
 

 

Concurrent Measurement of Transportation Noise 

and 

Ultrafine Particle Emissions: 

Implications for Environmental Health Studies 
 

 

 

 

A dissertation submitted by Douglas J. Leaffer  

in partial fulfillment of the requirements for the degree of Doctor of Philosophy  

in Civil and Environmental Engineering, Tufts University  

February 2024 

 

 

 

 

 

 

 

 

© 2024, Douglas J. Leaffer 

Advisor: Professor David M. Gute, M.P.H., Ph.D. 

  



ii 

 

Abstract 

Chronic, combined exposure to transportation-related noise and ultrafine particle (UFP, <100nm 

diameter) emissions pose a critical but understudied health risk. This thesis aims to refine predictive models 

by concurrently measuring noise and air pollution. Methodologies were developed to perform 

measurement, visualization, and analysis of transportation noise measures (frequency, acoustic power, 

spectra) concurrently with particle number concentrations (PNC, a proxy for UFP). The overall goals for 

this thesis were to better understand the spatiotemporal variations of noise and PNC, assessing their 

correlation with meteorology, and jointly measure personal exposure to noise and PNC in various micro-

environments. Noise and PNC data were collected at two urban sites in Boston, burdened by multiple 

environmental noise and air pollution sources. Through detailed spectral analyses and evaluation of 

meteorological parameters and time of day, correlations emerged between noise frequencies and PNC. 

Additionally, novel personal sensors were deployed in Cincinnati, OH, enabling real-time monitoring of 

joint PNC and noise exposures across varying microenvironments (transit, home, school). Chapter 2 

(following Chapter 1 Introduction) presents field study data from Cincinnati examining personal exposure 

effects of PNC and noise on adolescent heart rates. Chapter 3 evaluates and recommends alternative noise 

exposure metrics based on noise frequencies (Hz). It advocates for their robust utilization in health-based 

noise exposure studies. Chapter 4 introduces a scalable machine learning approach for classifying 

transportation noise by vehicle class, laying the foundation for potential future utilization of machine 

learning in source identification. Chapter 5 utilizes multivariate regression to study how noise and ultrafine 

particles vary with meteorological conditions. It presents and validates a wind-robust model, associating 

lower noise frequencies (f<125 Hz) and PNC, factoring in the impact of wind speed on PNC transport. 

Chapter 6 is a thesis summary. This thesis introduces new health-focused noise metrics, challenging the 

commonly used occupational standard (dBA) metrics. It explores the link between these metrics and PNC, 

studying how noise and these air pollutants interact under various meteorological conditions. A portion of 

this thesis marks the first simultaneous real-time measurement of noise and PNC using wearable monitors, 

linking these exposures to health outcomes like heart rate in study participants. 
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Chapter 1 

1.0  General Introduction 

Chronic exposure to transportation noise from buses, trucks and rail is of increasing concern as a 

risk factor for population health effects. These modes of transportation are also sources of diesel exhaust 

emissions, a cardio-pulmonary health risk factor independent of noise. Measurement challenges have 

confounded how simultaneous exposure to traffic noise and traffic-related air pollution (TRAP) interact 

and possibly enhance each other's effect. 

Despite development of noise metrics in the 1930s, ambient noise remained perceived as a 

“nuisance” within the practice of public health law until recently, when evaluating noise as a population-

based health risk has re-invigorated the consideration of the importance of these exposures. Current 

transportation noise impact assessments are based on broadband A-weighted noise indicators. The U.S. 

Environmental Protection Agency (USEPA) recommends an average 24-hr exposure limit of 55 A-

weighted decibels (dBA) to protect a majority of the public from adverse effects on health and welfare in 

residential areas [1].  Many studies have shown that A-weighting can underestimate the important role 

that low frequency noise (LFN) plays in loudness perception, annoyance, and speech intelligibility.  More 

importantly, the de-emphasizing of LFN content by A-weighting can also lead to an underestimation of 

potential harm from physical and psychological effects associated with frequency content and other 

characteristics of sound not captured in the commonly used dBA scale.  Notably, traffic noise contains 

much more low-frequency energy than is reflected in dBA summaries [2]. Furthermore, A-weighting is 

not the best metric for measuring noises with unusual spectra (i.e. – noise with extremes of frequency or 

with unusual spectral peaks [3].  

The relationship between the noise “immission”, defined as the sound heard by an observer vs. the 

sound emitted by a source (i.e., noise emission)[3] and the health effect has not been observed directly, but 

there is evidence supporting a causal association, linking noise exposure to an intermediate effect of 

physiological changes, mediated through the stress response, leading to adverse health effects [4,6].  The 

1 



2 

 

ability to predict direct health effects of noise requires further study to develop new metrics to account for 

health effects [3].  

Traffic noise has been associated with various adverse health outcomes that are also linked to air 

pollution exposure. These included cardiovascular morbidity and mortality including hypertension and 

ischemic heart disease [5,6],  neurocognitive development and function in children and adults [7,8], adverse 

birth outcomes [9], and possible metabolic outcomes such as diabetes mellitus [10]. 

While most of the evidence  associating acute and chronic exposures to air pollution and increased 

hospitalizations and mortality from cardio-pulmonary diseases have been based on epidemiological 

studies of human exposure to Particulate Matter (PM) with an aerodynamic diameter of <10 micrometers 

(µm), recent studies, including the Tufts University-led Community Assessment of Freeway Exposure 

and Health Study (CAFEH) have focused on understanding the role of ultrafine particles (UFP) on health 

effects as a public health priority [11,12]. UFPs are defined as PM(0.1) or particles that are 100 nanometers 

or less in diameter (≤100 nm). Given their small size, UFPs contribute little to the mass of PM in ambient 

air, but they are the dominant contributors to total particle number (TPN). Motor vehicles, especially 

those powered by diesel engines, have often been cited as a leading source of ambient UFP emissions and 

of the resulting deleterious effects on human health [13].  

Meteorological parameters – mainly wind and humidity - also impact UFP distribution and 

dispersion, and to some extent also affect dispersion of transportation-source sound emissions.  Noise 

propagation is minimally sensitive to meteorological conditions in typical urban areas, as distances to 

road-side sensors are always very small. Nevertheless, an air temperature increase of 10°C can result in a 

reduction of noise emitted up to 1 dBA.  Precipitation can change the spectral content of sound, as a wet 

road surface shifts the sound to higher frequencies [14].  The behavior of particles as influenced by 

meteorological conditions is complex. Smaller particles agglomerate to larger particles, their 

agglomeration rate depending upon particle number concentration (PNC, #/cc) which in turn can be 

influenced by meteorological conditions. Predictive models have been developed to estimate measured 

PNC adjusted for meteorological conditions for specific noise indicators [15].  
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Relatively few studies have sought to quantitatively disentangle the possible synergistic effects of 

traffic noise and TRAP [7,8,16].  The question of whether, or to what extent, the reported health-risk 

associations of TRAP, and specifically UFP, the smallest particles in TRAP, are confounded by traffic 

noise remains a gap in the existing research record.  Such a gap presents problems to public authorities 

interested in implementing adequate abatement policies [17]. Exposure studies of cardiovascular and 

pulmonary endpoints implicating both noise and air pollution as mechanisms for physiological and 

(epidemiological) population health outcomes may require more sophisticated exposure assessments 

involving measurements and/or models of both variables [18]. The need for more precise exposure 

assessment is particularly evident for children and adolescents whose exposure can vary widely based on 

their time-activity patterns including time spent outdoors, at home, school, and in vehicles [19].  Field 

studies deploying wearable, personal monitoring devices are warranted. Furthermore, to quantify direct 

dual exposures to UFP and related traffic noise, a methodology to co-deploy personal sensors for noise 

and UFP to jointly measure real-time exposures is needed.   

The objectives of this Thesis are to evaluate co-located noise and UFP data collected in two 

independent studies conducted in communities impacted by traffic noise and diesel exhaust emissions.  

The initial study was conducted jointly in Chelsea and Roxbury, MA and involved 5 months (April 2016 

– September 2016) of continuous noise and UFP sampling. The more recent study (commenced February 

2018) is a National Institute of Health (NIH)-funded, National Institute of Environmental Health Sciences 

(NIEHS) Exploratory/Developmental Grants Phase II (R33) project in Cincinnati, OH in which wearable 

sensors were co-deployed to characterize personal UFP exposure. Noise exposures for adolescents 

enrolled in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) were assessed for 

impact of short-term and peak exposures on cardiovascular, respiratory health and other health-based 

outcomes.  This will enable a thorough understanding of the association between transportation noise 

characteristics and transportation-related UFP emissions by source, which will aid in quantifying their 

joint impacts on human health to better inform environmental health studies and potentially help improve 

the effectiveness of future public policy. 

http://www.nih.gov/
http://www.niehs.nih.gov/
http://www.niehs.nih.gov/
http://grantome.com/grant/NIH/R33-ES024713-03
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1.1  Background and Significance 

In 1981, the USEPA estimated that nearly 100 million people in the United States (about 45% of the 

population) had annual exposures to traffic noise that increased risks to human health [1].  To date, noise 

ranks second only after air pollution as the most important environmental exposure, according to the 

World Health Organization (WHO) in an assessment of six European countries [20]. Thirty years after the 

USEPA’s 1981 traffic noise exposure estimate, updated statistics increased the estimated exposed 

population to at least 146 million people at potential risk of health effects due to noise in 2013 [1].  

1.2  Noise Metrics and Regulatory Framework 

Noise metrics pioneered in the 1930s and adopted and implemented for Governmental regulations in 

the 1970’s have historically focused on protecting the public from hearing loss due to industrial noise 

exposures. Disparities in the methodology to measure and quantify noise exposure have complicated the 

implementation of new noise metrics in the US for health-based risk monitoring.  

The common noise metric in use by USEPA is the 55-dBA LDN limit designed to protect against all 

long-term health effects. This limit is a day–night 24-hr average noise level (LDN or DNL), however the 

DNL metric is generally inadequate to describe the “soundscape” in quieter areas. Further complicating 

the use of this 24-hour averaged noise metric is the fact that, unlike a decibel as a direct, logarithmic 

measure of instantaneous sound pressure levels, no-one actually hears a “DNL”, as it is a cumulative 

exposure (24-hour basis) metric [3]. From a more pragmatic point, the general public has a poor 

understanding of decibels or the A-weighted metric. The DNL is also a relatively insensitive measure of 

sleep disturbance, which is associated with increased levels of stress hormones and other health effects 

[21].  

Although blood pressure (BP) normally decreases during sleep, people experiencing sleep 

fragmentation from noise disturbances have difficulty achieving a BP minima for any length of time 

because blood pressure rises with transient noise and heart rate increases with noise levels [22]. Decreased 

quality and quantity of sleep elevates cardiovascular strain, which manifests as increased BP and 

disruptions in cardiovascular circadian rhythms [23]. And while the temporal pattern of nighttime noise is 
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known to influence sleep disturbance, DNL metrics do not take into account the time of night the 

disruptive noise occurred. Advances in technology relating to our ability to collect, store and analyze 

noise data prompts a reexamination of currently used metrics with the objective of developing noise 

metrics to better assess human health risks for both acute and chronic exposures [3].  

Unlike air quality regulations, the responsibility for noise regulations lies primarily with the state and 

local governments in the United States since 1982.  The US Congress has not seriously discussed 

environmental noise in > 40 years, although noise exposure remains a large public concern [1]. 

Historically, noise has received much higher priority in Europe than in the United States. Since the 1970s, 

successive Europe-wide directives have established specific noise emissions limits for road vehicles, 

aircraft and many types of outdoor equipment, and EU Directive 2002/49/EC harmonized noise 

assessment and mandated EU member states to produce strategic noise maps for large cities. Similarly 

laudable is Canadian effort, such as the Noise Exposure Forecast (NEF), Transport Canada (2005), which 

is based on effective Perceived Noise Levels (PNL) as well as the number of events. It takes into account 

some of the impact of the tonal components and impulsiveness of noise annoyance. WHO (2007) notes 

that sleep disturbance relates to Lnight but researchers also use maximum A-weighted sound pressure 

levels, LAmax and indoor A-weighted sound exposure levels (ASEL) to associate awakenings with noise.  

The Noise and Number Index (NNI), UK utilizes a metric combining Perceived Noise Level (PNL) in 

decibels and the number of events for aircraft noise exposure [3].  Models of transportation noise 

frequencies, energy and acoustic power may provide a more well-defined nexus between noise exposure 

and UFP in health studies. Further supporting the assertion that supplemental noise metrics should be 

assessed for the conduct of noise exposure studies is pioneering work done by Stevens (1955) which 

concludes that non-acoustical factors influence community reaction to noise. Temporal and spectral 

variations must also be taken into account [3].  

1.3  Meteorological and Spatiotemporal Factors Effecting Noise and UFP Coincidence 

Despite extensive study of spatiotemporal factors’ effect on variation in transportation noise, links 

between transportation noise immissions and their source meteorology mediated emissions of UFP have 
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not been well defined. In a study by Can, Rademaker, et al., 2011, predictive models were developed to 

estimate measured TPN adjusted for meteorological conditions for specific noise indicators ((L125Hz- 

L2KHz) = inclusive of low to medium frequency noise bands)[15]. These models have shown strong 

correlation (Spearman’s r = 0.62) between measured and predicted TPN based on wind speed and wind 

direction. A key constraint in the development and refinement of such models is the difficulty in 

capturing noise frequencies that are representative of traffic sources, rather than reliance on the 

conventional A-weighted sound pressure levels (SPL) for model construction.  Other parameters to 

evaluate with regard to the spatiotemporal variation in transportation noise include meteorological 

inversions (also a factor in UFP concentrations as the mixing layer height varies) [15], traffic intensity, 

vehicle type, and time of day. Key questions to answer are how does noise vary with these factors, and at 

what time of day are we more concerned about the exposure? 

Analysis of selected data collected during the field campaign (2016) for this Thesis in Chelsea and 

Roxbury, MA showed agreement between low-frequency transportation noise and high levels of UFP 

(measured as PNC). Under specific conditions of wind direction, wind speed and other meteorological 

parameters (i.e. – humidity, temperature) mean PNC levels were shown to differ by an order of magnitude 

or more between sampling dates based on preferential transport of UFP, yet noise intensity levels (dBA) 

did not increase substantially and followed the same diurnal trend.  Further statistical analysis of the daily 

(n = 150) noise v. particle count data under differing wind speeds/directions is warranted for a more 

complete understanding of the dynamics which exist between noise and UFP correlations [24].  

1.4 Traffic Noise and UFP Associations in Health Studies  

Since the 2010 Traffic Review (HEI, Traffic-Related Air Pollution, Special Report 17, January 2010) 

there is a better appreciation that, in addition to air pollution, many other factors are associated with 

traffic exposure – most notably traffic noise; and that these may either confound or modify the health 

effects of TRAP.  Yet the questions of whether, or to what extent, the reported associations of UFP in 

TRAP are confounded by traffic noise remain essentially uncharacterized [25].  
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In a recent systematic review, the correlations between long-term traffic noise and transportation-

sourced air pollution were reported to cover a wide range: from 0.16 to 0.72 [16]. However, in a recent 

study in London, Fecht and colleagues (2016) found low correlations near major roads, suggesting that it 

may be possible to determine the independent effects of TRAP and traffic noise [26]. Although not 

focused specifically on UFP, a study in Germany (2011) suggested that  separation of background PM 

matter concentration and traffic exposure can be achieved because traffic-related PM is only one 

component among many that determine urban background concentration of PM and that traffic-related 

PM and traffic noise follow different dispersion patterns [27].  

1.5  Measurement of Joint Exposures of Noise and UFP Exposures 

A possible methodology to separately measure and assess co-exposures to both noise and UFP from 

transportation sources involves the joint, real-time measurement of both constituents using wearable, 

personal exposure monitors (sensors). Challenges in measuring UFP have been limited to deploying 

costly (US$20,000 -$30,000) desktop-size devices with limited portability. Stationary sampling of UFPs 

has been somewhat effective, yet it fails to capture “breathing zone” or personal-scale exposures for study 

participants. Further challenges to measure UFP exposure in a fixed monitoring location are complicated 

by the high spatiotemporal variability and the physical properties of UFP which vary as a function of 

distance from roadway sources.  For these reasons, epidemiologic studies often use empirical models to 

estimate UFP exposures.   

Recent studies, including the Tufts University-led CAFEH study have focused on utilizing mobile 

monitoring techniques, with traditional UFP analyzers deployed in a mobile lab to assess and correlate 

ambient PNC differences between multiple monitoring platforms (central, fixed-site; short-term 

residential site and mobile) to compare the temporal patterns and the spatial heterogeneity of PNC and 

identify factors that affect correlations across the platforms. CAFEH study results suggest that combining 

stationary and mobile monitoring may lead to improved characterization of UFP in urban areas [28].  

However, as individuals move between microenvironments throughout the day, personal exposures 

can be widely disparate from pollutant levels measured at fixed or mobile monitoring stations, more so 
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from proxy measurements estimated from models. The ability to characterize personal exposures to both 

noise and UFP with high spatiotemporal resolution is needed. Pairing a personal UFP sensor with a 

personal noise exposure monitoring device developed specifically to jointly measure real-time co-

exposures from common transportation sources will allow for an improved understanding of these co-

exposures [19]. Two such personal monitoring devices were utilized for the NIH/NIEHS R33 study. Here, 

dual sensors were co-deployed to characterize personal UFP and noise exposures for adolescents enrolled 

in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) to assess the impact of short-

term and peak exposures on a variety of health-based outcomes.  

1.6  Aims of Thesis 

 Aim 1:  Measure Joint Exposures of Noise and UFP to Better Define Associations and Possible 

Correlations for Human Health Studies:   In addition to air pollution, many other factors are associated 

with traffic exposure – most notably traffic noise; these may either confound or modify the health effects 

of TRAP, in particular UFP.  Yet the questions of whether, or to what extent, the reported associations of 

UFP are confounded by traffic noise remain unclear. A possible methodologic approach to separately 

measure and assess co-exposures to both noise and UFP from transportation sources involves the joint, 

real-time measurement of both factors using wearable, personal exposure monitors (sensors). Aim # 1 will 

utilize the data sets from the Cincinnati study, in which dual sensors were co-deployed to characterize 

personal UFP and noise exposures for adolescent study participants and assess the impact in a pilot study 

of short-term and peak exposures on heart rate as an outcome. A wearable, personal noise exposure sensor 

was developed and validated as a prototype specifically for use in this Doctoral Thesis. 

Aim 2: Identify Appropriate Transportation Noise Analytics and Metrics for Human Health 

Studies: Conventional measures of noise exposure are not designed for the study of the health effects related 

effects from ambient noise, as these methods arise from industrial/occupational noise exposure assessment 

and abatement applications. Aim # 2 will address the question: What is the most appropriate measure or 

metric of noise exposure for ambient noise health impact studies? Aim # 2 will evaluate the use of existing 

health-based noise metrics, including threshold exposure metrics, and instantaneous vs. cumulative noise 
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exposures as they relate to assessing acute vs. chronic noise exposures. From the data sets collected in 

Chelsea and Roxbury, MA, Aim # 2 will characterize transportation noise exposure by employing a wider 

range of the noise spectrum than is traditionally used. These data elements include the frequency content 

as the most notable feature, but will also include other features, such as, modulation, acoustic power, 

overtones, Doppler effects, etc. This is a more sophisticated approach than solely extracting the overall 

audible acoustic energy measured as A-weighted SPL. An evaluation of noise metrics (PNL, ASEL, NNI) 

as they relate to sleep disturbance will be examined, given the rich data sets from Boston will allow for 

quantification of both noise intensity and duration from varying transportation sources (e.g. – aircraft, rail, 

trucks) identified spectrally, and mapped to receptor sites (primarily residential) proximate to rail and 

roadways.  

 Aim 3:  Evaluate Meteorological and Spatiotemporal Parameters Associated with Variations in 

UFP Concentrations Emitted from Transportation Sources Identified by Non-conventional Noise Metrics: 

The dynamic relationship between sources of transportation noise and associated UFP emissions as 

mediated by meteorology is not well understood. A key constraint in the development and refinement of 

predictive models is the difficulty in capturing noise frequencies that are representative of different traffic 

sources, rather than reliance on the conventional A-weighted SPL (dBA) for model construction.  Other 

possible parameters to use in assessing the spatiotemporal variation in transportation noise include 

meteorological inversions, traffic intensity, vehicle type, and time of day.  Aim # 2 will use the 

Chelsea/Roxbury data set to establish whether varying meteorological parameters (wind speed and 

direction, primarily) are associated with statistically significant variations in UFP concentrations emitted 

from the transportation sources identified by more appropriate noise metrics such as spectral analysis.  

 

1.7 Outline of Thesis 

Chapter 1 presents a General Introduction to the Thesis.  Chapter 2 was published in Int. J. 

Environ. Res. Public Health 2019, 16(3), 308; https://doi.org/10.3390/ijerph16030308 and presents field 

study data from Cincinnati highlighting the deployment of personal sensors for real-time monitoring of 

https://doi.org/10.3390/ijerph16030308
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UFP and noise across microenvironments (transit, home, school), examining their effects on adolescent 

heart rates.  Chapter 3 was published in J Expo Sci Environ Epidemiol (2023) 

https://doi.org/10.1038/s41370-023-00599-x and evaluates and recommends alternative noise exposure 

metrics based on noise frequencies (Hz). It advocates for their robust utilization in health-based noise 

exposure studies, challenging the prevalent dependence on conventional A-weighted decibel (dBA) 

loudness metrics.  Chapter 4 introduces a scalable machine learning approach for classifying 

transportation noise by vehicle class, laying the foundation for potential future utilization of machine 

learning in source identification.  Chapter 5 utilizes multivariate regression to study how noise and 

ultrafine particles vary with meteorological conditions. It presents and validates a wind-robust model, 

associating low-frequency noise (<125 Hz) and UFP, factoring in the impact of wind speed on UFP 

transport. Chapter 6 summarizes Chapters 1 through 5. 
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Abstract: 1) Background: Epidemiological studies have linked both traffic-related air pollution (TRAP) 

and noise to adverse health outcomes, including increased blood pressure, myocardial infarction, and 

respiratory health. The high correlation between these environmental exposures and their measurement 

challenges have constrained research on how simultaneous exposure to TRAP and traffic noise interact 

and possibly enhance each other's effect. The objective of this study was to deploy two novel personal 

sensors for measuring ultrafine particles (UFP, <100nm diameter) and noise to concurrently monitor real-

time exposures. 2) Methods: Personal UFP monitors (PUFP, Enmont, LLC) were paired with 

NEATVIBEwear™ (Noise Exposure, Activity-Time and Vibration wearable), a personal noise 

monitoring device developed by the authors (Leaffer, Doroff). A field-test of PUFP monitors co-deployed 

with NEATVIBEwear logged UFP, noise and ambient temperature exposure levels at 1-second resolution 

in an adolescent population in Cincinnati, OH to measure real-time exposures in microenvironments 

(transit, home, school). 3) Results: Preliminary results show that the concurrent measurement of noise 

exposures with UFP is feasible in a sample of physically active adolescent participants. 4) Conclusions: 

mailto:grace.wang604109@tufts.edu
https://doi.org/10.3390/ijerph16030308
https://www.mdpi.com/journal/ijerph/special_issues/Transportation-Related_Air_Pollution_and_Human_Health
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Personal measurements of UFP and noise, measured prospectively in future studies will enable researchers 

to investigate the independent and/or joint-effects of these health-relevant environmental exposures.  

Keywords: noise, decibels, personal exposure measurement, exposure assessment, sensor technology, 

diesel emissions, particle number concentration, PNC, ultrafine particles, UFP, TPN 

1. Introduction 

Air pollution from traffic exhaust emissions and chronic ambient noise exposure frequently occur 

together in urban areas, adversely impacting population health outcomes. Epidemiological studies have 

linked both air pollution and noise to common adverse health outcomes such as increased blood pressure 

and myocardial infarction [1], and some research has shown adverse effects on pulmonary function due to 

the combined effects of air pollution and noise stress [2] . 

Most of the evidence supporting the link between acute and chronic exposures to air pollution and 

increased hospitalizations and mortality from cardio-pulmonary diseases has been based on 

epidemiological studies of human exposure to fine particulate matter (PM2.5). Recent studies, including the 

Tufts University-led Community Assessment of Freeway Exposure and Health Study (CAFEH) have 

focused on understanding the role of ultrafine particles (UFP) on health effects as a public health priority 

[3,4]. UFPs are defined as particles that are 100 nanometers or less in diameter (≤100 nm). Given their small 

size, UFPs contribute little to the mass of particulate matter in ambient air but are the dominant contributors 

to total particle number (TPN). In single pollutant models, UFPs were associated with incident wheezing, 

current asthma, lower spirometric values, and increased asthma-related emergency department visits among 

children [5]. Motor vehicles, especially those powered by diesel engines, have often been cited as a leading 

source of ambient UFP emissions and of deleterious effects on human health [6]. 

Traffic noise has been independently associated with various adverse health outcomes, most notably 

cardiovascular morbidity and mortality, including hypertension and ischemic heart disease [7,8]. Traffic 

noise has additionally been associated with impaired neurocognitive development and function in children 
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and adults [9,10], reproductive failure and low birthweight [11], and diabetes mellitus as a possible metabolic 

outcome [12]; all of these outcomes are linked to exposure to air pollution as well. Research on noise 

exposure to urban cyclists in Belgium has shown that engine-related traffic noise encountered along the 

bicyclist's route is a valid indicator of black carbon (BC), yet BC does not correlate with noise expressed 

as A-weighted equivalent sound pressure levels (LAeq)[13]. The Belgian study suggests utilizing 

simultaneous measurements of joint noise and TRAP (BC and UFP) to identify such contrasts in exposures 

[14].  

A-weighting of sound pressure levels is based on early work by Fletcher and Munson [15] to establish 

equal-loudness curves dependent on both amplitude and frequency of sound. The A-weighted sound level 

metric has been found to correlate well with human perception of environmental noise and is specified for 

sound level meters (SLM) currently used for transportation and community noise studies [16]. Current 

transportation noise impact assessments are usually based on broadband A-weighted noise indicator, 

although many studies have shown that A-weighting can underestimate the important role low frequency 

noise (LFN) plays in loudness perception, annoyance, and speech intelligibility. Despite this, A-weighted 

sound pressure levels (SPL), or dBA has continued to be the predominant measurement descriptor for noise 

assessment [17]. Predictive models have been developed to estimate measured TPN adjusted for 

meteorological conditions for specific noise indicators (L125Hz -L2kHz = low to med frequency noise bands) 

[18]. A key constraint in the development and refinement of such models is the difficulty in capturing noise 

frequencies that are representative of traffic sources, rather than reliance on the conventional A-weighted 

SPL, dBA for model construction. Measuring the spectral content of the noise exposure is necessary to 

achieve valid spatiotemporal models [13]. 

Accurately measuring personal or breathing zone exposure to air pollutants remains a significant 

challenge to determining their impact on human health. The need for more precise exposure assessment is 

particularly evident for children and adolescents whose exposure can vary widely based on their time-

activity patterns, including time spent outdoors, at home, school, and in vehicles. Of particular interest is 

exposure assessment of microenvironments where both UFP and noise exposures are, a priori, expected to 
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be elevated – e.g. in vehicles, during school commutes. This objective of this pilot field study was to jointly 

measure both UFP and noise exposures on a personal-scale, defined as a distance of <30cm between the 

sampler and the exposure point (e.g. breathing zone, ear canals) [19], using wearable monitors for both 

constituents.  

2. Materials and Methods  

To characterize personal exposures to both UFP and noise we utilized two tools, both developed and 

validated in laboratory settings and capable of measuring personal-scale exposures to UFP and noise with 

high spatiotemporal resolution. The UFP monitoring device is a Personal UFP (PUFP, Enmont, LLC) 

particle counter, model C200 (Figures 1(a)(b)). The PUFP C200 is a portable, water-based condensation 

particle counter, with particle size range 6 nm to ≥3um, particle counting range 0 to 2.0x105 particles/cm3, 

counting accuracy +/-10%, response time < 0.5 second and sampling frequency of 0.1-1.0 second. The 

PUFP sampler operates on a Li-Po battery with 3 hours of continuous operation and logs particle 

concentration, local time (Greenwich Mean Time, GMT).  In addition, the PUFP incorporates a GPS 

receiver, which appends geolocation to corresponding UFP measurements. All data is recorded to an 

external micro SD card. The device dimensions are 7x10x13 cm and weighs 0.75 kg. Results of an initial 

field test, prior to this study, found the sensor to be mobile, rugged, and able to provide accurate 

spatiotemporal measurements of personal UFP exposure [20].  

