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Abstract 

Earthquake induced soil liquefaction is an important secondary hazard during 

earthquakes and can lead to significant damage to infrastructure. Mapping 

liquefaction hazard is important in both planning for earthquake events and 

guiding relief efforts by positioning resources once the events have occurred. This 

dissertation addresses two aspects of liquefaction hazard mapping at a regional 

scale including 1) predictive liquefaction hazard mapping and 2) post-liquefaction 

cataloging. First, current predictive hazard liquefaction mapping relies on detailed 

geologic maps and geotechnical data, which are not always available in at-risk 

regions. This dissertation improves the predictive liquefaction hazard mapping by 

the development and validation of geospatial liquefaction models (Chapter 2 and 

3) that predict liquefaction extent and are appropriate for global application. The 

geospatial liquefaction models are developed using logistic regression from a 

liquefaction database consisting of the data from 27 earthquake events from six 

countries. The model that performs best over the entire dataset includes peak 

ground velocity (PGV), VS30, distance to river, distance to coast, and precipitation. 

The model that performs best over the noncoastal dataset includes PGV, VS30, 

water table depth, distance to water body, and precipitation. Second, post-

earthquake liquefaction cataloging historically relies on field investigation that is 

often limited by time and expense, and therefore results in limited and incomplete 

liquefaction inventories. This dissertation improves the post-earthquake 

cataloging by the development and validation of a remote sensing-based method 

that can be quickly applied over a broad region after an earthquake and provide a 

detailed map of liquefaction surface effects (Chapter 4). Our method uses the 

optical satellite images before and after an earthquake event from the WorldView-

2 satellite with 2 m spatial resolution and eight spectral bands. Our method uses 

the changes of spectral variables that are sensitive to surface moisture and soil 

characteristics paired with a supervised classification.  
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1 Introduction 
 

1.1 Liquefaction hazard mapping 
 

Earthquake induced soil liquefaction can lead to significant infrastructure damage 

due to lateral ground movements and vertical settlements. Mapping liquefaction 

hazard (e.g., liquefaction triggering and surface effects) at a regional scale is 

important in both planning for earthquake events and guiding relief efforts by 

positioning resources once the events have occurred. 

Liquefaction hazard is generally evaluated on two scales: site specific scale 

and regional scale. On the site specific scale, the liquefaction hazard is most often 

evaluated using the simplified procedure based on soil data obtained from in-situ 

geotechnical soil testing as well as stratigraphy. The simplified procedure was 

originally developed using standard penetration test (SPT) N-values to quantify 

soil density (Seed and Idriss 1971), and has been adapted for cone penetration test 

(CPT) data (Juang and Jiang 2000; Robertson and Wride 1998), and shear-wave 

velocity (Vs) data (Andrus and Stokoe II 2000). On a regional scale, liquefaction 

hazard is often mapped based on surficial geology maps. One of the first attempts 

at mapping the liquefaction susceptibility of soils was developed by Youd and 

Perkins (1978). The Youd and Perkins approach and subsequent liquefaction 

hazard mapping approaches (Youd and Hoose, 1978; Brankman and Baise, 2008) 

all use geologic characteristics such as age of deposition, depositional 

environment, geologic history and ground slope to classify surficial geologic units 

into quantitative susceptibility classes, such as high, moderate or low.   

Liquefaction mapping can be classified into predictive liquefaction hazard 

mapping and post-liquefaction mapping catalogues. Prior to or immediately after 

an earthquake event, liquefaction hazard can be mapped using predictive methods. 

After a liquefaction event, liquefaction effects can be mapped and catalogued 

based on observations from field surveys or from remotely sensed images. 



3  

The objective of this dissertation is to improve current practice of regional 

liquefaction mapping in term of both predictive liquefaction hazard and post-

liquefaction mapping catalogues. This is achieved by 1) the development of a 

geospatial prediction model for global application and 2) the development and 

validation of a mapping procedure that uses remotely sensed imagery to map 

liquefaction surface effects. 

 



4  

1.2 Scope 
 

This dissertation is composed of three research papers. Following the 

introduction, Chapter 2 is a technical paper that proposes an approach that uses 

globally available geospatial proxies to predict the probability of liquefaction. The 

proposed method does not require detailed geologic maps and geotechnical data 

such as standard penetration test (SPT) or cone penetration test (CPT) results, and 

can be used for rapid response and loss estimation. The initial work summarized 

in Chapter 2 was based on mapped liquefaction surface effects from two 

earthquakes from Christchurch, New Zealand and two earthquakes from Kobe, 

Japan. Liquefaction surface effects were well mapped for each earthquake. 

Chapter 2 provides a proof-of-concept of the geospatial approach to regional 

liquefaction hazard mapping. Chapter 3 is a technical paper that extends the work 

in Chapter 2 and presents updated geospatial liquefaction models with improved 

performance and generality. This work improves on the previous model by 1) 

expanding the liquefaction database to 27 earthquake events across 6 countries, 2) 

addressing the sampling of nonliquefaction for incomplete liquefaction 

inventories, 3) testing interaction effects between explanatory variables, and 4) 

improving overall model performance. The updated models prove useful for 

global, near–real-time applications. Chapter 4 is a technical paper that proposes a 

method that applies change detection and classification techniques to remotely 

sensed imagery to document liquefaction surface effects. The motivation of the 

work presented in Chapter 4 comes from the challenge I faced in the development 

of the geospatial liquefaction models: the lack of spatially complete mapped 

liquefaction data catalogues. This work addresses the need for a low-cost and 

broadly applicable method to document liquefaction after an earthquake to 

complement and supplement field-based mapping. I develop a workflow that 

includes change detection using pre-event and post-event remotely sensed 
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imagery from the WorldView-2 satellite followed by a spectral classification, 

which can be used to detect liquefaction surface effects after an earthquake. The 

last chapter presents the summary and conclusions. 
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2 A Geospatial Liquefaction Model for Rapid 

Response and Loss Estimation1 

Abstract 

We describe an approach to model liquefaction extent that focuses on identifying 

broadly available geospatial variables (e.g., derived from digital elevation models) 

and earthquake-specific parameters (e.g., peak ground acceleration, PGA). A key 

step is database development: we focus on the 1995 Kobe and 2010/2011 

Christchurch earthquakes because the presence/absence of liquefaction has been 

mapped so that the database is unbiased with respect to the areal extent of 

liquefaction. We derive two liquefaction models with explanatory variables that 

include PGA, shear-wave velocity, compound topographic index, and a newly 

defined normalized distance parameter (distance to coast divided by the sum of 

distance to coast and distance to the basin inland edge). To check the 

portability/reliability of these models, we apply them to the 2010 Haiti 

earthquake. We conclude that these models provide first-order approximations of 

the extent of liquefaction, appropriate for use in rapid response, loss estimation, 

and simulations. 

                                                           
1 Zhu, J., D. Daley, L. G. Baise, E. M. Thompson, D. J. Wald, and K. L. Knudsen (2015). A geospatial 
liquefaction model for rapid response and loss estimation, Earthquake Spectra 31, 1813-1837. 
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2.1 Introduction 
 
Regional liquefaction hazard maps are valuable earthquake hazard products, yet they 

remain difficult to incorporate into rapid response, loss estimation, and emergency 

planning efforts. Current regional liquefaction mapping techniques rely heavily on 

surficial geologic maps to identify susceptible units (Youd and Perkins 1978, Holzer et 

al. 2006, 2009, Brankman and Baise 2008). Detailed (1:24K) Quaternary geology 

maps are an effective indicator of liquefaction in seismically active regions (Youd and 

Perkins 1978, Knudsen and Bott 2011). Some regions exposed to high seismic hazards 

have been able to invest in detailed geology-based liquefaction hazard maps, such as 

the San Francisco Bay Area (Holzer et al. 2006, 2009; Witter et al., 2006). But there 

are also many at-risk regions that have not been able to invest the resources necessary 

to develop these maps. Unfortunately, even where detailed geology-based liquefaction 

hazard maps exist, they are often not probabilistic and are not easily integrated into 

rapid response and loss estimation efforts. For rapid response and loss estimation, we 

need broadly available probabilistic liquefaction effects maps that can be integrated 

with event-specific shaking intensity maps such as those currently produced by the 

United States Geologic Survey (USGS) (ShakeMap; Worden et al. 2010) and 

produced immediately after an event occurs. Though some damaging earthquakes do 

not have losses due to liquefaction, it is useful to quickly identify those that do, and 

also to delineate the possible extent of the ground disruption. A map of areas of 

probable liquefaction is vital to critical lifeline utilities, port and harbor facilities, 

emergency managers, as well as financial industries (particularly insurance and 

reinsurance), since port and underground infrastructure damage can be both costly and 

can impact regional economies. 

Throughout this paper, we use the term liquefaction to mean surface 

manifestations of liquefaction, and our goal is to predict the areal extent of 

liquefaction. Recent work by Knudsen and Bott (2011) investigated the use of 

geologic and geomorphic layers for predicting liquefaction and found that liquefaction 
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sites have common attributes such as geologic age, depositional environment, slope, 

elevation, and distance to water body. Specifically, liquefaction tends to occur in 

young sediments, near water bodies, and on low, flat ground. The work by Knudsen 

and Bott (2011) was primarily based on a compilation of liquefaction case histories 

collected by researchers developing liquefaction models from site-specific 

measurements (e.g., Cetin 2000, Olson 2001, Moss 2003, Faris 2004, Kayen 2011). 

Knudsen and Bott (2011) found that 90% of liquefied sites in seismically active areas 

were located in geologic materials that were either Historical or Late Holocene 

surficial deposits; 73% of liquefied sites were either in artificial fill or near streams; 

and 67% of liquefied sites were at less than 10 m elevation. While the Knudsen and 

Bott (2011) study provided quantitative support for geospatial liquefaction variables, 

the analysis had two deficiencies that we overcome in this paper. First, the case studies 

over-sample liquefaction cases (i.e., there are few observations of non-liquefaction) 

resulting in a sampling bias. Oommen et al. (2011) demonstrated that the probabilities 

that result from logistic regression are biased when the data exhibit a sampling bias 

(i.e., the data do not uniformly sample the population). Second, their analysis did not 

provide a predictive model.  

We address the sampling bias issue discussed above by developing a liquefaction 

database from datasets that uniformly sample regions where liquefaction has and has 

not occurred. This marks a shift in liquefaction model development, which to date has 

focused on case history databases that are biased toward observations of liquefaction 

occurrence. This shift in modeling philosophy is possible because recent post-

earthquake data collection efforts combine field mapping observations with satellite 

imagery to create continuous maps of liquefaction surface effects (e.g., Cubrinovski et 

al. 2011, Green et al. 2011b). An early example of this was the 1995 Hyogo-ken 

Nanbu earthquake in Kobe, Japan where liquefaction was documented continuously 

throughout the greater Kobe region in terms of observed surface effects as well as 

horizontal and vertical displacements (Hamada et al. 1995).  
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To develop a global geospatial liquefaction model, we identify and validate first-

order proxies from broadly available geospatial data to obtain in-situ soil properties, 

such as the degree of saturation (or water table depth), depositional age, relative 

density, and grain size. Compared to the information that is available for a site-specific 

liquefaction assessment, the explanatory variables that we consider in this paper are 

relatively coarse proxies of the underlying physical parameters used to accurately 

model liquefaction. Thus, we do not expect to achieve a model that can explain the 

liquefaction features at a site-by-site scale. Rather, we seek a model that is unbiased 

with respect to the areal extent of liquefaction, which can therefore identify broad 

zones of heightened likelihood of liquefaction. This approach to liquefaction modeling 

is motivated by the need for a globally applicable liquefaction model and implicitly 

acknowledges that in order to achieve the desired spatial coverage some precision 

must be sacrificed relative to a traditional site-specific liquefaction analysis (e.g., 

Youd et al. 2001, Idriss and Boulanger 2008) or a detailed geologic analysis (e.g., 

Holzer et al. 2006, 2009; Witter et al., 2006).  

In this paper, we model liquefaction data from the 2010-2011 Christchurch 

earthquakes and the 1995 Hyogo-ken Nanbu earthquake. Our modeling strategy is to 

develop the model in Christchurch and Kobe where we have relatively complete maps 

of liquefaction and then to check the portability (or reliability) of the model by 

applying it to the 2010 Port-au-Prince, Haiti earthquake. In Haiti, some liquefaction 

occurrences have been mapped, though the presence/absence of liquefaction is not 

known with certainty throughout much of the region. We begin by reviewing the 

different datasets included in our analysis and then we discuss the explanatory 

variables that we compute for each region. We then describe the general modeling 

strategy, present the results of our analysis, and discuss the uses and limitations of the 

resulting models. 
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2.2 Study Areas 
 
Two of the three regions that we study in this paper are selected because the extent of 

liquefaction during recent earthquakes was accurately mapped with a combination of 

field mapping and aerial/remote imagery analysis. Christchurch, New Zealand and 

Kobe, Japan were both extensively mapped in a manner that constrained the spatial 

extent of liquefaction and nonliquefaction. We also include data from Port-au-Prince, 

Haiti, which was mapped in a more limited way, and so we only use these data to 

check the portability (or reliability) of our model (i.e., the data in Port-au-Prince are 

not used in the model building stage).  

The city of Christchurch is located in the Canterbury Plains on the east coast of the 

South island of New Zealand (Figure 1). The Canterbury Plains are bounded by the 

foothills of the Southern Alps to the northwest (outside of map extent) and Banks 

Peninsula to the southeast; Banks Peninsula was formed by an extinct volcanic 

complex. The region originally included swamplands, beach dune sand, riverine 

deposits, estuaries, and lagoons that were drained during European settlement (Brown 

and Weeber 1992, Brown et al. 1995). Consequently, the near-surface soil is mainly 

inter-bedded, loose Holocene aged silt, sand, and gravel (Green et al. 2011b). The 

groundwater table approaches the ground surface near the coast and becomes 

gradually deeper toward the west. As a result, the groundwater table in the 

Christchurch city region is shallow (within 1.5 to 2.0 m of the ground surface; 

Cubrinovski et al. 2011), and the groundwater table in Darfield is deep (greater than 

50 m; Environment Canterbury Regional Council 2012). Figure 1 displays the surface 

projection of the fault planes and epicenters for the two earthquakes that caused 

liquefaction in this region in 2010-2011. The epicenter of the M 7.0 September 3, 

2010 earthquake was near the town of Darfield, 40 km west of Christchurch. Although 

this earthquake ruptured multiple fault segments (Elliott et al. 2012), we use a 

simplified single fault model (Allen et al. 2008) for the analysis in this paper. Figure 1 

also includes the mapped extent of liquefaction for this event, which shows that no 
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Figure 1. Topographic map of the Christchurch, New Zealand region, showing the earthquake 
epicenters (yellow stars), fault surface projections (black rectangles), and observed liquefaction 
features (colored polygons). We use the simplified fault model from Allen et al. (2008) for the 2010 
earthquake and the Beavan et al. (2011) fault model for the 2011 earthquake.  

liquefaction was observed near the source, whereas liquefaction was observed in the 

Christchurch region. The epicenter of the M 6.1 February 22, 2011 earthquake was in 

Port Hills, 10 km southeast of the center of Christchurch. Although the Christchurch 

event has a smaller magnitude as compared to the Darfield event, it resulted in more 

extensive liquefaction throughout the Christchurch region, as shown in Figure 1, due 

to the closer proximity of the epicenter to the city, and thus the stronger ground 

motion.  

Relative to Christchurch, Kobe, Japan is located in a narrow (2-3 km wide) portion 

of the Osaka sedimentary Basin (Figure 2). It is confined between the Rokko 

Mountains and Osaka Bay. The sediment age generally decreases toward the coast and 

the coastal edge has been extensively filled, including several man-made islands such 

as Port and Rokko Islands. Most of the artificial land consists of sandy hydraulic fill 

(Huzita and Maeda 1985). The 1995 M 6.9 Hyogo-ken Nanbu earthquake caused 

extensive liquefaction of the artificial fill, greatly affecting port operations and 

commerce. We included a second, smaller M 4.2 Kobe event in our analysis, to ensure 
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that our dataset includes a set of observations from an event that did not cause 

liquefaction. This event occurred 5 km from Kobe on October 8, 2003. The epicenters 

of both events and the surface projection of the fault for the 1995 event (Wald 1996) 

are shown in Figure 2.  

The city of Port-au-Prince lies in the Cul-de-Sac plain (Figure 3), a nearly flat 

coastal plain (about 12 km wide) that is underlain by alluvial and marine-estuarine 

sediments, and reclaimed land (Lambert et al. 1987). The plain is confined between 

two mountain ranges. The January 12, 2010 M 7.0 earthquake struck the Port-au-

Prince region of Haiti 20 km west of the city of Port-au-Prince. The earthquake caused 

extensive damage, including liquefaction effects at the Port of Port-au-Prince. Many 

manifestations of liquefaction were observed in the vicinity of the North Wharf and in 

the alluvial plain surrounding the city of Leogane (Rathje et al. 2010). Post-earthquake 

geotechnical reconnaissance (Rathje et al. 2010, 2011, Green et al. 2011a) documented 

the locations of liquefaction-related ground failures shown in Figure 3. These 

observations were primarily along the coast and along the Riviere Grise in Port-au-

Prince. In contrast to Kobe and Christchurch, the spatial extent of liquefaction is not 

mapped in Port-au-Prince; the mapped points are known ground failures, but we 

cannot assign spatial extent to the observed features or assess that failures did not 

occur in other locations.  

2.3 Explanatory Variables 
 
There are three broad factors that contribute to the likelihood of liquefaction (Youd 

and Perkins 1978, 1987, Ishihara 1996): density, saturation (or water table depth), and 

dynamic load on the soil from an earthquake (both intensity and duration). Typically, 

the first two factors are measured on a site-specific basis using geotechnical logs and 

penetration data. However, in order to develop a model that is applicable for rapid 

response maps, loss estimation, and earthquake simulations, we must use simple 

proxies for these soil characteristics. In addition to the three primary factors listed 

above, liquefaction analyses often include the grain size distribution and geotechnical 
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Figure 2. Topographic map of the Kobe, Japan region, showing earthquake epicenters (yellow 
stars), fault surface projections (black rectangles), and observed liquefaction features (red 
polygons). The faults represented by the two polygons are both part of the 1995 Hyogo-ken Nanbu 
source model from the ShakeMap Atlas (Wald 1996), while the 2003 earthquake is treated as a 
point source.  

 

 

Figure 3. Topographic map of the Port-au-Prince, Haiti region, showing earthquake epicenters 
(yellow stars), fault surface projections (black rectangle; Allen et al. 2008), and observed ground 
failures (red circles). 
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index properties, such as plasticity index and water content. In this paper, we do not 

attempt to characterize these factors as part of the geospatial liquefaction model.   

Table 1 summarizes the relationships between the geospatial proxies (the rows of the 

table) and the physical factors that affect liquefaction (columns). The dots in the cells 

indicate if the proxies are considered appropriate for the different factors. Solid dots 

indicate the factor/proxy pairs that we focus on in this paper. Note that many of the 

topographic/geospatial parameters may be predictors of both soil and hydrologic 

conditions. We discuss these factors and their inclusion in the modeling process in 

detail below.  

