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Abstract: A novel Fourier-based image analysis method for measuring 
fractal features is presented which can significantly reduce artifacts due to 
non-fractal edge effects. The technique is broadly applicable to the 
quantitative characterization of internal morphology (texture) of image 
features with well-defined borders. In this study, we explore the capacity of 
this method for quantitative assessment of intracellular fractal morphology 
of mitochondrial networks in images of normal and diseased (precancerous) 
epithelial tissues. Using a combination of simulated fractal images and 
endogenous two-photon excited fluorescence (TPEF) microscopy, our 
method is shown to more accurately characterize the exponent of the high-
frequency power spectral density (PSD) of these images in the presence of 
artifacts that arise due to cellular and nuclear borders. 
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1. Introduction 

The analysis of biomedical images is critical for detection of abnormalities and disease, but it 
is often subject to the interpretation of a medical professional. Starting as early as the 1960s, 
efforts have been made to develop quantitative tools based on automated image analysis 
algorithms to assist physicians and researchers in characterizing tissue properties [1]. 
Optimization and development of these methods is still underway, and more groups are 
recognizing the utility of these techniques for extracting patterns and information from 
biomedical images. Uncovering this image information is likely to lead to the discovery of 
novel and objective diagnostic criteria, improving diagnostic sensitivity and enabling earlier 
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disease detection. In this way, widespread application and optimization of quantitative image 
analysis techniques has great potential to impact the performance of clinical diagnostics and 
basic research that relies on interpretation of biomedical images. 

Fourier-based techniques have wide-range applications in signal and image assessment 
and are gaining a more critical role in tissue characterization. For example, these techniques 
have been implemented to characterize bone structure in computed tomography images [2] 
and to detect cardiac arrhythmias in electrocardiogram signals [3]. The squared amplitude of 
the Fourier transform (FT) is referred to as the power spectral density (PSD). Biomedical 
images of cells and tissues often exhibit PSDs with inverse power-law frequency dependence 
(i.e., proportional to k-β, where k is spatial frequency and β is the power-law exponent), which 
can indicate a scale-invariant (fractal) organization of the imaged features [4]. Scale-
invariance describes features or patterns that persist over multiple length scales. These 
features must satisfy conditions of self-similarity; meaning a fractal object is similar to a 
subset of itself. In special cases, fractal can be considered self-affine if variation in one 
direction scales differently than variation in another direction [4–6]. 

Fractals are present in a wide variety of natural systems [5, 6],  including rock strain 
distributions [7], microvascular networks [8], and chromatin aggregation [9]. Numerous 
groups have reported on the fractal nature of subcellular inhomogeneities and their variation 
with disease state [9–16]. However, many of these studies are based on light scattering 
properties of cells and tissues, providing an indirect (and non-singular) determination of cell 
and tissue morphology. Quantitative characterization of fractal features can thus vary with the 
particular model assumed for subcellular or tissue density fluctuations; for example, whether 
these features exhibit von Kármán [11, 13], exponential [10, 17] or stretched exponential 
spatial correlations [16]. Furthermore, direct analysis of subcellular features is often attained 
by invasive methods, such as by histological staining [17] or electron microscopy [18], which 
may alter morphology from its nascent state. 

Biomedical images of living cells or tissues obtained via fluorescence microscopy, on the 
other hand, have the advantage of providing a direct and noninvasive means for determining 
cell morphology down to submicron length scales. In this study, we characterize images that 
rely on intrinsic fluorescence from nicotinamide adenine dinucleotide (NADH), which 
emanates from cell mitochondria [19]. Mitochondria are the main energy-converting 
organelles of mammalian cells [20]. Metrics that quantitatively assess the degree of 
correlation of mitochondrial networks could serve as useful indicators of cellular health 
status. For example, early work by Hackenbrock showed that mitochondrial networks rapidly 
become more condensed in liver cells in which oxidative phosphorylation was activated [21–
23]. More recent work has focused on the thinning and branching of the mitochondrial 
networks upon the switch from glycolytic to oxidative energy metabolism, which is thought 
to be a critical indicator of cell growth or differentiation [24, 25]. 

