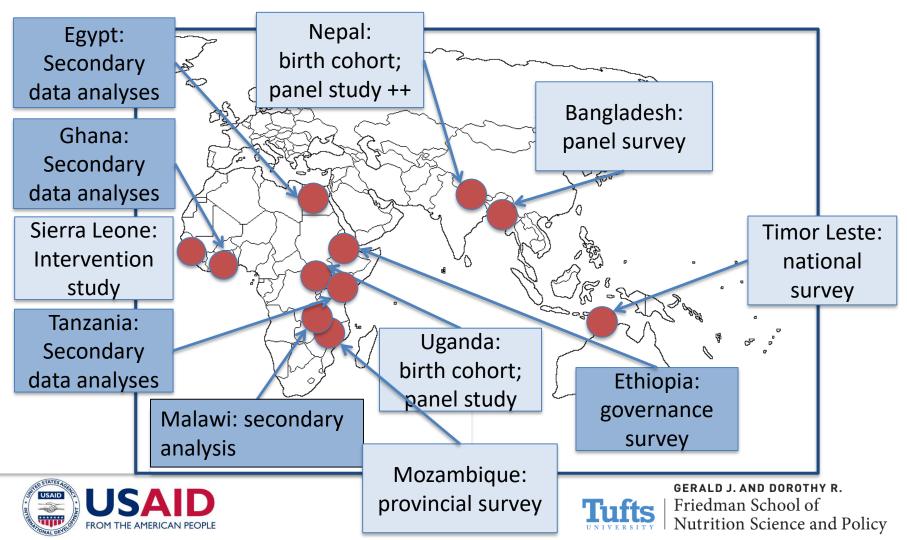

Feed the Future Innovation Lab for Nutrition:

Research supporting nutrition-sensitive programming

Patrick Webb

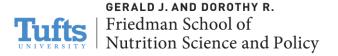

May 2018 Kampala, Uganda

NUTRITION INNOVATION LAB study sites

CAN ANIMAL SOURCE FOODS IMPROVE BIRTH OUTCOMES, NUTRITION? (NEPAL)

> Peri-urban (Bhaktapur):

➤ Hh owning livestock = ↑ ASF intake = ↓ risk of stunting


Can Promotion of Aquaculture and Horticulture Improve Diet Quality? (Bangladesh)

Statistically significant, positive linear associations:

- 1 unit increase in diversity in fruits/veg production = + 0.2 in diversity of fruits/veg units consumed [R2=0.997; p<.0001]</p>
- 1 unit increase in diversity in fish species produced = + 0.87 in diversity of fish species consumed [R2=0.83; p<.0001]

Can multisector programming rai production diversity? (Uganda)

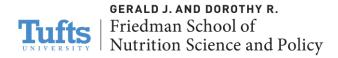
\/ C C	
YES	
	•

	Treatment group	CC effect on production diversity (species count)	CC effect on production diversity (species count)
		2014	2016
	all CC programs	1.268***	0.784**
	Ag/Nutr/WASH	0.589**	1.102***
	Ag/Nutr	0.244	0.569
	Ag only	0.468	0.790
	Nutr only	0.898	1.347

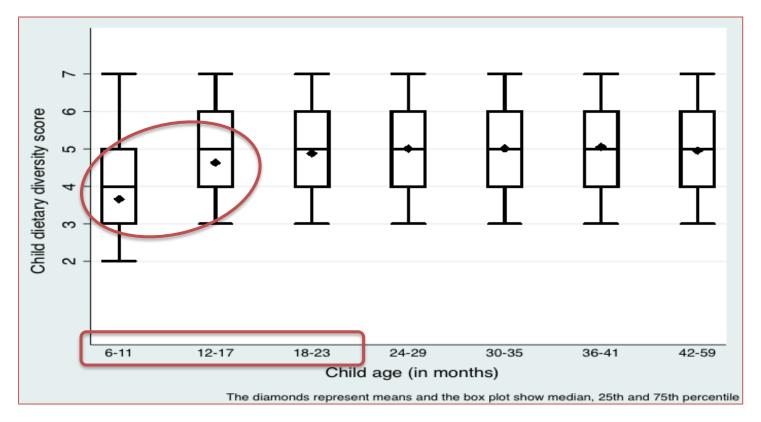
- ✓ Effects accumulate over time
- ✓ Households adopting multiple innovations do better

YES!

Can multisector programming implove women's diets? (Uganda, N=>3000 hhs)


Food category	Effect in 2014 (over 2012)	Effect in 2016 (over 2014)
Cereals	1.201527	.9040405
Tubers/roots	1.077021	1.328351
Legumes	.6867968*	.8352416
Oilseeds	.8575654	.8747842
Vegetables	1.386811**	1.095166
Fruits	.6084369***	.5977029***
Meats	1.269184	1.478184*
Dairy	.6477301	1.509644
Fats/oils	1.514287**	1.359578*

^{*} p < 0.05, ** p < 0.01, *** p < 0.001, Odds ratios estimated by fixed effects logit models

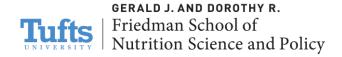

BUT....!!

