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Abstract

For 0 <λ< 1 we consider the compact invariant set (“attractor”) Λλ of the iterated func-

tion system Fλ defined by the three maps fi = λI + pi on R2, where p0 = (0,0), p1 =
(1−λ,0), p2 = (1−λ) · (1/2,1). Λ1/2 is the Sierpinski triangle.

Forλ ∈ [.6439, .6441]∪[.6458, .6466]∪[.6470, .6472] standard techniques for determin-

ing the Hausdorff dimension (or Lebesgue measure) of the “fat” Sierpinski triangleΛλ do

not apply, and the Hausdorff dimension of Λλ has not been known for any specific such

λ. For all these λ we show that Λλ has nonempty interior and hence positive Lebesgue

measure and Hausdorff dimension 2.

The novelty of our approach is that instead of extending techniques developed for

small λ we significantly extend geometric methods developed by Broomhead, Montaldi

and Sidorov for larger values of λ.
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1 Introduction

The focus of this thesis is the geometry of fractals arising from iterated function systems.

Fractals generated by these procedures have become common in artwork that many are

familiar with. A good example of this is a fern leaf which upon examination it is seen that

each part is roughly the same as the whole. In other words each leaf along the main stem

looks identical to that of the entire fern and each leaf is composed of smaller leaves that

again have the same shape. In real-life examples this pattern ends at some finite stage.

This property of self-similarity consistently shows up in the fractals arising from iterated

function systems, however, unlike the fern example, it continues indefinitely. Below is

an example of a fern arising from an iterated function system.

Figure 1: Fractal Fern

1.1 Iterated function systems

The present form of iterated function systems was first presented by John E. Hutchinson

in his 1981 paper “Fractals and Self Similarity" [5]. The idea was popularized by Michael

Barnsley’s book Fractals Everywhere and Kenneth Falconer’s book Fractal Geometry [1, 4].

Definition 1.1. An iterated function system is a finite family { f0, f1, .., fk } of contractions

on Rn with k ≥ 1, i.e., there are ci ∈ (0,1) such that

| fi (x)− fi (y)| ≤ ci |x − y | for all x, y

Associated to each iterated function system is an invariant set we call the attractor.
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Theorem 1.2. For any iterated function system, there exists a unique nonempty, compact

setΛ, called the attractor of the iterated function system, such that

Λ=
k⋃

i=0
fi (Λ)

The original research in this area was done on iterated function systems for which

there is no significant overlap of the components of the corresponding fractal [5]. For

example the standard Sierpinski triangle consists of three copies of itself that do not

overlap.

Figure 2: "Standard Sierpinski Triangle"

Broomhead, Montaldi, and Sidorov appear to be the first to have considered a fam-

ily of iterated function systems for which substantial overlaps occur [2]. For such sys-

tems the properties of the resulting fractal are not completely understood. In particular,

there are no standard techniques for computing the Hausdorff dimension or Lebesgue

measure of such fractals. Therefore our approach to investigate these two properties

for attractors with significant overlap focuses on studying the attractors interior. In this

way we are able to provide new information about the Hausdorff measure and Lebesgue

measure of the attractor we study.
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1.2 The “fat” Sierpinski triangle

We consider the family of iterated function systems consisting of the following three lin-

ear contractions in the plane:

f0(x, y) = (λx,λy)

f1(x, y) = (λx + (1−λ),λy) (1)

f2(x, y) = (λx + 1

2
(1−λ),λy + (1−λ))

with λ ∈ (0,1). Alternatively we can write this as

f0 =λI

f1 =λI + (1−λ,0) (2)

f2 =λI + (1−λ)(1/2,1)

We denote the attractor of the iterated function systems by Λλ. We also denote by ∆ the

convex hull of the fixed points of this system, i.e., the triangle with vertices at (0,0), (1,0),

and ( 1
2 ,1).

1.2.1 Thin attractor: Open-set condition

Λ 1
2

is the standard Sierpinski triangle; it consists of three copies of itself each shrunk

by a factor of 1
2 . Here we see that for each pair of distinct indices i , j , the intersection

fi (∆)∩ f j (∆) is a single point. For λ < 1
2 , the intersections fi (∆)∩ f j (∆), i 6= j are empty.

This implies that forλ ∈ (0, 1
2 ), the attractor is totally disconnected and has zero Lebesgue

measure and thus empty interior, i.e. it is a Cantor set.

The following open-set condition on an iterated function system guarantees that all

overlaps between the individual components of the attractor are insignificant.

Definition 1.3. An iterated function system { fi }n
i=0 satisfies the open-set condition if there

exists a nonempty open-set O such that
⋃n

i=0 fi (O) ⊂O, the union being disjoint.

The open-set condition is central to the standard approaches of calculating proper-
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ties such as Hausdorff dimension. For instance,

Theorem 1.4 (see [4]). Suppose the open-set condition (1.3) holds for the iterated function

system { f0, f1, . . . , fk } on Rn with contraction rates ci ∈ (0,1) such that

| fi (x)− fi (y)| = ci |x − y | for all x, y ∈Rn .

Then the Hausdorff dimension of its attractor is equal to the box counting dimension and

is given by s where s is the unique solution of

n∑
i=0

c s
i = 1.

For λ ∈ [0, 1
2 ] the iterated function systems given by (1) satisfy the open-set condition

[2], so the Hausdorff dimension ofΛλ is well known by Theorem 1.4.