We paired the PUFP sampler with NEATVIBEwear™ (Noise Exposure, Activity-Time and Vibration 

wearable), a personal noise monitoring device developed by the authors (Leaffer, Doroff) that allows users 

to view their noise exposure levels (A-weighted decibels, dBA) and monitor time-weighted exposures 

(Figure 1(c)).  

 



17 

 

  

 

(a) (b)                                                (c) 

Figure 1. Photographs of PUFP C200 sampler and NEATVIBEwear personal noise exposure 

monitor: (a) and (b) PUFP C200 Personal UFP particle counter worn by participant; (c) 

NEATVIBEwear noise monitor internal components. The dimensions of NEATVIBEwear are 

13x7x4 cm (US quarter shown for scale). NEATVIBEwear is worn by participants in the mesh 

pocket of the left shoulder strap (Figure 1(b)). 

NEATVIBEwear architecture integrates an AdaFruit® Feather M0 AdaLogger with ARM Cortex M0 

processor, AdaFruit DS3231 I2C-integrated real-time clock (RTC) and Bluetooth Low Energy (BLE) 

messages to the application running on an Android mobile device. The dimensions of NEATVIBEwear are 

13x7x4 cm, and the device weighs 0.21 kg. NEATVIBEwear includes an on-board SD card for data capture 

and is optionally integrated to a smartphone to allow for easy visual access to noise exposure levels, which 

are also displayed on an integrated OLED 128x32 I2C display. NEATVIBEwear incorporates an SPH0645 

I2S built-in digital microphone to detect sound intensity of the microenvironment. The microphone has a 

working frequency range of 50 Hz to 15 kHz, a Signal to Noise Ratio of 65 dBA and Sensitivity of -29 to -

23 dBFS (decibels relative to full scale), with a digital output (voltage) mapped to an instrument detection 

range of 50 to 110 dBA via an algorithm coded in C/C++ programming language. It should be noted that 

PUFP samplers generate an internal motor and pump noise of 48 dB, which is at the lower detection limit 

of NEATVIBEwear. 

The NEATVIBEwear device was calibrated to a REED instruments model SD-4023, class 2 

commercial grade SLM with a sound level generator at 94 dB and 114 dB, both at a frequency of 1 kHz. A 
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correlation plot of NEATVIBEwear vs. REED SD-4023 is shown on Figure 2, which indicates the 

calibrated devices are moderately correlated (Spearman’s ρ = 0.47). The correlation is based on a co-

location test in which both devices monitored ambient noise in several microenvironments: in-transit (car), 

college classroom, and a quiet office at 1-second intervals (n = 19,532). The NEATVIBEwear internal 

battery is rechargeable via micro USB port and provides a functional run time of 20 hours per charge. 

NEATVIBEwear additionally incorporates an internal thermistor temperature sensor with a primary 

function to track temperature for calibration of the device’s DS3231 Real Time Clock (RTC). The digital 

temperature sensor provides an accurate measurement (~ +/-5 degrees F) of ambient microenvironmental 

temperature.  

 

Figure 2. Correlation Plot NEATVIBEwear vs. REED SD-4023 Sound Level Meters 

 PUFP and NEATVIBEwear samplers were field-deployed in February 2018 on a subset of 

adolescent participants in Cincinnati, OH enrolled in the Ecological Momentary Assessment and Personal 

Particle Exposure (EcoMAPPE) Study. The study protocol was approved by the Cincinnati Children’s 

Hospital Medical Center (CCHMC) Institutional Review Board (IRB), and all participants provided signed 

consent (caregivers) and assent (adolescents) prior to study participation. Briefly, participants in the 

EcoMAPPE Study (ages 13-17) complete two personal sampling sessions of seven consecutive days each 
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(14 total personal sampling periods / participant): one session during summer months and one session in 

winter. On each sampling day, participants wore the PUFP C200 for ~3 hours. Participants are instructed 

to operate the sensor and measure exposures at different times throughout the sampling period and in 

different environments (i.e. while at school, in transit, etc.). In addition to the PUFP C200, EcoMAPPE 

participants receive a study smartphone to link other sensors and apps including the PiLR Health Ecological 

Momentary Assessment (EMA) app. The PiLR EMA app prompts participants to answer brief 

questionnaires throughout the day based on time, location (e.g. proximity to home, school), and the 

smartphone’s accelerometer.  

Microenvironmental UFP exposures are assigned based on the speed and distance from participant 

specified locations: home (100m), schools (400m), and other (i.e. work; 400m) locations. UFP 

concentrations measured outside of these locations exhibiting accelerometer speeds greater than 2 m/s are 

categorized as occurring while in transit. Measurements that are not categorized based on location and 

exhibit speeds < 2 m/s are assigned to ‘other.’ Participants also record locations where they perceive high 

air pollution to be present and may upload images to give a visual depiction of their current environment. 

GPS data was also logged for the entirety of the sampling period using the madresGPS app; a Fitbit Charge 

2 to monitor heart rate, sleep quality, and activity; and a Spirobank Smart to assess lung function. For the 

present analyses, a subset of EcoMAPPE participants was randomly selected to additionally wear the 

NEATVIBEwear monitor. The objective of this analysis is to demonstrate the usability of the 

NEATVIBEwear device and examine the correlation between personal noise and UFP measurements. 

Microenvironmental temperature exposures were also measured by NEATVIBEwear as an additional 

parameter of interest. 

3. Results 

3.1. Personal-Scale, Real-Time Monitoring of Microenvironmental UFP Exposures 
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A field test of the PUFP C200 sampler and NEATVIBEwear noise monitor was conducted at the 

beginning of the joint deployment period (February 2018) for seven study participants. Two illustrative 

cases are presented here as examples of co-exposures to both UFP and noise, measured on a personal scale. 

Participant # 300012, an adolescent female, age 13 at the time of participation in the study, wore both 

personal exposure monitors on February 28, 2018, a routine mid-winter, mid-week school day. To monitor 

and assess real-time UFP concentrations with associated changes in microenvironments, we plotted a time-

series plot of UFP (measured as PNC (# particles/cc)) for the February 28th, 2018 sampling date, colored 

and annotated by microenvironment (i.e. while in transit, at home, other; Figure 3).  

 

 

Figure 3. Plot of UFP exposure, colored by microenvironment, Participant # 300012 (02/28/18) 

3.2. Data Visualization of Concurrent UFP and Noise Personal Exposure Levels 

To better visualize and understand the relationship between personal exposure to UFP and concurrent 

noise exposure from transportation sources, we plotted time-series subplots of the participant’s 1-second 
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continuous exposure levels to both UFP and noise (dBA), with 1 minute average dBA also plotted with a 

moving mean data smoothing function (MATLAB R2018a), presented in Figure 4.  

 

Figure 4. Time-series subplots of PNC and Noise (dBA) Participant # 300012 – February 28, 2018 

Joint data collection for participant # 300012 from 14:25 to 15:15HRS US Eastern Standard Time 

(EST) shows an increase in both UFP and noise exposures above baseline readings beginning at 

approximately 14:45HRS, while the participant was in transit (Figure 3). PNC levels (Figure 4, upper plot) 

increased above a baseline mean of 32.7 particles/cc (baseline standard dev. = 5.8; baseline median = 33 

particles/cc) recorded during the first 3 minutes of the monitoring period to a maximum of 103,000 

particles/cc at peak exposure at approximately 14:45HRS. Following peak UFP exposure, particle 

concentrations decreased during the final 10 minutes of the monitoring period (15:05 to 15:15HRS) to a 

post peak exposure mean of 3634 particles/cc (post-peak standard dev. = 1338; post-peak median = 3210 

particles/cc), fully 2 orders of magnitude higher than the initial baseline UFP concentrations. 
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Concurrent noise exposures logged by NEATVIBEwear indicate that noise levels also increased 

during the transit (car) microenvironment for participant # 300012. NEATVIBEwear measured and 

recorded noise exposure levels with an in-transit mean of 51.8 dBA (in-transit standard dev. = 5.4; in-transit 

median = 49 dBA) during a 20-minute baseline period prior to the UFP peak, escalating gradually during 

and following the UFP exposure to a maximum of 98 dBA (Figure 4, lower plot). Noise levels returned to 

a secondary baseline with a post-peak mean of 58.2 dBA (post-peak standard dev. = 6.7; post-peak median 

= 58 dBA) during the final 17 minutes of the sampling period at 14:58 to 15:15HRS (Figure 3, lower plot).  

Descriptive statistics for participant # 300012 for the full data set of UFP exposure (PNC, particles #/cc) 

and noise exposure (dBA) are presented in Table 1. 

Table 1. Descriptive Statistics for Participant # 300012  

Feb 28, 2018(1 ) PNC (#/cc) Noise (dBA) 

minimum 1 41 

maximum 103000 98 

mean 11765 59.3 

median 5620 56 

standard dev. 17342 11.8 

cv (2 ) 1.47 0.20 

skewness 2.92 1.04 

kurtosis 11.5 3.11 

(1 ) # observations, n = 3169; (2 ) cv = coefficient of variation 

Figure 5 presents a scatter plot with marginal kernel density plots for log(e) PNC and noise exposure 

grouped by microenvironment (transit, other) for participant # 300012. The scatter plot suggests that both 

the highest UFP concentrations and dBA levels which participant # 300012 was exposed to occurred during 

transit (including in car)(PNC > 30,000 particles/cc; dBA > 80). The lowest UFP concentrations (< 3000 
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particles #/cc) and noise levels (< 80 dBA) occurred while the participant was in other microenvironments 

(including inside). Given that both PNC and noise (dBA) are positively skewed, non-normal distributions 

(PNC skewness = 2.92; kurtosis = 11.5; dBA skewness 1.04, kurtosis = 3.11; n = 3169) (Table 1), we 

plotted a kernel distribution (Figure 5) since a parametric distribution cannot properly describe the data, 

and to avoid making assumptions about the distribution of the data. 

 

Figure 5 Scatterplot and Kernel Density Plots of log PNC and Noise, Participant # 300012 (02/28/18) 

3.3. Heart Rate Measurements in Participants Exposed to UFP, Noise, Microenvironmental Temperature 

Participants # 300012 and # 300041 were instructed to operate both the PUFP C200 and 

NEATVIBEwear sensors and measure exposures at different times throughout the sampling period 

and in different environments (i.e. while at school, in transit, etc.). A Fitbit Charge 2 was additionally 

distributed to both participants to monitor heart rate, sleep quality, and activity. Participant # 300012 
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did not wear the Fitbit during the selected monitoring date (Feb. 28, 2018). No heart-rate data was 

recorded for this participant for this analysis.       

 Participant # 300041, an adolescent male, age 16 at the time of participation in the study wore the 

Fitbit on two consecutive days (June 21-22, 2018). Figure 6 displays time-series plots for adolescent 

participant # 300041 illustrating the microenvironment in which the UFP exposures occurred. For this 

participant, all of the UFP exposures occurred while the participant was inside (at home), on both 

sampling days. While not transportation-related exposures, the time-series plots and data analysis for 

participant # 300041 are presented herein as illustrative examples of a home-bound participant’s 

personal exposure regimes in comparison to the transportation-source personal exposure of participant 

# 300012.  

 

    (a)                                      (b)  

Figure 6. Plots of UFP exposure by microenvironment, Participant # 300041 – June 21-22, 2018 

To assess and evaluate real-time microenvironmental exposures and their effects on heart-rate, 

we plotted time-series plots of UFP and dBA with temperature as an added parameter of interest. 

Figures 7 and 8 present these time-series plots for adolescent participant # 300041 during two 

consecutive early summer weekdays, June 21 and 22, 2018. Both sampling days recorded an elevated 

UFP exposure period occurring for approximately 1 hour, followed by an extended decreasing 

exposure period of similar or longer duration (PNC, particles #/cc, Figures 7 and 8 upper plots). 
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Compared to the transportation-related UFP exposures of participant # 300012, indoor (at home) UFP 

exposures in participant # 300041 were between 50 -85% lower. Noise exposures (dBA, Figures 7 and 

8 middle plots) were within a narrow interquartile range (June 21: IQR = 8 dBA; June 22: IQR = 6 

dBA) and showed little relative variability between sampling dates (June 21: CV = 0.11; June 22: CV 

= 0.09, Table 2). Microenvironmental temperature exposures recorded by the NEATVIBEwear 

internal thermistor are plotted as dotted lines in the middle subplots in Figures 7 and 8. Given the 

indoor exposure regimes, microenvironmental temperature readings were limited to a narrow range 

(Table 2).  

 

Figure 7. Time-series subplots of PNC, Temp., dBA, Heart Rate: Participant #300041 – June 21, 2018 
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Figure 8. Time-series subplots of PNC, Temp., dBA, Heart Rate: Participant #300041 – June 22, 2018 

Descriptive statistics for participant # 300041 UFP exposure (PNC, particles #/cc), noise exposure 

(dBA), microenvironmental temperature (degrees F), and heart rate (HR, beats per minute, BPM) are 

displayed in Table 2.  

Table 2. Descriptive Statistics for Participant # 300041  

Jun 21, 2018(1 ) PNC (#/cc) Noise (dBA) Temp. (oF) (3 ) Heart Rate (4 ) 

minimum 1310 42 76.6 48 

maximum 51700 93 81.2 93 

mean 14444 55.7 79.3 61.7 

median 8710 55 79.3 59 
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standard dev. 13572 5.9 1.4 9.3 

cv 0.94 0.11 0.02 0.15 

     

Jun 22, 2018(2 ) PNC (#/cc) Noise (dBA) Temp. (oF) (3 ) Heart Rate (4 ) 

minimum 354 42 78.8 70 

maximum 13500 91 80.3 155 

mean 3001 54.6 79.7 112 

median 1200 54 79.7 109 

standard dev. 3563 5.1 0.28 15.7 

cv 1.2 0.09 0.004 0.14 

(1 ) # observations, n = 12127; (2 ) n = 9612; (3 )NEATVIBEwear microenvironmental temperature; (4 )BPM 

 Heart-rate was measured during both sampling days (June 21-22, 2018) in participant # 

300041, who wore the Fitbit device. While there was little relative heart-rate variability between 

monitoring dates (June 21: CV = 0.15; June 22: CV = 0.14, Table 2), the participant’s heart-rate was 

elevated on June 22nd, although heart-rate data from 13:04 to 13:33HRS (during the decline of the UFP 

peak) are missing For a visual comparison of how the distribution of each covariate (UFP, noise 

microenvironmental temperature) varies by sampling day with the outcome variable (heart-rate), we 

plotted notched boxplots of each personal exposure parameter below, in Figures 9 and 10. 
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(a)          (b) 

Figure 9. Boxplots of UFP (# particles/cc) and Noise (dBA) Participant #300041 – June 21-22, 2018 

  

(a)          (b) 

Figure 10. Boxplots of Temp. (oF) and Heart-Rate (BPM) Participant #300041 – June 21-22, 2018 

4. Discussion 

We found that personal-scale, microenvironmental exposure measurement with novel, wearable 

sensors is feasible for assessment and evaluation of co-exposures of UFP and noise on health outcomes 

(heart-rate). While participants in this field study proved to be cooperative in wearing the sensors, their 

compliance with study protocols was intermittent and to some extent beyond the control of the researchers. 
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However, the data collected in this field study has proven to be valuable for protocol refinement in the 

remainder of the study (end date = 2/2020) and will inform future personal-scale exposure assessment 

studies of similar design. We also found that measurement of real-time microenvironmental temperature 

using a wearable sensor provides an accurate measurement (~ +/-5 degrees F) of ambient 

microenvironmental temperature, which is useful for understanding UFP and temperature collinearity. Most 

exposure studies utilize average daily temperature values from fixed site meteorological records as a proxy 

for actual exposures, which may vary considerably as participants move between microenvironments [21]. 

Transportation-related air pollution (TRAP) was measured successfully here in real time using a PUFP 

C200 wearable sampler as particle number concentration (# particles/cc). This serves as a proxy for UFP 

exposure. UFP measurements were collected concurrently with noise exposure data (dBA) by 

NEATVIBEwear, a wearable noise monitoring device.  

4.1. Interpretation of Measurements of Participants Exposed to UFP and Noise  

Field study data from adolescent participant # 300012, who reported their exposure categories as 

“transit” or “car” and “inside” or “home” have illustrated the value and relative convenience of using 

wearable sensors for personal-scale monitoring of the co-exposures of UFP and noise. Our results for 

participant # 300012 suggest that traffic-related UFP and transportation noise exposures can be measured 

in real-time with current sensor technology. The UFP exposures plotted in Figure 3 (participant # 300012) 

are illustrative of a typical commute pattern which, in this study featured a commute from school followed 

by an inside or indoor exposure period. The recorded PNC measurements suggest an immediate and short-

term exposure to UFP while the participant changed microenvironments (other to transit) (Figure 3).  

    

Concurrent noise exposures logged by NEATVIBEwear (Figure 4, lower subplot) indicate that noise 

levels also increased during the transit (car) microenvironment for participant # 300012. There was 

approximately a 10 minute time-lag between peak UFP concentration (103,000 particles/cc) and peak noise 
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exposure (98 dBA), sub-plotted on Figure 4. The elevated peak in UFP exposure might correlate with so-

called “stop and go” traffic, particularly if the participant’s vehicle (and PUFP sampler) was a short distance 

to the exhaust tailpipe of the preceding vehicle. This distance and vehicle speed could potentially be 

established with the GPS and accelerometer data the study participants logged while in-transit. Another 

possible explanation for the UFP vs. noise time lag could be that participant #300012 may have travelled 

behind a high UFP-emitting, diesel vehicle previous to the peak in dBA and UFP exposures peaked at a 

period before the vehicle increased in acceleration. We have found previously that UFP concentrations may 

be higher at intersections due to increased acceleration of the vehicles. The gradually increasing and 

elevated noise levels (Figure 4) likely correlate with a higher speed portion of the vehicle trip. This is 

attributed to rolling tire noise and aerodynamic noise of the vehicle itself. At a higher speed the rapid drop 

in UFP concentration (Figure 4) may be due to more efficient in-vehicle ventilation and longer distance to 

preceding vehicles [22]. 

Given these possible scenarios, the scatter plot of log UFP vs. noise presented in Figure 4 does not 

indicate a correlation between these variables for this participant but does suggest that both the highest UFP 

concentrations and dBA levels which participant # 300012 was exposed to occurred during transit and the 

lowest UFP concentrations and noise levels occurred while the participant was in other microenvironments 

(including inside). Establishing such a correlation is feasible in future field work using wearable sensors 

for personal-scale exposures across multiple participants in varying microenvironments. For more precise 

correlations of UFP and noise, analyzing the spectral content of the in-transit noise would be informative 

to verify if the low frequency content of the measurements correlates with the UFP exposure inside the 

vehicle. We believe that spectral analysis of selected noise peaks will demonstrate low frequency noise 

(250 Hz and below) to be correlated with higher UFP levels predominately from diesel exhaust emissions 

from large trucks and heavier gross weight vehicles, with lower UFP concentrations corresponding with 

high frequency noise (> 2000 Hz)[23]. 

4.2. Challenges in Measuring Health-Based Outcomes in Personal-Scale Exposure Studies 
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Jointly measuring UFP and noise exposures on a personal-scale (< 30cm between the sampler and the 

exposure point – i.e. breathing zone, ear canals) using wearable monitors for both UFP and noise is a 

feasible approach. Integration of a Fitbit device to monitor heart rate, sleep quality, and activity, and a 

Spirobank Smart to assess lung function complements the other wearable instruments deployed here to 

form a suite or set of technologies to better understand possible relationships between UFP and noise 

exposures and health outcomes. While measurement of personal-scale UFP is still an emerging approach, 

the literature cites only one study that measured exposure and health effects in children using personal UFP 

monitors [24]. Integration of low-cost, accurate and precise noise monitoring devices into UFP monitoring 

studies remains an enticing possibility to disentangle the confounding presented by these simultaneous 

exposures. The rate limiting step to date has been mainly one of instrumentation and measurement 

techniques.  

An important objective of this field study was to measure health-based outcomes in adolescent 

participants based on exposure to real-time UFP concentrations with both noise and changes in 

microenvironmental temperature exposure. Based on the quality of data presented herein, 

microenvironmental monitoring of UFP and noise with the paired PUFP sampler and NEATVIBEwear 

devices (Figure 1) presents a feasible approach to collecting more fine-grained and robust exposure data 

than other methods such as fixed UFP monitoring sites or noise proxies to predict UFP exposures. Further, 

the data presentation illustrates the potential for opportunities as well as difficulties in collecting and 

evaluating personal-exposure, real-time monitoring data. Additionally, the data quality output from 

personal-scale monitoring sensors deployed in this study facilitates the ability to construct a regression-

based model in which the covariates UFP, noise and microenvironmental temperature are the predictor 

variables and heart-rate as the outcome and is dependent on any of the predictors and/or their interaction. 

Such a model could be further stratified by both microenvironment of exposure and activity category.  

4.3. Advantages in Measuring Real-Time Noise Exposures Using Wearable Sensors 
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The traditional methods of conducting noise measurement studies involve collection of noise samples 

manually, using professional sound level meters (SLMs) which must comply with national and international 

standards. The relative cost of high-grade SLM’s and trained personnel required to calibrate and measure 

noise levels presents financial and logistical drawbacks [25]. The recent proliferation of smartphones, their 

constant network connectivity, the built-in GIS functionality, and numerous “apps” available for user 

interactivity present distinct advantages over unconnected and often bulky and expensive professional SLM 

instruments [26]. Yet, reliance on smartphones for sound level data collection in noise exposure studies 

presents its own drawbacks, such as the micro-electro-mechanical-system (MEMS) built-

in microphones used in smartphones. MEMS microphones have certain limitations due to their miniature 

size and circuit board placement, which affect their dynamic range and signal-to-noise ratio response [27]. 

Another major constraint presented by the built-in microphones is the lack of access and inability to 

perform periodic or pre-measurement calibration. Additionally, smartphones are difficult to utilize as 

dedicated SLM devices in exposure studies due to the user/operator’s frequent needs to answer phone calls, 

send and receive texts messages, run applications and other uses which decrease battery life. 

NEATVIBEwear was conceived, designed and engineered to be both a stand-alone wearable noise 

monitoring device of low cost, with functionality to log noise exposure data to an on-board SD card for 

data capture and is optionally integrated to a smartphone to allow for easy visual access to noise exposure 

levels. A study published in the Journal of the Acoustical Society of America (JASA) suggests that using 

external calibrated microphones greatly improves the overall accuracy and precision of smartphone 

sound measurements and removes much of the variability and limitations associated with the built-in 

smartphone microphones [26]. By integrating an external, calibrated microphone into the NEATVIBEwear 

device, with flexibility to re-calibrate the microphone unlike a smartphone, we anticipate the ability to 

obtain measurements within ±2 dB of a SLM reference.  

4.4. Limitations of This Study 
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A possible limitation in the use of NEATVIBEwear as a dedicated noise exposure monitoring device 

is the inability of the device to differentiate recorded noise patterns such as traffic noise and other sounds, 

including conversation, shouting, laughter or background music playing. This could potentially be 

addressed with a band-pass filter device that passes noise frequencies within a certain range and rejects 

(attenuates) frequencies outside that range, or via development of an algorithm to post-process the raw 

noise data to distinguish between environmental noise and the aforementioned interfering sounds. The latter 

approach was achieved with good results in a health study conducted in Peru in which low-cost wearable 

microphones were deployed on patients recovering from pulmonary tuberculosis (TB) to record and analyze 

coughing episodes and distinguish TB-related coughing from environmental and other background 

interfering noise [28]. 

NEATVIBEwear, in its current release, does not allow for 1/3-octave band or spectral measurements 

of traffic noise. This could be possible with an extended, re-engineered version of NEATVIBEwear in a 

follow-up (future) study or with a commercial-grade sound level meter. For validation of spatiotemporal 

UFP and noise models, measuring the spectral content of the noise exposure is necessary [13]. 

To our knowledge, this field program is the first study to integrate real-time, wearable sensors to jointly 

measure both UFP and noise exposure on a personal-scale with direct, real-time measurement of a health-

based outcome (heart-rate) in study participants. Other strengths of this study include the ability to 

demonstrate direct measurement of microenvironmental temperature as a potential predictor, along with 

UFP and/or noise and their interactions, of heart-rate as a health-based outcome. This challenges the usual 

reliance on models of average daily temperature values from fixed site meteorological records as a proxy 

for actual exposures, which may vary considerably as participants move between microenvironments [21]. 

A further strength of the full prospective study, as it progresses, is the ability to network via the cloud 

multiple NEATVIBEwear devices worn by different participants simultaneously to produce a real-time 

noise exposure map of the study area and compare this with UFP readings for establishment of high 

exposure risk zones both spatially and temporally.  
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5. Conclusions 

The primary objective of this field study was to deploy two novel personal sensors for measuring 

ultrafine particles (UFP) and noise to jointly monitor real-time exposures in microenvironments. The study 

focused on evaluating the feasibility of simultaneously measuring personal exposures to UFPs and noise 

with focus on the quality of the data and its value for interpretation. A secondary objective of this analysis 

was to demonstrate the usability of the NEATVIBEwear device developed for this study as an easy to 

deploy tool for integration into ongoing and future exposure studies where noise exposure is a parameter 

of interest. 

This pilot field study demonstrates that both UFP and noise were feasibly measured at a personal scale 

for adolescent participants in different and changing microenvironments. Accurately measuring personal 

exposure to air pollutants, particularly UFP, remains a critical limitation to understanding their impact on 

human health. This field study demonstrates the ability of new tools to accurately measure personal UFP 

exposure, noise and temperature with high spatiotemporal resolution. Such improvements in exposure 

assessment are likely to benefit future applications in epidemiologic studies. 
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Abstract 

1.) Background: Environmental low frequency noise (LFN<125 Hz), ubiquitous in urban areas, is an 

understudied area of exposure science and an overlooked threat to population health.  Environmental 

noise has historically been measured and regulated by A-weighted decibel (dBA) metrics, which more 
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heavily weight frequencies between 2000 and 5000 Hz. Limited research has been conducted to measure 

and characterize the LFN components of urban environmental noise.   

2.) Objectives: We characterized LFN noise at two urban sites in Greater Boston, Massachusetts (USA) 

using dBA and full spectrum noise measurements with aims to a) analyze temporal differences in the two 

datasets; (b) compare and contrast LFN metrics with dBA noise metrics in the two sites; and (c) assess 

meteorological covariate contributions to LFN in the dataset.  

3.) Methods: We measured A- and C-weighted, and flat, unweighted noise levels and 1/3-octave band 

continuously for 5 months using sound level meters sampling at f = 1 Hz and we recorded sound samples 

at 44.1 kHz.  Our measurement sites were located in two urban, densely populated communities, 

burdened by close proximity to bus, rail, and aircraft routes. 

4.) Results: We found that a.) LFN does not follow the same seasonal trends as A-weighted dBA 

loudness; b) there are spatial differences in LFN and its very low frequency noise components (VLFN) 

between two urban sites; and c). VLFN and LFN are statistically significant drivers of LCeq (nearly 

independent of frequency) minus LAeq, (LCeq-LAeq )>10dB, an accepted LFN metric.  

5.) Significance: A richer characterization of temporal variation in LFN loudness may better equip 

regulators and public health policy makers to define exposures and potential health risks for populations 

living and working in highly urbanized transportation corridors where LFN and VLFN are present in the 

soundscape. 

Keywords: low-frequency noise, decibels, dBA, LAeq, LCeq, VLFN, environmental justice communities 

 

Impact Statement 

Environmental low-frequency noise (LFN<125Hz), ubiquitous in urban areas, is an understudied area 

of exposure science and an overlooked risk to population health. We measured environmental noise 

across the full spectrum of frequencies continuously for five months at two urban sites located in 

Environmental Justice communities. We found that LFN did not follow the same seasonal trends as A-

weighted (dBA) loudness, and we observed spatial differences in LFN and very low frequency noise 
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(VLFN<20Hz) at the two sites.  Not characterizing LFN and basing noise regulations only on A-

weightings, a poor predictor of LFN, may expose populations to LFN levels of concern. 

