations went beyond their face value of inscriptions 

on the page.12 Regardless, these sorts of connections fruitfully described their 

Function Puzzle solutions.  

In contrast, there is evidence that four students went beyond matching 

features and considered the equations as general processes that could be applied 

across a range of values. Oehrtman and colleagues call this use of equations a 

form of ñdynamic reasoningò (2008, p. 154), and consider it an integral part of 

covariational understandings of functions. From the symbolization perspective 

described in Chapter 2, the students were potentially looking through (Kaput et 

                                                 
12 In truth, this lack of evidence does not imply that students donôt have deeper understandings, but 

only that those understandings were not expressed. 
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al., 2008) the equation representation to the covarying mathematical relationship 

or function. To recap, Jack and Amanda used algebraic notation in an iterative 

manner, exemplifying recursive-general thinking described in Blanton et al. 

(2015b). Additionally, Jack, through his phrase, ñthree [in the equation] instead of 

zero,ò indicated some sense of a generalized form for algebraic equations. Nan 

and Brittany produced interpretations of the algebraic syntax that gave a role to 

both time and height. In Brittanyôs case, she deciphered some of the governing 

rules (Nemirovsky, 1994) of algebraic syntax to interpret the FIL0- and FIL3-

equations.  

In all four of these cases, students used table-equation associations to 

justify their conjectures. They used the tables as lists of time and height value 

pairs to make discrete computational associations, either within one varying 

quantity or between varying quantities, from which they considered the 

mechanics of the equations. The importance of function tables to elementary 

studentsô reasoning about mathematical relationships has been noted in other 

research (Blanton & Kaput, 2011; Brizuela & Lara-Roth, 2002; Martí, 2009). 

Blanton and Kaput suggest that ñsuch representational tools... spread the cognitive 

loadò allowing students to focus on tasks ñsuch as symbolizing correspondence 

and covariational relationshipsò (2011, p. 11). 

Students noticing varying quantities. As the previous section described 

studentsô work with algebraic notation, this section addresses the other half of the 

research question: how students noticed varying quantities in the function 

representations. It provides distributions and descriptions of how students talked 
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about varying quantities with respect to the categorizations of function, 

representation type, qualitative or quantitative references, as well as whether they 

referenced one or two varying quantities in their remarks.  

Distribution of remarks about varying quantities by function and 

representation type. References to varying quantities were relatively evenly 

spread across the four functions and the four representation types (see Table 7-2). 

Students were equally likely to reference varying quantities regardless of function 

or representation type. Similarly, there was an even split between qualitative and 

quantitative comments about varying quantities overall and by function type.  

 

Table 7-2  

Distribution of Remarks About Varying Quantities by Function 

Type of remark CON 

Cards 

y = 5 

DRN 

Cards 

y = 16 - n 

FIL0 

Cards 

y = 2n 

FIL3 

Cards 

y = 3 + 2n 

Total 

Remarks 

Qualitative 23 36 24 22 106 

Quantitative 21 21 26 33 103 

Total Remarks 44 57 50 55 209 

 

On the other hand, representation types seemed to elicit different kinds of 

references to varying quantities (see Table 7-3). For example, there were no 

quantitative comments made about language cards, which could be predicted 

because the situation contexts did not include any numerical values. Similarly, 

there were more qualitative comments made about graph cards, which also did not 

list specific values. The instances where students spoke quantitatively about graph 

cards were instances of remarking on starting values. Students were quick to note 
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that the FIL0-graph started at zero, for instance, and some students inferred that 

the FIL3-graph started at two or three, noticing that there was a gap between the 

x-axis and the y-intercept of the function line. Students made quantitative 

references more often than qualitative ones when talking about the table and 

equation cards ï the cards that showed numbers. 

 

Table 7-3  

Distribution of Remarks About Varying Quantities by Representation Type 

Type of Remark Equation 

Cards 

Graph 

Cards 

Language 

Cards 

Table 

Cards 

Total 

Remarks 

Qualitative 14 35 35 18 106 

Quantitative 31 21 0 49 103 

Total Remarks 45 56 35 67 209 

 

Distributions of remarks by how many varying quantities were 

mentioned. As shown in Tables 7-4 and 7-5, the bulk of student comments that 

included any reference to varying quantities referenced only one varying quantity. 

Together, qualitative and quantitative one variable instances accounted for 91.5% 

of the comments about varying quantities. In about half of the instances, the 

references applied to height (the actual count is in parentheses in Tables 4 and 5), 

although there was a range of specificity in those remarks. Sometimes students 

used the word ñheightò in their descriptions, as Eliza did when she said, ñthe 

height was fives.ò Other times, students used phrases that implied a context of 

height of water in a tank, like ñempty,ò ñfull,ò or ña few feet.ò Similarly, they 

might reference changing behavior like ñfillingò or ñdraining.ò Finally, students 

touched values in the height columns or ran their fingers up and down the height 
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columns as they spoke about change or values. Through these sorts of talk and 

gesture, it was possible to infer that students were considering variation or 

varying behavior in the height of water.  

 

Table 7-4  

Distribution of Remarks on One or Two Varying Quantities by Function 

 

Type of remark 

CON 

Cards 

y = 5 

DRN 

Cards 

y = 16 - n 

FIL0 

Cards 

y = 2n 

FIL3 

Cards 

y = 3 + 2n 

Total 

Remarks 

One Varying 

Quantity (Remarks 

about height) 

42 (23) 54 (24) 50 (24) 52 (22) 192 (93) 

Two Varying 

Quantities 
4 3 4 5 17 

Total Remarks 46 57 54 57 209 

 

 

Table 7-5  

Distribution of Remarks on One or Two Varying Quantities by Representation 

Type 

Type of remark Equation 

Cards 

Graph 

Cards 

Language 

Cards 

Table 

Cards 

Total 

Remarks 

One Varying 

Quantity (Remarks 

about height) 

43 (11) 55 (9) 35 (19) 54 (53) 192 (92) 

Two Varying 

Quantities 
2 1 0 13 17 

Total Remarks 45 56 35 67 209 

 

Often, students did not express details that indicated which quantity they 

described (this would be the difference between the total number of references 

and the number of references in parentheses). For example, several students spoke 
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about the graph ñstarting at zero,ò but they did not qualify whether the zero 

applied to height, to time, or whether it was just a numerical feature of the graph. 

Students talked about the ñstraight graphò of the constant function, by which they 

meant its horizontal nature, or ñit stayed the same,ò but they did not tie that 

behavior to height specifically. Student references to variables in the equations 

were also difficult to tie to either height or time. They might mention the 

operation, the constants, or the direction of change, but not mention what was 

varying or changing. Many students connected the addition symbol with getting 

higher and the subtraction symbol with going lower, but these kinds of references 

did not indicate what quantity was changing, only the direction of change.  

In these unspecified references, students seemed to be implying they were 

talking about the variable that changed over time. Accounting for time implicitly 

has been noted in other research (Earnest, 2014; Leinhardt et al., 1990), one 

theory being that students do not have to coordinate time with the dependent 

variable explicitly to think about the changing behavior of that dependent variable 

(Leinhardt et al., 1990). In light of this evidence from the literature, it is probable 

that the number of remarks about height were underestimated. These inferences 

were intentionally made conservatively, so as to not over-represent studentsô 

noticing of height as a feature of the cards.  

It is worth mentioning that students remarked about two varying quantities 

most often ï 13 times, as listed in Table 7-5 ï when referencing the table cards. 

As was described in the previous section, Nan and Brittany made their conjectures 

about algebraic notation on the equation cards using the table cards. The 
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frequency of two varying quantity remarks on function tables further supports 

their importance as a ñtool for organizing covarying dataò (Blanton & Kaput, 

2011, p. 11) in elementary studentsô functional thinking experiences. 

Distribution of remarks about varying quantities by student. The four 

students who interpreted algebraic notation as a general statement of the 

relationship between time and height (Amanda, Brittany, Jack, and Nan) were 

more likely to notice two varying quantities (see Table 7-6). These four students 

remarked about two varying quantities in 15 instances (which was 13.7% of their 

remarks about varying quantities), as compared with two instances across the 

other four students (which was 2% of their remarks about varying quantities). 

Further, Amanda, Brittany, Jack, and Nan were the only students to quantitatively 

remark on two varying quantities. Although student remarks are only a proxy for 

what students noticed, this data suggests an association between noticing both 

time and height and dynamic reasoning (Oehrtman, 2008) about algebraic 

notation.  

Table 7-6  

Distribution of Remarks about Varying Quantities by Student 

Student Qualitative 

One 

Variable  

Quantitative 

One 

Variable  

Qualitative 

two 

variable 

Quantitative 

two 

variable 

Total  

Amanda 7 11 2 1     21 

Brittany 12 17 1 3     33 

Jack 14 5 2 3     24 

Nan 17 11 - 3     31 

Eliza 12 13 - -      25 

McKenzie 7 13 1 -      21 

Olivia 22 18 - -     40 

Riana 8 5 1 -      14 

Total 99 93 7 10 209 
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Five students (Amanda, Brittany, Jack, McKenzie, and Riana) made 

qualitative remarks indicating a coordination between time and height. It is worth 

noting that all these remarks except one were in reference to Cartesian graphs. 

Jack and McKenzie each mentioned time and height as general features of the 

representation cards. Jack gestured over the left column of a table card and said, 

ñthis is the time,ò then over the right column and said, ñthis is how high it is.ò In a 

similar vein, McKenzie ran her finger along each axis and said, ñthis is time going 

up [along the x-axis], and this is height [along the y-axis].ò  

Amanda, Brittany, and McKenzie coordinated time and height 

qualitatively in talking about the CON-graph. McKenzie said, for example, ñthis 

[constant function line] is the same height even though time is going up.ò Riana 

ran her finger along function lines and talked about their behavior ñas time went 

up.ò In one instance she said, ñthe time is going up while the height is sinking 

lower.ò As mentioned previously, height was frequently the focus of attention 

when students were describing features of the representations. By highlighting 

time as well, these students were highlighting that the height of water in the tank 

was not just a value, but a behavior over time. I conjecture that this coordination 

between time and height was an implicit sense of function (Eisenberg, 1992), 

which makes these remarks quite significant.  

 Only students who implied a covariational interpretation of the equations 

made quantitative remarks about time and height together. Amanda and Brittany 

coordinated incremental changes in water height to incremental changes in time. 
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For example, Brittany said, ñeach minute the height goes up by two,ò in 

referencing values in the FIL3-table. This remark highlighted both the consistency 

of the step size and that it was a change over a period of one minute. Nan, on the 

other hand, spoke about the correspondence between the time and height columns 

in the FIL0-table, noticing that each value on the left, when multiplied by two, 

resulted in its corresponding value on the right. These statements, as described 

earlier, led to her conjecture about how to interpret the equation y = 2n. Jack, 

sharing features about the table cards, read, ñtime zero, height three,ò from the 

FIL3-table and ñtime zero, height sixteen,ò from the DRN-table. Highlighting 

time and height together in this way indicates that Jack considered the values as a 

value pair: that a height of three belonged with a time of zero in the FIL3-table, 

and that a height of 16 belonged with a time of zero in the DRN-table. 

 In explaining how sets of cards belonged together, students tended to talk 

about the behavior of one varying quantity; there were very few instances of them 

remarking on two varying quantities. On the other hand, six students did mention 

time during their interviews, indicating that they considered time part of the 

contexts they were exploring. The four students who coordinated time and height 

in a quantitative way were also the students who interpreted algebraic notation as 

a general statement of the relationship between time and height.  

Study 2 Conclusions  

The results of the Function Puzzle task show that student partnerships 

were able to put together sets of representations by function, even those 

representations that were unfamiliar.  Students matched equation representations 
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by considering the operations and constants in the equations. Addition was linked 

to filling in the language cards, trends of increase in the graph cards, and 

increasing values in the height column of table cards. Similarly, subtraction was 

linked to draining on the language cards, decreasing trends on the graph, and 

decreasing values in the height column of table cards. Non-zero constants were 

linked to specific words in the language cards (ñfullò and ñfew feetò), non-zero 

intercepts in the graph cards, and initial values of height that were not zero. 

Students were looking at the symbols in front of them in feature-to-feature 

matching across the cards.  

 Four students showed evidence of looking through the algebraic 

representations to reason dynamically (Oehrtman et al., 2008) about the covarying 

relationships between time and height. What was common to these four students 

and in contrast to the other four students was their noticing of both varying 

quantities, time and height. While it is true that all students most often referenced 

only one varying quantity in their remarks, these four students had a much higher 

frequency of remarks about two varying quantities ï 13.7% as compared to 2%. 

Further, they were the only ones who made quantitative remarks about the 

relationships between two varying quantities.  

In response to the research question (ñHow was studentsô noticing of 

varying quantities associated with reasoning about algebraic notation, an 

unfamiliar representation?ò) noticing time and height as covarying quantities was 

part and parcel of studentsô deeper interpretations of algebraic notation. While I 

hesitate to make claims of causality, noticing both quantities in function tables 
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preceded algebraic notation interpretations within the interviews. In the longer 

timeframe of a curriculum unit, it could be said that the phenomena co-occurred 

in one session. At a minimum, these four students expressed an awareness that 

time was relevant to and a part of the number patterns on the table cards in a way 

that was different from the other four students. In addition to matching numbers 

and features between representations, these students noticed consistent, and 

therefore generalizable, relationships between time and height. Those consistent 

relationships were a basis for using (Jack and Amanda) or making conjectures 

about (Nan and Brittany) algebraic notation syntax. These students were looking 

through the tables (as symbols in a symbol system) to a mathematical objectða 

functionðand applying their ñsense of functionò (Eisenberg, 1992 p. 153) to 

deciphering the algebraic equations.  