Corollary 1.5. For λ ∈ [0, 1
2 ] the Hausdorff dimension ofΛλ is given by

dimH (Λλ) =− log3

logλ

For iterated function systems that do not satisfy the open-set condition it takes a

considerable amount of work to calculate quantities like the Hausdorff dimension or

the Lebesgue measure of the corresponding attractor. In fact for many iterated function

systems that do not satisfy the open-set condition it is not possible to calculate these

properties with current techniques. We make some progress in this problem by present-

ing a new way to determine whether the attractor for an iterated function system has

nonempty interior.

1.2.2 When the open-set condition does not hold

For values of λ> 1
2 , the intersection fi (∆)∩ f j (∆) is always a triangle. Thus for these val-

ues of λ the components of the attractor overlap and compared to the standard Sierpin-

ski trianglethe attractor appears “fat". This changes the attractor significantly. In fact,

for λ ∈ ( 1
2 ,1) it was shown that this family of iterated function systems does not satisfy
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the open-set condition [2]. Therefore the standard techniques used to investigate the

attractor do not apply, and we restrict attention to λ> 1
2 .

Although the open-set condition does not hold for λ > 1
2 , a standard calculation

shows that the Lebesgue measure is 0 for a substantially larger set of parameters than

(0, 1
2 ]. This calculation may be applied to any iterated function system and thus is in-

cluded below.

Proposition 1.6 (see [4]). Let { f0, f1, . . . , fk } be an iterated function system on Rn , and

λ̄ := max{c0,c1, . . . ,ck } < k−n . Then its attractorΛ has zero Lebesgue measure.

Proof. Λ=⋃k
i=0 fi (Λ) implies

m(Λ) ≤ (
k∑

i=0
m( fi (Λ)) ≤ kλ̄nm(Λ)

SinceΛ is bounded we know that m(Λ) <∞. Therefore if m(Λ) 6= 0 then kλ̄n ≥ 1.

Corollary 1.7. By Proposition 1.6 the attractor Λλ has zero Lebesgue measure and thus

empty interior for λ< 1p
3

.

By Corollary 1.7 we see that the range of parameters where Λλ may have nonempty

interior is for λ ∈ [ 1p
3

,1]. We define a hole in the attractor to be a bounded connected

component of its complement. Upon inspection it is easy to see that for λ≥ 2
3 there are

no holes in the attractor, that is Λλ = ∆. For these values of λ the union of the three

images of ∆ under the iterated function system is itself. We therefore further restrict

attention to the parameters λ ∈ ( 1p
3

, 2
3 ) for which the attractor is most interesting.

Broomhead, Montaldi, and Sidorov [2] were able to show that the attractor has nonempty

interior for λ ≥ λ∗ where λ∗ ≈ 0.647798 is the real root of x3 − x2 + x = 1
2 . They showed

that for λ ∈ [λ∗, 2
3 ) the holes in the attractor are in a radial position: they are all centered

on three radial lines originating from the center of the attractor and extending to the

three corners. It follows that the attractor has nonempty interior.

Below we define formally what it means for the attractorΛλ to be radial if λ< 2
3 . First

we define three cones contained in ∆.

1. Let the central hole inΛλ be defined by H0 :=∆\
⋃2

i=0 fi (∆).

6



Figure 3: Radial Case

2. For i ∈ {0,1,2} let Ci be the cone whose vertex is at the fixed point of the map fi ,

which contains the central hole H0, and whose edges contain two of the vertices

of H0.

Definition 1.8. The attractorΛλ is said to be radial if

Λλ∪
2⋃

i=0
Ci =∆,

that is, if all holes inΛλ are contained in one of the three cones C0,C1, or C2.

Proposition 1.9 ([2]). Λλ is radial for λ ∈ [λ∗, 2
3 ).

1.2.3 Remaining parameters

Including the interval in Proposition 1.9 it is known that the attractor has nonempty inte-

rior for λ ∈ [λ∗,1). We aim to extend this interval for which the attractor is known to have

nonempty interior. For a countable set of parameter values called "multinacci" num-

bers λ=ωm , Broomhead, Montaldi, and Sidorov have shown that Λλ has zero Lebesgue

measure and thus empty interior [2]. The interval we are interested in, [ 1p
3

,λ∗), contains

only one multinacci number, given by the reciprocal of the golden ratio λ = ω2 ≈ 0.618.

Sidorov conjectures that the largest value of λ such that the attractor has empty interior

is ω2 [8].
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Proposition 1.10 ([2]). For m ≥ 2 the attractorΛωm has zero Lebesgue measure, whereωm

is the unique positive root of λm +λm−1 +·· ·+λ= 1.

In this thesis we find nontrivial intervals below λ∗ contained in the set of parameters

for which the attractor has nonempty interior. We do this in a way that may be applied

to the attractor associated to any iterated function system.

We can represent prior knowledge pertinent to the interior of fat Sierpinski triangles

by the diagram below.

0 1
1
2

2
3

1p
3

λ∗λJ

Radial
Zero Lebesgue Measure,

Empty Interior

Cantor Set ∆

Jordan has given a result which is encouraging if we hope to show nonempty interior

on [ 1p
3

,λ∗).

Theorem 1.11 (Jordan [6]). There is a parameter λJ ≈ 0.585 such that Λλ has positive

Lebesgue measure and Hausdorff dimension 2 for a.e. λ≥λJ .