1.0  Introduction 

Urban environmental noise (UEN) is associated with a range of stress and adverse cardiovascular 

responses, such as elevated cortisol (Selander et al., 2009)[1], elevated blood pressure (Haralabidis et al., 

2008)[2], hypertension (Bodin et al., 2009; Babisch et al., 2005)[3,4], myocardial infarction (Babisch et al., 

2005; Selander et al., 2009), antihypertensive, anxiolytic, and antacid medication use (Floud et al., 2011)[5], 

cardiovascular related hospital admissions (Hansell et al., 2013; Correia et al., 2013)[6,7], and excess 

mortality (Hansell et al., 2013).   

While our understanding of the biological pathways through which UEN adversely impacts health is 

still developing, it is known that certain components of environmental noise are more harmful than others, 

particularly low frequency noise (LFN<125 Hz) (Munzel, et al., 2014, 2018)[8,9]. Chronic exposure to LFN 

has been linked to a variety of adverse health impacts, including decreased heart rate variability (HRV) 

(Walker, et., al., 2016)[10], sleep disturbance, cortisol level disruption ( K.P. Waye, et.al., 2003)[11]; and 

other stress indicators (e.g., irritability, anxiety, tiredness) (Verzini, et., al, 1999)[12]. Nonetheless, more 

research is needed to better measure and characterize urban LFN – specifically, how it varies temporally 

and spatially and when mediated by other environmental factors, such as meteorology. 

The urban soundscape is dominated largely by transportation noise but in some areas it is punctuated 

by noise from construction and industrial activities. One of the challenges of characterizing urban 

environmental noise as a health risk is that metrics for characterizing, reporting, and regulating noise only 

address a subset of the wide range of frequencies. For example, guidelines from both the U.S. 

Environmental Protection Agency and the World Health Organization utilize A-weighted noise metrics, 

which more heavily weight frequencies between 2000 and 5000 Hz, and thereby discount lower 

frequencies (Branco and Alves-Pereira, 2007)[13].  
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A recent meta-study of LFN and health effects reinforces that the A-weighting filter is not ideal to 

evaluate the non-auditory effects of low-frequency noise (LFN) (Alves, et al., 2020)[14].  Ascari et al. 

(2014) affirm that models of A-weighted sound are not appropriate to evaluate the contribution of Low 

Frequency Noise (LFN, <200 Hz) to the soundscape (Ascari, et. al, 2014)[15]. De-emphasizing LFN 

content by A-weighting can lead to underestimation of potential harm from physical and psychological 

effects associated with frequency content and other characteristics of sound not captured by A-weighted 

metrics (K.P. Waye, 2011)[16].  

Similarly, recent systematic reviews (Glazener et al; Frank, et al.)[17,18] of urban risk factors 

contributing to the burden of disease report attributes of UEN that were either directly measured or 

modeled.  These  skew heavily toward sound pressure levels (SPL) or the traditional dBA set of metrics, 

with little use of other measures of noise. In particular, there was no mention of LFN measurements in the 

key references reviewed (Glazener et al; Frank, et al.).  Further, a recent meta-analysis by Hasegawa et 

al., (2022) detailing a qualitative and quantitative synthesis of the impacts of COVID-19 on soundscapes 

reviewed 119 studies evaluating (1) auditory perceptual change and (2) noise level change due to the 

COVID-19 pandemic/lockdown.  In n=54 of these studies, sound level changes or noise levels were 

quantitatively assessed using traditional dBA metrics. Very few of the 54 studies addressed LFN or other 

noise frequency components [19]. 

To address these literature gaps, we have undertaken an investigation of UEN in which we measure 

LFN and noise emission spectra, A-weighted noise levels, and other environmental noise descriptors  

continuously for five months in two urban communities in metropolitan Boston (Massachusetts, USA).  

Our objectives were to (1) characterize temporal and spatial distributions in LFN in the two locations 

(datasets); (2) compare and contrast dBA noise metrics with LFN metrics between the two sites; and (3) 

assess meteorological covariate contributions to LFN.   

2.0 Materials and Methods 
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2.1 Study Areas   

We measured noise at two urban sites between April 15 and September 13, 2016. Both sites are 

located in Environmental Justice communities.  In Massachusetts (MA), Environmental Justice 

communities (EJCs) are defined as block groups where median household income is less than 65% of the 

statewide median, more than 25% of the residents are nonwhite, or over 25% of households have no one 

over 14 who speaks English well (Mass DEP, 2020) . EJC’s generally are burdened with multiple 

environmental stressors (e.g., housing density, heat island effects, lack of access to green space, and noise 

in general) (Mass DEP, 2020) and thus serve as appropriate foci for formative inquiry into the LFN 

implications for urban design, city planning and public health[20].   

One site was in Chelsea, a city north of Boston (Fig. 1). Chelsea has a population of 40,615 and a 

population density of 7,096/km2, making it the second most densely populated city in Massachusetts 

(census, 2020). Instrumentation at the Chelsea site was atop of a 3-story building located 40 m from a 

busy street (approx. 7300 total VPD, Mass DOT, 2016)[21], 45 m from rail lines (67 TPD (mbta.com, 

2016))[22], and 2.5 km from Logan International Airport (1100 flights/day in 2016) (Massport.com, 

2016)[23].  

The second site was at the USEPA Chemical Speciation Monitoring Station (EPA site code# 

250250042) in Roxbury (Fig. 1).  Roxbury is a neighborhood of Boston, with a population of 51,252 

(City of Boston, 2015) [24], and a population density of 5,344/km2.  The Roxbury monitoring site is 15 m 

from a commercial/residential roadway (approx. 8000 total VPD, City of Boston, 2015), 6.4 km from 

Logan Airport and 75 m from a city bus terminal (~250 buses/day (mbta.com)).    
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Fig. 1 Location Map of Noise Monitoring Sites 

Monitoring sites are shown as black star symbols. Land use categories are illustrated by zoning type or 

physical features. Locations of bus stops, bus routes and rail (MBTA, T Stations) are indicated by icons. 

 

2.2        Measurement Methods   

Noise monitoring was conducted using two identical Larson Davis 831 (LD-831) Class 1 sound meters, 

each equipped with a preamplifier (LD-PRM831) and a G.R.A.S. 1-cm free-field, pre-polarized 

microphone. Microphones were mounted on 1.5-meter-high tripods fitted with outdoor windscreens and 
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routed with 8-m microphone cables through a Roland R-05 Digital Audio Recorders.  The Chelsea 

microphone was oriented upwards, perpendicular to its roof-mounted installation surface; the Roxbury 

microphone was oriented due south, towards Harrison Avenue, at a 45-degree angle to the horizontal.  The 

sound meters measured sound pressure levels in decibels (dB) continuously over a frequency range of 6.3 

Hz to 20 kHz at 1-second (s) intervals.  

Meteorological data were measured at both sites with Davis VantagePro weather stations, which 

recorded 5-minute average measurements of wind speed, wind direction, temperature, relative humidity, 

barometric pressure, and rainfall. 

2.3 Quality Assurance 

Quality assurance (QA) methods were adapted from the Protocol for a Sleep Study (PARTNER, 

Sleep Study #25 Acoustics System, 2014)[25]. Prior to deployment, the sound meter was field-calibrated 

with a B&K 4231 sound level calibrator and microphone simulator to 94 dB and 114 dB at 1 Hz. Weekly 

calibration checks were conducted at both sites under the same protocol.  

Measurements were stored on the internal memory of the sound meter and downloaded weekly.  

Recorded sound was field-checked and logged at both sites on randomly selected days to confirm real-

time A-weighted sound pressure levels of transportation sources (trucks, trains, aircraft)(see Appendix 1. 

Supplementary Materials). Instrument clocks were set against the National Institute of Standards and 

Technology (NIST) atomic clock; clock drift was +/-0.75 s/day for the sound meter and +1.4 to +2.9 

s/day for this digital audio recorder. Clock drift adjustments were addressed in the resampling of the raw 

noise data to synchronize with the meteorological data. Weekly field checks of the meteorology station 

included data downloads, battery power logs and  clock resets to NIST time. Meteorological data were 

checked for comparability against Logan Airport, Boston historical weather records (KBOS)[26]. 

2.4      Data Processing 

  

Noise metrics included both A-weighted (LA(eq), dB(A)) and C-weighted (LC(eq), nearly 

independent of frequency) sound energy as well as LDN, LNight, and LDEN (see Table 1 for definitions).   
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Table 1  Noise and Meteorological Data Summary Statistics 

Chelsea, MA site (n=157 days) 

Noise Parameter Mean STD Median 95%  Pctl #Days (%) > Limit 

LDN  (dBA) 65.6  1.80 65.7 68.5 157 (100%)a 

LDEN (dBA) 66.2 1.78 66.3 69.1 157 (100%)b 

LNIGHT (dBA) 58.1 1.95 58.1 61.2 157 (100%)c 

LA(eq)(24-hr) (dBA) 61.9 1.85 62.2 64.7 -- 

LC(eq)(24-hr)  (dBC) 72.7 2.14 72.5 76.4 -- 

∆[LC(eq) -LA(eq)]  (dB) 10.7 1.66 10.3 13.8 99 (63%)d 

VLFN (dB) 66.2 8.71 64.6 82.6 -- 

LFN (dB) 68.6 4.35 69.0 75.3 -- 

MFN (dB) 57.9 4.08 57.8 65.0 -- 

HFN (dB) 55.7 3.48 55.3 61.7 -- 

Meteorology Mean STD Median 95%  Pctl #Days (%) > Limit 

Wind Speed (kph) 10.1 5.50 10.0 20.0 -- 

Wind Direction 190 (S-SSW) -- 225 (SW) 315 (NW) -- 

Temperature (deg oC) 19.9 6.73 20.8 30.2 -- 

Humidity (%) 66.6 18.5 67 94 -- 

Barometer (mbar) 1015.5 6.36 1015.6 1025.2 -- 

 

Roxbury, MA site (n=169 days) 

Noise Parameter Mean STD Median 95%  Pctl #Days (%) > Limit 

LDN (dBA) 68.3 1.37 68.1 70.6 169 (100%)a 
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LDEN (dBA) 68.8 1.21 68.7 70.6 169 (100%)b 

LNIGHT (dBA) 60.6 12.9 61.4 63.7 169 (100%)c 

LA(eq)(24-hr) (dBA) 63.7 1.08 63.6 65.7 -- 

LC(eq)(24-hr) (dBC) 73.3 0.95 73.5 74.7 -- 

∆[LC(eq) -LA(eq)]  (dB) 9.48 1.13 9.72 10.9 68 (40%)d 

VLFN (dB) 63.2 4.42 63.5 70.1 -- 

LFN (dB) 71.9 3.31 72.3 76.7 -- 

MFN (dB) 60.4 2.34 60.0 64.8 -- 

HFN (dB) 58.5 2.54 58.3 62.7 -- 

Meteorology Mean STD Median 95%  Pctl #Days (%) > Limit 

Wind Speed (kph) 2.68 2.65 1.61 8.05 -- 

Wind Direction 179 (S) -- 225 (SW) 315 (NW ) -- 

Temperature (deg oC) 21.9 6.58 22.7 31.8 -- 

Humidity (%) 71.4 11.8 72.6 89.2 -- 

Barometer (mbar) 1015.6 5.82 1015.6 1024.8 -- 

 

Note: LAeq =  A-Weighted, equivalent continuous sound level (time period); Code of Federal Regulation (CFR) Part 772 - Procedures for 

Abatement of Highway Traffic Noise and Construction Noise at 67 dB(A) for the loudest hour at exterior, residential use and activity 

LCeq = C-Weighted (nearly independent of frequency), equivalent continuous sound level (time period).   
(a) Ldn = LA(eq) over a 24-hour (h) period with a penalty of 10 dB(A) for noise during the hours of 23:00-07:00. Ldn limits are 55 dBA 

(USEPA) 

(b) Lden = A-weighted, Leq (equivalent sound level) over a whole day, but with a penalty of 10 dB(A) for night-time noise (23:00-07:00) 
and 5 dB(A) for evening noise (19:00-23:00). Lden threshold guidelines (WHO) are Aircraft = 45dB; Railways = 54 dB; Traffic=53 

dB.  

(c) Lnight = A-weighted Leq over the 8-h night period of 23:00 to 07:00 h. Lden threshold guidelines (WHO) are Aircraft = 40 dB; 
Railways = 44 dB; Traffic=45 dB (WHO) 

(d) Subtractive difference (dB) LC(eq) -LA(eq) or ∆C-A > 10 dB investigate for LFN (WHO, 1999). 

VLFN (<20Hz), LFN (25 -125Hz), MFN (160Hz -500Hz), HFN (>500Hz) and Meteorological parameters are resampled to 30-s. 

 

In addition, unweighted (or Z-weighted, independent of frequency) 1/3-octave band readings 

were collected from 6.3 Hz – 20 kHz, continuously at 1-s intervals. (Goelzer et al., 2001)[27]. Average 

binned levels for very low frequency noise (VLFN≤20 Hz); low frequency noise (LFN, 25 – 125 Hz), 

https://www.acoustic-glossary.co.uk/leq.htm
https://www.acoustic-glossary.co.uk/frequency-weighting.htm
https://www.acoustic-glossary.co.uk/leq.htm
https://www.acoustic-glossary.co.uk/frequency-weighting.htm
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medium frequency noise (MFN, 160 – 500 Hz), and high frequency noise (HFN >500Hz) were calculated 

with Equation (1): 

Eq(1): Leq(f) =  ∑ 10*log10(10(
Li

10
))n

i=1    

where n is the 1s time samples in the sampling period (24 hrs)  

and Li is the 1s level determined for each frequency bin 

 

Raw 1-s noise data were aggregated to 30-s averages for the statistical analysis per an 

autocorrelation algorithm designed to reduce correlations between successive 1-s samples in a vector 

from 0.8 to less than 0.1 with a 30-s lag time. Autocorrelation lag-time plots are found in the 

Supplementary Materials of this paper (Appendix 1).  We additionally aggregated raw noise data and 

meteorological data to 1 day and 1 week for statistical analysis of data trends at longer-term levels. 

Aggregation of our dataset to the 1-month level (n=5 months) would not allow for sufficient statistical 

power for meaningful analysis of trends.   

2.5 Statistical Analyses 

Multivariate regression models were run on a large, two-site dataset (25E06 x 40 raw data matrix = 

109 values) in MATLAB for meteorological predictor covariates and interactions of elevated wind speeds 

(75th percentile = Wind Speed HI) and wind direction to determine outcomes on LA(eq) (dBA) and 

frequency values (VLFN, LFN, MFN, HFN).  Two-sample t-tests were conducted with MATLAB for 

analyses of temporal covariates on loudness  and frequency Spectrograms of sound energy and boxplots 

of loudness data were generated using MATLAB (R2022(a); mathworks.com)[28] . 

3.0 Results 

We found that 1.) LFN does not follow the same seasonal trends as A-weighted dBA loudness.  We 

observed 2.) spatial differences in both VLFN and LFN between two urban sites and 3.) determined that 

VLFN and LFN are statistically significant drivers of the Δ(LCeq-LAeq) >10dB metric, a widely-cited, 

yet infrequently tested LFN indicator. 

3.1  Temporal Trends of A-Weighted Noise Measures (dBA) v. LFN 
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We found that A-weighted measures of loudness (LAeq) varied temporally as expected, with 

higher sound pressure levels (SPL) recorded during weekdays v. weekends; higher SPL during daytime 

hours (07:00-23:00HRS) vs. night, and higher dBA levels during rush hour periods (7a -9a; 4p -7p)[29].  

LAeq varies seasonally by site, with higher SPL levels in Summer at Chelsea (v. Spring), and conversely, 

higher SPL levels recorded at Roxbury in Spring (v. Summer).  LFN was higher in Summer (v. Spring) at 

both sites and followed the same temporal trends as LAeq for weekday v. weekend, day v. night and rush 

hour v. non  rush hour.   

When data were aggregated to the 1-day level, there was no statistical significance in LAeq 

(dBA) weekdays v. weekends at Roxbury. Seasonally, LFN did not differ significantly in Roxbury at 

either the 1-day or 1-week levels. Analyses of weekly-averaged loudness and noise frequencies 

temporally for weeks when school was in session v. not in session followed seasonal trends. 

3.1.1  Two-sample t-tests 

Two-sample t-tests were conducted for 30-s averaged data using MATLAB R2022(a) Statistics 

and Machine Learning Toolbox [mathworks.com] for analyses of temporal covariates on outcomes of 

loudness (SPL, as LAeq) and LFN dB values.  Sensitivity analyses were run for 1-minute, 5-minute and 

1-hour sample averages with no change in the significance or direction of results.  Data aggregated to 1-

day and 1-week did show some statistical differences v. 30-second averaged data.  

Results (below) of the t-tests indicate that SPLs, measured as LAeq (dBA), are higher during weekdays v. 

weekends (t(830,488)= 89.5, p=0,  95% ci =(0.81, 0.84); higher during days v. night (t(830,488)= 365.0, 

p=0,  95% ci =(3.01, 3.05), and higher during rush hour periods v. non-rush hour (t(830,488)= 74.3, p=0,  

95% ci =(0.92, 0.97) for both sites.   

LFN (<125Hz) was analyzed by two-sample t-tests, indicating that  LFN dB levels are higher 

weekdays v. weekends (t(830,488)= 140.7, p=0,  95% ci =(1.39, 1.43); higher during days v. night 

(t(830,488)= 520.5, p=0,  95% ci =(4.40,  4.43); higher during rush hours v. non-rush hours (t(830,488)= 

116.0, p=0,  95% ci =(1.58, 1.64); and higher in Summer v. Spring (t(830,488)= 67.3, p=0,  95% ci 

=(0.65, 0.69) aggregated at 30-sec averages for both sites 
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3.1.2 Chelsea t-test Results 

Results of the two sample t-tests (30-sec averaged data) for Chelsea with 95% confidence 

intervals (ci) around the difference in sample means are: LAeq weekday v. weekend, t(405,497) = 106.0, 

p=0, ci = (1.47, 1.52); LAeq day v. night t(405,497) = 359.4, p=0, ci = (4.30, 4.35);  LFN weekday v. 

weekend, t(405,497) = 91.8, p=0, ci = (1.33,  1.39);  LFN day v. night, t(405,497) = 359.4, p=0, ci = 

(4.51, 4.56);  LAeq rush hour v. non rush hour, t(405,497) = 159.3, p=0, ci =  (2.30, 2.36);  LFN rush 

hour v. non rush hour, t(405,497) = 153.1, p=0, ci = (2.32,  2.38);  LAeq Season (Spring) v. Season 

(Summer), t(405,497) = -70.4, p=0, ci =  (-1.01,  -0.956);  LFN Season (Spring) v. Season (Summer) , 

t(405,497) = -85.7, p=0, ci =  (-1.28,  -1.22).  All Chelsea t-test results were significant at the α =0.05 

level. There was no difference in directionality or statistical significance at the 1-day level for LAeq or 

LFN by day of week (weekday v. weekend) or seasonally, at Chelsea nor at the 1-week level in these 

measures seasonally v. 30-sec aggregated data. 

3.1.3 Roxbury t-test Results 

Results of the two sample t-tests (30-sec averages) for Roxbury with 95% confidence intervals 

(ci) around the difference in sample means are: LAeq weekday v. weekend, t(424,989) = 21.1, p<0.001, 

ci =  (0.161,  0.194);  LAeq day v. night, t(424,989) = 235.2, p=0, ci = (1.78, 1.81);  LFN day v. night, 

t(424,989) = -508.3, p=0, ci = (-1.47, -1.42); LFN weekday v. weekend, t(424,989) = 132.3, p=0, ci = (-

4.3260,  -4.2928);  LAeq rush hour v. non rush hour, t(424,989) = 62.5, p=0, ci =  (0.832, 0.886);  LFN 

rush hour v. non rush hour, t(424,989) = 137.4, p=0, ci =  (2.42, 2.49);  LAeq Season (Spring) v. Season 

(Summer), t(424,989) = 58.9, p<0.001, ci =  (0.478,  0.510);  LFN Season (Spring) v. Season (Summer) , 

t(424,989) = -22.3, p<0.001, ci =  (-0.270,    -0.227).  All Roxbury t-test results were significant at the α 

=0.05 level.   

Reporting only those results where directionality and statistical significance differed at the 1-day 

and 1-week levels vs. 30-sec sample averages, there was no statistical significance (p>0.05) in 1-day 

averaged LAeq (dBA) weekdays v. weekends at Roxbury (t(80)= -1.06, p=0.29,  95% ci =(-0.62, 0.19) 

and no statistical significance in 1-day averaged LFN Spring v. Summer at Roxbury (t(80)= -0.057, 
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p=0.95,  95% ci =(-0.52, 0.49), nor at the 1-week level in Roxbury (t(14)= 0.67, p=0.51,  95% ci =(-0.59, 

0.31).  

3.2 Spatial differences in LFN between two urban sites 

An analysis of SPL and noise frequencies by site shows that in addition to LFN, the MFN and 

HFN frequencies are higher in Roxbury (v. Chelsea, see below), with only VLFN dB levels higher in 

Chelsea v. Roxbury,  t(830,488) = 202.7, p=0, ci = (3.02, 3.08) for data aggregated to 30-secs 

  

3.2.1 t-test Results for Noise Frequencies by Site 

We additionally tested noise metrics by site (Chelsea==0; Roxbury==1), adding VLFN, LFN, 

MFN and HFN with the results of two sample t-tests with 95% confidence intervals (ci) around the 

difference in sample means presented below.  While Roxbury is the louder (higher SPL’s) of the two sites 

(LAeq Roxbury v. Chelsea, t(830,488) = 476.5, p=0, ci = (3.56, 3.58)), a frequency analysis indicates 

only very low frequency noise (VLFN< 20Hz) differed at Chelsea v. Roxbury, with higher dB values of 

VLFN recorded at Chelsea v. Roxbury (t(830,488) = 202.7, p=0, ci = (3.02, 3.08)). For all other noise 

frequency bands, Roxbury recorded higher dB values than Chelsea (LFN Roxbury v.  Chelsea, t(830,488) 

= 397.4, p=0, ci = (3.35, 3.38);  MFN Roxbury v. Chelsea, t(830,488) = 336.8, p=0, ci = (2.43, 2.46, );  

HFN Roxbury v. Chelsea, t(830,488) = 418.3, p=0, ci = (2.77, 2.80). All t-test results for noise 

frequencies by site were significant at the α =0.05 level. At the 1-day and 1-week levels there is no 

difference in directionality or statistical significance for LAeq or any of the noise frequencies by site v. 

30-sec averaged data.  

3.2.2 Loudness and Frequencies During School Sessions 

As an additional assessment of temporal loudness and noise frequencies potentially impacting 

public health, we evaluated LAeq and VLFN through HFN noise frequencies for weeks when public 

school was in-session (school) v. not in-session (no school)(BostonPublicSchools.org) [30]. Our two-

sample t-test results for school (n=10 weeks) v. no school (n=9 weeks) indicate that weekly-averaged 

loudness and noise frequencies followed seasonal trends for their respective measures by site, aggregated 

https://www.bostonpublicschools.org/
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to the 1-week level. Two-sample t-test results for school v. no school are included in  the Supplementary 

Materials (Appendix 1). 

3.2.3 Spectrograms of Acoustic Energy by Site 

Full spectrum 1/3-octave band measures 6.3 Hz – 20 kHz (flat-weighted) were utilized to produce 

spectrograms plotted from selective dates at each site (Fig. 2) to represent example weekday v. weekend 

graphical time-series evaluations of noise frequencies and acoustic power. Spectrograms suggest that the 

acoustic power is predominantly <160 Hz at both sites, with VLFN dominating the soundscape in 

Chelsea, and Roxbury spectra showing less LFN energy on a typical, non-holiday weekend v. weekday 

during traffic commuting hours.  Example spectra are plotted below for days during which wind speeds 

(WS) were low (<1 std below mean WS) to minimize microphone wind noise artifacts.  

 

Fig. 2 Example Spectrograms for Low-Wind Conditions.   

Left panels (upper and lower) illustrate example 1/3-octave frequency band noise spectra (6.3Hz –20kHz) 

for weekdays; right panels (upper and lower) for weekends, collected on days with wind speed <1 std. 

below mean (kph). Color bars (on right) represent acoustic power/frequency (dB/Hz). 
 

3.2.4 1/3-octave Band Spectra 

Boxplots of 1/3-octave band spectra for the full five-month time series of data (1-s raw data 

samples) are presented in Fig. 3, and display the distributions of flat-weighted, average sound pressure 

levels across the following octave bands:  very low frequency noise (VLFN), or  infrasound <= 20Hz; low 
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frequency noise (LFN) 25 -125Hz, medium frequency noise (MFN) 160Hz -500Hz, and high frequency 

noise (HFN) > 500Hz – 20kHz. Overall, the highest median dB frequency was 31.5 Hz Roxbury and 

63Hz in Chelsea (both, 65 dB), indicating LFN is prevalent in the urban soundscape at these sites.   

 

Fig. 3 Boxplots of 1/3-Octave Band dB Levels. 

Distributions of 1/3-octave frequency ranges for both sites are shown across the full noise spectrum from 

very low frequency (VLFN), low frequency (LFN), medium frequency (MFN) and high frequency (HFN) 

noise. Boxes illustrate the median (center line of box), interquartile range (IQR), maximum and minimum 

dB levels (whiskers) and outliers (vertical lines). 

 

 3.3 VLFN and LFN contributions to Δ(LCeq-LAeq) 

LCeq (nearly independent of frequency) minus LAeq, (LCeq-LAeq) >10dB, an accepted and 

widely-cited indicator of LFN (WHO, 1999; Roberts, 2004)[31][32], is moderate to highly correlated to 

LFN and VLFN (0.36 to 0.57, respectively) and negatively correlated to MFN and HFN (-0.14 to  -0.54) 

in the dataset.   Covariate correlations indicate that LA(eq) itself is highly correlated (r=0.77 to 0.98) to 

MFN and HFN; and moderately correlated (r=0.30 to 0.48) to LFN and VLFN.  At the 1-day data 

aggregation level, LCeq-LAeq remains highly correlated to VLFN (r=0.60) and remains moderately 

negatively correlated to MFN and HFN ranging -0.25 to –0.30. 

Our dataset shows 63% of study days in Chelsea and 40% of study days in Roxbury as having 

LCeq-LAeq => 10dB (Table 1), which underscores the predominance of LFN transportation sources at 

the Chelsea site (aircraft, rail in particular). We found that, when stratified by site (Chelsea==0; 

Roxbury==1), VLFN and LFN were significant contributors to LCeq-LAeq => 10dB in Chelsea (VLFN: 
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β = 0.175; 95% CI: 0.134,  0.216)(LFN:  β = 0.442; 95% CI: 0.319, 0.565), whereas MFN and HFN were 

not significant (p>0.05; 95% CI’s contained zero).  Results differed in Roxbury, with only LFN and HFN 

significantly contributing to LCeq-LAeq => 10dB (LFN:  β = 0.353; 95% CI: 0.202,  0.504)(HFN: β = -

0.335; 95% CI: -0.496,  -0.174). VLFN (β = -0.006; 95% CI: -0.56,  0.04) and MFN (β = -0.069; 95% CI: 

-0.218,  0.081) contributions to LCeq-LAeq => 10dB in Roxbury were not significant.  For data 

aggregated to the 1-day level, taken together for both sites, only VLFN and LFN were significant and 

positive contributors to LCeq-LAeq => 10dB: VLFN (β = 0.202; 95% CI: 0.158, 0.2463) and LFN (β = 

0.329; 95% CI: 0.124, 0.535). MFN and HFN were not significant (p>0.05; 95% CI’s contained zero). 

Regression model plots for noise frequency contributions  to LCeq-LAeq are found in the Supplementary 

Materials of this paper (Appendix 1). 

3.4  Assessment of meteorological covariate contributions to LFN  

3.4.1 Regression Modeling Results 

We ran multivariate regression models in MATLAB for meteorological predictor covariates and 

interactions of elevated wind speeds (75% percentile = Wind Speed HI) and direction to determine 

outcomes on LAeq (dBA) and frequency dB values (VLFN, LFN, MFN, HFN). Table 2 presents 

coefficients (β, 95% ci) from the model output for Chelsea; Table 3 presents similar model output for 

Roxbury. 