For PSD-based analysis, as the measured power-law exponent (β) of an image increases, 
the fractal metrics we assess indicate the mitochondrial networks become more correlated. 
Generally, when the PSD spectral content is flat (β = 0), the signal is uncorrelated, white 
Gaussian noise (Table 1). Images that contain features characterized by power exponent 
values ranging between 0 < β < 2 are considered fractional Gaussian noises (fGNs), whereas 
fractional Brownian motions (fBMs) are characterized by exponent values between 2 < β < 4 
[4]. fBMs are distinct from fGNs in that they have long-range correlation (“memory”), which 
has been described as a statistical relation between the increments of data set values [4]. 
Visually, these long-range correlations result in progressively more clustering as the power-
law exponent increases. 
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Table 1. β values and corresponding statistical processes 

Power-law exponent (β) Description 
β = 0 white Gaussian noise 
0 < β < 2 fractional Gaussian noise (fGN) 
2 < β < 4 fractional Brownian motion (fBM) 

In practice, most PSD-based analyses that assess the fractal nature of biomedical images 
do not account for artifacts that can be produced by edge effects from cellular and nuclear 
borders [14, 26]. To overcome these artifacts, some studies have focused on small regions 
inside cells, which requires sub-image selection and drastically limits resolution and field of 
view. Others have discussed in a geological context how power spectral estimates of scale-
invariant data sets depend on factors other than the fractal characteristics of the given data set, 
such as sampling, noise, and, edge effects [27]. 

The objective of our study is to develop an automated, PSD-based analysis for the 
quantitative characterization of internal morphology (texture) of image features with well-
defined borders that overcomes the limitations introduced by the presence of these borders, in 
order to develop more robust diagnostic biomarkers of organizational attributes. We present a 
mechanistic computational study in which we evaluate simulated images of scale-invariant 
(fractal) patterns combined with controlled cell-shaped features to show that these cell-shaped 
features and image background have predictable effects on PSD power-law decays. Based on 
this evaluation, we quantify the manner in which the presence of cell- and nuclear-shaped 
features hinders the ability of PSD-based methods to accurately assess intracellular patterns. 
To overcome this limitation, we have developed a digital object cloning (DOC) method for 
use prior to traditional PSD analysis. We characterize simulated images that contain 
structures and textures common to epithelial tissues and compare the ability of PSD-based 
methods to accurately quantify intracellular texture both with and without DOC pre-
processing. Finally, to showcase the diagnostic utility of this improved technique, we apply it 
to characterize experimentally acquired autofluorescence images from engineered normal and 
pre-cancerous epithelial tissues 

2. Methods 

2.1 Simulations of scale-invariant images 

To test the ability of PSD-based approaches to sense changes in fractal scaling, simulated 
fractal images, ( )S r


, of size N × N and which have power spectral density that scales as a 

power-law with pixel values represented by the vector r


, ˆ ˆr xi yj= +
, are generated in 

MATLAB based on Voss’s inverse Fourier filtering method [28]. In order to construct a 
fractal image using this approach, white noise, ( )W r


, is generated with a mean of 0 and a 

standard deviation of 1 with the randn function in MATLAB. The discrete Fourier transform, 

( )F k


, as a function of radial spatial frequency, k


, where x yk k k= +


 and for ( )W r


 is 

taken as: 

 
2 ( )

1 1

2 0 0

1
( ) ( ) .

i k r
N N

N
x y

F k W r
N e

π−− −

= =
=  

  
 (1) 

Next, the phase, ( )kΦ


, of the Fourier transform of ( )W r


 is computed by dividing the 

Fourier transform (real and imaginary parts) by its magnitude. For ( )F k


≠ 0: 
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The phase is filtered with a transfer function, ( )T k


, to produce the random function, 

 '( ) ( ) ( ),k T k kΦ = ∗Φ
  

 (3) 

which is retransformed into the spatial domain to produce a fractal image, '( )W r


, where 
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To generate inverse power-law dependent PSD scaling from '( )W r


 requires that: 

 /2( ) ,T k k β−=
 

 (5) 

where β is the exponent of the power-law decay and for β values ranging from 0 to 4 [28]. 
For each generated image, Eq. (6) is fit to the radial (angularly-averaged) power spectral 
density (PSD): 

 ( ) ,R k Ak β−=
 

 (6) 

where ( )R k


 is the fit to the radial PSD and k


 is the radial spatial frequency. To allow 

direct comparison to acquired two-photon excited fluorescence (TPEF) images, radial spatial 
frequency of simulated images is reported in inverse microns (two pixels correspond to one 
micron in length). A short, high frequency tail appears in all power spectra of images 
containing cell-shaped objects. To avoid fitting this tail, the maximum and minimum PSD 
values are determined. The high frequency region that contains values greater than the second 
percentile of the PSD amplitude are excluded from the fit. This high frequency limit (LHF), is 

used to restrict the fits to the frequency range 0.1 μm−1 < k


< LHF. This is the region in which 
inverse power-law behavior of the PSD spectra has been typically observed in previous work 
with autofluorescent images of epithelial tissues [14]. 