The studentsô abilities to make covariational connections are not only 

theoretically interesting; those abilities have been identified by Oehrtman et al. as 

linked to demonstrating proficiencies on ñfunction-focused tasksò (2008, p. 154), 

and therefore could have impact on their future mathematical success. Further, the 

fact that all four students who made covariational connections between time and 

height successfully applied those connections to interpretations of algebraic 

notation suggests that the gap between noticing relationships between time and 

height and interpreting algebraic notation is manageable, at least in this task 

context. A potential implication for teaching is to recognize that some students 

notice these connections on their own, and teachers can leverage those kinds of 

noticings in classroom discussion. Additionally, one way to prime students for 
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learning about functions is to implement functional thinking activities that focus 

on coordinating relationships between covarying quantities.  

Students talked about both covarying quantities in describing both table 

and graph cards.  As described above, the quantitative remarks about time and 

height were in reference to table cards, and co-occured with specific 

interpretations of algebraic notation syntax. Qualitative remarks about time and 

height, on the other hand, were almost always made in reference to the CON-

graph cards. The significance of these remarks should not be underestimated, as it 

was through those remarks that students expressed a nascent sense of function. By 

including time in their descriptions of the CON-graph, they indicated that the 

graph did not just show a value for height, but a behavior of height over time. 

These noticings about the CON-graph, then, gave indication that at least six of the 

eight interviewed students were considering relationships between time and 

height. Further, ñglobalò interpretations of graphs such as directionality of slope 

and presence or absence of intercept (Leinhardt et al., 1990, p. 9) have been 

noticed as important to considering graphs as representing mathematical objects, 

rather than as ña collection of isolated pointsò (Leinhardt et al., 1990, p. 11; see 

also Schoenfeld et al., 1993). Not only were students capable of managing the 

multiple representation environment, the diversity of representations provided 

opportunities to think about a ñnotationally rich web of representations and 

applicationsò (Kaput, 1991, p. 61).   

Overall, this analysis confirms that students have powerful abilities to do 

algebraic sense makingðsense making around algebraic symbol systems. All 
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eight students whose interviews were analyzed were considered less proficient 

performers in mathematics than their peers, had limited exposure to Cartesian 

graphs, and were not familiar with algebraic notation in equations. Yet all eight 

engaged with multiple representations of function and extracted meaning and 

made connections. John Mason has suggested that, ñIf students are sometimes 

given complex or general statements to consider... they experience problem 

solving in its richest and most valuable formò (2008, p. 88). In that vein, students 

made inroads to understanding ñthe most ubiquitous cultural artifact of algebraò 

(Blanton et al., 2015a, p. 181), variable notation, through the complex task 

ecology of the Function Puzzle. 
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8. Study 3: Elementary Studentsô Understandings of the Concept of 

Function: A Discourse Analysis  

In a synthesis of research and policy regarding implementation of algebra 

throughout studentsô K ï 12 education, the RAND mathematical study 

Mathematical proficiency for all students: Toward a strategic research and 

development program in mathematics education (2003) highlighted three 

expectations related to algebraic proficiency, one of which was ña robust 

understanding of the notion of function, including representing functions (for 

example, tabular, analytic, and graphical forms)ò (p. 44). This proposition is 

further supported by the National Council of Teachers of Mathematicsô (NCTM) 

Principles and Standards for School Mathematics (NCTM, 2000) which 

recommends that students in grades 3 through 5 ñrepresent and analyze patterns 

and functions using words, tables, and graphsò (p. 158). Contrarily, functions are 

not introduced in standard mathematics curriculum until middle school, usually in 

eighth grade (Common Core State Standards Initiative (CCSS), 2010).13  

This delay may be due to the perception that studying functions requires a 

level of formal thinking deemed impractical for younger learners (Blanton, 

Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015a). The modern definition 

of function, known as the Dirichlet-Bourbaki definition, describes a function as: 

ña correspondence between two nonempty sets that assigns every element in the 

                                                 
13 Note that although functions do not explicitly appear in the standards until 8th grade, 

representations do thread through the practice standards for all grades. However, as Leinhardt, 

Zaslavsky, and Stein suggest, ñthe task for instruction and for learning is to expand and pull 

together these seemingly disparate [content] threads into a unified, mature notion of functionò 

(1990, p.2). I take the position that it is valuable to draw those disparate threads together early in 

K ï 12 education with consideration of functions as explicit objects of study. 
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first set (the domain) to exactly one element in the second set (codomain)ò 

(Vinner & Dreyfus, 1989, p. 357). This definition masks the range of ways 

individuals interact with functions. Selden and Selden summarize that ña function 

can be regarded as a set of ordered pairs, a correspondence, a graph, a dependent 

variable, a formula, an action, a process or an object (entity)ò (1992, p. 4). The 

terminology ñthe concept of functionò (e.g., Dubinsky & Harel, 1992) is a way to 

reference the totality of notions and understandings associated with exploring and 

representing these correspondences between nonempty sets.  

In this work, I venture that the complexity of functions may indicate the 

need for early exposure rather than a delay in instruction, a proposal that is not 

without support. Oehrtman and colleagues recommend ñthat school curricula and 

instruction include a greater focus on understanding ideas of covariation, ... and 

that more opportunities be provided for students to experience diverse function 

types emphasizing multiple representations of the same functionsò (2008, p. 153). 

In truth, teaching the concept of function through multiple representations has 

been advocated for 30 years (e.g., Brenner et al., 1997; Dubinsky & Harel, 1992; 

Kaput, 2008; Moschkovich, 1990, 1996; Schoenfeld, Smith, & Arcavi, 1993; 

Schwartz & Yerushalmy, 1992; White & Pea, 2012), although much of those 

efforts have been directed at middle or high school students.  

Efforts to introduce functions at the elementary level are often structured 

around a functional thinking approach, which Blanton and Kaput describe as 

ñbuilding and generalizing patterns and relationships using diverse linguistic and 

representational tools and treating generalized relationships, or functions, that 
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result as mathematical objects useful in their own rightò (2011, p. 7-8)  The 

starting block for such an approach is typically rich problem contexts (e.g., 

Blanton & Kaput, 2011; Blanton et al., 2015a; Blanton, Stephens, Knuth, 

Gardiner, Isler, & Kim, 2015b; Brizuela & Earnest, 2008; Cañadas, Brizuela, & 

Blanton, 2016; Carpenter, Francke, & Levi, 2003; Carraher, Schliemann, & 

Schwartz, 2008, p. 236) such as ñthe water tank was empty when it started to fill, 

increasing by 2 feet each minute.ò In a functional thinking approach, students 

would be encouraged to consider the covarying relationship between time and 

height, rather than focusing on discrete points of interest based on calculating 

water height in the tank for a specific time. This approach depends on studentsô 

interpretations of contexts and teachersô guidance through various representations 

of functions. The tasks in this work were intended to diminish the primacy of 

spoken language and examine whether elementary studentsô sense-making about 

function representations might be enough to bootstrap their understandings of 

functions. As posed by Chazan and Yerushalmy: 

In teachersô and curriculum developersô efforts to help students develop a 

feel for different sorts of symbol strings and various uses of the notions of 

variable, equals sign, and Cartesian coordinate system, does it make a 

difference how they come to grips with these notions? Does the order of 

introduction matter? What are the relative merits of gradual immersion 

versus jumping into the deep end? (2003, p. 132) 

 

With the intent of exploring multiple representations of functions as a 

viable entry point for introducing the concept of function, the focus of this paper 

is to consider how 5th-grade students negotiated a multi-function and -

representation environment called the Function Puzzle. The Function Puzzle was 
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designed to promote familiarity with function representations by having students 

match representation types by function. In discussing their solutions to the 

Function Puzzle during one-on-one interviews, students employed certain patterns 

of discourse, or discursive strategies, to relate their understandings. I analyze data 

from interviews about the Function Puzzle to address the research question: What 

discursive strategies emerge in an environment of multiple function 

representations and how do those strategies emphasize connections among 

representations? In the conclusion, those results are discussed in relation to 

studentsô emerging understandings of the concept of function. 

Study 3 Theoretical Perspective 

A Symbolizing Perspective of Functions. Functions, a central object to 

algebra (Carraher et al., 2008; Chazan & Yerushalmy, 2003; Oehrtmann, Carlson, 

& Thompson, 2008; Schwartz & Yerushalmy, 1992, 2003), are accessed and 

manipulated through representations in various symbol systems (Eisenberg, 1992; 

Kaput, 1991). In truth, functions are inseparable from their representations 

(Leinhardt, Zaslavsky, & Stein, 1990). From a symbolization perspective, the 

relationships between representations in a symbol system and mathematical 

objects (such as functions) can be depicted as similar to looking at an object 

through a window (Kaput, Blanton, & Moreno, 2008). As sight lines connect an 

observer to an object through a window, lines of attention connect an actor to 

mathematical objects in a referent field through a symbol system (see Figure 8-1).  
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Figure 8-1.  In symbol system A, representation A1 changes to A2. Attention to 

the change impacts understandings of A1 and A2, but also of functions F1 and F2 

in the referent field. (Adapted from Kaput et al., 2008, p. 26.) 

 

Applying this window model to function representations and functions 

implies that understandings and interpretations of functions are influenced by an 

individualôs action on or experience with function representations. Each function 

representation is part of a symbol system through which functions are accessed. 

The RAND study highlights ñtabular, analytic, and graphical formsò (2003, p. 44) 

of function representation, but idiosyncratic or student-produced representations 

can be considered personal symbol systems to engage with ideas about 

generalized relationships (e.g., Brizuela & Gravel, 2013; Brizuela & Earnest, 

2008; diSessa, Hammer, Sherin, & Kolpakowski, 1991; Greeno & Hall, 1997; 

Roth & McGinn, 1998; Selling, 2016).   

Importantly, both conventional and personal symbol systems can operate 

in a stacked fashion (see Figure 8-2), such that actions and experiences in one 

symbol system may influence not only understandings of the referent field, but 

potentially understandings of other connected symbol systems. Aligned with this 

model, Leinhardt, Zaslavsky, and Stein suggested ñfunctions and graphs represent 



FUNCTION REPRESENTATIONS  120 

one of the earliest points in mathematics at which a student uses one symbolic 

system to expand and understand another (e.g., algebraic functions [algebraic 

equations] and their graphs, data patterns and their graphs, etc.)ò (1990, p. 2).  

 

Figure 8-2. Influence of an action on representation A1 in symbol system A, 

resulting in A2, and the reflected actions (actionô) on function F1 in a referent 

field and symbols B1 and C1 in symbol systems B and C, respectively. (Adapted 

from Kaput et al., 2008, p. 26.) 

 

Part of productive symbolizing is flexibly leveraging these symbol-

referent systems. Since each representation type affords different insights into the 

concept of function or a specific situation at hand (Carraher & Schliemann, 2007; 

Elia, Panaoura, Eracleous, & Gagatsis, 2006), the proficient symbolizer develops 

a sense for how and when to employ various representation types (Brenner et al., 

1997; Even, 1998; Kaput, Noss, Healy, 2002; Schoenfeld, 2008). There are many 

calls to action that learners be taught to translate between representations, with the 

end goal of productive symbolizing in mind (e.g., Ainsworth, Bibby, & Wood, 

2002; Brenner, et al., 1997; Even, 1998; Greer, 2009; Oehrtman et al., 2008; 

White & Pea, 2012). Yerushalmy (2006) depicted the ñtetrahedral relations of 
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function representationsò (see Figure 8-3) and suggested that ñlearning freely to 

move along the tetrahedral pathsò (p. 358) was an important aspect of algebraic 

competency. 

Figure 8-3. Yerushalmyôs tetrahedral relations of function representations (2006, 

p. 358) 

 

I would argue that translating between representations is already taught in 

mathematics classrooms. For example, learners practice plotting sets of 

coordinated points on a Cartesian graph or plotting a function line from an 

equation. Similarly, they may produce an equation from a series of coordinated 

points or the reverse, calculating (x, y) coordinates from an equation. These tasks 

provide students with practice getting from one representation type to another, 

Yerushalmyôs free movement between representations.  

However, if the pedagogical interest is in function and covariational 

relationships, translating between representations as an end goal misses the point 

(Elia, Panaoura, Eracleous, & Gagatsis, 2006; Greeno & Hall, 1997). 

Additionally, learners need to develop their understandings of function 

representations as devices for reasoning and sense-making about functional 
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relationships. NCTMôs Principles and Standards (2000) suggest that 

representation translation is in the service of solving problems, interpreting 

phenomena, and communicating with others, not simply for the product of a 

different representational form. To return to the stacked window model of Figure 

8-2, learners need to develop a sense for how actions in one symbol system echo 

through other symbol systems and the referent field and develop a sense for 

choosing which symbol system to act upon (or within) for any given task. 

Translating between representations is one piece of understanding the network of 

connections among representations.  

As mentioned in the introduction, the functional thinking approach ï 

where students focus on generalizing mathematical relationships presented in rich 

problem contexts ï familiarizes elementary students with aspects of functions: 

covariation, variables and variable notation, and equality (e.g. Blanton et al., 

2015b; Knuth et al., 2005). In this approach, functional thinking emerges from the 

ground up by engaging students in familiar, everyday contexts and exploring 

embedded quantities and their covariation. For example, in a ñBest Dealò problem 

(Brizuela & Earnest, 2008), ñRaymondò is trying to decide whether to accept one 

of two deals from his grandmother: she will double his money, or she will triple 

his money then take away 7. Exploring covariation began with discussions of 

problem context, like whether it was ever a good idea to lose money and how that 

was relevant to assessing a best deal. In that study, representations, such as tables 

and graphs, were introduced in a stepwise manner in service of exploring how to 

figure out a best deal for Raymond. In this study, instead of engaging with 
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function representations from the ground up, I evaluate learning about function 

representations from a suite of conventional function representations, introduced 

all at once, as a ñfully engaging environmentò (Resnick, 1998, p. 37) where 

students can explore covariation.  