 

Table 2 Chelsea Multivariate Regression Model Coefficients (β, 95% ci) for Noise and Meteorology 

Determinant ∆[LC(eq)-LA(eq)]=>10dB LAeq VLFN LFN MFN HFN 

VLFN 0.175 

(0.134,  0.216) 

0.183 

(0.181,  0.184) 

--    

LFN 0.442 

(0.319,  0.565) 

0.744 

( 0.743, 0.746) 

 --   

MFN -0.051 

(-0.213, 0.111) a 

0.944 

(0.943, 0.945) 

  --  
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HFN -0.143 

(-0.327,  0.041) a 

1.177 

(1.176, 1.177) 

   -- 

Meteorology:  LAeq VLFN LFN MFN HFN 

Temperature (oC)  0.248 

(0.246, 0.250) 

0.087 

(0.083, 0.092) 

0.252 

( 0.250,  0.254) 

0.221 

(0.219, 0.223) 

0.207 

(0.205, 0.208) 

Humidity (%)  -0.057    

(-0.058, -0.057) 

-0.120  

(-0.121, -0.118) 

-0.064 

(-0.064, -0.063) 

  -0.055 

(-0.056,  -0.054) 

-0.048 

( -0.049, -0.048) 

Barometer (mbar)  -0.072 

(-0.074, -0.069) 

   -0.231   

(-0.236, -0.227) 

-0.083   

(-0.085,  -0.081) 

-0.065 

( -0.067, -0.063) 

-0.063 

(-0.064, -0.061) 

Wind Speed (WS)_HI b   1.989 

(  1.961, 2.018) 

12.535   

(12.488,  12.582) 

2.889 

(2.860,  2.918) 

1.833  

(1.805, 1.861) 

1.610 

(1.587, 1.634) 

Wind Direction N  -0.205 

(-0.344 , -0.066) 

1.844 

(1.559, 2.129) 

-1.149 

(-1.295, -1.003) 

-0.785   

(-0.922,  -0.649) 

0.134 

( 0.018,   0.251) 

NE    -1.004 

  (-1.136,  -0.873) 

3.517 

( 3.248, 3.787) 

-1.328 

( -1.466, -1.190) 

-1.508 

(-1.637, -1.379) 

-0.564 

(-0.674, -0.454) 

E    0.910 

  (0.792, 1.028) 

6.293   

(6.051, 6.535) 

1.070   

(0.946, 1.194) 

0.937 

(0.821, 1.052) 

0.609 

(0.511,  0.708) 

SE  0.636 

(  0.512, 0.759) 

1.901 

(1.648, 2.154) 

0.168 

(0.039,  0.298) 

0.658 

(0.537, 0.779) 

0.484 

(0.380, 0.587) 

S  ND c ND c ND c ND c ND c 

SW  0.981 

(0.863, 1.099) 

  4.191 

(3.949, 4.433) 

0.653 

(0.529, 0.777) 

0.666 

(0.550, 0.781) 

0.927 

(0.828, 1.026) 

W     0.756 

(0.638, 0.874) 

5.510   

(5.268, 5.753) 

0.379 

(0.255, 0.503) 

0.336 

(0.221, 0.452) 

  0.850 

(0.751, 0.949) 

NW  2.322 

(  2.200, 2.444) 

3.349 

(3.100, 3.598) 

1.466 

(1.339, 1.593) 

   1.615 

(1.496, 1.734) 

2.152 

(2.050, 2.253) 

Wind Interactions:  LAeq VLFN LFN MFN HFN 
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WS_HI:N  1.468 

(1.220, 1.717) 

10.904 

(10.508,  11.300) 

1.598    

  (1.342, 1.853) 

1.234 

(0.990, 1.479) 

1.346   

(1.138, 1.554) 

WS_HI:NE  0.289 

(0.150, 0.428) 

15.814    

(15.592,  16.036) 

2.050   

(1.907,  2.193) 

-0.375 

(-0.512, -0.238) 

  0.223 

(0.107, 0.340) 

WS_HI:E  1.307 

(1.246, 1.368) 

   12.099   

(12.002,  12.196) 

2.700 

(2.637,  2.762) 

1.455 

(1.395, 1.515) 

0.823 

(0.772, 0.874) 

WS_HI:SE  1.769 

(1.649, 1.889) 

9.984 

( 9.792,   10.175) 

2.487 

(2.364, 2.611) 

   2.247   

(2.129, 2.365) 

1.173 

(1.073,  1.273) 

WS_HI:S  2.298 

(1.945, 2.652) 

7.594 

(7.031,  8.157) 

  3.153 

( 2.789, 3.516) 

2.172 

(1.824, 2.520) 

1.842 

(1.547, 2.138) 

WS_HI:SW  2.493 

(2.425, 2.561) 

9.675 

( 9.566, 9.784) 

2.996 

(2.926, 3.066) 

2.227 

(2.160, 2.294) 

2.108 

(2.050, 2.165) 

WS_HI:W  2.276 

(2.207, 2.346) 

14.053 

(13.943,  14.163) 

2.998 

(2.927, 3.069) 

1.982   

(1.914, 2.050) 

2.029 

(1.971, 2.087) 

WS_HI:NW      4.379 

(4.268, 4.489) 

11.650 

(11.475,  11.826) 

4.481 

(4.368, 4.594) 

3.795 

(3.686, 3.903) 

3.774 

(3.682, 3.866) 

(a)  p-val >0.05 
(b) Wind Speed HI (WS_HI) = 75% percentile (kph) 

(c) ND = No data 

 

Table 3   

ROXBURY - Multivariate Regression Model Coefficients ( β, 95% ci) for Noise and Meteorological Factors 

Determinant ∆[LC(eq)-LA(eq)]=>10dB LAeq VLFN LFN MFN HFN 

VLFN -0.006 

(-0.560, 0.044) a 

0.233  

(0.231, 0.234) 

--    

LFN 0.353 

(0.202,  0.504) 

0.406  

(0.405, 0.408) 

 --   

MFN -0.068 

(-0.218,  0.081) a 

0.844  

(0.842,  0.846) 

  --  

HFN -0.335 0.968     -- 
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(-0.496, - 0.174) (0.967, 0.969) 

Meteorology:  LAeq VLFN LFN MFN HFN 

Temperature (oC)  -0.022  

(-0.023,  -0.020) 

0.106 

(0.103, 0.108) 

0.114 

(0.112, 0.116) 

-0.001 a 

(-0.002, 0.001) 

-0.035 

(-0.036,  -0.033) 

Humidity (%)  -0.006  

(-0.007   -0.006) 

-0.063 

(-0.063, -0.062) 

-0.055 

(-0.055, -0.054) 

-0.014 

(-0.014, -0.013) 

0.001 

(0.001, 0.002) 

Barometer (mbar)  -0.005 

(-0.006,  -0.003) 

-0.078 

(-0.081, -0.076) 

0.003 

(0.001,  0.004) 

-0.006 

(-0.007, -0.004) 

-0.008 

(-0.009, -0.006) 

Wind Speed (WS)_HI b   0.435 

(0.418,  0.451) 

3.136 

(3.108,  3.164) 

1.291 

(1.269,  1.313) 

0.561 

(0.545,  0.576) 

0.354 

(0.337,  0.371) 

Wind Direction N  -0.343 

(-0.469,   -0.217) 

0.558 

(0.349,  0.768) 

-0.345 

(-0.509,  -0.181) 

0.358 

(0.237,  0.479) 

-0.493 

(-0.620, -0.365) 

NE  -0.479 

(-0.578,   -0.381) 

1.025 

(0.862,  1.188) 

-0.647 

(-0.775,  -0.520) 

-0.050 a 

(-0.144,  0.044) 

-0.454 

(-0.553,  -0.355) 

E  -0.530 

(-0.635,   -0.424) 

0.230 

(0.054,  0.405) 

-0.468 

(-0.605,  -0.331) 

0.000 a 

(-0.102,  0.101) 

-0.486 

(-0.593, -0.379) 

SE  -0.551 

(-0.680,  -0.423) 

0.146 a 

(-0.067,  0.360) 

-0.165 a 

(-0.332,  0.002) 

-0.063 a 

(-0.187,  0.060) 

-0.586 

(-0.716,  -0.456) 

S  -0.561 

(-0.677   -0.445) 

-0.047 a 

(-0.240,  0.146) 

-0.667 

(-0.819,  -0.516) 

-0.124 

(-0.236,  -0.013) 

-0.588 

(-0.706, -0.470) 

SW  -1.197 

(-1.293,  -1.102) 

-0.257 

(-0.416,  -0.099) 

-1.560 

(-1.684,  -1.436) 

-0.805 

(-0.897,  -0.714) 

-1.173 

(-1.269,  -1.076) 

W  -0.900 

(-1.000,   -0.800) 

0.849 

(0.683,  1.016) 

-0.849 

(-0.980,  -0.719) 

-0.289 

(-0.386, -0.193) 

-0.992 

(-1.094,  -0.891) 

NW  -0.799 

(-0.903,   -0.695) 

0.800 

(0.627,   0.972) 

-0.899 

(-1.034,  -0.764) 

-0.094 a 

(-0.194,   0.005) 

-0.903 

(-1.008,  -0.798) 

Wind Interactions:  LAeq VLFN LFN MFN HFN 

WS_HI:N  0.672  3.290 1.315 0.611 0.483 
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(0.499,   0.845) (3.022,  3.558) (1.091,  1.539) (0.445,  0.777) (0.308,  0.658) 

WS_HI:NE  0.913  

(0.868,  0.957) 

3.646 

(3.576,  3.715) 

1.213 

(1.155,  1.271) 

0.952 

( 0.909,  0.995) 

0.869 

(0.823,  0.914) 

WS_HI:E  1.261  

(1.136,  1.386) 

3.029 

(2.836,  3.223) 

1.387 

(1.225,  1.549) 

1.281 

(1.161,  1.401) 

1.214 

(1.088,  1.341) 

WS_HI:SE  1.874 

(1.561,   2.187) 

3.287 

(2.802,  3.772) 

2.165 

(1.759,  2.571) 

2.401 

(2.100,  2.701) 

1.633 

(1.315,  1.950) 

WS_HI:S  1.208 

(1.025,    1.390) 

2.821 

(2.539,  3.104) 

1.504 

(1.267,  1.740) 

1.645 

(1.470,  1.820) 

1.030 

(0.845,  1.215) 

WS_HI:SW  0.023 a 

  (-0.007,  0.052) 

2.775 

(2.730,  2.820) 

0.941 

(0.903,  0.979) 

0.080 

(0.052,  0.108) 

-0.062 

(-0.092,  -0.033) 

WS_HI:W  0.576  

(0.516,  0.637) 

4.145 

(4.052,  4.239) 

1.646 

(1.568,  1.724) 

0.765 

(0.707,  0.823) 

0.407 

(0.346,  0.469) 

WS_HI:NW  0.724  

(0.649,  0.799) 

4.867 

(4.750,  4.983) 

1.677 

(1.580,  1.775) 

0.870 

(0.797,  0.942) 

0.561 

(0.484,  0.637) 

(a)  p-val >0.05 

(b) Wind Speed HI (WS_HI) = 75% percentile (kph) 

 

With few exceptions (p-vals>0.05 indicated in Tables 2, 3), all five meteorological covariates 

(temperature, humidity, barometric pressure, wind speed and direction) were statistically significant 

predictors of noise outcomes of LAeq and noise frequency dB levels (VLFN, LFN, MFN and HFN). 

Though LAeq and frequency bands (VLFN, LFN, MFN, HFN) are weakly or negligibly correlated 

(r<0.28) to meteorological covariates.  A covariate correlation matrix is presented in this paper’s 

Supplementary Materials (Appendix 1). 

As relative humidity (%) and barometric pressure (millibars Hg, (mbar)) increased, noise levels 

decreased marginally at both sites. Increases in temperature (deg oC) resulted in minimal positive 

increases in LAeq and noise frequency dB levels at Chelsea, and negligible or insignificant positive or 

negative effects on LAeq and noise frequency dB levels in Roxbury.  We also aggregated meteorological 



57 

 

data to the 1-day and 1-week levels to assess any change in the direction of effects and their significance 

on loudness and noise frequencies. The results are presented in Appendix , Supplementary Tables 2S, 3S. 

3.4.2 Wind Direction Effects on Loudness and Frequency 

Wind speed and wind direction effects varied considerably by site and by outcome variables. At 

Chelsea, wind directions from the North and Northeast (0 - 45 deg) were associated with reduced LAeq 

dBA levels and reduced noise frequency dB levels, with exception of VLFN levels, which increased 1.8 – 

3.5 dB during N to E sector wind directions. Wind directions from other compass bearings resulted in a 

positive increase to all LAeq and noise frequency dB values in Chelsea, with VLFN most affected (1.9 – 

6.3 dB). Roxbury wind direction from the SE had no significant effects on noise frequency levels for 

VLFN, LFN, and MFN. Additionally, winds from the NW, NE and E sectors also had no significant 

effects on MFN in Roxbury.  Winds from other sectors had mostly negative but negligible effects on 

LAeq and other noise frequencies, with the exception of VLFN, where wind direction imparted a slightly 

positive affect (increased dB), when significant. The Nubian Station (formerly Dudley Square) MBTA 

bus terminal is located 100 m. WNW of the Roxbury site.  When aggregated to the 1-day level, the only 

significant wind direction effects on noise outcomes were SSE winds at Chelsea (wind impact sector from 

Logan Airport) negatively effecting MFN (β = -2.90; 95% CI: -5.64, -0.164) and westerly (W) winds at 

Roxbury (wind impact sector from the bus station) positively effecting LFN (β = 2.51; 95% CI: 0.325, 

4.69). At the 1-week data averaging level, no wind directions were significant predictors of any noise 

frequency or loudness at either site.   

3.4.3  Interactions of Wind Speed and Direction  

Wind speeds greater than the 75th percentile (Wind Speed HI) were modeled for their effects and 

interactions with wind direction on noise parameters. The most significant effect of high wind speeds, 

irrespective of wind direction, were on VLFN, with a substantial increase (β = 12.5; 95% CI: 12.49,  

12.58) in VLFN dB levels during high wind speeds at Chelsea; and to a lesser degree (β = 3.1; 95% CI: 

3.11,  3.16) at Roxbury.  LFN was minimally affected by high wind speeds at either site.   
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Interactions of wind direction and Wind Speed HI (Tables 2, 3) all imparted a positive effect 

(increased dB) on all noise measures and frequencies for both sites, with one exception: SW winds at 

elevated speeds (75% percentile) in Roxbury were not significant for its effects on LAeq and had a slight 

negative effect on HFN. Wind interactions had the greatest positive effects on VLFN at both sites, with a 

notably higher increase in VLFN dB levels (4.1 -4.9 dB) from the direction of the Nubian Station bus 

terminal v. other wind sector directions in Roxbury.  At the 1-day data aggregation level, wind 

interactions had the greatest positive effects on VLFN in Chelsea and Roxbury. At the 1-week data 

aggregation level no interactions of wind direction and Wind Speed HI were significant (p>0.05).  

Wind roses (plots) for LAeq and noise frequencies are found in the Supplementary Materials section  

of this paper (Appendix 1).  The results of regression models for data aggregated to 1-day and 1-week are 

presented in Supplementary Tables 2S and 3S (Appendix 1). 

4.0       Discussion 

4.1 Main Findings 

This study measured five months of urban environmental noise (UEN) at two urban sites located 

in densely populated Environmental Justice communities (EJCs) in Greater Boston,  Massachusetts, 

burdened by close proximity to bus, rail, aircraft routes. A key aim of the study was to characterize the low 

frequency (LFN<125Hz) components of UEN, specifically, how it varies temporally and when mediated 

by other environmental factors, such as meteorology. 

4.2 Temporal Differences in Noise 

We found that LFN does not follow the same seasonal temporal trends as A-weighted dBA 

loudness. At the two sites, daily average A-weighted noise metrics (LAeq =  A-Weighted, equivalent 

continuous sound level) and other time-averaged A-weighted noise descriptors (LDN, LNight, and LDEN) 

were all in excess of USEPA and WHO noise thresholds (USEPA, 1974; WHO, 2009)[33,34] on all days, 
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indicating that both sites are highly impacted by UEN (Table1). USEPA-recommended levels of 55 dBA 

(LDN) were exceeded on every day of the study, as were WHO Noise Guidelines for LDEN and LNight 

(WHO, 2018) [35]. While both sites exceeded EPA and WHO guidance levels for A-weighted loudness, 

their frequency content and other characteristics of sound are not captured by A-weighted metrics (K.P. 

Waye, 2011). 

Significant temporal differences in LFN were identified by two-sample t-tests, indicating that  

LFN dB levels are lower weekends v. weekdays, lower at night v. day, lower during non-rush hour 

periods v. rush hours, and lower in Spring v. Summer for the combined dataset (both sites).  Sound 

pressure levels (SPL), measured in this study as LAeq (dBA) exhibited similar temporal characteristics.  

SPL and noise frequencies by site indicate that LAeq and the LFN, MFN and HFN noise frequencies are 

lower (dB) at Chelsea (v. Roxbury), with only VLFN dB levels higher in Chelsea v. Roxbury. At the 1-

day and 1-week levels there is no difference in directionality or statistical significance for LAeq or any of 

the noise frequencies by site v. 30-sec averaged data.  

Example spectrograms (Fig. 2) generated for low wind speed (<1 std below mean WS) days 

illustrate that the acoustic power in UEN, inclusive of transportation noise, is predominantly <160 Hz at 

both sites (note 60 Hz anomalies likely due to nearby 120V/240V electrical appliance interference) with 

VLFN dominating the soundscape in Chelsea, and Roxbury spectra showing less LFN energy on a 

typical, non-holiday weekend v. weekday during traffic commuting hours.   

We attribute the higher VLFN levels in Chelsea to the site’s transportation source mix, mainly 

influenced by its proximity to rail lines and close distance (2.5km) to Logan International Airport and that 

airport’s flight path routing. Roberts (2010) attributes LFN and infrasound (VLFN) production to 

machinery, both rotational and reciprocating, and all forms of transport and turbulence, including pumps, 

compressors, [locomotive and truck] diesel engines, and aircraft [36]. Identification of LFN-emitting 

transportation sources utilizing tools such as machine learning is becoming a valid approach to classify 

source-specific temporal patterns of road traffic (e.g., peak-hour truck traffic noise)[37]. 
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Recent work by Walker et al. (2017)[38] conducted in the Greater Boston, MA area, inclusive of 

this study’s Roxbury site, found the highest SPL’s were in the low frequency range (25 -125Hz), for 

n=400 samples taken at 10-minute intervals for 1 year. Additional work by Walker [39] in Chelsea in a 

2021 study at n=29 sites focused on noise impacts to this EJ Community and found that Chelsea is 

exposed to high levels of sound, both day and night (65 dBA and 80 dBA and 90 dBA for low frequency, 

and infrasound sound levels sampled for 1-week durations over two seasons), with 63Hz dominant, 

supporting our findings.  

As an example of how an extended interval length of sampling might be leveraged, we evaluated 

LAeq and VLFN through HFN noise frequencies for weeks when public school was in-session (school) v. 

not in-session (no school) in both EJC’s. Our two-sample t-test results for school (n=10 weeks) v. no 

school (n=9 weeks) indicate that weekly-averaged loudness and noise frequencies followed seasonal 

trends for their respective measures by site, for data aggregated to the 1-week level. We attribute the 

loudness and lower frequency (VLFN and LFN) differences by site to the proximity of the site 

microphones to the nearest major road and differences in the local transportation mix. For example, 

Roxbury LAeq and VLFN (<20Hz) trends also follow seasonal trends at that site, however unlike in 

Chelsea, LAeq and VLFN are higher in Spring (school in session) v. Summer (school not in session) 

possibly due to school bus traffic along Roxbury site local roads. Conversely, Chelsea VLFN (<20Hz) is 

not significantly different Spring v. Summer (school v. no school), possibly due to the non-seasonal 

nature of Chelsea VLFN source events, e.g. aircraft, trains.  

4.3 Low Frequency Noise Assessment Metrics 

The literature does not universally agree upon the cutoff frequency for LFN, with values of <250Hz, 

<200Hz, <125Hz variously posited (E. Walker, 2017; K.P. Waye, 2002). Morsin (2018) simply groups 

high-frequency (>125 Hz) and low-frequency noise (<125 Hz). (Morsin, 2018, cited by Alves, 2020).  

European studies have modeled LFN using the LCeq-LAeq metric for road traffic noise exposure 

assessment and have found that a cutoff frequency of 125Hz was important when determining the 
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percentage of exposed households (Roberts, 2010).  Research by Walker et al. (2017), also  in Greater 

Boston, utilizes the 125Hz LFN cutoff frequency. Sound below 20 Hz is generally termed infrasound 

(Alves, 2020) and while it may subjectively be considered a component of low-frequency noise,  it is 

inaudible. (Bergland, 1996)[40].  

To test the effect of which frequency bands  LCeq-LAeq, an indicator of LFN depends on when 

LCeq-LAeq > 10dB (WHO,1999), we ran multivariate regression models to assess which frequency bins 

are contributing more significantly to  LCeq-LAeq when this metric is 10dB or higher, by site. The results 

for 30-sec averaged data are presented in Table 2.  For data aggregated to the 1-day level, taken together 

for both sites, only VLFN and LFN were significant and positive contributors to LCeq-LAeq=> 10dB 

(Supplementary Tables 2S and 3S, Appendix 1).  Our findings support the conclusions presented by 

Roberts (2010), where the result of the subtraction of the two exposure levels (LCeq-LAeq) revealed the 

low frequency characteristic of the noise exposure, and those in a review paper by Leventhall (2003)[41] 

which cites the difference between C- and A-weightings (dB) is an indication of the amount of low 

frequency noise energy.  

Our results at both the microscale (30-sec) and macroscale (1-day) data averaging levels support 

the use of LCeq-LAeq as an assessment tool to characterize the presence of LFN in an urban soundscape.  

The LCeq-LAeq metric may be more practical than spectral analysis for LFN ‘screening’, as LCeq values 

are easily gathered from sound level meters while measuring A-weighted equivalent sound pressure levels 

(Wang and Cray, 2013) [42]. The relative ease of obtaining these values may allow interested community 

residents to have a more accurate assessment of the surrounding soundscape.     

4.4 Meteorological Factors Affecting Noise 

In their Boston study, which sampled 400 sites in Boston (including the Roxbury site) at 15-

minute intervals (February 2015- February 2016), Walker et. al (2017) found that temperature was found 

to be the only important meteorological predictor of increases in LFN and MFN.  A Taiwanese study 

(Wang et. al 2016)[43] examining temporal and spatial variations in road traffic noise for different 
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frequency components, found that average annual temperature was significantly associated with 

decreasing LFN road traffic noise at 31.5 Hz and 63 Hz (both p-values < 0.05).  Work by Sandberg and 

Ejsmont (2002)[44] cites that an air temperature increase of 10°C can result in a reduction of noise emitted 

up to 1 dB(A).  

Our study found 5 meteorological covariates (temperature, humidity, barometric pressure, wind 

speed and direction) were statistically significant predictors of noise outcomes of LAeq and noise 

frequency dB levels (VLFN, LFN, MFN and HFN), with increased humidity (%) and increased 

barometric pressure imparting a marginal negative effect on noise levels at both sites.  Increases in 

temperature (deg oC) resulted in minimal positive increases in LAeq and on all noise frequency dB levels 

evaluated at Chelsea (LFN most effected at β = 0.252; 95% CI: 0.250, 0.254). At the 1-day and 1-week 

data aggregation levels, the significance and directionality of temperature on noise outcomes is 

unchanged for Chelsea with the exception of VLFN, on which temperature had slight negative (1-day) or 

insignificant (1-week) effects (Supplementary Tables 2S, 3S, Appendix 1). Temperature had insignificant 

or slight negative effects on Roxbury MFN and HFN dB levels, respectively, and a slight negative effect 

on Roxbury LAeq (β = -0.022; 95% CI: -0.023, -0.020). (Tables 2, 3). The Taiwanese study’s (Wang et 

al., 2016) use of average annual temperature associations with LFN and LAeq(24-hr) v. our study’s 30-s 

averaged temperature covariate may account for the directional differences in association with these 

outcomes.  Aggregated to 1-day and 1-week, these directional trends and significance were similar, 

except temperature effects on VLFN (1-day) and LFN (1-day and 1-week) were not significant.  

4.5 Assessment of Wind Effects 

We found the most significant effects of high (75th percentile) wind speeds, irrespective of wind 

direction, were on VLFN, with a substantial increase (β = 12.5; 95% CI: 12.49,  12.58) in VLFN dB 

levels during high wind speeds at Chelsea; and to a lesser degree (β = 3.1; 95% CI: 3.11,  3.16) at 

Roxbury.  LFN was minimally affected by high wind speeds at either site (Tables 2, 3).  Conversely, in 

the Taiwanese study previously cited, (Wang et al. , 2016) only noise exposure at 31.5 Hz (LFN) was 
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significantly correlated with wind speed (r=0.213; p< 0.050).  We found that at the 1-day data aggregation 

level, wind direction and high wind speed interactions had the greatest positive effects on VLFN at both 

sites. At the 1-week data aggregation level no interactions of wind direction and Wind Speed HI were 

significant (p>0.05).  

In their “Methodology for the evaluation of low-frequency environmental noise case-study,” 

Tombolato et al., (2022) stress the importance of recording and reporting specific information regarding 

wind gusts, in addition to the average wind speed should become a common practice when carrying out 

long-term unattended (LFN) measurements [45]. 

4.6 Study Strengths and Limitations 

The literature (Frank., L., et al., 2019;  Glazener et al.) consistently bemoan the lack of longer-

term studies, finding that most work is cross-sectional in nature. The time span of five months of ambient 

noise monitoring in two locations is markedly different in its depth of noise measures and meteorological 

measurements and available for other researchers as a .txt file possessing rich metrics, dBA, 1/3 octave - 

encompassing some 1 billion readings.  Our rich dataset allows for  aggregation levels at 30-seconds 

(optimized per autocorrelation algorithm) and at longer averages including 1-day and 1-week for 

comparison of longer intervallic trends and robust statistical tests with reduced sampling bias. Work by 

Ragettli et al. (2016) measuring environmental noise in Montreal affirms that bias can be reduced when 

sampling noise measures over a longer period (e.g. 24-hours) to effectively capture long-term average 

noise levels near railways and areas affected by airplane noise[46]. 

The use of one omni-directional sensor (microphone) at each site and therefore being unable to 

determine directionality of noise or perform separation of VLFN (infrasound) from wind noise is a 

limitation in this study, although we did perform statistical analyses of wind speed and wind direction 

impacts on lower frequencies to conclude that LFN presented in our study spectrograms was largely 

unconfounded by wind noise artifacts.   

A consistent recommendation both in Glazener et al. and the overall ambient noise literature was 

great interest in further documenting the impact of ambient noise on “at risk” populations who are 
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inequitably exposed. The location of the two monitoring sites (Roxbury and Chelsea – both EJ 

Communities) allows for the consideration of the data through this increasingly important lens.   

Only a few recent studies have evaluated community-level inequality in exposure to estimated 

noise pollution.  In a cross-sectional study by Casey et al., 2017 to assess racial/ethnic and socioeconomic 

inequalities in noise pollution in the contiguous United States, the researchers reported a positive 

association between noise levels and a community-level measure of social inequality, in this case, racial 

segregation [47]. Casey et al. recommend that future work is needed to estimate how much differences in 

noise exposure may explain racial disparities in noise-related health outcomes, yet the Casey study only 

addresses A-weighted noise metrics as its measure of exposure. Our study thoroughly evaluates VLFN 

through HFN (6.3Hz -20kHz) exposure points in two EJC’s. 

4.7      Summary of Key Findings 

In this study we aimed to a) analyze temporal sound differences in the dataset; (b) compare and 

contrast dBA noise metrics with LFN metrics in the two sites; and (c) assess meteorological covariate 

contributions to LFN in the dataset. We found that LFN is predictably present as a component of UEN in 

the two Environmental Justice communities studied, with statistically significant (p-vals <0.05) temporal 

trends observed.  Seasonal loudness SPL’s (LAeq) varied by site, with Roxbury having higher LAeq 

levels (dBA) in Spring v. Summer, and Chelsea the reverse, possibly due to disparate community noise 

and differing seasonal schedules and patterns of transportation sources emitting LFN<125Hz.  

We also evaluated loudness and noise frequency measures for weeks when school was in-session 

v. not in-session and found similar trends to seasonality, attributing differences by site to school bus 

traffic along Roxbury site local roads.  The large dataset in this study is currently being tested for 

implementing a machine-learning modeling approach, which will help further define spatiotemporal 

differences in both loudness and noise frequencies classified by source (e.g. truck, bus, rail, aircraft). 