Farm production raises DD only for older children, (as they can consume family foods) (NEPAL)

... own production raises DD only in poorer households remote from markets (N=>3,500hhs)

High levels of **blood aflatoxin** during pregnancy impacts birth outcomes (Uganda N=238)

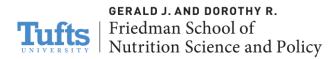
Unadjusted Model	Adjusted Model
-0.06 (-0.13, 0.002)	-0.07 (-0.13, -0.002)
p=0.059	p=0.045*
-0.09 (-0.42, 0.23)	-0.12 (-0.44, 0.21)
p=0.566	p=0.476
-0.16 (-0.31, -0.01)	-0.16 (-0.30, -0.03)
p= 0.032*	p=0.021*
-0.13 (-0.39, 0.12)	-0.14 (-0.40, 0.11)
p=0.301	p=0.274
-0.07 (-0.24, 0.10)	-0.08 (-0.25, 0.09)
p=0.444	p=0.357
-0.23 (-0.47, 0.003)	-0.27 (-0.51, -0.03)
p=0.053	p=0.028*
-0.19 (-0.37, -0.007)	-0.23 (-0.41, -0.04)
p=0.042*	p=0.016*
-0.10 (-0.43, 0.23)	-0.08 (-0.42, 0.26)
p=0.561	p=0.642
	-0.06 (-0.13, 0.002) p=0.059 -0.09 (-0.42, 0.23) p=0.566 -0.16 (-0.31, -0.01) p= 0.032* -0.13 (-0.39, 0.12) p=0.301 -0.07 (-0.24, 0.10) p=0.444 -0.23 (-0.47, 0.003) p=0.053 -0.19 (-0.37, -0.007) p=0.042* -0.10 (-0.43, 0.23)


High levels of maternal EED impacts birth outcomes

(Uganda N=238)

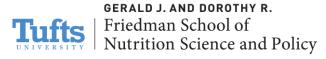
	Length at birth (cm)	Length-for-age Zscore	Gestational age at birth	
	Adjusted	Adjusted	Adjusted	
Anti- flagellin IgG	-0.97 (-1.79, -0.14) p=0.022*	-0.52 (-0.95, -0.08) p=0.020*	-1.35 (-2.64, -0.07) p=0.039*	
Anti-LPS IgG	-0.45 (-0.87, -0.02) p=0.041*	-0.25 (-0.48, -0.03) p=0.029*	-0.89 (-1.52, -0.25) p=0.006*	

^{*} p<0.05



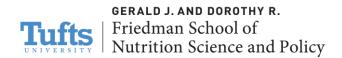
RESEARCH ON NUTRITION-SENSITIVE AGRICULTURE - CONFIRMING AND CAUTIONING

- Promoting agric. diversity does raise production diversity, which is linked to improved diet quality for women.
- It also helps child nutrition, but only in poorer households, more remote from markets, and >24m of age (>1000 days). More is needed than agric. for 1000 days programming.
- Multisector programming combining Ag/Nutr/WASH can have positive impact on prod. DD, and women's DD [[as well as narrowing gap between poor and less poor]].



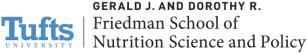
ANIMAL SOURCED FOODS +ve; ANIMALS IN HOME -ve

- More ASF consumption improves birth outcomes [[and child growth and cognition. Eggs special, regardless of wealth]].
- **But**, children grow. One measure not enough; ASFs have +ve effects inpregnancy and <24m; diet diversity +ve >36m. Time frame of pathway (and when measured) matters!
- **But** poultry/ruminants in home linked to **maternal EED**, which is linked to birth outcomes (shorter gestation, LAZ at birth).
- Poor EED in child associated with wasting and stunting [[not mediated by diet diversity]].



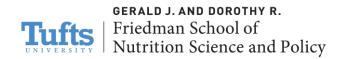
AFLATOXINS IN BLOOD - NOT GOOD!

- **AF in mother's blood = impaired birth outcomes** (weight, height and head circumference).
- Higher production diversity and diet diversity not protective.
- In Nepal, no clear association with on-farm management/storage practices/knowledge. [[Major source of contamination is market supply rather than own farm]].
- Need to understand cumulative effects of multiple mycotoxins, and impact of simple techniques/awareness in moisture management.



KEY ROB AND NORA THEMES

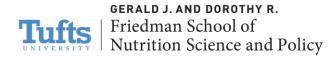
- Pathways for Impact: *Pray, Masters, Ayoub (2017) Impacts of Agricultural Research on Poverty, Malnutrition and Resilience* report.
- Field studies (huge sample sizes) empirically documenting impact
 pathways of agric. (via diets/income) on nutrition. Agriculture programs
 serve as viable platforms for multisector transfers (services/inputs).
- Field studies (huge sample sizes) empirically documenting impacts of multisector programming (via agric. packages) on diets/nutrition.
- Resilience: 2015 earthquake in Nepal, smallholder agriculture bent but didn't break. Buffer for food security among poorer hhs.



Huge potential for MUCH MORE COLLABORATION ACROSS INNOVATION LABS for solving defined problems!!

outcomes takes time (a generation?)

- Animal source foods matter for nutrition: More needed when intake low, not less.
- Animals can impact EED and water quality, -ve for nutrition.
- Food safety huge impact for nutrition (ecoli, mycotoxins).
- Post-harvest losses huge potential for diet quality/nutrition.



FEEDIFUTURE

The U.S. Government's Global Hunger & Food Security Initiative

www.feedthefuture.gov

