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Abstract

The achronal averaged null energy condition (ANEC) is a sufficient condition to rule out

exotic spacetimes such as time machines and wormholes. We review how achronal ANEC is

used to prove such restrictions, and the status of the condition. We find counterexamples

to achronal ANEC using conformally coupled scalar test fields in a conformally flat back-

ground. These examples involve rapid variation in the stress-energy tensor in the vicinity of

the geodesic under consideration, suggesting that averaging in additional dimensions would

yield a principle universally obeyed by quantum fields. However, we further develop coun-

terexamples to alternative transversely averaged energy conditions. In order to arrive at a

valid energy condition, we must then either restrict to minimal coupling or to self consistent

rather than arbitrary background metrics. We construct a state as a candidate reference

state for quantum difference inequalities, which could then be used to prove ANEC in these

conditions. The proposed recently massless vacuum is defined for a region of spacetime

which may be embedded in a manifold which for all times prior to some recent Cauchy sur-

face has vanishing potential energy. It is similar to the standard in vacuum, with a modified

spacetime taking the place of an asymptotically distant massless region. This allows us to

focus on the contribution of local terms to the stress tensor.
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I. INTRODUCTION

Wheeler’s succinct summary of general relativity is that “spacetime tells matter how to

move, and matter tells spacetime how to curve.” This is the direct message of Einstein’s

equation

Gab = 8πTab. (1.1)

General relativity places no restrictions on the form of either the curvature or the stress

tensor, merely that they be proportional to each other. Nothing in general relativity prevents

an arbitrary spacetime geometry or topology, but merely requires a certain stress tensor to

support it. However, we consider certain configurations, such as closed timelike curves,

wormholes, and superluminal communication, to be unnatural. In order to restrict them we

must appeal to an appropriate energy condition derived from quantum field theory, which

would limit the behavior of Tab. Theorems are then proven which rely on these conditions

and rule out the existence of certain perverse spacetimes.

Early work limiting exotic phenomena utilized classical energy conditions such as the

weak energy condition (WEC),

Tabl
alb ≥ 0 (1.2)

for all timelike vectors la, evaluated at any point. This condition has the interpretation

that all observers see a positive energy density. If instead the stress tensor is contracted

with a null vector ka, it is known as the null energy condition (NEC). Roughly, such a

condition can prove exotic phenomena impossible because they have as a common feature

null geodesics converging as they enter the exotic region and diverging as they exit. This

anti-lensing would require negative energy. Classical fluids and fields1 obey this constraint,

though it can be trivially violated in flat space quantum field theory (for example, with the

vacuum plus two photon system. The Casimir two plate system is another more complicated

but important example.) Graham and Olum [26] present proofs that the theorems which

exclude wormholes, time machines and superluminal communication may follow from the

achronal averaged null energy condition, which is the focus of this thesis:

1 Non-minimally coupled scalar fields are an exception [1, 2, 17]. In this case the classical field can easily

violate all pointwise energy conditions.
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Achronal ANEC For every null, complete, achronal geodesic γ with tangent la and affine

parameter λ, ∫
γ

Tabl
albdλ ≥ 0 (1.3)

Achronal null geodesics are those which do not contain points also joined by any timelike

paths. Complete geodesics extend to infinite positive and negative values of λ. Restricting

attention to these null geodesics allows the condition to be true in spacetimes which contain

incomplete or chronal geodesics that support states which violate the ANEC integral. ANEC

does not have violations in flat space quantum field theory.2

Without specifying achronal and complete geodesics, ANEC would be false. A simple

example of ANEC violation for chronal geodesics occurs in Minkowski space with one dimen-

sion compactified. This produces a Casimir effect of negative energy density and pressure in

the compactified direction, violating ANEC along those geodesics. The compactification also

renders all geodesics chronal, however. Another violation of ANEC along chronal geodesics

is in the Boulware vacuum of Schwarzschild spacetime [56]. The geodesics which avoid the

singularity are complete, but they are chronal. Onemli and Woodard [42, 43] find an ANEC

violation for φ4 theory in de Sitter space, but it occurs only along incomplete geodesics.

We are able to restrict our attention to achronal geodesics because, heuristically, all

problematically exotic spacetimes which we wish to exclude involve paths which are in

some sense a ‘shortcut.’ They either reach an otherwise causally disconnected region of

spacetime or travel superluminally. Chronal geodesics have at least two points which are

also connected by a timelike geodesic, and are thus not involved in creating exotic space-

times. Achronal geodesics are highly nongeneric, and by restricting the condition to complete

achronal geodesics we avoid most counterexamples.

In the first chapter we present the proofs limiting exotic behavior using the achronal

averaged null condition. Many of these theorems were originally proven using more stringent

restrictions on the stress tensor, and we review the development. The usefulness of ANEC for

these theorems motivates its further study. We then present aspects of quantum field theory,

2 Classical violations of ANEC for non-minimally coupled scalar fields in curved space [1, 2] are possible

only if the field takes on Planck-scale values, which lead the effective Newton’s constant to first diverge

and then assume negative values. This may mean that such states are not physically realizable.
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in order that our presentation be self contained. In particular we analyze the role of curvature

coupling and conformal transformations, and introduce the algebraic perspective on field

theory. This formalism is well suited to investigations in curved space. We then discuss

renormalization in detail, using the Hadamard subtraction method. Explicit calculations are

presented, to serve as a more general reference in addition to their use in further sections.

Proofs of ANEC in limited situations are collected: those of Klinkhammer and Wald and

Yurtsever in flat space, Fewster, Olum and Pfenning in flat tubes with arbitrary curvature

outside, Wald and Flanagan in perturbatively flat spaces and Kontou and Olum in more

general curved spaces.

The remaining sections contain our original work in collaboration with Ken Olum. First

we present counterexamples to ANEC in the regime of a conformally coupled test scalar field

in a conformally and asymptotically flat background [52]. We then discuss several possible

extensions of ANEC to include additional transverse averaging, but find that for all of these

proposals there are counterexamples in the same regime [53]. This work demonstrates that

in order to make further progress we must either restrict attention to quantum fields and

metrics that are consistent with each other according to general relativity, or perhaps rule

conformal coupling for scalar fields unphysical. In the last section we introduce a state

constructable for a scalar field with arbitrary potential energy, intended to be used for

proving quantum energy inequalities. After defining this state we present calculations which

bound its two point function. We hope in the future to develop from this to an argument

in curved space. If the difference energy inequality between an arbitrary state and the

recently flat vacuum we introduce can take the form of the energy inequality postulated

by Kontou and Olum [37], ANEC will be proven for minimally coupled scalar fields on a

classical background.

We use the (+ + +) sign convention, in the classification of Misner, Thorne and

Wheeler [39]. This means that the metric signature is (− + + +), the Riemann tensor

is R d
abc ωd = (∇a∇b −∇b∇a)ωc and the Ricci tensor is Rab = R c

acb . This contrasts with the

usual convention in field theory, and the massive wave equation is (�−m2)φ = 0.
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II. ENERGY CONDITIONS AND EXOTIC PHENOMENA

Careful arguments are necessary to reason from the properties of the stress tensor to the

global nature of causality. The assumed properties of the stress tensor are achronal ANEC,

defined at eq. (1.3), and the null generic condition. This is defined below, and roughly means

that somewhere along each null geodesic, normal matter is encountered. These conditions,

together with the equations governing the propagation of null geodesics, form the basis for

the particular theorems concerning topological censorship, wormholes, time machines, mass

positivity, and superluminal communication, which are each treated independently.

The evolution of a family of geodesics is governed by the Raychaudhuri equation for

expansion, and the related shear and vorticity equations. The expansion θ is the scalar

measuring the increase in cross sectional area of the congruence. The shear tensor σmn is

defined to be symmetric in its indices, and measures the distortion of the cross section, while

the vorticity or twist tensor ωmn is defined to be antisymmetric. Both tensors are spacelike.

The formal definitions may be found in [57] or other standard references. We establish a

pseudo-orthonormal basis (e1, e2, e3, e4), where e1 and e2 are spacelike orthonormal direc-

tions, e4 is in the direction of the null geodesic with tangent vector la, and e3 is a second

null direction whose inner product with e4 is −1. We denote the affine parameter by λ.

Indices m, n and p only run over the two spatial directions, 1 and 2. Then we have

dθ

dλ
= −Rabl

alb + 2ω2 − 2σ2 − 1

2
θ2 (2.1)

dσmn
dλ

= −θσmn − Cm4n4 − σmpσpn − ωmpωmn + δmn(σ2 − ω2) (2.2)

dωmn
dλ

= −θωmn + 2ωp[mσn]p (2.3)

From eq. (2.1) we see that vorticity causes expansion, but if initially ωmn = 0 then according

to eq. (2.3) it never develops. Shear causes contraction, as does any nonzero value for θ.

Thus only curvature can cause defocusing; this will not occur unless Rabl
alb is negative. By

the Einstein equation,

Rabl
alb = 8πTabl

alb, (2.4)

and the null energy condition would guarantee that all points experience a focusing of

geodesics. Violations of the pointlike NEC require us to consider whether sufficient defocus-
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ing can accumulate over the course of a geodesic. If ANEC is obeyed but NEC is violated,

along the ANEC integral there must be positive contributions which equal or exceed the

negative ones possible.

We next introduce the null generic condition, which describes the typical influence of

matter on curvature. If the spacetime obeys both ANEC and the generic condition, there

are strong limits on exotic phenomena. The definition is

Null Generic Condition A spacetime satisfies the condition if every null geodesic possesses

at least one point where

l[eRa]bc[dlf ]l
blc 6= 0. (2.5)

Unlike a condition required to hold at every point or in aggregate over many points, this

inequality would only need to hold at a single point along every geodesic for the spacetime

to be considered generic. Because normal matter would generally introduce a nonzero tidal

effect, passing through any sort of dust somewhere in the trajectory would yield the inequal-

ity at some points. It is thus aptly called generic. A lemma due to Borde [5] proves that in a

spacetime which obeys the null generic condition and the null energy condition averaged over

some interval, that interval must contain conjugate points.3 Containing conjugate points

implies that a geodesic is chronal. Therefore, when the generic condition holds, if ANEC

is obeyed over a complete geodesic it cannot also be achronal. It strengthens the classical

result on the necessary existence of conjugate points using the null energy condition found

in Hawking and Ellis [29] or Wald [57].

We have highlighted the special status of complete achronal geodesics for energy condi-

tions. In the following sections we cite the modifications of classical theorems that allow

achronal ANEC to suffice. The restriction to complete achronal geodesics is particularly

relevant for motivating study in conformally flat spacetimes, which do contain many such

3 Essentially, conjugate points are such that a null geodesic infinitesimally deviated away from γ at γ(λ1)

returns to γ(λ2). Borde defines conjugate points as a pair of points γ(λ1) and γ(λ2) on a geodesic where

θ(λ) → +∞ as λ → λ1 from above and θ(λ) → −∞ as λ → λ2 from below. Wald [57] defines them

equivalently but with more general language as points where some Jacobi field that is not identically zero

vanishes at γ(λ1) and γ(λ2).
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paths, and demands care in doing any perturbative analysis, as generic perturbations typi-

cally introduce chronality.

A. Topological Censorship

Topological censorship states that a causal path cannot traverse non-trivial topology. Any

exotic topological structures introduced will be censored by some horizon, and fail to evolve

to infinity. As described by Graham and Olum [26], we must assume that our manifold

is simply connected, which differs from the formulation of topological censorship given by

Friedman, Schleich and Witt [19]. Our version is

Topological Censorship Let M,g be a simply-connected, asymptotically flat, globally hy-

perbolic spacetime. If it satisfies achronal ANEC and the generic condition, then every causal

curve from past null infinity (I−) to future null infinity (I+) can be deformed to a curve in

the infinite, asymptotically flat region.

The proof is by contradiction. Suppose there is a causal curve γ from I− to I+ that could

not be deformed to a curve at infinity, because it threaded a wormhole or other nontrivial

topology. There then exists some curve γ′ which arrives at I+ later and departs from I−

earlier than any other in the homotopy class of γ. This curve γ′ must be a complete null

geodesic because it is extremal. If it were chronal, it could be deformed to a timelike curve,

and then the process repeats until a fastest achronal null geodesic is found. But a complete,

achronal, null geodesic is forbidden by Borde’s lemma, and we have the contradiction.

This modifies the proof of Friedman and Higuchi [20]. Their result applied to manifolds

which are not necessarily simply connected, and required ANEC to hold on both chronal and

achronal geodesics. Because ANEC does not universally hold on chronal geodesics, we must

limit the theorem. However, this version, as given in [26], only fails to censor wormholes

which do not threaten causality. If the manifold is not required to be simply connected, one

could allow a wormhole that joins a single asymptotically flat region to itself with a throat

that is longer than distance between the mouths measured outside of the wormhole. There
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would be a fastest curve γ′ among the homotopy class that traverses the wormhole, but it

would be a chronal complete null geodesic, and is permitted to exist. A wormhole such as

this is not censored, but it does not carry the exotic implications we normally associate with

wormholes.