Table 1. Proxy-to-factor relationships.  

Proxy Density Saturation Loading 
Roughness (rock vs soil) ●   
VS30 (from topographic slope) ●   
dc ● ●  
ND ● ●  
Soil type (from satellite imagery) ○   
dwb ○ ○  
zwb ○ ○  
dr ● ●  
CTI  ●  
PGA from GMPE   ● 
PGA from ShakeMap   ● 

PGV from ShakeMap 
  

○ 
PGA from simulations   ○ 
Moment magnitude   ○ 
Magnitude Scaling Factor (MSF)   ● 

● Relationship used in this paper.  
○ Relationship not investigated in this paper. 

 

We map soil density using a two-step process. The first step differentiates between 

soil and rock. Much of the area that experiences strong shaking is rock, where 

liquefaction cannot occur, and therefore it is important to handle the rock differently 

than soil. We use surface roughness to differentiate soil from rock, although 

topographic slope could also be used for this classification. We estimate the roughness 

as the standard deviation of the elevation in a 3x3 pixel window, which is a 

modification of the Riley et al. (1999) method.  
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The second step is to characterize soil density, which is related to the shear-wave 

velocity (VS) and geologic age. These two parameters are also not widely available at 

the global scale. Previous work by Wald and Allen (2007) and Allen and Wald (2009) 

found that topographic slope can be used as a first order proxy for the average VS in 

the upper 30 m (VS30). We therefore adopt VS30 derived from the Wald and Allen 

(2007) approach as a soil density proxy. Within coastal regions, the distance from the 

coast (dc) generally correlates with the age of the sediment because older and denser 

sediments are generally located farther from the coast due to the transport and 

depositional process of marine sediments. Young, loose sediment is also found along 

large rivers. Because coastal sedimentary plains exhibit large variations in extent, we 

normalize the distance to the coast by the size of the basin; we define normalized 

distance (ND) as the distance to the coast divided by the sum of the distance to the 

coast and the distance to the inland edge of the sedimentary basin. We use ND as a 

second proxy for soil density/age, and it could also be considered a proxy for 

saturation because the water table generally becomes shallower at shorter distances to 

the coast.  

Because we aim to develop a model that uses broadly available data, we do not 

consider parameters derived from surficial geology or geotechnical data. Although 

there is the potential that remotely sensed data can identify soil type (Kothari and 

Islam 1999, Chang and Islam 2000), we do not include a proxy for soil type in the 

model that we present in this paper.  

Characterizing the degree of saturation or depth of the water table is one of the 

most important factors in predicting liquefaction of soils. Knudsen and Bott (2011) 

identified several candidate proxies for soil saturation, though most can 

simultaneously be considered proxies for density. The most promising proxies for 

saturation were: 1) distance to the closest water body (dwb), and 2) elevation above the 

closest water body (zwb). Since the distance to the coast is already included in the 

definition of ND, we include distance to river (dr) as a separate proxy. Additionally, 



16  

we include the compound topographic index (CTI; Beven and Kirkby 1979) as a proxy 

for saturation, which has been widely used in hydrology as a proxy for soil saturation. 

CTI is defined as the natural logarithm of the ratio of contributing area to the tangent 

of slope (Moore et al. 1991). In order to compute the contributing area, the flow 

direction at each pixel is estimated from the digital elevation model (DEM). The 

contributing area at a specific location is the number of upstream pixels. Thus, CTI 

increases on flat areas with large contributing areas.  

We approximate the effects of earthquake loading with the peak ground 

acceleration (PGA). We consider two different estimates of PGA: 1) from a ground 

motion prediction equation (GMPE), a finite fault model, and VS30, denoted as PGAG.; 

and 2) from ShakeMap, which incorporates macroseismic data as well as available 

ground motion records with GMPE estimates (Worden et al. 2010), denoted PGASM. 

Earthquake duration is also an important factor for liquefaction. In other liquefaction 

models (e.g., Youd et al. 2001) the magnitude scaling factor (MSF) has been used as a 

proxy for earthquake duration. Due to the current limitations of our database (we only 

have a limited number of events to sample duration effects), we decided not to 

constrain the duration effects from our database, but to use the equation in Youd et al. 

(2001):  

MSF = 102.24/M2.56  . 
(

1) 

The inverse of MSF is termed the magnitude weighting factor (MWF; Chen and 

Harmsen, 2012). Others have used the term duration weighting factor (DWF), 

however we prefer the term MWF because the right-hand side of equation 1 includes 

M and not duration. To account for duration, we define a magnitude weighted PGA: 

PGAM,SM is the product of MWF and PGASM; and PGAM,G is the product of MWF and 

PGAG.  

2.4 Database Development 
 
Liquefaction surface effects are often mapped during geotechnical reconnaissance 
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conducted following an earthquake (e.g., Allen et al. 2010, 2011, Rathje et al. 2010). 

When field observations are supplemented with satellite imaging and remote sensing 

techniques, continuous areas of liquefaction can be mapped. Where liquefaction extent 

is mapped (e.g., Christchurch and Kobe events), we rasterize the polygons to 100 m 

pixels, and a pixel is classified as liquefaction if at least 30% of it liquefied. This 

threshold is selected to retain the same liquefaction to nonliquefaction ratio before and 

after rasterization. We add the candidate explanatory variables (see Table 1) as 

additional columns to the database. We derive explanatory variables from Shuttle 

Radar Topography Mission (SRTM) DEMs (Farr and Kobrick 2000, Werner 2001) 

with both 3 arc-sec (90 m) resolution and 30 arc-sec (900 m) resolution. Throughout 

this paper 3c refers to 3 arc-sec resolution and 30c refers to 30 arc-sec resolution.  

We use the VS30 values provided by the global VS30 server (Wald and Allen 2007) 

at the 30c resolution. For the Christchurch region, the soil-versus-rock classification 

(based on the 3c roughness) is displayed in Figure 4a, the slope-based VS30 values are 

displayed in Figure 4b, and ND is displayed in Figure 4c. We add the 30c CTI from 

the USGS Hydro1k database (USGS, 1996) to the database, which is displayed in 

Figure 4d. Pixels that are partially located in the ocean are undefined in the Hydro1k 

database. Therefore, we fill the undefined pixels with the mean value of adjacent 

pixels. To provide a higher resolution alternative, we compute CTI from the 3c 

resolution DEM with the algorithm described previously.  

The stream networks are computed from the DEM with the Tarboton et al. (1991) 

method. The flow direction and flow accumulation are computed after the DEM is 

corrected for pits and depressions. Stream networks are defined from flow 

accumulation assuming a threshold accumulation of 4.5 km2. We apply the Strahler 

(1952) stream ordering method (based on the number of contributing branches in the 

stream network) and compute the distance to rivers (dr) for different minimum stream 

orders. For example, dr3 is the distance to a stream of order three or greater, and is 

displayed in Figure 4e. To provide physically meaningful limits on the extent of the 
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DEM used to compute the higher resolution hydrologic parameters, we clip the DEM 

with the drainage basin boundaries in the USGS Hydro1k database (USGS, 1996). 

PGASM is shown for the Christchurch event in Figure 4f. 

We compute the PGAG with a GMPE appropriate for each region and a finite fault 

model for each event. For the Christchurch region, we use the Bradley (2010) model 

because it was developed specifically for the Christchurch region and finite fault 

models to compute the distance measures (Beavan et al. 2011, Allen et al. 2008). For 

both the Kobe and Port-au-Prince regions, we compute PGAG with the Boore and 

Atkinson (2008) equations with the Atkinson and Boore (2011) update and the finite 

fault models reported in the ShakeMap Atlas (Allen et al. 2008; Wald 1996). The 

slope-derived VS30 are used for all PGAG calculations. 

The four earthquakes that are included in this database are sampled on a 100 m 

grid within the mapped region for each event and result in 183,887 data-associated 

pixels; 13,177 of these pixels are classified as locations of liquefaction occurrence. 

The number of rows (pixels) in the database is a function of the arbitrarily chosen grid 

size. Table 2 summarizes the number of pixels, areal percent of liquefaction, and areal 

percent of observations on soil for each event. We added the explanatory variables to 

this database with automated and semi-automated scripts in Python and R to ensure 

consistency and so that new earthquakes can be added to the database efficiently. 
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Figure 4. Map of candidate explanatory variables for the Christchurch region (a) Soil versus rock 
classification (b) VS30 (c) normalized distance (d) CTI (e) distance to river greater than order 3 (f) 
PGA.  

 

The number of rows (pixels) in the database is a function of the arbitrarily chosen grid 

size. Table 2 summarizes the number of pixels, areal percent of liquefaction, and areal 

percent of observations on soil for each event. We added the explanatory variables to 

this database with automated and semi-automated scripts in Python and R to ensure 

consistency and so that new earthquakes can be added to the database efficiently.  
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Table 2. Summary of the earthquakes that contribute to the liquefaction database.  

Earthquake Year Magnitude 
Mapped Area 

(km2) 
Percentage of 
liquefaction 

Percentage 
of soil 

Christchurch 2011 6.1 575.9 13.5 82.3 
Darfield 2010 7.0 1060.6 4.0 90.4 

Hyogo-ken Nanbu 1995 6.9 101.2 11.3 68.4 
Kobe 2003 4.2 101.2 0.0 68.4 

 

 

2.5 Model Development 
 
The explanatory variables summarized in Table 1 include both continuous and 

categorical variables while liquefaction occurrence is binary. Logistic regression is a 

convenient approach for fitting a model that describes the relationship between a 

binary outcome and a set of continuous or categorical independent variables. For 

model development, we follow the generalized linear model framework with the logit 

link function, yielding  

���� =
�

���	

, (2) 

where � = �� + ���� +⋯+ ���� is the set of k explanatory variables and ���� is 

the probability of liquefaction given the predictor variable. The regression coefficients 

��, ��, … , �� are estimated with the maximum likelihood method. For the regression, 

we include only those data classified as soil (see Figure 5a) and assign the probability 

of liquefaction to zero apriori for locations classified as rock. Akaike’s information 

criterion (AIC; Akaike, 1973) is useful for guiding model selection  

AIC = −2 ln��� + 2�, (3) 

where L is maximized likelihood function, and p is the number of estimated 

parameters. AIC is a relative value and should only be used to compare models that 

are fit to the same data set. Lower values of AIC indicate a better or more useful 

model. The basic idea is that the negative log likelihood is penalized by the number of 

parameters to guard against the tendency to overfit the data with unwarranted 

parameters.  
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Figure 5. Maps of the observed liquefaction features and the predicted probability of liquefaction 
for (a) the Christchurch earthquake and (b) the Darfield earthquake. The predictions are computed 
with the coefficients reported for Christchurch Model 2 (Table 3).  

We evaluate the significance of the regression coefficients with the Wald test 

statistics (Z value), which is the ratio of the estimate of the coefficient to its standard 

error. The Wald test statistic follows the standard normal distribution under the 

hypothesis that an individual coefficient is zero. Because the Wald test follows a 

normal distribution, we can conclude that model parameters are significantly different 

than zero at the 95% confidence level if the absolute value of the test statistic is 

greater than two. 

With a binary response variable, plots of observed versus predicted values, or plots 

of residuals as a function of various explanatory or response variables are not easy to 

interpret because the predictions are probabilities while the observations are binary. 

One approach to addressing this problem is to select a threshold probability value to 

convert the predicted probabilities into binary classifications (probabilities greater than 

the threshold are a classification of liquefaction occurrence). Useful performance 

metrics for binary classifications include the true positive rate (TPR) and the false 

positive rate (FPR), which can be computed for an assumed threshold. TPR is defined 

as the ratio of positive cases (i.e., liquefaction occurrence) that were correctly 
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predicted to the total number of positive cases. FPR is defined as the ratio of negative 

cases (i.e., liquefaction nonoccurrence) that were falsely predicted to the total number 

of negative cases. Receiver operating characteristic (ROC) curves plot TPR versus 

FPR (Swets 1973). To construct the ROC curves, we loop over thresholds from zero to 

one, and compute TPR and FPR for each threshold. A model that perfectly predicts the 

binary response would have TPR = 1 and FPR = 0. The closer the ROC curve comes 

to this ideal case (i.e., the top-left edge of the plot), the better the model performance. 

Thus, the area under the ROC curve (AUC) is a scalar measure that quantifies the 

accuracy of the probabilistic classifier, because as the AUC increases the ROC curve 

approaches the top-left edge of the plot. The AUC limits are from 0.5 (random 

classification) to 1.0 (perfect accuracy).  

Our modeling approach uses a combination of goodness-of-fit parameters such as 

AIC, p-values, and AUC and our knowledge of the physical process that leads to 

liquefaction to determine which explanatory variables to include. For example, we did 

not include elevation as an explanatory variable although its p-value and the model’s 

AIC indicate that it is statistically significant because elevation would not extrapolate 

well outside of coastal environments. Additionally, we give preference to explanatory 

variables that perform well when regressed in Christchurch and assessed in Kobe (i.e., 

the analysis of region-specific models in the next section). 

 

2.6 Results 
 
In order to understand regional and event specific differences in model development, 

we begin by developing region-specific models. For the Christchurch region, we 

include both the Darfield and Christchurch earthquakes. Most observed liquefaction 

features during the Christchurch event were within 12 km of the coast and where PGA 

was high (0.2 g-0.6 g). In contrast, the epicenter of the Darfield event was 52 km west 

of Christchurch and yet liquefaction occurred along the coast at a distance of over 

40 km from the epicenter where PGA is relatively low (0.1 g-0.2 g). This indicates that 
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the liquefaction pattern in this region is strongly controlled by soil properties. If we 

were to only include the Christchurch event in the regression, the resulting model 

would be largely driven by PGA because the liquefaction features all occurred in 

locations that experienced the largest PGAs.  

In the subsequent discussion, we define the top performing model as the one with 

the lowest AIC. We consider several candidate models in each region, with a focus on 

simple four-parameter models. We also wish to initially focus on comparisons of 

different soil proxies, and so we only consider PGAM,SM as an the intensity covariate. 

Table 3 shows the parameters and coefficients for the top three four-parameter models 

for each region. Comparisons of regression results with PGA and ln(PGA) show that 

ln(PGA) performs better. Similarly, ln(VS30) outperforms VS30. The explanatory 

variables of the top performing four-parameter model in Christchurch are 

ln(PGAM,SM), dr3, and ND. A quick consistency check is to inspect the sign of the 

estimated coefficients to see that the resulting relationship with the likelihood of 

liquefaction is correct: the likelihood of liquefaction decreases with increasing values 

of VS30, ND, and dr; the likelihood of liquefaction increases with increasing values of 

CTI and PGAM,SM.  

Table 3. Summary of region-specific models for Christchurch and Kobe.  

 Model 1 Model 2 Model 3 

Christchurch 

Intercept 2.053 Intercept 0.316 Intercept 25.45 
ln(PGAM, SM) 1.267 ln(PGAM, SM) 1.225 ln(PGAM, SM) 2.476 

dr3 -0.239 CTI (30c) 0.145 dr3 -0.323 
ND -9.191 ND -9.708 ln(VS30) -4.241 

Kobe 

Intercept -0.780 Intercept 1.608 Intercept 11.78 
ln(PGAM, SM) 1.813 ln(PGAM, SM) 1.836 ln(PGAM, SM) 1.678 

CTI (30c) 0.287 dr3 -0.028 CTI (30c) 0.669 
ND -8.958 ND -9.993 ln(VS30) -2.936 

 

Checking the portability or reliability of a model is an important step because it 

evaluates model performance with a new scenario. This directly addresses whether or 

not the model is overfit to the limited available data. When we apply the region-

specific Christchurch models to Kobe, Model 2 outperforms Model 1 and so we 
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conclude that the dr3 term works well in Christchurch but that CTI is more stable 

across different regions. Therefore, we prefer Model 2. Figure 5 gives the maps of the 

predicted probability of liquefaction for the Christchurch region from the preferred 

four-parameter model, while Figure 6 gives the probabilities of this model in Kobe. 

The pattern of liquefaction is well represented by the Christchurch model for the 

Hyogo-ken-Nanbu earthquake (Figure 6a) even though the liquefaction occurred in 

very different sediments in Kobe (fill) than in Christchurch (native soils) and the scale 

and shape of the coastal sedimentary basins are significantly different. Additionally, 

the overall probabilities are much smaller for the small Kobe event for which no 

liquefaction was observed (Figure 6b).  

In Christchurch, many of the liquefaction features were observed over historic 

river channels (Orense et al., 2011). The location of these channels is a strong geologic

predictor of liquefaction. The dr parameter that we consider in this paper is based on 

river networks predicted from the DEM rather than mapped current or historic river 

channels and therefore cannot provide a model that accounts for historic river 

channels. 

 

Figure 6. Maps of the observed liquefaction features along with the predicted probability of 
liquefaction for the region-specific Christchurch model (Christchurch Model 2 from Table 3) 
for (a) the 1995 Hyogoken-Nanbu earthquake, and (b) the M 4.2 Kobe earthquake.  
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To strengthen the model and optimize the coefficients across the regions, we 

combined the Christchurch and Kobe datasets, and used the combined datasets in 

regression to develop two different pooled models (Table 4). The reason for presenting 

two “top models” is that the top performing model includes ND, which is only 

appropriate for coastal sedimentary basins and can only be computed in a semi-

automated fashion. Thus, there is a top-performing “global” model, which does not 

include ND. The AIC and AUC values both indicate that the regional model is more 

accurate.  

Table 4. Summary of the pooled models (combining Kobe and Christchurch data).  

 AIC AUC Coefficient Estimate Std. Error Wald test 
Z value Global 

d 
74627 0.804 Intercept 24.10 0.4687 51.42 

Model   ln(PGAM,SM) 2.067 0.0241 85.74 
   CTI (30c) 0.355 0.0062 57.24 
   ln(VS30) -4.784 0.0829 -57.72 

Regional 
m 

63339 0.892 Intercept 15.83 0.3868 40.92 
Model   ln(PGAM,SM) 1.443 0.0235 61.47 

   CTI (30c) 0.136 0.0068 20.00 
   ND -9.759 0.1042 -93.69 
   ln(VS30) -2.764 0.0676 -40.89 

 

 

Figure 7 shows the predicted probability from the regional model derived from the pooled 

database for all four earthquake events. Visual inspection of Figure 7 indicates that the 

pattern of liquefaction is well represented by the model for each event as well as the 

differences in the extent of liquefaction between the events for these two regions. 
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Figure 7. Predicted probability of liquefaction using the best model derived from the 
combined Christchurch and Kobe data (regional model; Table 4) for (a) the Christchurch 
earthquake, (b) the Darfield earthquake, (c) the 1995 Hyogoken-Nanbu earthquake, and (d) the 
M 4.2 Kobe earthquake.  

 

A more quantitative check on the predicted probabilities is to report the frequency 

of observed liquefaction features within a range of predicted probabilities. Table 5 

presents this information for each event and the results show that there is a strong 

relationship between the predicted probability and the observed percentage of 

liquefaction, which is an empirical estimate of spatial extent.  
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Table 5. Percentage of liquefaction occurrence within example probability ranges.  