2.2 Engineered tissue constructs and TPEF data acquisition 

Organotypic rafts cultured with normal human foreskin keratinocytes (HFKs) allow for 
generation of multilayered tissues that mimic the gradient of differentiation of native 
epithelium and are grown as described in detail previously [29]. Briefly, keratinocytes are 
plated on top of a neutralized bovine type I collagen (~4mg/ml) matrix with dermal 
fibroblasts, and raised to an air-liquid interface. The tissues are provided nutrients from below 
to simulate natural nutrient delivery by a vasculature bed for 10 days, at which point they are 
imaged. For pre-cancerous tissues, human-papillomavirus (HPV-) immortalized epithelial 
cells are used in place of normal HFKs as detailed previously [14]. TPEF images are acquired 
on a Leica TCS SP2 confocal microscope (Wetzlar, Germany) equipped with a Ti:sapphire 
laser (Spectra Physics, Mountain View, CA). Samples are placed on glass coverslips, excited 
with 755nm (TPEF) light and imaged using a 63x/1.2 NA water immersion objective, which 
yields 8-bit, 512 x 512 pixel images of 238 x 238 μm2, in approximately 1 s. TPEF images are 
acquired by a non-descanned PMT with a filter cube containing a 700 nm short pass filter 
(Chroma SPC700bp) a dichroic mirror (Chroma 495dcxr), and an emitter bandpass filter 
centered at 460 nm (Chroma 460bp40). This excitation and emission filter combination 
allows collection of fluorescence signal emanating primarily from mitochondrial NADH [14, 
30, 31]. Five regions from three different tissue constructs for the diseased and healthy tissues 
are assessed with PSD analysis. 
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2.3 Creation of simulated cell objects (SCOs) 

Images of simulated cell objects (SCOs) were created in order to characterize the effect of 
nuclear and cell border shape on the PSD power-law decay. To achieve this, binary images of 
randomly positioned circles on the size order of cells and nuclei are created in MATLAB that 
model spatial features of autofluorescence images acquired previously [32] and in this study. 
First, the MATLAB randi function is used to generate a 512x512 matrix with uncorrelated 
random values. To randomize circle location and control circle density, one value, which is 
repeated randomly throughout the matrix, is designated for circle location. To simulate nuclei, 
the same pixel locations are mapped and a second circle of smaller radius is drawn at the 
specified location. To investigate PSD sensitivity to a nuclear feature, 20 individual images 
are generated that contain 60, 35-micron diameter circles. This is repeated in a second set of 
simulations, which include a second smaller circle, the ‘nucleus,’ with a diameter of 12 
microns. In biomedical images, variance in cell size is common, so a Gaussian distribution of 
circles with diameter variance equivalent to 2 microns is evaluated in every case, which is 
relevant to previous investigation of biomedical images of cells in a 3D collagen matrix [32]. 

The Fourier transform of a uniform circular object yields a Jinc function, which is related 
to a Bessel function of the first kind. According to the mathematical properties of the Jinc 
function, the distance from the first point to the first minimum in the Fourier spectrum will be 
1.22/d, where the diameter of the circle is d [33]. To assess PSD sensitivity to circle size in 

our FT analyses, first minima of angularly-averaged PSD spectra, ( )R k


 are found by 

locating the first zero crossing of the second derivative of the PSD. 
In the high frequency limit, the PSD of a Jinc function is known to have oscillations that 

decay as an inverse power-law with a power exponent equal to 3. In order to examine the 
possible interference of the behavior of a Jinc function with the measurement of intracellular 
texture from cellular images, fractal images with known power-law decay values are digitally 
applied to the circular regions of the simulated images. To explore the sensitivity of this 
analysis to cell morphology and nuclear structures, we fit the PSD of the simulated images 
with Eq. (6) and the exponent of the fit is compared with input exponents of the fractal that 
has been digitally applied. To weaken contributions from background signal and edge effects, 
background is set to the average value of the intracircular signal when indicated in the text. 

2.4 Identification of cell and nuclear borders for cloning TPEF images 

In order to isolate the effect of cell and nuclear borders on PSD-based intracellular 
assessment, it is necessary to create a mask that separates intracellular regions from image 
background. Five TPEF images from each of the cell layers (superficial, para-basal, and 
basal) of three independent engineered epithelia from healthy and diseased groups are 
segmented so that only the cellular regions remain. Specifically, for each image, a set of 
binary images for every whole threshold value (0-255) for an 8-bit scale is produced in 
MATLAB. The power spectral density is then computed for each of the binarized images 
[34]. The binarization threshold value that creates an image with the highest peak power 
spectral intensity is defined as the optimal threshold to segment the cells from the 
background, because high peak power spectral intensity is related to the presence of low 
frequency image features. Finally, groups of pixels that consist of less than 80 interconnected 
pixels are removed. This process effectively creates a mask that isolates large objects, such as 
cells. 