B. Chronology Protection

There is a rich literature attempting to rule out closed timelike curves or other exotic

chronologies based on difficulties with formulating physics consistently at all. Friedman and

Higuchi [20] summarize and give references to research along these lines. Classical dynamical

evolution from a Cauchy initial data surface already only appears possible for carefully

contrived initial conditions, and maintaining unitary quantum mechanics introduces further

difficulty. Hawking conjectured that the presence of closed timelike curve would introduce

divergence into the quantum mechanical vacuum [30], though interpretation of his result

varies. We adopt the perspective, however, that objections to exotic chronology based on

inconsistency or paradox may not rule it out by themselves, but instead motivate us to

search for a proof that such a thing cannot be introduced.

Energy conditions may be used to limit the development of closed timelike curves within

a conventional universe. ANEC was first introduced by Tipler [51] for this purpose.

Time Machine Restriction Let M,g be an asymptotically flat spacetime which obeys

achronal ANEC and the generic condition. If it is partially asymptotically predictable from

a partial Cauchy surface S and the chronology condition is violated in J+(S)∩ J−(I+) (the

causal future of S which is in the past of null infinity), then it cannot be null geodesically

complete.

Violating the chronology conditions means that there exists a Cauchy horizon H+(S)

which is the boundary of the region D+(S) which is the region predictable from initial

data on the Cauchy surface S. The Cauchy horizon consists of a set of null generators, and

Tipler proved that at least one such generator η is contained entirely within H+(S). If the
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spacetime is null geodesically complete, η must be complete. No point in the horizon can

be in the chronological future of any other point in the horizon, and because η is contained

entirely within H+(S), it is achronal. But, if our spacetime satisfies achronal ANEC and

the generic condition, geodesics such as η cannot exist. Although the proof presented in [51]

utilizes a formulation of ANEC which must hold for chronal geodesics, no modification of

the result is necessary. Hawking proved a further result showing that a compactly generated

Cauchy horizon H+(S) cannot exist in an asymptotically flat spacetime obeying the generic

condition and achronal ANEC [26, 30].4

C. Positive Mass

A positive mass theorem proves that the Arnowitt-Deser-Misner (ADM) mass is positive

for all observers. This mass is well defined for foliated, asymptotically flat spaces, where

an observer at infinity measures the strength of the gravitational field. For the ADM mass

to be positive means that negative contributions from classical gravitational binding energy

and pressures and quantum mechanical negative energies are compensated or exceeded by

positive energy sources. Penrose, Sorkin and Woolgar prove a version of the positive mass

theorem which relies on achronal ANEC and the generic condition [45]. This differs in

character distinctly from the earlier proofs by Schoen and Yau and by Witten, which are

purely results of classical general relativity that could not extend to semiclassical gravity.

The theorem of [45] specified using achronal ANEC, and so we outline their proof without

modification.

Heuristically, the proof proceeds by contradiction. Assume that a space did have negative

net energy. Then, if a family of geodesics left a spacelike foliation at time t = 0 together,

those that were in the infinitely distant (asymptotically flat) region would have an infinite

4 Hawking [30] also contained a result suggesting that vacuum divergences along “fountains,” closed null

geodesic generators of the Cauchy horizon, would render the theory unphysical. Although Chrusciel and

Isenberg [9] have proven that such fountains are not generic features of spacetimes with a compactly gen-

erated Cauchy horizon, Kay, Radzikowski and Wald [33] have shown that any spacetime with a compactly

generated H+(S) does not admit Hadamard states at all. These results and many others argue that, even

if they could be constructed, spacetimes containing time machines are inherently flawed. All results which

follow from ANEC, our topic, address the question of construction.
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lapse or phase delay relative to those that pass through the negative region. Thus, there

are some regions at future times which are not causally related to every point at a suffi-

ciently distant past. There must be null geodesics which thus form a boundary between

causally unrelated regions, and these must pass through the matter sources present. One

such geodesic must remain in the boundary region for infinite affine length. It would need

to be achronal, because if it possessed conjugate points anywhere it would cease to be in the

boundary of causally disconnected regions. Under the conditions of ANEC and genericness,

however, such a geodesic cannot exist.

D. Incomplete Geodesics

Two classes of theorems require versions of achronal ANEC extended to incomplete or

partial geodesics [26]: the singularity theorems of Galloway [23] and Roman [48, 49], and

the superluminal communication restriction proven by Olum [41]. The singularity theorems

show that if ANEC holds on an achronal geodesic originating on a closed trapped surface

and extending to the future, the spacetime must contain a singularity. In [41] it was shown

that a null geodesic leaving a flat surfaces could arrive at a future flat surface faster than

other any other null geodesic only if the weak energy condition were violated, though it may

easily be adapted to requiring non-negativity of achronal ANEC integrated between the two

surfaces [26].

On the one hand it is easy to violate ANEC along incomplete geodesics, and counterex-

amples abound. The earlier mentioned example of Schwarzschild space contains ANEC

violation along radial geodesics. A plate in the x-y plane has negative energy density in

the t − z null direction, and if the ANEC integral is taken starting a little bit above the

plane extending to infinity it can be arbitrarily negative. A path with both start and end

in a region containing negative energy due to the Casimir effect of distant plates has abun-

dant negative energy. Thus as a general statement the modified ANEC clearly fails, but on

the other hand a limitation to only consider incomplete geodesics with starting and ending

points in regions that are Minkowskian seems quite reasonable. All these counterexamples

would be eliminated if the integrals were extended into flat regions.
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E. Modifying ANEC

ANEC on complete, achronal null geodesics does have known violations in the regime

of conformally coupled scalar quantum field theory on a fixed background [52, 55]. Wald

and Yurtsever [58] demonstrated a scaling argument which would require ANEC violation

for scalar fields regardless of coupling, though not necessarily along achronal geodesics.

No specific counterexamples to achronal ANEC in minimal coupling are presently known,

though it may be necessary to modify ANEC from the formulation as stated originally. The

primary avenue towards proof of ANEC appears to rely on quantum energy inequalities,

first introduced by Ford [22] (see [18] for a comprehensive review.)

Fewster and Galloway [12] articulated a version directly motivated by the quantum en-

ergy inequalities. They prove versions of the Hawking and Penrose theorems based on the

requirement that for a future complete null geodesic γ, the inequality∫ ∞
0

e−cλTabk
akbdλ− c

2
. (2.6)

is finite for some c > 0. This condition relaxes strict positivity and past completeness. This

condition does not immediately follow from the energy inequalities either, but may be closer

to them while still sufficient to rule out some exotic phenomena.

In [53], developing an idea introduced by Flanagan and Wald [21], we considered different

schemes for transverse averaging. These energy conditions would be sufficient for many

theorems, as a modification which only forbids exotic phenomena with some finite spatial

extent are adequate. However, we constructed explicit counterexamples to all of them with

a conformally coupled scalar field in a fixed background, as will be detailed in Chapter V.

The most reasonable modification of achronal ANEC is to restrict attention to self con-

sistent spacetimes, as discussed in [21, 26, 45]. Here one requires not only that the quantum

field present is a solution to the wave equation given a fixed background metric, but that its

stress tensor (along with that that of any other matter) produce the curvature present. Si-

multaneously solving the Einstein and Klein Gordon equations is technically quite difficult.

One may also proceed by considering the quantum fields present to be a perturbation on a

classical background, as in [37]. The background is considered to be generated by classical

matter, obeying the generic condition and achronal ANEC. With certain assumptions on
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quantum energy inequalities, one can then prove ANEC holds in the next order of quantum

effects on such a spacetime. In Section VII we describe a candidate for a reference state.

The restricted consideration to self consistent metrics and fields is difficult to analyze, but

it avoids all known counterexamples of other energy conditions while still allowing all proofs

ruling out exotic phenomena to proceed.

III. QUANTUM FIELD THEORY

In this chapter we review quantum field theory, focusing on those aspects which are

necessary for the further results, or may be unfamiliar. More complete treatments cover-

ing quantum field theory in curved space include the books by Birrell and Davies [3] and

Wald [59].

A. Basic Constructions

The dynamics of the field operator φ are given by the Klein Gordon equation,(
�−m2 − ξR

)
φ2 = 0. (3.1)

The parameter ξ gives the coupling to curvature. The choice ξ = 0 is minimal coupling,

and ξ = 1/6 is conformal coupling. If R = 0 the choice of coupling does not effect the form

of φ, but it does alter the stress tensor. Solutions are specified by weighting the sum over

orthonormal modes

φ(x) =

∫
d3k

(2π)3(2ω)1/2

(
ake
−ikaxa + a†ke

ikaxa
)
. (3.2)

Canonical quantization proceeds via the commutator conditions[
ak, ak′

]
= 0 (3.3)[

a†k, a
†
k′

]
= 0 (3.4)[

ak, a
†
k′

]
= δ(k − k′). (3.5)

The raising and lowering operators act on the vacuum state, and thereby construct a Fock

space. The existence of a unique vacuum fails in curved space, and the sophistication of the

algebraic construction is often necessary for this reason.
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The classical stress tensor5 is defined by

Tab = ∇aφ∇bφ−
1

2
gab
(
∇cφ∇cφ+m2φ2

)
+ξ (gab�−∇a∇b −Gab)φ

2. (3.6)

To calculate the quantum mechanical stress tensor, one first requires the two point func-

tion, 〈φ2〉. In canonical flat space quantum theory, this is renormalized through the pro-

cedure of normal ordering, which is the dictum to order all creation operators to the left

of annihilation operators. The normal ordering of an operator is denoted 〈: A :〉. Normal

ordering of the stress tensor is equivalent to vacuum subtraction:

〈ψ| : Tab : |ψ〉 = 〈ψ|Tab |ψ〉 − 〈0|Tab |0〉 (3.7)

B. Conformal Transformations

A conformal transformation is one which rescales the metric at all points by a function

Ω2(x). The various quantities in the new spacetime, denoted with a bar, are mapped from

their values in the original spacetime. In this section, we work specifically in 4 spacetime

dimensions.

ḡab = Ω2gab (3.8)

R̄a
b = Ω−2Ra

b − 2Ω−1gca∇c∇b(Ω
−1) +

1

2
Ω−4�(Ω2)δab (3.9)

R̄ = Ω−2R + 6Ω−3�Ω. (3.10)

5 Some authors reduce this to the form

Tab = (1− 2ξ)∇aφ∇bφ+

(
2ξ − 1

2

)
gab∇cφ∇cφ− 2ξφ∇a∇bφ

+
1

2
ξgabφ�φ−

1

2
(1− 3ξ)m2gabφ

2 + ξ

(
Gab +

3

2
ξRgab

)
φ2

when φ is a solution to the equation of motion (on shell.) This reveals a ξ2 dependence.
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Conformal transformations preserve causal structure; that is, they map null geodesics to

null geodesics. The affine parametrization and tangent vector are changed,6

dλ̄ = Ω2dλ (3.11)

l̄a = Ω−2la (3.12)

For the particular choice of parameters m = 0 and ξ = 1/6, the scalar field is conformally

invariant if we define φ̄ = Ω−1φ. This function φ̄ is a solution to the transformed Klein

Gordon equation, (
�̄− 1

6
R̄

)
φ̄ = 0. (3.13)

This relationship is valid whether φ and φ̄ are thought of as classical solutions or the

quantum mechanical field operator. We may also map a quantum state |ψ〉 to a state in the

new spacetime, specifying the state with boundary conditions such that the propagators are

conformally related,

Ḡ(x, x′) = Ω(x)−1Ω(x′)−1G(x, x′). (3.14)

It is particularly worth noting that if we take as our initial space and state the Minkowski

vacuum, the transformation will not in general be to a vacuum of the new space. In the

special case where the region affected by the transformation is only compactly different from

Minkowski space (the function Ω2−1 has compact support), then the vacuum is transformed

to the vacuum. This is because a conformally coupled field does not experience any particle

creation moving through a conformally flat region of curvature.