The Role of Discourse.  From a sociocultural perspective, symbolizing 

and symbol practices are subsumed as specialized forms of discourse (Lerman, 

2001; Moschkovich, 1996; Sfard, 2012). After all, the conventional function 

representations -  algebraic equations, Cartesian graphs, function tables, and 

natural language - are used to communicate relationships between varying 

quantities. The equation y = 2x, for example, describes a relationship between two 

quantities, denoted by the variables x and y, where each value for y is double the 

corresponding values for x. These forms of representation are a means to dialogue 

within mathematical communities and connect mathematical work with broader 

or historical mathematical communities.  

While I concur that symbolizing and symbol practices are forms of 

discourse, I analytically disengage symbol systems from discourse as 

conversation in this dissertation to examine how learners view various 

representations in those systems ï what are the ways that they talk about them, 

what features do they notice, and how do they connect them? In essence, I assume 

that the learners are peripherally participating (Lave & Wenger, 1991; 2009) in 

activities of mathematical ñdisciplinary engagement,ò in that ñthere is some 

contact between what students are doing and the issues and practices of a 

disciplineôs discourseò (Engle & Conant, 2002, p. 402), but that the 
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representations and symbol systems may be unfamiliar. Analytically splitting 

symbol systems and their representations from discourse allows an opportunity to 

watch for how learners integrate those systems and representations into their 

mathematical understandings and mathematical discourse. In truth, the 

differentiation between symbolizing, symbol systems and conversational 

discourse is an artifice of analysis. 

Discourse, then, as it will be used in this work, refers to the immediate 

negotiation of meaning as it evolves in conversations with particular goals and 

focuses of attention (Gee, 2011; Moschkovich, 1996, 2007). It includes various 

modes of communication, not only spoken words, but also gestures (Gee, 2011; 

Sfard, 2009).14 Most directly, discourse indicates a focus of attention, such as 

saying ñthe graph on the left,ò or pointing at a graph. In fact, Sfard suggests that 

ñgestures are invaluable means for ensuring that all interlocutors óspeak about the 

same mathematical object.ôò (2009, p. 197). Additionally, words and gestures are 

a realization or instantiation of peopleôs understandings and what they notice. 

When a person runs their finger along a function line in a Cartesian graph and 

says, ñthe water height is increasing,ò they are not only pointing at the function 

line as representing that feature, but reenacting ñincreasingò with their finger. 

With these perspectives in mind, I treat discourse as a proxy for what learners 

notice, how they focus their attention, and communication of their 

understandings. 

                                                 
14 Although written work would also be considered a form of discoure, students did not produce 

written work as part of the studies in this dissertation. 
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Study 3 Methods 

Classroom activities involving multiple representations of functions were 

implemented in a 5th grade classroom in early 2017 to explore the guiding 

question, ñHow do students make sense of function representations and 

connections between them, even those representations that are unfamiliar?ò In the 

weeks following activity implementation, I conducted one-on-one interviews with 

students, as time and consent allowed, focused on studentsô understandings of the 

connections among function representations. For this paper, I analyze studentsô 

interview responses in discussing the Function Puzzle which was one of the 

classroom activities and is described below. In specific, this work is a discourse 

analysis of student talk and gesture to address the research question, ñWhat 

discursive strategies emerge in an environment of multiple representations of 

function and how do those strategies emphasize connections among 

representations?ò  

The Function Puzzle as a classroom activity. The Function Puzzle was 

one of the multiple representation activities conducted with the entire class. It was 

designed to ñtie together graphical and analytical representationsò of functions 

(Eisenberg, 1992, p. 154) by having students match different function 

representation types. The tasks were inspired by similar tasks in Sauriolôs 2013 

thesis, and Tufts Universityôs Early Algebra Project activity ñWho Shares Your 

Functionò (http://ase.tufts.edu/education/earlyalgebra/materials.asp).  

In the Function Puzzle activity, partnerships of two or three students were 

given a bag containing 16 unorganized cards of four representation types (natural 



FUNCTION REPRESENTATIONS  126 

language, algebraic equation, Cartesian graph, and function table) and four 

functions (see Figure 8-4). Each representation was printed on colored, 

heavyweight, 2ò x 2İò cards. 

 

Figure 8-4. Function Puzzle Cards.15 

 

 

The situation contexts were scenarios of changing water height over time. 

Similar contexts have been used in other algebra research (Boaler & Humphreys, 

2005; Leinhardt, Zaslavsky, & Stein, 1990; Lobato, Hohensee, & Rhodehamel, 

2013; Oehrtman et al., 2008). The studentsô job was to create four sets, ñfinding 

                                                 
15 For this paper, function representations are referenced by combining a descriptor of the function 

(CON, DRN, FIL0, or FIL3) and the representation type (language, table, graph, or equation). For 

example, ñCON-tableò is a reference to the top table in Figure 8-4. 
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reasons the cards belong together,ò with the stipulation that each set contain one 

card of each color.   

Intentionally, the activity introduction was very brief. I had a large set of 

Function Puzzle cards, so they were easy to see, and I said, ñThese are different 

ways of showing mathematical relationships. Have you seen things like this 

before?ò After following answers to that question, I suggested that the studentsô 

job was to create four sets, ñfinding reasons the cards belong together,ò with the 

stipulation that each set contain one card of each color. With that, students started 

to work on the cards. Once a partnership was satisfied with the sets they had 

made, they showed their solution to myself of the classroom teacher to get a paper 

backing and glue, then glued their solution to a piece of paper.  

Study participants. The study was held mid-year at a 3rd ï 5th grade 

public elementary school in a suburban town in the northeast of the United States. 

The school has a student population of 388 students, a student to teacher ratio of 

14.3 to 1, and a high needs population of 20.8%, which includes characteristics 

such as free or reduced lunch, learning disability, limited English language 

proficiency, or combinations of such characteristics (Massachusetts Department 

of Elementary and Secondary Education (MA DESE), 2017). At this school, 5th 

grade students were tracked in mathematics into ñstandardò or ñacceleratedò 

mathematics classes. The participating 5th grade classroom had 18 students and 

was not an accelerated class. In fact, the students as a group were considered 

lower ability, showing general anxiousness or lack of confidence about 
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mathematics. This class was not an inclusion class, although four students were 

on individualized education plans (IEPs).  

Mrs. F, the participating teacher, was passionate about changing studentsô 

relationship with mathematics for the better, having been someone who struggled 

with mathematics as a young student. She focused her instruction on connecting 

mathematics to real world contexts, particularly to scientific phenomena, and 

enjoyed project-based explorations. The school used a packaged curriculum, 

Everyday Mathematics (University of Chicago Standards Mathematics Project, 

2010), and Mrs. F augmented or changed the curriculum to suit the needs of her 

students. Cartesian graphs and equations with algebraic notation were unfamiliar 

to the students and had not been taught at the time of the classroom activities 

according to Mrs. F, the curriculum, and the students.  

Out of the 18 students in the classroom, 12 agreed to interviews, and nine 

were interviewed in the time allotted by the classroom teacher. The pseudonyms 

of the nine interviewed students are: Amanda, Brittany, Eliza, Jack, Jenna, 

McKenzie, Nan, Olivia, and Riana. Eight of these interviews are included in this 

analysis. Jennaôs interview, the ninth interview, was excluded from the data set. 

Her interview was conducted almost two months after the classroom activities and 

more than three weeks after the other eight interviews due to the classô schedule. 

In the interim, Mrs. F had started instruction on Cartesian graphs, and the data 

from her interview were no longer relevant to the study.  

Data collection. Interviews began the week following the implementation 

of classroom activities. I interviewed students every Friday during mathematics 
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block, completing two semi-clinical, one-on-one interviews each week. 

Interviews were held in a relatively quiet corner of the classroom. Interviews 

lasted between 25 and 35 minutes each. Two cameras captured the interview: one 

focused on the work space in front of the student and interviewer, and one 

focused on the student participant.  

Video processing began within a week of when an interview was 

completed by transcribing and memo writing for each interview (Charmaz, 2010). 

This initial screening process allowed for minor adjustments to the interview 

protocol including how questions were phrased and placement of the cameras. 

Memos served as interview summaries and helped to highlight common or 

idiosyncratic themes across interviews. Broadly, in talking about the Function 

Puzzle, students described their choices in building sets for a Function Puzzle 

solution, using a mixture of talk and gesture to express themselves. 

In this paper, pointing or touching a card or feature on a card is noted in 

transcript by square brackets around the name of a card, as in [FIL3-table] or [first 

height value on FIL3-table], rather than the more cumbersome [Pointing at the 

FIL3-table.] or [Touching the first height value in the FIL3-table.]. In cases where 

there is movement of the fingers beyond touching or pointing, that movement is 

noted within the brackets, as in [running fingers down the height values in DRN-

table]. Additionally, in a break from American Psychological Association (2001) 

standards, references in the text to numbers printed on the representation cards are 

written as the numeral, regardless of their value. On the other hand, when a 

student says a number in quoted transcript, the number name is written out. 
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Data analysis. The analysis in this chapter is one of ñlanguage-in-use:ò a 

study of how these students used language ñnot just to say things, but to do 

thingsò (Gee, 2011, p. ix). In the interviews, students were responding to 

questions like, ñCan you tell me how you put this set together?ò In response, they 

did not explain the mechanics of connections between cards but used certain 

patterns of discourse (talk and gestures) that established cards as belonging 

together in a set. These patterns of discourse, which I call ñdiscursive strategies,ò 

are analogous to Geeôs sense of ñactivityò in discourse analysis, which he defines 

as, ñhow an action or sequence of actions carry out a socially recognizable and 

institutionally or culturally normed endeavorò (Gee, 2011, p. 97). For example, 

classroom discussion is a culturally-understood activity achieved through 

discourse and includes components like maintaining order and following a lesson 

plan. Different cultures, like elementary schools, high schools, or university 

departments, will have specific expectations for how the activity of classroom 

discussion is enacted.  

The discursive strategies I explore in this work are enacted within a one-

on-one interview and are significant to understanding studentsô interactions with 

notions of function through the Function Puzzle task.  They emerged from a 

grounded-theory-based (Charmaz, 2010) examination of videos, transcripts, and 

Function Puzzle artifacts with two broad questions in mind:  

¶ What was the structure of studentsô discourse (talk and gesture) in 

their interviews?  
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¶ How did their discourse address connections among function 

representation cards?  

These questions were refined to the research question ñWhat discursive 

strategies emerge in an environment of multiple representations of function and 

how do those strategies emphasize connections among representations?ò To 

address this question, the data set was reduced (Miles & Huberman, 1994) to 

portions of the interviews that discussed the Function Puzzle, and two analytical 

passes were made through the video and transcript data. The first analytical pass 

annotated and highlighted the transcript to indicate how students touched the 

representation cards. Using these annotated transcripts and video, discursive 

strategies were defined and a coding scheme was developed for analyzing the 

data. These codes were used in the second analytical pass to develop an 

understanding for how studentsô uses of the discourse strategies were distributed 

throughout the data set. Details of the discourse strategy coding scheme and the 

first and second analytical passes are given below.  

First analytical pass: which cards were touched, as synchronized with 

talk. The complex task ecology of the Function Puzzle and other tasks presented 

abundant information in concise representational forms. Often, the students 

referred to cards with a gesture, rather than with language. This first pass 

therefore made touch of specific representation cards an explicit part of the 

transcript. Each touch of the cards was classified by mathematical function 

(constant, drain, ratio, or shift) and representation type (equation, graph, 

language, or table). For example, the phrase ñThis one [DRN-graph] starts way up 



FUNCTION REPRESENTATIONS  132 

highò indicates the student was touching the graph card for the function y = 16 ï 

n. Additionally, touches on the cards were annotated by highlighting the 

accompanying utterances with colors that matched the colors of the representation 

cards (see Table 8-1). Annotating with colored highlights made touch readily 

identifiable and indicated how touch was synchronized with studentsô talk.  

 

Table 8-1  

Highlighting Used on Transcripts to Show When Students Touched the Cards 

Highlighted Excerpt Explanation 

And plus two [FIL3-

equation] is... 

The student touched the FIL3-equation card while 

saying ñplus two.ò 

let's just take this first one 

[FIL3-language], for an 

example. 

The student touched the FIL3-language card while 

saying, ñtake this first one.ò 

we knew that sixteen was 

full [DRN-table] 

The student touched the DRN-table card while 

saying, ñthat sixteen was full.ò 

And this one shows that it's 

draining also [DRN-graph]. 

The student touched the DRN-graph card while 

saying, ñthis one shows that itôs draining also.ò  

with this group [drain set], 

we just used the equation. 

The student referenced the drain set by passing a 

hand over the set while saying, ñthis group.ò 

then we paired (these two 

together. [FIL3-equation and 

graph]) 

The student is touching the FIL3-equation and 

graph cards at the same time (noted by 

parentheses) while saying, ñthese two together.ò  

   

 As might be expected, studentsô talk and touch about cards or features on 

cards was often synchronized. For example, in speaking about which set was 

easiest to put together, McKenzie said, ñThe last set was, I think, a bit easier for 

us because sixteen [DRN-equation] minus something would [DRN-graph] be 

going down and [DRN-table] this is also going down and this [DRN-language] 

said that someone pulled the plug to drain it.ò In this utterance, she described 

features of equation, graph, table, and language cards as she pointed to each one 



FUNCTION REPRESENTATIONS  133 

in turn. These cards were in her Function Puzzle solution in one column, which is 

how she and her partner grouped their sets.  

 There were also times when integrating touch and talk was more 

complicated, and touch and talk were asynchronous. In discussing the FIL3 set in 

her Function Puzzle solution, Amanda said, ñit [FIL3-equation] was this one 

ôcause [FIL3-table] it started with three and also [FIL3-graph] it in- and we 

noticed it increased by two [FIL3-language] feet ...ò Here, Amanda touched all 

four of the cards of her FIL3 set as she described why she and her partner put the 

FIL3-equation with that set. When she touched the language card, which reads, 

ñThe water tank had a few feet of water in it when someone turned the hose on to 

fill it,ò she spoke about an increase of two feet, information not available on the 

language card.  