2.5 Creation of simulated fractal images with defined borders 

Using the mask determined as described above, fractal images with known PSD power-law 
decay values (β = 0-4) are digitally applied to the intracellular regions according to this mask. 
The digital application of a fractal image is repeated four times, yielding a total of 60 
simulated images with known intracellular texture (we start with five images from each of the 
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three main epithelial tissue layers). To assess the contributions from the image background, a 
black background or the average value of the intracellular foreground is digitally applied to 
background regions. Power-law exponents are determined from fits to the power-law region 
of the radial PSD for all synthesized images. Measured exponents are then compared to input 
exponents from fractals that are simulated and digitally applied to the intracellular regions. 

2.6 Digital object cloning (DOC) 

We develop a randomized digital object cloning (DOC) method that isolates intracellular 
regions and clones these regions into the image background. This method automatically 
reduces artifacts related to image background as well as larger, periodic non-fractal features, 
such as cell size and intercellular tissue organization. Regions of signal are isolated using the 
aforementioned thresholding technique. In order to randomly fill the background of each 
thresholded image, two vectors with random values ranging from −512 to 512 are generated 
using the MATLAB randi function, which creates a matrix of uniformly distributed 
pseudorandom integers. Using the MATLAB function circshift, which circularly shifts the 
values in an array, a parallel image is created with the original foreground values shifted 
according to the values in the two vectors. The regions in the shifted, parallel image that 
overlap with background regions from the original image are added to the original image, 
filling the background and leaving the original signal in the foreground. This process is 
iteratively repeated until no original background pixels remain. Generally, five to ten 
iterations are needed to fill the image background. 

2.7 Statistical testing and β error calculation 

The correlation between measured and input β values for TPEF images is assessed via the 
Tukey Honestly Significant Different (HSD) test in JMP statistical software. Average β-error 
is calculated as the average of the absolute value of the difference between the input β value 
and the measured β value for each simulated image for β’s between 0 and 2. 

3. Results 

3.1 Simulated cell objects (SCOs) hinder the ability of PSD-based methods to accurately 
assess intracellular patterns 

To demonstrate the baseline sensitivity of the PSD-based approach for recovering power-law 
exponents (β) that describe the fractal character of images, we evaluate the PSD of square 
fractal images generated as described in Methods. Figure 1 displays angularly-averaged radial 
PSDs (in log-log scale, Panel (a)) that correspond to simulated fractal images (Panels (b-f)), 
which become more clustered in gross-appearance with increasing power exponents (β). 
Measured power exponents, determined by fitting Eq. (6), match input exponents used in 
fractal simulations with negligible associated error (R2 > 0.99). 
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Fig. 1. (a) Power spectral density of generated scale invariant images of varying fractal 
character with fits (shown in panels b-f) for β = 0, 1, 2, 3, 4. 

To assess whether variations in cell-shaped features impact PSD-based outcomes, we 
generated binary image models of simulated cell objects (SCOs) that consist of uniform 
circles on the size order of cells and nuclei. We digitally apply fractals generated with varying 
β values to model SCO images containing SCOs of 35μm diameter (Fig. 2(a)), without 
nuclei, and a homogenous black background. Figure 2(b) displays the angularly-averaged 
radial PSDs for SCO images that are created with fractals that have β values of 1, 1.5, 2, 2.5, 
3, and 4 as indicated. As input β value increases, the measured slope of the power-law decay 
(βM) trends toward the expected value. For values greater than 3, the characteristic decay of 
the Jinc function (βJinc = 3) dominates entirely over the fractal pattern decay. In all cases 
except β = 3, βM values are far from the true intracellular input β value, showing that the 
presence of SCOs hinders accurate intracellular texture characterization. 

 

Fig. 2. (a) Split panel of two representative simulated cell object (SCO) images without (left) 
and with a nuclear structure (right) (b) PSD spectra from SCO images with digitally applied 
fractals and a black background showing there is no sensitivity to β values greater than 3. (c) 
PSD spectra from SCO images without (black) and with nuclear structures (gray) containing 
SCOs that have 35 μm and 12μm for cell and nuclear diameters, respectively, the average 
value of the foreground in the background, and a β = 2.8. A shoulder that can be attributed to 
the nuclear border can be seen in the spectrum of the model images with nuclear structures. 
The spectrum is smoother than in (b) as a result of the change in background value. 