The classical or unrenormalized stress tensor is also transformed with a simple confor-

mal factor. However, renormalization breaks conformal invariance even when the action is

6 These results are found in Appendix D of [57]. In general for a vector, we have va∇̄av
b = 2vbvc∇c ln Ω−

(gacv
avc)gbd∇d ln Ω. The second term only vanishes for null geodesics, and the first only for the

parametrization in eq. (3.11).
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invariant. The anomalous contribution to the stress tensor7 was found by Page [44]:

T̄ ab − Ω−4T ab = − 1

480π2
Ω−4

[
2∇d∇c(C

ca
db ln Ω) +Rd

cC
ca
db ln Ω

]
− 1

5760π2

[(
4R̄d

cC̄
ca
db − 2H̄a

b

)
− Ω2

(
4Rd

cC
ca
db − 2Ha

b

)]
− 1

17280

[
Īab − Ω−4Iab

]
. (3.15)

The additional curvature tensors are

Hab = −Rc
aRcb +

2

3
RRab +

1

4

(
2Rc

dR
d
c −R2

)
gab (3.16)

Iab = 2R;ab − 2RRab +
1

2

(
R2 − 4�R

)
gab. (3.17)

The coefficient of the Iab term in eq. (3.15) may be modified by adding terms proportional

to R2 to the action, though changes would not effect the character of our results.8 If we

specialize to the case where our initial spacetime is Minkowski space, the Weyl curvature

and all unbarred curvatures vanish, and we have

T̄ab − Ω−2T aab =
1

2880π2

[
H̄ab −

1

6
Īab

]
(3.18)

T̄ab − Ω−2T aab =
1

2880π2

[
−R̄c

aR̄cb + R̄R̄ab −
1

3
R̄;ab

+
1

6

(
3R̄c

dR
d
c − 2R̄2 + 2�̄R̄

)
ḡab

]
(3.19)

Conformally flat spacetimes are non-generic, and all null geodesics are achronal, as these

are properties of Minkowski space that are not changeable via local rescalings. Such a

spacetime must violate the achronal null convergence condition, which requires that∫
γ

Rabl
albdλ ≥ 0. (3.20)

7 This is not the same as what many sources call the conformal anomaly, also the trace anomaly. The

conformal anomaly occurs when calculating the renormalized stress tensor in a curved space of any theory

with a conformally invariant action, such as the scalar case here, a massless spin 1/2 system or sourceless

electromagnetism. Although the classical stress tensor is always tracefree due to conformal symmetry,

the trace of the renormalized stress tensor of the quantum theory is nonvanishing and depends on local

curvature. These calculations make no reference to a conformal transformation between spaces. Both

effects are due to the arbitrary symmetry breaking scale which renormalization procedures introduce. See

§6.3 of [3]
8 Our value corresponds to having no R2 term in the action, but gives a contribution to the trace T a

a. For

other purposes, such as the work on the holography and ANEC recently undertaken by Nakayama [40],

it is useful to introduce the counterterms necessary for the trace contribution to be set to zero.
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C. Algebraic Formulation

The algebraic formulation of quantum field theory provides a powerful insight into the

nature of quantum field theories. Haag [27] provides a thorough description. In curved

spaces, especially those which lack a timelike Killing symmetry, it is essential. Wald [59]

is a standard reference, and Kay [32] provides a recent review. Fewster [18] also intro-

duces the algebraic formulation at some length, aiming towards deriving quantum energy

inequalities. The algebraic approach to quantum field theory can provide powerful results

in mathematical and axiomatic field theory in curved space, such as generalizations of the

Spin-Statistics [54] and PCT [31] theorems, which were originally derived with methods in-

extricable from Poincare symmetry [50]. In this section we will not at all attempt to cover

the full intricacies of the algebraic approach, but will focus on the role of Green’s functions

and the Hadamard condition for states.

Smeared local observable operators are taken as the fundamental objects, and they form

an algebra, A. Quantization is achieved not through the canonical commutation relationships

for raising and lowering operators, eq. (3.5), but via the field operator

[φ(x), φ(x′)] = −iE(x, x′) (3.21)

or, more properly, its smeared variant, where f(x) and g(x) are functions of spacetime

[φ(f), φ(g)] = −iE(f, g). (3.22)

E is known as the Pauli-Jordan or Lichnerowicz commutator, and is the advanced minus

retarded Green’s functions: E = GA − GR. This is equivalent to the Peierls bracket.9 The

familiar advanced (retarded) Green’s functions satisfy the equations

(�−m2 − ξR)u(x) = f(x) (3.23)

u(x) =

∫
GA,R(x, x′)f(x′)d4(x′) (3.24)

subject to the boundary condition that ψ(x) = 0 for all points outside the causal past (future)

of f(x). Every classical solution with bounded support u may be written as u = Ef for

9 The Peierls bracket can be defined more generally, and take the role of the Poisson bracket in classical

mechanics as well. See Haag [27] for the relationship to Poisson, and Marolf [38] for generalizations.
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some initial data. To interpret a Green’s function as a bidistribution, there is the additional

smearing

E(f, g) =

∫
d4x′E(x, x′)f(x′)g(x′). (3.25)

The anticommutator distribution is defined in canonical quantum field theory for a state

ψ

µ(f, g) =
1

2
〈φ(f)φ(g)〉ψ + 〈φ(g)φ(f)〉ψ (3.26)

and has the following properties:

(a) Symmetry: µ(f, g) = µ(g, f)

(b) Weak Bisolution: µ(Pf, g) = µ(f, Pg) = 0, where P = �−m2 − ξR

(c) Positivity: µ(f, f) ≥ 0 and µ(f, f)µ(g, g) ≥ 1
4
(E(f, g))2

The algebraic approach utilizes a powerful existence result: if a function G satisfies the

above criteria, there exists a quasifree10 state ψ such that its two point function is given by

〈φ(f)φ(g)〉ψ = µ(f, g) +
i

2
E(f, g). (3.27)

In this way, states are defined as maps from operators to complex numbers:

ψ : A → C (3.28)

A → 〈A〉ψ (3.29)

The positivity condition above can be written in terms of the two point function rather

than µ

〈φ(f)φ(f)〉ψ 〈φ(g)φ(g)〉ψ ≥
1

4
|E(f, g)|2 . (3.30)

Written in this way, we note that the left side of the equation is state dependent, whereas

the Green’s functions are determined only by the form of the wave equation. But as E is

the imaginary part of the two point function, this becomes

〈φ(f)φ(f)〉ψ 〈φ(g)φ(g)〉ψ ≥ (Im 〈φ(f)φ(g)〉)2 . (3.31)

10 A quasifree state is one which contains no new information in its n point functions for n > 2; all even

higher degree point functions can be defined as products of the 2 point function, and all odd point functions

vanish. In curved space field theories, the term “vacuum” is generally used to refer to quasifree states

that are also pure (as in the preface of Wald [59])
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If we knew that 〈•, •〉 was an inner product, this would be the Cauchy-Schwarz inequality.

However, in the algebraic formulation, positivity of G must be taken as a defining property,

and as a result we show that familiar states can be constructed.

We will also denote by µ the function defined on classical solutions, which are be written

u = Ef for some distribution f , via the obvious identification

µ(u1, u2) = µ(f1, f2). (3.32)

IV. HADAMARD RENORMALIZATION

There are a variety of techniques used to renormalize quantum fields. In flat space,

the standard technique is vacuum subtraction, which is equivalent to normal ordering. All

states are represented as excitations of the Poincare invariant vacuum. This state is defined

to have zero energy, with all other states measured with respect to. In a general curved

space there is not a unique vacuum, even in spaces which do admit pure quasifree states

that share many properties of the vacuum. Even in spacetimes that admit a natural sense

of a vacuum (such as stationary spacetimes), this vacuum may be polarized and we would

not wish to implement a renormalization procedure that, by fiat, sets 〈Tab〉 = 0. A variety

of techniques, including counterterms, Pauli-Villars, zeta function and dimensional regu-

larization, can render a smooth, finite stress tensor. Birrell and Davies [3] describe these,

and provide references to the considerable scholarship in the seventies which proved that

these procedures coincide, up to state independent, local, conserved curvature terms. The

technique which is most suited to an algebraic perspective and to fully general spacetimes

and which we use is Hadamard subtraction, and is detailed by Wald in [59].

In this procedure, the two point function of the state, G(x, x′), is renormalized by sub-

tracting the Hadamard distribution H(x, x′). The Hadamard distribution is also known as

the fundamental solution, and was introduced by Hadamard [28] in his study of the Cauchy

problem. We denote the renormalized two point function by

F (x, x′) = 〈φ(x)φ(x′)〉ψ −H(x, x′). (4.1)

F is now smooth in the limit as x → x′. The two point function is a bisolution to the
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equation of motion for φ, and by following a particular method for constructing H(x, x′)we

can ensure that F (x, x′) is also. We obtain the renormalized stress tensor by performing the

appropriate operations, eq. (3.6), to this renormalized two point function.

TRN
ab = lim

x→x′

[
∇a∇b′ −

1

2
gab

(
∇c∇c′ +m2

)
+ξ
(
gab′∇c∇c′ −∇a∇b′ −Gab

)]
F (x, x′). (4.2)

Hadamard’s fundamental solution captures all of the possible short range singular be-

havior for the two point function in solutions to the wave equation. In a broad class of

states, known as Hadamard states, there are no further singularities. This was conjectured

by Kay and proven by Radzikowski [47]. All familiar states from a Fock space construc-

tion are Hadamard states, and in more general contexts it is reasonable to define the set of

“physically reasonable” states as those which are Hadamard [32].11

Constructing and calculating explicit Hadamard functions can be more difficult than the

existence of a formal procedure might suggest. Details are best provided by Garabedian [24]

and the original by Hadamard [28]. We begin with an equation of motion for φ in its most

general form

L[φ] ≡ aij
∂2φ

∂xi∂xj
+ bk

∂φ

∂xk
+ cφ = 0. (4.3)

The method for constructing the Hadamard solution outlined here may fail to be a solution

in x′, but this can be corrected afterward by adding the local curvature term necessary for

Tµν to be conserved. This is the same term which causes the conformal anomaly. For the

massive Klein Gordon equation we have the special case of aij = gij, bk = 0, c = m2. We

define σ as the square12 of the geodesic distance between x and x′, and let s be a parameter

measuring length between them, running from 0 to
√
|σ| Then

aij
∂σ

∂xi
∂σ

∂xj
= 4σ (4.4)

We also define q = (n − 2)/2, where n is the number of spacetime dimensions involved.13

11 A class of examples of non-Hadamard “states” are the α vacua in de Sitter space.
12 Many references define σ = 1

2x
axa.

13 Mathematical references use m in place of q, which have reserved to denote mass.
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Then, we can write

H =
U

Aσq
+ V log σ +W (4.5)

where U, V, W are all regular functions, and may be expressed as series in σ. For our

purposes the series do not need to converge, because only two derivatives will be taken before

the coincidence limit. The square of U is known as the van Vleck-Morette determinant, and

U0 = 1. When n is even, U may be truncated, and terms may be grouped into W . A is a

constant that depends on the dimension, necessary to match the field normalization.14 In

2+1 dimensions A = 4π and in 3+1 A = 4π2. Writing U, V, and W as series allows us to

acquire recursive solutions. Using

C =
1

4
aij

∂2σ

∂xi∂xj
+

1

4
bk
∂σ

∂xk
(4.6)

We have

s
dU0

ds
+ (C − q − 1)U0 = 0 (4.7)

s
dUl
ds

+ (C − q − 1 + l)Ul =
−1

4(l − q)
L [Ul−1] (4.8)

When n and hence q is odd, (l − q) is always nonzero. When q is even, the series for U

terminates at l = q − 1 and then V is given by

s
dV

ds
+ (C − 1)V = −1

4
L [Uq−1] (4.9)

Some specific examples of H(x, x′) are calculated in Hadamard’s lecture notes [28], in-

cluding the telegraphist, cylindrical wave, and spherical wave equations, all in flat space.

We will derive the massless Klein Gordon field in arbitrary dimensions, the constant mass

and the transversely flat potential in 2+1 dimensions, which was first renormalized in [25].

For the latter, we will also calculate the renormalized energy density of the vacuum state,

to compare with the result in the paper and show agreement. Although these are known to

coincide with the standard vacuum two point function obtained by mode sums, we demon-

strate their derivation with the above algorithm. We then give the general schematic for a

spatially varying potential in 3+1 dimensions.

14 Garabedian [24] simply has A = 1 as he investigates the singularity structure of H(x, x′) without any

attention to quantum field theory. The overall constant is set for all spaces of the same dimension by

comparison to the Minkowski vacuum.
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A. Massless field in n-dimensional Minkowski space

For the massless Klein Gordon field

C =
n

2
(4.10)

Thus, eq. (4.7) becomes

s
dU0

ds
= 0. (4.11)

This yields a constant value for U0, which we take to be 1. Subsequently, all Ul must, for

l > 0, satisfy

s
dUl
ds

+ lUl = L [Ul−1] . (4.12)

The first one is given by U1 = cs−1, and so the constant must be set to zero in order to have

U1 nonsingular. Likewise, each subsequent Ul must also be zero.

If n is odd we have a V term, but it is given by

s
dV

ds
+ (C − 1)V = 0 (4.13)

which has solution

V = cs1−C . (4.14)

Because V must be nonsingular, the only acceptable value for the integration constant is

c = 0. Thus we have H ∼ σ−q, with the proportionality constant undetermined by this

method.