Jordan conjectures that the set of values in this interval for which Λλ has zero mea-

sure and Hausdorff dimension less than 2 is much more than just the multinacci num-

bers defined above. One previously open question asks if this set of exceptional values is

dense in [λJ ,λ∗]. In this thesis we provide an answer to this question with our Main The-

orem. Regardless of whether Jordan’s conjecture is true, the existence of the multinacci

numbers in the interval he found implies that the Lebesgue measure of the attractor does

not increase monotonically as λ increases.

Although Theorem 1.11 may sound promising, there are iterated function systems in

the plane for which the attractor has empty interior and positive Lebesgue measure. Two

different examples have been given using 10 contractions in one case and 6 in the other

[3]. It is interesting to note that no similar results have been shown for iterated function

systems in R. To construct an iterated function system in R having a self-similar attrac-

tor with positive measure but empty interior, the system must have components which

overlap. Sidorov has made some progress with the understanding of iterated function
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systems in the one dimensional case, however, the question whether or not there ex-

ists one whose attractor has positive measure and empty interior remains open [9]. This

illustrates an important fact about the attractors resulting from our family of iterated

function systems. Although we know the attractor has positive measure for a.e. λ≥λJ it

is not known if it has nonempty interior. The smallest value for which it was previously

knownΛλ had nonempty interior was given by the radial case with λ=λ∗.

We push the idea behind the proof that the attractor is radial for λ ∈ [λ∗, 2
3 ) to show

that the attractor has nonempty interior in a larger range of values. In the proof of Propo-

sition 1.9 Broomhead, Montaldi, and Sidorov show λ must be larger than two distinct

parameters in order for the holes in the attractor to be radial. The larger of the two pa-

rameters is λ∗ and thus Λλ is radial for all λ ≥ λ∗. The smaller of the two parameters

is given by λ∗ ≈ .6422 where λ∗ is the positive root of 3λ4 − 3λ3 + 2λ− 1 = 0. Our in-

spiration for looking at the attractor in greater detail for λ ∈ [λ∗,λ∗] came by observing

computer-generated approximations to the attractor for λ in this range. For these values

we noticed that the attractor appears to have holes in what we call a generalized radial

pattern. However, for λ<λ∗ we observed that this is not true.

Figure 4: Generalized Radial Case

Definition 1.12. We say that the attractorΛλ is generalized radial if fi (∆)∩ f j (∆) ⊂Λλ for

i 6= j .

9



Figure 4 shows no holes in fi (∆)∩ f j (∆) for i 6= j . The fact that the attractor has this

property implies that it has nonempty interior. It is also known that for λ< λ∗ there is a

hole contained in f0(∆)∩ f1(∆).

Proposition 1.13. For λ<λ∗ the attractorΛλ is not generalized radial.

We now give our main result which shows the attractor of this family of iterated func-

tion systems has nonempty interior on a substantial subset of [λ∗,λ∗).

Main Theorem. Consider the iterated function system defined by the three maps in equa-

tion (1). Let I1 := [.6439, .6441], I2 := [.6458, .6466], and I3 := [.6470, .6472]. Then for

λ ∈I1∪I2∪I3 ⊂ [λ∗,λ∗),Λλ is generalized radial and hence has nonempty interior. For

λ= .6443 and λ= .6457,Λλ is not generalized radial.

Corollary 1.14. For λ ∈I1 ∪I2 ∪I3 the attractorΛλ has positive Lebesgue measure and

dimH (Λλ) = 2.

This gives a set of intervals contained in [λJ ,λ∗] for which dimH (Λλ) = 2. This an-

swers the previous question that asked if the set of values for which the Hausdorff di-

mension is less than 2 is dense in [λJ ,λ∗]. The range of values for λ given in the Main

Theorem and Corollary 1.14 is pictured below.

λ∗ λ∗.6443 .6457

I1 I2 I3Not Generalized
Radial

We notice that λ = .6443 lies close to the right endpoint of the interval I1 and that

λ = .6457 lies close to the left endpoint of the interval I2. These two values of λ seem

to give rise to the same hole that is not part of the generalized radial pattern. Upon

inspection this hole appears to be in the attractor for all values of λ ∈ (.64415, .64578).

Conjecture 1.15. Forλ ∈ (.64415, .64578) the holes in the attractorΛλ of the iterated func-

tion system given by equation (1) are not in a generalized radial pattern.
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However, proving this conjecture requires showing that the hole is persistent through-

out the conjectured values forλ. If this conjecture is true it does not imply that the attrac-

tor has empty interior. In fact, even though the attractor may not be generalized radial it

still may have nonempty interior. Thus the attractorΛλ changes from generalized radial

to not generalized radial and back as we change the parameter λ. It is an open question

whether the interior of an attractor can vary between empty and nonempty in ways as

intermittent as we saw previously the Lebesgue measure does.

To prove our main result we use the following construction of the attractor.

Proposition 1.16 (See [4]). Let ∆ be the triangle with vertices at the fixed points of the

iterated function system. For 0 ≤ n <∞ define the n-th level set of the attractor by

∆n :=
2⋃

i=0
fi (∆n−1)

where ∆0 =∆. Then,
∞⋂

n=0
(∆n) =Λλ.

The criterion we use to prove our main result involves the construction of a subset of

the attractor that maps onto itself by the iterated function system. Although we used this

result to show nonempty interior for the fat Sierpinski triangle this idea can be applied

to the attractor of any iterated function system.