In biomedical images an inner nuclear structure is present within each cell and such 
images are generated as described in Methods (Fig. 2(c)). The addition of a nuclear structure 
affects the lower frequency region of the PSD spectrum as observed by the emerging shoulder 
in the representative spectrum (Fig. 2(c), gray arrow). The frequency region corresponding to 
this shoulder is related to the diameter of the nucleus, with a nucleus of 12 microns creating a 
local minimum at a frequency equal to 0.102 μm−1 (see Methods) and an increase in PSD at 
the lower frequency shoulder bordering the local minimum. The addition of a nucleus also 
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impacts the slope of the high frequency region (βM) (Table 2) and skews it further to a value 
near 3 for all input β values. 

Table 2. Impact of nuclear structure on βM values from representative SCO images 

 βInput 0 0.5 1 1.5 2 2.5 3 4 

Average 
βM 

SCO 
1.78 1.68 1.79 2.10 2.47 2.75 2.84 2.86 

± 0.07 ± 0.06 ± 0.07 ± 0.07 ± 0.01 ± 0.03  ± 0.03 ± 0.01 

SCO w/ 
nucleus 

2.01 1.96 2.12 2.35 2.62 2.82 2.85 2.84 

 ± 0.04 ± 0.02 ± 0.01 ± 0.00 ± 0.01  ± 0.01  ± 0.01 ± 0.02 

*Averages have been calculated from 5 SCO images consisting of 35μm cells and 12μm nuclei with a black 
background 

3.2 PSD-based characterization of simulated images containing epithelial structures 

To examine more biologically relevant cell structures we threshold TPEF images of epithelial 
tissues, thereby isolating natural cell borders. We examine three layers of the epithelium, 
which have distinct morphologies: the differentiated (superficial), differentiating (para-basal), 
and undifferentiated (basal) layers (Fig. 3(a-c)). We find that the average β exponents from 
fits to the PSD spectra of the original TPEF images of the superficial, para-basal and basal 
layers are 1.02 ± 0.18, 1.26 ± 0.20, and 2.01 ± 0.30, respectively. Differences between the 
exponents measured from the basal layers and the other layers are statistically different (p ≤ 
0.003). To assess whether the differences in β exponents measured from these images 
originate from morphological variation between the cell layers and/or intracellular texture, 
TPEF binary masks generated by thresholding the images are analyzed. We find the average β 
exponents from fits to the superficial (2.30 ± 0.03), para-basal (2.48 ± 0.11), and basal (2.73 ± 
0.13) layers of the masks are significantly different (p ≤ 0.032). This shift is related to cell 
morphology since there is an absence of intracellular texture in these images (Fig. 3(e-h)). For 
example, in our analysis of the basal layer images, the increased power of the PSD at 
frequencies corresponding to cell size, which is on the order of 0.1 μm−1, causes an increase 
in the slope of the power-law decay. 

 

Fig. 3. (a-c) Representative original TPEF images from superficial, para-basal, and basal 
layers, respectively and (d) measured β exponents from corresponding PSD spectra and fits. 
Binary masks of cell borders (e-f) and corresponding PSD spectra and fits (h) demonstrating 
that a clear association of β exponents to morphology persists in the absence of high frequency 
spatial information. All images are 238 x 238 μm2. 

To assess whether PSD-based techniques are sensitive to differences in subcellular texture 
in addition to cell morphology, fractals of varying β exponents are digitally applied to the 
intracellular regions of thresholded TPEF images from each tissue layer (Fig. 4). Figure 4 
displays nomograms comparing the measured power-law exponents from fits to the PSDs of 
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these simulated images to the input β exponents used in image generation. By digitally 
applying either a black background (high contrast, strong edge intensity) or the mean value of 
the image foreground (low contrast, weak edge intensity) to the background region, we are 
able to explore the effects of image feature edges on β exponent sensitivity. We find there is 
limited sensitivity of PSD-based methods to quantify intracellular texture in images 
containing a black background (Fig. 4(a-c), green lines) by observing that the measured 
power-law exponents of the fits varied marginally and non-linearly with input β exponents 
(Fig. 3). The average β-error, the average difference between βinput and βM for 0 < β < 2, for 
each tissue layer with a black background is 1.20 ± 0.74, 1.28 ± 0.75, and 1.63 ± 0.78 for the 
superficial, para-basal, and basal layers, respectively. By including the average value of the 
foreground in the background of the simulated images (Fig. 4(a-c); blue dashed lines), the 
sensitivity to input β values improves and average β-error is calculated to be 0.70 ± 0.32, 0.51 
± 0.32, and 0.69 ± 0.42 for the superficial, para-basal, and basal layers, respectively. 
However, in spite of this improvement, measured β values from the average value of the 
foreground in the background do not correspond linearly to input β values and are 
overestimated for β values lower than 3 and underestimated for β values greater than 3 for all 
tissue layers. 