B. Massive field in (2+1) dimensional Minkowski space

For a massive field, we have the same C, and thus the same constant term for U0. We

can set it to unity. But now, L [U0] = −m2. Then the next term in the series is given by

s
dU1

ds
+ U1 =

1

2
m2 (4.15)

which has solution

U1 =
1

2
m2 +

c

s
. (4.16)
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Again the free constant c must be set to zero to maintain regularity. Next, we must solve

s
dU2

ds
+ 2U2 =

m4

12
(4.17)

which has solution

U2 =
m4

24
+
c

s
. (4.18)

Once more we set the constant is set to zero, and the pattern continues, with

Ul =
(m2/2)l

l!(2l − 1)!!
(4.19)

where !! denotes the double factorial (2l− 1)(2l− 3)(2l− 5)... and not the iterated factorial.

Then, taking the sum U = Uls
l = cosh(ms). This gives for H(x, x′)

H(x, x′) =
cosh(ms)

4πs
(4.20)

C. Stress tensor for a transversely varying potential in 2+1 dimensional

Minkowski space

Here we treat the case with a potential Q(x) that does not depend on y. This aims to

recapture the result of Graham and Olum [25], who used dimensional regularization rather

than Hadamard subtraction. The momentum component in the y direction is denoted p,

and in the x direction k. We start by calculating F . Then the mode sum will be

〈
φ2
〉

=
〈
φ†+(x)φ+(x′)

〉
+
〈
φ†−(x)φ−(x′)

〉
(4.21)

=

∫
dpdk

(2π)2ω
eip∆y

[
ψ†−(k, x)ψ−(k, x′) + ψ†+(k, x)ψ+(k, x′)

]
(4.22)

We do the integral in p first.∫ +∞

−∞

dp√
p2 + k2

eip(y−y
′) = 2K0(

√
k2(y − y′)2) (4.23)

We note that 2K0(k∆y) in the limit of small ∆y is − ln(kλ)2, plus terms which do not depend

on k and vanish due to the properties of orthogonal functions. Here λ is an arbitrary length.

Now we express the mode sum in terms of the Green’s function

ψ†−(k, x)ψ−(k, x′) + ψ†+(k, x)ψ+(k, x′) = 2k ImG(x, x′, k) (4.24)
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which satisfies

−G′′(x, x′, k) +
(
Q(x)− k2

)
G(x, x′, k) = δ(x− x′) (4.25)

with only outgoing waves at infinity. This gives

〈
φ2
〉

= −
∫ ∞

0

dk

2π2
k ImG(x, x′, k) ln k2λ2 (4.26)

Because G(x, x′,−k) = G(x, x′, k)? we can extend the integral to −k as well. Then

〈
φ2
〉

=

∫ ∞
−∞

dk

4π2
ikG(x, x′, k) ln k2λ2 (4.27)

This can be extended to a contour at infinity in the upper half plane which only has contri-

butions along a branch cut on the positive imaginary axis. Off this axis the integrand goes

to zero for large magnitudes of complex momentum. In the case of either a massless field or

a repulsive Q(x) there will not be any poles. The logarithms cancel leaving a constant term

of 2iπ. There are four factors of i: that already present, one from each k = iκ and one from

the 2iπ so there is no sign change.

〈
φ2
〉

=

∫ ∞
0

dκκ

2π
G(x, x′, k) (4.28)

We want to renormalize using the Hadamard subtraction. For a massive field with no

potential, the Hadamard distribution was found to be (4πs)−1 cosh(ms), eq. (4.20). For the

massless field with square barrier it is the same, but with
√
Q in the role of m. Since the

Hadamard function only depends on the local conditions at (x, y), this should be the case

for any suitably flat potential. We use an integral identity to split

H(x, x′) =
cosh(

√
Qs)

4πs
=

∫ ∞
0

dκ

4π

κ

κ′
e−κ

′s +
sinh(

√
Qs)

4πs
(4.29)

which isolates the divergent portion as an integral. For concise notation we introduced

κ′ =
√
κ2 +Q. The integrand is however not divergent as s→ 0, and neither is the function

sinh(s)/s.

Together with the mode sum, eq. (4.28), we have the renormalized two point function

F =
〈
φ2
〉
−H =

1

4π

∫ ∞
0

dκ
[
2κG(x, x′, k)− κ

κ′
e−κ

′s
]
− sinh(

√
Qs)

4πs
. (4.30)
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Using this in the definition

Tµν = lim
x→x′

[
∇µ∇ν′ −

1

2
gµν′

(
∇α∇α′

+Q
)]

F (x, x′) (4.31)

gives

〈H〉 = Ttt′ = lim
x→x′

1

2
[F,tt′ + F,xx′ + F,yy′ +QF ] . (4.32)

We first show that the ∂yy′ 〈φ2〉+ ∂tt′ = 0. We consider the boost of K0(k∆y) to K0(kσ),

with σ =
√

∆y2 −∆t2. We consider, for some general coordinates x, x′ and z a function

z(s)

∂2f(z)

∂x∂x′
=

∂

∂x

(
∂z

∂x′
∂zf(z)

)
(4.33)

=
∂2z

∂x∂x′
∂zf(z) +

∂z

∂x

∂z

∂x′
∂2
zf(z) (4.34)

=
∂s

∂x∂x′
∂z

∂s
∂zf(z) +

∂s

∂x

∂s

∂x′

[
∂2z

∂s2
∂zf(z) +

(
∂z

∂s

)2

∂2
zf(z)

]
. (4.35)

This is simply the chain rule. In the first of these, we note that ∂xx′s = −2gxx′ . Since we

are considering ∂yy′ + ∂tt′ we will have these cancel exactly.15 The other term is direction

dependent, with ∂xs = x̂/
√
s, but we will see it does not contribute either. Our particular

functions are f = K0(z) and z = k
√
s, and thus the direction dependent part becomes

x̂x̂′σ

[
−k

4σ3/2
K ′0(z) +

k

4σ
K ′′0 (z)

]
. (4.36)

The derivatives of the Bessel function

∂

∂z
K0(z) = −K1(z) (4.37)

∂

∂z
K1(z) = −K0(z)− z−1K1(z) (4.38)

combine to give

x̂x̂′
k

4
√
σ

[2K1(z) + zK0(z)] . (4.39)

Now we take the small σ and hence small z expansions

2K1 ≈
2

z
+ z

(
ln(z)− ln(2) + γ − 1

2

)
(4.40)

K0 ≈ −z (ln(z)− ln(2) + γ) . (4.41)

15 In four dimensions such a transverse component would survive.
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This gives for the directional dependent part

4x̂x̂′
[

1

2s
− k2

8
+O(s)

]
(4.42)

The first term diverges as s−1 but does not depend on k so it vanishes on integration, by

completeness. The second term also vanishes upon the contour integration in k, and all other

terms drop as s→ 0. Thus, the transverse and time derivative parts of the unrenormalized

energy density vanish entirely, and we are left with

〈H0〉 =
1

2
[Q+ ∂xx′ ]

〈
φ2
〉

(4.43)

This is, in terms of the Green’s function

〈H0〉 =
1

4π

∫
dκκ

(
QG(x, x′, k) +

∂2

∂x∂x′
G(x, x′, k)

)
(4.44)

To take the x→ x′ limit, we write κG(x, x′) as ψ(x)ψ(x′) and suppress writing the sum over

modes. Then we have

lim
x→x′

∂2

∂x∂x′
ψ(x)ψ(x′) =

1

2

∂2

∂x2
ψ(x)2 − ψ′′(x)ψ(x). (4.45)

Because ψ is a solution to the equations of motion, this becomes

lim
x→x′

∂2

∂x∂x′
ψ(x)ψ(x′) +Qψ(x)2 =

1

2

∂2

∂x2
ψ(x)2 − κ2ψ(x)2. (4.46)

Altogether this gives

〈H0〉 = − 1

8π

∫
dκκ

(
(2κ2)G(x, x′, k)− ∂2

∂x∂x
G(x, x′, k)

)
. (4.47)

Now we calculate the derivatives of H(x, x′). The derivatives of the exponential give

−κ′2, and −κ′2 + V = −κ2, so this term enters neatly. For the sinh part, we have

lim
s→0

1

2

∂2

∂x∂x′
sinh(

√
Qs)

4πs
=
−1

8π

Q3/2

3
. (4.48)

The y, y′ contribution is the same, and t, t′ differs by a sign. Thus

lim
s→0

Q sinh(
√
Qs)

9πs
=

1

8π
Q3/2. (4.49)

This means the total contribution of the sinh term is −Q
3/2

12π
and we thus have
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〈H0〉 = − 1

8π

∫
dκ

(
(2κ3)G(x, x′, k)− κ3

κ′
− κ ∂2

∂x∂x
G(x, x, k)

)
− 2Q3/2

12π
. (4.50)

Note that for large κ,
κ

κ′
≈ 1− Q

2κ2
+

3Q2

8κ4
(4.51)

In eq. 15 of [25], only the first two terms in this expansion are present. The difference is

upon integration precisely the constant that resulted from the sinh,∫ ∞
0

dκκ2

[
κ

κ′
− 1 +

Q

2κ2

]
=

2Q3/2

3
, (4.52)

and thus our Hadamard renormalization manifestly agrees with the dimensional regulariza-

tion.

D. Schematic for a general Q in 3+1 dimensions

The Hadamard form will be

H =
U

σ
+ V log σ +W. (4.53)

As before, the quantity C−q−1 = 0 depends only dimension, and U0 = 1. Because l−q = 0

for l = 1, U0 is the only term in the series for U that exists.

Then, we go on to calculate V :

V0 = −U0

4s

∫ s

0

L[U0]

U0

ds (4.54)

In our case this is simply

V0 = − 1

4s

∫ y

x

Qds (4.55)

= − 1

4s

∫ s

0

Qds (4.56)

This is symmetric, written as an integral. To first order, this is −Q̄/4, where Q̄ = (Q(x) +

Q(y))/2.

The next term in V is

V1 = − 1

4s2

∫ s

0

sL[V0]ds (4.57)
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This is

V1 = − 1

16s2

∫ s

0

s
(
�Q+Q2

)
ds (4.58)

=
1

8s2

(
�Q+ Q̄2

)
(4.59)

So, we have:

H(x, x′) =
1

4π2

(
1

σ
+

(
Q̄

4
+

�Q+ Q̄2

8
σ

)
ln(Q̄σ)

)
. (4.60)

We will use this to renormalize the recently massless vacuum in the last section. The σ lnσ

terms have a vanishing contribution to the two point function, but they are singular and

need to be explicitly subtracted when calculating the stress tensor.

E. Curved Space

The Hadamard form in curved space is given in series, as a reference. DeWitt and

Brehme [11] established this approach to renormalization, and found for a massless field

with minimal coupling

4π2H(x, x′) =

(
1− 1

6
Rabσ,aσ,b

)1/2

σ2
+

1

12
R ln |σ|+ . . . (4.61)

Christensen16 [7] finds, for a massive field with arbitrary coupling

4π2H(x, x′) =
1

σ2
+

[
m2 −

(
1

6
− ξ
)
R

] [
γ +

1

2
ln

∣∣∣∣12m2σ2

∣∣∣∣]− 1

2
m2 +

1

12
Rab

xaxb

σ2

+
1

4m2

[(
1

6
− ξ
)2

R2 +
1

90

(
RabcdRabcd −RabRab

)
+

1

3

(
1

5
− ξ
)
�R

]
+O(m−4). (4.62)

Note that this contains a term which depends on the direction of the vector xa which connects

x to x′. Christensen’s result is a series in inverse powers of the mass, and so the massless

case must be treated separately and not as a limit. We will not invoke these curved space

forms further, but include them for completeness.

16 Christensen further considers fields of higher spin, giving a unified treatment [8].
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V. PROOFS OF ANEC

We here summarize the current status of proofs of the average null energy condition, based

on the properties of quantum field theory.17 Klinkhammer [35] proved ANEC in flat space

using the plane wave decomposition. This requires the full spacetime to be Minkowski. Wald

and Yurtsever [58] present their proof in full Minkowski as well, but their techniques only

require Fourier transforms along the null geodesic over which the ANEC integral is taken.

This philosophy is adopted in the proof by Fewster, Olum and Pfenning [13] for geodesics in

a tubular region of flat space, which permits curvature some finite distance away. As we have

found counterexamples to ANEC in the regime of test fields on a fixed background for the

conformally coupled scalar field, it is likely that the much anticipated proof for curved spaces

may require limiting to minimal coupling, or restriction to self consistent spacetimes and

fields. Flanagan and Wald [21] considered perturbations of flat space, finding no violations of

achronal ANEC. Kontou and Olum [37] have presented a proof for achronal ANEC for fields

which exist on more general classical backgrounds, which relies on a conjectured quantum

energy inequality.