Five meteorological covariates (temperature, humidity, barometric pressure, wind speed and 

direction) were statistically significant (p-vals <0.05) predictors of noise outcomes of LAeq and noise 

frequency dB levels (VLFN, LFN, MFN and HFN), though humidity and barometric pressure imparted 
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slight negative effects.  The most significant effect of high wind speeds, irrespective of wind direction, 

was on VLFN, with a substantial increase in VLFN dB levels during high wind speeds at Chelsea, and to 

a lesser degree at Roxbury.  LFN was minimally affected by high wind speeds at either site.   

5.0 Significance 

5.1 Public Health Implications 

Recent work by Glazener et al. (2021) synthesized information to summarize the health outcomes 

of transportation, along 14 identified pathways. Of interest was the prominent inclusion of ambient noise 

as a concern of high priority.  The attributes of noise that were either directly measured or modeled 

skewed heavily toward sound pressure levels (SPL) or the traditional dBA set of metrics. There was little 

use of other attributes of noise, with no mention of LFN in the studies reviewed by Glazener et al. (2021).  

Alves et al. conclude in a meta-study that there are still few studies focusing exclusively on health 

impacts and discomfort due to LFN (Alves, et al. 2020). 

Methods for measuring and quantifying LFN in the urban soundscape, while advancing 

technologically, are underutilized in urban noise characterization studies. With more technically advanced 

sound level meters (SLMs) currently available, the ability to generate spectra has greatly improved, 

allowing for a more whollistic view of noise frequency assessment. Visual presentation of noise spectra 

could be an important tool for risk communication and raising awareness of affected populations as to 

which temporal or diurnal periods (e.g. – rush hours) contain the highest acoustical power by frequency.  

As a related example, to address the health effects of traffic noise and air pollution in nearby 

Somerville, MA (73% of its population reside in EJ block groups, Mass.gov, 2020), a Health Lens 

Analysis (HLA) was conducted, combined with a design charrette where posters and exposure maps were 

presented to engage affected populations near highway communities in generating proposed noise barrier 

approaches acceptable to the community (Brugge, D. et al., 2019) [48] . 

Burger (2022) affirms in an Environmental Justice Risk Communication paper that the involvement of 

community members in [risk] communication is critical, especially in low-income and minority 
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communities, further emphasizing that there is general agreement that there are environmental risks that 

need to be addressed, and that need to be communicated and discussed widely (Burger, 2022) [49].  

The City of Boston, MA report on the Health of Boston identifies 15 determinants that influence 

the health of Boston residents and communities. Of these determinants,  Environmental Health is highly 

ranked, and includes outdoor/indoor air quality; asthma related hospitalizations; mold and asbestos 

violations; water leaks; second-hand smoke exposure; overcrowded housing and climate-related risks 

factors (heat and cold) as health-related indicators. Notably, the inclusion of dBA or LFN noise exposure 

is absent as a health risk determinant (City of Boston, 2016)[50].  Other major US cities have also not 

adequately addressed noise exposure as a public health risk.  For example, Healthy Chicago 2025,  a 

report which outlines a roadmap for Chicago’s health and racial equity has no inclusion of UEN or noise 

exposure risks as threats to public health [51]. 

5.2 Regulatory Implications 

Analysis of data presented in this study underscores the importance for urban planners and land 

use planners, regulatory and publc health agencies to expand their scope of mitigatating noise impacts, 

especially from LFN-generating sources (e.g. truck, bus, rail, aircraft).  A study conducted near the 

present Roxbury site (Dudley Square) during 1997-2001 was used to develop a real-time State-regulatory 

sponsored air pollution monitoring system to test and ultimately support the hypothesis that Dudley 

Square in Roxbury is a hot spot for diesel-emission borne particulate air pollution. During the study dates, 

there were more than 15 bus and truck depots garaging more than 1,150 diesel buses and trucks within 1.5 

miles of Dudley Square, as well as 25,000 people passing through its bus station daily. In addition to 

recommending conversion of diesel transit buses to compressed natural gas, the study bolstered the 

community’s effectiveness in shaping local policies for transportation, development, and construction 

projects affecting air pollution (Pen Loh, et al, 2002) [52]. These outcomes serveas reminders of the 

importance of an informed citizienary in shaping environmental interventions. Burger (2022) notes that 

while communities at risk may experience ongoing air releases or noise, or increased traffic, risk 

communicators from the industry or government need to trust the community members’ communications 
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and observations of excessive exposures. Communication is key to addressing the adverse health effects, 

which may be able to be ameliorated, even when they cannot be immediately reduced (Burger, 2022). 

Ultimately, however, LFN remains a largely unmeasured component of UEN. Not characterizing 

LFN and basing noise regulation on A-weightings (e.g. dBA, loudest hour) unduly exposes populations to 

harmful LFN levels. Therefore, the results of our study suggest that additional work be done to 

characterize spatiotemporal patterns of LFN in urban areas. Ultimately, this work may be such that the 

regulations based solely upon A-weighted noise need to be revisited. 
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Chapter 4 

Scalable Machine Learning Approach to Classifying Transportation Noise at Two Urban 

Sites in Greater Boston, Massachusetts 

 

ABSTRACT 

The goal of this study is to characterize transportation noise by vehicle class at two urban sites in Greater 

Boston, Massachusetts to inform studies of transportation noise and its association with ultrafine particles 

(UFP). Data were collected from April to September 2016 (150 days) of continuous sound recording in 

each urban site using high-resolution microphones. Training data were created for airplanes, trucks/buses, 

and rail from audible data and extraction of audio files. Digital signal processing using Hanning Windowed 

STFTs was performed, creating two sets of audio spectrograms (log v. linear frequency scales) at 4kHz 

maximum frequency. For each of the two spectrogram sets, a neural net model using PyTorch was trained 

via a high-performance computer cluster. Initial results for a multi-class model provided an accuracy of 

71%. Highest accuracy was obtained for log scale spectrograms, from 65.3% (multi-classification, log 

scale, Convolutional Neural Networks (CNN) model) - 87.0% (binary classification, log scale, resnet34 

model). Comparison between selection of frequency scales and expanding to longer time periods is 

ongoing.  

 

Key Highlights:  

• Algorithm was developed to detect transportation noise events in a large (5-month) dataset 

• Noise event data produced high resolution spectrograms which can be analyzed as images 

• A model training set and a testing set were developed,  randomly selecting 60% of our dataset to 

train and the residual 40% to test the model. 

• Classification accuracies ranged from 65.3% (multi-classification, log scale, Convolutional Neural 

Networks (CNN) model) to 87.0% (binary classification, log scale, resnet34 model) 
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1.    INTRODUCTION  

Noise pollution in urban areas is highly associated with adverse health outcomes and deleterious effects 

on quality of life (Lucas de Souza and Giunta, 2011, Vlachokostas et al., 2012). Several studies have 

indicated that exposure to environmental noise can lead to cardiovascular risks, cognitive impairment, 

sleep disturbance and anxiety. (Kim et al., 2007, Belojevic et al., 1997, Belojevic et al., 2008, Hofman et 

al., 1995). Long term exposure to environmental noise was estimated to cause approximately 12,000 

premature deaths and contribute  48,000 new cases of ischemic heart disease annually in a 32-country 

European study (European Environment Agency., 2020). 

 

Transportation is one of the major sources of environmental noise, specifically sources including 

automobiles, airplanes, and rail (Goines and Hagler, 2007). Given increasing rates of urbanization, a 

larger proportion of the world’s population is exposed to potentially harmful environmental noise levels 

which  harm human health (P. De Vos, A. Van Beek, 2011). It is important to understand the temporal 

variability and level of exposure to transportation-associated noise  as well as to the closely associated 

suite of air pollutants arising from the same sources.  

 

To predict the sources of transportation-associated noise, a non-linear solution is required due to the 

complex multivariate relationships involved in classification and modelling (Torija & Ruiz, 2015). 

Machine learning (ML) methods are useful due to their non-linearity and have been effectively used to 

address environmental noise applications (Haykin, S, 2010).  

 

Machine learning methods have been used extensively in noise modeling, and have been reviewed 

elsewhere, focusing on health impacts (Warren et al., 2006)) and urban noise mapping  (Alvares-Sanches 

et al., (2021)). Alsouda et al. classified environmental noise data using Mel-frequency cepstral 

coefficients (MFCC) for audio feature extraction and supervised classification algorithms such as Support 
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Vector Machine (SVM) and k-Nearest Neighbors (KNN). Based on a sample size of 3000 training data 

inputs of sound samples grouped in eight sound classes (such as car horn, jackhammer, or street music), 

the peak accuracy for the SVM and KNN models ranged from 88 - 94% (Alsouda, Y., Pllana, S., et al., 

(2019). 

 

Although SVM and KNN are widely utilized and result in high levels of accuracy, these traditional 

classifiers can only handle limited data stream variations which lack time and frequency features (Testi et 

al., 2018). Deep neural networks have proven to work more efficiently than conventional regression 

approaches. Convolutional Neural Networks (CNN) is one of the most commonly used models in 

environmental noise classification. CNN can successfully process voice data in structured-arrays, which 

address the lack of time and frequency features (Zhang et al., 2015).  

 

Several studies have demonstrated the benefits of using CNN to classify environmental noise. Davis and 

Suresh (2018), Demir et al. (2020), and Mushtaq et al. (2021), obtained high accuracy and robust results 

that suggested CNN was extremely powerful subject to limited feature extraction and data augmentation.  

 

The main objective of our study is to characterize transportation noise by vehicle class in two urban sites 

to better understand  noise associations with ultra-fine particles (UFP, <0.1µm diameter). With a better 

understanding of the correlation between transportation noise and UFP, particularly from diesel-fueled 

sources, policy makers could develop better action plans for urban structure design and minimize the joint 

impacts of environmental noise and air pollutants on affected populations.  
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2.    METHODS 

In this section methods of collection and pre-processing datasets are presented, to prepare the 

transportation-associated noise classification model. The datasets were split into individual events by 

finding peak values of digital samples in each audio recording. 

 

2.1 Data collection 

 

Tufts University (Medford, MA) researchers in Civil and Environmental Engineering (CEE), collaborated 

with the Volpe National Transportation Systems Center, Environmental Measurement & Modeling 

Division, US Department of Transportation (DOT), Cambridge, MA to plan and implement a field data 

collection program. The program included deployment of noise monitoring instrumentation co-located 

with condensation particle counters (CPC) in two Greater Boston communities impacted by vehicle and 

transportation-related air pollution. The monitoring sites were located at: 4 Gerrish Ave., Chelsea, MA 

and at the EPA Speciation Trends Network site, 1157 Harrison Ave., Roxbury, MA (Fig. 1), as a part of 

ongoing transportation-associated pollution studies, published elsewhere. Both sites are part of the Tufts-

led Community Assessment of Freeway Exposure and Health Study (CAFEH) (Leaffer, et al., 2017). 
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Figure 1. Map of monitoring sites (source: N.Hudda, Tufts University) 

 

Noise monitoring was conducted with a Larson Davis 831 (LD-831) sound level meter, Larson Davis 

PRM831 preamplifier and a G.R.A.S. ½”, free-field, pre-polarized microphone with a 

microphone/preamp holder. Microphones were mounted on a portable tripod and fitted with outdoor 

windscreens and routed with an 8-meter LD microphone cable through a Roland R-05 Digital Audio 

Recorder (Figure 2). Noise was sampled by the LD-831 instrument at 1 Hz resolution and stored on the 

LD-831 internal memory between data downloads. LD-831 data collected includes A-weighted, Z-

weighted (flat) and fast time-weighted measures of sound pressure levels (SPL), maximum Z-weighted 

and fast time-weighted SPL and 1/3 octave band from 6.3Hz to 20kHz.  Recorded, raw sound was 

sampled by the Roland R-05 recorder at a 44.1kHz sampling frequency and written to 32 GB SDHC 

cards.  
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Figure 2. Microphone mounting setup (photo by author) 

 

Given the large quantity of audio data, waveforms in the original dataset were saved as MP3 files with a 

high bit rate (320 kbps) to preserve as much data as possible while at the same time optimizing file size 

for signal processing. The collected MP3 audio files are recorded from 04/19/2016 to 09/13/2016, and the 

size of each file is 536.9MB. Data files were imported into MATLAB® 2021(a) engineering software 

(“MathWorks, Inc.,” n.d.) for data visualization and analytics.  

 

 

2.2 Dataset and Preprocessing 

The original dataset consists of > 1850 large MP3 audio files, each with a maximum duration of 3H:43m 

per file. In each file, there are a wide variety of peaks associated with different noise events. Additionally, 

some audio files have long time sequences (e.g. – several minutes) without discernable transportation 

noise (Figure 3). Hence, the large audio files were split into short ‘noise present’ segments using an event 

detection algorithm in MATLAB. 
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Figure 3. Example waveform and spectrogram  

Each class of transportation vehicle has a variable time duration vs. peak intensity, here measured in  dB, 

as it passes the microphone. The training files were manually split and labelled into 203 transportation 

sound clips or examples in the initial model. Audible confirmation of training files were validated by 

comparison to  airport runway flight logs and local bus and rail schedules. The train-test split was 60% / 

40%. We used an SGD optimizer with a learning rate of 0.01 and a momentum of 0.9. The average and 

maximum durations of each mode of transportation, based on n=77 events are presented in Table 1.  

 

Table 1. Average and maximum duration for each transportation noise event 

Type Mean Duration (sec) Standard Deviation (sec) Maximum Duration 

(sec) 

Truck/Bus (n=22) 7.4 8.3 24 

Rail  (n=45) 18.7 7.0 36 

Aircraft (n=7) 12.1 14.0 35 

Other (n=3) 12.0 11.1 25 
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Noise peaks were identified by the MATLAB function findpeaks in the Signal Processing Toolbox®. The 

code reads the raw MP3 data, acquires the upper and lower signal envelope (using the function envelope 

in the Signal Processing Toolbox), inputs the width of this envelope into findpeaks and returns the time 

index of each local peak. MinPeakDistance was set at 15 seconds to ignore coincident peaks. 

 

The Short Time Fourier Transform (STFT) is one of the most frequently used noise processing and 

analytical tools, based on the Fourier Transform (Proakis, et al., 2001). STFT is a common-used signal 

processing tool that calculates by sliding an analysis window over the signal and calculate the discrete 

time Fourier Transform of data covered by the window. It performs well on non-random and time-varying 

signals in this experiment (Nawab, et al., 2001). 

 

Spectrograms visualize frequency, time, and signal spectral characteristics, and are generated by STFT.  

The type of window function we selected is Hanning Window (Proakis, et al., 2001). This  is a widely 

used window with smooth transitions and lower sidelobe, resulting in lower spectral leakage (Proakis, et 

al., 2001).  

 

While creating spectrograms for machine learning training sets, the frequency axis scale should be 

considered, as it strongly influences the figures’ spectral features. We mainly considered the linear 

frequency scale varying from 0-4kHz and log scale varying from 0.1-10kHz. The linear scale ranged from 

0 to 4kHz since most noise energy is concentrated in this range. The log scale was selected because this 

scale permits visualization of low-frequency portions of the sound spectrum. For labeled images, the 

transport type of each image was stored in the file name of the image. 

 

The recorded transportation events are divided into four source classifications including: rail, aircraft, 

truck/bus and other. Since the Chelsea site dataset (n=950 files) contained examples of all four source 
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classifications, we utilized these data for model training. Example spectrograms are provided in Figure 4 

(linear scale, top panel; log scale, bottom panel). The aircraft spectrograms (far left) show a clear Doppler 

Effect; whereas the spectral profile of the bus (middle) concentrates in the low frequency region; and the 

spectrum of the rail (far right) has a relatively higher power, distributed in both low- and high-frequency 

regions. Log scale spectrograms provided higher resolution of spectral features unique to each vehicle 

class.  
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Figure 4. Example spectrograms for aircraft, bus and rail events  

(linear scale, top panel; log scale, bottom panel). 

 

2.3 Data preparation  

 

Based on Table 1, the duration of the training data was set to be 30 seconds to effectively capture noise 

events, and all spectrograms were split into clips of that duration. Spectrogram images were loaded onto 

the High-Performance Computer cluster at Tufts University.  

 

A selection of images from a full month of recorded sound were used, from August 8th, 2016 to September 

13th, 2016, to coincide with the validation data discussed in section 2.5. These images were converted into 

grayscale using the cv2 Python library and stored as numpy arrays with a size of 175 by 233 pixels. 

 

2.4 Model design 

 

All modeling training was performed using PyTorch using a NVIDIA A100 GPU and twelve cores of 

processing power. Two models were trained: one 4-layer CNN model, and another 125-layer resnet34 
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pre-trained model. The pre-trained model had the last three layers of the CNN re-trained based on our 

training data. Each model was trained twice for each spectrogram scale (4k and log).  

 

2.5 Model validation  

 

Model validation using iterative hyperparameter selection were utilized in the model to select the 

momentum (0.09) and learning rate (0.01). Training validation was performed by utilizing three 

confirmatory sources. A first pass model training validation was conducted using field logs of visually 

observed transportation source pass-by events, time-stamped and logged by source (truck, train, aircraft, 

etc.) and peak loudness (dBA). In addition the Massachusetts Bay Transportation Authority (MBTA) 

commuter train timetables were consulted for validation of train arrival/departure schedules at the Chelsea 

site, verifying the observed v. expected time of noise events from scheduled rail transport. Lastly, the 

Noise Abatement Office of Logan International Airport (Massport) provided time-stamped aircraft wheels 

up/down flight tracking information for roughly 3000 commercial and private aircraft flights during the 

study period. A lag time was factored into the validation step for take-off and landing times relative to 

when the aircraft was detected by the Chelsea site microphone (4.0 km from airport, Figure 1). Due to the 

unpredictable nature of bus schedules, timetables for MBTA buses, though available for the study period, 

were not consulted for model validation.  

 

3.    RESULTS 

Model accuracy ranges from 40.1% to 87.0% across all models (refer to Tables 2, 4). The binary 

classification model (Table 2) showed better results with the log scale spectrograms, with accuracy from 

83.6 - 87.0%. The resnet34 model performed better than the 4-layer CNN model, independent of 

spectrogram scale. 
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The confusion matrix for binary classification (Table 3), reports a high accuracy rate for the binary 

classification task (resnet34  model) and a majority of samples were classified correctly, with an F1 score 

of 0.89 (harmonic mean of the precision and recall), a measure of model quality. Confusion matrices in 

this study were not normalized and thus percentages do not sum to 100%. 

 

Table 2. Binary classification (rail/no rail), accuracy % 

Spectrogram scale 4-layer CNN model 125-layer resnet34 model 

4k 50.6 51.1 

log 83.6 87.0 

 

Table 3. Confusion matrix for binary classification, accuracy %  

                                                  

true 

label 

Prediction 

 rail Other 

Rail 32.0 3.0 

Other 4.6 20.4 

 

 

The multi-classification model showed similar results, with the log spectrograms producing better accuracy 

(65.3 - 71.0%) compared to 4k scale spectrograms (41.6 - 40.1 %) (Table 4). The 4-layer model produced 

slightly better results in the 4k scale, but the resnet34 model produced a better overall fit for the log scale.  

 

The confusion matrix for multi-classification (Table 5) with log-scale spectrograms, resnet34 model 

showed high accuracy for rail and bus classes, but poor classification for airplane noise events.  
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Table 4. Multi-classification (airplane/rail/bus/truck/other), accuracy % 

Spectrogram scale 4-layer CNN model 125-layer resnet34 model 

4k 41.6 40.1 

Log 65.3 71.0 

 

 

Table 5. Confusion matrix for multi-classification, accuracy %  

                                                                                                                                                         

true label 

Prediction 

 airplane rail Bus truck others 

airplane 1 3 2.8 0 0.4 

Rail 0 23.2 0.8 1 0 

Bus 0.2 0.8 11.4 0.8 0.8 

Truck 0 0.8 3.2 4.8 0 

Other 0.2 0 2.6 0 2.2 

 

The last layer of the neural net is used to visualize the activation of the multiclassification CNN model, 

showing the areas in the spectrogram used to identify each transportation noise event (Figure 5).  The 

saliency maps (Fig. 5 bottom panel) were produced in an effort to make the model interpretable and display 

where the model is focusing v. not focusing. Blue [or black] areas are where the model has low focus; red 

areas (high focus) display 'heat' imagery, representing an event based on model training. Pixels in red and 

yellow contribute to classification more saliently. Heatmaps of important regions of images aid in 

determining the final model predictions. This information can aid in model interpretation and can help to 

verify that the model is “looking” at logical predictors (e.g. engine noise, Doppler effects) of the parameters 

of interest (Hong, K.Y, et al., (2020). 
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Figure 5. Heatmap of salient areas extracted from the last layer of the CNN to recognize  transport 

noise type, each axis is in pixel units. 

3.3.    Discussion  

Machine learning methods have been used extensively in noise modeling, and urban noise mapping 

(Haykin, S, 2010, Warren et al., (2006),  Alvares-Sanches et al., (2021)). The type of machine learning we 

utilized is intended  to identify patterns of sound by source category.  Our modeling approach was transfer 

learning, using existing models based on thousands of pieces of input data, into  which we are adding  

spectrograms that contain Decibels, frequencies and Doppler effects for image recognition.  Our model 

was trained on sources from their spectral features. We randomly selected 60% of our dataset to train and 

took the remaining 40% to test the model.   

 

The log scale models provided a better overall fit compared to linear scale for all models tested, with the 

exception of the 4-layer multi-classification model which performed better at 4k scale. Saliency maps 

(Figure. 5), while useful to make the model interpretable and display where the model is focusing v. not 

focusing, were not particularly informative in this study, given the lower classification rates for images with 

distinctly identifiable spectral features, such as aircraft.. Given that this study team was a multi-disciplinary 

and multi-sectoral team (from departments including ECE, CEE, Public Health, and external consultants), 
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saliency maps (Figure 5) can be useful for such a diverse team in understanding how the models are 

classifying the data and could be utilized as an aid to future work  

 

An alternative technique to evaluate a model’s efficacy at finding fragments relevant for classification via 

saliency maps was developed by Szczepankiewicz, K., et al. (2023). With this technique, binary ground 

truth (GT) masks were assigned manually or semi-automatically to each image in a diverse, specially 

prepared image database. The proposed indicator compares the coverage of the most relevant pixels in the 

saliency map with the indicated pixels in the manually prepared GT masks. However, the researchers note 

that while saliency maps are probably the most popular method to provide a visual explanation of decisions 

made by Deep Neural Network (DNN) classifiers, it is still unclear how to properly interpret saliency maps 

for a given image and to identify which techniques perform most accurately (Szczepankiewicz, K., et al., 

(2023)).  

 

Additional work to implement cross-validation to assure validity of model results, and stratified sampling 

to balance the number of training data in each class, similar to work done by  Poomrittigul et al. (2022) 

could also be considered. 

 

In related work, our group has used the pretrained resnet34 model to accelerate the image-based 

classification and counting of specific vehicle types to be used to better understand the relationship between 

fine particles (PM2.5) and those vehicle types. In that study, the developed classification model was 

executed on a RaspberryPi 4 integrated with a Google Coral TPU coprocessor and a camera. The pre-trained 

(resnet34) model in our study performed similarly well on log spectrograms.  Our work in the future will 

focus on a similar portable, standalone system. 
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Additionally, in future versions of our model we will utilize a pytorch DataLoader to set a batch size (16), 

with 5 epochs and a learning rate of 1E-4. We plan to utilize an adam optimizer and the resnet50 model, 

instead of the resnet34 model we used initially. We will run this model on A100 GPUs. 

  

3.4 Contributions 

 

To our knowledge, the data collected for this study is part of one of the longer duration urban environmental 

noise and air pollution monitoring studies to date. The modeling performed is representative of the 

capabilities of machine learning as applied to classifying transportation noise, potentially replacing time-

consuming traffic logging done manually. Our work using sound to classify transportation sources may 

serve as a tool to augment video-logging of traffic.  Hong, K.Y. (2020) presented a novel method of 

estimating spatiotemporal variations in UFP concentrations using street-level images and audio data in 

Montreal, Canada. Although Hong, K.Y., et al. (2020) developed models for noise as a secondary aim, the 

authors did not identify other studies combining street-level images and audio data to estimate outdoor air 

pollution concentrations. 

 

Another strength of this study is that the sites sampled, Chelsea and Roxbury, MA, are both Environmental 

Justice Communities as defined by the Massachusetts Executive Office of Energy and Environmental 

Affairs (EEA) (mass.gov). Finally, the long temporal recordings allow for month-to-month variation in 

transportation noise to be accounted for in the model development. 

 

3.5 Limitations 

 

The limitations of our study include: 1) The models presented herein were trained to this dataset’s specific 

noise sources and may not be generalizable to other urban areas; 2) The number of training examples 

(n=203) could be expanded, which would likely improve performance. Future work should include 
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additional work on classification of airplane files to enhance the accuracy of detection of those classes; 3) 

although we used flight logs, MBTA schedules and visual confirmations of noise sources for confirmation 

of model training, we did not use these records for model validation; 4) While this study aims to inform 

epidemiological studies on transportation noise and associations with health, this study did not include 

human health data.  

 

4.    CONCLUSIONS 

This study produced models of transport associated noise events with varying degrees of accuracy. Machine 

Learning (ML) applications presented in this study will serve to reduce dependence on the existing labor-

intensive tasks such as manual playback and aural categorization of recorded sound analyzed in tandem 

with train schedules, traffic logs or aircraft flight schedules to synchronize and confirm sources. 

Additionally, these ML approaches will also reduce or eliminate human error in logging traffic counts and 

vehicle types. 

 

The rich data set collected and evaluated in this study could be beneficial to development of local ordinances 

and policies to mitigate the dual impacts from transportation noise and air pollution on community 

receptors. 
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Abstract 

Introduction: This study explores the complex interaction between noise and ultrafine particles 

(UFP<100nm diameter), emphasizing the potential improvement in correlation through specific noise 

indicators. Simultaneous environmental noise and UFP measurements are explored to enhance the quality 

of air pollution models.  

Methods: Over a 5-month period, noise and particle number concentration (PNC, a proxy for 

UFP)  were measured at two urban sites in Greater Boston, Massachusetts, burdened with multiple 

environmental noise and air pollution sources. The study aims to determine if loudness and noise 

frequencies, identified through 1/3-octave band spectral analysis, correlate with PNC concentrations. 

Additionally, the impact of wind parameters on the noise-PNC association is investigated.  

Model Development: Spearman correlations of noise and meteorological parameters informed the 

selection of covariates for regression models. Very low frequency noise (VLFN<20Hz) and low 

frequency noise (LFN: 20 -125Hz) were chosen to capture the impact of diesel engine emissions as a 

source of importance. Multivariate regression models were built to assess noise and spatiotemporal 

factors on PNC .  

mailto:David.Gute@tufts.edu
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Results: VLFN imparts slight negative effects on log-transformed PNC, depending on wind speed 

and impact sector wind direction (airport, roadways, railway, bus station). In contrast, LFN imparts 

positive effects of a similar magnitude. In VLFN or LFN models, sound pressure levels, measured as 

LAeq(time) (dBA) have positive effects on ln(PNC). A wind-robust model, controlling for impact sector 

wind direction and including a wind speed interaction term was developed and validated.  

Implications: The proposed wind-robust model aligns well with prior research conducted at the 

same sites, which did not consider noise as a covariate. It may effectively predict average or median PNC 

values based on median noise measures of VLFN  and LFN, considering interactions with median wind 

speeds. However, the model’s strength as a predictor for individual (e.g., bus, truck) noise-PNC events 

may be limited.  

Keywords: low frequency noise, ultrafine particles, UFP, PNC, regression  

Highlights 

• Examines the association of transportation-related noise frequencies on PNC 

• Moderately correlated (r<0.65) covariates were modeled by multivariate regression 

• Modeled noise frequencies (f<125 Hz), mediated by wind and spatiotemporal factors 

• Developed and validated a novel noise-PNC model, robust to wind parameters 

1.1 Introduction 

Transportation is one of the major sources of urban environmental noise (UEN), including sources  

such as automobiles, airplanes, and rail (Goines and Hagler, 2007).  

Among various shared sources of air and noise pollution in an urban setting, road traffic is 

considered to be a main contributor to both. (EMEP/EEA, 2013). Traffic-related air pollution (TRAP) is a 

complex mixture of particles and gases.  Exposure to TRAP is associated with increased morbidity and 

mortality (HEI Panel of the Health Effects of Traffic-Related Air Pollution, 2010). 

Presently approximately 57% of the world's population resides in urban settlements, which are 

usually affected by numerous emission sources of air and noise pollution (UN, 2022). Given increasing 
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rates of global urbanization, a larger proportion of the world’s population is exposed to potentially harmful 

environmental noise levels, which are deleterious to human health (P. De Vos, A. Van Beek, 2011).   