Probability  Observed percentage of liquefaction 
range Christchurch 2011 Darfield 2010 Kobe 1995 Kobe 2003 
> 20% 55.3% 21.9% 39.7% N/A 

8% - 20% 22.1% 11.3% 13.8% N/A 
3% - 8% 9.3% 2.3% 2.3% N/A 

< 3% 1.1% 0% 0.2% 0% 

 

 

As discussed previously, ROC curves and the AUC are additional quantitative 

performance measures for a binary response variable. The ROC curves for the two 

models in Table 4 are plotted in Figure 8. Additionally, the plot shows the points on 

the curves that correspond to threshold probabilities of 0.1, 0.2, and 0.3. Figure 8 

quantifies the improvement that can be gained by using the regional model over the 

global model in terms of FPR and TPR. Table 6 provides the confusion matrices for 

threshold probabilities of 0.1 and 0.2, which provides some additional information. 

Here, the class imbalance in the data is clearly illustrated: most of the predictions and 

observations are of nonliquefaction. Figure 8 and Table 6 illustrate the effects of 

adjusting the threshold: as the threshold gets larger, the TPR decreases while the FPR 

increases. Thus, the threshold should be selected to achieve an appropriate balance of 

these competing factors.  

Table 6. Confusion matrices for thresholds of 0.1 and 0.2 for the regional model in Table 4.  

Threshold  P = 0.1  P = 0.2 
Predicted  L NL  L NL 

Actual 
L  6.9 1.4  4.7 3.6 

NL  18.2 73.5  7.7 84.0 
 

 

2.7 Model Visualization 
 
The summary tables, ROC curves, and confusion matrices that we have previously 

presented to assess the goodness-of-fit of the candidate liquefaction models are 

relatively abstract and do not necessarily communicate the fit of the model as 

effectively as a scatterplot of the observed and predicted values can for a continuous 
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Figure 8. Comparison of the ROC curves for the two liquefaction models summarized in 
Table 4. Points on earth ROC curve for thresholds of 0.1, 0.2, and 0.3 are labeled.  

response variable. To create an analogous plot for these data, we construct a 2D image 

where the axes are two of the explanatory variables and the color is the percentage of 

the points that liquefied in each pixel (pixels are only shown for pixels with five or 

more observations). The observations are compared to the predicted probabilities by 

displaying the model predictions as contour lines on the same image. Figure 9 

provides this type of plot for (a) Christchurch, (b) Darfield, (c) Hyogo-ken Nanbu, and 

(d) the 2003 Kobe earthquakes. The two explanatory variables in these plots are 

PGAM,SM and ND; the probability contours are from the regional model (Table 4 and 

Figure 7) assuming a constant values for 30c CTI = 7 and VS30 = 200 m/s. The model 

is multidimensional; therefore, certain variables need to be held constant so that it can 

be viewed in two-dimensions. From Figure 9, we can see that each earthquake samples 

a different range of ND and PGAM,SM and the model captures the general trends in the 

data. In the combined database (Figure 10), PGAM,SM ranges from 0.002 g to 1 g. ND 

ranges from 0 to 1; CTI ranges from 2 to 15. Figure 9 shows how each of the events 

contribute to constraining the model across the parameter space. For example, the 

2003 Kobe event helps to constrain the low PGAM,SM range of the model and the 
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Figure 9. The 2D image of the percentage of observed liquefaction with predicted probability 
contours from the regional model (Table 4) for (a) the Christchurch, (b) the Darfield, (c) the 
Hyogo-ken Nanbu, and (d) the 2003 Kobe earthquakes. The predicted probabilities assume 
CTI = 7 and VS30 = 200 m/s.  
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Figure 10. The 2D image of the percentage of observed liquefaction in combined database 
with the predicted probability contours from the regional model (Table 4) when axes are (a) 
ND and PGA, (b) CTI and PGA, and (c) VS30 and PGA. For covariates not shown in each 
panel, the assumed values are: VS30 = 200 m/s, CTI = 7, and ND = 0.1.  

 

Darfield event helps to constrain the high ND/high PGA range of the model. Together 

the four events cover the parameter space as shown in Figure 10; Figure 10 shows (a) 

ND, (b) CTI, and (c) VS30 as a function of PGAM,SM. The assumed values of the 

unshown variables are: VS30 = 200 m/s, CTI = 7, and ND = 0.1. Figure 10 confirms 

that the model identifies the observed patterns of where liquefaction occurs relative to 

the explanatory variables.  

The probability of liquefaction is a function of the set of explanatory variables X in 

equation (2), which includes the event-specific shaking intensity. However, maps of 

susceptibility, which are independent of a specific earthquake scenario are also useful. 
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To create a susceptibility map, we simply compute X without the intensity (PGAM,SM)  

term. The resulting number is not an estimate of the probability of liquefaction, but 

simply combines the susceptibility terms together with the coefficients that were 

determined by our regression analysis. Since the absolute values are not meaningful, 

we present the susceptibility as three classes (low, moderate, and high) in Figure 11 

for the Christchurch region.  

 

2.8 Port-au-Prince 
 
To test the portability of the regional and global models in Table 4, we compare the 

predicted probabilities of liquefaction to the mapped liquefaction features in Port-au-

Prince. Figure 12a shows the regional model and Figure 12b shows the global model. 

The models predict high probabilities along the coast, which is also where most of the 

observed liquefaction was documented. It is important to note the overall, or “macro,” 

interpretation of the extent of liquefaction for rapid response and loss estimation; the 

extent of liquefaction in Port-au-Prince is relatively moderate compared to the 

Christchurch and Hyogo-ken Nanbu earthquakes as predicted by the geospatial 

liquefaction model. Note that the model predicts large probabilities in some regions 

where no liquefaction was observed, but it is not clear if this should be interpreted as 

poor prediction since we do not know with certainty that liquefaction did not occur in 

these regions. The primary misfit for observed liquefaction that we observe in 

Figure 12a is along the Riviere Grise (location is labeled in Figure 3) where many 

liquefaction events were documented but not predicted by the regional model. Along 

the river, there are a total of 39 liquefaction-related ground failures: 17 are ground 

cracks, 5 are landslides, 12 are lateral spreads, and 5 are sand blows. This indicates 

that lateral spreading is the dominant driving mechanism of liquefaction surface 

effects along the Riviere Grise, while it may not be as dominant in the Christchurch 

and Kobe events. 
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Figure 11. Susceptibility map for Christchurch based on the regional model (Table 4). The 
values in the parentheses are X in equation (2) without the PGAM,SM term. 

 

Figure 12. Predicted probability of liquefaction from (a) the regional model and (b) the global 
model applied to the Port-au-Prince region. The models were developed from liquefaction 
observations in Kobe and Christchurch, and so this comparison checks the portability (or 
reliability) of the model.  



33  

The global model is shown in Figure 12b. As the AUC and AIC values in Table 4 

indicate, the global model is less accurate in the Kobe and Christchurch regions. The 

advantage of a global model, however, is that it does not depend on ND. As seen in 

Figure 12b, the probabilities predicted by the global model are higher than the regional 

model along the Riviere Grise where many liquefaction observations were made. The 

global model, however, also predicts relatively high probabilities of liquefaction in the 

sediments near the epicenter of the earthquake and in the sediments of the Cul-de-Sac 

plain where liquefaction was not documented; the geotechnical reconnaissance did not 

document the presence or absence of liquefaction in these areas so we cannot conclude 

that these probabilities are incorrect.  

 

2.9 Discussion 
 
The preferred models derived from the combined Kobe and Christchurch data 

(Table 4) represents a substantial departure from existing liquefaction models. The 

regional model includes ND as an explanatory variable, which is only defined for 

coastal sedimentary basins; therefore, we also provide a global model that does not 

include ND, which is thus applicable across a broader range of geologic environments, 

as demonstrated by the application of these models to Port-au-Prince, Haiti. We 

recognize, however, that there is still more work that needs to be done to incorporate 

the effects of major rivers on liquefaction surface effects. The TRP and FPR values 

reported in Figure 8 for these models should be used as a guideline for the level of 

accuracy that can be expected when applied to an appropriate geologic environment. 

Additional regions and events must be added to the liquefaction database before the 

river proxies can be more accurately constrained.  

Fine-tuning of the model will require building a broader database for model 

development. Once we have a broader database, we can include parameters that help 

regionalize the model. For example, we understand that CTI, dr, and dwb may be 

sensitive to regional parameters such as annual precipitation. CTI in a region with low 
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annual precipitation may have a different meaning from that in a region with high 

annual precipitation. Future work will assess annual precipitation as a correction factor 

for CTI in different regions, and adding a seasonality component to the saturation 

variable. Although there is some literature identifying remotely sensed proxies for soil 

type, we have not investigated their use in this work. Future work will identify 

appropriate soil type proxies for the geospatial liquefaction model. 

 

2.10 Conclusions 
 

The liquefaction database compiled for the analysis in this paper includes observations 

of the presence/absence of liquefaction and geospatial explanatory variables from two 

earthquakes in Kobe, Japan and two earthquakes in Christchurch, New Zealand. The 

liquefaction maps are rasterized to ensure that the samples are unbiased with respect to 

the spatial extent of liquefaction. We develop both region-specific and broadly 

applicable liquefaction models from this database. The geospatial explanatory 

variables are identified as proxies for three primary factors that contribute to the 

likelihood that soils will liquefy: density, saturation, and shaking (as summarized in 

Table 1). Our best-performing models (Table 4) are based on surface roughness, 

slope-derived VS30, CTI, ND, and PGA (from ShakeMap). Both models perform well 

across all four earthquakes, capturing the general spatial distribution and the extent for 

the individual earthquakes as well as the major differences in the spatial extent 

between the different events. These models can be applied for use in rapid response, 

loss estimation, or scenario simulations to predict the probability of liquefaction. Due 

to the manner in which the database was developed, the probability predicted by this 

model can be interpreted as the spatial extent of liquefaction. We provide two 

alternative models because the most accurate model includes ND as an explanatory 

variable, which is only applicable in coastal sedimentary basins. Thus, we provide a 

second, less accurate model that is not restricted to coastal sedimentary basins. When 
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we check the portability of the models in Port-au-Prince, Haiti, the global model 

outperforms the regional model because it predicts heightened probabilities of 

liquefaction along Riviere Gris. We conclude that the improved accuracy that the 

regional model achieves in terms of AIC and AUC can only be realized in regions that 

are coastal sedimentary basins where the river network is not the primary contributing 

factor to the soil density and saturation. As we see in Port-au-Prince, the global model 

is more appropriate in such cases.  

The proposed models are relatively easy to implement for post-earthquake rapid 

response, loss estimation, and scenario events. All of the explanatory variables in the 

global and regional models are static, in the sense that they do not vary with time, 

except for PGA. Thus, these variables only need to be computed once for a given 

region. Then for a given earthquake, the probability of liquefaction can be computed at 

any point for which the PGA can be estimated, either from GMPEs, simulations, or 

ShakeMaps.  
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3 An Updated Geospatial Liquefaction Model for 

Global Application2 

Abstract 
 

We present an updated geospatial approach to estimation of earthquake induced 

liquefaction from globally available geospatial proxies. Our previous iteration of 

the geospatial liquefaction model was based on mapped liquefaction surface 

effects from four earthquakes in Christchurch, New Zealand and Kobe, Japan 

paired with geospatial explanatory variables including slope-derived VS30, 

compound topographic index, and magnitude adjusted peak ground acceleration 

from ShakeMap (Zhu et al., 2015). The updated geospatial liquefaction model 

presented herein improves the performance and the generality of the model. The 

updates include 1) expanding the liquefaction database to 27 earthquake events 

across 6 countries, 2) addressing the sampling of nonliquefaction for incomplete 

liquefaction inventories, 3) testing interaction effects between explanatory 

variables, and 4) overall improving model performance. While we test 14 

geospatial proxies for soil density and soil saturation, the most promising 

geospatial parameters are slope-derived VS30, modeled water table depth, 

distance to coast, distance to river, distance to closest water body, and 

precipitation. We found that peak ground velocity (PGV) performs better than 

peak ground acceleration (PGA) as the shaking intensity parameter. We present 

two models which offer improved performance over Zhu et al. (2015). We 

evaluate model performance using the area under the curve under the Receiver 

Operating Characteristic (ROC) curve (AUC) and the Brier score. The best 

performing model in a coastal setting uses distance to coast but is problematic for 

regions away from the coast. The second best model, using PGV, VS30, water 
                                                           
2 Zhu, J., L. G. Baise, E. M. Thompson (submitted). An Updated Geospatial Liquefaction Model for Global 
Application , Bull. Seism. Soc. Am. 
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table depth, distance to closest water body, and precipitation, performs better in 

noncoastal regions and thus is the model we recommend for global 

implementation. 
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3.1 Introduction 
 

Soil liquefaction can lead to significant infrastructure damage after an 

earthquake due to lateral ground movements and vertical settlements. Regional 

liquefaction hazard maps are important in both planning for earthquake events 

and guiding relief efforts by positioning resources once the events have 

occurred.  Most liquefaction hazard mapping techniques rely on detailed 

geologic maps and geotechnical data such as standard penetration test (SPT) or 

cone penetration test (CPT) results, fines content, and water table depth (Holzer 

et al. 2006, 2009; Brankman and Baise, 2008), which are not always available in 

at-risk regions or with sufficient density and coverage.  

 

We have developed a regional liquefaction mapping approach that relies on 

broadly available geospatial parameters (Baise et al. 2012, Zhu et al. 2013, Zhu 

et al. 2014, Zhu et al. 2015). The motivation of the work comes from the rapid 

response and loss estimation communities, where there is a need to predict 

regional liquefaction extent for any earthquake around the globe. Our work 

builds on previous work, such as Youd and Perkins (1978), that characterized 

the relationship between geologic depositional environments and liquefaction 

susceptibility, and Wald and Allen (2007) that identified a first-order 

approximation of soil conditions from topography. As a direct precursor to our 

work, Knudsen and Bolt (2011) found that liquefaction occurrences commonly 

coincide with simple geospatial features such as topographic slope and distance 

to the closest river. In our previous work (Zhu et al. 2015), we developed a 

liquefaction occurrence/nonoccurrence database that was unbiased with respect 

to the spatial extent (i.e., complete coverage of liquefaction and nonliquefaction 

occurrence over the mapped area) using data from Christchurch, New Zealand 

and Kobe, Japan. We tested geospatial parameters as proxies for earthquake 

loading, soil density, and soil saturation and developed a logistic model 
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(hereafter termed GLM-Zea15g for geospatial liquefaction model by Zhu et al.; 

the “g” specifies the global model from that paper) to predict the probability of 

liquefaction after an event. The model provides a first-order estimate of the 

spatial coverage of liquefaction from simple geospatial parameters and can be 

implemented for loss estimation and rapid response. Recent work by Matsuoka 

et al. (2015) has followed a similar approach for a Japanese liquefaction dataset, 

but their work relies on the geomorphological classification map of Japan, which 

is not available globally. 

While the results of Zhu et al. (2015) demonstrate the feasibility of the 

geospatial approach for predicting regional liquefaction extent, further 

improvements and refinements can be achieved with additional data and 

analysis. GLM-Zea15g was derived from liquefaction inventories in two 

regions, both of which were coastal sedimentary basins, with an additional 

qualitative comparison to the liquefaction that occurred in Port-au-Prince, Haiti. 

For empirical model development, the quality of a database greatly influences 

the performance of the model. Increasing the number of samples and sampling a 

broader range of explanatory variables improves the generality of the model and 

therefore improves the performance when applying it to make future prediction 

(Hastie et al., 2001). The results in recent updates to the empirical correlations 

of liquefaction with in-situ soil indices such as the SPT, CPT, and shear-wave 

velocity (Cetin et al., 2004;Boulanger and Idriss, 2015; and Kayen et al., 2013) 

consistently show that an expanded case history database with increased sample 

size and diversity from different earthquake regions can result in an improved 

model with reduced overall model uncertainty; for example, a model may 

perform well when developed and assessed with all large magnitude 

earthquakes, but it may perform surprisingly poorly if it is then applied to small 

magnitude earthquakes. Although these geotechnical liquefaction models are 

most relevant for site specific studies, the lessons learned also apply to our 
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development of a regional geospatial liquefaction model.  

The objective of this paper is to improve the performance of the geospatial 

liquefaction model, especially for generalization across broad geographic 

regions. The Zhu et al. (2015) dataset was intentionally limited to spatially 

complete inventories so that the probabilities from the model could inherently 

represent the spatial extent of the surface expression of liquefaction. In the 

updated efforts presented herein, we expand the liquefaction database for testing 

and improving the model. We have compiled liquefaction data from journal 

articles and reconnaissance reports, from 23 additional earthquakes from U.S., 

Japan, China, Taiwan, and India. We have added a combination of datasets with 

extensive mapped liquefaction as well as specific events from underrepresented 

geologic regions (inland earthquakes or dry regions) and events with little to no 

liquefaction. For example, the Northridge and Hector Mine, California, 

earthquakes provide samples in relatively dry areas that rarely experience 

liquefaction due to the arid climate. We have included earthquakes where no 

liquefaction was observed to further explore the parameter space. 

In order to expand the database, we include inventories that are not spatially 

complete. The majority of the added events were documented as incidences of 

liquefaction (either as points or limited polygons) without information on spatial 

completeness. This is an artifact of the data collection efforts from these 

historical events. The majority of the data collected is from field investigations 

without the more systematic coverage provided with remote sensing techniques. 

The spatially incomplete nature of the newly added data restricts our ability to 

preserve the actual class imbalance (i.e., ratio of liquefaction occurrence to non-

occurrence), and class imbalance has a strong influence on the probabilities of 

the model (Oommen et al., 2011; Zhu et al., 2015; Thompson et al., 2016). To 

address the lack of observations of nonliquefaction in many of the newly added 

inventories, we use a sampling scheme to sample nonliquefaction data, which is 
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similar to one that has been successfully applied in landslide hazard mapping by 

Van Den Eeckhaut et al. (2012) to address the incompleteness of landslide 

inventories. By addressing class imbalance, we significantly expanded our 

database which in turn provides the opportunity to constrain a more complex 

functional form with additional model parameters.  

In this paper, we first provide the details of the expanded liquefaction 

database, including the geospatial parameters that we compile as candidate 

explanatory variables. We then describe the modeling process and present two 

alternative models.  We evaluate our models in terms of mapped liquefaction 

extent and Receiver Operating Characteristic (ROC) curves and quantitatively 

compare the models using statistical goodness of fit measures. Additionally, we 

compare the model results to prior regional susceptibility studies in San 

Francisco and Seattle. 