A. Flat Space

For reference, the stress tensor, given earlier at eq. (3.6), is

Tab = ∇aφ∇bφ−
1

2
gab
(
∇cφ∇cφ+m2φ2

)
+ξ (gab�−∇a∇b −Gab)φ

2. (5.1)

It takes a much simpler form as a contribution to the flat space ANEC integral. Curvature

dependent terms all vanish in flat space. Upon null projection, all terms whose tensor

structure is given by the metric vanish. Thus we have

Tabl
alb =

[
∇aφ∇bφ− ξ∇a∇b

(
φ2
)]
lalb. (5.2)

17 Wall has presented a proof of ANEC as a corollary to a certain generalized second law of thermodynam-

ics. It would then remain to establish the range of conditions under which that generalized second law

holds [60].
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When we consider ANEC, we will integrate over a complete geodesic. The ξ dependent

term here is a total derivative, and so will not contribute at all. Thus, the flat space ANEC

integral simply becomes ∫
dλTabl

alb =

∫
dλ∇aφ∇bφl

alb. (5.3)

Note in particular that all explicit dependence on ξ has dropped. Furthermore the equation

of motion, which determines the normal modes and thus the construction of states, does

not depend on ξ, and therefore all flat space results are independent of coupling. If this

were a classical theory with φ treated as a simple wave function solution, the above would

be
∫

(φ′)2, a manifestly positive quantity. The case in quantum field theory requires more

finesse.

Klinkhammer [35] proceeds with the decomposition into normal modes using the defini-

tion of the field operator in terms of raising and lowering operators, eq. (3.2):

φ(x) =

∫
d3k

(2π)3(2ω)1/2

(
ake
−ikaxa + a†ke

ikaxa
)
. (5.4)

With this, we have∫
dλTabl

alb =

∫
dλ

∫
d3kd3k′

2(2π)6
√
ωkωk′

(
−iakkae−ikax

a

+ ia†kkae
ikaxa

)
×
(
−iak′k′ae−ik

′
ax

′a
+ ia†k′k

′
be
−ik′bx

′b
)
lalb. (5.5)

We must renormalize, which we achieve via normal ordering of the operators a and a†∫
dλ : Tab : lalb =

∫
dλ

∫
d3kd3k′

2(2π)6
√
ωkωk′

(
2a†kak′e

i(kaxa−k′bx
b)

−akak′e−i(kax
a+kbx

x) − a†ka
†
k′e

+i(kaxa+kbx
x)

)
kal

ak′bl
b. (5.6)

The first term is a product of
∫
dkkal

aa†e−ikax
a

and its complex conjugate, and thus it is

manifestly positive.

To analyze the other two terms, we write la = λ(−e0 + e1), for timelike and spacelike

basis elements 0 and 1. We then perform the integral in λ first∫
dλeiλ(ka+kb)(−e0+e1) = δ(−ωk − ωk′ + k1 + k′1). (5.7)

For a massive field, ωk is strictly greater than the first component of momentum, and so

this delta function never has support. For a massless field, it is possible that k could lie
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completely in the (0, 1) direction and thus satisfy the delta function, but then kal
a = 0

and the entire ANEC integral is equal to zero. Thus, the only possible contribution is the

positive one.

Wald and Yurtsever’s proof of ANEC [58] hinges on the positivity condition, eq. (3.30),

obeyed by every state in the algebraic construction of a field theory. In particular we will

show to extract ANEC, which appears to be highly nontrivial, from the basic assumption of

positivity,

〈φ(f)φ(f)〉ψ 〈φ(g)φ(g)〉ψ ≥
1

4
|E(f, g)|2 . (5.8)

We express the positivity condition using classical solutions u = Ef rather than test distri-

butions, giving the form

µ(u1, u1)µ(u2, u2) ≥ 1

4
|σ(u1, u2)|2 (5.9)

where

σ(u1, u2) =

∫
(u1∇au2 − u2∇au1) dΣ. (5.10)

This symplectic inner product is independent of the choice of Cauchy surface Σ. We restrict

attention to those which coincide with the null geodesic γ for some compact range, while

spacelike apart from this. The class of solutions considered are those u which have compact

support, and whose restrictions u0 to the surface Σ are C∞. It is proven in [34] that the

set of functions µ under consideration does not fail to include the two point function of any

Hadamard states that can be defined on the spacetime, and thus may be used for ease of

proof.

We divide the real part of the two point function, µ, into the vacuum component µ0 and

a remaining portion, w. We establish coordinates, with v in the direction tangent to γ and

(s1, s2) spacelike orthogonal to γ. Note that the null derivatives of w give the desired term

in the ANEC integral,
∂2

∂v∂v′
w(v, s, v′, s′) = TRNab lalb (5.11)

Appendix B of [34] shows that the positivity condition can be recast as[
2µ0(u01, u01) + 8

∫
Σ×Σ

∂v∂v′w(v, s, v′, s′)u01(v, s)u01(v′, s′)dvd2sdv′d2s′
]

×
[
with u02

]
≥ |σ(u1, u2)|2 . (5.12)
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We use as our convention for the Fourier transform

û(k) =

∫
e−ikvu(v)dv. (5.13)

Transforming in the v direction, it can be shown that

µ0(u01, u01) = 4π

∫ ∫ ∞
0

k |û01|2 dkd2s (5.14)

σ(u1, u2) = −8π Im

∫ ∫ ∞
0

kû∗01(k, s)û02(k, s)dkd2s (5.15)

In Klinkhammer’s proof, the mode decomposition effectively requires a Fourier transform

over the entire spacetime. The method of Wald and Yurtsever only transforms along the

geodesic γ, and thus can more easily be generalized. With these identities, we now have[
8π

∫ ∫ ∞
0

k |û01|2 dkd2s+ 8

∫
Σ×Σ

∂v∂v′w(v, s, v′, s′)u01(v, s)u01(v′, s′)dvd2sdv′d2s

]
×
[
with u02

]
≥ 64π2

∣∣∣∣Im∫ ∫ ∞
0

kû∗01(k, s)û02(k, s)dkd2s

∣∣∣∣2 .(5.16)

Thus we have an inequality involving the ANEC integrand, ∂v∂v′w, and Fourier transforms

of arbitrary functions. Wald and Yurtsever [58] proceed to isolate the ANEC integral, and

use properties of Fourier analysis to show that it must be positive.

B. Flat Tube, Boundary Conditions

Fewster, Olum and Pfenning [13] present a proof of ANEC for any geodesic γ in a space-

time N which contains an open neighborhood around it that is flat (locally isometric to

Minkowski space) which has some minimum finite radius. We denote the region N ′, and

this radius of the minimal tube r. Outside of the tube there may be any sort of curva-

ture so long as it does not alter the causal structure of γ, which must be achronal, and

must be isometric to some subregion of Minkowski space (that is, we can isometrically map

N ′ →M).

The result used to limit the quantum field theory is a quantum energy inequality, or QEI,

for timelike geodesics proved as Theorem III.1 of Fewster and Roman [14], which was based

on the general worldline quantum inequality of Fewster [16]. Fewster presents a general

overview of QEIs is in [18]. Fewster, Olum and Pfenning [13] consider a timelike geodesic
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η characterized by proper time τ . The vector field la is null, not a timelike tangent to η,

which distinguishes it from both ANEC and AWEC. They prove∫
η

dτ
(〈
TRN
ab

〉
ψ
−
〈
TRN
ab

〉
ψ0

)
lalbg(τ)2 ≥ −2

∫ ∞
0

F̂ (α,−α) (5.17)

where

F (τ, τ ′) = g(τ)g(τ ′)
〈
la∇aφ(τ)lb∇bφ(τ ′)

〉
ψ0
, (5.18)

the state ψ0 is some reference state, and g is some sampling function with normalization∫
g2(τ/τ0)dτ = τ0. We choose a family of timelike geodesics ηv, with each one characterized

by a boost velocity v. Comparing to the Minkowski vacuum state gives∫
ηv

dτ
〈
TRN
ab

〉
ψ
lalbg(τ/τ0)2 ≥ − (lak

a)2

12π2τ 4
0

∫
ηv

dτg′′(τ/τ0)2, (5.19)

where Parseval’s theorem converted the Fourier transforms to second derivatives of the

sampling function. Given certain geometrical caveats [13], the limit to a null geodesic will

converge, and (lak
1)2/τ 4

0 → 0 while
∫
g′′ remains finite. Thus, the quantity on the left, which

converges to the ANEC integral, must be greater than some quantity arbitrarily close to

zero.

C. Self Consistency

There are known violations of ANEC within the regime of conformally coupled quantum

field theory on an arbitrary fixed background [52, 53]. It has been proposed [26, 45] to limit

consideration to self consistent pairs of spacetimes and stress tensors. An exact semiclassical

solution would require one to couple the Einstein and Klein Gordon equations:

Gab = 8πG 〈Tab〉 (5.20)(
�−m2 − ξR

)
φ = 0. (5.21)

The field φ must solve a wave equation set by the metric gab, and the stress tensor of the

particular state |ψ〉 it is in must generate the curvature of the metric. Simultaneously solving

the Einstein equation and classical dynamical equations for even simple fluids is a difficult

task, and the quantum regime is worse still.
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Flanagan and Wald undertook a perturbative analysis of quantum backreaction in flat

space [21] of a free, massless scalar field with arbitrary coupling. They found no violations

of achronal ANEC at first order. At second order the perturbations studied in general would

violate the generic condition, eq. (2.5), and therefore induce chronality. They did find first

order violations of ANEC in the case of incoming mixed states, though the chronality of

these geodesics was not addressed. Thus, there is no explicit counterexample to achronal,

self consistent ANEC.

Kontou and Olum [37] begin with an asymptotically flat background metric that is con-

sidered classical; i.e., it obeys the generic condition and is sourced by matter that (near

γ, an achronal geodesic) obeys the null energy condition (NEC). This latter statement is

equivalent to saying the background metric obeys the null convergence condition

Rabk
akb ≥ 0. (5.22)

It must also be required that curvature components be bounded, or else we would be in the

regime of quantum gravity. These bounds only need to be kept below the Planck regime.

This cannot be stated purely in terms of invariant measures like the Ricci scalar; instead,

we require that each component |Rabcd| < Rmax, for some maximum curvature value. These

components are calculated with respect to a generalization of Fermi normal coordinates,

adapted for the region surrounding the geodesic [36]. This makes the observer who travels

along the null geodesic calculating the ANEC integral a privileged observer, but it appears

quite natural. Likewise the first and second derivatives of the Riemann tensor with respect

to every coordinate must be less than some values R′max and R′′max.

We then consider the expectation value of the stress tensor any quantum state which

may then live on this background, 〈Tab〉ψ. If such a stress tensor obeys a modified form of

eq. (5.19)∫ +τ0

−τ0
dτ
〈
TRN
ab

〉
ψ
lalbg(τ/τ0)2 ≥ − (lak

a)2

12π2τ 4
0

∫ +τ0

−τ0
dτg′′(τ/τ0)2

[
1 + c(Rmaxτ

2
0 )
]
, (5.23)

where c(Rmaxτ
2
0 ) → 0 as τ0 → 0, then they prove ANEC holds in such a spacetime, using

a parallelogram construction in the tubular neighborhood of the geodesic similar to the

approach in [13].
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VI. COUNTEREXAMPLES

We presented two classes of counterexamples to ANEC in [52], within the regime of

conformally coupled scalar fields in a fixed conformally and asymptotically flat background.

The first example chooses a particular fixed metric and shows that there then exist states

with arbitrarily negative ANEC values. The second example exhibits conformal factors such

that the transformation of the Minkowski vacuum state will be to one with a negative ANEC

integral, due to the anomalous transformation of the stress tensor.

A. State Dependent Violation

We construct our specific violation of ANEC as a conformal transformation of Minkowski

space. In flat space, we choose a state which obeys ANEC, violating NEC in some places

but compensating with a positive contribution in others. The conformal transformation

enhances the contribution to the integral in those places where NEC is violated, so that the

overall integral is negative in the transformed spacetime.

We let our transformed metric be ḡab = Ω2(x)ηab. The stress-energy tensor then trans-

forms as eq. (3.18)

T̄ab = Ω−2Tab + anomaly. (6.1)

The anomalous contribution depends only on local curvature terms and is finite. A null

geodesic remains a null geodesic under a conformal transformation, but the parametrization

is no longer affine. The new affine parametrization is given by dλ̄ = Ω2dλ, eq. (3.11), and

l̄a = (dxa/dλ̄) = Ω−2la The ANEC integral then becomes∫
T̄abl̄

al̄bdλ̄ =

∫
Ω−4Tabl

albdλ+ anomaly . (6.2)

For a given conformal transformation, we will exhibit a sequence of states in which the

nonanomalous term becomes arbitrarily negative. Thus, even if the anomalous term is

positive, there are states which overcome it and make the ANEC integral negative.