Inclusion Theorem. If N ⊆∆ and N ⊆ f0(N )∪ f1(N )∪ f2(N ), then

N ⊆Λλ.

Proof. By Induction:

We show N ⊆∆n for all n ≥ 0 because this implies N ⊆⋂∞
n=0∆n =Λλ.

Base Case: Let n = 0. Then N ⊆∆0 =∆.

Induction step: If k is such that N ⊆∆k , then

N ⊆ f0(N )∪ f1(N )∪ f2(N ) ⊆ f0(∆k )∪ f1(∆k )∪ f2(∆k ) =∆k+1

11



We apply the Inclusion Theorem in the proof of the Main Theorem by checking the

following:

Criterion 1.17. There exists N ⊂∆with nonempty interior such that N ⊆ f0(N )∪ f1(N )∪
f2(N ).

2 Proof of the Main Theorem

2.1 The attractor is not generalized radial for λ ∈ {.6443, .6457}

We first prove the second part of the Main Theorem which states that for λ = .6443 and

λ= .6457 the attractorΛλ is not generalized radial. A calculation using the mathematics

program Maple 13 shows

• If λ= .6443 then ( 1
2 , .1345) ∈ I0 is not in ∆8 ⊃⋂∞

n=0∆n =Λλ.

• If λ= .6457 then ( 1
2 , .1351) ∈ I0 is not in ∆8 ⊃⋂∞

n=0∆n =Λλ.

We discuss in greater detail the accuracy of these calculations in section 2.4.

2.2 Choice of the included set

The majority of the work involved to prove the Main Theorem goes into proving that a

subset N satisfies Criterion 1.17 even as the contraction rate is varied. Figure 5(a) shows

an approximation to the set N that we found.

We now begin the construction of the set N which satisfies Criterion 1.17. For λ ∈
( 1

2 , 2
3 ] let I0, I1, I2 be the Primary Overlaps of the iterated function system as in Figure

5(b), that is,

I0 = f0(∆)∩ f1(∆),

I1 = f1(∆)∩ f2(∆),

I2 = f2(∆)∩ f0(∆).

Now we define N to be the union of all forward images by our iterated function sys-

tem of the primary overlaps I0, I1, and I2.
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(a) Subset of N to 8 levels (shown in black) (b) Primary Overlaps I0, I1, I2 (shown in
black)

Figure 5: N ⊂Λ

Definition 2.1. We call each forward image of I0, I1, and I2 by our iterated function system

a tile.

Upon completion of showing this union of tiles satisfies Criterion 1.17 we will have

shown N is contained in the attractor Λλ. In particular, the primary overlaps I0, I1, and

I2 are contained inΛλ and therefore by Definition 1.12 the attractor is generalized radial.

In order to apply Criterion 1.17 we must show that N ⊆ f0(N )∪ f1(N )∪ f2(N ). We

continue with the proof of the Main Theorem by showing that N has this property.

We examine the set N by breaking it down into tiles of different rank. We say I0, I1,

and I2 are tiles or rank 0, tiles of the form f j (Ii ) are tiles of rank 1, tiles of the form

fk ( f j (Ii )) are tiles of rank 2, and so on where i , j ,k ∈ {0,1,2}. It is clear that under the

iterated function system the set of all rank n tiles maps onto the set of all rank n+1 tiles.

To show N fully maps onto itself it remains to show that there exists tiles that map onto

the rank 0 tiles I0, I1, and I2. Thus we need to find a covering of I0, I1, I2 by tiles, that is by

images of I0, I1, I2 under the iterated function system. Since the iterated function system

is symmetric about 3 axes we need only look for a cover of any one of the three Primary

Overlaps. In fact we only need to find a cover for the left half of I0.

13



Figure 6: It remains to cover the left half of I0

2.3 Notations and parametrization

2.3.1 Addresses

In order to clarify the notion of tiles we introduce the following notation.

Definition 2.2. For ε= (ε1, . . . ,εn) ∈ {0,1,2}n we define

fε = fε1 ◦ · · · ◦ fεn

We say ε is the address for the map fε.

Thus each tile in N is of the form fε(Il ) where l ∈ {0,1,2}. Many of the tiles in N are

associated to maps with very long addresses.

Remark 2.3. Equation (2) shows that fε = λn I +p(λ,ε), where p(λ,ε) ∈ ∆ is given by an

R2-valued polynomial in λ of degree at most n. Therefore any two tiles of the same rank

are translates of each other.

Because the rank of some tiles is very large and we use few of them, we avoid referring

to the tiles by their address and instead adopt a two-letter label for each tile. The two

letters have a different meaning and to distinguish this we capitalize the first letter in the

label. This capital letter refers to the rank of each tile. Thus any two tiles whose labels

start with the same capital letter are of the same rank and therefore the same size. As we

advance through the alphabet by one letter the rank of the corresponding tiles increases

by at least one. For example a tile whose label starts with B has a greater rank than one
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whose label starts with A. This implies that as the first capital letter in the label advances

through the alphabet the corresponding tiles decrease in size.

We use the second (and lower case) letter in the label to distinguish which tile of a

given rank we are referring to. For example Aa is the label for a tile of rank 1 in our cover

N . In particular Aa is the label for the tile given by f0(I1). The labels for each tile and

their associated address are listed together in a table at the end of this thesis.