Both synchronous and asynchronous touches on the cards were relevant to 

interpreting studentsô discursive strategies about the Function Puzzle. As will be 

discussed in the next section, the second analytical pass applied codes to examine 

how touch and talk operated to justify connections among representations. 

Second analytical pass: functions of touch and talk. Once the eight 

transcripts were color-coded for touch, the second analytical pass evaluated how 

studentsô discourse emphasized connections between or among representation 

cards. This section explains the development of the codes and detailed code 

descriptions. The subsequent analysis is presented in the Results section. 

Working from the annotated and highlighted transcripts, each student talk 

turn was considered an episode. More than one student talk turn was collapsed 
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into one episode when the talk turns were broken by non-substantive interviewer 

comments like ñOKò or ñMmhm,ò and the object under discussion across the talk 

turns was the same set of cards. Similarly, single talk turns where the student 

discussed more than one set of cards were broken into two episodes. Some student 

talk turns that did not relate to the research question were redacted from the data 

set. One such example was Nanôs statement, ñIt doesnôt start [FIL0-graph] with a 

few feet of water.ò Although the utterance showed Nanôs interpretation about the 

FIL0-graph card, it did not address connections between or among cards, and was 

therefore excluded. The resulting data set consisted of 46 episodes across the 

eight interviews.  

Using a constant comparison method (Charmaz, 2010), three studentsô 

interviews were used to develop codes: Nan, Olivia, and Brittany. These three 

were chosen because they covered a range of expertise in the interviews. Nan 

tended to prevaricate in her answers and talk noncommittally. Oliviaôs Function 

Puzzle solution was the only example from the classroom work with mistakes, 

which meant there were unique hurdles for her to connect the cards of a set in the 

interview. Finally, Brittany was one of the students who gave a lot of detail in her 

discourse and seemed to have a meta awareness of strategic moves she and her 

partner used in solving the Function Puzzle. 

The three codes which emerged were list, eliminate, and integrate. Each of 

these codes are grounded in the actions of studentôs ñcommunicational actsò 

(Sfard, 2009, p. 194). These codes are not used to interpret the studentsô 

intentions but to look for patterns of discourse that are common across the student 
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interviews around the Function Puzzle. Tables 8-2, 8-3, and 8-4 each contain the 

definition of a code and an example episode which has been broken into phrases 

aligned with each distinct gesture the student made in the episode. More 

explanation about the criteria for each code is given following each table.  

The criteria for coding an episode as list was students serially pointing at 

two or more cards and listing features from each card as they pointed at it. In the  

 

Table 8-2  

The List Discourse Strategy 

LIST: The student serially described features of two or more cards, as if reading from a 

list, synchronized with touch. 

Example Descriptive interpretation of the studentôs discourse 

McKENZIE (6:49 ï 7:03): This 

last set was, I think, a bit easier 

for us because 

McKenzie was responding to the question, ñCan you 

describe this set for me?ò 

 ̄ sixteen minus 

something  

 

 ̄ She touched the DRN-equation card, 

emphasizing ñminusò with the tone of her 

voice.  

 ̄ would be going down  

 

 ̄ She ran her finger from left to right along the 

function line on the DRN-graph and mentioned 

ñgoing down.ò  

 ̄ and this is also going 

down  

 ̄ She ran her finger down the height values of 

the table card and reiterated ñgoing down,ò 

connecting the table and graph cards with the 

use of the word ñalso.ò  

 ̄ and this said that 

someone pulled the 

plug to drain it. 

 ̄ She pointed at the DRN-language card while 

she read the text on the card, indicating a 

connection with the use of the word ñand.ò 

 

list example from Table 8-2, McKenzie was responding to the interviewerôs 

question, ñCan you describe this set to me?ò In her response, McKenzie listed 

features from the cards in the drain set as she touched each one. This enumeration 

of card features was her explanation of why the set was easy to put together, as 

can be inferred by her use of the word ñbecause.ò In this episode, she did not 
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elaborate on connections between the cards, but simply listed the features as if the 

connections were self-evident. The list code was typically applied to two or more 

cards within a set, but that is not a criteria of the code.  

Episodes where the students talked about including one card because other 

cards did not belong were coded eliminate. In the example in Table 8-3, Brittany 

asserted that ñnone of the other ones [language cards]ò applied to the DRN-graph 

as a way to explain why the DRN-language card belonged with the DRN-graph 

 

Table 8-3 

The Eliminate Discourse Strategy 

ELIMINATE: The student suggested that one card belongs with a set because other cards 

do not belong. 

Example Descriptive interpretation of the studentôs discourse 

BRITTANY (7:41 ï 7:59): So, 

I'm going to use this [DRN-

graph] one as an example. 

Brittany used the DRN-graph to demonstrate her 

partnershipôs process of looking for a natural language 

description that belonged with a specific graph card.  

 ̄ The water tank was 

full and then someone 

pulled the plug to drain 

it. 

 ̄ She read the DRN-language card, following 

the text with her finger. 

 ̄ And then, we looked at 

the other ones 

 

 ̄ She touched each language card in the column, 

with her pointer finger while speaking, going 

both down the column and up the column with 

her touches. 

 ̄ and it didnôt ï  

 

 ̄ She touched the DRN-graph card, perhaps 

searching for a way to explain the next step in 

her process. 

 ̄ none of the other ones  

 

 ̄ She returned to touching each of the language 

cards except the DRN-language card. 

 ̄ applied to that one.  ̄ She rested her pointer finger on the DRN-

graph card. 

  

card.  Eliminate codes were applied to episodes where students ruled out several 

choices, usually with the use of the word ñnone.ò It also applied when they 

described excluding a single card due to a lack of a certain attribute, such as ñit 
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didnôt start at zero,ò in favor of including a different card. In eliminate episodes, 

students were differentiating among cards of the same representation type. 

Without the touch annotations on the transcript, Nanôs focus in the Table 

8-4 episode seemed to be on the equation card. She did in fact touch that card 

throughout most of the episode. However, when she said, ñI donôt even know ï 

we just thought it was five,ò she was running her fingers down the height column 

of the CON-table over and over. She then pointed at the equation card and 

 

Table 8-4  

The Integrate Discourse Strategy 

INTEGRATE: The student talked about card features while touching one or more cards, 

and the spoken description was not synchronized to the cards they touched. 

Example Descriptive interpretation of the studentôs discourse 

NAN (5:11 ï 5:18): We got  Nan was describing how they put the CON-equation 

with the constant set. 

 ̄ this one ï five ï 

because  

 ̄ She touched the CON-equation and called it 

ñfive,ò almost as if naming it. 

 ̄ I donôt even know ï we 

just thought it was five,  

 ̄ She ran her pointer finger down the height 

column on the CON-table (the values are all 

five) over and over. 

 ̄ like the height ï we 

were thinking like  

 ̄ She moved her pointer finger back to the 

equation, poking at the card when she said 

ñheight.ò  

 ̄ height equals five.   ̄ Her pointer finger followed the equation, 

poking at the variable y when she said 

ñheight,ò poking at the equals sign when she 

said ñequals,ò and poking at 5 when she said 

ñfive.ò 

 ̄ That sorta thing.  ̄ She concluded her explanation with the phrase, 

ñThat sorta thing.ò  

 

imposed ñheight equals fiveò as an interpretation of the equation y = 5. Describing 

features from one card while touching another, in this case, taking ñheightò from 

the table card while touching the equation card, is the essence of the integrate 
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code because Nan is integrating the table and equation cards through the 

synchronous touch and talk. Integrate codes are applied to instances when the 

words that were spoken as a card was touched were not interpretable from that 

card itself.  

Similarly, there were instances when verbal descriptions did not keep pace 

with a studentôs touch, such that touch was referencing more than one card, while 

words seemed to have only one point of reference. For example, Riana said, ñSo 

we [DRN-equation] did sixteen minus and it equals y. So [DRN-table], we [DRN-

equation] used minus [DRN-table]. Without touch annotations, it would be 

reasonable to assume Riana was only talking about the DRN-equation card: ñSo 

we did sixteen minus and it equals y. So we used minus.ò On the other hand, if 

touches were the only record of Rianaôs communication, we would see two 

objects of focus in the pattern DRN-equation, DRN-table, DRN-equation, DRN-

table. The combination of touch and talk transcript demonstrated a blurring 

between description and objects of focus. The criteria for integrate is when two 

cards are being associated with each other ï integrated ï through the studentsô use 

of touch and talk. Integrate can be identified in the video and annotated transcript 

as places where the spoken words did not align with information on the card being 

touched.   

The codes and code criteria are summarized in Table 8-5. Codes were 

applied to phrases within episodes, and as such one episode could have multiple 

codes. The full data set of 46 episodes was imported into Excel and the order of 

episodes was randomized to avoid ñcoder fatigueò (Bauer, 2006, p. 144) and 
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break the potential of student voice in coding. Episodes were coded about a week 

after the codes were developed, and Brittany, Nan, and Rianaôs episodes were 

included in the data set as an evaluation of whether the codes definitions were 

robust and coding was replicable. Additionally, a subset of the episodes was 

coded by colleagues using both transcripts and video clips of the episodes.  The 

next section describes patterns that emerged from applying these codes to the 

entire data set.  

 

Table 8-5  

Summary of Discourse Strategies for Communicating Connections between Cards 

Code Code Identification Criteria 

LIST The student serially described features of two or 

more cards, as if reading from a list, synchronized 

with touch. 

ELIMINATE  The student suggested that one card belongs with a 

set because other cards do not belong. 

INTEGRATE Spoken words did not align with information on a 

card being touched.   

 

 

Study 3 Results 

Working in partnerships, students created solutions to the Function Puzzle 

in a classroom setting. With only one exception for the entire class, Function 

Puzzle solutions show representation sets grouped by function (see Appendix D 

for studentsô Function Puzzle solutions). Those solutions were the focus for 

interviews analyzed in this chapter. Each interview was coded for the instances of 

the discourse strategies list, eliminate, and integrate.  
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The distribution of codes and episodes by student is presented in Table 8-6 

(see Appendix E for the coded episodes). As shown in the table, the number of 

coded episodes per student was relatively even. Codes were applied in 53 

instances across the 46 episodes in the data set. Episodes were coded with the 

integrate code almost twice as frequently as either list or eliminate. In this results 

section, I characterize how the students used the discourse strategies of list, 

eliminate, and integrate in their individual interviews to connect function 

representations and describe Function Puzzle solution artifacts. In the conclusion, 

I discuss the implications of the studentsô discourse in terms of early notions of 

function and elaborate on the taskôs role in stimulating this type of discourse. 

 

Table 8-6  

Distribution of Codes and Episodes by Student 

 
Students  

Strategy: 

A
m

a
n

d
a 

B
ri

tt
a

n
y 

E
liz

a 

J
a

c
k 

M
c
K

e
n

z 

N
a

n 

O
liv

ia
 

R
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n
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T
o
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List 2 2 2 3 2 2 1 1 15 

Eliminate 0 3 1 1 4 3 1 1 14 

Integrate 2 4 2 2 1 6 5 2 24 

Episodes 4 7 5 6 6 8 7 3 47 

 

 

List as a strategy to establish a group of cards as a set. Episodes coded 

list included instances when students serially identified features from 

representation cards and did not provide any further justification for why the cards 

were together in a set. Typically, gestures to highlight a card were synchronized 
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with talk in episodes coded as list.  The only times gestures were not 

synchronized were in instances when the student highlighted the card in other 

ways, such as reading the text on a natural language card. List as code could be 

applied to student discourse about two or more cards within a set. In this data, list 

usually applied to three or four cards (see Table 8-7).  

 

Table 8-7  

Frequency of ñlistò codes by function type and the number of representation types 

involved 

 Number of Representation Types ñListedò  

Function Two Three Four Total 

CON, y = 5 1 3 3 7 

DRN, y = 16 ï 

n 

0 2 2 4 

FIL0, y = 2n 1 0 0 1 

FIL3, y = 3 + 

2n 

2 1 0 3 

Total:  4 6 5 15 

 

 

 List discourse typically happened in response to a general prompt, ñTell 

me how you put your sets together.ò Even though the prompt asked for how the 

students did the work, the students responded by ticking off features of the cards 

in a set. For example, Jack described his drain set by saying, ñSo, it says the water 

tank was full and then someone pulled the plug to drain it. So, this one starts way 

up high and goes down. Then it ï and here, time zero, height sixteen. So, and 

then, fifteen, fourteen, thirteen, twelve, ten.ò The equation card was the only card 

Jack did not include in his explanation which, he admitted later, he didnôt really 
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understand. In this type of discourse, I infer students found the connections 

among the cards to be self-evident and did not need further justification or 

explanation.  

Half of the instances where list was used as discourse strategy was in 

describing the constant set. As shown in Table 8-8, students did not justify the 

connections among the constant set cards beyond just listing the features they 

perceive as indicating ñno change.ò What I infer from these excerpts is that 

constancy in the dependent variable is transparent across representations to these 

students.  

 

Table 8-8  

Student descriptions of cards in the constant set, coded ñlistò 

Jack this one's obvious cause it says y equals five and nothing else. And this one it says the 
water height does not change. Straight line. five five five five five. 

Olivia This one, ñThe water height does not change.ò So that one was sort of easy because it was 
five five five five and it didn't change at all. And this one just went straight, so we know it 
did not change at all. And this one, y equals five. Five and this one stayed five. So the 
water height did not change. 

Riana Um, this one.{is the easiest one} The water height does not change. Because the height is 
just five. Five, five, five, five, five. And then this one is a straight line and the blue one is 
just equals to five. 

Brittany the water height does not change. That was obvious here. And then the height was just all 
five, nothing changed, and then five- y- y equals five. That means nothing changed about 
the five. So, it would actually be like five equals five. 