A recent review has shown significant associations between exposure to low-frequency noise and 

annoyance, sleep-related problems, concentration difficulties, and headache in the adult population living 

in the vicinity of noise sources (Baliatsas et al., 2016). Thus, it is important to understand the temporal 

variability and level of exposure to transportation-related UEN pollution as well as to the closely associated 

suite of TRAP emitted from the same sources  (Goines, L., & Hagler, L,. 2007).  

Ultrafine particles (UFPs, aerodynamic diameter <100nm), an unregulated component of TRAP, 

primarily derive from anthropogenic combustion sources, such as power generation and transportation 

activities. In urban areas, roadway traffic, rail and airport-related emissions are dominant sources of UFPs 

(Hudda et al., 2016), and have been the focus of exposure assessment and epidemiological studies., UFP 

exposure is associated with adverse cardiovascular effects including systemic inflammation biomarkers and 

ischemic heart disease (HEI; Boston, MA, 2013).  

Since the publication of the 2010 Traffic Review (HEI, 2010) there is a better appreciation that, in 

addition to air pollution, many other factors are associated with traffic exposure – most notably traffic noise, 

and that these may either confound or modify the health effects of TRAP.  Yet the questions of whether, or 

to what extent, the reported associations of UFP in TRAP are confounded or modified by traffic noise 

remain essentially uncharacterized. 

1.2 Background 

In one of the first investigations of the relationship between traffic-related air pollution and noise 

in the US, Allen, et al., (2009) found that wind direction was an important modifier of the relationships 

between air pollution (UFP, NO, NO2) and noise (5-min A-weighted equivalent continuous sound pressure 

levels (LAeq(5-min)), also concluding that noise was minimally impacted by wind direction at two urban 

sites in Chicago, IL and Riverside, CA.  Ross, Z.,  et al., (2011) found that noise levels at a high-traffic 
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urban site in NYC are temporally correlated with traffic and elemental carbon and correlations are modified 

by the time of day, noise frequency and wind. 

Despite extensive study of the effects of spatiotemporal factors on variation in transportation noise, 

links between transportation noise and  UFP have not been well defined. In a study by Can, Rademaker et 

al., predictive models were developed to estimate UFP (measured as total particle number) adjusted for 

meteorological conditions for specific noise indicators ((L125Hz- L2KHz) = low to medium frequency noise 

bands). These models showed strong correlation (Spearman’s r=0.62) between measured and predicted 

TPN based on wind speed and wind direction. A key constraint in the development and refinement of such 

models is the difficulty in measuring noise frequencies that are fully representative of traffic sources, rather 

than reliance on the conventional A-weighted (dBA) sound pressure levels (SPL) for model construction 

(Can, A., Rademaker et al., 2011).   

In their review of road traffic noise exposure assessment, Khan, J. et al., (2018) conclude from a 

selection of 57 articles of 858 screened that air and noise pollution propagate very differently 

spatiotemporally and they are not necessarily highly correlated. Therefore, they should be modelled 

separately and cannot serve as proxy for each other. As a qualifier to this conclusion, these 57 studies (four 

of which assessed UFP) all utilized A-weighted (dBA) noise metrics.  

Dekoninck et al., (2016) affirm that the correlation between noise and particulate matter exposure 

is complex yet could be improved. For example, Dekoninck et al. note that noise measurements contain 

spectral information that is highly relevant to improve this correlation, and specific noise indicators could 

be derived for this purpose. Dekoninck et al. add that simultaneous noise and black carbon (BC) and UFP 

measurements add significant value to predictions of air pollution models (Dekoninck, et al., 2016). 

Models linking UEN frequencies, rather than dBA, to emissions of UFP components of TRAP may 

hold promise to help disentangle the independent health effects of the two pollutants in epidemiological 

studies. 

1.3 Objectives 
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To better understand the relationships between UFP concentrations, transportation-related noise 

frequencies, and meteorology in urban neighborhoods we have undertaken an investigation of the 

associations of UEN loudness and frequencies with  particle number concentration (PNC, a proxy for 

UFP). In this study we measured sound pressure levels (SPL), noise emission spectra, PNC, and 

meteorology continuously for five months in two urban sites in metropolitan Boston (Massachusetts, 

USA).   

Our objectives were to (1) establish whether loudness and noise frequencies emitted from urban 

noise sources identified by metrics such as 1/3-octave band spectral analysis are associated with PNC, 

controlling for meteorology, time of day and site; and to (2) determine if effect modification of the noise-

PNC association is moderated by impact sector wind parameters (i.e., from the direction of transportation 

noise – airport, roadways, rail lines, bus station) has statistically significant associations with elevated 

ln(PNC) compared to non-impact sector winds; and 3) to develop a model of PNC outcomes with 

predictive covariates of noise and noise frequencies and their interaction with wind parameters, and 4) to 

support validation of this model from studies by others at the two sites which also measured PNC and 

meteorology. 

2.0 Materials and Methods 

2.1 Study Areas   

We measured noise and PNC at two urban sites between April 15 and September 13, 2016. Both 

sites are located in Environmental Justice Communities (EJC) burdened with multiple environmental 

stressors (e.g., close proximity to major road, rail and air networks) (Walker, et al., 2021).  
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Fig. 1 Location of Noise Monitoring Sites  

Monitoring sites are shown as black star symbols. Land use categories are illustrated by zoning type or 

physical features. Locations of bus stops, bus routes and rail (MBTA, T Stations) are indicated by icons. 

The lower two panels share the same scale bar. 

 

One site was in Chelsea, a city north of Boston (Figure 1). Chelsea has a population of 40,615 

and a population density of 7,096/km2, making it the second most densely populated city in 

Massachusetts (census, 2020). The City of Chelsea is intersected by a major expressway (U.S. Route 1), 

bus and commuter rail lines, and aircraft flight paths departing and arriving at Logan International Airport 



96 

 

(Fig. 1).  Noise and PNC monitoring instrumentation at the Chelsea site were located atop of a 3-story 

building (10 m. above grade) located 45 m from a busy street (approx. 7300 total vehicles/day 

(VPD)(Mass DOT, 2016), 50 m from rail lines (67 trips/day (TPD) (mbta.com, 2016) and 4.0 km (NW) 

from Logan International Airport (1100 flights/day in study year 2016) (Massport.com, 2016).  

The second site was at the USEPA Chemical Speciation Monitoring Station (EPA site code# 

250250042) in Roxbury (Figure 1).  Roxbury is a neighborhood of Boston with a population of 51,252 

(City of Boston, 2015) and a population density of 5,344/km2.  The Roxbury noise and PNC monitoring 

site is located at street level, 15 m from a commercial/residential roadway (approx. 8000 total VPD, City 

of Boston, 2015), 7.3 km (SW) from Logan Airport and 75 m from a city bus terminal (~250 buses/day 

(mbta.com)).    

2.3        Measurement Methods   

Noise monitoring was conducted using two identical Larson Davis 831 (LD-831) Class 1 sound 

meters, each equipped with a preamplifier (LD-PRM831) and a G.R.A.S. 1-cm free-field, pre-polarized 

microphone. Microphones were mounted on 1.5-m-high tripods fitted with outdoor windscreens and 

routed with 8-m microphone cables through a Roland R-05 Digital Audio Recorders.  Raw sound was 

recorded by the Roland R-05 recorder at a 44.1 kHz sampling frequency and written to 32 GB SDHC 

cards. Given the large quantity of audio data (>1850 raw sound files), waveforms were saved as .mp3 

files with a high bit rate (320 kbps) to preserve as much data as possible while at the same time managing 

file size. 

The Chelsea microphone was oriented upwards, perpendicular to its roof-mounted installation 

surface; the Roxbury microphone was oriented due south, towards Harrison Avenue, at a 45-degree angle 

to the horizontal.  The sound meters measured sound pressure levels in decibels (dB) continuously over a 

frequency range of 6.3 Hz to 20 kHz at 1-second (s) intervals.  

Co-located with the noise monitoring instruments at each site were condensation particle counters 

(CPCs, model 3783, TSI; 7-3000nm) to measure PNC and Davis VantagePro weather stations, which 
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recorded wind speed, wind direction, temperature, relative humidity, barometric pressure, and rainfall. 

The CPC recorded 30-second PNC readings. 

2.3 Quality Assurance 

Quality assurance (QA) methods were adapted from the Protocol for a Sleep Study (PARTNER, #25, 

2014). Prior to deployment, the sound meter was field-calibrated with a B&K 4231 sound level calibrator 

and microphone simulator to 94 dB and 114 dB at 1 Hz. Weekly calibration checks were conducted at both 

sites under the same protocol. Measurements were stored on the internal memory of the sound meters and 

downloaded weekly.  Instrument clocks were set against the National Institute of Standards and Technology 

(NIST) atomic clock; clock drift was +/-0.75 s/day for the sound meters and +1.4 to +2.9 s/day for this 

digital audio recorders. Clock drift adjustments were addressed in the resampling of the raw noise data to 

synchronize with the CPC and meteorological data.  

Weekly field checks of the meteorology station included data downloads, battery power logs and  clock 

resets to NIST time. CPCs were calibrated annually at TSI, and side-by-side tests conducted in our 

laboratory for related studies of PNC in the Boston area indicate a good agreement (r2 = 0.97) (Hudda et 

al., 2016). CPC time clocks drifted < 1 min/week to NIST time. Weekly field checks of the on-site (Davis 

VantagePro) meteorology stations included data downloads and battery power logs. Meteorological data 

were checked for comparability against Logan Airport, Boston historical weather records (FAA Identifier 

KBOS).  

2.4       Data Processing 

Noise measures evaluated in this study included A-weighted (LAeq(time), dB(A)) and unweighted (or 

Z-weighted, independent of frequency) 1/3-octave band readings collected from 6.3 Hz – 20 kHz, 

continuously at 1-s intervals. (Goelzer et al., 2001). Average binned levels for infrasound, or very low 

frequency noise (VLFN<20 Hz); low frequency noise (LFN, 20 – 125 Hz), medium frequency noise (MFN, 

125 – 500 Hz), and high frequency noise (HFN >500Hz) were calculated as presented in a previous study 

(Leaffer et al., 2023). 
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PNC data were reviewed for very low concentrations (<500 particles/cm3) and measurements 

automatically flagged by the instrument (e.g., due to nozzle clogs and low pulse heights), per protocols 

established at our laboratory by Simon et al., (2017).  Data marked with these flags and/or pulse heights 

<800 mV were removed (<1 std below mean instrument pulse height)(Simon, M., 2017). 

Raw 1-s noise LAeq(time) data were aggregated to 1-min averages for the statistical analysis per an 

autocorrelation algorithm designed to reduce correlations between successive 1-s samples in a vector by 

50% with a 60-sec lag time (VLFN and LFN were decorrelated to >33% at the 60-sec time averaging 

interval). Autocorrelation lag-time plots are found in the Supplementary Materials of this paper (Appendix 

2). Research by Boogard et al., 2009 on exposure to ultrafine and fine particles and noise during cycling 

and driving in 11 Dutch cities aggregated all data covariates to 1-minute averages, noting that correlations 

between PNC and noise were moderate (0.21–0.60) when 1-minute averages were compared (Boogard et 

al., 2009). 

Chelsea and Roxbury noise, meteorology and PNC measurements were all resampled to 1-min 

averages. Work by Simon et al., (2017) in the same geographies as our study (Chelsea, Roxbury) also 

aggregated PNC data to 1-min averages, noting that at longer averaging periods, the effects of transient 

PNC spikes from local sources (e.g., vehicles) were smoothed out (Simon, M., et al., 2017).  Ragettli 

(2016) cites strong correlations (r=0.85) between 5-minute and 24-hour road traffic noise (LAeq(24-hr)) 

and moderate correlations (r=0.56 to r=0.6) for rail and air, suggesting that the continuous nature of road 

traffic noise is suitable for shorter duration (5-minute) sampling. Ragettli additionally notes that 2-minute 

noise sampling intervals may present limitations in capturing discontinuous noise events from trains and 

aircraft (Ragettli, M., et al., (2016)). We selected 1-minute sampling averages in our study to minimize 

such limitations.  

Spearman correlation tables of noise and meteorology covariates at 1-min intervals for Logan Airport 

(KBOS) weather data are presented in Table 1 and by site in Table 2. 
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Table 1  Noise and Meteorological Data Correlations  

Logan Airport Meteorology Dataset (n=106,103 rows) 

Covariate LAeq(1-min) VLFN LFN MFN HFN Temp Humidity Wind Speed 

LAeq(1-min) -- 0.260 0.750 0.890 0.987 0.077 -0.049 0.104 

VLFN 0.260 -- 0.470 0.354 0.253 0.083 -0.264 0.501 

LFN 0.750 0.470 -- 0.803 0.703 0.218 -0.167 0.227 

MFN 0.890 0.354 0.803 -- 0.849 0.144 -0.101 0.152 

HFN 0.987 0.253 0.703 0.849 -- 0.082 -0.020 0.096 

TempoC 0.077 0.083 0.218 0.144 0.082 -- -0.133 0.103 

Humidity% -0.049 -0.264 -0.167 -0.101 -0.020 -0.133 -- -0.264 

Wind Speed (kmph) 0.104 0.501 0.227 0.152 0.096 0.103 -0.264 -- 

 

Note: p-vals all <0.05 

LAeq(1-min) = A-weighted sound pressure levels (dBA); Very Low Frequency Noise, VLFN(<20Hz); Low Frequency 

Noise, LFN(20-125Hz); Medium Frequency Noise, MFN(125-500Hz); High Frequency Noise, HFN(>500Hz) 

 

Table 2  Noise and Meteorological Data Correlations by Site  

Chelsea site Logan Airport Meteorology Dataset (n=40,770 rows) 

Covariate LAeq(1-min) VLFN LFN MFN HFN Temp Humidity Wind Speed 

LAeq(1-min) -- 0.417 0.780 0.914 0.987 0.463 -0.043 0.237 

VLFN 0.417 -- 0.519 0.428 0.398 0.109 -0.203 0.648 

LFN 0.780 0.519 -- 0.797 0.742 0.454 -0.094 0.341 

MFN 0.914 0.428 0.797 -- 0.858 0.443 -0.123 0.248 

HFN 0.987 0.398 0.742 0.858 -- 0.487 -0.026 0.228 

TempoC 0.463 0.109 0.454 0.443 0.487 -- -0.111 0.084 

Humidity% -0.043 -0.203 -0.094 -0.123 -0.026 -0.111 -- -0.220 
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Wind Speed (kmph) 0.237 0.648 0.341 0.248 0.228 0.084 -0.220 -- 

 

Note: p-vals all <0.05 for correlation coefficients  

Roxbury site Logan Airport Meteorology Dataset (n=40,770 rows) 

Covariate LAeq(1-min) VLFN LFN MFN HFN Temp Humidity Wind Speed 

LAeq(1-min) -- 0.458 0.551 0.815 0.976 -0.239 -0.131 0.076 

VLFN 0.458 -- 0.721 0.606 0.411 0.060 -0.312 0.400 

LFN 0.551 0.721 -- 0.720 0.461 0.093 -0.294 0.218 

MFN 0.815 0.606 0.720 -- 0.751 -0.103 -0.178 0.158 

HFN 0.976 0.411 0.461 0.751 -- -0.249 -0.067 0.054 

TempoC -0.239 0.060 0.093 -0.103 -0.249 -- -0.160 0.116 

Humidity% -0.131 -0.312 -0.294 -0.178 -0.067 -0.160 -- -0.292 

Wind Speed (kmph) 0.076 0.400 0.218 0.158 0.054 0.116 -0.292 -- 

 

Note: p-vals all <0.05 for correlation coefficients  

3.0 Model Building  

3.1 Statistical Analyses 

Simple and multivariate regression models were run in MATLAB for noise, PNC and 

meteorological covariates resampled to 1-min, using Logan Airport (KBOS) weather data given generally 

lower covariate correlation values v. on-site meteorological parameters (Table 1). Covariates with 

Spearman’s rho coefficients r>0.65 – indicating a high degree of correlation (Tables 1, 2) - were not 

included in the regression models due to collinearity. Summary statistics for covariates selected for simple 

and multivariate regression models are tabulated in Table 3. 

Table 3  Noise, PNC and Meteorological Data Summary Statistics 

Chelsea site (n=151 days) 

Noise Covariate      Unit  Minimum 5th  Pctl Mean STD Median 95th  Pctl Maximum 
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LA(eq)(1-min)  dB(A) 44.0 49.1 55.4 3.7 55.3 61.4 75.7 

VLFN (<20 Hz) dB 48.0 53.9 65.6 8.5 64.1 81.7 99.1 

LFN (20 125 Hz) dB 56.7 62.1 67.9 3.8 68.0 74.0 90.1 

MFN (125-500 Hz) dB 47.8 51.7 57.1 3.5 56.9 62.9 78.1 

HFN (>500 Hz) dB 48.3 50.4 54.9 3.0 54.5 60.0 76.0 

PNC  # particles/cc    1845 2620 9650 5777 8225 21550 27850 

 

Roxbury site (n=151 days) 

Noise Covariate Unit  Minimum 5th  Pctl Mean STD Median 95%  Pctl Maximum 

LA(eq)(1-min)  dB(A) 52.1 56.5 60.1 2.3 60.0 63.7 83.4 

VLFN (<20 Hz) dB 51.2 55.7 63.1 4.1 63.4 69.5 93.0 

LFN (20 -125 Hz) dB 61.4 66.2 71.9 3.1 72.3 76.4 88.6 

MFN (125 -500 Hz) dB 54.6 57.5 60.3 2.0 60.1 63.9 79.9 

HFN (>500 Hz) dB 50.2 55.2 58.7 2.3 58.6 62.3 83.1 

PNC  # particles/cc 1355 5466 19688 12997 16550 44250 159000 

 

Meteorology* 

        

Covariate Unit Minimum 5th  Pctl Mean STD Median 95th  Pctl Maximum 

Wind Speed  km/hr 0 0 15.2 7.5 14.8 29.6 42.6 

Temperature  deg oC 2.8 6.7 16.3 7.5 16.1 28.3 36.1 

Humidity % 12.7 31.1 61.7 19.5 60.8 92.8 100 

Visibility km 0.39 9.6 15.4 2.5 16.0 16.1 16.1 

Notes: LAeq(time) =  A-weighted, equivalent continuous sound level (time period), VLFN (<20Hz), LFN (20 -125Hz), MFN (125Hz -500Hz), 

HFN (>500Hz), PNC (outliers removed) and meteorological parameters resampled to 1-min.  

*Meteorological data from (KBOS) Logan International Airport. 

 

3.2 Regression Covariate Selection 
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Base models were run for each of the five noise measures together with key covariates (e.g. 

temporal factors, site, and meteorological parameters). Meteorological variables considered for the base 

models included temperature (°C), humidity (%) and wind speed (km/hr). Visibility (km) was used for a 

correlation analysis with PNC. Wind direction was used in multivariate regression models to classify data 

as impact or non-impact sector.  Patton et al. (2015) found that wind direction sectors that included the 

airport as an upwind source were a significant explanatory variable for PNC in communities located 4–8 

km north-northwest (NNW) of Logan airport (Patton et al., 2015). Temporal covariates included in the 

models were time of day (day==0700-2300 hrs; night==2300-0700 hrs). The Supplementary Materials of 

this paper include a summary of all models run (Appendix 2). 

 

3.3 Regression Model Building  

Multivariate regression models were run in MATLAB R.2023a (Mathworks.com). PNC measures 

were natural log-transformed ln(PNC) to mitigate the impact of outliers (Simon et al., 2017) and per PNC 

regression model building criterion reported by Patton et al., (2015) which also log-transformed PNC data 

(Patton, A. et al., 2015).   

Work by Dekoninck et al. (2013) developing an instantaneous spatiotemporal model to predict a 

bicyclist's Black Carbon (BC) exposure based on mobile noise measurements used a logarithm of BC as 

an outcome variable since noise is also measured on a logarithmic scale (Dekoninck, et al., 2013).  

Models were run to (1) establish whether loudness and noise frequencies emitted from urban noise 

sources identified by metrics such as 1/3-octave band spectral analysis are associated with statistically 

significant variations in ln(PNC), controlling for meteorology, time of day and site; and to (2) determine 

if effect modification of the noise-PNC association moderated by impact sector wind parameters (i.e. 

from direction and sources of transportation noise – airport, roadways, rail lines, bus station) has 

statistically significant associations with elevated ln(PNC) compared to non-impact sector winds. 

4.0    Results and Discussion 
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4.1 Summary of Regression Model Results  

Regression model results (Table 3) indicate that a model comprised of lower noise-frequencies 

(VLFN, LFN) and their interactions with wind speed performed better (AIC: 9.6E3; R^2= 0.27) at 

predicting ln(PNC) than a dBA-only model with LAeq(1-min) and a dBA:wind speed interaction model 

(AIC: 1.03E4;  R^2=0.16).  Models were controlled for wind impact sector from Logan Airport, a known 

source of elevated PNC emissions (Patton et al., 2014, 2015; Hudda et al., 2016; Simon, et al., 2017). 

Similar results were found for models predicting ln(PNC) with wind impact sectors from local 

roadways. Lower noise-frequency (VLFN, LFN) models and their interactions with wind speed also 

performed better (AIC: 1.77E4; R^2= 0.22) at predicting ln(PNC) than a dBA-only model (AIC: 1.87E4; 

R^2= 0.15).  Additional models of C-weighted (nearly independent of frequency) minus A-weighted 

decibels, LCeq-LAeq(24-hr) when paired with dBA and wind speed were not significant predictors 

(p>0.05) of ln(PNC).   

Generally, VLFN imparts slight negative effects on ln(PNC), depending on wind speed and 

impact sector wind direction (airport, roadways, rail lines, bus station), while LFN imparts positive effects 

of a similar magnitude. In models with either VLFN or LFN, overall sound pressure levels, measured as 

LAeq(1-min) (dBA) have positive effects on ln(PNC). 

Impact sector winds were important determinants of ln(PNC), with the strongest positive effects 

from winds from the direction of Logan Airport and from the railway at the Chelsea site for noise 

measures modeled. In Roxbury, the interaction effects of impact sector winds from Harrison Ave. (Figure 

1) and from the Nubian Square MBTA (T) bus station had significant positive associations with ln(PNC) 

for VLFN (road) and LFN and LAeq(1-min) (bus station).  Other meteorological covariates - temperature, 

humidity (%) and wind speed - were modeled, but only wind speed==HI (75th percentile) strongly 

affected model results for various noise covariate associations with ln(PNC).  
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Site and site interactions with noise measures and time of day were also significant predictors of 

ln(PNC), with time of day (Day==1, or 0700-2300HRS) effect estimates nearly unchanged in every 

model run.  Table 5S (Supplementary Materials, Appendix 2) present the results of our regression models 

evaluating effect modification by noise covariates, temporal factors and meteorological factors on 

ln(PNC). 

Table 4  Wind Robust Multivariate Regression Model Coefficients 

Model  Covariates Effect 

Est. 

 

Adj. R^2 p-val AIC 

1. ln(PNC) ~ βo + β1*LAeq(1-min) + e 

 

Impact Wind from Airport (n=5000 obs.) 

 

*Predicted PNC = 18,946 #/cm^3 

Intercept 

 

LAeq(1-min) 

5.66 

0.07 

0.158 0 

 

<0.001 

 

1.03+04 

2. ln(PNC) ~βo +β1*LAeq (1-min) +LAeq:WS+ e 

 

Impact Wind from Airport (n=5000 obs.) 

 

*Predicted PNC = 19,252 #/cm^3 

Intercept 

 

LAeq(1-min) 

LAeq:WS 

5.46 

0.07           
-0.0001            

 

0.162 <0.001 

 

<0.001 

<0.001 

 

1.03+04 

3. ln(PNC) ~βo +β1*LAeq (1-min) +VLFN + e 

 

Impact Wind from Airport (n=5000 obs.) 

 

*Predicted PNC = 21,692 #/cm^3 

Intercept 

 

LAeq(1-min) 

VLFN 

5.72 

0.072           

-0.0021          

 

0.157 <0.001 

 

<0.001 

0.32 

1.04+04 

4. ln(PNC) ~βo +β1*+VLFN + LFN*WS + e 

 

Impact Wind from Airport (n=5000 obs.) 

 

 

*Predicted PNC = 19,270 #/cm^3 

Intercept 

 

VLFN 

LFN 

LFN:WS 

3.29 

-0.027           

0.0119       
-0.0001      

 

0.273 <0.001 

 

<0.001 

<0.001 

<0.001 

9.61+03 

5. ln(PNC) ~ βo + β1*LAeq(1-min) + e 

 

Impact Wind from Roadway (n=11,515 obs.) 

 

*Predicted PNC = 14,496 #/cm^3 

Intercept 

 

LAeq(1-min) 

6.32 

0.056 

0.148 0 

 

0 

1.87+04 

6. ln(PNC) ~βo +β1*LAeq (1-min) +LAeq:WS+ e 

 

Impact Wind from Roadway (n=11,515 obs.) 

 

*Predicted PNC = 20,268 #/cm^3 

Intercept 

 

LAeq(1-min) 

LAeq:WS 

5.45 

0.077           
-0.00013            

 

0.162 <0.001 

 

<0.001 

<0.001 

 

1.03+04 

7. ln(PNC) ~βo +β1*LAeq (1-min) +VLFN + e 

 

Impact Wind from Roadway (n=11,515 obs.) 

 

*Predicted PNC = 32,665 #/cm^3 

Intercept 

 

LAeq(1-min) 

VLFN 

6.86 

0.061          
-0.0125          

 

0.164 0 

 

0 

<0.001 

 

1.86+04 

Note:  Models 1-4 utilize median values: LAeq(1-min)=58.8dBA;  VLFN=62.7dB; LFN=70.6dB; wind speed (WS)=13.0km/hr; 
Models 5-8 utilize median values: LAeq(1-min)=58.2dBA;  VLFN=64.2dB; LFN=70.6dB; wind speed (WS)=16.7km/hr 
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4.2 Noise Covariate, Meteorological and Spatiotemporal Effects on ln(PNC) 

Regression models (Supplementary Table 5S, Models 1-6, Appendix 2) were run to establish 

whether loudness and noise frequencies emitted from urban noise sources identified by metrics such as 

1/3-octave band spectral analysis are associated with PNC concentrations, including meteorological and 

temporal covariates and site interactions with noise. 

Comparing noise covariate models run for VLFN and LAeq(1-min) (Model 1) and VLFN and LFN 

(Model 2), and adding temperature, humidity (%) and time of day (Day==1 is 0700-2300HRS) we found 

that VLFN had a negative association with ln(PNC) in both models, while LFN and LAeq(1-min) had 

positive associations. Both temperature (oC) and relative humidity (%) had slight negative associations 

with ln(PNC) in these models. Site (Roxbury==1) had strong negative effects on ln(PNC) v. Chelsea, 

while interactions of site and VLFN, LFN and LAeq(1-min) all had slight positive effects. Model 2 had a 

lower AIC value and higher R^2 vs. Model 1 (see Table 5), implying models with lower frequencies of 

noise (VLFN and LFN) as covariates should have improved prediction of ln(PNC) vs. models with 

loudness as a covariate. 

We also investigated correlations between PNC and visibility. Spearman’s rho correlations for 

visibility (km) and PNC (#/cc) were r=0.19 for Chelsea; r =0.04 for Roxbury. Controlled for wind speed 

(WS_HI = 75th percentile) these correlations were r=0.06 for Chelsea WS_HI, r = 0.29 for Chelsea 

controlled for stagnant winds. Spearman’s rho correlations for Roxbury, controlling for wind speeds were 

r= 0.03  for Roxbury WS_HI), and r = 0.10 controlled for stagnant winds. Stagnant winds were defined 

by Young et. al. (2023) as <1.1 m/s in a study of visibility impacts of ambient sub-micrometer particle 

number size distributions in an urban area of central Taiwan (Young, i-Hao, et. al. (2023)). 