 

 

3.2 Data 
 
3.2.1 Liquefaction Database 

 

The expanded liquefaction database includes 27 earthquakes from the U.S., Japan, 

New Zealand, China, Taiwan, and India. Figure 1 shows maps with the locations of 

the earthquake epicenters. The details of each event included in the database are 

summarized in Table 1. It is important to note that the liquefaction database consists of 

inventories from earthquakes that triggered liquefaction as well as earthquakes with 

insignificant or no liquefaction. Building a well distributed database of liquefaction 

and nonliquefaction locations across a multi-dimensional parameter space and 

geographic space is important for developing a useful and general model. We ensure a 

well-distributed database by sampling a variety of earthquakes in terms of magnitude 

as well as geologic setting.   
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Figure 1. Maps of earthquakes in the liquefaction database from a) United States, b) Japan, 

c) New Zealand, and d) India, China and Taiwan. 

 

 

Liquefaction 



 

Table 1. Summary of earthquakes in the liquefaction database. 
no. Earthquake Date Mw Liquefaction Liquefaction    Reference 

 
   

# of points 
Area of polygons  

(km2) 
Spatial 
Category 

Liquefaction 
Occurrence 

Coastal or 
Noncoastal 

 

1 Christchurch 2011/02/22 6.1 - 71.53 Complete Yes Coastal CGD* 

2 Darfield 2010/09/04 7 - 69.18 Complete Yes Coastal CGD*  

3 Hyogo-ken Nanbu 1995/01/17 6.9 1883 11.44 Complete Yes Coastal Wakamatsu (2011) 

4 Kobe 2003/10/08 4.2 - - Complete No§ Coastal  

5 Loma Prieta 1989/10/17 6.9 123 7.72 Incomplete Yes Coastal Tinsley et al. (1998) 

6 Puget Sound 1949/04/13 6.9 153 - Incomplete  Yes Coastal Chleborad et al. (1998) 

7 Puget Sound 1965/04/29 6.7 229 - Incomplete Yes Coastal Chleborad et al. (1998) 

8 Nisqually 2001/02/28 6.8 69 - Incomplete Yes Coastal Bray et al. (2001) 

9 Northridge 1994/01/17 6.6 36 - 
Incomplete Yes Noncoastal Stewart et al. (1994), 

Stewart et al. (1996), 
Moehle et al. (1994) 

10 San Simeon 2003/12/22 6.6 10 0.02 Incomplete Yes Coastal Holzer et al. (2005) 

11 Hokkaido Nansei-oki 1993/07/12 7.7 376 4.19 Incomplete Yes Coastal Wakamatsu (2011) 

12 Chiba-ken Toho-oki 1987/12/17 6.5 67 7.39 Incomplete Yes Coastal Wakamatsu (2011) 

13 Miyagi-ken-oki 1978/06/12 7.6 50 0.29 Incomplete Yes Coastal Wakamatsu (2011) 

14 Niigata 1964/06/16 7.6 124 71.64 Incomplete Yes Coastal Wakamatsu (2011) 

15 Nihonkai Chubu 1983/05/26 7.7 12 54.44 Incomplete Yes Coastal Wakamatsu (2011) 

16 Niigata-ken Chuetsu 2004/10/23 6.6 313 14.7 Incomplete Yes Coastal Wakamatsu (2011) 

17 Tottori-ken Seibu 2000/10/6 6.7 120 2.61 Incomplete Yes Coastal Wakamatsu (2011) 

18 Tokaichi-oki 2003/09/26 8.3 139 0.02 Incomplete Yes Coastal Wakamatsu (2011) 

19 Tohoku 2011/03/11 9.1 - 107.07 
Locally 
Complete 

Yes Coastal MLITT (2011) 

20 Chi-Chi 1999/09/21 7.6 170 2.52 Incomplete Yes Noncoastal Chu et al. (2004) 

21 Bhuj† 2001/01/26 7.6 - 377.4 Complete Yes Noncoastal Singh et al. (2002) 

22 Yountville 2000/09/03 5.0 - - Complete No§ Coastal  

23 Piedmont 2015/08/17 4.0 - - Complete No§ Coastal  

24 Napa 2014/08/24 6.0 2 - Complete No§ Coastal GEER (2014) 

25 Chino Hills 2008/7/29 5.4 - - Complete No§ Coastal GEER (2008) 

26 Hector Mine 1999/10/16 7.1 - - Complete No§ Noncoastal  

27 Wenchuan 2008/05/12 7.9 116 - Incomplete Yes Noncoastal Cao et al. (2010) 
* Canterbury Geotechnical Database (see Data and Resources) 
† Not included in the model development. 
§ Insignificant to no liquefaction.  
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As evident from Figure 1, the majority of the events are located in coastal areas. 

We define a coastal event as one where the liquefaction occurrences are on average 

within 20 km of the coast, or for earthquakes with insignificant or no liquefaction, 

epicentral distances less than 50 km. Based on these criteria, there are five noncoastal 

events with observed liquefaction in this database: the 1994 Mw6.6 Northridge (#9), 

2001 Mw7.7 Bhuj (#21), 1999 Mw7.6 Chi-Chi (#20), 1999 Mw7.1 Hector Mine 

earthquake (#26 – an earthquake with insignificant or no liquefaction), and 2008 

Mw7.9 Wenchuan (#27) events. The data from the Bhuj earthquake were only used for 

verification, but not included in the model development, because they were from a 

remote sensing study (Singh et al., 2002) that lacks validation. Although the 

Northridge earthquake led to shaking in the coastal environment, the mean distance to 

coast for the liquefaction observations was 25 km. A sixth noncoastal event, the 2015 

Mw7.8 Nepal earthquake is used for verification but not included in the database. The 

low number of noncoastal events is not entirely surprising because the majority of 

tectonically active regions are coastal, and liquefaction is known to occur in coastal 

sediments (e.g. artificial fill, beach deposits, alluvial and marine sands) as documented 

by Youd and Perkins (1978) and numerous well-studied earthquakes such as 1989 

Loma Prieta (Tinsley et al., 1998), 1995 Hyogo-ken Nanbu (Hamada et al., 1995), and 

2011 Tohoku (MLITT, 2011). Because the database is biased toward coastal events, 

we will investigate the portability of our results outside of the coastal setting in the 

Results (Models subsection). 

For the purpose of this paper, events can be classified as complete or incomplete 

datasets. This is an important distinction in terms of how the datasets are sampled for 

liquefaction and nonliquefaction points. A complete dataset includes events like the 

1995 Kobe (#3) and the 2010-2011 Darfield and Christchurch (#1, 2) earthquakes that 

are extensively mapped as polygons of liquefaction occurrence. In a complete dataset, 

nonliquefaction points can be sampled anywhere within the mapped extent that is not 
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covered by a liquefaction polygon. For our purposes, complete datasets also include 

well studied events where liquefaction is insignificant or absent. Examples of this case 

are the 2003 M4.2 Kobe event (#4) and the 2014 M6.0 Napa (#24) event. These 

earthquakes with insignificant or no liquefaction provide complete datasets that are 

very important for providing coverage of the parameter space. The first four 

earthquakes (#1-4) in the database were used for developing the prior model (Zhu et 

al., 2015). Except for the 2010-2011 Darfield and Christchurch (#1, 2) and some 

Japanese events (#3, #11-18) where we have access to data in digital format (see Data 

and Resources; Wakamatsu, 2011), we obtained the rest of the data in Table 1 by 

digitizing published liquefaction maps (see Table 1 for references).  

To illustrate the benefit of adding the earthquakes with insignificant or no 

liquefaction to the database, we illustrate the data space represented by plotting the 

proportion of liquefaction occurrences as a function of peak ground velocity (PGV) 

and the slope-derived time-averaged shear-wave velocity to 30 m depth (VS30) in 

Figure 2. To construct this figure, we sampled the liquefaction inventories using the 

same sampling method described in the Sampling section. In this figure, white cells 

indicate no data points in the interval. As shown in Figure 2a, when the database only 

contains earthquakes with extensive liquefaction, there are almost no data where PGV 

is less than 3 cm/s. The lack of data at low PGV may result in false model predictions 

for small events (low PGV) where liquefaction is not expected to occur. After adding 

the earthquakes with insignificant or no liquefaction, the data space for low PGV 

values is sufficiently filled, and the boundary between liquefaction and 

nonliquefaction becomes better differentiated.  

As discussed above, the liquefaction data can be divided into two groups based on 

the spatial completeness and this categorization impacts how liquefaction and 

nonliquefaction points are sampled. The group that is spatially complete consists of the 

four events used for developing the prior model (# 1-4) and the insignificant-to-no 
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Figure 2. Percentage of liquefaction versus nonliquefaction as a function of PGV and VS30 

for a) liquefaction events, b) events with insignificant or no liquefaction, and c) all events 

in the database. 

liquefaction complete events (#22-26). The 2011 Tohoku earthquake (#19) was 

spatially complete in a limited region (MLITT, 2011) but not for the entire affected 

area, so we treated it as an incomplete dataset. For this group, liquefaction 

observations are represented by polygons and the mapped extent associated with the 

liquefaction data is documented. Because the regions were well studied as evidenced 

by the reconnaissance reports and the post-event literature, we can assume that the 

liquefaction was completely mapped, and therefore, nonliquefaction can be assumed 

outside the liquefaction polygons and within the mapped extent.  This type of data is 

only available for a few events, generally where remote sensing has been incorporated 

into the post-earthquake data collection or in well studied regions like the San 

Francisco Bay area in the U.S. or large urban regions in Japan where the field 

reconnaissance was extensive.  

Unfortunately, the majority of events in Table 1 (# 5-21) are spatially incomplete 

and result from limited field investigations described in the literature. In general, the 

available data are mapped liquefaction occurrences, predominately represented by 

points (limited polygons may exist for some local areas) with limited information 
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about the extent of mapping. As a result, additional assumptions are required in order 

to obtain liquefaction nonoccurrence data, as discussed in the Methods (see the 

Sampling subsection). 

 

3.2.2 Geospatial Predictors 

 
In parallel to the liquefaction/nonliquefaction occurrence data, we assemble a database 

of explanatory variables for use in building the liquefaction models. We consider 

explanatory variables that can approximate some of the governing factors for whether 

liquefaction will or will not occur: soil density, soil saturation, and earthquake loading. 

We only consider variables that can be easily derived at a global scale, and so some 

factors that affect the occurrence of liquefaction (e.g., soil plasticity) are not 

considered in our approach. Table 2 summarizes the explanatory variables we have 

tested for the geospatial liquefaction model, which is expanded from those tested in 

Zhu et al. (2015).  The spatial resolution for all variables is 30 arc-sec. 

Table 2 Summary of all candidate explanatory variables.  

Variable description Variable name Density Saturation Load 

Shear wave velocity over the  
first 30 m (slope derived) 

VS30 ● 
  

Elevation elev ●   

Topographic Slope slope ●   

Roughness rough ●   

Topographic position index  TPI ●   

Terrain roughness index  TRI ●   

Distance to the nearest coast  dc ● ●  

Compound topographic index  CTI  ●  

Global water table depth  wtd  ●  

Distance to the nearest river  dr  ●  

Distance to the nearest water body  dw  ●  

Elevation above the nearest water body  hwater  ●  

Mean annual precipitation precip  ●  
Aridity index AI  ●  
PGA PGA   ● 
PGV PGV   ● 
Magnitude Mw   ● 
Magnitude scaling factor MSF   ● 
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Soil density is an important liquefaction susceptibility factor; loose soils are more 

susceptible than dense soils. Wald and Allen (2007) have demonstrated that soil 

density is correlated with topographic gradient using California, Taiwan, Utah, and the 

Mississippi Embayment as test cases. Although recent work has demonstrated that the 

Wald and Allen (2007) correlations are less effective in some regions (e.g., Magistrale 

et al., 2012), the method is still appropriate for broad applicability and is used globally 

with the USGS ShakeMap to estimate soil amplification after earthquakes (Worden et 

al., 2010).  We use the digital elevation model (DEM) from the Global multi-

resolution terrain elevation data 2010 (GMTED2010; See Data and Resources). 

Several geospatial variables were computed directly from the elevation data, such as 

slope and VS30. Slope is calculated using the grdgradient command in Generic 

Mapping Tools software (see Data and Resources). VS30 is estimated from slope using 

the method described in Wald and Allen (2007). We use the coefficients for active 

tectonic regions because all the earthquakes in the database are in active tectonic 

regions. 

Because surface texture is often used in landform classifications, we consider three 

roughness indices (roughness, topographic position index [TPI], and terrain roughness 

index [TRI]). Roughness is defined as the largest inter-cell difference of a central pixel 

and its eight surrounding cell. TPI is defined as the difference between a central pixel 

and the mean of its eight surrounding cells. TRI is defined as the mean difference 

between a central pixel and its eight surrounding cells. They are computed from the 

DEM using the gdaldem command in the Geospatial Data Abstraction Library 

(GDAL; see Data and Resources) based on the definitions described in Wilson et al. 

(2007). As with the gradient, these roughness measurements are dependent on the 

resolution of the digital elevation model that they are derived from. 
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Soil saturation is an important parameter in liquefaction analyses as the soil has to 

be saturated or partially saturated in order to liquefy. As water flows downhill and 

accumulates in streams, rivers, lakes, and oceans, soil saturation is generally correlated 

with proximity to water bodies and regional climate conditions. We used saturation 

proxies that are derived from topography, climate data, and groundwater models. We 

compute distance to river (dr) using the rivers from the HydroSHEDS database (see 

Data and Resources), which were derived from topography. We compute the distance 

to the nearest coast (dc) from a global dataset computed by NASA's Ocean Color 

Group (see Data and Resources). The distance to the nearest water body (dw) is 

calculated as the minimum value of dr and dc. We derive elevation above the nearest 

water body (hwater) from the river layer and elevation data. We use the compound 

topographic index (CTI; Beven and Kirkby, 1979) from the HydroSHEDS database 

(see Data and Resources). CTI, also referred to as the Wetness Index, is a function of 

the flow accumulation and the topographic slope.  

In addition to the saturation proxies derived from topography, we also include 

globally available climate information as an input to our estimation in order to 

differentiate the soil saturation across different climate regions such as the relative dry 

region affected by the 1999 M 7.1 Hector Mine earthquake (no liquefaction) versus the 

wet region affected by the 2001 M6.8 Nisqually earthquake (extensive liquefaction). 

The mean annual precipitation for the former region is approximately 200 mm, 

whereas the mean annual precipitation for the later region is approximately 1200 mm. 

We consider mean annual precipitation (precip) from the WordClim database (see 

Data and Resources) and aridity index (AI) from the CGIAR-CSI Global Aridity 

dataset (see Data and Resources). The global precipitation dataset was developed by 

interpolating from over 40,000 weather stations across the world and averaging over 

the 1959-2000 time periods. To incorporate the recent efforts of large scale 

groundwater modeling, we use a global dataset of water table depth (wtd) from Fan et 
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al. (2013), who modeled groundwater flow using a model constrained by climate, 

terrain and sea level and calibrated it with over 1.5 million published records of water 

table depths. 

Finally, earthquake magnitude and intensity parameters are important in 

liquefaction analyses because ground shaking of a contractive soil can lead to pore 

water pressure increase which is a necessary component of liquefaction. The effects of 

earthquake loading are modeled by ground shaking parameters and proxies for 

earthquake duration. For ground shaking parameters, we consider peak ground 

acceleration (PGA) and peak ground velocity (PGV) from ShakeMap (see Data and 

Resources), which provides near real-time estimates of ground shaking that 

incorporates macroseismic data as well as available ground motion records with 

ground motion prediction equation (GMPE) estimates (Worden et al., 2010). To 

approximate earthquake duration, we consider the magnitude scaling factor (MSF) in 

Youd et al. (2001). 

To demonstrate the typical patterns that these geospatial explanatory variables 

exhibit, maps for eight potential explanatory variables for the San Francisco Bay area 

and two shaking variables for the 1989 Loma Prieta earthquake are shown in Figure 3. 

Parameters such as VS30, wtd, CTI, and hwater are correlated with topography and 

show similar patterns. Also, parameters like dr and dc vary slowly and provide soil 

saturation proxy at a lower resolution as compared to parameters such as CTI or wtd 

which vary much more locally.  

 

3.3 Methods 
 

3.3.1 Sampling 

To create the liquefaction database with liquefaction occurrence and nonoccurrence, as 

well as all relevant geospatial explanatory variables, sampling grids are populated at 

100 m spacing for each earthquake region in a local Cartesian coordinate system. A 
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grid pixel is labeled as liquefaction when there is a liquefaction point inside the pixel 

or 30% of the grid pixel is covered by a liquefaction polygon. The 30% threshold is 

selected to rasterize polygons because we found that for the spatially complete data the 

30% threshold retains the same liquefaction to nonliquefaction ratio before and after 

the rasterization (Zhu et al., 2015). Because the 

 

Figure 3. Maps of candidate explanatory variables: a) PGA, b) PGV, c) VS30 , d) dc, e) dr, 

f) dw, g) wtd, h) CTI, i) precip, and j) hwater for the San Francisco Bay area. PGA and 

PGV are shown for the 1989 Loma Prieta earthquake all other variables are event 

independent. 
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absence of liquefaction is generally not documented in earthquake inventories, we 

developed a strategy to sample “nonliquefaction” data. For a complete dataset where 

the liquefaction data are documented within a mapping extent, we randomly sample 

nonliquefaction from the pixels not covered by a liquefaction polygon. For an 

incomplete dataset where the mapping extent is unknown, we apply circular buffers 

around known liquefaction locations to sample nonliquefaction (illustrated in Figure 

4). This allows for holes in the sampled regions, which will be determined by the 

distribution of the liquefaction locations and the buffer size. We use a nonsampling 

buffer immediately around each liquefaction point because we do not know the spatial 

extent of the recorded liquefaction feature. The sampling region is defined as the area 

outside of the nonsampling buffer and within the sampling region. After testing a 

range of buffer widths (see the Sensitivity analyses of sampling choices subsection in 

Discussion), we sample nonliquefaction pixels within an area that is 1 km to 15 km 

from an observed liquefaction pixel. Figure 4 is a schematic illustration of the spatial 

 

  

Figure 4. Sampling nonliquefaction events using spatial buffers. 
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buffer, with a solid circle showing the boundary of the inner buffer and the dashed line 

showing the boundary of the outer buffer. For events with insignificant or no 

liquefaction, the sampling region is determined by the area where the ShakeMap 

intensities are available.   

 

3.3.2 Logistic Model 

 

We use logistic regression to model the probability of liquefaction. Logistic regression 

is a statistical approach that can be used to describe the relationship of several 

independent variables to a binary dependent variable. The use of the logistic equation 

ensures that the resulted probability lies in the range between zero and one: 

 ���� =
�

���	

 , (1) 

 

where � = �� + ���� +⋯+ ����, x1, x2, ..., xk are the explanatory variables,  and 

��, ��, … , �� are the coefficients estimated from the regression. We use the maximum 

likelihood method to obtain these estimates (Kleinbaum and Klein, 2010).  

 

3.3.3 Sampling Strategy 

 

Because the events in the database were mapped with different levels of detail 

(polygons vs. points), the number of data points for an event in the database does not 

necessarily correlate with the extent of liquefaction occurred. An event that includes 

mapped polygons results in considerably more data points than an event that only 

includes liquefaction points. For example, the 2011 Christchurch earthquake has 8867 

data points, while the 1989 Loma Prieta event has 789 liquefaction points. To prevent 

a specific event from dominating the regression results, we randomly sample 1000 

liquefaction points from each event for model development. For an event where the 
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number of liquefaction points is less than 1000, we use all the liquefaction points 

available for that event. To improve model stability and avoid overfitting, we resample 

50 times for each model and average the model coefficients. Investigation of the 

variability of model performance and coefficients across different random samples 

constrains the sensitivity to the sampling scheme. 