Eliza this was the easiest one for us because like it just stayed the same. All of them are five, so 
we just used the height because it showed the same across all the height. And then it's just  
y equals five 

Amanda Well, first we matched the yellow card table with the graph to see- cause they went is all 
different directions. For the five it stayed the same over time. So we realized if it's all fives it 
would be straight, and it said it did not change and so y equals five and that was five, 

 

Amandaôs constant set description in Table 8-8 was the most complicated 

list episode. In her episode, touches moved between the graph and table cards 

repeatedly, not in the sequential fashion of the other examples of Table 8-8. 

However, when considering how she talked about features of the cards, her touch 



FUNCTION REPRESENTATIONS  143 

and talk were synchronized, which met the criteria to be coded list. In this use of 

list, Amanda seemed to have a strong sense that the table card was a source for 

interpreting the other cards. The first item in her list of features was that the table 

card ñstayed the same over time.ò She then used that information, reiterating ñif 

itôs all fives,ò to explain the graph card (ñit would be straightò), the language card 

(ñit said it did not changeò), and the equation card (ñso y equals fiveò). She closed 

her description with a return to the table card, saying ñand that [the CON-table] 

was five.ò As with the other examples from Table 8-8, Amanda listed the features 

as her explanation of how the set went together, but she indicated how important 

the table card was in her work by returning to it three times in this description.  

The way that list was defined, as discourse where features were noted card 

by card and with no additional justification, restricted the opportunity for 

additional codes in an episode coded with list. In the 15 episodes coded with list, 

there are only two with additional codes. In one of those instances, list was used 

in service of an eliminate episode, where Nan expressed doubt about the 

language-table connection in her FIL3 set yet justified it by suggesting that the 

other language-table pairs made sense. In the other case, Brittany listed three 

features of the drain set, but then used the integrate discourse strategy to explain 

that the DRN-graph belonged in the set. In fact, if a student considered the set 

established by listing the features, they would not have a reason to call on 

additional discourse strategies.  

In summary, list discourse was used in cases where it seemed students 

assumed the connections between cards were self-evident. It was used most often 
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on the constant and drain sets, which students considered the easiest to put 

together. As described in this section, six of the eight students used list discourse 

to explain or describe the constant set, indicating that constancy was evident to 

the students across the representations. The drain set, showing decreasing height 

over time, was also justified using list discourse by four of the students. It is 

interesting to note that the FIL3 and FIL0 sets, which both show increasing height 

over time, were generally not explained by students using the list discourse 

strategy (there was one instance where list was used to explain the FIL3 set by 

Jack). Instead, the instances of list discourse on those sets was in service of other 

explanations, or the list explanation was supported by incorporating other 

strategies.   

Eliminate as a strategy to confirm a card belongs in a set. Episodes 

where students talked about including one card because other cards did not belong 

were coded eliminate. Eliminate was the only discourse strategy code defined by 

students looking across functions and within representation types. In this strategy, 

rather than expressing why the features of a card aligned with the features of other 

cards, students confirmed that a card belonged by rejecting other choices of that 

same representation type. The eliminate strategy was most frequently used in 

connecting the FIL3-graph to a FIL3 set, although across all four functions, it was 

used equally frequently on establishing equations and graphs in the respective 

function sets (see Table 8-9).  The constant function, typically described using a 

list discourse strategy, was only the object of attention during one example of the 

eliminate discourse strategy.  
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That one use of the eliminate strategy on a constant function was when 

Eliza was asked to demonstrate how she would explain the CON-graph to 

someone who didnôt understand graphs. She replied, ñWell, [CON-graph] itôs 

going straight, and I [touching two graphs] would use two to compare. That one 

[FIL0-graph] IS changing because it goes higher and higher [Elizaôs finger traces  

 

Table 8-9 

Frequency of ñeliminateò codes by function and representation type  

 Representation Type  

Function Equation Graph Table Language Total 

CON, y = 5 0 1 0 0 1 

DRN, y = 16 ï 

n 

3 0 0 0 3 

FIL0, y = 2n 2 1 0 0 3 

FIL3, y = 3 + 2n 1 4 1 0 6 

Total:  6 6 1 1 14 

 

 the function line from left to right on the FIL0-graph]. And like for this one 

[DRN-graph], it goes down [Elizaôs finger traces the function line from left to 

right on the DRN-graph].ò In this episode, Eliza was demonstrating how the 

CON-graph showed constancy by describing how the FIL0- and DRN-graphs 

showed something differentï the FIL0-graph showed increasing behavior while 

the DRN-graph showed decreasing behavior. She emphasized this characteristic 

by following the function lines from left to right with her finger. This episode 

speaks to how students used variation across a representation type to confirm 

connections within a function set.  



FUNCTION REPRESENTATIONS  146 

As mentioned, students generally used the eliminate discourse strategy on 

the representation types that were less familiar ï equations and graphs (see Table 

9). For example, when Riana was describing how she chose the DRN-equation, 

she said, ñSo, the blue one [She pointed at the DRN-equation.] we did sixteen 

minus and it equals y. So, [At  this point, her finger moved back and forth rapidly 

between DRN-equation and DRN-table.] we used minus ócause no other one [Her 

finger touches each of the other tables.] starts with sixteen and gets lower ï like 

subtraction.ò It was not clear from Rianaôs words whether ñno other oneò applied 

to the equation or the table, but her gestures indicate that she did not see a fit for 

the DRN-equation with the other sets because the other tables did not ñstart with 

sixteen and get lower.ò In this episode, Riana not only addressed how the DRN-

equation fit with the set, she also integrated her reading of the equation with 

attention on the DRN-table and found the two were compatible. In other words, it 

created an opportunity for her to engage with two symbol systems at once while 

considering the behavior of the relationship depicted.  

 Brittany had some interesting uses of eliminate, in that she described 

eliminating the more familiar representation types, like table and language cards, 

to connect to the more unfamiliar types ï usually the graph cards. In one instance, 

she had already described a connection between the FIL0-language and graph 

cards when she said, ñAnd then, since the height [FIL0-table] started at zero and 

none [waving hand over other table cards] of the other ones started at zero, we 

basically matched them [finger pointed back and forth between graph and table 

card while saying ñbasically matched.ò].ò According to her description, she and 
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her partner connected the FIL0-graph, with a function line starting at the origin, to 

a table that had a starting height value of zero by recognizing that none of the 

other tables started at zero. 

Similarly, in describing the process she and her partner used to connect 

natural language cards to graph cards, she used the DRN-graph and language as 

an example. She said, ñSo, Iôm going to use this one [DRN-graph] as an example. 

The [DRN-language] water tank was full and then someone pulled the plug out to 

drain it. And then [finger panning over the constant, FIL3-, and FIL0-language 

cards], we looked at the other ones, and it didnôt [DRN-graph] ï none [fingers on 

drain, FIL3-, and FIL0-language cards] of the other ones applied to that one 

[DRN-graph], so we basically did like, elimination.ò In this case, she eliminated 

three language cards in favor of the DRN-language card and connected the DRN-

language card to the DRN-graph. Furthermore, in this example, she was explicit 

about the fact that she and her partner used a strategy of elimination to figure out 

the sets of cards.  

Each of the episodes described here show that students compared cards 

within a representation type to justify the card choice in their Function Puzzle 

solution.  In using the eliminate discourse strategy, they were looking across the 

available card choices of a representation type and discerning alignment between 

one of those cards and other representations in a particular set. Those alignments 

were based on the fact that the cards represented the same function. Although the 

students had not yet been introduced to functions in their mathematical 

instruction, this discernment activity was helping them developing notions about 
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representing covarying relationships, perhaps considering how ñincreasing,ò 

ñdecreasing,ò and ñconstantò were represented across different representation 

types. Furthermore, in the eliminate discourse strategy, they were organizing not 

only representations that belonged together, but those that didnôt belong.    

 Integrate as a strategy to consider more than one representation at a 

time. The integrate discourse strategy was the most frequently used category in 

coding episodes from the data set, with 24 instances as compared to 15 instances 

of list and 14 instances of eliminate. The criteria for identifying integrate 

discourse strategy was that the student talked about card features while touching 

one or more cards, and the spoken description was not aligned or synchronized to 

all the cards they touched. Within the instances of integrate discourse strategy, 

there were two broad form of asynchronous or misaligned talk and touch, which I 

describe here.  

 In one form of integrate, the student was indicating more than one card 

with touch by rapidly moving a pointing finger between the different cards or by 

touching several cards at once. At the same time, their talk was a fluid description 

of card features, and a listener could assume that the student was only talking 

about one card if gesture were not considered. In other words, their descriptions 

of features were not distinct to each card. For example, Amanda said, ñthere was a 

three in this problem,ò while rapidly moving her finger between the FIL3-

equation and FIL3-table. The words alone indicated a single object of focus ï the 

FIL3-equation ï but her gesture indicated otherwise. I classified this type of 
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integrate discourse as blurred integration, since a single object of focus was not 

evident in the studentôs discourse.  

 In the other form of integrate, the student was highlighting one card with 

touch, and included words in their description that were not on the card they were 

touching. For example, Olivia said, while pointing at the FIL3-graph, ñthis one 

[FIL3-graph] was also getting higher because it started at three [pointing at y-

intercept] and went up and up.ò The formats of the graph cards were such that her 

use of ñthreeò could not have come from the graph card. The y-intercept was 

evident, but not the value of that intercept. I classified these instances when the 

student was importing information from another card to the card of focus as 

bundled integration, because it was as if the student were stacking features from 

one card onto another. In this sub-classification, it was not always clear where the 

additional information or feature description came from, only that it was not 

available on the card of focus. 

Although the descriptions of blurred integration and bundled integration 

seem mutually exclusive, the realities of messy data make rigorously choosing 

one classification over another sometimes difficult. In practice, I used studentsô 

gestures to categorize an instance of integration as either blurred or bundled. If a 

studentôs touch was across several cards as they spoke, I considered it blurred 

integration. If they spoke about features that were not present on the card they 

were touching, I considered it bundled integration. The work that was done 

through both integration discourse strategies was similar. For these reasons, the 

two classifications were not considered as different codes in analyzing the data, 
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but they are explored here in examining how and when integration was used as a 

discourse strategy. With the caveat that blurred and bundled integration instances 

were not completely distinctive, it is interesting to note that these two 

classifications occurred with equal frequency (see Table 8-10). Occurrences of 

blurred integration and bundled integration are described in further detail below. 

 

Table 8-10  

Distribution of integrate discourse strategy codes by function 

Function  Blur  Stack Total 

CON, y = 5 1 0 1 

DRN, y = 16 ï n 5 4 9 

FIL0, y = 2n 3 3 5 

FIL3, y = 3 + 2n 2 6 9 

Total: 11 13 24 

 

 

Blurred integration a strategy to physically connect cards. In nine of the 

11 blurred integration instances, the student was referring to a pair of cards. All 

instances of blurred integration involving two cards included a table card as one 

of the pair. Seven times, the student was connecting an equation card and a table 

card, while twice the student connected a graph card and a table card. 

Blurred integration instances where the student highlighted more than two 

cards were cases where the student was referencing a collection of cards with one 

gesture. For example, the interviewer asked Jack, ñwhat is the role of the addition 

symbol in that equation [FIL3-equation]?ò and Jack covered all four cards of the 

FIL3 set as he said, ñwhen you add more to the bucket.ò There are a couple of 

ways that gesture could be interpreted. Jack could be indicating affirmation that 

the FIL3-equation belonged with that set, or he could be indicating that all four 
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representation cards show increasing height of water over time. Regardless of the 

specifics, he was indicating that all four representations belonged together.  

I argue that blurred integration as a discourse strategy did more than 

indicate a connection between cards, it emphasized a studentôs understandings of 

the connections between cards. First, consider that equation-table pairings were 

very prevalent. Equations were the representations that were most unfamiliar to 

the students. This unfamiliarity meant that when students described how an 

equation belonged in a set, they did not have one point to communicate the 

connection, as they did for the previously described list examples, but had to 

search for the connection. Using the repetitive, back and forth motions between 

tables and equations, the students were arguing for or searching for more details 

in the representations to make their claim. Students linked details from the 

equations to height values and trends in the tables. As a simple example, Eliza 

said, in describing how the FIL0-equation belonged with the FIL0 set, ñthereôs a 

two and these ï it goes by two,ò passing her pointing finger between the FIL0-

table, FIL0-equation, and back again. Her focus was resting not sequentially on 

one representation and then the next, but hanging in between the two, as 

evidenced by the back and forth movements of her finger as she spoke. Whether 

this discourse strategy applied to an equation and table, table and graph, or some 

other combination of cards, the focus of attention was broadened from details of 

one representation to thinking about the commonalities of details among multiple 

representations.  
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Second, a characteristic of episodes coded blurred integration was that 

students did not describe all the features of the cards they were touching together. 

For example, McKenzie was describing how her partnership put together the 

constant set and said, ñSo, we just decided that it would make sense for the five 

like not changing and stuff.ò She touched three representations from that set ï the 

CON-equation, the CON-graph, and the CON-table ï as she spoke that phrase, 

physically connecting the three cards. However, she did not distinctly describe 

features of any one of the cards. The listener (or reader) could infer that at least 

one of the representations showed ñnot changingò to McKenzie, but it wasnôt 

clear which one. Similarly, her terminology ñthe fiveò probably referred to the 

equation y = 5, because she was touching that card when she said it, but she also 

quickly moved her finger across the other three representations, so there is a 

possibility that ñthe fiveò referred to the set of constant cards. To a listener and 

even to McKenzie herself, her talk and touch suggested that the three 

representations are all part of ñthe fiveò and all show ñno change.ò In summary, 

the gesture used in blurred integration put the focus of attention on more than one 

card within a set. This was a useful tool for the student in terms of communicating 

a connection between cards with gesture, but it also created opportunities for a 

heightened awareness that the cards they were touching were connected.  