4.3 Effects of Noise and Wind Speed and Wind Direction on ln(PNC) 
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In Models 3 through 6 (Table 5S, Supplementary Materials, Appendix 2) we evaluated effects of 

VLFN, LFN and LAeq(1-min) on ln(PNC), controlling for wind speed. Effect modifications of wind 

speed==LO (upper quartile) in Models 3 and 5 differed little in their magnitude and direction of effect 

estimates and significance from base Models 1 and 2 not controlling for wind speed. The exception to this 

was the interaction of LAeq:site in wind effect modifications Model 3 (β = -0.007, 95% ci (-0.010, -

0.004), p<0.001) vs. Model 1 (β = 0.028, 95% ci (0.024, 0.030), p<0.001), where the Model 1 effect 

estimate β coefficient increased 5-fold in the positive direction from Model 3 under controlled wind speed 

conditions. Model 3 also had a lower AIC value and higher R^2 vs. Model 1, here implying the model 

controlling for wind speed==LO should have improved prediction of ln(PNC) vs. models not controlling 

for wind speed.  

Comparing effect modification models (Models 4 and 6) for wind speed==HI (75th percentile), 

we found significant differences in effect estimates vs. base Models 1 and 2 not controlling for wind 

speed. The more important of these differences are the effect estimate of low frequency noise (LFN 20-

125 Hz) in Model 6 was not significant (β = 0.002, 95% ci (-0.002, 0.006), p=0.28), nor were the 

interaction effects of VLFN:site (β= -0.0004 95% ci (-0.003, 0.002), p=0.80) under wind speed==HI 

conditions. We also found that the temperature (oC) effect estimate increased in magnitude 125% in the 

positive direction from Model 3 (β = -0.008, 95% ci (-0.009, -0.007), p<0.001) to Model 4 (β = 0.002, 

95% ci (0.0012, 0.003), p<0.001) as wind speeds increased from LO (upper quartile) to HI (75th 

percentile) for models including LAeq(1-min) and VLFN with site, time of day and humidity (%). 

4.3.1 Effect Modifications of Wind Direction on ln(PNC) 

Models 7 through 10 (Table 5S, Supplementary Materials, Appendix 2) were run to assess the 

effect modifications of impact wind effects on ln(PNC) outcomes by site. We defined wind impact sectors 

in our study as those previously presented by Hudda et al. for the same study areas (Hudda et. al., 2016).  
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4.3.1.1 Effect Modifications of Wind Direction from Logan Airport  

For the Chelsea site, we found that during impact sector winds from Logan Airport (wind 

direction SE: 135 -175o), both LAeq(1-min) and LFN had positive interaction effect estimates with wind 

direction on ln(PNC) in models also including Day==1 (0700-2300HRS) as a covariate (Model 7, 

LAeq:Wind_Impact_Logan: β = 0.013, 95% ci (0.007, 0.018), p<0.001); (Model 8, 

LFN:Wind_Impact_Logan: β = 0.020, 95% ci (0.015, 0.025), p<0.001).  

At the Roxbury site, we found that the effect estimate for VLFN when the wind impact sector was 

from Logan Airport (Model 9) was not significant (β = -0.006, 95% ci (-0.01, 0.01), p=0.056). In Model 

10 assessing effect modifications of impact sector winds in Roxbury, LFN alone was not significant (β = -

0.0005, 95% ci (-0.003, 0.002), p=0.693), yet the interaction of LFN:Wind_Impact_Logan was 

significant in this model (β = 0.013, 95% ci (0.005, 0.02), p<0.001). 

4.3.1.2 Effect Modifications of Wind Direction from Railway  

Models of impact sector winds from the railway, located north of the Chelsea site showed that 

only VLFN had positive interaction effect estimates with wind direction on ln(PNC) in models also 

including Day==1 (0700-2300HRS) and LAeq(1-min) or LFN, respectively as covariates (Model 7, 

VLFN:Wind_Impact_Rail: β = 0.019, 95% ci (0.017, 0.021), p<0.001); (Model 8, 

VLFN:Wind_Impact_Rail: β = 0.022, 95% ci (0.020, 0.025), p<0.001). LAeq(1-min) and LFN both had 

negative interaction effect estimates with wind direction on ln(PNC) outcomes in these models. 

4.3.1.3 Effect Modifications of Wind Direction from Local Roadways  

While impact sector winds originated from the direction of local roadways, the effect estimates 

for impact sector interactions in models including noise parameters and temporal factors all had negative 

associations with ln(PNC).  Exceptions to this include VLFN: Impact_Wind_Road in Chelsea in a model 
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with LFN and time of day (Model 8: β = 0.012, 95% ci (0.01, 0.015), p<0.001); 

Impact_Wind_Road:VLFN in Roxbury in a model with LAeq(1-min) and time of day (Model 9: β = 0.013, 

95% ci (0.008, 0.019), p<0.001), and LAeq: Impact_Wind_Road also in Roxbury in a model with LFN 

and time of day (Model 10: β = 0.014, 95% ci (0.007, 0.022), p<0.001). 

4.3.1.4 Effect Modifications of Wind Direction from Roxbury Bus Station  

Models 9 and 10 evaluate interactions of noise covariates and impact sector winds from the 

direction of the Nubian Square MBTA (T) bus station, located 75 m. WNW of the Roxbury site. Bus 

traffic from this terminal was approximately 250 buses/day during the study period April -September 

2016 (mbta.com). We found that the interaction of LAeq: Wind_Impact_Bus and VLFN: 

Wind_Impact_Bus were directionally opposite and of similar magnitude in a model with both noise 

covariates and time of day. Respectively, Model 9: β = 0.015, 95% ci (0.01, 0.02), p<0.001; β = -0.014, 

95% ci (-0.02, -0.01), p<0.001.  

Lastly, in Model 10, which included LAeq(1-min) and LFN noise measures, time of day and wind 

impact sector interactions with noise covariates, we found that the interaction of wind impact sector from 

the Roxbury bus station with LAeq(1-min) and LFN were directionally opposite; their effect estimates 

increased in magnitude 185% in the positive direction as follows: LAeq: Wind_Impact_Bus effect 

estimate β = -0.014, 95% ci (-0.02, -0.01), p<0.001, and LFN: Wind_Impact_Bus effect estimate β = 

0.034, 95% ci (0.027, 0.041), p<0.001 (Table 5S, Supplementary Materials, Appendix 2). 

4.4 Wind-Robust Model 

Based on our findings, a wind-robust model, controlling for impact sector wind direction and 

including an interaction term for wind speed would take the form: 

Eq(1): ln(PNC) = βo + β1*VLFN (dB) + β2*LFN (dB) + β3*[LFN*(wind_speed (km/hr)] + e 
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Testing this proposed model for wind direction controlled from Logan Airport, an impact sector common 

to both sites (5% of all wind direction readings during our study), and cited by Hudda et al. (2016) and 

Simon et al. (2017) as a wind direction contributory to increased PNC to both Chelsea and Roxbury, for 

median values of VLFN (dB), LFN (dB) and wind speed (km/hr), this proposed model yields ln(PNC) = 

3.29 -0.027(62.7 dB VLFN)+0.12(70.6 dB LFN) -0.0001(70.6 dB*12.9 km/hr) or ln(PNC) = 9.87. 

Exponentiating both sides results in a PNC concentration = 19,270 particles/cm^3.  

When tested for wind direction controlled from local roads, representing road traffic at both sites 

(11% of all wind direction readings during our study), for median values of VLFN (dB), LFN (dB) and 

wind speed (km/hr), this proposed model yields: ln(PNC) ~ 5.48 -0.012(64.2 dB VLFN) +0.072(70.6 dB 

LFN) -0.0002(70.6 dB*16.7 km/hr) or ln(PNC) ~ 9.58. Exponentiating both sides results in a PNC 

concentration = 14,512 particles/cm^3.  

Stratified by site (Chelsea==0; Roxbury ==1), controlled for wind impact sector==airport (v. all 

other wind impact sectors (i.e. wind impact sector airport==0)), and also modeling median values for 

VLFN, LFN and wind speed, we found similar results. Our proposed wind robust model predicted 11,389 

particles/cm^3 for Chelsea wind impact sector=airport v. 8,111 particles/cm^3 for all other wind impact 

sectors, a 1.4-fold PNC concentration increase from the airport sector. For Roxbury, the model predicted 

23,717 particles/cm^3 for Roxbury wind impact sector=airport v. 16,579 particles/cm^3 for all other wind 

impact sectors, also a 1.4-fold PNC concentration increase. The effect estimate for VLFN in the Roxbury 

model, however was not significant (p>0.05). 

Our proposed wind-robust models are supported by work from Hudda et al., which found that the 

annual (2014) average impact-sector PNC from Logan Airport was 2-fold higher than the average for all 

other wind directions in Chelsea [35 000 ± 75% (average ± relative standard deviation) compared to 18 

000 ± 69% particles cm−3], and 1.33 fold higher in Roxbury [28 000 ± 54% (average ± relative standard 

deviation) compared to 21 000 ± 65% particles cm−3] (Hudda, et al., 2016), and further supported by 
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Simon et al. (2017) who found that during SSE winds at Chelsea, average PNC was approximately twice 

the average for all other wind directions (Simon et al., 2017). 

Figure 2 presents hourly average baseline PNC roses (normalized to the maximum) for the two 

sites for this study period (April -September, 2016). 

 

Figure 2 Hourly Average Baseline PNC Roses (Normalized to the Maximum) 

The PNC roses in Fig. 2 are similar to those presented by Hudda et al. (2016) for the same 

locations and were prepared to the same specifications as in that study. We additionally plotted noise-

PNC wind roses (Figure 3) to assess the contribution of combined noise levels (LAeq(1-min)) and noise 

frequencies to PNC concentrations by wind direction. We additionally created heatmaps of mean PNC 

concentration (Figure 4) for 1-min averages of LAeq and noise frequencies. Heatmaps show mean PNC 

concentrations (#/cm^3) by wind impact sector for various noise measures, grouped by quartiles.  

Colorbars in all figure panels (Figs. 3, 4) show PNC concentrations (particles/cm^3). 
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Figure 3 PNC Wind Roses for Noise Covariates (left panels = Chelsea;  right panels = Roxbury) 
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Figure 4 Heatmaps of PNC Concentration (#/cc) for Noise Measures by Impact Wind Sector 

(left panels = Chelsea;  right panels = Roxbury) 

4.4.1 Model Validation Support 
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To support validation of our models, we plotted time series for each site on selected dates 

controlled for transportation source (Figure 5(a)(b)(c)). Time series transportation source data were 

either visually confirmed (Roxbury, Fig. 5 right) or audibly logged from .mp3 sound recordings and 

verified by Logan Airport flight take-off and landing schedules or MBTA train schedules. Each boxed 

region represents dates/times when the impact wind direction (Wind Dir) originates from the same 

category as the Source, identified by black dots in the figures, which represent a single event (i.e. – 

vehicle passing the microphone).  

 

Fig. 5 Time Series Plots for Selected Dates by Transportation Source   

For selected April 2016 Chelsea aircraft noise events (Fig. 5(a), left), shown within the 

rectangular boxed region (April 20, 2016) there was a 22.5% increase in PNC concentrations (9,670 to 

11,850 particles/cm^3); a concomitant increase in LAeq(1-min) levels by +11.8 dBA from 49.2 dBA to 61.1 

dBA; VLFN increased +3.3 dB from 58.5 dB to 61.8 dB; and LFN increased +3.6 dB from 63.7 to 67.3 

dB, while wind direction shifted from 90o to 135o – to within the Logan Airport wind impact sector. Wind 

speed decreased slightly, from 11 to 9 km/hr during this event. These observations support our findings 

from Model 7 (Table 5S, Supplementary Materials, Appendix 2), which predicted that during impact 

sector winds from the direction of Logan Airport (wind direction SE: 135 -175o), both LAeq(1-min) and 

LFN had positive interaction effect estimates with wind direction on ln(PNC) outcome. 
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The highest concentrations of PNC from identified rail transportation noise sources (trains) in 

Chelsea for selected study dates May 17-June 11, 2016 (Fig. 5(b), center) occurred May 20 -23, 2016 

while winds were from 270o to 292o, placing the Chelsea monitoring site downwind of the MBTA rail 

line and local roads (Broadway, Fig. 1). PNC concentrations reached 24,900 particles/cm^3 during these 

impact sector winds (rectangular boxed region), and with each train noise event recorded LAeq(1-min) 

increased 3 -10 dB(A); VLFN increased 2 -5 dB; and LFN increased 4 -8 dBA Wind speeds were 

relatively light 1 -8 km/hr during these events. 

In Fig. 5 (c) (right), PNC concentrations increased more than 2-fold from a previous reading of 

29,900 particles/cm^3 and peaked at 71,900 particles/cm^3 during a bus transit event at 09:00am in 

Roxbury on September 2, 2016. LAeq(1-min) increased +7.7 dBA from 58.0 to 65.7 dBA; VLFN increased 

+5 dB from 63.1 to 68.1 dB; and LFN increased +6.1 dB 73.3 to 79.4 dB. Wind was consistently from the 

north (360o) during and prior to this event, which was not from the direction of the MBTA bus terminal 

(260o -280o). Wind speeds, which were high-to-moderate during this event, decreased from 22.2 km/hr to 

16.7 km/hr (75th percentile was 20.3 km/hr).  

The additional rectangular boxed region in Fig. 5(c) (right), after 10:30am, represents increased 

PNC concentrations as wind steadies from the roadway wind impact sector 20-75o, during which PNC 

increased 3-fold from a baseline 14,000 particles /cm^3 to 42,500 particles/cm^3. LAeq(1-min) ,VLFN and 

LFN varied minimally (+/- 3 dB). Wind speeds remained steady, at a moderate 18-19 km/hr.  It is likely 

that the localized spikes and increased trends in PNC (Fig. 3(c) right ) may be due to buses and trucks 

travelling roughly N-S along Harrison Ave (Fig. 1) recorded by both the sound meters and PNC monitors 

at the Roxbury site.  

4.5 General Discussion 

4.5.1 Key findings 
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Based upon 5-months of continuous noise and PNC sampling at two urban sites in Greater 

Boston, MA, we found that LAeq(time), VLFN and LFN are associated with ln(PNC) concentrations,  

mediated by wind direction and wind speeds. VLFN imparts slight negative effects on ln(PNC), 

depending on wind speed and impact sector wind direction (airport, roadways, rail lines, bus station). In 

models with either VLFN or LFN we found that LAeq(time) (dBA) has positive effects on ln(PNC). A 

novel, wind-robust model was developed using lower noise frequencies (f<125Hz) as transportation-

source proxies, interacting with wind speed to estimate PNC concentrations from impact sector wind 

directions. The predicted model results were supported by PNC and meteorological data measurements 

and analyses conducted by others at the same two sites (Hudda et al., 2016,  Simon et al.  2017).  

 

4.5.2 Synthesis with previous research 

 

 

Despite extensive previous study of spatiotemporal factors’ effect on variation in transportation 

noise, links between transportation noise emissions and meteorology-mediated emissions of PNC have not 

been well defined (Can, Rademaker, et al., 2011). Adding to the complexity of these relationships is the 

fact that noise and air pollution are often correlated due to shared sources (Poulsen et al., Lancet, 2023).  

According to the US EPA (2007) motor vehicles, especially those powered by diesel engines, have often 

been cited as a leading source of ambient UFP emissions and of deleterious effects on human health (Ris, 

C., 2007).   

Waye (2004) affirms that low frequency noise (LFN), defined in their work as 20Hz-200Hz, is 

associated with  transportation sources, including trucks, diesel buses, trains and aircraft (Waye, K.P., 

2004). Ascari et al. (2014) presents a broader definition of LFN as 10Hz -250Hz, and attributes the source 

to diesel engine and transportation vehicles (Ascari, et al., 2015). Sound below 20 Hz is generally termed 

infrasound (Alves, 2020) and while it may subjectively be considered a component of low-frequency noise, 

it is inaudible (Bergland, 1996).  
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A literature search of international research on LFN from motor vehicles has revealed that the major 

frequency content of motor vehicle emission in terms of one third octave bands is in the range of 63 Hz to 

125 Hz depending on vehicle speed and engine size (Roberts, 2010). Other sources of low frequency noise 

and infrasound are produced by machinery, both rotational and reciprocating, and all forms of transport. 

Typical sources include pumps, compressors, diesel engines, aircraft and fans (Roberts, 2010). Of these 

VLFN and LFN sources, diesel engines in particular are also sources of UFP emissions. These also include 

commuter trains (Jeong, et al., 2017, airport-related emissions (Hudda et al., EST, 2016), and heavy-duty 

diesel trucks and buses, which typically emit 10 times as many particles as a gasoline-engine car (Morawska 

et al., 2005; Ritovski et al., 2006). 

Research on noise exposure to urban cyclists in Belgium has shown that engine-related traffic noise 

encountered along the bicyclist’s route is a valid indicator of black carbon (BC), yet BC does not correlate 

with noise expressed as A-weighted equivalent sound pressure levels (LAeq(time)) (Dekoninck, L.; 

Botteldooren, D.; et al., 2013).  Dekoninck and European colleagues (2016) emphasize that the correlation 

between noise and particulate matter exposure is complex, noting that noise measurements contain spectral 

information that is highly relevant to improve this correlation, and specific noise indicators could be derived 

for this purpose. Dekoninck et al. add that simultaneous noise and BC and UFP measurements add 

significant value to the quality of air pollution models. 

 

A significant potential exists for developing a standard tool or model to assess combined 

exposure of traffic related air and noise pollution to facilitate health related studies (Khan, J., et al. 2018). 

Studies employing deterministic modelling to study exposures to both covariates reported moderate 

positive to slightly higher positive air-noise correlations (Örgen and Molnar, 2014; Sørensen et al., 2012). 

Although deterministic models have been criticized in the literature, specifically that the majority fail to 

predict extreme concentrations (Khare and Sharma, 2002), they are considered powerful and flexible tools 

(Khan, J., et al. 2018).   
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4.5.3 Effect Modifications of Meteorology 

 

Impact sector winds were important determinants of ln(PNC), with the strongest positive effects 

from winds from the direction of Logan Airport and from the road and railway at Chelsea.  Patton et al., 

(2015) found that wind-direction sectors that included the airport as a possible upwind source were a 

significant explanatory variable for PNC in communities located 4–8 km north-northwest (NNW) – 

south-southwest (SSW) of the airport in Boston (Patton et al., 2015). 

Supporting our findings, Hudda et al. (2016) found that relatively high PNCs were observed 

(2014 average was 22 000 ± 53% particles/cm^3) during southwesterly winds when highway US1 

(2.6×104 vehicles/ day) and local streets and intersections were upwind of the Chelsea site. Hudda et al. 

(2016) also observed coincident concentration spikes of gaseous pollutants and PNCs when winds were 

from the direction of busy intersections in the vicinity of the Roxbury site (southeast and west), with the 

highest of the daily averages at Roxbury site (>50 000 particles /cm^3) coincident with northwest winds 

in winter, reflecting contributions from traffic-related emissions (Hudda et al., 2016).   

In Roxbury interaction effects of impact sector winds from Harrison Ave. and from the Nubian 

Square bus station had significant positive associations with ln(PNC) for VLFN (road) and LFN and 

LAeq(1-min) (bus station).  We hypothesize that this nearly three-fold increase effect is due to particulate 

matter from LFN-emitting diesel bus engine exhausts reaching the Roxbury monitoring site carried by 

impact sector winds from the West (260o -280o). These compass bearings were identified by Hudda et al. 

(2016) as a comparable impact sector wind direction v. Logan Airport for equivalent mean hourly average 

PNC concentrations (particles/cm^3) at the Roxbury site (Hudda et al., 2016).  

Simon et al. (2017) additionally note that the location of the Boston (Roxbury) central-site 

monitor is in a highly-trafficked area (i.e., at grade and 75 m from the Dudley Square bus station) 

compared to most of the Boston residential sites. Simon et al. (2017) used the EPA-STN Roxbury site, a 
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secure, centrally-located site >1500 m from I-93, which was likely influenced by bus emissions when 

winds were from the 225-315o sector. 

Figures 3 and 4 show noise levels for various wind directions and impact sectors, colored by 

PNC concentrations (particles/cm^3). PNC wind roses in Figure 3(a) suggest that higher dBA (LAeq(1-

min)) levels are indicative of higher PNC concentrations from the local roadways (westerly direction) in 

Chelsea (left figure) and more widely distributed PNC concentrations from the directions of the bus 

station, airport and local roads in Roxbury (right figure). Figure 3(b) shows a clear spike in PNC 

concentrations from the direction of Logan Airport (135 -175o) while VLFN dB levels are elevated in 

Chelsea (left figure); the bus station remains a transport source of PNC with higher VLFN dB levels in 

Roxbury (right figure).  LFN wind roses (Fig. 3(c)) appear similar to dBA wind roses, with wider PNC 

distributions by wind direction at both sites.  

Figure 4 presents heatmaps of mean PNC concentrations (particles/cm^3) for quartiles of noise 

levels. (<25th percentile = Q1; IQR = 25th- 75th percentile; and >75th percentile, dBA and dB values 

shown on Fig. 4) for impact wind sectors as previously identified in this study as known sources of PNC 

(airport, railway, roadways). The highest mean PNC concentrations occur from wind impact sectors from 

Logan Airport for all noise measures at both sites. Secondary to this are elevated mean PNC 

concentrations from the roadways (both sites) and from the bus station wind impact sector in Roxbury.  

Taken together, Figures 3 and 4 indicate that impact wind directions from Logan Airport,  local roadways 

and the Roxbury bus station result in the highest mean PCN concentrations, with variation in the PNC 

concentrations occurring at differing levels of noise measures.  

Of the other meteorological covariates modeled - temperature, humidity (%) and wind speed - 

only wind speed==HI (75th percentile) more strongly affected model results for various noise covariate 

associations with ln(PNC). Hudda et al. (2016) found that during impact-sector winds, the highest PNCs 

were observed during 25–35 km/hr winds at Chelsea and 30–50 km/hr winds at Roxbury. The highest 
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PNCs for winds from other directions were observed during calm to <10 km/hr wind speeds.  (Hudda et 

al., 2016). 

A study in Montreal by Weichenthal et al. (2015) found that wind speed had a negative effect 

estimate on mean UFP concentration (particles/cm^3) (β = -1534, 95% ci (-1912, -1156)) in a linear 

regression model, and cited that ambient temperature and wind speed are known to be important 

predictors of temporal variations in ambient UFP concentrations. The Montreal study additionally 

presented a model for the natural logarithm of ambient UFPs, which explained a similar proportion of the 

variance in ambient UFP concentrations vs. mean UFP (not log transformed) concentrations 

(Weichenthal, S. et al., 2015). 

We hypothesize that under high wind speed conditions, LFN may not be a significant predictor of 

ln(PNC) and VLFN is a poor predictor of ln(PNC). Under light to moderate wind speeds (upper quartile), 

LFN is a stronger positive predictor and VLFN may be a directionally negative predictor of ln(PNC) 

depending upon site and wind direction, although VLFN is moderately correlated to wind speed (r=0.4 -

0.65). 

4.5.4 Temporal Factors Affecting PNC 

Time of day was included in our models as a temporal covariate as Day==0700-2300hrs; 

Night==2300 -0700hrs, and had significant positive effect estimates on ln(PNC) outcomes. Simon et al. 

(2017) found that overnight PNC in Chelsea was substantially lower compared to daytime concentrations 

and noted an increase in Chelsea PNC was observed during the evening rush hour period, and especially 

during south-southeast (SSE) winds (Simon, et al. 2017).  

4.5.5 Assessment of Confounding 

 

Two-pollutant models of noise and air pollution exposures have attempted to disentangle which 

factors are independent risk factors for health outcomes and quantify their contribution to the total 
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environmental burden (Poulsen et al., 2023).  Tetreault et al. (2013) affirm that more studies using 

pollution indicators specific to road traffic are needed to properly assess if noise and air pollution are 

subjected to confounding (Tetreault, L., et al., 2013). 

Significant moderate correlations between 1-min averages of PNC and noise imply that in 

epidemiological studies of health effects of air pollution during traffic exposures, modest confounding may 

occur if noise is ignored (Boogard et al., 2009). Because correlations are moderate, statistical methods can 

be used to indentify the potential independent effects of air pollution and noise, provided both are monitored 

(ibid).  

Goldberg et al. (2008) describe the necessary conditions for confounding in time-series studies as 

(1) the potential confounder is causally related to the outcome and (2) exposures to the pollutant of interest 

and the potential confounder co-vary (Goldberg et al., 2008). In our study, noise and wind speed could be 

confounded since both variables are related to the outcome of PNC concentration.  We evaluated 

confounding effects of wind speed on noise in our wind-robust models (Table 4). Models of dBA (LAeq(1-

min)) showed a difference of  200% in the β-coefficient, directionally negative (airport wind impact sector), 

when wind speed (km/hr) was added to the model.  

β-coefficients differed from 39% directionally positive (airport wind impact sectors) to 500% 

directionally negative (roadway impact sectors), when wind speed (km/hr) was added to VLFN-only 

models. LFN-only models β-coefficients differed only 5% directionally positive from both airport and road 

wind impact sectors when wind speed was added to those models. For combined VLFN+LFN models, β-

coefficients differed <1% for LFN directionally positive and from 5% to 25% directionally negative for 

VLFN upon addition of wind speed (results in Appendix 2, Table 6S, Supplementary Tables).  

We conclude that wind speed and VLFN are confounded in models predicting ln(PNC) in our study.  

Wind speed and its interactions with LFN can be modeled with VLFN in the same models with only small 
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changes in model β-coefficients for VLFN. We found no confounding effects of wind speed with LFN, and 

generally higher R^2 values and lower AIC values for lower freqeuncy noise (<125Hz) models v. dBA 

models. 

4.5.6 Wind Robust Model Discussion 

 

 

Our proposed wind-robust model, controlling for wind impact sector (direction) has good 

agreement with prior work conducted at the same sites and may be valid to predict average or median 

PNC values, based on median noise measures of VLFN (dB) and LFN (dB), with interactions of LFN and 

median wind speeds (km/hr). The proposed model may not be as strong a predictor for individual noise-

PNC events such as PNC emissions from a single source of road traffic pollution (e.g. buses, trucks).   

We found that models comprised of lower noise-frequencies (VLFN, LFN) and their interactions 

with wind speed, controlled for wind impact sectors from Logan airport performed better (AIC: 9.6E3; 

R^2= 0.27) at predicting ln(PNC) than a dBA-only model with LAeq(1-min) and a dBA:wind speed 

interaction model (AIC: 1.03E4;  R^2=0.16)(Table 4).   

Similar results were found for models predicting ln(PNC) with wind impact sectors from local 

roadways (Table 4). Lower noise-frequency (VLFN, LFN) models and their interactions with wind speed 

also performed better (AIC: 1.77E4; R^2= 0.22) at predicting ln(PNC) than a dBA-only model (AIC: 

1.87E4; R^2= 0.15).  Additional models of C-weighted (nearly independent of frequency) minus A-

weighted decibels, LCeq-LAeq(24-hr) when paired with dBA and wind speed were not significant 

predictors (p>0.05) of ln(PNC). 

  There exists no standard or harmonized tool in the scientific literature for modeling both 

exposures to noise and air pollution simultaneously (Khan, J. et al., 2018).  The novelty of our wind-

robust model is its use of lower noise frequencies as transportation-source proxies, interacting with wind 

speed to estimate PNC concentrations from impact sector wind directions.  Other work in our study areas 
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by Patton et al. (2015), Hudda et al. (2016) and Simon et al. (2017) did not include noise as a covariate in 

their PNC models or correlation analyses.  

 

 

4.5.7 Study strengths and weaknesses  

 

This study, encompassing five months of ambient noise monitoring in two locations is 

markedly different in its length and depth of noise measures and meteorological measurements from 

previous studies.  Our dataset is available for other researchers as a .txt file possessing rich metrics of 

dBA and 1/3 octave bands, encompassing some 1 billion readings. Our data are currently being evaluated 

for implementing a machine-learning modeling approach. This will help further define spatiotemporal 

differences in both loudness and noise frequencies classified by source (e.g. truck, bus, rail, aircraft) and 

source impacts on PNC concentrations mediated by meterology.  

Although we collected data across two seasons (late-Spring through late-Summer), we did not 

capture Winter seasonality to assess the previously reported inverse relationship between ambient 

temperature and UFPs (Weichenthal, S. et al. 2015). Indeed Simon et al. (2017) found that PNC was 

highest during winter (December-February) and lowest during summer (June-August) with median winter 

concentrations up to a factor of two higher than median summer concentrations in Boston (inclusive of 

the Roxbury site), with similar temporal trends in the Chelsea study area (Hudda et al., 2016; Simon, et al. 

2017).  

The use of one omni-directional sensor (microphone) at each site and therefore being unable to 

determine directionality of noise or perform separation of VLFN (infrasound) from wind noise is a 

limitation in this study, although we did perform statistical analyses of wind speed and wind direction 

impacts on lower frequencies to ascertain their confounding effects. 