In Zhu et al. (2015), we chose to use an imbalanced dataset (approximately 1:13 

liquefaction:nonliquefaction) because we aimed to develop a probability estimator that 

predicts the areal extent of liquefaction. In other words, we wanted the resulting 

probability to correlate with spatial extent (e.g., areas labeled 10% probability of 

liquefaction will contain about 10% liquefaction by area). This is only possible for 

complete inventories. As discussed in the Introduction, class imbalance significantly 

influences the resulting probabilities from logistic regression models. However, in the 

current approach, we include incomplete datasets in order to improve the generality of 

the model. As a result, the class imbalance in the current database no longer represents 

the actual class imbalance. As an alternative approach, we can optimize the model as a 

model classifier (i.e., discriminating between occurrences and nonoccurrences). Many 

studies have shown that for several classifiers, a balanced dataset provides improved 

overall classification performance compared to an imbalanced data set (Weiss and 

Provost, 2001; Laurikkala, 2001; Estabrooks et al., 2004). To minimize the effect of 

class imbalance and optimize the database for the development of a classifier, we 

sample equal numbers of liquefaction and nonliquefaction points (e.g., 1000 points 

each). For events with insignificant or no liquefaction, we sample 1000 

nonliquefaction points. Sampling so that the full database has a 1:1 class balance is 

another reasonable approach, but it is not the choice we made. For events with 

insignificant or no liquefaction, the sampling region is the region where the ShakeMap 

intensities are available. In the Discussion (Interpretation of Probabilities) section, we 
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evaluate the interpretation of the probabilities in terms of expected spatial extent of 

liquefaction to understand the impact of using a balanced sample. 

 

3.3.4 Modeling Strategy 

 
Our goal is to develop a model that not only fits the available data well, but will fit 

new data that was not used to develop the model. Thus, we select a simple model that 

reflects as much of the underlying physics of the problem as possible. Our modeling 

strategy involves four stages: (1) exploratory data analysis, (2) interaction assessment, 

(3) base model selection (i.e., an initial model that does not account for saturation), 

and (4) a stepwise assessment of alternative saturation parameterizations. Exploratory 

data analysis is carried out first because we think it is important to understand the 

distributions and relationships between the liquefaction/nonliquefaction data and 

explanatory variables. We plot the histograms of the liquefaction and nonliquefaction 

points (for a single set of sampled observations) as well as the estimated probability of 

liquefaction over the range of each candidate variable. We use this to identify gaps in 

the data space as well as variables that are strongly predictive.  

Next, we assess interaction effects of individual pairs of candidate variables. This 

is addressed prior to the final model selection because if there is evidence of 

interaction involving certain variables, then the interaction term (e.g., the product of 

two interacting variables) has to be considered in the model selection stage. We then 

establish a base model by selecting variables that show strong correlations with the 

probability of liquefaction. We prefer using a base model to guide the model selection 

rather than completely relying on the performance measures. Finally, we test the base 

model with additional candidate variables to determine if their combinations can 

improve the model performance. 

In the model selection stage, we evaluate candidate functional forms on a dataset 

sampled from the entire database using the described sampling method. There are 
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various ways to measure the performance of a statistical prediction model. We use the 

Brier score (Brier, 1950) to quantify how close predictions are to the actual outcome 

and AUC to quantify discrimination (do liquefied locations have higher predicted 

probabilities than those that did not?). The Brier score measures the mean squared 

difference between predicted probabilities and actual outcomes. The Brier score for a 

model can range from 0 for a perfect model to 0.25 for a non-informative model. 

Useful performance metrics for binary classifications include the true positives rate 

(TPR), which measures the fraction of positive cases that are correctly classified, and 

false positive rate (FPR), which measures the fraction of negative cases that are 

misclassified as positive. The ROC curve has proved a useful tool for evaluating 

empirical liquefaction models (Oommen et al., 2010; Maurer et al., 2015). A ROC 

curve is a plot of the TPR against FPR at various probability thresholds. For a given 

threshold, a model that perfectly predicts the binary response would have TPR = 1 and 

FPR = 0. The closer the ROC curve comes to this ideal case (i.e., the top-left edge of 

the plot), the better the model performance. Thus, AUC is a scaler measure that 

quantifies the accuracy of the probabilistic classifier, because as the AUC increases 

the ROC curve approaches the top-left edge of the plot.  The AUC limits are from 0.5 

(random classification) to 1.0 (perfect accuracy).  

 
 

3.4 Results 
 
3.4.1 Data Exploration 

 

We create a regression dataset from the entire database using the described sampling 

method. In order to explore the data and understand the correlation between individual 

explanatory variables and the liquefaction and nonliquefaction data, we present 

histograms of liquefaction (red) and nonliquefaction (green) data over the range of 

each candidate variable (including transformations) in Figure 5. On the same plots, the 
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ratio of liquefaction points within each bin  is shown as a gray dot where the darkness 

of the gray dot increases with the number of data points within the bin (the scale is 

different for each panel). In other words, the darkness of the point is an indication of 

weight. The blue curve represents a univariate logistic model fit to the data. 

In the plots, shaking parameters such as PGA and PGV are transformed by taking 

their natural logarithm, because their distributions are well represented by a lognormal 

distribution. Similarly, we use the natural logarithm of VS30. We notice the 

distributions of a few variables are sharply skewed, such as dc, wtd, elev, TRI and 

roughness, with a greater density of data having values close to zero. As a result of the 

skew, the occurrence of liquefaction is more sensitive to changes in small values than 

large values. Therefore, we prefer to apply a square root transformation to increase the 

weights of small values. In the model selection, we consider the variables both with 

and without transformation.  

In Figure 5, ln(PGA), ln(PGV), ln(VS30), dw, and precipitation show strong 

correlations with the probability of liquefaction. We observe that ln(PGV) is more 

evenly distributed than ln(PGA) and ln(PGV) shows a stronger correlation with the 

estimated probability of liquefaction from data. The estimated probability of 

liquefaction seems negatively correlated with ln(PGA) and ln(PGV) when PGA is 

beyond 0.3 g and PGV is beyond 50 cm/s. Magnitude, or a function of magnitude, 

sometimes is considered as a factor to scale PGA (e.g., Youd et al., 2001). However, 

with our sampling scheme the relationship between the probability of liquefaction and 

magnitude cannot be reliably estimated because the number of points that are sampled 

for an event is independent from the magnitude (i.e., 1000 liquefaction points if 

available and 1000 nonliquefaction points). The relationship between the estimated 

probability of liquefaction and magnitude that appears in Figure 5 appears to be an 

artifact of our sampling, and cannot be reliably used for prediction. This also appears 

to be the case for MSF, which is a function of magnitude.  
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Figure 5. Histograms of liquefaction (red bars) and nonliquefaction (green bars) and the 

probability of liquefaction observed from the data (gray circles) at intervals of a variable’s 

value and the probability (blue line) predicted from a univariate model. The darkness of the 

gray dot increases with of the number of data points within the bin (the scale is different 

for each panel). In other words, the darkness of the point is an indication of weight. 
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Figure 5 (cont.). Histograms of liquefaction (red bars) and nonliquefaction (green bars) and 

the probability of liquefaction observed from the data (gray circles) at intervals of a 

variable’s value and the probability (blue line) predicted from a univariate model. The 

darkness of the gray dot increases with of the number of data points within the bin (the 

scale is different for each panel). In other words, the darkness of the point is an indication 

of weight. 
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3.4.2 Interaction Assessment 

 

In Figure 6, we assess the interaction effects between variables. We construct a two-

dimensional (2-D) image where the axes are two of the explanatory variables and the 

color is the percentage of points that liquefied in each bin (bins are only shown for 

five or more observations). The bin width is chosen such that each explanatory 

variable is divided evenly into 19 bins. The observations (colored bins) are compared 

to the predicted probabilities (black lines) from bivariate models with or without 

interaction terms, which are represented as probability contour lines on the same 

image. When this plot is constructed for two explanatory variables without interaction 

terms, then the probability contour lines are straight. The interaction term allows for 

the probability contours to curve. Thus, if we add the interaction term and the contour 

lines are still essentially linear (and unchanged from the model without the interaction 

term) then we judge the interaction term to not be significant enough to include in the 

model. 
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Figure 6 Observed percentage of liquefaction (colored bins) versus nonliquefaction as a 

function of dr and dc0.5 and comparison of probability contours (black lines) from a 

bivariate model a) without interaction term and b) with interaction term. Observed 

percentage of liquefaction (colored bins) versus nonliquefaction as a function of PGV and 

VS30 and comparison of probability contours (black lines) from a bivariate model c) 

without interaction term and d) with interaction term. 

 

In this exploration, we only consider multiplicative interaction terms. We use the 

interaction between dc and dr as an example. When dc is small, dr has little effect on 
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the probability of liquefaction. When dc is large, the probability of liquefaction 

significantly decreases as dr increases. Note that dr does not appear to be a good 

predictor when it is evaluated alone (Figure 5g), but it becomes valuable when 

combined with dc. As shown in Figure 6b, after adding the interaction term, the 

probability contour lines become curved and fit the distribution of data better. This 

makes sense as we expect both saturation and soil density to change as the river 

approaches the coast. As a second example, we expect possible interaction effects 

between VS30 and PGV. When PGV is less than 3 cm/s, the probability of liquefaction 

is zero, and change in VS30 has no effect on the probability of liquefaction. We find 

adding the PGV×VS30 interaction term does not help because the interaction terms does 

not create curvature in the model contours as shown in Figure 6. Instead, we 

heuristically assign zero to the predicted probability for both models when PGV < 3 

cm/s. Similarly, we assign zero to the probability when VS30 > 620 m/s. 

 

 
3.4.3 Model equations 
 

After exploring individual candidate variables and their interaction effects, we select 

three variables to form a base model, which include ln(PGV), ln(VS30), and 

precipitation. We choose these variables because they show strong correlation with the 

probability of liquefaction (Figures 5b, 5c, and 5n) and also can be linked to factors 

such as earthquake shaking, soil density, and regional climate, which are the primary 

contributors to the physical process of liquefaction. In addition, the model first relies 

on a preliminary classification based on PGV and VS30 as discussed above. As 

discussed above, we heuristically assign zero to the predicted probability for both 

models when PGV < 3 cm/s. Similarly, we assign zero to the probability when VS30 > 

620 m/s. 
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A potential concern with the selection of PGV over the more traditional use of 

PGA with the MSF correction is that it does not explicitly account for the number of 

cycles of loading (or duration, which is generally correlated with magnitude). Within 

this context, we would like to note that the saturation of PGV scaling with magnitude 

is less severe than that for PGA. Thus, one could make the case that since PGV is 

more sensitive to magnitude than PGA, it indirectly accounts for the additional loading 

due to the longer durations associated with larger magnitudes. Another concern with 

the use of PGV is that GMPEs in some regions (especially stable continental regions 

and subduction zones) rarely include coefficients for evaluating PGV. We still prefer 

the use of PGV, however, because 1) it performs best when compared to our expanded 

database, 2) our assessment includes any additional uncertainty in PGV predictions, 

and 3) inclusion of PGV in GMPEs is becoming relatively standard in modern GMPEs 

and so we expect this issue to diminish with time.  

Another significant contributor to the physical process of liquefaction is soil 

saturation; however, there were several candidate variables for soil saturation that 

show good correlation with the probability of liquefaction. Therefore, we focus on 

assessing the improved performance of the base model when saturation proxies are 

added as explanatory variables. We assess the performance of the model using the 

AUC and Brier score calculated from a sampled dataset. We use the same sampled 

dataset for all three models so that we can directly compare performance. The 

coefficients of the best performing model (Model 1) are given in Table 3. We also 

include the coefficients of the global model in Zhu et al. (2015), which uses 

magnitude-scaled PGA from ShakeMaps (PGAM,SM) to account for shaking load. The 

model performance as summarized by the AUC and Brier scores (shown in Table 3) 

was comparable across the current dataset: Model 1 has the highest AUC (0.801) as 

compared to Model 2 (0.788) and GLM-Zea15g (0.755); Model 1 has the lowest Brier 

score (0.162) as compared to Model 2 (0.166) and GLM-Zea15g (0.232).  
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Table 3. Coefficients of top performing coastal models and GLM-Zea15g. We heuristically 
assign zero to the predicted probability for both models when PGV < 3 cm/s. Similarly, we 
assign zero to the probability when VS30 > 620 m/s. 

 GLM-Zea15g Model 1 Model 2 Units 

Intercept 24.10 12.435 8.801  

ln(PGV)  0.301 0.334 cm/s 

ln(VS30) -4.784 -2.615 -1.918 m/s 

precip  5.556E-4 5.408E-4 mm 

ln(PGAM, SM) 2.067   g 

√��  -0.0287  km 

��  0.0666  km 

CTI 0.355    

�    -0.2054 km 

wtd   -0.0333 m 

√�� ∗ ��  -0.0369   

AUC (All events*) 0.755 0.801 0.788  

Brier score (All events*) 0.232 0.162 0.166  

AUC (Noncoastal) 0.655 0.793 0.811  

Brier score ((Noncoastal) 0.106 0.091 0.104  

*All events in Table 1 except the 2011 Bhuj earthquake. 
 

 

3.4.4 Goodness of fit 

 

The liquefaction data in the database are primarily derived from earthquakes that have 

occurred in coastal environments. There are not many earthquakes with observed 

liquefaction that occur far from the coast. Although Model 1 was developed from a 

database including both coastal and noncoastal earthquakes, it performs best in the 

coastal setting. Model 1 relies on the distance to coast parameter as a proxy for 

saturation and soil density, and we find this proxy can be problematic for the 

noncoastal setting because as the distance to coast increases, the predicted 

probabilities approach zero. Therefore, we present a second model (Model 2 in Table 

3), which is selected from five top performing models and performs best in noncoastal 

events (defined earlier): 2008 Wenchuan, 1999 Chi-Chi, 1994 Northridge, and 1999 

Hector Mine. Model 2 uses wtd and dw as the saturation proxies. 
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To compare the models in Table 3 and make sure that they are not biased toward a 

specific event, we summarize the AUCs of models on individual events in Table 4. 

Events with no liquefaction are excluded in the table because both liquefaction and 

nonliquefaction are needed in order to compute AUC. Both updated models perform 

well on 16 earthquakes (out of 21 liquefaction earthquakes) with AUC values greater 

than 0.6. We compare the AUCs of the two updated models, and bolded numbers in 

the table shows the AUC of the better performing model in the two updated models for 

each event. Although Model 1 performs better than Model 2 overall, Model 2 

outperforms Model 1 on all noncoastal events. Model GLM-Zea15g outperforms 

updated models for the 2003 San Simeon, 2004 Niigata, 2003 Tokachi, and 2001 Bhuj 

events. Both updated models perform poorly (AUC<0.6) for the 2008 Wenchuan, 

2001 Bhuj and 1994 Northridge events. For the 1965 Puget Sound event, many 

liquefaction cases with low probabilities from Model 1 occurred in the artificially 

filled areas that were not well captured by the geospatial parameters. In Figure 7, we 

compare the ROC curve of the updated model with the previous model in Zhu et al. 

(2015). The AUC of the updated Model 1 and GLM-Zea15g is 0.801 and 0.755, and 

the brier score of the updated Model 1 and GLM-Zea15g is 0.162 and 0.232, 

suggesting that the new model provides improved accuracy over the old model.
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Figure 7. Comparisons of ROC curves of GLM-Zea15g and the best performing model (Model 

1) with a one-to-one line representing random guessing. 
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Table 4. Comparison of the AUCs of two updated models and GLM-Zea15g over individual 

earthquakes. Bolded numbers indicate the AUC for the better performing model in Model 1 and 

Model 2. When comparing three models, GLM-Zea15g outperforms the two updated models for 

six earthquakes. 

Earthquake GLM-Zea15g Model 1 Model 2 
1989 Loma Prieta 0.620 0.886 0.848 
1995 Kobe  0.808 0.862 0.821 
2000 Tottori 0.771 0.806 0.775 
2011 Christchurch 0.847 0.801 0.770 
1978 Miyagi 0.742 0.791 0.801 

2003 San Simeon 0.786 0.757 0.775 

2010 Darfield 0.642 0.725 0.692 
2001 Nisqually 0.684 0.703 0.751 

2004 Niigata 0.728 0.678 0.700 

2011 Tohoku 0.532 0.677 0.656 
1993 Hokkaido 0.711 0.673 0.720 

1964 Niigata 0.668 0.667 0.628 
1983 Nihonkai 0.647 0.643 0.649 

1987 Chiba 0.613 0.608 0.657 
1999 Chi-Chi* 0.568 0.603 0.660 
1949 Puget Sound 0.578 0.601 0.610 

2003 Tokachi 0.578 0.561 0.571 

1965 Puget Sound 0.529 0.558 0.548 
1994 Northridge* 0.469 0.535 0.547 

2008 Wenchuan* 0.546 0.527 0.551 

2001 Bhuj* 0.638 0.515 0.537 

*noncoastal events (average distance to coast of liquefaction features > 20 km) 
 

 

To convert the model to a classifier, we must select a threshold value to convert from 

predicted probability to a classification of liquefaction or nonliquefaction. Lower thresholds 

yield higher true positive rates and higher false positive rates. The threshold value could be 

determined based on the highest acceptable false positive rate. Using the top performing 

model (Model 1), we present confusion matrices for three thresholds in Table 5. A 

confusion matrix summarizes statistics for four possible outcomes when comparing a 

prediction from a binary classifier to an observation: true positive (top left cell; correct 
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positive prediction), true negative (bottom right cell; correct negative prediction), false 

positive (bottom left cell; incorrect positive prediction) and false negative (top right cell; 

incorrect negative prediction). For example, using 0.3 as the threshold, 24.2% of data 

liquefied and are correctly classified as liquefaction. 5.6% of the data liquefied and are 

incorrectly classified as nonliquefaction. Using 0.3 as the threshold gives a true positive rate 

(TPR; the fraction of positive cases that are correctly classified) of 0.81 whereas as a 

threshold of 0.4 give a true positive rate of 0.65 and a threshold of 0.5 reduces the true 

positive rate further to 0.42. The false positive rate (FPR; the fraction of negative cases that 

are incorrectly classified as liquefied) is 0.34 with a threshold of 0.3, 0.23 with a threshold 

of 0.4, and 0.13 with a threshold of 0.5. These differences in TPR and FPR for different 

thresholds help to illustrate the effectiveness of the classifier and the meaning of the mapped 

categories when we use this model to map the probability of liquefaction for an event 

(Figure 8 and Figure 9). A threshold of 0.3 is more conservative in that it overpredicts 

liquefaction, whereas, a threshold of 0.4 is a more balanced classifier. 