Bundled integration as a strategy to bring features of one representation 

onto another representation. As mentioned, an episode was classified as bundled 

integration when a student touched one card while saying features that were not 

on that card, but available from other representation cards. The combination of 
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talk and gesture was a literal stacking of one cardôs identifying features onto 

another card. Table 8-11 presents the distribution of bundled integration by 

function type. The card of focus was easily identified in the data, as the students 

were touching that card. Identifying the source for the stacked information was 

not quite as objective, as some features were common to more than one card. For 

example, the graph, table, and equation cards all contain the word ñheight,ò and 

both equation and table cards may have numbers in common, such as the value 

ñ3ò as the starting value in the table and the y-intercept in the equation. On the 

other hand, only language cards contained words like ñdraining,ò ñempty,ò or 

ñfull.ò It was assumed that students were most likely to be borrowing features 

from a card they had recently touched. A few simple examples of bundled 

integration discourse are shown in Table 8-12. 

 

Table 8-11  

Distribution of bundled integration by function including card of focus and likely 

source of stacked feature 

 Card of focus Likely Source   

 Eqn Tbl Gr Lang Eqn Tbl Gr Lang Total 

CON 0 0 0 0 0 0 0 0 0 

DRN 0 1 3 0 1 1 0 2 4 

FIL0 2 0 1 0 0 2 0 1 3 

FIL3 1 1 3 1 0 4 0 2 6 

Total: 3 2 7 1 1 7 0 5 13 
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Table 8-12  

Examples of excerpts coded bundled integration 

Student Excerpt Description of Code Application 

Jack This equation because it has 

the minus symbol and itôs 

draining down. 

While running his finger along the 

function line on DRN-graph, Jack 

used the vocabulary ñdraining downò 

from the DRN-language card.  

Brittany Since it has a minus sign 

that means like itôs 

subtracting 

Brittany talked about subtraction 

while running her finger along the 

function line on DRN-graph.  

Nan This one, it began empty but 

then it started to fill. 

Nan uses the vocabulary of the FIL0-

language card while she touched the 

height column of the FIL0-table 

card. 

 

As a more extended example of bundled integration, I will highlight 

Oliviaôs work discussing a mistake in her Function Puzzle artifact: the graph cards 

did not match the rest of the representations in the sets (see Figure 8-5). It began 

with Olivia discussing the FIL3 set (the rightmost column of Figure 8-5). She read 

the language card, ñThe water tank had a few feet of water in it when someone 

turned the hose on to fill it,ò then went on to justify the cards in her set. She began 

by highlighting the FIL3-table, directly below the FIL3-language and said, ñSo 

[FIL3-table] we knew it was filling, so it was getting higher,ò stacking the word 

ñfillingò from the language card onto the table card. She then compared the FIL3-

table to the FIL0-table, two cards to the left, ñWe noticed that this [FIL0-table] 

one was also getting higher.ò  
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Figure 8-5. Olivia Function Puzzle Solution 

 

Olivia then connected those two tables with their respective graphs from 

her solution. She said, ñBut we knew that this one [FIL0-table] started at two 

[FIL3-graph but glued as part of the FIL0 set] and this one [FIL3-table] started at 

ï three.ò When she got to saying ñthree,ò her finger was positioned to point at the 

DRN-graph glued in her FIL3 set, directly below the FIL3-table, but that graph 

started much higher than she expected, and she literally stabbed at the air on 

ñthree,ò having nowhere to go, no connection to make. After a pause, she 

acknowledged, ñWe messed up.ò Oliviaôs intention to stack the initial height 

value of the table onto the graph was confronted by a graph that did not match, 

which caused her to reconsider her Function Puzzle solution. 

Both blurred integration and bundled integration were discourse strategies 

that students used to describe connections between representation cards. Blurred 

integration broadened the object of focus from one representation card to two, 
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and bundled integration brought feature descriptions from one card onto another. 

In both classifications of integrate discourse strategies, students were considering 

two or more symbol systems. Using the stacked window analogy described in the 

theoretical perspective, it is as if the students were cognitively stacking multiple 

representations in considering putting the cards together.   

Results summary. Through the discourse strategies of list, eliminate, and 

integrate the students communicated how the representation cards within sets 

were connected in their Function Puzzle solutions. List was a strategy to establish 

a group of cards as a set without any additional description or justification. 

Eliminate was a strategy to discriminate among cards of one representation type 

to confirm which of those cards belonged in a certain set. Integrate was a strategy 

to describe connections between cards by integrating features of several cards 

together as a single object of focus. These reflections will be taken up in greater 

detail in the conclusions. 

Study 3 Conclusions 

At a minimum, the studentsô work with the Function Puzzle showed that 

they could make sense of function representations, even unfamiliar ones, and put 

representations together that all represented a common function. We have some 

evidence from this analysis as to how they did this work. Certainly, the table 

representation was used in most situations as a source of information to interpret 

other representations. We saw this clearly in Amandaôs repeated return to 

touching the CON-table card and reiterating the fact that it showed all fives in 

between describing each of the other constant cards. It was also evident across the 
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board in considering the two forms of the integrate discourse strategy. The table 

card was always used in blurred integration and was most likely the source of 

descriptions in bundled integration. Additionally, the other familiar 

representation, natural language, was used in considering other cards. Words that 

came exclusively from the language card, such as ñemptyò and ñfullò were used 

when students focused on another card, as described through bundled integration. 

The distribution of discourse strategy codes also gives us some insight into 

student reasoning about the function representations. Through the discourse 

strategies of list, eliminate, and integrate students communicated that the 

representation cards within Function Puzzle sets were connected. List was a 

strategy to establish a group of cards as a set without any additional description or 

justification. The listing of features or attributes indicated that students found the 

connections to be self-evident. This strategy was used on the sets students 

considered easier to figure out, the constant and drain sets. Eliminate was a 

strategy to discriminate among cards of one representation type to confirm which 

of those cards belonged in a certain set. Integrate was a strategy to describe 

connections between cards by integrating features of several cards together as a 

single object of focus. Those strategies were used more frequently on the less 

familiar representation types, graphs and equations, and on the two functions with 

positive covariation, the FIL0 and FIL3 sets.  

In both eliminate and integrate discourse strategies, students were 

considering more than one symbol system at a time, effectively stacking symbol 

systems in the manner described by Kaput, Moreno, and Blanton (2008). This 
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analysis demonstrated the complementary roles of touch and talk when students 

were considering two representations at once. Furthermore, although students 

were communicating connections among the representation cards, their 

communicative work most certainly echoed in their understandings about 

representing covariation and the concept of function, as ñ[t]hought is restructured 

as it is transformed into speechò (Vygotsky, 1987, p. 251, as cited in Wells, 2007, 

p. 264). Experiences like the Function Puzzle, where studentsô task is to interpret 

connections among representations of function help to establish their foundations 

for doing so.  
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9. Conclusions 

 Research efforts to get algebra recognized as an important longitudinal 

content strand for all K ï 12 students have come to fruition not only in position 

statements like the RAND mathematical study (2003) and NCTM Principles to 

Actions (2000, 2014) but also in nationally-recognized Common Core Standards 

(NGA Center & CCSSO, 2010). Importantly, research in young childrenôs 

capabilities in algebraic thinking continues to produce impactful results. Recent 

work has identified young (elementary) studentsô abilities to generalize their 

understandings of mathematical relationships (Blanton, et al., 2015a), and to do so 

using algebraic notation (Brizuela, 2015a, 2015b), sometimes using algebraic 

notation more adeptly than natural language (Blanton, 2015b). Importantly, these 

efforts emphasized that symbol use, whether algebraic notation, function tables, 

or other, is in service of focusing on mathematical relationships, not ñrote symbol 

manipulationò (Stephens, Knuth, Blanton, Isler, Gardiner, & Marum, 2013). 

 This dissertation complements those works by looking to a slightly 

different horizon. Knuth wrote, in the conclusion of his analysis of high school 

studentsô use of graphical representations, ñthe majority of students' work with 

functions is restricted to the domain of algebraic representations, and, as a 

consequence, students do not develop ability to flexibly employ, select, and move 

between algebraic and graphical representationsò (2000, p. 506). The Function 

Puzzle is a task where function representations are not products (Elia et al., 2006; 

Greeno & Hall, 1997), but environments to explore. The goal for that exploration 

is to notice and understand connections among the representations, an important 
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practice in the discipline of algebra (Brenner et al., 1997; NGA Center & CCSSO, 

2010; NCTM, 2010, 2014; RAND, 2003; Schoenfeld, 2008).  

Summary of Findings 

In the context of the Function Puzzle task, the 4th and 5th grade student 

participants in these studies put together sets of representations by function, even 

those representations that were unfamiliar. Some of the gathered evidence 

addresses the guiding question of this study, ñHow do students make sense of 

function representations and connections between them, even those 

representations that are unfamiliar?ò For example, students matched equations to 

other representations by considering the operations and constants in the equations. 

Addition was linked to filling in the language cards, trends of increase in the 

graph cards, and increasing values in the height column of table cards. Similarly, 

subtraction was linked to draining on the language cards, decreasing trends on the 

graph, and decreasing values in the height column of table cards. Non-zero 

constants were linked to specific words in the language cards (ñfullò and ñfew 

feetò), non-zero intercepts in the graph cards, and initial values of height that were 

not zero.  

 In their own right, these results are significant and interesting. Students 

made these connections with virtually no instruction, indicating that studentsô 

sense making, or use of their existing network of understandings, was sufficient to 

complete the task. Granted, the Function Puzzle is a highly scaffolded task. There 

are only 16 cards to consider and they all belong in the solution. Further, there is 

the constraint of including all four representation types in each final set. It is 



FUNCTION REPRESENTATIONS  161 

entirely possible that students attended to understandings of puzzle-solving in 

addition to understandings of mathematics and representations. The research 

questions addressed in this work, however, show evidence that students were 

doing important algebraic thinking in their interviews about the Function Puzzle.  

To review, the research questions for each study were: 

¶ Study 1: How did discourse during an interview, including utterances by 

the interviewer and utterances by the student, and interaction with function 

representations mediate the studentôs awareness of variable notation? 

¶ Study 2: How was studentsô noticing of varying quantities associated with 

their reasoning about algebraic notation?  

¶ Study 3: What discursive strategies emerge in discussing multiple 

representations of functions and how do these strategies emphasize 

connections among representations? 

 Each of these questions examines discourse in an interview with a distinct 

lens. In Study 1, specific word choices and language use are related to shifts 

within the interview of the studentôs understanding of variable notation. In study 

2, student discourse is used as a proxy for student noticing. In study 3, recurrent 

patterns of discourse are noted as ways of describing connections among function 

representations and emphasize those connections to the benefit of the speaker. I 

will briefly review the results of each study. 

 Several students in Study 1 were noted as not saying the independent 

variable when they read the equation cards. Kara, the case study participant, was 

one of those students. I provided evidence that Kara developed a new awareness 
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of variable notation over the course of the interview. In her eight minutes of 

completing and justifying the Function Puzzle, Kara was able to intuit that 3w was 

a likely representation for ñthree times something,ò 2w was a likely representation 

for ñtwo times something,ò and she indicated a willingness to consider the 

dependent variable, y, as having multiple values, making some effort to give the 

independent variable a role in calculating values for the dependent variable.  

I argued that this new awareness was mediated by aspects of her interview 

in the following ways: utterances by the interviewer maintained Karaôs attention 

on sense-making around the equations and triggered Kara to use precision in 

justifying her answers, which led her to say the independent variable out loud. 

That talk then seemed to impact her interpretation of the dependent variable as 

potentially having multiple values. Finally, Kara worked to interpret the values in 

the data tables by considering the formats of the equations. 

Exploration of studentsô interpretations of algebraic notation continued in 

Study 2. In half of the 5th grade interviews (four interviews out of eight) the 

students reasoned dynamically (Oehrtman et al., 2008) about covarying 

relationships between time and height represented on the Function Puzzle cards. 

What was common to these four students and in contrast to the other four students 

was their noticing of both the varying quantities, time and height, in other 

representations. These four students had a much higher frequency of remarks 

about two varying quantities ï 13.7% as compared to 2%. Further, they were the 

only ones who made quantitative remarks about the relationships between two 

varying quantities.  
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I argued this connection between their noticing of covarying relationships 

in the tables and their use of algebraic notation is evidence of their looking 

through (Kaput et al., 2008) the tables as symbols in a symbol system to a 

mathematical object ï the function. Making covariational connections like these 

have been identified by Oehrtman and colleagues (2008) as linked to 

demonstrating proficiency on function tasks, which indicates experiences with 

activities like the Function Puzzle could have positive effects on studentsô 

mathematical sense making as it relates to algebraic proficiencies.  

The same eight interviews were the basis for the discourse analysis in 

Study 3, an analysis which used the distribution of discourse strategies list, 

eliminate, and integrate to explore studentsô reasoning about the function 

representations in the Function Puzzle. I argued that eliminate and integrate were 

discursive strategies whereby students examined more than one symbol system at 

a time, effectively cognitively holding the two symbol systems together, 

experiencing the ñnotationally rich web of representationsò (Kaput, 1991, p. 61). 

List, in turn, seemed to be used to describe those sets of cards students found be to 

self-evident. 

Across both Studies 2 and 3, the function tables seemed foundational to 

studentsô reasoning about the covarying relationships represented on all the 

function representation cards. In Study 2, quantitative remarks about two 

covarying quantities were made in referencing the table cards, and those kinds of 

remarks cooccurred with expressions about the mechanics of algebraic notation 

syntax. In Study 3, it was noted that the table card was always part of discourse 
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that integrated more than one representation card. This evidence reinforces the 

findings of other research that function tables are an instrumental organizing tool 

for young studentsô reasoning about mathematical relationships (e.g., Blanton & 

Kaput, 2011; Brizuela & Lara-Roth, 2002; Martí, 2009). 

Although algebraic notation was the focus in Studies 1 and 2, the 

significance of studentsô reasonings about the graph cards, the other unfamiliar 

representation, should not be underestimated. In Study 2, studentsô qualitative 

remarks about two varying quantities were usually in reference to graph cards.  