2.3.2 Vertices

We will also adopt the following notation for each vertex of a tile. Given a tile we will

denote using subscripts the bottom left vertex by l , the bottom right vertex by r , and the

top vertex by t . For example Bal is the bottom left vertex of the tile Ba.

We also use the projections πx : (x, y) 7→ x and πy : (x, y) 7→ y . For example πx Bal is

the x-coordinate of the bottom left vertex of the tile Ba.

2.3.3 Sides

To designate each side of a given tile we will use the subscripts ls,rs, and bs to stand for

the left side, right side, and bottom side respectively. For example, Bars∩Aabs represents

the point of intersection between the right side of tile Ba and the bottom side of tile Aa,

and πy (Bars ∩Aabs) is the y-coordinate of the point given by this intersection of lines.

2.3.4 Overlaps

We clarify what is meant by an overlap of two tiles in N . First note that any tile in N is

an image of one of the primary overlaps by fε for some ε ∈ {0,1,2}n . Since each map in

the iterated function system is a contraction, this implies that fε is also a contraction as

it is a composition of those maps. Therefore any tile in N has sides with slope -2, 2, and

0. This implies that there are only three possibilities for the intersection of two tiles in N .

Either the area of intersection is empty, a singleton, or has interior. We say that two tiles

in N overlap when their intersection has interior.

15



PLOT ...

Ab

I2

Aa

Bb

I0

Ba

I1

0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

plotsetup postscript, plotoutput = `24.eps`, plotoptions = `color,portrait,height=350,width=350` ;
plotsetup default ;

P1d PLOT CURVES 0.5, 0 , 0.5, .25 , 0.47, 0.155 , 0.5, 0.155 , 0.47, 0.155 , 0.47,
0.12 , .47, 0.12 , 0.5, 0.12 , 0.443, 0.1 , 0.5, 0.1 , 0.443, 0.03 , 0.5, 0.03 , 0.443,
0.1 , 0.443, 0.03 , 0.43, 0.03 , 0.43, 0.1 , 0.375, 0.1 , 0.43, 0.1 , 0.375, 0.03 , 0.43,
0.03 , 0.375, 0.03 , 0.375, 0.1 , POLYGONS f2 f1 f1 f1 B1 ,
f1 f2 f2 f1 B1 , f2 f1 f1 f1 B3 , f2 f1 f1 f3 B2 , COLOUR RGB, 0,

Figure 7: First 4 tiles: Aa = f0(I1), Ab = f0(I0), Ba = f10(I2), Bb = f01(I0)

2.4 Initial covering

We can see from Figure 7 that a large portion of the left half of I0 is covered by four tiles

Aa,Ab,Ba, and Bb. However, a single picture only represents Λλ for one specific value of

λ. For consistency, all pictures of the covering N were computed for λ = 0.6439 except

where otherwise noted. We will check that that the position of the tiles with respect to

each other is as pictured in Figure 7 and remains the same for all values of λ ∈I1 ∪I2 ∪
I3. The relative position of many of the tiles with respect to each other remains the same

over the entire interval I := [.6439, .6472] ⊃I1 ∪I2 ∪I3.

In order to compare the relative position of any two tiles in N we compare their ver-

tices to each other. Since all tiles are iterates by the iterated function system of the pri-

mary overlaps I0, I1, and I2 we first investigate the vertices of those three triangles. Since

the primary overlaps are defined by the intersection of any two images of ∆ by maps

from our iterated function system, we observe that their vertices are all given by linear
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expressions in λ. For example the three vertices of I0 are given by

I0l = (1−λ,0)

I0r = (λ,0)

I0t = (
1

2
,2λ−1)

Since each tile in N is of the form fε(Il ), where l ∈ {0,1,2}, this implies that the x and y

coordinates of its vertices are given by polynomials in λ. Since the vertices of rank 0 tiles

are given by linear expressions in λ it follows that the vertices of rank n tiles are given by

polynomials of degree at most n +1.

Example 1. πx Abr =λ2, and πy Abr = 0 for all λ ∈ ( 1
2 , 2

3 ].

Example 2. πx Bbl =−λ3 +λ, and πy Bbl = 0 for all λ ∈ ( 1
2 , 2

3 ].

Thus, we can check the relative position of any two tiles simply by comparing polyno-

mials in λ and we can recast this as verifying the positivity of polynomials. For example,

we verify in Claim 2.5 that the bottom right vertex of Ab is to the right of the bottom left

vertex of Bb and that they have the same y-coordinate by verifying the following:

πx Abr >πx Bbl and πy Abr =πy Bbl .

We do so using that

λ3 +λ2 −λ> 0 and πy Abr = 0 =πy Bbl (3)

for λ ∈I .

For each of the claims that follow in this thesis we give the inequality that we check

and the corresponding polynomial that we show to be positive across a given interval.

Each polynomial may be verified by hand by calculating the vertices of the correspond-

ing tiles.
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2.4.1 Polynomial inequalities

Checking for positivity of a degree-3 polynomial across an interval is straightforward.

However, to completely cover I0 we will need to check for positivity of polynomials of

much higher degree. Each polynomial encountered in this thesis has coefficients at most

2. This bound on the coefficients gives us the following upper bound on the absolute

value of the derivative of any polynomial we encounter.

d

dλ
(
∞∑

n=0
2λn)|λ= 2

3
= 2

(1−λ)2 |λ= 2
3
= 18 < 20 (4)

We use this bound on the derivative to confirm the minimum value of a polynomial p(λ)

is positive across any interval say [L1,L2]. This is done using the following algorithm.