 

Fig. 4. Nomograms of measured β parameters for superficial (a), parabasal (b), and basal (c) 
epithelial layers of normal tissue. Plotted are input versus measured power-law exponents from 
linear fits of the radially-sampled PSDs for simulated images of varying input β parameters 
and background. Representative images with black background (green, solid lines), with the 
average value of the foreground in the background (blue, dashed lines) and images that have 
been clone stamped (red, dotted lines). 
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In order to obtain reliable sensitivity to a range of β parameters, a method to improve PSD 
sensitivity to input β values in the presence of cell features is necessary. Sensitivity to the 
correct β value depends on input β values, cell size, presence of a nucleus, and image 
background, which suggests that image features other than intracellular texture are 
contributing to the measurement of accurate power-law decay values. To recover β values 
that represent only the fractal nature of the intracellular signal, a digital object cloning (DOC) 
method is applied. DOC improves the accuracy of PSD-based characterization of intracellular 
structure. With DOC, fractal variation from simulated images can be recovered for β 
exponents that are less than the measured β exponents from the respective TPEF image masks 
(Fig. 4(a-c); red dotted lines). This limitation is tissue layer specific according to the 
measured β values from the image masks (Fig. 3). With DOC, relative average β-error 
decreases significantly to 0.06 ± 0.04, 0.05 ± 0.03, and 0.04 ± 0.04 for the superficial, para-
basal, and basal layers, respectively. 

3.3 DOC improves the accuracy of PSD-based characterization of intracellular texture 
allowing separation of normal and pre-cancerous tissues based on subcellular structure 

After isolating cell features via thresholding, the DOC technique is applied to the original 
TPEF images from normal epithelial tissues. After DOC, the superficial, para-basal and basal 
layers (Fig. 5(a)) have respective β values of 0.67 ± 0.13, 0. 69 ± 0.19, and 0.82 ± 0.14. β 
values between the layers are not statistically different (p ≥ 0.995). 

DOC and subsequent PSD-analysis is applied to HPV-immortalized epithelial tissues (Fig. 
5(a)). β values of original HPV tissue layers, shown in Fig. 5(a), are respectively 2.04 ± 0.20, 
2.05 ± 0.08, and 1.98 ± 0.20 for the superficial, para-basal, and basal layers. After DOC, these 
values are 1.72 ± 0.19, 1.47 ± 0.15, and 1.53 ± 0.20 and are not statistically different from 
each other (p ≥ 0.227). 

 

Fig. 5. (a) Representative original and DOC-corrected TPEF images of superficial, para-basal, 
and basal layers of epithelial tissues made with healthy human foreskin keratinocytes (HFK) 
and HPV-transfected keratinocytes with the average β values for 5 different fields for each 
group displayed under each image with standard deviations. (b) β values from each HFK 
(green) and HPV (red) tissue sorted by tissue layer, before and after DOC. 

To visualize the effects of DOC across the tissue groups and layers, we plot the measured 
β values from TPEF images of each layer of five normal (Fig. 5(b), green) and five HPV (Fig. 
5(b), red) tissues before and after DOC is applied. Before DOC is applied, there is not a 
significant difference between β values measured from HPV tissues layers and β values 
measured from the basal layer of normal tissue (p ≥ 0.963), which is most likely due to 
similarities in morphology and cell size. Remarkably, DOC corrects for tissue layer-
dependent changes in β values for normal tissues by lessening the scale-dependent artifacts 
due to feature edges as well as image background. In this way, DOC enables targeted 
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quantification of the fractal nature of subcellular structure, which is significantly different 
between the normal and the HPV-infected tissues layers after DOC is applied (p < 0.001). 
Although we find significant difference between tissue groups with a relatively small sample 
size, additional studies with larger samples sizes may provide insight into the diagnostic 
significance. In this way, DOC in combination with PSD-based methods shows great utility 
for biomedical image analysis, specifically with the goal of correlating subcellular structure to 
tissue health and disease status. 