Consider a geodesic γ as above and a smooth conformal transformation Ω(x), with the
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properties that

Ω(γ(λ)) ≤ 1 everywhere on γ (6.3)

Ω(γ(λ)) is bounded from below by some ε > 0 (6.4)

Ω(γ(λ)) differs from 1 on a non-empty compact set of λ (6.5)

The conformal transformation shrinks the spacetime by some bounded amount over some

limited range of the geodesic. For parsimonious notation we define g(λ) = Ω(γ(λ))−4 and

f(λ) = g(λ)− 1, and f will then be smooth, bounded, and of compact support.

The ANEC integral in the conformally flat spacetime is∫
T̄abl̄

al̄bdλ̄ = E [g] + anomaly . (6.6)

where E [g] is defined as the flat-spacetime integral with sampling function g,

E [g] =

∫
γ

g(λ)Tabl
albdλ (6.7)

Following [14], we will now exhibit a sequence of states ψα that will make the ANEC

integral arbitrarily negative. Since we are concerned only with a counterexample to ANEC,

will not attempt to be general but opt instead for simplicity. Our procedure differs from

that of [14] in that our field is conformally rather than minimally coupled, and our sampling

function g is not compactly supported but rather goes to 1 at large distances.

A massless field φ is defined by eq. (3.2)

φ(x) =

∫
d3k

(2π)3(2ω)1/2

(
a(k)e−ikax

a

+ a†(k)eikax
a)
. (6.8)

We define a class of vacuum plus two particle state vectors, which depend on a parameter

α ∈ (0, 1). First, given the function f , we will define a momentum parameter Λ0 by a

procedure to be described later. Then we define our states

ψα = Nα

[
|0〉+

α−1/4

Λ4

∫
Σ

d3kd3k′

(2π)3(2π)3

√
kk′ |k, k′〉

]
(6.9)

where Λ = Λ0/α is a momentum cutoff, Nα is a normalization constant,

Nα =

(
1 +

α3/2

128π4

)−1/2

(6.10)
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and ∫
Σ

d3k denotes

∫ Λ

0

k2dk

∫ 1

1−α
d cos θ

∫ 2π

0

dφ (6.11)

where k is the magnitude of the 3-vector k, θ is the angle between k and the tangent vector l,

and φ is the azimuthal angle. These states excite only particles with momentum less than Λ,

and directed inside an angle cos−1(1−α) from the null ray, which puts the four-momentum

inside a tightening and lengthening cone as α → 0. Note that as α falls to zero, Nα → 1

and the excitation term in eq. (6.9) goes to zero. Thus the state approaches the vacuum,

but we shall see that its stress-energy tensor does not.

In order to find the stress tensor, we need the normal ordered two point function

〈ψα| : φ(x)φ(x′) : |ψα〉 =
2N2

α

Λ4

∫
Σ

d3kd3k′

(2π)6

[
α−1/4e−i(k·x+k′·x′) +

α1/2

8π2
ei(−k·x+k′·x′)

]
. (6.12)

The first term arises from the coupling of the two-particle states to the vacuum. The second

arises from the coupling between the two-particle states. In the limit α→ 0, the first term

is dominant because the admixture of two-particle states becomes very small.

The stress tensor for a conformally coupled scalar field is given by eq. (3.18). In Minkowski

space, this is just

lalbTab =
2

3
lalbφ,aφ,b −

1

3
lalbφ,abφ. (6.13)

We take the expectation value in the state ψα and renormalize by subtracting the vacuum

contribution (which is equivalent to normal ordering), then set x′ = x. The first term

becomes

2

3

〈
: φ,aφ,bl

alb :
〉
α

=
4N2

α

3Λ4

∫
Σ

d3kd3k′

(2π)6
lakal

bk′b

[
−α−1/4e−ix·(k+k′) +

α1/2

8π2
eix·(k−k

′)

]
. (6.14)

The second term is

−1

3

〈
: φ,abφl

alb :
〉
α

=
2N2

α

3Λ4

∫
Σ

d3kd3k′

(2π)6
(laka)

2

[
α−1/4e−ix·(k+k′) +

α1/2

8π2
eix·(k−k

′)

]
. (6.15)

As in eq. (5.13), our convention for the Fourier transform is

f̂(u) =

∫
dte−iutf(t). (6.16)

Since g(t) = f(t) + 1, ĝ(u) = f̂(u) + 2πδ(u). From the properties of Ω, we see that f is

bounded and has a well-defined, positive integral. Thus f̂ is continuous and f̂(0) > 0.
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For any fixed 4-vector K, ∫
dλg(λ)e−iγ(λ)aKa = ĝ(l ·K) (6.17)

so we can write E [g] = E1[g] + E2[g], where

E1[g] =
N2
αα

1/2

12π2Λ4

∫
Σ

d3kd3k′

(2π)6

[
(l · k)2 + 2(l · k)(l · k′)

]
ĝ(l · (k − k′)) (6.18)

E2[g] =
2N2

αα
−1/4

3Λ4

∫
Σ

d3kd3k′

(2π)6

[
(l · k)2 − 2(l · k)(l · k′)

]
ĝ(l · (k + k′)). (6.19)

We will first calculate E2[f ]. Since we are in flat space, the tangent vector l is constant.

We can take it to have unit time component, so that k · l = k(1 − cos θ). Performing the

azimuthal integrations and changing variables to v = kα, u = k · l, and similarly for v′ and

u′, we find

E2[f ] =
2N2

αα
−1/4

3(2π)4Λ4
0

∫ Λ0

0

dv

∫ Λ0

0

dv′vv′
∫ v

0

du

∫ v′

0

du′[u2 − 2uu′]f̂(u+ u′). (6.20)

Now f̂ > 0. Since f̂ is continuous, we can choose Λ0 > 0 such that f̂(u) is arbitrarily close

to f̂(0). Thus we can make the integrals in eq. (6.20) arbitrarily close to

f̂(0)

∫ Λ0

0

dv

∫ Λ0

0

dv′vv′
∫ v

0

du

∫ v′

0

du′[u2 − 2uu′] = − 13

1440
f̂(0) < 0. (6.21)

As α → 0, the prefactor in eq. (6.20) goes to positive infinity, so we conclude that E2[f ]→

−∞ in this limit.

The rest of the terms are all finite. Equation (6.18) gives

E1[f ] =
N2
αα

1/2

12π2Λ4
0

∫ Λ0

0

dv

∫ Λ0

0

dv′vv′
∫ v

0

du

∫ v′

0

du′[u2 + 2uu′]f̂(u− u′). (6.22)

Since f has compact support, f̂ is bounded and the integrals give some finite number

independent of α. Since the power of α is positive in this case, we find that E1[f ] → 0

as α→ 0.

In addition we have the delta function in eqs. (6.18),(6.19), which gives the flat-spacetime

ANEC integral discussed in Sec. II D of [14]. Since k is restricted to a cone around the

direction of l, l · k ≥ 0, the integrand of E2[δ] has no support except from k = k′ = 0, in

which case the term in brackets vanishes. Thus E2[δ] = 0.
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Finally we have

E1[δ] =
N2
αα

1/2

12π2Λ4
0

∫ Λ0

0

dv

∫ Λ0

0

dv′vv′
∫ v

0

du

∫ v′

0

du′[u2 + 2uu′]δ(u− u′). (6.23)

Again the integrals give a finite number, and the prefactor goes to zero, so E1[f ] → 0 as

α→ 0, and finally

lim
α→0
E [g]→ −∞. (6.24)

Thus we can find a quantum state such that E [g] is arbitrarily negative by fixing a

conformal transformation Ω, adequate to compensate for whatever positive contribution to

the ANEC integral the curvature may provide.

B. Curvature Term Violation

The next example of ANEC violation we found comes from the anomalous curvature term

in the conformal transformation of Tab. First we will review the curvature anomaly for a

general conformally flat space, before specifying a transformation. A conformally coupled

field transforms as φ̄ = Ω−1φ, but the stress tensor has extra terms, given by eq. (3.15).

When beginning with Minkowski space, we have eq. (3.18). For the contribution to ANEC,

we further eliminate terms proportional to gab as they vanish upon null projection, and those

proportional to R;ab which vanish on integration over a complete geodesic. The remaining

terms are

T̄ANEC
ab = Ω−2Tab −

1

2880π2

[
−R̄c

aR̄cb + R̄R̄ab

]
. (6.25)

These curvature quantities can be written in terms of the conformal transformation [57],

with ω = ln Ω:

R̄cb = −2ω,cb − gcb�ω + 2ω,bω,c − 2gcbω,ρω
,ρ (6.26)

R̄ = Ω−2 [−6�ω − 6ω,ρω
,ρ] . (6.27)

Thus the relevant contribution to the stress tensor becomes

T̄ANEC
ab = Ω−2Tab −

1

720π2
Ω−2

[
− 2 (�ω + ω,cω,c) (ω,ab − ω,aω,b)

+ ω,caω,cb − ω,cω,aω,cb − ω,cω,bω,ca
]
. (6.28)
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We take as our initial state the Minkowski vacuum, with Tab = 0, so the state does not

contribute to T̄ab. Because we are transforming to an asymptotically flat space, this state

is the conformal vacuum. We also have ω much less than one, so we may ignore terms of

order ω3 and take Ω ≈ 1. That leaves us with only

T̄ANEC
vv = − 1

720π2

[
gcdω,cvω,dv − 2�ωω,vv

]
. (6.29)

In our coordinates we organize this as

T̄ANEC
vv = − 1

720π2

[
ω2
,xv + ω2

,yv − 2 (ω,uv + ω,xx + ω,yy)ω,vv
]

(6.30)

As a counterexample to ANEC, we choose

ω = axr−1e−ρ (6.31)

where we define ρ = (u2 + v2 + x2 + y2)/r2. This gives a localized transformation, so our

spacetime is both conformally and asymptotically flat. The stress tensor component at

x = y = 0 is

T̄ANEC
vv = − 2a2v2

45π2r6
e−2ρ. (6.32)

This is always manifestly negative. Thus integrating over γ always yields a negative quantity.

This gives a violation of greater magnitude as a grows, but this analysis depends on ω � 1

so it is not possible to build an arbitrarily large violation.

VII. TRANSVERSE AVERAGING

Both counterexamples we have constructed in the last chapter rely on effects which are

localized near the geodesic in question. Flanagan and Wald [21] found that some transverse

averaging eliminated the violations of ANEC they found, and it might be that averaging in

additional directions could eliminate all violations and yield a principle that all quantum

fields would obey. We explored the possibility of additionally averaged null energy conditions

for conformal fields in a fixed background in [53], finding counterexamples to any possible

procedure.

39



First we must specify what exactly is meant by a more general average of NEC. If we

establish a null vector field la throughout spacetime, we can project the stress-energy tensor

on this field and take the average,

A4 =

∫ √
−gd4xTabl

alb , (7.1)

but is not clear how we should define la.

In the case of the regular ANEC, we can start with a vector la tangent to our null geodesic

γ at some initial point p. Such a vector is defined only up to rescaling, but such change

(equivalent to a change of affine parameter) only affects the magnitude of the ANEC integral,

not its sign. We then establish la everywhere on the geodesic by parallel transport from p

to each destination point x.

We could attempt the same technique for averaging in more dimensions, but now there is

more than one choice of path for the parallel transport. In general, when we work in curved

space the resulting la will depend on the path chosen. Flanagan and Wald [21] make the

choice to transport la along a geodesic from p to x. This is well defined if one works inside a

normal neighborhood. If one considers perturbations of flat space as done in Ref. [21], and

as we will do below, one can transport la in the unperturbed space-time without ambiguity.

But in the general case, there may be no geodesic, or multiple geodesics, connecting p and

x, and the procedure does not work.

We can also consider averaging over more than a single geodesic but less than all the

dimensions of the manifold. For example, let χ be a timelike line parametrized by proper

time τ . Start with a null vector la at some point p ∈ χ, and establish a null vector field la

on χ by parallel transport. Through each point of χ draw the null geodesic whose tangent

vector is la. Then we can write

A2 =

∫
dτdλTabl

alb. (7.2)

Similarly, we can average over a null surface, but here we will encounter ambiguities.

Given a spacelike 2-surface Σ, let us establish a null vector field la orthogonal to the surface

at each point. These vectors generate a family of geodesics. We can take the integral over

each one, to get

A3 =

∫
Σ

√
g2 dσ1dσ2

∫
Tabl

albdλ . (7.3)
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Here σ1 and σ2 are the coordinates on the surface and g2 the induced metric. The inner

integral is to be taken over the geodesic generated by la at each point.

The direction of la is fixed by orthogonality, but we need to fix the magnitude. As before,

we could try do to this via parallel transport, but that may depend on the path chosen.

This process depends on the choice of the initial surface, even if the resulting null 3-surface

is fixed. Suppose we propagate our initial surface an affine distance λ down each geodesic

to get a new surface Σ′. The geodesics may spread out or squeeze together between Σ and

Σ′. Thus if we started with Σ′ instead of Σ, we would have a different weighting of the

geodesics.