1. Define m := min{p(L1), p(L2)}.

2. Calculate the length of the interval L := L2−L1.

3. Let n := d2×20L
|m| e be the number of equal-length steps to evaluate the polynomial

across the interval [L1,L2]. We call n the mesh size.

4. Define the step size by δ := L
n .

5. Define m∗ = min
0≤k≤n

p(L1+kδ). If m∗ < m redefine m := m∗ and restart at step 3,

otherwise stop and report m.

Theorem 2.4. If this algorithm terminates and reports m > 0 then

min
λ∈[L1,L2]

p(λ) ∈ [m/2,m].

Proof. By assumption

m ≤ p(L1+kδ)

for 0 ≤ k ≤ n, where n := d2×20L
m e and δ= L

n .

18



Then by equation (4)

m ≥ min
λ∈[L1,L2]

p(λ) ≥ min
k

p(L1+kδ)−20δ≥ m −20δ

= m −20
L

n

= m −20
L

d2×20L
m e

≥ m − L
2×20L

m

= m

2
.

This algorithm is used in each of the following claims in this thesis to show each

polynomial is positive across a given interval. For each of these polynomials we report

the minimum estimate m across that interval as well as the mesh size n. The minimum

of each polynomial checked in this thesis was given at one of the two endpoints of each

interval. This is a result of the polynomials being essentially monotone on small intervals

even though they are not monotone polynomials. Therefore the algorithm we used to

determine the minimum estimate always terminated after one run. Thus our minimum

estimate for each polynomial on the interval [L1,L2] is given by min{p(L1), p(L2)}.

Claim 2.5. The tiles in the Figure 7 stay in the same relative position as pictured for λ ∈I .

Proof.

λ3 +λ2 −λ> 0

(minimum estimate 0.0376727925 with mesh size 4) implies

πx Abr >πx Bbl .

λ2 −2λ+1 > 0

(minimum estimate 0.1244678400 with mesh size 2) implies

πx (I0)l >πx Abl and πy Aat >πy (I0)t .
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−λ3 +λ2 −λ+ 1

2
> 0

(minimum estimate 0.0005765740 with mesh size 229) implies

1

2
>πx Bbr .

λ3 + 1

2
λ2 − 3

2
λ+ 1

2
> 0

(minimum estimate 0.0084191875 with mesh size 16) implies

πx (Bars ∩Aabs) > 1

2
.

2.4.2 Recurring ideas

In this subsection we present some recurring ideas that are used to check the relative

positions of the tiles in the cover N .

Remark 2.6. Let ε,γ ∈ {0,1,2}n and write ε = ε1ε2 . . .εn and γ = γ1γ2 . . .γn . If for each

i ∈ {1, . . . ,n} either εi = γi = 2 or {εi ,γi } ⊂ {0,1} and if ` is a horizontal line then

fε(`) = fγ(`).

This is so because f0, f1 and f2 map horizontal lines to horizontal lines and f0(`) =
f1(`) for any horizontal line `. This remark gives a condition on any two maps which

guarantees that the images of a horizontal line by the two maps coincide. This is used

throughout this proof to show that the bottom sides of any two tiles in the cover lie on

the same horizontal line. We show this fact about pairs of tiles by confirming that the

property in Remark 2.6 holds for the addresses associated to the tiles. Another property

we consider in more detail involves overlapping tiles in N .

Remark 2.7. Let ε,γ,υ ∈ {0,1,2}n and i , j ∈ {0,1,2}. If fε(Ii ) and fγ(I j ) overlap then so do

fυ( fε(Ii )) and fυ( fγ(I j )).

This is just the obvious observation that if two tiles overlap then so do their images

under the same map. This is used often as many pairs of tiles in the cover are images of
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the same pair for which we check overlap for λ≥ 1
2 . An example of this are the three tiles

we call interior primary overlaps below. Many tiles in the cover are images of these three

tiles and thus overlap each other.

Remark 2.8. For λ> 1
2 the three tiles given by f0(I1), f1(I2), and f2(I0) pairwise overlap as

in Figure 8. We call these three tiles the interior primary overlaps. Likewise for λ > 1
2 we

also know that fi (Ii ) overlaps with Ii and fi+1 (mod 3)(Ii ) overlaps with Ii for i ∈ {0,1,2}.

(12)(12)

I2

I0

I1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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TRANSPARENCY 0.5 ;

PLOT ...
P1d PLOT CURVES 0.5, 0 , 0.5, .3 , POLYGONS f1 B1 , f1 B2 , COLOUR RGB, 0, 1,

 1 , POLYGONS B2, B1, B3, COLOUR RGB, 1, 1, 1 , POLYGONS A, COLOUR RGB, 0,
 0, 0 , VIEW 0.22 ..0.65, 0 ..0.4 ; I0d textplot 0.47, 0.1,'I0 ' ; I1d textplot 0.6, 0.37,'I1
' ; I2d textplot 0.32, 0.37,'I2 ' ; aad textplot 0.435, 0.3,'Aa ' ; abd textplot 0.32, 0.06,
'Ab ' ; bad textplot 0.49, 0.19,'Ba ' ; bbd textplot 0.437, 0.04,'Bb ' ; display P1, P2, I0,
I1, I2, aa, ab, ba, bb ;

PLOT ...
PLOT ...
PLOT ...
PLOT ...
PLOT ...
PLOT ...
PLOT ...