 

Table 5. Confusion matrices for three thresholds (0.3, 0.4, and 0.5) for Model 1 presented in 

Table 4. 

Threshold  P = 0.3  P = 0.4 P = 0.5  

Predicted  L NL  L NL L NL 

Actual 
L  24.2 5.6  19.6 10.3 12.5 17.4 

NL  24.1 45.9  16.0 54.0 9.2 60.8 

   
TPR= 

FPR= 

0.81 

0.34 
 

TPR= 

FPR= 

0.65 

0.23 

TPR= 

FPR= 

0.42 

0.13 
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3.4.5 Probability maps 

 

In addition to the performance metrics, it is also important that the model predicts the spatial 

distribution of liquefaction for the earthquake event. Figure 8 and Figure 9 show the 

predicted probability maps (using Model 1) for three U.S. and five Japan earthquakes where 

the observed liquefaction points are shown in black. The spatial pattern of liquefaction for 

each event is well represented by the model. Consistent with the confusion matrix, the 

orange and red categories (threshold>0.3 and threshold > 0.5) show a consistent pattern with 

the observed liquefaction. We find for earthquakes with very large magnitude such as the 

2011 Tohoku earthquake, the model predicts larger area of high probabilities than the area 

where liquefaction was observed. This might be related to the fact that the observed 

probability of liquefaction saturates as a function of ln(PGV) for large PGV values, but the 

predicted probability does not (Figure 5b). The saturation is more severe when using 

ln(PGA) as the shaking parameter.  

In Figure 10, we show the probability maps calculated using Model 2 for the four 

noncoastal earthquakes in the database (2008 Wenchuan, 1994 Northridge, 1999 Hector 

Mine, and 1999 Chi-Chi). We also show the model applied to the 2001 Bhuj and 2015 

Nepal earthquakes, which are not in the database as a further verification of the model. The 

model performs well on the 1999 Hector Mine and the 2015 Nepal events. For the 2008 

Wenchuan earthquake, the liquefaction generally occurred near rivers, which coincide with 

low probability (0.1-0.3) and some medium probability (0.3-0.5) areas predicted by the 

model. For the 1994 Northridge earthquake, in the epicentral region in the San Fernando 

Valley, the model appears to overpredict because the liquefaction data in our database for 

this region is incomplete. Besides the ground failures in the region that are shown in the 

figure and included in our database, liquefaction was also found to contribute to many 

liquefaction-related structural failures (Stewart et al., 1994). In the Granada Hills area on the 

north of the San Fernando Valley where many ground failures were observed, the model 

predicts low 
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Figure 8. Probability maps predicted from the updated model (Model 1) for earthquakes in 

United States.
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Figure 9. Probability maps predicted from the updated model (Model 1) for earthquakes in 

Japan. 
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Figure 10. Probability maps predicted from Model 2 for a) the 2008 Wenchuan, b) 1994 

Northridge, c) 1999 Hector Mine, d) 1999 Chi-Chi, e) 2015 Nepal (Moss et al., 2015), and 

f) 2001 Bhuj earthquakes. 

 

probabilities as a result of the relatively deep water table depth (>10m). The observed 

ground failures in the area might be a result of dynamic ground compaction of loose 

unsaturated surface material not liquefaction (Stewart et al., 1994). Outside of the San 

Fernando Valley, the model predicts high probabilities in Simi Valley on the west and 

the coastal area near Marina De Rey on the south, which agree with the liquefaction 

observations. For the 1999 Chi-Chi event, many observed liquefaction points lie in the 

area with medium probability. The model overpredicts for coastal areas, where very 

few liquefaction occurrences were observed. For the 2001 Bhuj event, model 
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prediction in general agrees with the extent of liquefaction estimated from change 

detection on remote sensing data. Notwithstanding the above limitations in identifying 

individual locations of liquefaction observations, it is our interpretation that the 

aggregate performance of the events in Figure 10 is encouraging for a number of 

reasons: 1) these are the most challenging events that the model is likely to face due to 

the fact that liquefaction occurred  in noncoastal areas whereas the majority of the 

events in the database are located in coastal areas , 2) the extent of the observations 

correlates well with the extent/amplitude of the modeled probabilities (i.e., the model 

indicates the overall extent of liquefaction for an event even if the exact locations are 

not identified), and 3) with the exception of prior models developed by our research 

team, there are currently no feasible alternative models of liquefaction that can be 

applied globally, and we have shown that this update is a significant improvement 

over our prior models elsewhere in this paper.  

 

3.4.6 Application for susceptibility 

 

Maps of liquefaction susceptibility which are independent of a specific earthquake 

scenario may also be useful for regional liquefaction risk estimation. The probability 

of liquefaction is a function of the set of explanatory variables X in equation (1), 

which includes the event-specific shaking intensity. To create a susceptibility map, we 

simply compute X without the intensity (PGV) term. The resulting number is not an 

estimate of the probability of liquefaction, but simply combines the susceptibility 

terms together with the coefficients that were determined by our regression analysis. 

Thus, the absolute values are not directly meaningful. We calculate the susceptibility 

using Model 1, and present the susceptibility as three classes (low, moderate, and 

high) in Figure 11 for the San Francisco region as compared to a geology-based 

susceptibility map (Witter et al., 2006). Figure 12 shows a similar comparison between 
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Figure 11. Susceptibility maps for the San Francisco Bay, California area from a) the 

geospatial model (Model 1) and b) geology-based mapping (Witter et al., 2006). 

 

Figure 12. Susceptibility maps for the Seattle, Washington area from a) the geospatial 

model (Model 1) and b) geology-based mapping (Palmer et al., 2004). 

a geospatial susceptibility map versus a geology-based susceptibility map for Seattle 

(Palmer et al., 2004). Although there are some differences between our model and the 
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a

geology-based susceptibility maps, we are able to capture similar trends and 

believethat these geospatial susceptibility maps can be useful as preliminary 

information for regional-scale planning.  

3.5 Discussion 
 
3.5.1 Sensitivity Analyses of Sampling Choices 

In this study, we apply a sampling method in order to combine complete and 

incomplete datasets into a single database. The resulting method results in a balanced 

dataset (50:50). To fully understand the implications of our sampling method, we 

perform sensitivity analyses regarding choices such as the width of the spatial buffer 

and the class imbalance. Note that in the sensitivity analyses we use a different dataset 

than what is described in the methods section, which was used for regression. We use 

a testing dataset that is independent of the sampling method, which consists of all data 

points from the “complete” datasets as defined in Table 1. For example, 0.5 – 10 km 

means we sample nonliquefaction points within the area that is greater than 0.5 km 

and less than 10 km from observed liquefaction. We develop models using data that 

are sampled using different buffer widths. We compare the performance of the models 

in terms of the ROC curve in Figure 13a, and find the AUCs of the models are not 

sensitive to the buffer widths. The ROC curves in Figure 13 are different from the 

ROC curve in Figure 7 because different testing data are used. Figure 13 shows that 

the model performs well on spatially complete events that are used for testing. 

Similarly, we study the sensitivity of model performance to the class imbalance as 

shown in Figure 13b. We compare the models that are developed using the data 

sampled using different liquefaction/nonliquefaction ratios, and we find the AUCs of 

the models are not sensitive to the class imbalance.  
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3.5.2 Interpretation of the Predicted Probabilities 

The predicted probability from the developed models can be converted to a 

classification by applying a threshold as demonstrated with the confusion matrix 

presented in Table 5. This is useful for predicting liquefaction for a new event. 

Optimal thresholds can be chosen based on the acceptable false predictions. Another 

way to interpret the probability is to predict the spatial extent of liquefaction within a 

probability class. In the development of the Zhu et al. (2015) model, which used 

spatially complete data, the predicted probabilities agreed well with the spatial extent. 

Figure 14 assesses the relationship between the areal percentage of liquefaction 

computed with the complete events in the expanded inventory database and the 

predicted probabilities from GLM-Zea15g and Models 1 and 2. For each model, we 

bin the predicted probability and compute the liquefaction percent, which is plotted in 

               

Figure. 13 Sensitivity of ROC curves to a) spatial buffer and b) class imbalance with one to 

one lines (gray lines) representing random guessing.  
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Figure 14 in the center of each bin, and the 95% confidence interval is illustrated as a 

vertical line. For GLM-Zea15g, we show a linear model with a 0 intercept and a slope 

of 0.81. This means that the expanded database indicates that the probabilities from 

the GLM-Zea15g model should be multiplied by 0.81 to estimate liquefaction percent. 

Note that we have included more events with insignificant or no liquefaction, which 

explains why the slope of this line is not unity even though that was the target of 

GLM-Zea15g. For Model 1 and Model 2, we fit a logistic function which has the same 

form as Equation 1 except that in this case we found that squaring the denominator 

improves the fit 

 ���� =
"

���#�	$%�&
  (2) 

where � is the areal liquefaction percent, � is the predicted probability, and the 

parameters ', (, and � are given in Table 6. Equation 2 can either be used to convert 

the predicted probability to liquefaction percent or to define simplified classes. For 

example, to define a class where the percent liquefaction is between 10 and 20% from 

the probabilities predicted by Model 2, one would plug in the value of 10 and 20 for 

���� into Equation 2 and solve for � with the Model 2 coefficients from Table 6, 

which would yield probabilities of 0.37 to 0.47. 

 
Figure 14. Areal percentage of liquefaction as a function of model probabilities. In each 
panel, the dots show the estimated liquefaction percent with 95% confidence intervals for 
binned predicted probabilities. Vertical lines indicate the bin boundaries. The black lines 
are curves fit to the data. 
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Table 6. Parameters for relating model probabilities to areal liquefaction percent.  
 

 Model 1 Model 2 
a 42.08 49.15 
b 62.59 42.40 
c 11.43 9.165 

 

3.5.3 Applicability of Model to Noncoastal Regions 

While the goal of the geospatial liquefaction model presented here is for global use, 

we acknowledge that the model development was based on earthquakes in coastal 

regions. Our analysis of Model 2 in noncoastal regions provides promising results; 

however, uniform performance across all tectonic environments should not be 

expected. For example, the accuracy of predicting VS30 from slope may be less 

accurate in glaciated regions (Magistrale et al. (2012). Model validation and 

development should continue as earthquakes occur and additional data become 

available. 

 

 
3.6 Conclusion 

 
To predict liquefaction extent immediately after an earthquake worldwide, we need a 

model that uses widely available geospatial parameters (e.g., Zhu et al. (2015)). In this 

paper, we update the Zhu et al. (2015) model by 1) expanding the database to include 

27 events from six countries, 2) applying a sampling method to add incomplete 

dataset, 3) evaluating new explanatory variables, and 4) testing interaction terms. In 

model development, we compare 18 proxies for earthquake shaking, soil saturation 

and soil density. We find PGV performs better than PGA as a shaking parameter. The 

patterns of saturation proxies show different scales of details. At a regional scale, 

distance to the water body performs best. We find that considering interaction terms 
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between dr and dc improves the accuracy of the model. The model that performs best 

over the entire dataset includes PGV, Vs30, dr, dc, and precipitation. The model that 

performs best over the noncoastal dataset includes, PGV, Vs30, wtd, dw, and 

precipitation. The updated models offer an improved accuracy as compared to the Zhu 

et al. (2015) model. We validate the models and assess the resulting probability in 

terms of probability thresholds and the spatial extent of liquefaction. We find that the 

mapped probability of liquefaction can be used as an estimate of spatial extent within 

classes but should be adjusted due to the 50:50 class balance used herein. Overall, the 

footprint and overall degree of liquefaction is successfully recovered for test events to 

a degree that indicates our models should prove useful for global, near–real-time 

applications. 

 

 
3.7 Data and Resources 

 
The liquefaction data used in this paper were all compiled and digitized from 

published sources (listed in the references in Table 1) except the data for the 2010-

2011 Darfield and Christchurch earthquakes from the Canterbury geotechnical 

database (https://canterburygeotechnicaldatabase.projectorbit.com; last accessed July 

2014). The liquefaction data that we digitized for ten earthquakes in the US, Japan, 

China, and Taiwan are available from Zhu et al. (2016). The electronic data from all of 

the events in Table 1 where the reference is Wakamatsu (2011) is available in the CD 

that accompanies the book.  

The ShakeMaps were obtained from the USGS earthquake archives 

(http://earthquake.usgs.gov/earthquakes/search/; last accessed April 2015). The digital 

elevation model was obtained from the Global Multiresolution Terrain Elevation Data 

2010 (http://topotools.cr.usgs.gov/gmted_viewer/viewer.htm; last accessed December 

2013). River networks and compound topographic index data were obtained from the 

HydroSHEDS database (http://hydrosheds.cr.usgs.gov/dataavail.php; last accessed 



80  

February 2014). Distance to the nearest coastline data were computed from the 

Distance to the Nearest Coast dataset 

(http://oceancolor.gsfc.nasa.gov/cms/DOCS/DistFromCoast#, last accessed January 

2014). Mean annual precipitation data were obtained from the WordClim database 

(http://WorldClim.org; last accessed March 2014). The aridity index data were 

obtained from the Global Aridity and PET dataset (http://www.cgiar-

csi.org/data/global-aridity-and-pet-database; last accessed September 2014). 

Analysis on geospatial datasets were performed using the Generic Mapping Tools 

software (http://www.soest.hawaii.edu/gmt/; Wessel and Smith, 1998) and the 

Geospatial Data Abstraction Library, available at http://www.gdal.org/. All other 

computations in this article were completed with the open source software R (R 

Development Core Team, 2012) available at http://www.r-project.org/. Figures 

were prepared using R and Geographic Information System program ArcGIS, 

v.10. 
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4 Mapping Earthquake Induced Liquefaction Surface 

Effects from the 2011 Tohoku Earthquake Using 

Satellite Imagery3 

 
Abstract 

Earthquake induced soil liquefaction is an important secondary hazard during 

earthquakes and can lead to significant damage to infrastructure. Mapping 

liquefaction surface effects after an earthquake is an important component of 

post-event data cataloging. These liquefaction inventories are then used by 

researchers to investigate the causes and effects of soil liquefaction. Post-

earthquake liquefaction data collection historically relies on field investigation. 

Because the spatial extent of field investigations is often limited by time and 

expense, many areas where liquefaction may have occurred are neglected, and the 

resulting liquefaction inventories are often spatially limited and incomplete. The 

use of pre- and post-earthquake satellite images can enable spatially 

continuous/exhaustive mapping of liquefaction that can subsequently be checked 

by field investigation and visual interpretation of true color composite satellite 

images or high resolution aerial imagery. We develop a workflow for mapping 

earthquake-induced surface effects of liquefaction using optical satellite images 

from the WorldView-2 satellite with 2 m spatial resolution and eight spectral 

bands. We use an approach that combines change detection with inputs that are 

sensitive to surface moisture and soil characteristic and supervised classification. 

We find that change vector analysis using the change magnitude based on the 

components of the Tasseled Cap Transformation is more effective than using 

individual spectral bands alone. We test and verify the proposed method in the 

Urayasu region in Japan affected by the 2011 Tohoku earthquake, comparing the 

                                                           
3 Zhu, J., L. G. Baise, M. Koch (in preparation). Mapping Earthquake Induced Liquefaction Surface Effects 
from the 2011 Tohoku Earthquake Using Satellite Imagery, Soil Dyn. Earth. Eng. 
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results of the proposed automated classification with an existing dataset visually 

mapped from aerial photographs. The preferred classification uses the decision 

tree classification with the change of magnitude, wetness, and NDWI and results 

in a producer’s accuracy for liquefaction of 70% within the training dataset. The 

decision tree is applied across Urayasu City using a mask to block out buildings 

and vegetation. The results are qualitatively evaluated at several locations 

indicating that liquefaction surface effects can be identified on exposed surface 

such as bare soil and pavement but may not be visible on the high-resolution 

images in dense urban areas where buildings, and shadows obstruct the satellite 

view. 
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4.1 Introduction 
 
Soil liquefaction often occurs as a secondary hazard during earthquakes and can lead 

to significant infrastructure damage. Liquefaction hazard on a regional scale can be 

mapped for loss estimation and rapid response using predictive models (e.g., Zhu et al 

2016). Mapping liquefaction surface effects after an earthquake is important in both 

guiding emergency response and providing an inventory of liquefaction from the 

event. These inventories are then used by researchers to study soil liquefaction, refine 

and validate liquefaction models, and ultimately mitigate liquefaction-related damage 

for future events. Post-earthquake liquefaction data collection historically relies on 

field investigations carried out by reconnaissance teams such as the Geotechnical 

Extreme Events Reconnaissance (GEER) teams. Field reconnaissance teams 

investigate sites with reported liquefaction surface effects, and as a result, the 

liquefaction inventories are often severely biased toward liquefaction observations. 

Because the spatial extent of this type of investigation is often limited by time and 

expense, many areas where liquefaction may have occurred are neglected (Chleborad 

and Chuster, 1990; Youd and House, 1978). A spatially complete and unbiased catalog 

of liquefaction surface effects is critical for evaluating spatial extent of liquefaction. 

Zhu et al. (2016) have demonstrated that regional liquefaction models can be 

developed to predict spatial extent of liquefaction when spatially complete 

liquefaction inventories are available; however, complete liquefaction inventories are 

rare as they require the integration of detailed interpretation of aerial images and field 

reconnaissance. To improve the size and scope of liquefaction inventories, we need an 

approach that supplements field reconnaissance with classification from high-

resolution satellite imagery to document liquefaction surface effects after an 

earthquake over broad regions. 
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Over the past decade, significant progress has been made in developing and 

launching high resolution spaceborne optical imaging sensors such as the WorldView-

2 (WV-2; launched 2009) and Pléiades-1A (launched in 2011). WorldView-2 

produces images with 2 m spatial resolution and eight spectral bands. These sensors 

provide great opportunities for timely and accurate mapping of post-earthquake 

damage. Remote sensing imagery can greatly benefit field reconnaissance in reducing 

spatial incompleteness and sampling bias in the liquefaction data collection. Compared 

with field investigations, remote sensing imagery is cost effective and can be collected 

over a broad region, including locations that are not accessible by field personnel. 

Furthermore, satellite imagery can be used to produce a spatially continuous map, and 

thus unbiasedly preserve observations of both liquefaction occurrence and 

nonoccurrence.  

 

Remote sensing imagery has been integrated into post-earthquake liquefaction data 

collection for some recent earthquakes such as the 2001 Bhuj (Ramakrishnan et al 

2006), 2011 Christchurch, New Zealand earthquake (Cubrinovski et al., 2011; Green 

et al., 2011), and the 2011 Tohoku earthquake (Toida and Yazamaki, 2012). Many of 

these applications (Toida and Yamazaki, 2012; Hamada et al., 1995) relied on visual 

interpretation using aerial photos with limited spectral information, which can be 

expensive and time consuming (Saito et al 2005). Using more spectral information 

combined with automated image analysis methods such as change detection or 

classification can greatly increase detectability of ground affected areas while 

reducing cost and efforts and have been used by some researchers (Oommen et al, 

2013; Morgenroth et al., 2016). Morgenroth et al. (2016) has applied a rule-based 

classification on air-borne imagery acquired after the 2011 Christchurch earthquake. 