4. Discussion 

This study demonstrates that Fourier-based analysis, relying on the PSD, is well suited to the 
characterization of high-resolution biomedical images for the assessment of intracellular 
structure. We specifically show that quantification of the β exponent of fractal biological 
features, such as mitochondrial organization, can be employed as an indicator of health and 
disease status. Assessment of mitochondrial structure may help elucidate mechanisms of 
normal and diseased tissue development, specifically in the context of cell metabolism. 
However, biomedical images generally contain a mix of fractal organization (e.g., 
intracellular morphology) and scale-dependent features (e.g., quasi-circular cellular and 
nuclear borders). The presence of nuclear and cell boundaries introduces edge-effect errors in 
PSD-based estimates of fractal character, which is clear when comparing pure fractal images 
(Fig. 1) with fractal images confined to circular shapes (Fig. 2). The images containing both 
scale-dependent and scale-invariant features require further processing to enable accurate 
characterization of the intracellular fractal patterns (Fig. 4). After standard thresholding-based 
processing of these images, fractal patterns with power-law decays greater than the power-
law decay of the fractal pattern’s confining borders cannot be accurately measured due to 
edge artifacts. However, an additional DOC step allows reasonably accurate recovery of 
subcellular fractal organizational features. 

4.1 DOC enables direct comparison of intracellular scale invariance among images with 
different large-scale features 

Boundary effects due to overall cellular and nuclear shape, must be minimized in order to 
accurately quantify the fractal nature of intracellular structures. Decreasing the change in 
intensity at the edges of the cells by thresholding and applying the average intensity value of 
the foreground to the background (2-fold decrease in β-error) or thresholding and DOC (26-
fold decrease in β-error) allows for more accurate PSD-based fractal characterization for β < 
2. Despite the application of DOC pre-processing techniques to overcome edge artifacts, there 
is a drop-off in sensitivity to scale-invariant patterns characterized by power-law exponents 
greater than 2 compared to pure scale-invariant patterns (Fig. 4). Specifically, this occurs 
because our DOC method becomes less efficient at weakening edges within progressively 
more clustered images (β > 2), which have large deviations in local average intensity and are 
thus, more susceptible to DOC-induced edge artifacts (Fig. 1(e and f)). 

Fortunately, the variation of intracellular organization observed from our analysis of 
experimentally-acquired TPEF images of engineered epithelial tissue occurs over a range of β 
values where PSD methods are highly accurate following DOC (β ≤ 2). In this regime, DOC 
reduces the contribution from the non-fractal features, allowing direct comparison of 
subcellular scale-invariance between images that contain large-scale, non-fractal variation. 
This is useful when evaluating different epithelial tissue layers that have varying 
characteristic cell sizes. 

4.2 Comparison with other techniques 

It is particularly advantageous to use DOC pre-processing to reduce edge effects because 
DOC does not sacrifice signal resolution, as with, for example, Fourier ‘windowing’ 
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techniques [35]. Another Fourier-based technique developed with the goal of circumventing 
the limitation of Fourier analysis to rectangular images has been applied to the fractal analysis 
of nuclear chromatin distribution in benign and malignant breast cells [9]. This method fills 
the non-fractal region surrounding nuclear features using an iterative algorithm that 
terminates when the background region has similar statistical properties to the inner fractal 
region. For this method, it is difficult to obtain the background properties similar to the 
foreground, with 10% of samples unable to converge to the appropriate solution. 
Furthermore, the accuracy of the technique was evaluated using a single β value (β = 1.5), 
and it is unknown whether the method can perform as well with other β values. 

Another method that is used frequently to determine fractal character is the box-counting 
approach [36, 37]. The box counting technique assesses the area that a binary signal covers at 
different scales. The method is performed by covering a thresholded image with a mesh of 
identical squares and counting the number of squares, N, that contain part of the image. This 
count is repeated for increasingly small squares (of size L) within the mesh. In this approach, 
a log plot N versus L is employed to investigate the scaling behavior of the putative fractal. 
This method is popular for its computational simplicity and for its ability to assess irregularly 
shaped images. However grid effects are known to interfere with computing the fractal 
dimension [36]. Further, box-counting methods often require total signal binarization using a 
simple threshold that must capture variations in fractal texture. It can be challenging to 
determine a single threshold value across a large data set [37]. Finally, fractal images with β 
in the range between 2 - 4 correspond to fractional Brownian functions for which box-
counting methods are known to be inapplicable [28]. 