These kinds of ñglobalò interpretations of graphs (Leinhardt et al., 1990, p. 9) 

have been noticed as important to considering graphs as representing 

mathematical objects, rather than as ña collection of isolated pointsò (Leinhardt et 

al., 1990, p. 11; see also Schoenfeld et al., 1993). In Study 3, graphs were 

frequently part of the discursive strategies eliminate and integrate, through which 

students considered multiple symbol systems at once.  

Implications 

In closing, I will situate the Function Puzzle (and similar activities) in 

studentsô understandings about mathematical relationships. The Function Puzzle 

is at once a simple and complex task. Simple because it is highly scaffolded: the 

represented functions have disparate slopes making them distinguishable from 

each other and the task goal of connecting function representations is emphasized 

by the color coding of the cards by representation types. At the same time, it is 

complex: considerable information about the represented functions are presented 

in concise forms and in less familiar formats like graphs and equations. It also 
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aligns with the RAND mathematical studyôs direction that representing functions 

in ñtabular, analytic, and graphical formsò is an expectation of algebraic 

proficiency in all students.  

Finally, the Function Puzzle is not unlike the currently popular Notice and 

Wonder ® instructional protocol (Retrieved from http://mathforum.org/pow/ 

noticewonder/, February 2018), where students are presented with potentially 

unfamiliar mathematical problems, contexts, or representations. Through asking 

ñWhat do you notice?ò and then ñWhat do you wonder?ò, teachers gain insight 

into student understandings and hopefully pique studentsô curiosity about 

mathematical situations. With the Function Puzzle, students have considerable 

freedom to put together commonalities that they notice and wonder about aspects 

of these representations that are unfamiliar. What the Function Puzzle provides is 

ñjumping into the deep endò that Chazan and Yerushalmy ponder (2003, p. 132), 

whereas the CCSS encourages caution. The kinds of discussion that happened in 

one-on-one interviews here could be classroom discussion. The discoveries of the 

nine students showcased in the empirical chapters (6, 7, and 8) could be leveraged 

and augmented in a classroom situation.   

For the reasons stated above, I feel strongly that multiple representation 

activities like the Function Puzzle should be a part of studentsô early mathematical 

education, particularly as algebra is now a longitudinal strand in all studentsô 

education. The Function Puzzle seems to provide an environment that fulfill s 

Nesherôs description of teachers of mathematicsô two main needs: ñ(a) the need 

for a young child to construct his knowledge through interaction with the 
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environment, and (b) the need to arrive at mathematical truthsò (1989, p. 199 as 

cited in Ball, 1993, p. 160). As presented in this dissertation, a range of students 

can successfully put the Function Puzzle representations together by mathematical 

relationship and use sense making and their early ñsense for functionsò 

(Eisenberg, 1992, p. 153) to engage in this multiple representation environment.  

Based on these and other study findings, much could be learned from 

implementing these activities in grade bands beyond the current analyses with 4th- 

and 5th-grade students. The topics of functions and multiple representations of 

functions are explicitly included in the CCSS for middle school students (6th 

through 8th grades; NGA Center & CCSSO, 2010), and other early algebra work 

has shown that younger students are capable of functional thinking and engaging 

with algebraic notation (Blanton, 2015a, 2015b, 2017; Brizuela, 2015a, 2015b; 

Brizuela & Earnest, 2008; Carpenter et al., 2003). Would Function Puzzle-like 

activities help middle school students develop understandings about the concept 

of function? Would early elementary students learn to connect these forms of 

representation from Function Puzzle-type activities?  

Limitations and Next Steps 

 The presented results of these studies are not without limitations. The 

sample size is quite small, and I would not presume to claim that students had 

absolutely no previous exposure to the less familiar representations like equations 

with algebraic notation and Cartesian graphs.16Additionally, it could be argued 

that the interview style should have gone deeper into exploring studentsô detailed 

                                                 
16 Students claimed to be unfamiliar with both equations with algebraic notation and with 

Cartesian graphs but they engaged with those types of representations with relative ease, which 

makes me unwilling to claim they were completely unfamiliar with these representations. 
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understandings of the function representations, an artifact of the data that I can not 

undo at this point.  

Along these lines, Study 1, which was accepted as a Qualifying Paper in 

2014, focused on an artifact of that set of interviews ï studentsô not saying the 

independent variable when they read the equation cards. In a sense, Study 1 

looked at rather than looked through the function representations in that it did not 

explore Karaôs understandings of varying quantities. There was some evidence 

that she was willing to consider multiple values for the letter representing the 

independent variable, but the study did not explore how she interpreted algebraic 

notation as a representation of relationships between covarying quantities. In 

contrast, there was only one student participant from Studies 2 and 3 that did not 

say the independent variable. Was this difference due to changes in the equation 

card formats and functions, as described in Chapter 4, or was it due to a different 

curriculum experience between the two schools or a change in the interview 

content and style? Would I have been able to explore looking at versus looking 

through if the students truly did not consider the independent variable letter part 

of the equation in the first place?  

 Even with these limitations, this dissertation makes substantive 

contributions to the research literature on young studentsô understandings of 

functions and function representations. Remembering Chazanôs and Yerushalmyôs 

question ñWhat are the relative merits of gradual immersion [in notions of 

function] versus jumping into the deep end?ò (2003, p. 132), I believe this work 



FUNCTION REPRESENTATIONS  168 

responds, ñWeôre not sure anymore,ò which opens the door to more exploration of 

multiple representation environments with young students.  

 There is much that is left unfinished in these three short studies. There is 

the opportunity to explore the intricacies of student reasoning about each function 

representation and the connections between them, taking a more microgenetic 

look to their understandings like was done in Study 1. In particular, studentsô 

developing understandings of Cartesian graphs was left unexplored in these 

studies. As mentioned above, students claimed to be unfamiliar with these 

representations, but seemed to already understand how increase, decrease, and 

non-zero starting points are represented in them. Within the 4 x 4 Function Puzzle 

framework, there are limitless permutations of contexts and functions to use in 

these cards. The multiple-representation, card-sorting format is available to a wide 

range of sophistication.  Finally, there is an opportunity to consider a Function-

Puzzle-like activity as an opening task in a more extensive classroom teaching 

experiment for elementary students and algebra, to explore the significance of 

accessible multiple representation activities to young studentsô mathematical 

education.  

In Closing 

Overall, these analyses confirm that students have powerful abilities to do 

algebraic sense makingðsense making around algebraic symbol systems. 

Carraher, Schliemann, and Schwartz point out, ñTeachers need to introduce 

unfamiliar terms, representations, and techniques, despite the irony that in the 

beginning students will not understand such things as they were intendedò (2008, 
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p. 237). Absolutely. And yet, the work of the students presented here show that 

ñdisciplinary engagementò ï ñsome contact between what students are doing and 

practices of a disciplineôs discourseò (Engle & Conant, 2002, p. 402 ï 403) ï has 

the potential to emerge from these vague beginnings. Thatôs what sense making, 

and in this case, ñsense making related to symbolizationò (Schoenfeld, 2008, p. 

482) is all about.  
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PILOT INTERVIEW PROTOCOL  

Elementary Student Ideas about Functions  

PRE. (Before turning on video) I would like you to pick a pretend name to use in 

the video. What name would you like to choose? (turn on video) 

CARD TASK: Materials: 16 function cards with 4 kinds of representations (table, 

graph, equation, natural lang) for 4 functions;  pencil & paper 

1. Show cards with function representations.  These are different ways of 

showing relationships Show the different types of cards without naming 

them. Encourage the student to supply the name for the different 

representations(i.e.: There is this kind (gesture or hold up). Have you 

worked with these before? What would you call something like this?  

2. The idea is for you to find a matched set of cards: one of each kind of 

card that goes together. You are free to ask me any questions that 

might help you put the set together. There are actually different ways of 

doing this task, so you have a lot of freedom in how you put things 

together. Do you have any general questions before you start? 

3. Some people like to work silently, while others like to talk as they pull 

their ideas together. It is helpful to me if you talk as you think about 

ǇǳǘǘƛƴƎ ǘƘŜǎŜ ŎŀǊŘǎ ǘƻƎŜǘƘŜǊΣ ōǳǘ ŘƻƴΩǘ ŦŜŜƭ ƭƛƪŜ ȅƻǳ ƘŀǾŜ ǘƻΦ 
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4. Let the students put the cards together as sets. Encourage them to keep 

working for at least 5 minutes (10 minutes max?). If they appear to be 

stuck after 2 minutes (?), talk with them about what information the 

representations might be showing. 

REFLECTION ON CARD TASK ( & GRADUALLY MOVE TOWARDS DISCUSSION OF 

MATHEMATICS IN GENERAL) 

5. Describe your sets to me. 

6. Tell me how you did this task.  How did you decide what to put 

together? 

7. Were there cards that were easy to put together? Which ones? Why? 

8. What do you think of this task? If you were explaining it to a friend, 

how would you describe it? What is an activity that is similar? Look for 

opportunity to explore attitude, affect & technical 

aspects;(enjoyable,required thinking, would be helpful do put work on 

paper, mathematical) Do you do tasks like this in math class? 

MATHEMATICS: In the classroom 

10. Some XX- graders (year younger) are wondering what it will be like to 

do math in XX grade. What would you tell them about the kinds of 

things that you do in math? 

 

11. Do you work alone or as groups? 
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12. Suppose you are working in a small group and there is more than one 

answer. How do you know which is the right answer? Is it possible that 

more than one answer could be right? 

13. Does it seems that some kids are better at math than others? How can 

you tell? 

14. What are some of the ways your teacher helps students understand 

math better? Do you think it's important to her that you guys 

understand? 

MATHEMATICS: personal relationship 

15. Is the math you cover in class ever difficult for you? What are some of 

the ways you try to understand it? 

16. Do you get a lot of math homework? Is it something you do right away 

or do you dread doing it when you get home? 

17. Does working hard help you do well at math? 

18. Do you feel like you can explain your ideas and answers to your teacher 

or friends? 

19. What do you think about math in general? Is it enjoyable? Important? 

Useful? 

CLOSING    . 

20. Is there anything else you would like to tell me or show me? 

21. I need some more students to try this task. Which classmate should I 

ask? Why?  
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MAIN STUDY INTERVIEW PROTOCOL  

 
PRE. (Before turning on video) I would like you to pick a pretend name to use in 

the video. What name would you like to choose? (turn on video) 

 

0. INDIVIDUAL CARDS 

 

0.1 What information do you notice in this card that you can share with me?  

  rat-tbl 

  drn-grph 

  shft-eqn 

 

1.FUNCTION PUZZLE 

   

1.A. Why donôt we start by you describing how did you and your partner worked 

through this activity? 

 

POTENTIAL TOPICS:  

 ORDER:  Order that they put sets together or read cards 

 FAMILIARITY:  where have they used these cards before?  

 STRATEGY: how did they figure out which graph or equation? 

CLUES:  What were the clues that would put certain cards together? 

 BELONGING Were some cards put in groups because it didnôt seem like 

they belonged anywhere else or there was a set without a card? (NOT-

CHOOSING) 

 

 GRAPHS: Are they coordinating the axes, is it the slant of the graph, what 

does the slant mean and why?  ZERO/BEGINNING, UP/FILLING, 

DOWN/DRAINING  

 EQUATIONS: How do they understand the different pieces of the 

equations? OPERATIONS, NUMBERS, Y, N 
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 DIFFERENCE OF OPINION: how partnership worked 

  

1.B. FP FEEDBACK 

How would you describe this activity to a friend?  

What advice would you give to help them solve the puzzle?  

Do you have any suggestions for changing the activity? 

 

1.C. ERROR ANALYSIS by INTERVIEWEE 

 

Letôs say that another group put this set together. Do you agree with that set? 

  Rat-eqn, shift-word, shft-grph, rat-table 

 Why/why not? What would you change in the set? 

 

  Shft except drn eqn 

Why/why not?What would you change in the set?  

 How do you know that XX & XX donôt go together? 

 

2. ONE SET FUNCTION PUZZLE 

 

 Have 5th graders try the one-set function puzzle.   

(spend less than 5 minutes) 

 

3. INTERPRET 

 This activity did not have a word statement about what was going on. Did 

that matter when you guys were working on the questions? Did you have a 

context you were thinking of when you did the activity? 

 

did they use yellow or blue more often 
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 explain marks on the representation pages 

 

 if tank started at zero, what does their answer mean? 

 

 show the way they figured out D8/D9 ï REM ROSE 

 

4. OVERALL FEEDBACK  

How would you describe the difference between the FP and the interpret 

activity? 

How are they similar, how are they different? 

What did you think of the activities we did?  

 Which ones would you do again? Do you have any suggestions for the 

activities?  

 

 

CLOSING    . 

22. Is there anything else you would like to tell me or show me? 
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Appendix B Interview Transcripts 
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KARAôS TRANSCRIPT  

[01:27.26] NOTES: Found a match 

[01:56.08] NOTES: adds equation;  

[01:56.08] NOTES: *****FIRST SET; describes set. {G-A, Y-A, P-A, O-A} ***** 

[01:58.04] INT: OK, describe the set for me. 

[02:03.12] Kara: Um, the water does height does not change [reading G], does not change [run finger down 

right-hand column (values of seven)], does not change [run finger along horizontal line on graph], and, uh, 

the height is seven [with emphasis, running finger down values of seven in the table], so "y = seven" 

[touching each symbol of the equation as she reads it]. 

[02:10.26] NOTES: Int pulls set A to the side; she speads out Y, spreads out P, drags P-B closest to her, 

pulls G-B out (which happens to be closest G to her); looks at Y-D (closest; could be reading values in table), 

counts tick marks 

[02:54.25] NOTES: She spends a lot of time counting the tick marks on P-B, comparing to Y-D; Y-D is the 

closest table to the set she has pulled together. add Y-D to set, compares to P-B 

[03:06.63] Kara: I think this so far...  

[03:10.15] INT: OK, Alright. 

[03:15.00]  Kara:  The "y" [touches O-B (furthest from her)] equals the height [touches the word 

"height" on Y-D], right?    