Figure 8: Interior Primary Overlaps f0(I1), f1(I2), and f2(I0) shown in dark grey

2.5 Reduction to Areas 1, 2, and 3

We now focus our attention on Figure 9 which includes the tiles Ba,Ca, Da,Db, and Dc.

We show that the relative position of these tiles is as pictured in Figure 9 for all λ ∈ I .

Since I2 overlaps f0(I2) and f0(I2) overlaps f00(I2) this implies by Remark 2.7 that Ba =
f10(I2) overlaps Ca = f100(I2) and Ca = f100(I2) overlaps Da = f1000(I2). Also, the left sides

of Ba,Ca and Da lie along the left side of the primary overlap I0 since the left sides of

f0(I2), f0(I2) and f00(I2) lie along the left side of ∆.

Similarly by Remark 2.7 Bb = f01(I0) and Cb = f011(I2) = f01( f1(I2)) overlap and their

left sides lie on the same line since this is true of f1(I2) and I0.

By Remarks 2.7 and 2.8, since Ca,Db, and Dc are images of the interior primary over-

laps, they also pairwise overlap. By Remark 2.6 the bottom vertices of Da,Dc, and Dd all

lie on the same horizontal line, and likewise for Ca,Cb, and Db. One last relation that

may be seen by the maps is that the right sides of Ca,Dc, and Cc all lie on the same line.

We now check that the relative position of each tile shown in Figure 9 is as pictured.
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Figure 9: Main Picture

2.5.1 There are no holes outside Areas 1,2, and 3

The addition of rank 3 and 4 tiles in Figure 9 leaves three areas which contain holes,

which we cover at a later step. We define

Area 1 : = [.375, .43]× [.03, .1],

Area 2 : = [.443, .5]× [.03, .1],and

Area 3 : = [.47, .5]× [.12, .155].

We now show the addition of these tiles covers all but Area 1, 2, and 3.

Claim 2.9. For λ ∈I there is no hole between Ca,Cb, and Ba.

Proof.

λ4 +2λ3 −λ2 −2λ+1 > 0

(minimum estimate 0.0034230936 with mesh size 39) implies

πy (Cars ∩Cbls) >πy Bal .
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−λ3 +2λ−1 > 0

(minimum estimate 0.0208344180 with mesh size 7) implies

πx Cbt >πx Cat .

Claim 2.10. For λ ∈I the bottom right vertex of Cb lies outside Area 2.

Proof.

3

2
λ4 − 3

2
λ3 +λ− 1

2
> 0

(minimum estimate 0.0013003341 with mesh size 102) implies

πx Cbr > 1

2
.

Claim 2.11. Both Da and Dc overlap Bb.

Proof.

λ5 − 1

2
λ4 + 1

2
λ3 −λ+ 1

2
> 0

(minimum estimate 0.0141719124 with mesh size 10) implies

πx Dar >πx (Dars ∩Bbls).

2λ5 −2λ4 +λ3 −λ2 +2λ−1 > 0

(minimum estimate 0.0177318060 with mesh size 8) implies

πx (Dcbs ∩Bbrs) >πx Dcl .

Claim 2.12. For λ ∈I the bottom right vertex of Dc lies within Area 2.

Proof.

−1

2
λ5 − 1

2
λ4 +λ− 1

2
> 0
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(minimum estimate 0.0026075030 with mesh size 51) implies

1

2
>πx Dcr .

Claim 2.13. For λ ∈I there is only one hole in Area 3.

Proof.

−2λ5 +2λ4 −2λ3 +λ2 > 0

(minimum estimate 0.0004830166 with mesh size 274) implies

πy Bal >πy Dbt .

Area 1,2, and 3 are chosen so that we can later focus our attention to covering the

remaining holes in each section. The next set of inequalities shows that the holes re-

maining in the Main Picture stay within their respective area for λ ∈I .

2.5.2 Holes stay in Areas 1, 2, and 3

Claim 2.14. The holes shown in Area 1 of Figure 9 are in Area 1 for λ ∈I .

Proof.

1

2
λ4 + 1

2
λ3 −λ+ .43 > 0

(minimum estimate 0.0055323605 with mesh size 24) implies

.43 >πx Cbl .

λ4 −λ3 + .1 > 0

(minimum estimate 0.0043590014 with mesh size 31) implies

.1 >πy Cbl .

1

2
λ2 − 1

2
λ+ .125 > 0
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(minimum estimate 0.0103536050 with mesh size 13) implies

πx (Dals ∩Abrs) > 0.375.

λ3 +λ2 −λ− .03 > 0

(minimum estimate 0.0076727925 with mesh size 18) implies

πy (Abrs ∩Bbls) > 0.03.

Claim 2.15. The holes shown in Area 2 of Figure 9 are in Area 2 for λ ∈I .

Proof.

λ4 −λ2 +2λ−1.03 > 0

(minimum estimate 0.0150919290 with mesh size 9) implies

πy (Bbrs ∩Ccls) > 0.03.

−3

2
λ5 + 3

2
λ4 −λ+ .557 > 0

(minimum estimate 0.0026482815 with mesh size 50) implies

πx Dcl > 0.443.

1

2
λ4 + 1

2
λ3 −λ2 +λ− .443 > 0

(minimum estimate 0.0057251505 with mesh size 24) implies

πx (Cbbs ∩Bbrs) > 0.443.