While their study demonstrates the feasibility of using an automated algorithm to map 

the surface effects of liquefaction based on a single post-event image, their model did 
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not perform well on pavements due to the spectral similarity between wet liquefaction 

and nonliquefied pavements. The proposed method extends their work by 

incorporating spectral change information between pre- and post-earthquake images. 

Oommen et al. (2013) has applied change detection using Landsat ETM+ data to map 

liquefaction surface effects in rural regions for the 2001 Bhuj earthquake based on a 

spectral variable that is sensitive to soil moisture content. In the proposed method 

herein, we extend the change detection method used by Oommen et al. (2013) by 

applying it in Urayasu City for the 2011 Tohoku earthquake using WorldView-2 

imagery.  By using the WorldView-2 data, we have a higher spatial resolution (2 m) 

and more spectral bands in the visible and near infrared region of the spectrum than 

the Landsat ETM+ data.  In this study, we test and combine multiple variables (e.g. 

brightness, greenness, and wetness from the Tasseled cap transformation) in the 

change detection and classification to map liquefaction.  

 

The objective of this Chapter is to investigate the applicability of a change 

detection analysis in combination with a supervised classification method in an urban 

environment to identify liquefaction-induced surface effects. The study area is 

Urayasu city in Japan which is heavily damaged after the 2011 Tohoku earthquake. 

We take advantage of the very high spatial resolution optical satellite images 

(WorldView-2) for Urayasu City in Japan before and after the 2011 Tohoku 

earthquake. We use eight spectral bands from the WorldView-2 data and their 

transformations in the change detection and classification. We validate the method 

across 4000 validation points in Urayasu City where liquefaction surface effects have 

been visually mapped by others (Toida and Yamazaki 2012), and independently 

validated by us using the post-earthquake WorldView-2 image displayed in true color 

composite. We evaluate individual spectral bands from WorldView-2 as well as 

spectral variables from the Tasseled cap transformation in the change detection.  We 
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compare two supervised classification methods (decision tree and maximum 

likelihood classification) to map liquefaction and nonliquefaction within the test areas. 

Finally, we select a classification method based on accuracy metrics and apply the 

preferred classification method based on accuracy metrics across Urayasu City. In 

addition to the quantitative validation, we use the true color composite to qualitatively 

evaluate the classification performance because it is created by combining the spectral 

bands (visible red, blue green bands) that most closely resemble the range of vision of 

the human, and we find it easier to identify liquefaction surface effects than other band 

combinations. The qualitative evaluation is used to understand the model performance 

as compared to field mapping and to provide insight into future implementations of 

satellite-imagery based liquefaction mapping classifications.  

 

 

4.2 Study Area and Data 
 

The study area is the Urayasu City in Chiba Prefecture, a densely populated urban 

region, located on the coast of Tokyo Bay in Japan. A map of this region is shown in 

Figure 1a. The city was built on land that was reclaimed between 1966 and 1985 

(Yasuda et al 2012). The strong ground motion resulting from the 2011 Mw 9.0 

Tohoku earthquake, combined with the soil condition and the shallow water table 

depth resulted in extensive liquefaction across Urayasu City. Many houses, roads, 

lifeline facilities, and river embankments were severely damaged by soil liquefaction. 

Surface effects due to liquefaction were widely observed both on soil and pavement 

(Bhattacharya et al 2011).  

 

Liquefaction surface effects such as sand boils, ejected sand, and standing water 

were captured by a high-resolution WorldView-2 sensor that overpassed the affected 

area one week after the event. In this study, we use two WorldView-2 (WV-2) images 

before and after the Tohoku earthquake occurred on March 11, 2011 to identify 
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changes of the land surface in Urayasu due to soil liquefaction. The details of the 

images are summarized in Table 1. The spatial resolution is 0.5 m for panchromatic 

bands and 2 m for multispectral bands. The sensor measured radiance in eight 

multispectral bands distributed along the visible to near-infrared range of wavelengths 

(400 nm – 1040 nm).  

 

Liquefaction surface effects in the Urayasu region have been mapped by several 

studies (MLITT 2011, Toida and Yamazaki 2012). A field survey was conducted by 

MLITT (2011) immediately after the event and resulted in a map of each road segment 

within Urayasu City classified as liquefied or not. Toida and Ymazaki (2012) also 

created a liquefaction map by visual inspection using aerial photos at 25cm resolution 

taken six days after the earthquake. The Toida and Yamazaki (2012) map is shown in 

Figure 1b, and shows mapped liquefaction as polygons. In an urban area, liquefaction 

inventories are limited to the visible surface including parking lots, soil, sidewalks, 

and roads. Buildings and vegetation can create holes in the dataset. 

 

The Toida and Yamazaki (2012) data were created from visual inspections, and 

were not field-validated for the entire region. In order to develop a high quality 

validation dataset, we choose to visually validate the liquefaction data from Toida and 

Yamazaki (2012). Because the original digital files of the liquefaction map depicted in 

Figure 1 in Toida and Yamazaki (2012) are not publicly available, we extracted the 

liquefaction data from this figure by first georeferencing it, and then digitizing the 

liquefaction marked areas from the figure. Rather than using the entire region depicted 

on this map, we choose to randomly select 4000 locations (2000 liquefaction points 

and 2000 nonliquefaction points) within Urayasu city where we could visually confirm 

the results (liquefaction or nonliquefaction) from Toida and Yamazaki (2012) using 

the post-earthquake WV-2 image displayed in true color composite (red, green, blue 
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bands). We dismiss any locations where the ground surface was not visible (obstructed 

by buildings or tree crowns) and/or we could not visually confirm the liquefaction 

occurrence or nonoccurrence from WV-2 images. By vetting the validation points 

against the true color composite, we could evaluate the proposed supervised 

classification methods against high quality validation data.  

 

 
Table 1 Summary of the satellite images and their characteristics 

 Date Sensor Spatial resolution Radiometric resolution 

Pre-event* 2011/02/13 WorldView-2 
Pan:0.5m, 

Multispectral: 2m 

Coastal (400–450 nm), Blue (450–510 nm), 
Green (510–580 nm), Yellow (585–625 nm), 
Red (630–690 nm), Red Edge (705–745 nm), 
NIR1 (770–895 nm), NIR2 (860–1040 nm), 

Pan (450–800 nm). 
Post-event* 2011/03/18 WorldView-2 

*The Tohoku earthquake occurred on March 11, 2011. 
 
 
 
 

 
Figure 1 a) Topographic map of the Urayasu city and b) Topographic map with mapped 
liquefaction polygons digitized from Toida and Yamazaki (2012). Site 1 is a parking lot in the 
Tokyo Disneyland. Site 2 is an open field near Akemi Elementary School. 
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4.3 Methods 
 

In order to map liquefaction surface effects, we use spectral variables representing 

the surface change between the pre- and post-earthquake images and a supervised 

classification model to map the liquefaction occurrences and nonoccurrences.  

The approach presented here includes several steps: image preprocessing, spectral 

variable selection, change detection, classification model development and 

accuracy assessment, and finally masking the areas where ground surface is not 

visible from the satellite. These steps are described in the following subsections. 

 

 
4.3.1 Image Preprocessing 
 

In a satellite image, the intensity of the electromagnetic radiation for each pixel is 

represented as a digital number. To improve the interpretability of the data and 

compare data over multiple time periods, we first perform radiometric calibration to 

convert digital number values to spectral radiance. Most change detection methods 

(e.g., image differencing, change vector analysis) are sensitive to the spectral 

differences between images due to variation of atmospheric and illumination 

conditions. We therefore perform atmospheric correction to remove the effects of the 

atmosphere and to obtain surface reflectance values. We use the Fast Line-of-Sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH; Adler-Golden et al 1998, 

Anderson et al 2002) module implemented in ENVI,  which uses the atmospheric 

conditions and aerosol properties at the time the image was acquired to estimate and 

remove the effects of scattering and absorption in the atmosphere. After the 

atmospheric correction, we still observe consistent differences in reflectance values on 

invariant objects such as roads that were not affected by the earthquake. To further 
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match the atmospheric and illumination conditions between two images, we perform a 

relative radiometric normalization using the Iteratively Re-weighted Multivariate 

Alteration Detection (IR-MAD) (Canty and Nielsen, 2008).  

 
4.3.2 Spectral Variable Selection 

 

 

We investigate candidate variables that can be derived from spectral information and 

used to identify liquefaction surface effects.  Liquefaction is often associated with 

change in surface moisture and/or ejected sand; therefore, we have focused on 

variables which are sensitive to the changes in surface moisture or soil characteristic. 

The spectral variables considered in this study are summarized in Table 2, and include 

spectral bands, spectral index, and components from spectral transformation.  

 

We consider the change in red (630–690 nm) and near infrared band (NIR; 770 – 

895nm) of the electromagnetic spectrum. The red band contains information related to 

soil characteristics (Bishop and McBratney 2001). The reflectance in the near infrared 

band is inversely related to the surface moisture because water absorbs the energy in 

this band (Knipling, 1970). For a spectral index, we consider the normalized difference 

water index (NDWI) defined in Wolf (2010), which is a spectral ratio of the coastal 

band (400–450 nm) and longer near infrared band (860–1040 nm). The NDWI 

contrasts the coastal band with the longer infrared bands to determine the amount of 

moisture being held by the vegetation or soil. The longer infrared bands are the most 

sensitive to soil and plant moisture, therefore, the contrast of the coastal band with the 

longer infrared bands highlights moisture levels within a scene (Crist and Cicone, 

1984). 

 

Additionally, we consider components from a spectral transformation. The eight 

spectral bands from WV-2 are often highly correlated due the wide frequency range of 
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the ground and reflective materials. Linear combinations of the spectral bands can 

reduce the correlation yet still be able to describe the majority of the variability in the 

eight bands. The Tasseled Cap Transformation (Kauth and Thomas, 1976), which was 

first developed for Landsat TM data and then adapted to WV-2 data (Yarbrough et al 

2014), provides such linear combinations and links them with known physical 

characteristics: soil brightness, vegetation greenness, and soil/vegetation wetness. 

Brightness is correlated to difference in soil reflectance (and therefore may identify 

soil ejecta). Greenness contains mainly vegetation-specific information, whereas 

wetness is linked to surface moisture content (Nackaerts et al 2015). A previous study 

by Oommen et al. (2013) has used the wetness axes of the tasseled cap transformation 

to identify areas with increased moisture as a result of liquefaction. We use all three 

components from the Tasseled Cap Transformation. 

 
4.3.3 Change Detection 

 

 

For change detection methods, we consider both univariate image differencing (UID) 

and change vector analysis (CVA; Malia, 1980). In UID analysis, the change is 

calculated as the difference of a variable between the pre-earthquake and post-

earthquake images. We calculate the change values between the pre- and post-

earthquake images for the six spectral variables in Table 2. Additionally, we consider 

CVA because a previous study by Nackaerts et al. (2012) applied CVA in detecting 

landcover change and found CVA provides better accuracy than UID. The CVA 

approach defines a change vector between two points in an n-dimensional (n number 

of spectral variables) feature space, representing two observations of the same pixel 

over two different times as shown in Figure 2. The change vector’s length represents 

the magnitude of the change event in the spectral feature space, while its direction 

corresponds to the type of change. When applying CVA, the spectral variables should 

not be correlated with each other. As discussed above, the individual spectral bands, 
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such as red and near infrared bands, are correlated, while the three components from 

the tasseled cap transformation are not correlated yet contain the majority information 

in eight spectral bands. Therefore, we apply CVA to the three output components 

(brightness, greenness, and wetness) from the tasseled cap transformation. By using 

CVA to define a change vector in terms of brightness, greenness, and wetness, we can 

evaluate the change magnitude across the three spectral indicators as a single metric. 

We calculate the change angle between each pair of tasseled cap transform 

components, so three components result in three change angles. 

 
Table 2 Candidate spectral variables. The physical characteristics including soil characteristic and 
surface moisture that each variable is sensitive to are indicated by black circles. 
 

Variable Description Soil characteristic Surface moisture 
Red ●  
Near infrared (NIR)  ● 
Brightness  ●  
Greenness   ● 
Wetness   ● 
Normalized difference water index (NDWI)  ● 

 
 

 

 
Figure 2 Illustration of  a change vector (reproduced from Figure 1 in Malia, 1980). 
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4.3.4 Classification 

 

 

We will evaluate two separate pixel-based classification algorithms to classify 

liquefaction and nonliquefaction: maximum likelihood and decision tree. These are 

discussed in the following subsections. 

 

Maximum Likelihood Classification 

The maximum likelihood classification (MLC) is a conventional parametric statistical 

classifier and has been widely applied for land cover mapping from remotely sensed 

imagery. MLC assumes that the distribution of the spectral data within a given class 

follows a multivariate Gaussian distribution, with a log likelihood function (or 

discriminant function) defined as (Richards, 1999) 

 

Where: 

i = class 

x = n-dimensional data (where n is the number of bands) 

p(ωi) = probability that class ωi occurs in the image and is assumed the same for 

all classes 

|Σi| = determinant of the covariance matrix of the data in class ωi 

Σi-1 = its inverse matrix 

mi = mean vector 

 

Each pixel is assigned to the class that has the highest likelihood. The probability 

density functions are used to classify a pixel by computing the probability of the pixel 

belonging to each class. The parameters in a MLC model are the mean vector and 

variance-covariance matrix, which can be estimated from training samples.  
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Decision tree  

A decision tree classifier is a powerful alternative to the conventional MLC classifier. 

The decision tree classifier is a non-parametric classifier that makes no statistical 

assumptions regarding the distribution of data. A decision tree consists of a root node, 

a number of intermediate nodes and finally a set of end nodes, representing different 

classes. Each path from the root node to a end node represents a set of rules.  The 

decision rules can be determined based on expert knowledge or automatically selected 

via data mining algorithms. We use the Classification and Regression Tree (CART) 

algorithm (Breiman et al., 1984).  At each node, the CART algorithm selects an 

attribute and a decision threshold that maximize the distinction among the classes and 

minimize the diversity within each class, and removes unnecessary nodes through the 

pruning procedure, producing the shortest tree possible (Witten et al., 2000). Due to its 

non-parametric nature, decision trees are more flexible when the data are not normally 

distributed. Another advantage of the decision tree classification is that it can generate 

understandable rules, and therefore each resulting branch can be easily visualized and 

interpreted. This can lead to subcategories of liquefaction surface effects in the 

classification based on subtle differences in spectral characteristics: wet surface effect 

versus dry surface effect.  

 
4.3.5 Model Development and Accuracy Assessment 

 

 

When developing a classification model (decision tree or maximum likelihood 

classification), we use 10-fold cross validation to select candidate subsets of 

change indicators using the ten-fold cross validation technique. Ten-fold cross 

validation is an iterative process. The complete dataset is first split into ten 

subsets of equal size. In each iteration, one subset is withheld and decision tree or 

a maximum likelihood classifier is fit to the other nine subsets using the chosen 
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change indicators. The performance measures are calculated on the held-out 

subset. This is repeated ten times so that each subset is held out for testing exactly 

once. The testing data set is always independent from the classification training 

data set in order to avoid any possible biases. This technique is effective in 

comparing the performance of different combinations of change vectors while 

avoiding overfitting to a particular dataset. 

 

To assess classification accuracy and compare between decision tree and 

maximum likelihood, we use all pixels in the validation dataset (4000 point where 

2000 are labeled as liquefaction and 2000 are labeled as nonliquefaction). 

Confusion matrices were calculated by comparing the model prediction with the 

validated liquefaction or nonliquefaction produced by visual interpretation from 

aerial photos (Toida and Yamazaki, 2012). The confusion matrix can be 

summarized by the producer’s accuracy, the user’s accuracy, and the overall 

accuracy. The producer’s accuracy is the number of pixels correctly classified in a 

particular category as a percentage of the total number of pixels actually 

belonging to that category in the validation dataset. The user’s accuracy is 

calculated as the number of correctly classified pixels to the total number of pixels 

classified as a particular class. The overall accuracy is not the best measure when 

class imbalance exists (i.e. the percentage of liquefaction is different from 

nonliquefaction), as the optimal model can result from classifying all locations by 

the majority class.  

 

 
4.3.6 Masking 

 

 

In order to apply the classification models across the entire image, we will need to 

develop a mask which eliminates areas where ground surface is not visible from the 
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satellite and identifies the regions that can be classified with the proposed method and 

the data. These areas include building rooftops, trees, shadowed area, and water 

bodies. We first use the OpenStreetMap (OSM; Weber and Haklay 2008) to mask the 

building rooftops, trees and water bodies. Because shadows have contrasting spectral 

characteristics, we identify the shadowed areas using a spectral index, shadow 

detection index (Shahi et al 2014), which is a function of blue, near infrared 1 and near 

infrared 2 bands. 

 

 

 

4.4 Results and Discussion 
 
4.4.1 Liquefaction characteristics 

 

In the True color composites of the WV-2 image, we mainly observe two different 

liquefaction surface effects: dry sand boils on pavement and wet sand on soil. To 

illustrate the observed liquefaction characteristics, we use two example sites. Site 1 is 

a parking lot in the Tokyo Disneyland district. Figure 3a-c shows the pre- and post-

earthquake WV-2 images and the validation points for the Tokyo Disneyland parking 

lot. Site 2 is an agricultural field next to the Akemi elementary school, and was not 

vegetated between the periods when the WV-2 images were taken. Figure 4a-c shows 

the pre- and post-earthquake WV-2 images and the validation points for the Akemi 

elementary school field. At site 1, liquefaction occurred on the paved ground, where 

we observe white surface from the post-earthquake image (Figure 3b) indicating dry 

sand boils. At site 2, liquefaction occurred on soil, where we observe dark brown 

surface, indicating wet ejected soil or pooled water. We include validation points on 

both pavement and bare soil to ensure that the classification was effective on 

pavement and soil.  
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Figure 3 True color composite of the WV-2 image a) before the 2011 Tohoku earthquake, b) after 
the 2011 Tohoku earthquake, and c) overlain with validation data for a parking lot (lat 139.877, lon 
35.629) in the Tokyo Disneyland. Liquefaction is indicated by the exposed dry sand that appears in 
yellow tones in the post-earthquake image. 
 

 
Figure 4 True color composite of the WV-2 image a) before the 2011 Tohoku earthquake, b) after 
the 2011 Tohoku earthquake, and c) overlain with validation data for an agricultural field (lat 
139.917, lon 35.642). Liquefaction is indicated by the wet soil that appears in dark brown in the 
post-earthquake image. 
 
 
 

 

4.4.2 Change detection analysis 

 
We first calculate the change of the variables in Table 2 between the pre- and post-

earthquake images for the entire Urayasu region. The maps of the change in six 

variables for site 1 are shown in Figure 5 a-f. Similar maps for site 2 are shown in 

Figure 6 a-f. For comparison, we also show the validated liquefaction points in red 

from Toida and Yamazaki (2012). As discussed above, liquefaction on the ground 
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surface is evidenced by dry ejected sand on pavement and wet ejected sand, or pooled 

water on soil. At site 1, the dry ejected sand shows up as high brightness (red color in 

Figure 5a) and low wetness (red color in Figure 5f).  At site 2, the wet ejected sand 

shows up as low brightness (green color in Figure 6a) and high wetness (blue color in 

Figure 6f). 