[03:18.00] INT: Um, Yup. It does. 

[03:23.04] Kara:  [Touches O-D (closest), O-C (middle) and considers O-C for a long time.] 

[03:32.00] Kara:  This one [O-C; picks up and holds up to set A, to the side] could also go with that, 

because "y = 3 + 4". 

[03:37.00] INT: 3 + 4... Yup. Except that there's that "w" in there. 

[03:40.00]  Kara:  Yeah.  ...[touches O-C again, almost picks up, moves to O-B (furthest)] 

[03:51.00]  Kara:  I think this is a match. [adds O-B] 

[3:52] NOTES: ***** SECOND SET; set is {G-B, P-B, Y-D, O-B} ***** 

[03:55.00] INT: OK. So, describe the set to me. 

[03:57.00]  Kara:  Um. [Reads G-B] "The water tank began empty and someone turned the hose on to fill it." 

So it began empty [finger on bottom left corner of graph P-B] and then, it got filled [runs finger up the line of 

the graph]. 'Cuz all of these either began fille- full or at least a little bit full. [looking at and touching P-C, P-D 

for comparison] 

[04:11.00] INT: I see. Yup. That would make sense, OK. 

[04:13.00]  Kara:  And, um, this [touching Y-B], it goes up to the eighth one [graph P-B has eight tick marks 

on axes 8th line].  

[04:19.00]  INT:  Yup.  

[04:21.00]  Kara:  So... 

[04:22.00] INT: On both of 'em, OK. 

[04:24.00]  Kara:  And that's- that's what I was thinking for that [Y-D, pointing at value time=8], too. [little huff 

of air (doubtling own proposal?)  

[04:28.00] INT: I see, OK. 

[04:29.00] Kara:  And, I don't know how I got that. [Laugh] [covers equation card O-B; gesture reinforcing 

her statement.] 

[04:32.00] INT: Alright. Um. OK.  

[04:35.00]  Kara:  [Touching Y-D with left hand while right hand is on O-B (she is referencing Y-D to remind 

herself of the connection she made? PROXIMITY MATTERS] Actually, [switching out O-B with O-D, two 

hands] I think it might be this [O-D]...  

[04:38.00] INT: OK. And why do you think- Why did you make the change? 

[04:40.19] NOTES: talk about equation; she says that she's guessing a value for the RHS of equation 

[04:42.00]  Kara:  Because: 30 - 2w [touching symbols as she reads the equation]... 

[04:44.00]  INT:  Yup. 

[04:46.00]  Kara:  I'm gonna guess is either 28 or...like, it's probably one of these... so...  
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[04:50.00] INT: OK. Alright. Well here's what's interesting. When you said here, the tank began empty, 

someone turned on the hose to fill it. And you said, you said, here it is down at zero but, um, is this beginning 

empty? 

[05:09.25] Kara:  Oh, no. oooh. It has to be this one [Y-B] because this is the only one that begins empty. 

Wait. This is the beginning? [statement/question, not a query, necessarily] 

[05:22.00] INT: Tell me what you think. Like- See if you can reason through if that's the beginning. 

[05:28.00]  Kara:  It's multiplied by three every time. [the rows of Y-B] 

[05:34.00]  Kara:  The height is multiplied by three every time. AND this [O-D] wouldn't make any sense. 

So I think it would be this [O-B] because it's multiplied by three every time. ["it's" refers to the "w" in 

"y=3w", but she does not say that] 

[05:42.00] INT: OK. Great. Alright, let's put this set to the side. and see if you can make the next two. Well, I 

know you CAN... (laughs) 

[05:49.08] Kara:  She works on set; Touches G-C, O-D (proximity); draws P-C over to pair with G-C. Inserts 

Y-C between G-C and P-C; touches O-D, O-C (further), chooses O-C 

[06:07.00] NOTES: ***** THIRD SET; in order {G-C, Y-C, P-C, O-C} ***** 

[06:10.00] INT: OK. Tell me about this set.  

[06:11.00]  Kara:  Um. [Reads.] "Water tank had a few feet of water in it." ..Few feet [pointing at row (0,4)] 

[06:16.00] INT: 'kay 

[06:18.00]  Kara:  And this one [Y-D] starts with 30, and that's not a few feet. 

[06:20.00] INT: laughs. That's a lot 

[06:22.00]  Kara:  yeah. 

[06:23.00] INT: uh-huh. 

[06:25.00]  Kara:  uh. And this [P-C] starts at the first line, so it's only a few feet. 

[06:31.00] INT: Yup, ok. 

[06:32.00]  Kara:  And the "3 + 4" 'Cuz it's seven. ["it's" refers to row (1,7) in Y-C; has to skip OVER P-

C to do this] 

[06:38.00] INT: OK. 

[06:39.00]  Kara:  Yeah. [laughs, somewhat unsure] 

[06:40.00] INT: alright. So, you're going, um... "3 + 4" so... can you explain it to me again? 'Cuz I don't want 

to put words in your mouth. 

[06:49.00]  Kara:  The "3w + 4" [touching O-C] I was thinking because of the seven there [Y-C]. 

[06:53.00]  INT:  OK. Yup. Alright, that  

[06:56.00]  Kara:  Or, I could do the 30 - 2 [O-D] because of the 28 there [Y-C]. 

[06:58.18] NOTES: Does she make the change because I asked her to explain her thinking with "3+4"? 

THIRD SET REVISED 

[07:00.00] INT: Mmmm. So, which one do you think works- which one do you think makes more sense? 

[07:04.00]  Kara:  Probably ...this... one [O-D] 

[07:07.00] INT: OK. Alright. So let's pull those {G-C, Y-C, P-C, O-D} to the side. And then, now you're left 

with these four... 

[07:12.20] NOTES: ***** checking FINAL SET {G-D, Y-D, P-D, O-C} ***** 

[07:12.21] Kara: I want to see if those make sense.  

[07:14.26] INT:  Yeah, right. And if they don't, you can change out anything. 

[07:19.03] Kara:  Well, that makes sense [thumb on Y-D], and then [finger on G-D] "someone pulled the plug 

out to drain it." That can't make sense, because it ends in 14. They ALL end in, like, a higher number. None 

of them end in zero. 

[07:41.07] Kara:  [thumb on graph line, counting with fingers] so... it could be eight... It's twenty six plus 

eight...  

[07:59.00]  Kara:  I think these all make sense 

[08:02.08] NOTES: Int bring attn to equation 

[08:01.00] INT: OK. How about can you, um, tell me how the equation fits in with the description? like, 

the rest of the descriptions? 

[08:08.00]  Kara:  Oh. Um.  
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[08:22.00]  Kara:  I don't know. [Laugh.] 

[08:24.00] INT: Mkay. Well you were debating between these two, so let's look at this- these two together 

[pulls set {G-C, Y-C, P-C, O-D} above "last set"]. and see. 

[08:33.00] Kara: [Before talking, switch out O-C, pull down O-D]. This one makes more sense down 

here. 

[08:36.00] INT: Ok. And why is that? 

[08:37.00]  Kara:  [Moves O-C into row with other C cards] Because ... um.. "30 - 2w" equals 28 and 2w 

could be like... it could be like two times two, so, four, and ... "24" and "14"... [she puts her finger on 

these numbers from the LH column of Y-D.] 

[08:51.00] INT: 'kay 

[08:52.00]  Kara:  Or it could just be plain two, and "22" [she puts her finger on this number from the LH 

column of Y-D.] 

[08:56.00] INT: Yup. 

[08:57.00]  Kara:  Or it could be times three, "26" 

[09:00.00] INT: I see. Ok. And then, does this one [pointing at O-D] seem to work with this [run finger back 

and forth above {G-C, Y-C, P-C}]? 

[09:06.00]  Kara:  Yes. [touching O-C with thumb] Because um, the "7" [touching Y-C] as I said earlier.  

[09:12.00] INT: Yup. ..Yup. Great. OK! So let's pull all these back together. You did a great job. I didn't tell the 

other girls, but these, um, have you everdone problems like this before? A little bit? But these problems are, 

arrree, sort of like, middle school problems? So, they're meant to be kind of tough. Um. Which set was the 

easiest to get together? [laughs as Kara reaches for the constant set]. 

[09:38.06] INT: This one definitely [referencing Set A with her hand]. 

[09:40.23] INT: And tell me why.  

[09:41.25] Kara:  Because it says, "the water height does not change." [thumb on G-A] It's all sevens [finger 

runs down Y-A]; it does not change, and it changes in all of these [runs finger up and down along RH column 

of other tables]; and it's a straight line so it doesn't change [finger on horizontal line of P-A, looks at 

interviewer for emphasis], and [Reads] "y= 7"; Seven. [points at LH column of Y-A]. 

[09:54.11] INT: Yup. Well, it's funny because before I even explained- finished explaining, you knew that 

those go together. So I figured that was the one you were going to pick. And then which were the most- were 

challenging? 

[10:06.14] Kara:  I think, probably these two [points at rows of cards C & D]? were the most challenging? This 

one [points at row B] was like, in the middle. 

[10:13.04] INT: OK. That makes sense. Can you- is there anything in particular that made it challenging?  

[10:17.26] Kara:  Um. Yes, because I couldn't figure out the equations and these [Y-C & Y-D] were 

kinda tough, too. 

[10:27.29] INT: Yeah. OK. Great. Um- Do you think there'd be other kids in your class that would enjoy trying 

the puzzle?  

[10:36.17] Kara:  Mhmm. [affirmative] A couple. yeah. 

[10:38.18] INT: Good! We'll see. I hope everybody does. So far, everyone has liked it. Alright, I'm gonna shift 

gears a little bit here and just ask, um, about math in general? Um.. Let's say that someone from Mrs. O's 

class is coming up to Mrs. H's class next year and they were kind of wondering what math in fourth grade is 

like. How would you describe it? 

 

NANôS TRANSCRIPT 

[00:00:00.00] Notes: 5th grade, "Nan" FUNCTION PUZZLE 
[00:01:53.03] Interviewer: Nice. Ok. Um, and then, actually, I think I have your work here. Yeah. So, oh my 

goodness. Um. Alright. What was the easiest set to put together.  
[00:02:20.09] Student: I think the tables.  
[00:02:21.15] Interviewer: The tables were the easiest to put together? OK. Um, and why is that?  
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[00:02:26.15] Student: I don't know. For me, since, it just like, um, it shows me like, it's a minus sixteen here 
and it's like going down by sixteen.  

[00:02:37.23] Interviewer: OK. So if you were trying to figure out like which equation belonged with which set, 
you would use the table to do it? 

[00:02:47.12] Student: mhm. 
[00:02:48.20] Interviewer: Um. And what are the clues like on this one. What are the clues that those two go 

together? 
[00:02:57.28] Student: Well, um, wait, between these two?  
[00:03:00.29] Interviewer: Yeah. 
[00:03:01.25] Student: Um. I actually don't really know. Because we didn't figure out these the equations for 

this one. we kind of like paired them up and then we paired these two together.  
[00:03:13.14] Interviewer: Oh! So, tell me how you did it.  
[00:03:14.14] Student: So, for this one, so, since it was two or three, one, two.. yeah, two, um, wait a second. 

Oh, never mind. We kind of. Wait let me read this. few feet of water when someone turned the 
hose on to fill it. so it had a few feet of water then someone turned the hose on to fill it. I just feel 

like cause like this isn't filling and this isnt' filling. 
[00:03:40.17] Interviewer: OK, alright. So, these two aren't filling, yeah, so let's just sort of walk, like pretend 

you were starting over again. Um. These two weren't filling. But you've thought these two were 
filling.  

[00:03:51.28] Student: But, it doesn't start with a few feet of water.  
[00:03:54.17] Interviewer: OK.  
[00:03:55.13] Student: That one does. 
[00:03:55.21] Interviewer: And how can you tell that this one doesn't start with a few feet? 
[00:03:58.23] Student: Because it starts all the way at the bottom and it goes up but this one starts at like two 

and then it goes up.  
[00:04:04.01] Interviewer: OK. And so, you would say, first, you maybe connected the word statement here, 

about filling, with a few feet to this graph?  
[00:04:12.28] Student: mhm. 
[00:04:13.23] Interviewer: And then how did you get, how did you pick the table? 
[00:04:16.17] Student: Um we don't really know. I don't think we did the table correct because we didn't really 

see any like, cause these three like they went with it. This one like, it became empty but then 
someone became like like then it - it began empty but then it started to fill. So that one made more 
sense and this one the water height doesn't change. It doesn't change, so that one made sense. 
and this one it goes down cause someone drained it. So that makes sense, but we didn't really see 
how that one made sense.  

[00:04:46.16] Interviewer: Alright. so you- so you figured out this table belonged because the other ones 
belonged somewhere else? 

[00:04:53.09] Student: Yeah. 
[00:04:54.04] Interviewer: Oh. Ok. That makes sense. Um, and then, how about , and then you said sort of a 

similar thing with the equation? 
[00:05:04.14] Student: Kind of. Um, we we got this one, I think we got this one five because I don't even 

know we just said five is five. like the height- we were thinking like height equals five?  
[00:05:15.18] Interviewer: mhm.  
[00:05:18.10] Student: sorta thing 
[00:05:19.02] Interviewer: Yup. mhm.  
[00:05:20.25] Student: And then this one, um, the water tank was full and someone pulled out the plug to 

drain it. Since it was a minus sign we thought that might mean like that it's like taking down the 
height of the water.  

[00:05:34.04] Interviewer: mhm. mhm. So it made sense that this went with this. And so then you were - then 
you had sort of these two that you had to put with a set.  

[00:05:42.10] Student: Yeah.  
[00:05:43.23] Interviewer: OK. Um, is there anything in these two that indicates that it's filling? 
[00:05:49.27] Student: Um. Filling. This - I think this one means filling cause dividing is like  splitting. But it's 

not actually taking. 
[00:05:59.04] Interviewer: Oh, but I think this is actually a plus. I think it's jut-  
[00:06:01.09] Student: Oh, that is? 