4.3 Diagnostic utility of combined DOC and PSD methods 

Given the advantages of DOC for PSD analysis of intracellular texture in our simulations, we 
apply DOC to our original TPEF images. Using DOC, we find that PSD assessment of TPEF 
images has great promise for identifying diseased and healthy cells based on the ability to 
characterize the fractal nature of intracellular structures (Fig. 5(b)). When we compare the 
layers within normal tissues without DOC, we find significant β value differences between 
the healthy tissue layers. The β values measured from the HPV tissues do not change with 
tissue depth, but are statistically similar to the β values measured from the healthy basal tissue 
layer (p ≥ 0.963). Our simulation work suggests that this difference primarily arises from 
alterations in cell morphology, which is further supported by the similarities in morphology 
and β values between the basal layer of the normal tissues and all HPV tissue layers (Fig. 3). 
By assessing TPEF data after DOC, we find that that tissue disease status is related to the 
corresponding power-law exponent, with all normal tissue layers having significantly lower 
exponent values than HPV tissues (p < 0.001). Thus, the β value has potential to be used as a 
unique and valuable indicator of disease. 

In the absence of edge effects, the β value represents the character of the fractal 
component of the image, which, in the context of this analysis, physically represents the 
organization of the mitochondria. We target mitochondrial organization by assessing images 
of NADH autofluorescence and by our choice of a fitting range that represents image 
structures on the size order of mitochondrial networks (< 10μm) [14]. We find an increase in 
β values measured from the analysis of precancerous (HPV) tissues, which reflects more 
correlated mitochondrial networks, as compared to the mitochondrial networks from normal 
tissues [38]. 

4.4 Disease progression and cell metabolism are related to mitochondrial autofluorescence 
patterns 

Quantitatively assessing the nature of cellular mitochondrial networks and interpreting the 
physical meaning of the results has the potential to provide unique insight into the cell’s 
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ability to satisfy its metabolic demands. Precancerous tissues are known to prefer glycolysis 
to oxidative phosphorylation, which we hypothesize is related to the increase in measured β 
values from our study [39]. Others have revealed that mitochondrial structure and internal 
organization is altered in response to the metabolic switch from glycolysis to oxidative 
phosphorylation [25]. From analysis of mitochondrial morphology using electron microscopy 
and fluorescence dyes, it was shown that a switch to oxidative phosphorylation is 
accompanied by higher order networking and an extension of the mitochondria into a more 
reticular form throughout the cell [25]. This is thought to be important in generating ATP at 
all parts of the cells. During glycolysis, the mitochondria were observed to cluster around the 
peri-nuclear area and were generally thicker. Thus, the increase of the β values throughout the 
layers of the pre-cancerous tissues could potentially provide insight on the altered metabolic 
demands of these cells towards a more glucose-oriented metabolism. This quantitative 
information provides insight into cellular metabolism that otherwise could not be attained 
with conventional analytical techniques and may have future diagnostic implications for 
automated real-time tissue characterization. 

In addition to diagnostic implications, PSD-based quantification of biomedical images can 
help characterize complex biological patterns that may be essential to our understanding of 
the mechanisms behind differentiation, metabolism, and disease progression. Understanding 
the sensitivities and susceptibilities of these techniques to certain β value ranges and to image 
edges and feature morphology is essential in order to accurately assess images. Furthermore, 
in combination with non-invasive imaging techniques, this analysis enables quantification of 
subcellular patterns in live tissues without the use of added chemicals or contrast agents. The 
results of our analysis of autofluorescence images demonstrates that disease progression is 
related to the patterns intrinsically emanating from mitochondria, and that quantitative 
mitochondrial analysis may be useful for diagnostic purposes. 

5. Conclusion 

Fractals have become valuable descriptors of natural processes. Thus, there is a need for 
accessible analytical techniques whose limitations are fully understood, and at the same time, 
have the ability to accurately quantify scale-invariance found in nature. We find that the 
accuracy of the PSD-based techniques to characterize changes in fractal features within 
epithelial tissues is limited by the presence of nuclear and cell borders and image background 
signal. We develop a DOC technique that corrects for measurement inaccuracies induced by 
these edge effects, which results in a 26-fold decrease in measurement error and enables us to 
more accurately characterize naturally occurring mitochondrial fluorescence. By assessing the 
organization of mitochondrial networks, we are able to differentiate normal and precancerous 
epithelial tissues. We infer that these differences in organization are due to alterations in cell 
metabolic preferences. This technique could potentially be employed to correct other medical 
images with similar scale-dependent limitations, such as tissue histology or x-rays. Together, 
DOC and the PSD method have the ability to quantify the organization of a wide range of 
irregularly-shaped biomedical images and, more importantly, to isolate features of possible 
diagnostic significance. This could have applications in the development of automated disease 
detection software and computer vision. 
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