To avoid this problem, we could integrate over the surface for each λ first and then

combine them, giving

A′3 =

∫
dλ

∫
Σ(λ)

√
g2 dσ1dσ2Tabl

alb . (7.4)

However, eq. (7.4), like eq. (7.1), is not in an obvious way an average of ANEC.

We will not attempt to solve these problems, but rather we will exhibit counterexamples

that apply to a very wide class of averaging procedures. We are able to do this because

we work to first nonvanishing order in a spacetime that is a small perturbation of flat

space. As we did in Ref. [52], we work in a conformally flat spacetime with conformal

factor Ω = eω ∼ 1 + ω, with ω � 1. We define our average by letting la be constant

in the unperturbed spacetime and find violations of averaged versions of ANEC at order

ω2. Suppose now that we use a different procedure. If we defined la by parallel transport

along a path which winds many times in the region where ω is largest, we could of course

accumulate a large change in la. But this procedure is obviously pathological. If we restrict

ourselves to a path which is free of such windings, the change in la along a path C will be

given schematically by

∆la ∼
∫
C

Γabcl
bdCc. (7.5)

If the scale of the curved region is given by r, the magnitude of Γabc is of order ω/r, so

∆la ∼ ω. Thus the effect of the choice of path is of higher order in ω than the original effect

and can be consistently neglected.
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The specific ω of the last section, eq. (6.31)

ω = axr−1e−ρ (7.6)

yielded

T̄ANEC
vv = −2a2v2β

45π2r6
e−2ρ (7.7)

for x = y = 0, with u and v arbitrary. This is negative for all u, and so this example is

sufficient to give a negative A2 as well.

For the transverse averaging prescriptions the above example does not give a negative

answer, so instead we use

ω = (bu+ cv) r−1e−ρ. (7.8)

Any term which is odd in x, y, or z will vanish on integration, so we do not write such terms.

Including only the even terms, the vv stress tensor component becomes

T̄vv = − 2

45π2r10

{
4b2u2

[
(x2 + y2)(r2 − v2) + r2(2v2 − r2)

]
−2bc

[
8u2v4 − 2r2(v4 + 5u2v2) + r4(u2 + 3v2)

]
+c2

[
(x2 + y2)(−4v4 + 8v2r2 + r4) + 4r2(2v4 − 3r2v2)

]}
e−2ρ. (7.9)

To calculate A3 (which coincides with A′3 to first order) we set u = 0, and this becomes

T̄vv = − 2e−2ρ

45π2r10

[
c2

{
(x2 + y2)(−4v4 + 8v2r2 + r4) + 4r2(2v4 − 3r2v2)

}
+2bc(2v4r2 − 3v2r4)

]
. (7.10)

Note that here, the b2 term drops completely, but the c2 term is entirely unchanged. The

integral is

A3 = −
√

2

1920
√
πr
c(2b+ c). (7.11)

So long as b < −c/2 this will be a negative quantity.

If instead we average (7.9) over the whole manifold, as in (7.1), we have

A4 =
1

5760

(
b2 + 6bc+ 3c2

)
. (7.12)

For −3 −
√

6 < b/c < −3 +
√

6, the average is negative. As discussed earlier, these results

still hold even if the integrand differs by any power of Ω. Here all dependence on r has

dropped, and thus the sharpness of the curvature does not affect the violation.

42



Thus we see that in order to articulate a viable energy condition, we must either rule out

conformally coupled scalar fields in favor of minimal coupling only, or restrict our attention

away from the regime of test fields on arbitrary backgrounds.

VIII. BOUNDING THE TWO POINT FUNCTION FOR SELF CONSISTENT

STATES

We would like a quantum energy inequality which bounds the stress tensor of a state

in a space with small curvature similar, to the one conjectured by Kontou and Olum, here

presented as eq. (5.23). We propose to use the difference quantum inequality eq. (5.17) with

a specific reference state, which we will call the recently flat vacuum.

This state is defined by its action on the algebra of local operators in a compact, globally

hyperbolic region O (rather than being defined by a mode sum.) We embed this region

in some larger spacetime M, which contains a spacelike surface Σ0 which we identify with

coordinate time t′ = 0, such that there and for all time before it the spacetime is flat.

Between O and Σ0 there must be an interpolating region. We define the reference state |Ω〉

by declaring it to be the state which coincides with the Minkowski vacuum for t′ < 0. This

is known as the in-vacuum of the spacetime M.

This defines a state in the region O, and a state which yields equal expectation values

for all local observables over O exists regardless of what larger spacetime it is embedded in.

Thus we may use this recently flat vacuum as a reference state in any spacetime, regardless

of whether there is a region of flat space in the distant past, or nowhere at all.

In this chapter we address a recently massless vacuum for a quantum field theory with

potential, Q(x). Future work may adapt this approach to curved space quantum field theory,

with the recently flat vacuum. We take points (x, y) at time t, and for all times t′ < 0 we

have Q(x′) = 0. At all points, the two point function µ(x, y) (defined at eq. (3.26)) is a

bisolution. So long as Qt2 � 1, we may expand µ(x, y) as a perturbation of the massless

vacuum two point function, µ0 = (4πσ)−1. Utilizing �µ0 = 0, we find the next term in the
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FIG. 1: The region O is globally hyperbolic, and contains the points x and y. At times prior to

Σ0, where t′ = 0, the potential Q(x′) = 0. In between there is a region where Q(x′) interpolates.

expansion µ = µ0 + µ1 + . . .

(�x −Q)µ = 0 (8.1)

�xµ1 = Qµ0. (8.2)

This may be solved using the retarded Green’s function, showing

µ1(x, y) = f(x, y) +

∫
d4x′G0(x′, x)Q(x′)µ0(x′, y) (8.3)

where f(x, y) is some function that obeys �xf(x, y) = 0. Likewise we can show a similar

result for the integral in y, giving

µ1(x, y) = f(x, y) +

∫
d4x′G0(x′, x)Q(x′)µ0(x′, y) +

∫
d4y′G0(y′, y)Q(y′)µ0(x, y′) (8.4)

where now f(x, y) must satisfy both �xf(x, y) = �yf(x, y) = 0. We specify our state by

requiring that in the past, at t = 0 where Q = 0, µ1 = 0. This is accomplished only by

setting f(x, y) = 0. Thus we have

µ1(x, y) =

∫
d4x′G0(x′, x)Q(x′)µ0(x′, y)

+

∫
d4y′G0(y′, y)Q(y′)µ0(x, y′) (8.5)
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Before evaluating we describe how we first arrived at eq. (8.5). This line of reasoning

introduces test functions, which then integrate away. We would like to see how µ is evaluated

in the region O. We express µ(f, g) as the smearing of µ(x, y) for some test distributions.

The conventional choice would be f(x′) = δ(x′−x), and likewise for g. But the test functions

are free to be any functions such that they generate the same classical solutions to the wave

equation when operated on by E, according to u = Ef . Thus we have

µ(x, y) =

∫
d4x′d4y′f(x′;x)g(y′; y)µ(x′, y′) (8.6)

We expand both the test distributions and the solutions they generate as series in Qt2,

related such that u0 = Ef0, u1 = Ef1, and so on.

We define the first function by

(�−Q)u = δ(x) (8.7)

�u0 = 0 (8.8)

u0(x′) = G0(x′, x). (8.9)

This is the particular solution generated by the test function δ(x), and f0 is any test function

with support for t ≤ 0 that also generates it.18 The next term in ψ is given by

�u1 = −Qu0 (8.10)

u1(x′) = −
∫
d4x′′G(x′, x′′)Q(x′′)u0(x′′). (8.11)

The next term in f is given by

f1(x′;x) =

∫
d4x′′f0(x′;x′′)Q(x′′)G(x′′, x). (8.12)

We seek the first correction to the two point function, which is symmetric in f and g

µ1(x, y) =

∫
d4x′d4y′f1(x′;x)g0(y′; y)µ0(x′, y′)

+

∫
d4y′d4x′f0(x′;x)g1(y′; y)µ0(x′, y′) (8.13)

18 A concrete example of such a function is given by Wald [59]

f0(x′;x) = ψ(x′;x)δ′(t′) + 2∂t′ψ(x′;x)δ(t′),

though we do not require a particular functional form of f(x′, t′) at any point in our calculation.
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After substituting eq. (8.12) and the parallel expression for g1 into eq. (8.13), we then carry

out the x′ and y′ integrals in each. These both act simply, by changing the argument of µ0:

µ1(x, y) = −
∫
d4x′′Q(x′′)G(x′′, x)µ0(x′′, y)−

∫
d4y′′Q(y′′)G(y′′, y)µ0(x, y′′). (8.14)

This recovers eq. (8.5). The primed integrals were an intermediate step. We return to the

notation of eq. (8.5), without any double primed variables.

We define the vacuum two point function µ0 using the prescription of Wald [59]

µ0(x, y) =
1

4π2(−(tx − ty)2 + |x− y|2
. (8.15)

Using the explicit form of the Green’s function, we have

µ1(x, y) = − 1

16π3

∫
d4x′

Q(t′,x′)δ(t′ − tx + |x′ − x|)
|x′ − x|

1

|x′ − y|2

− 1

16π3

∫
d4y′

Q(t′,y′)δ(t′ − ty + |y′ − y|)
|y′ − y|

1

|y′ − x|2
(8.16)

This gives the form which we will integrate. We proceed with a series of calculations. First

we find the first order correction to the two point function µ in the case Q = m2, a constant

mass potential, and also the first correction to Tab for our state. Then we find bounds for µ

in the case of a completely general potential, dependent on the maximum value for for Q′.

A. Two Point Function for Q = m2

With no loss of generality, we choose the two points to lie along the z axis and denote

their separation by z. We first perform our calculation with tx = ty. We will always have

the two points spacelike separated. In order to calculate the stress tensor, however, we must

be able to take derivatives of the two point function in the time direction. The two point

function is rotationally invariant, but it is not Lorentz invariant, as the surface where Q

steps from 0 to m2 is a privileged point in time.

µ1(x, y) = − 1

16π3

∫
d4x′

Q(t′,x′)δ(t′ − t+ |x′ − x|)
|x′ − x|

1

|x′ − y|2

− 1

16π3

∫
d4y′

Q(t′,y′)δ(t′ − t+ |y′ − y|)
|y′ − y|

1

|y′ − x|2
(8.17)

46



Performing the time integrals, we have

µ1(x, y) = − 1

16π3

∫
d3x′

Q(t− |x′ − x|,x′)
|x′ − x|

1

−|x′ − x|2 + |x′ − y|2

− 1

16π3

∫
d3y′

Q(t− |y′ − y|,y′)
|y′ − y|

1

−|y′ − y|2 + |y′ − x|2
. (8.18)

For values of |x′ − x| < z/2, poles do not occur and the light cones do not intersect. We

choose spherical coordinates centered at the point x for the first integral, and likewise for y

which gives an identical contribution. For the range |x′ − x| ≥ z/2, there will be poles. We

use spherical coordinates centered at the midpoint of x and y, and group the two integrals

together in order that points which lie along the same ray may cancel their contributions.

We first address the case where there are no poles. Then, we have

− 1

8π3

∫
d3x′

Q(t− |x′ − x|,x′)
|x′ − x|

1

−|x′ − x|2 + |x′ − y|2
. (8.19)

With x as our origin, r′ the radial coordinate, α′ the cosine of the polar angle and ψ′ the

azimuthal, we have the geometric quantities

|x′ − x| = r′ (8.20)

|x′ − y| =
√
r′2 + z2 − 2r′zα′. (8.21)

This gives

− 1

8π3

∫ 2π

0

∫ 1

−1

∫ z/2

0

dr′dα′dψ′
r′Q(t− r′, r′, α′, ψ′)

z2 − 2r′zα
. (8.22)

With Q = m2, this simplifies greatly. The azimuthal integration is trivial. Integrating gives

− m2

4π2z

∫ z/2

0

dr′
∫ 1

−1

dα′
r′

z − 2r′α′
(8.23)

− m2

8π2z

∫ z/2

0

dr′ [ln(z + 2r′)− ln(z − 2r′)] (8.24)

−m
2

8π2
ln(2) (8.25)

We return to eq. (8.18) to handle the range with poles. Here, we must treat the two

ranges separately

− 1

16π3

∫
r′2x drxdα

′
xdψ

Q(t− |x′ − x|,x′)
|x′ − x|

1

−|x′ − x|2 + |x′ − y|2

− 1

16π3

∫
r′2y drydα

′
ydψ

Q(t− |y′ − y|,y′)
|y′ − y|

1

−|y′ − y|2 + |y′ − x|2
. (8.26)
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FIG. 2: A slice of constant time, for r′ > z/2. We define α′x = cos(θx), α′y = cos(θy), and

β′ = cos(θo).