 

4.5.8 Implications for future research 

 

A related area of focus from this study is use of visibility as a variable of interest for correlations 

with PNC. While we found very weak to weak (Spearman’s r=0.06 to r=0.29) positive correlations 
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between PNC (particles/cm^3) and visibility (km), stratifying by wind speed (see Section 4.2), the 

literature suggests that slow-moving air masses—and therefore stagnant conditions—facilitate the build-

up of accumulation mode particles (100 -1000nm particle size), resulting in the poorest visibility (i-Hao 

Young, Chih-Sheng Hsu, et al. 2023). A study conducted in Taiwan applied positive matrix 

factorization (PMF) to identify the sources of size-resolved submicrometer (10–1000 nm) particles and 

quantify their contributions to impaired visibility based on the particle number size distributions 

(PNSDs), aerosol light extinction, other pollutants and meteorological parameters (i-Hao Young, et al. 

2023).  Hopke et al. (2022) identified 55 peer-reviewed journal articles on the source apportionment of 

particles contributing to PNSDs in 102 locations/time periods. Those studies, however, did not further 

investigate the link between the PMF and atmospheric visibility (Hopke, P. et al., 2022). Futher reasearch 

correlating visibility and PNC is warranted.  

 

4.5.9 Implications on the regulatory process 

 

The present paper relies on frequency (f, Hz) as a proxy for tranportation noise source, with diesel-

emitting sources linked to frequencies <125Hz as a proxy for Low Frequency Noise. Studies focused on 

the health effects of noise instead generally express noise levels as a function of A-weighted decibels 

(dBA). A-weighting has a long history in health studies and provides a consistent metric to aid 

comparison between studies, yet A-weighting significantly de-emphasizes low frequency noise. The 

World Health Organization (WHO) has specifically warned against the limitations associated with 

reliance on A-weighting in health studies, and states that noise with a large proportion of low-frequency 

components ‘may increase considerably the effects on health’ (Berglund et al., 1996).   

While dBA captures time-weighted sound pressure levels, such as LAeq(time), it may be linked to 

sources that do not emit air pollutants, such as neighborhood noise, or music, both of which are 

omnipresent in modern urban societies. Work by Lee, N et al., (2022) also in Greater Boston, notes that of 

the types of community noise, entertainment and leisure are influence both urban noise perception 

(perceived loudness) and high frequency sound levels (Lee, N., Levy, J., et al. (2022)).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/positive-matrix-factorisation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/positive-matrix-factorisation
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A lengthy body of literature, much of which is previously cited in this thesis, links VLFN and LFN 

components of UEN to transportation sources, including trucks, diesel buses, trains and aircraft (Waye, 

K.P., (2004))(Ascari et al. (2014); each are known sources of UFP emissions. One caveat is that 

infrasound and low freqeuncy noise sources may also include pumps, compressors and fans (Roberts, 

2010). These may not be UFP-emitting devices.  

One immediate effect of the long history of A-weighted noise monitoring is that there is an 

abundance of dBA noise data being collected across the world principally at airports. Regulatory 

implications could involve collection of flat-weighted 1/3-octave band noise frequency data in addition to 

dBA at airport locations to facilitate further exposure studies in capturing and assessing the contributions 

of VLFN and LFN to the soundscape of airport environs.  

 

4.6 Recommendations 

Based on favorable results of our proposed wind-robust model, we recommend replicating the 

model in other locations for assessment of the model’s generalizability. Possible locations could be those 

in which we have active collaborations, such as Cincinnati, OH, where the author has previously 

collaborated with researchers conducting a joint noise and UFP personal exposure study (Leaffer, et al., 

2019). We also recommend replicating our wind robust model in Los Angeles, CA where one of our Tufts 

University collaborators conducted a study on long-range (10 km downwind) effects of PNC emissions 

from aviation emisions (Hudda, N. et al. 2014). Historical noise data from the airport may be useful in 

such a study.  

5.0 Conclusions 

This study explores the complex interaction between noise and ultrafine particles (UFP<100nm 

diameter), emphasizing the potential improvement in correlation through a richer set of noise indicators. 

Simultaneous environmental noise and PNC (a proxy for UFP) measurements are explored to enhance the 
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quality of air pollution models and examine the association of transportation-related noise frequencies on 

PNC. Additionally, the impact of wind parameters on the noise-PNC association is investigated.  

 

Over a 5-month period, noise and PNC were measured at two urban sites in Greater Boston, 

Massachusetts, burdened with multiple environmental noise and air pollution sources. The study 

evaluated  if loudness and noise frequencies, identified through 1/3-octave band spectral analysis, 

correlate with PNC . Moderately correlated (r<0.65) noise and meteorological covariates were modeled 

by multivariate regression. Models of A-weighted (dBA) noise and lower noise frequencies (f<125 Hz) 

were chosen to capture the impact of diesel engine emissions as a source of importance.  

We found that VLFN (<20Hz) imparts slight negative effects on log-transformed PNC, 

depending on wind speed and impact sector wind direction (airport, roadways, rail lines, bus station). In 

contrast, LFN imparts positive effects of a similar magnitude. In VLFN or LFN models, sound pressure 

levels, measured as LAeq(time) (dBA) have positive effects on ln(PNC).  

A wind-robust model, controlling for impact sector wind direction and including a wind speed 

interaction term was developed and validated. The proposed wind-robust model aligns well with prior 

research conducted at the same sites, which did not consider noise as a covariate. It may effectively 

predict average or median PNC values based on median noise measures of VLFN  and LFN, considering 

interactions with median wind speeds. However, the model’s strength as a predictor for individual (e.g., 

bus, truck) noise-PNC events may be limited.  
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Chapter 6 Thesis Summary and Conclusions  

In this last chapter the main findings of the thesis will be summarized and the significance and 

novelty of the research discussed. Conclusions and recommendations are provided at the end. 

6.1 Main Findings 

6.2 Cincinnati study 

In the Cincinnati study (thesis Chapter 2), we found that personal-scale, microenvironmental 

exposure measurement with novel, wearable sensors is feasible for assessment and evaluation of co-

exposures of UFP and noise on health outcomes (heart-rate). We determined that both the highest UFP 

concentrations and dBA levels which one study participant was jointly exposed to occurred during transit 

(travelling within a car, truck or bus), and the lowest UFP concentrations and noise levels occurred 

concurrently while the participant was in other microenvironments (including indoor settings). We also 

found that measurement of real-time microenvironmental temperature using a wearable sensor provides 

an accurate measurement (~ +/-5 degrees F) of ambient microenvironmental temperature, which is useful 

for understanding UFP and temperature collinearity.  

Transportation-related air pollution (TRAP) was measured successfully in real time using a PUFP 

C200 wearable sampler as particle number concentration (# particles/cc). This serves as a proxy for UFP 

exposure. UFP measurements were collected concurrently with noise exposure data (dBA) by 

NEATVIBEwear, a wearable noise monitoring device designed, engineered, and built specifically for this 

study.  

6.3 Greater Boston Studies 

In the first Boston study (Chapter 3) of low frequency environmental noise,  we found that LFN is 

predictably present as a component of UEN in the two Environmental Justice communities studied, with 

statistically significant (p-vals <0.05) temporal trends observed.  We found that LFN does not follow the 
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same seasonal trends as A-weighted dBA loudness, with Roxbury having higher LAeq levels (dBA) in 

Spring v. Summer, and Chelsea the reverse, possibly due to disparate community noise and differing 

seasonal schedules and patterns of transportation sources emitting LFN<125Hz. We also evaluated 

loudness and noise frequency measures for weeks when school was in-session v. not in-session and found 

similar trends to seasonality, attributing differences by site to school bus traffic along Roxbury site local 

roads.   

Meteorological covariates (temperature, humidity, barometric pressure, wind speed and direction) 

were evaluated as predictors of noise outcomes of LAeq and noise frequency dB levels (VLFN, LFN, 

MFN and HFN).  The most significant effect of these meteorological covariates was high wind speeds 

effects on VLFN, with a substantial increase (β = 12.5; 95% CI: 12.49,  12.58) in VLFN dB levels during 

high wind speeds at Chelsea, irrespective of wind direction, and to a lesser degree (β = 3.1; 95% CI: 3.11,  

3.16) at Roxbury.  LFN was minimally affected by high wind speeds at either site.  These findings 

informed our multivariate regression model building in Chapter 5 of this thesis.  

 In Chapter 4, a Scalable Machine Learning Approach to Classifying Transportation Noise at Two 

Urban sites in Greater Boston, Massachusetts, we produced models of transport-associated noise events 

with varying degrees of accuracy. We randomly selected 60% of our dataset to train and took the 

remaining 40% to test the model.  For binary classifications, we found that the Resnet34 model performed 

better vs. the 4-layer CNN model;  log scale spectrograms produced better accuracy vs. linear scale, and 

the majority of images were classified correctly. The predicted class for rail (vs. no rail) was 32%. For 

multi-category classification, we found that log scale maintains relative higher accuracy (71% overall 

accuracy), and the Resnet34 model produced a better overall fit. The model confusion matrix showed 

high accuracy for rail (27.8%) and bus (20.8%) classes, but poor classification for airplane noise events 

(1.4%).  

 In Chapter 5, our second Boston study, we modeled the association of environmental noise 

(loudness and frequencies) with ultrafine particles (UFP<100nm diameter), moderated by meteorological 
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factors and site.  Our objectives were to establish whether loudness and noise frequencies emitted from 

urban noise sources identified by metrics such as 1/3-octave band spectral analysis are associated with 

statistically significant variations in ln(UFP) concentrations, controlling for meteorology, time of day and 

site; and to determine if effect modification of the noise-UFP association moderated by impact sector 

wind parameters (i.e. from direction and sources of transportation noise – airport, roadways, rail lines, bus 

station) has statistically significant associations with elevated ln(UFP) at receptor sites compared to non-

impact sector winds.  

 Based on results of multivariate regression modeling, we developed a wind-robust model based 

on associations of various low frequency noise components (f<125 Hz), which are also linked to diesel-

emitting transportation sources and modeled these noise frequency’s interaction with wind speed (km/hr), 

a significant factor in UFP transport from source to receptor.  Our proposed wind-robust models were 

validated by local work from Hudda et al. (2016), who found that the annual (2014) average impact-sector 

PNC from Logan Airport was 2-fold higher than the average for all other wind directions, and further 

supported by Simon et al. (2017) who found that during SSE winds at Chelsea, average PNC was 

approximately twice the average for all other wind directions. We found similar results. For median 

values of VLFN (dB), LFN (dB) and wind speed (km/hr) our wind-robust model predicted 21,547 

particles/cm^3 from the airport wind impact sector (both sites) and 12,281 particles/cm^3 from impact 

sector winds from local roads (both sites). 

6.4 Significance 

To our knowledge, the Chelsea and Roxbury study is one of the longer-term data collection 

campaigns in which both noise and UFP were continuously sampled. Many transportation noise and 

PM/UFP studies have focused on evaluating near-highway or urban core receptor impacts from noise 

(typically as dBA) and PM/UFP based on short durations of data collection of several days to < 1 month. 

Our data were collected over a five month period (n = 150 days) and encompassed co-located noise and 

PNC measurements.  
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We identified noise metrics more suitable for urban environmental noise classification than the 

commonly used and regulated A-weighted (dBA) loudness measures, linking very low frequency noise 

(VLFN<20Hz) and low frequency noise (LFN: 20 -125Hz) to diesel engine vehicles as a transportation 

source of importance for their contributory exposure effects of noise and UFP emissions.  

The innovation of our approach lies in the identification of noise sources by vehicle class (i.e. 

heavy trucks, buses or other diesel utility vehicles), as suggested by Chapter 4, and identifying vehicles’ 

dominant noise frequencies and correlating this with the corresponding real-time measurement of PNC as 

an indicator of UFP exposure, as demonstrated by proxy in Chapter 5.   

The Cincinnati study is the first of its kind to utilize personal, real-time exposure measurement of 

both UFP and noise obtained through the use of wearable sensors. Data sets from the study will facilitate 

assessment of the impact of short-term and peak exposures on heart rate and other health-based outcomes 

from co-exposures to UFP and noise.  

6.5  Recommendations 

We recommend disseminating results of this thesis to the City of Boston in support of adding 

environmental noise to the list of 15 determinants that influence the health of Boston residents and 

communities. We also recommend making the large noise dataset (5-months) encompassing 1x109 

readings available for future research.  

Future work is planned to improve machine learning classification rates and publish findings of that 

study. Lastly, we recommend that our proposed wind robust noise-PNC model, presented in Chapter 5, 

“Meteorological and Spatiotemporal Associations of Urban Environmental Noise Frequencies with PNC” 

be replicated in other locations for assessment of the model’s generalizability. Possible locations could be 

those in which we have active collaborations, such as Cincinnati, OH, where the author has previously 

collaborated with researchers conducting a joint noise and UFP personal exposure study (Leaffer, et al., 

2019). We also recommend replicating our wind robust model in Los Angeles, CA where one of our Tufts 

University collaborators conducted a study on long-range (10 km downwind) effects of PNC emissions 
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from aviation emissions (Hudda, N. et al. 2014). Historical noise data from the airport may be useful in 

such a study.  

6.6 Conclusions 

This thesis explores the link between chronic, combined exposure to transportation-related noise 

and ultrafine particle (UFP, <100nm diameter) emissions. Therse joint exposures pose a critical but 

understudied health risk. This thesis aims to refine predictive models by concurrently measuring noise and 

air pollution, enhancing the understanding of their combined health effects.  

At the onset of the study, methodologies were developed to encompass measurement, visualization, 

and analysis of transportation noise measures (frequency, acoustic power, and spectra) concurrently with 

UFP concentrations.  The study goals were to better understand the spatiotemporal variations of noise and 

UFP, assessing their correlation with meteorological parameters, and to jointly measure personal exposure 

to noise and UFP in various micro-environments.  This thesis also introduces new health-focused noise 

metrics, challenging the commonly used occupational standard (dBA) metrics. It explores the link between 

these metrics and ultrafine particle (UFP) concentrations, studying how noise and air pollution interact 

under various meteorological conditions. 

In our field study conducted in  Cincinnati (thesis Chapter 2) we deployed personal sensors for real-

time monitoring of UFP and noise across microenvironments (transit, home, school) and examined their 

effects on adolescent heart rates.  The study further demonstrated the feasibility and relative ease of adding 

real-time ambient temperature measurements to the personal monitoring sensor platforms. Most exposure 

studies utilize average daily temperature values from fixed site meteorological records as a proxy for actual 

exposures, which may vary considerably as participants move between microenvironments. The data 

collected in this field study will inform future personal-scale exposure assessment studies of similar design.   

In the first of our Boston studies (thesis Chapter 3), we evaluated and recommended alternative 

noise exposure metrics based on noise frequencies (Hz). Our work advocates for their robust utilization in 

health-based noise exposure studies, challenging the prevalent dependence on conventional A-weighted 

decibel (dBA) loudness metrics.   
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Chapter 4 introduces a scalable machine learning approach for classifying transportation noise by 

vehicle class, laying the foundation for potential future utilization of machine learning in source 

identification. The type of machine learning we utilized is classification of patterns of sound. In this 

approach, we employed transfer learning - using existing models based on thousands  of input data files, 

and we added this to our spectrograms generated from the Boston study data. Transfer learning models find 

similarities in datasets. Our model was trained on spectrograms, which contain decibels, frequencies and 

Doppler effects, for image recognition of trucks, trains, and airplanes. Our model can help subclassify other 

transportation noise source features for future research.  

Lastly, our second Boston study (thesis Chapter 5) utilized multivariate regression to study how 

noise and ultrafine particles vary with meteorological conditions. It presents and validates a wind-robust 

model, associating low-frequency noise (<125 Hz) and UFP, factoring in the impact of wind speed on UFP 

transport.  Our proposed wind-robust model, controlling for wind impact sector (direction) has good 

agreement with prior work conducted at the same sites and may be valid to predict average or median PNC 

values, based on median noise measures of VLFN (dB) and LFN (dB), with interactions of LFN and median 

wind speeds. The proposed model may not be as strong a predictor for individual noise-UFP events such 

as UFP emissions from single components of road traffic (e.g. buses, trucks).  The novelty of our wind-

robust model is its use of lower noise frequencies as transportation-source proxies, interacting with wind 

speed to estimate UFP concentrations from impact sector wind directions.  

On the whole, this thesis relies on frequency (f, Hz) as a proxy for tranportation noise source, with 

diesel-emitting sources linked to frequencies <125Hz. The large dataset in this study is currently being 

tested for implementing a more robust machine-learning modeling classification approach, which will help 

further define spatiotemporal differences in both loudness and noise frequencies classified by source (e.g. 

truck, bus, rail, aircraft). Transportation noise sources identified by machine-learning will be input into 

regression models with UFP as the outcome, also factoring in effect modifications of wind.  It is the 

expectation that such models will improve understanding of the complex correlations between noise and 

particulate matter exposure and add significant value to the quality of air pollution models. 
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Appendix 1. Supplementary Materials for Chapter 3 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41370-023-00599-x/MediaObjects/41370_2023_599_MOESM2_ESM.pdf 

  

https://static-content.springer.com/esm/art%3A10.1038%2Fs41370-023-00599-x/MediaObjects/41370_2023_599_MOESM2_ESM.pdf
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Appendix 2. Supplementary Materials for Chapter 5 

Table 5S  
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Supplementary autocorrelation lag-time plots for Chapter 5 Noise Measures 
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Supplementary Tables for Chapter 5 

 

Table S6 

 

 
 

Supplemental Note: Airport and Road wind impact sectors are common to both Sites
Ch. 5

Wind Robust Model Wind Robust Model dBA 
Eq(1): ln(UFP) ~ βo + β1*VLFN (dB) + β2*LFN (dB) + β3*[LFN*(wind_speed (km/hr)] + e ln(UFP) ~ βo + β1*LAeq (dBA)  + e

Impact_Wind_Airport (both Sites; n=5000 observations) *Median noise and wind measures Impact_Wind_Airport Roxbury only; n= observations)
mdl_WR2 estimate SE tStat pval VLFN 62.733 dB mdl_WR2aestimate SE tStat pval
Intercept 3.289713 0.167285 19.6653 5.49E-83 LFN 70.565 dB Intercept 5.659454 0.135636 41.72537 0
VLFN -0.02769 0.00247 -11.2108 7.95E-29 MFN 59.458 dB LAeq(t=1min)0.071256 0.002327 30.61754 7.8E-189
LFN 0.119287 0.002978 40.05884 1.5E-304 LAeq(t=1min) 58.8 dBA AIC = 10346.9 Rsquared= 0.158
LFN:WS -0.00011 2.27E-05 -4.99422 6.11E-07 wind sp. 12.964 km/hr
AIC = 9614.414 Rsquared= 0.273 * combined sites for airport WD
PNC Prediction = 19270.42 #/cm^3 PNC Predicton = 18945.5 #/cm^3

Wind Robust Model Wind Robust Model dBA 
Eq(1): ln(UFP) ~ βo + β1*VLFN (dB) + β2*LFN (dB) + β3*[LFN*(wind_speed (km/hr)] + e ln(UFP) ~ βo + β1*LAeq (dBA)  + e
Impact_Wind_Road (both Sites; n=11515 observations) *Median noise and wind measures Impact_Wind_Road (both Sites; n=11515 observations)
mdl_WR8 estimate SE tStat pval VLFN 64.216 dB mdl_WR8aestimate SE tStat pval
Intercept 5.478947 0.091621 59.79991 0 LFN 70.591 dB Intercept 6.321092 0.072253 87.48606 0
VLFN -0.01216 0.000941 -12.9241 6.04E-38 MFN 59.243 dB LAeq(t=1min)0.056023 0.001251 44.76811 0
LFN 0.071809 0.001276 56.28507 0 LAeq(t=1min) 58.2 dBA AIC = 18708.59 Rsquared= 0.148
LFN:WS -0.00016 1.18E-05 -13.2942 4.93E-40 wind sp. 16.668 km/hr
AIC = 17735.29 Rsquared= 0.217 * combined sites for roadway WD

PNC Prediction = 14512.25 #/cm^3 PNC Prediction = 14495.64 #/cm^3

Wind Robust Model deltaC-A + WS Wind Robust Model deltaC-A + ImpactWind
ln(UFP) ~ βo + β1*deltaC-A (dB) + β2*[deltaC-A*(wind_speed (km/hr)] + e ln(UFP) ~ βo + β1*deltaC-A (dB) + β2*[deltaC-A*(ImpactWind] + e
both Sites; n=200 observations;  all wind directions both Sites; n=200 observations; wind speed removed
mdl_WR2cestimate SE tStat pval mdl_WR2destimate SE tStat pval
Intercept 10.61052 0.286503 37.03459 1.96E-90 Intercept 10.28481 0.26984 38.11453 9.19E-92
deltaC-A -0.12277 0.029451 -4.16861 4.6E-05 deltaC-A -0.0808 0.027315 -2.95814 0.003482
deltaC-A:WS0.000269 0.000514 0.523776 0.601026 deltaC-A:rail-0.09429 0.019019 -4.9578 1.56E-06
AIC = 315.6 Rsquared= 0.073 pval>0.05 deltaC-A:airport-0.041 0.018147 -2.2595 0.02497

deltaC-A:road-0.03452 0.011722 -2.94454 0.003632
deltaC-A:bus-sta0.037714 0.016633 2.267496 0.024468
AIC = 282.8 Rsquared= 0.226

PNC Predicton 11882.56 #/cm^3
median deltaC-A = 9.96 dB (use 10 dB in models) PNC Predicton rail 13052.5 #/cm^3
median daily WS = 11.11 km/hr PNC Predicton airport 13053.03 #/cm^3
NOTE: PNC increases as deltaC-A decreases here PNC Predicton road 13053.1 #/cm^3

PNC Predicton bus-sta 13053.82 #/cm^3
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Wind Robust Model dBA + WS Wind Robust Model dBA + VLFN
ln(UFP) ~ βo + β1*LAeq (dBA)+ β2*[LAeq*(wind_speed (km/hr)] + eln(UFP) ~ βo + β1*LAeq (dBA)+ β2*VLFN + e

Impact_Wind_Airport (both Sites; n=5000 observations) Impact_Wind_Airport (both Sites; n=5000 observations)
mdl_WR2bestimate SE tStat pval mdl_WR2_1estimate SE tStat pval
Intercept 5.457797 0.1417 38.51655 2E-284 Intercept 5.722293 0.144631 39.56469 4.5E-298
LAeq(t=1min)0.076615 0.002576 29.73825 4.5E-179 LAeq(t=1min)0.07249 0.002742 26.43341 3.1E-144
LAeq:WS -0.00013 2.66E-05 -4.80307 1.61E-06 VLFN -0.00215 0.002168 -0.99351 0.320509
AIC = 10325.87 Rsquared= 0.1615 AIC = 10356.37 Rsquared= 0.157

PNC Prediction = 19252.02 #/cm^3 PNC Prediction = 21691.74 #/cm^3

Wind Robust Model dBA + WS Wind Robust Model dBA + VLFN
ln(UFP) ~ βo + β1*LAeq (dBA)+ β2*[LAeq*(wind_speed (km/hr)] + eln(UFP) ~ βo + β1*LAeq (dBA)+ β2*VLFN + e
Impact_Wind_Road (both Sites; n=11515 observations) Impact_Wind_Road (both Sites; n=11559 observations)
mdl_WR2bestimate SE tStat pval mdl_WR2_2estimate SE tStat pval
Intercept 5.457797 0.1417 38.51655 2E-284 Intercept 6.85899 0.080712 84.98146 0
LAeq(t=1min)0.076615 0.002576 29.73825 4.5E-179 LAeq(t=1min)0.060741 0.001279 47.47857 0
LAeq:WS -0.00013 2.66E-05 -4.80307 1.61E-06 VLFN -0.01255 0.000866 -14.489 3.68E-47
AIC = 10325.87 Rsquared= 0.1615 AIC = 18557.02 Rsquared= 0.164

PNC Prediction = 20268.11 #/cm^3 PNC Prediction = 32665.2 #/cm^3

Wind Robust Model dBA + deltaC-A +WS Wind Robust Model ROXBURY dBA Wind Robust Model ROXBURY dBA + VLFN +LFN 
ln(UFP) ~ βo + β1*LAeq (dBA) + β2*deltaC-A (dB) + e ln(UFP) ~ βo + β1*LAeq (dBA) + e ln(UFP) ~ βo + β1*LAeq (dBA)+ β2*VLFN + β3*LFN + e
both Sites; n=200 observations;  all wind directions Impact_Wind_Airport (Roxbury; n=3497 observations) Impact_Wind_Airport (Roxbury; n=3497 observations)
mdl_WR2eestimate SE tStat pval mdl_ROX_airestimate SE tStat pval mdl_ROX_air2estimate SE tStat
Intercept 0.053776 1.108626 0.048507 0.961362 Intercept 4.586906 0.278839 16.45002 1.27E-58 Intercept 2.072595 0.278789 7.434266
LAeq(t=1day)0.164875 0.01813 9.093894 1.14E-16 LAeq(t=1min)0.089948 0.004634 19.40972 8.78E-80 LAeq(t=1min)0.001827 0.005769 0.31673
deltaC-A -0.03085 0.038264 -0.80636 0.421021 AIC = 7137.5 Rsquared= 0.097 VLFN -0.0214 0.003697 -5.78946
LAeq:WS -7.5E-05 0.000526 -0.14226 0.887021 LFN 0.127769 0.005708 22.38342
deltaC-A:WS0.000657 0.00299 0.2197 0.826336 AIC = 6605.913 Rsquared= 0.225
AIC = 239.7396 Rsquared= 0.373 pval>0.05

PNC Predicton 13316.4 #/cm^3 PNC Predicton 21672.56 #/cm^3 PNC Predicton 22959.81 #/cm^3
median deltaC-A = 9.96 dB (use 10 dB in models) median LAeq(1-min) = 60 dBA median LAeq(1-min) = 60 dBA
median daily WS = 11.11 km/hr median VLFN (dB) = 63.721 dB
median LAeq(1-day) = 59 dBA median LFN (dB) = 72.186 dB
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Wind Robust Model ROXBURY dBA Wind Robust Model ROXBURY dBA + VLFN +LFN 
ln(UFP) ~ βo + β1*LAeq (dBA) + e ln(UFP) ~ βo + β1*LAeq (dBA)+ β2*VLFN + β3*LFN + e
Impact_Wind_Other (Roxbury; n=52919 observations) Impact_Wind_Other (Roxbury; n=52919 observations)
mdl_ROX_otherestimate SE tStat pval mdl_ROX_other2estimate SE tStat
Intercept 5.513779 0.069734 79.06922 0 Intercept 3.450559 0.068881 50.09438
LAeq(t=1min)0.068948 0.00116 59.4311 0 LAeq(t=1min)-0.00092 0.00133 -0.69148
AIC = 97291.56 Rsquared= 0.063 VLFN -0.00408 0.000819 -4.9834

LFN 0.090693 0.001202 75.42957
AIC = 89549.27 Rsquared= 0.19

PNC Predicton 15585.25 #/cm^3 PNC Predicton 16098.18 #/cm^3
median LAeq(1-min) = 60.05 dBA median LAeq(1-min) = 60.05 dBA

median VLFN (dB) = 63.33 dB
median LFN (dB) = 72.216 dB

Wind Robust Model
Eq(1): ln(UFP) ~ βo + β1*LFN (dB) 
Impact_Wind_Road (both Sites; n=10996 observations) *Median noise and wind measures
mdl_CRrdLestimate SE tStat pval VLFN 64.196 dB
Intercept 5.598918 0.082602 67.78163 0 LFN 70.402 dB
LFN 0.056073 0.001181 47.4984 0 MFN 59.243 dB
AIC = 16116 Rsquared= 0.17 WS 16.668 km/hr

LAeq(t=1min) 58.2 dBA
PNC Prediction = 13996.41 #/cm^3 * combined sites for roadway WD

Wind Robust Model
Eq(1): ln(UFP) ~ βo + β1*LFN (dB) + β2*WS (km/hr)

Impact_Wind_Road (both Sites; n=10996 observations) Confounding Check
mdl_CRrdLWestimate SE tStat pval
Intercept 5.5833 0.081549 68.46553 0 β (no WS) β (with WS)%diff.
LFN 0.059165 0.00118 50.15928 0 VLFN 0.056073 0.059165 0.053662
WS -0.01256 0.00074 -16.9779 7.77E-64
AIC = 15833.38 Rsquared= 0.1913
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