 

We then apply change vector analysis, and calculate the magnitude of the change 

vector using all three components from the tasseled cap transformation. The 

distributions of the magnitude of the change vector for liquefied points and 

nonliquefied points are shown as boxplots in Figure 7. Although the distributions of 

the change magnitude overlap, liquefied points overall have higher values of the 

change magnitude then nonliquefied points showing that the magnitude of the change 

vector can be used as a predictor. The median of the change magnitude for liquefied 

points is 1972, whereas the median of the change magnitude for nonliquefied points is 

1233. The median of the liquefied change magnitude distribution is coincident with 

the lower quartile of the nonliquefied change magnitude distribution. 

 

In addition to the variables from the tasseled cap transformation, we test the 

change in the red and near infrared spectral bands, as well as the NDWI index. The 

distributions for each of these change variables as well as the wetness and brightness 

change from the tasseled cap transformation parsed by liquefied and nonliquefied 

labels are also shown in Figure 7. Similar to the distribution of the change magnitude, 
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Figure 5 Maps of a) red, b) NIR, c) NDWI, c) brightness, d) greenness, f) wetness and g) mapped 
liquefaction from Toida and Yamazaki (2012) for the Disney Land parking lot site (Site 1). The 
high brightness areas and low wetness areas coincide with dry ejected sand on pavement. High 
means that the spectral variable value in the post-earthquake image is higher than that in the pre-
earthquake image. Liquefaction at this site appears correlate to lower NDWI value and lower 
wetness value, which means low moisture content. 
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Figure 6 Maps of a) red, b) NIR, c) NDWI, c) brightness, d) greenness, f) wetness and g) mapped 
liquefaction from Toida and Yamazaki (2012) for the agricultural field site (Site 2) .  The low 
brightness and high wetness spots on the parking lot are coincident with wet ejected sand. High 
means that the spectral variable value in the post-earthquake image is higher than that in the pre-
earthquake image. Liquefaction at this site appears correlate to higher NDWI value and higher 
wetness value, which means high moisture content.  
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Figure 7 Box and whisker plot of the change magnitude for liquefaction and nonliquefaction points 
for the entire dataset. In a box and whisker plot, the ends of the box are the upper and lower 
quartiles, and vertical black line inside the box marks the median. The whiskers are the two lines 
outside the box that extend to the highest and lowest observations. The vertical grey line indicates 
no change between the pre- and post-earthquake images. 
 
 
 
 

4.4.3 Maximum likelihood classification 
 

Using the training data, we develop maximum likelihood classifiers with different 

subsets of change variables and compare their average accuracy across ten-fold cross 

validation. The maximum likelihood classifier with the highest accuracy includes the 

change of wetness, brightness, red band, NIR band, and NDWI. The accuracy 

assessment for the maximum likelihood classifier is summarized in Table 4. The 

overall accuracy and producer’s accuracy of the model is 0.63 and 0.54 respectively. 
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Table 4 Accuracy assessment confusion matrix for the maximum likelihood classification 

  Reference data   

  Liq Nonliq Total 
User’s 

Accuracy 

Prediction 
Liq 1089 561 1650 0.66 

Nonliq 911 1439 2350 0.61 

 Total 2000 2000  
Overall 

accuracy =0.63 

 
Producer’s 
Accuracy 0.54 0.72   

 
 

4.4.4 Decision Tree 
 

Ten-fold cross validation is also used for training the decision tree classifiers. We 

input change values for six spectral variables in Table 2, and the final tree is selected 

by maximizing the accuracy. The change variables selected in the final tree are the 

change of magnitude, wetness, and NDWI as shown in Figure 8. The decision 

thresholds for each variable were automatically selected by the CART algorithm 

(Breiman et al 1984) that maximizes the impurity between two classes at each node. 

The decision tree is pruned so that optimal complexity can be achieved. The accuracy 

assessment is shown in Table 5 and results in an overall accuracy of 0.64 and a 

producer’s accuracy of 0.70.  

 

The decision tree method has the benefit that the thresholds are identified and the 

statistics of the branches are visible to the user. From the decision tree, the change 

magnitude is the primary classifier where large change in the magnitude (>2363) leads 

to a liquefaction label. Above a lower change magnitude threshold (>1101), the 

change in wetness identifies liquefied locations where there is low wetness (dry 

ejected sand) and the NDWI identifies liquefied locations where there is high wetness 

(wet ejected sand).  As a result, the decision tree can be used directly to map 

subclasses of liquefaction based on the branch. 
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Figure 8 Decision tree to classify liquefaction and nonliquefaction 
 

 
Table 5 Accuracy assessment confusion matrix for the decision tree 

  Reference data   

  Liq Nonliq Total 
User’s 

Accuracy 

Prediction 
Liq 1392 814 2206 0.63 

Nonliq 608 1186 1794 0.66 

 Total 2000 2000 4000 
Overall 

accuracy = 0.64 

 
Producer’s 
Accuracy 0.70 0.59   

 

 

4.4.5 Comparison of classifiers 

 

The overall accuracy of the decision tree method is higher than the maximum 

likelihood method. The user’s accuracy represents how many of the predicted 

liquefied points are correctly labeled. The user’s accuracy of the maximum likelihood 

method is higher than the decision tree (66% vs. 63%). The producer’s accuracy 

represents how many of the training points are correctly labeled. The producer’s 
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accuracy of the decision tree method is higher than the maximum likelihood method 

(70% vs. 54%). For the purposes of liquefaction mapping, producer’s accuracy is very 

important, because the producer’s accuracy tells us how sites that actually liquefied 

are classified: 70% as liquefied and 30% as nonliquefied for the decision tree method. 

The decision tree method has high producer’s accuracy for the liquefied points 

whereas the maximum likelihood method has high producer’s accuracy for 

nonliquefied sites. This is a common tradeoff for classifiers between maximizing true 

positives (site is correctly labeled as liquefied) or minimizing false positives (site that 

is falsely predicted as nonliquefied). In addition to comparing accuracy assessment, 

the other difference is in the model form. The decision tree has a far simpler model 

form that can be visualized with the decision tree and implemented easily with the 

relevant thresholds. The decision tree also has the benefit of potentially identifying 

subclasses through the different tree branches (e.g. dry ejected soil, vs. wet ejected 

soil). Because we prefer a model with high producer’s accuracy and we like the 

interpretation of the branches of the decision tree as subclasses, we choose the 

decision tree classifier as our preferred classifier in this study. 

 

 
4.4.6 Liquefaction Maps 

 

To visually evaluate the classifier across the Urayasu region, we produce a 

classification map using the decision tree method as shown in Figure 9. A mask is 

applied to the region (shown as white) and the decision tree classifier is applied to the 

remaining unmasked pixels. Prior to mapping the results, a majority filter is applied to 

remove salt and pepper effect (isolated labels) and to spatially smooth the results. The 

resulting liquefaction class is mapped as red.  

 

Figure 10 shows additional maps which identifies the subclasses from the 
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branches of the decision tree (red=liquefaction branch separated by 

change_magnitude≥2363; yellow=liquefaction branch separated by 

change_wetness <-634 and change_magnitude<2363 and 

  

 
Figure 9. Maps of surface effects predicted using the proposed method in Urayasu City showing 
examples from three land cover types: road, parking lot, and bare soil. 
 
 

 
Figure 10. Maps of subclasses from the branches (red=liquefaction branch separated by 
change_magnitude≥2363; yellow=liquefaction branch separated by change_wetness<-634 and 
change_magnitude<2363 and change_magnitude≥1101; brown=liquefaction branch separated by 
change_NDWI≥0.11 and change_wetness≥-634 and change_magnitude<2363 and 
change_magnitude ≥1101) of the decision tree for a) site 1 and b) site 2.  
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4.4.7 Discussion 

 

The proposed change detection procedure is effective in identifying spectral 

differences between pre-event and post-event images that are sensitive to moisture 

content and surface material change. The model performs well on paved surfaces (road 

and parking lot) in open areas, which are not affected by buildings. Figure 11 shows 

three examples, where the spatial pattern of predicted liquefaction agrees well with 

that from Toida and Yamazaki (2012). Notice that there are differences when 

comparing the prediction produced by the decision tree and Toida and Yamazaki 

(2012) data pixel by pixel, which partly explains the relative high error rate in Table 5. 

The overall pattern of liquefaction extent is well captured.  

The application of the model is limited in densely built up areas or areas with tall 

buildings. Figure 12 ab shows the comparison of the predicted liquefaction with 

mapped polygon from Toida and Yamazaki (2012) on the post-earthquake WV-2 

image and OpenStreetMap for an area with dense buildings. Figure 12 cd shows a 

similar comparison for an area with tall buildings. For an area with dense building, the 

application is problematic for two reasons. First, as shown in Figure 12a, narrow roads 

where liquefaction may occur are difficult to see from the satellite, and the spectral 

value for a pixel can represent an average of multiple objects such as building and 

road. Second, because of different viewing geometry between the pre- and post-

earthquake images, the shadows from the buildings shift locations between two 

images. As a result, the changes of shadows are mistakenly predicted as liquefaction. 

Although we have used a spectral index to mask the shadows, not all shadows have 

been successfully detected.  

 

The application of the model is also problematic for areas with tall buildings. As 

shown in Figure 12c, the model mispredicts liquefaction at many locations of building 
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roofs. We used the building data from the OpenStreetMap to mask the buildings, but 

the viewing geometry from the satellite impacts how the building roofs appear on the 

post-earthquake WV-2 image. Specifically, in Figure 12c the building rooftops do not 

  

 
Figure 11 Comparison of predicted liquefaction with digitized liquefaction from Toida and 
Yamazaki (2012) for three pavement areas. 
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Figure 12 Comparison of predicted liquefaction and mapped liquefaction form Toida and Yamazaki 
(2012) on a) post-earthquake WV-2 image and b) OpenStreetMap  for an area with dense buildings. 
Same comparison on c) post-earthquake WV-2 image and d) OpenStreetMap for an area with tall 
buildings. 
 
 

match the building locations in OpenStreetMap in Figure 12d and the rooftops edges 

are mapped as liquefaction. This may be addressed if an advanced land cover 

classification can be performed for each image separately, so the shadows and 

building can be more accurately masked. A surface elevation model can also be useful 

to correctly detect and mask the buildings. 

 

Another main source of false prediction is non-liquefaction-related factors that can 

result in a change in moisture content or surface material. For example, on paved 

ground, change can be caused by moving vehicles on the road, or relocated vehicles in 
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a parking lot. On soil, heavy rainfall and irrigation can contribute to the change in 

moisture content between the two images.  Change of vegetation can also cause false 

prediction. Figure 13 shows an example of this case. As shown in Figure 13c, the 

model prediction for the field in the center does not agree with the mapped results 

from Toida and Yamazaki. When the pre- and post-earthquake WV-2 images, the field 

appears green in the pre-earthquake image, but white in the post-earthquake image, 

indicating that the vegetation condition has changed between the two periods. The 

change in surface reflectance due to the change in vegetation results in false 

prediction.  

 
Figure 13 a) pre-earthquake WV-2 image, b) post-earthquake WV-2 image, and c) comparison of 
predicted liquefaction and mapped liquefaction from Toida and Yamazaki for an area where change 
of vegetation occurred between the pre- and post-earthquake images. 
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4.5    Conclusion 

 
Developing and validating liquefaction hazard models requires liquefaction data with 

accurate measures of the aerial extent of individual liquefaction surface 

manifestations, which is often achieved by the manual interpretation from post-

earthquake aerial photos. The high spatial resolution (2 m) of the WordView-2 images 

and automated classification techniques based on change in spectral indicators allow 

detailed mapping of liquefaction surface effects. We use both a maximum likelihood 

classification and a decision tree classification to map the surface effects of 

liquefaction caused by the 2011 Tohoku earthquake. The results are evaluated with 

training data derived from visual inspection of high resolution aerial photography 

(Toida and Yamazaki, 2012). We study the spectral separability between liquefaction 

and nonliquefaction using change variables that are sensitive to change in moisture 

content and surface material such as brightness and wetness from the tasseled cap 

transformation as well as changes in the Red and NIR spectra bands, and changes in 

the NDWI index. We observe different spectral signatures for dry ejected sand (high 

brightness, low wetness) and wet ejected sand (low brightness, high wetness).  The 

decision-tree and Maximum likelihood approach classified liquefaction and 

nonliquefaction with an overall accuracy of 63% and 64% respectively. The decision 

tree classification is preferred due to the higher producer’s accuracy for liquefaction 

(70%, fewer false negatives) and the simple implementation and interpretation of the 

model. The decision tree branches allow for subclass identification, which is useful in 

interpretation of the map. Classification errors occurred in areas where other factor 

such as rain and irrigation change the moisture content, or areas that are densely 

covered by tall buildings.  The study demonstrates that change detection techniques 

such as change vector analysis, in combination with classification on high spatial 

resolution satellite imagery with multiple spectral bands, can be an effective tool in 
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mapping liquefaction surface effects; however, urban areas continue to be challenging.  

The change in magnitude of the change vector including brightness, greenness, and 

wetness is the most effective classifier of the individual change variables; however, 

change in the wetness, brightness, red, NIR, spectral bands and the NDWI index can 

contribute to the classification. The proposed classification method is efficient and can 

be quickly applied over a broad region. The proposed automated classification method 

can be used in combination with a field survey and visual interpretation of true-color 

composite images or aerial imagery to ensure broader coverage and higher resolution 

than possible with most field surveys alone. 
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5    Summary 
 
5.1 Research findings 

 
The dissertation addresses liquefaction hazard mapping at a regional scale. The 

improvements to the liquefaction mapping focus on two aspects including 1) 

predictive hazard mapping and 2) post-liquefaction cataloging. 

 

Chapter 2 and Chapter 3 address the predictive mapping of liquefaction hazard. In 

Chapter 2, I present an approach to estimation of earthquake induced liquefaction 

from globally available geospatial proxies and earthquake-specific parameters. I 

compile a liquefaction database that includes observations of the 

presence/absence of liquefaction and geospatial explanatory variables from two 

earthquakes in Kobe, Japan, and two earthquakes in Christchurch, New Zealand.  

I derive two liquefaction models with explanatory variables that include 

magnitude adjusted peak ground acceleration, shear-wave velocity, compound 

topographic index, and a newly defined normalized distance parameter (distance 

to coast divided by the sum of distance to coast and distance to the basin inland 

edge). I evaluate both models across all four earthquakes as well as the 2010 Haiti 

earthquake. I conclude that these models provide first-order approximations of the 

extent of liquefaction, appropriate for use in rapid response, loss estimation, or 

scenario simulations. Because the presence/absence of liquefaction has been 

mapped so that the database is unbiased with respect to the areal extent of 

liquefaction, the probability predicted by the models can be interpreted as the 

spatial extent of liquefaction.  

 

In Chapter 3, I update the work in Chapter 2 to improve the performance and the 

generality of the geospatial liquefaction model. The updates include 1) expanding 

the liquefaction database to 27 earthquake events across 6 countries, 2) addressing 
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the sampling of nonliquefaction for incomplete liquefaction inventories, 3) testing 

interaction effects between explanatory variables, and 4) overall improving model 

performance. I compare 18 proxies for earthquake shaking, soil saturation and soil 

density. I find PGV performs better than PGA as a shaking parameter. The 

patterns of saturation proxies show different scales of details. At a regional scale, 

distance to the water body performs best. I find that considering interaction terms 

between distance to river and distance to coast improves the accuracy of the 

model. The model that performs best over the entire dataset includes PGV, Vs30, 

distance to river, distance to coast, and precipitation. The model that performs 

best over the noncoastal dataset includes, PGV, Vs30, water table depth, distance 

to water body, and precipitation. The updated models offer an improved accuracy 

as compared to the model in Chapter 2. I validate the models and assess the 

resulting probability in terms of probability thresholds and the spatial extent of 

liquefaction. I find that the mapped probability of liquefaction can be used as an 

estimate of spatial extent within classes but should be adjusted due to the 50:50 

class balance used. Overall, the footprint and overall degree of liquefaction is 

successfully recovered for test events to a degree that indicates our models should 

prove useful for global, near–real-time applications. 

 

Chapter 4 addresses post-liquefaction cataloging. In Chapter 4, I present an 

approach that uses change detection techniques in combinations with 

classification on high spatial resolution satellite imagery to map the surface 

effects of liquefaction caused by the 2011 Tohoku earthquake. For change 

detection methods, I use both univariate image differencing and change vector 

analysis. For classification methods, I compare a maximum likelihood 

classification and a decision tree classification. The results are evaluated with 

training data derived from visual inspection of high resolution aerial photography 
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(Toida and Yamazaki, 2012). The decision-tree and Maximum likelihood 

approach classified liquefaction and nonliquefaction with an overall accuracy of 

63% and 64% respectively. The decision tree classification is preferred due to the 

higher producer’s accuracy for liquefaction (70%, fewer false negatives) and the 

simple implementation and interpretation of the model. The decision tree 

branches allow for subclass identification, which is useful in interpretation of the 

map. The proposed approach is efficient and can be quickly applied over a broad 

region, and therefore can be an effective tool in mapping liquefaction surface 

effects; however, urban areas continue to be challenging. The proposed approach 

can be used in combination with a field survey and visual interpretation of true-

color composite images or aerial imagery to ensure broader coverage and higher 

resolution then possible with most field surveys alone. 

 

5.2 Recommendations for future research 

 

The models in Chapter 2 and 3 are ready to be implemented to calculate 

probability of liquefaction immediately after an earthquake, which can be 

interpreted as the aerial extent of liquefaction. A loss estimation framework that 

takes account of the probability predicted by the models is needed to estimate 

losses from liquefaction-induced effects such as differential settlement and 

horizontal displacement or monetary losses. 

 

Soil saturation is the factor that is most difficult to characterize using the 

geospatial proxies that are globally available. I find the global layer of mapped 

water table depth by Fan et al does not perform better than proxies based on the 

proximity to water bodies (e.g., distance to river, distance to water bodies) in 

differentiating between liquefied and nonliquefied areas. Development of more 

detailed or more accurate maps of water table depth will be useful to improve the 
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prediction of liquefaction using the geospatial models. 

 

The generalization of the geospatial models to noncoastal regions can be 

improved through future work by collecting more liquefaction data from 

noncoastal areas and identifying additional proxies that work for the noncoastal 

environment. 

 

The liquefaction map detected from satellite images at very high spatial resolution 

using the method in Chapter 4 is at a much higher resolution than the maps from 

field reconnaissance or predicted from empirical models. Although detailed 

information on individual mapped liquefaction features is valuable, the fine 

resolution can pose a challenge when we want to use the product in combination 

with field reconnaissance results, or when we want to use the product to validate 

empirical models. Future research is needed in developing  methods for 

aggregating liquefaction features detected from satellite images and interpreting 

the catalogues at different spatial scales. Perhaps, the aggregation of liquefaction 

features can be performed within an area outlined based on building footprints or 

objects segmented based on spectral characteristics. 
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