For a constant slice in time, shown in fig. 2, r′x = r′y and we drop the subscript. We

change our polar integration from αx and αy, which have as their origin the points x and y

respectively, to β, which takes the midpoint between the two as origin o. The points x′ and

y′ now lie on the same ray.

In these coordinates, after applying the law of cosines multiple times, we find that the

vector quantities are

|x′ − o| =
1

2

(
−zβ′ +

√
4r′2 − (1− β′2)z2

)
(8.27)

|y′ − o| =
1

2

(
+zβ′ +

√
4r′2 − (1− β′2)z2

)
(8.28)

|x′ − y| =
(
r′2 + z2β′2 − zβ

√
4r′2 − (1− β′2)z2

)1/2

(8.29)

|y′ − x| =
(
r′2 + z2β′2 + zβ

√
4r′2 − (1− β′2)z2

)1/2

(8.30)

With these, we can then determine the Jacobian for the transformation between angles

dα′x
dβ′

=
1

2r′

[
−2β′z +

(2β′2 − 1)z2 + 4r′2√
(β′2 − 1)z2 + 4r′2

]
(8.31)

dα′y
dβ′

=
1

2r′

[
+2β′z +

(2β′2 − 1)z2 + 4r′2√
(β′2 − 1)z2 + 4r′2

]
. (8.32)
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Then, the integral becomes

−
∫
dr′dβ′dψ′

32π3

[ [
−2βz +

(2β2 − 1)z2 + 4r′2√
(β2 − 1)z2 + 4r′2

]
Q(t− r′,x′)

z2β′2 − zβ
√

4r′2 − (1− β′2)z2

+

[
+2βz +

(2β2 − 1)z2 + 4r′2√
(β2 − 1)z2 + 4r′2

]
Q(t− r′,y′)

z2β′2 + zβ
√

4r′2 − (1− β′2)z2

]
(8.33)

This can be regrouped to become

− 1

32π3

∫
dr′dβ′dψ′

[
Q(t− r′,x′)−Q(t− r′,y′)

zβ′
+
Q(t− r′,x′) +Q(t− r′,y′)√

(β′2 − 1)z2 + 4r′2

]
. (8.34)

With Q = m2, the subtracted terms cancel entirely, and we have

−m
2

8π2

∫ t

z/2

∫ +1

−1

dr′dβ′√
(β′2 − 1)z2 + 4r′2

(8.35)

= − m2

8π2z

∫ t

z/2

dr′
[

ln(2r′ + z)− ln(2r′ − z)

]
(8.36)

=
m2

16π2

[
ln

(
4z2

4t2 − z2

)
+

2t

z
ln

(
2t− z
2t+ z

)]
(8.37)

Combining this with the poleless contribution, eq. (8.25), yields the full unrenormalized two

point function

µ1(z) =
m2

16π2

[
ln

(
z2

4t2 − z2

)
+

2t

z
ln

(
2t− z
2t+ z

)]
. (8.38)

From this we subtract the Hadamard function, derived at eq. (4.60),

H(x, y) =
1

4π2

(
1

σ
+
Q̄2

4
ln(Q̄σ)

)
. (8.39)

The σ−1 term cancels µ0 and, with Q̄ = m2, the ln(m2σ) removes the logarithmic divergence,

yielding the renormalized two point function

µRN(z) =
m2

16π2

[
− ln

(
(4t2 − z2)m2

)
+

2t

z
ln

(
2t− z
2t+ z

)]
(8.40)

= − m2

16π2

[
ln(4m2t2) + 2− z2

12t2

]
+ . . . (8.41)

B. Bounding µ for Bounded Q(x)

We consider a potential Q(x) bounded such that |Q| < F and |∂aQ| < F ′ for all points

in the region, and for all directions of the derivative (in unboosted coordinates).
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First we address the region without poles, where the contribution is again given by

eq. (8.22)

− 1

8π3

∫ 2π

0

∫ 1

−1

∫ z/2

0

dr′dα′dψ′
r′Q(t− r′, r′, α′, ψ′)

z2 − 2r′zα
. (8.42)

We add and subtract from the potential Q(t,x). The added term is taken to give a constant

contribution, calculated as eq. (8.25) with m2 = Q(t,x). If we repeat the procedure at y,

we have Q̄. The subtraction is arranged as difference terms

− 1

8π3

∫ 2π

0

∫ +1

−1

∫ z/2

0

dr′dα′dψ′
r′ (Q(t− r′, r′, α′, ψ′)−Q(t,x))

z2 − 2r′zα
. (8.43)

We bound the absolute of the two point function by bounding the difference in Q by the

maximum value the derivative may attain, denoted F ′, and the Euclidean separation between

the points,
√

2r′, finding

√
2F ′

8π3

∫ 2π

0

∫ 1

−1

∫ z/2

0

dr′dα′dψ′
r′2

z2 − 2r′zα
. (8.44)

which integrates to √
2F ′z

32π2
. (8.45)

To calculate the contribution where poles do exist we return to eq. (8.34)

− 1

32π3

∫
dr′dβ′dψ′

[
Q(t− r′,x′)−Q(t− r′,y′)

zβ′
+
Q(t′,x′) +Q(t′,y′)√

(β′2 − 1)z2 + 4r′2

]
. (8.46)

For the first term we bound the difference Q(x′) − Q(y′) by the maximum value of

the derivative times the separation, which is F ′zβ′. This greatly simplifies things; the dβ′

integral brings a factor 2, dψ brings 2π, and dz′ brings t − z/2. Thus its contribution is

bounded by
F ′

8π2
(t− z/2) (8.47)

To the second term we add and subtract Q̄/
√

(β2 − 1)z2 + 4z′2. The added terms again

give the constant mass two point function. The subtracted term appears as

− 1

16π3

∫ 2π

0

∫ t

z/2

∫ +1

−1

dβ′dr′dψ′
[
Q(t− r′,x′) +Q(t− r′,y′)−Q(t,x)−Q(t,y)

2
√

(β′2 − 1)z2 + 4r′2

]
. (8.48)

We associate the Q(x) subtraction with Q(x′), and Q(y) with Q(y′). We bound each

difference with the derivative bound times the Euclidean distance between the points,
√

2r′.
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We always use the derivative bound rather than bounding each difference by 2F as this gives

us only a single parameter to control. The absolute value of this term is thus bounded by
√

2F ′

8π2

∫
dr′dβ′

r′√
(β2 − 1)z2 + 4z′2

(8.49)

=

√
2F ′

8π2z

∫
dr′
[

ln(2r′ + z)− ln(2r′ − z)

]
(8.50)

=

√
2F ′

64π2z

[
4tz − 2z2 + (4t2 − z2) ln

(
2t+ z

2t− z

)]
. (8.51)

We renormalize using the Hadamard form defined at the two base points, which is the

same as in the constant mass case. Putting everything together, we have at base the renor-

malized two point function of a constant mass of Q̄, found originally at eq. (8.38)

µconst(z) =
Q̄

16π2

[
− ln(4Q̄t2)− 2 +

z2

12t2

]
+ . . . (8.52)

and a combination of derivative bounds on the absolute value, present in eqs. (8.45), (8.47)

and (8.51):

|µ1 − µ1 const| <
√

2F ′z

32π2

+
F ′

8π2
(t− z/2)

+

√
2F ′t

64π2

[
4− 2z

t
+

4t2 − z2

zt
ln

(
2t+ z

2t− z

)]
. (8.53)

The distinct contributions from the each range are manifestly positive; −z terms appear

only when subtracted from t, as even when don’t take the z → 0 limit, we still have t > z.

Now that this is done, we may associate terms, giving

|µ1 − µ1 const| <
F ′t

16π2

[
(2 +

√
2)− z

t
+

4t2 − z2

4zt
ln

(
2t+ z

2t− z

)]
(8.54)

<
F ′t

8π2

[(
1 +
√

2
)
− z

2t
− z2

12t2
− z4

240t4

]
+ . . . (8.55)

IX. OUTLOOK AND CONCLUSIONS

Exotic spacetime configurations are generally considered to be physically impossible, but

this must be proven based on some physical law obeyed by the matter content, such as

the achronal averaged null energy condition. We have found violations of achronal ANEC
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within the regime of test fields on an arbitrary background for the conformally flat scalar

field [52]. Requiring transverse averaging, though reasonable in the sense that only macro-

scopic exotica need concern us, is not sufficient to give a valid condition [53]. In order to

consider achronal ANEC an acceptable basis from which to prove theorems ensuring well

behaved causality in the universe, we must either limit attention to systems in which Ein-

stein’s equation for general relativity is enforced, or exclude conformally coupled scalars.

Requiring self consistency is a significant calculational complication, but is a very natural

condition. Kontou and Olum’s proof of ANEC [37] for minimally coupled scalars depends

on a proposed quantum energy inequality, eq. (5.23). Further progress will be necessary to

establish the validity of such a condition.

We have defined a recently massless vacuum state ψ0, and bounded its two point function

µ for a general potential Q(x) in eq. (8.54). We must further bound the derivatives, to be

used in the difference quantum energy equality of Fewster and Roman [14], presented here

as eq. (5.17): ∫
η

dτ
(〈
TRN
ab

〉
ψ
−
〈
TRN
ab

〉
ψ0

)
lalbg(τ)2 ≥ −2

∫ ∞
0

F̂ (α,−α). (9.1)

Thus we must, for our state ψ0, calculate

F (τ, τ ′) = g(τ)g(τ ′)
〈
la∇al

b′∇b′µ(τ, τ ′)
〉
ψ0

(9.2)

and 〈Tab〉ψ0
lalb. Only one derivative of each argument is required as can be seen explicitly

in F and, for the minimally coupled scalar field, within Tab (eq. (3.6)). This can be found

directly by taking derivatives of eq. (8.5)

∂

∂xa
∂

∂yb
µ1(x, y) =

∫
d4x′

∂

∂xa
G0(x′, x)Q(x′)

∂

∂yb
µ0(x′, y)

+

∫
d4y′

∂

∂yb
G0(y′, y)Q(y′)

∂

∂xa
µ0(x, y′). (9.3)

One derivative always acts on G0, and one on µ0. The δ′ portion of G′0 may be integrated

by parts to give a Q′ term. Then, the entire expression must be bounded.

To modify this procedure for curved space, we may again use a Green’s function integrated

over a kernel, found perturbatively. For the recently massive potential, we considered the

flat space wave equation with an arbitrary potential function(
∂a∂

a −Q(x)
)
u = 0. (9.4)
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The curved space wave equation is

(
∂a∂

a − Γaab∂
b
)
u = 0. (9.5)

Here we have what is essentially an arbitrary function multiplying ∂u rather than u as

before. If we apply this to µ as a bisolution and expand from the flat space µ0, such that

∂a∂
aµ0 = 0, we have (

∂a∂
a − Γaab∂

b
)

(µ0 + µ1 + . . .) = 0 (9.6)

∂a∂
aµ1 = Γaab∂

bµ0. (9.7)

This may again be solved using the flat space retarded Green’s function, as the differential

operators appearing at this order are simple partial derivatives. For the perturbation series

to be valid, now we must require that the magnitude of Γaabt be small. The requirement

that Qt2 be small has clear physical meaning, but Γ is coordinate dependent. Kontou and

Olum’s proof of ANEC [37] requires that components of the Riemann tensor in particular

coordinates adapted to the null geodesic in question be small, but this may require an

additional constraint.

Another approach for curved space utilizes the Kirchhoff representation, detailed in a

review by Poisson [46]. For any bisolution, we have

µ(x, y) =

∫
Σ

(
G(x, z′)∇a′µ(z′, y)− µ(z′, y)∇a′G(x, z′)

)
dΣa′ (9.8)

where Σ is a spacelike surface in the past of x and y and G is the retarded Green’s function.

Chu and Starkman [10] obtain a perturbative expression for the retarded Green’s function

in curved space. For a perturbation around a flat spacetime, with gab = ηab + hab, this

simplifies to

G(x, x′) = G0(x, x′) + ∂a∂b′

∫
d4x′′G0(x, x′′)

(
1

2
h′′ηab − ha′′b′′

)
G0(x′′, x′) (9.9)

with h′′ = habη
ab. Either calculational method would construct the same state ψ0.

We have seen that the achronal averaged null energy condition would guarantee that time

machines, wormholes, and other strange geometries and topologies could not develop in our

universe. By finding explicit counterexamples to achronal ANEC with a conformally coupled

scalar field on a conformally and asymptotically flat background, we have demonstrated

53



that in order to articulate a true energy condition, we must limit our scope: either to

minimal coupling, self consistent matter and metric configurations, or both together. Distant

curvature and boundary terms cannot by themselves cause an ANEC violation; the geodesic

must pass through a region of curvature. By constructing a recently flat reference state ψ0

we hope to bound the contribution of local curvature terms, proving the intuitive conjecture

that for small curvature flat space quantum energy inequalities should hold with corrections

whose order is set by the maximum value of the curvature.
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