λ5 − 1

2
λ4 + 1

2
λ3 −λ+ 1

2
> 0
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(minimum estimate 0.0141719124 with mesh size 10) implies

1

2
>πx (Dbbs ∩Ddl s).

Claim 2.16. The holes shown in Area 3 of Figure 9 are in Area 3 for λ ∈I .

Proof.

λ3 −λ2 + .155 > 0

(minimum estimate 0.0072234260 with mesh size 19) implies

.155 >πy Bal .

λ4 − 1

2
λ3 − 1

2
λ2 +λ− .47 > 0

(minimum estimate 0.0050127424 with mesh size 27) implies

πx (Babs ∩Cbrs) > 0.47.

λ5 −λ3 +2λ−1.12 > 0

(minimum estimate 0.0115202730 with mesh size 12) implies

πy (Cbrs ∩Dbls) > 0.12.

−1

2
λ5 +λ4 − 1

2
λ3 + .03 > 0

(minimum estimate 0.0130734198 with mesh size 11) implies

πx (Cbrs ∩Dbls) > 0.47.

2λ5 −2λ4 +2λ3 −2λ+ .88 > 0
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(minimum estimate 0.0037045984 with mesh size 36) implies

πy (Dbrs ∩ {x = 0.5}) > 0.12.

We have now shown that for all λ ∈I all tiles up to rank 4 in the cover remain in the

same relative position with respect to each other as pictured in Figure 9. We have also

shown for λ ∈ I that all holes that remain to be covered are either in Area 1, Area 2, or

Area 3.

2.6 Area 1

Our aim is to cover the two holes left uncovered in Area 1. To this end we show how to

establish that a tile covers a hole: a set of three inequalities implies that the tile contains

the hole.

The most common type of hole encountered in the following claims are those which

are bounded by three tiles and are therefore triangular. To clarify the notion of a triangu-

lar hole we introduce the following definition.

Definition 2.17. For tiles x, y, and z we define the triangular hole H(x, y, z) to be the

bounded connected component of the complement of x ∪ y ∪ z.

Thus every triangular hole has sides with slope 0,2, and −2. In order to cover a trian-

gular hole with a single tile we first draw three lines through the vertices of the hole as in

Figure 10 with the corresponding slopes 0,2, and −2. We refer to the line with slope −2

as Line 1, the line with slope 2 as Line 2, and the line with slope 0 as Line 3. A single tile

covers this hole if

• Its bottom left vertex lies below Line 3

• Its bottom left vertex lies above the Line 2

• Its bottom right vertex lies above Line 1

Satisfying these three conditions guarantees that the top vertex is above both Line 1

and Line 2 and therefore the hole is covered. In the following claims we always check the
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Figure 10: Vertices lie in Wedge 1, 2, and 3 if and only if the tile contains the hole

positions of the vertices in the order listed above. That is, we first check the bottom left

vertex lies below Line 3, then we check the bottom left vertex lies above Line 2, and lastly

we check that the bottom right vertex lies above Line 1. We will call the three areas where

the vertices of a covering tile must lie Wedge 1, Wedge 2, and Wedge 3. Therefore the

bottom left vertex of a covering tile must lie in Wedge 1, the bottom right vertex in Wedge

2, and the top vertex in Wedge 3. Line 1, Line 2, and Line 3 are defined by vertices which

can be written in terms ofλ. Thus, in order to check that a tile covers a triangular hole we

need to check just three inequalities, and therefore may confirm that a triangular hole is

covered as before by checking for positivity of polynomials in λ.

Remark 2.18. Each hole we aim to cover corresponds to a unique set of wedges and lines as

defined above. Thus throughout the remainder of this proof each wedge and line is meant

to be defined for the particular hole under discussion.

Often it takes more than one tile to cover a triangular hole. In these cases we may

check that a tile covers one of the edges of the hole instead. Since we check strict inequal-

ities this implies that if a tile covers an edge of a hole that it in fact covers a neighborhood

of that edge.

2.6.1 Top hole in Area 1

We now complete the cover of Area 1 by adding 6 more tiles. In Area 1 there are two holes

which remain to be covered. Covering the top triangular hole in Area 1 first, we focus on
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the tiles Fa, and Ga as shown in Figure 12.

Ab
Area1

Da

Ca

Bb

Cb

Dc

Area2

Area3

Cc

Db

Ba

Dd

0.35 0.40 0.45 0.50
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P1d PLOT CURVES 0.5, 0 , 0.5, .25 ,
 POLYGONS f2 f1 f1 f1 f2 f3 f1 B1 ,
f2 f1 f1 f1 f2 f3 f2 B3 , f2 f1 f1 f1 f3 f2 f1 B1 ,
f2 f1 f1 f1 f3 f2 f3 B2 , f1 f2 f2 f1 f3 f2 f3 B2 ,
COLOUR RGB, .6, .2, 0 , POLYGONS f2 f1 f1 f1 f3 f2 B3 ,
f1 f2 f2 f1 f3 f1 B1 , f1 f2 f2 f1 f3 f2 B3 , COLOUR RGB, 1, .3,
 0 , POLYGONS f1 f2 f2 f1 f3 B2 , f1 f2 f2 f1 f2 B3 ,
COLOUR RGB, 1, .5, 0 , POLYGONS f2 f1 f1 f1 B1 , f1 f2 f2 f1 B1 ,
f2 f1 f1 f1 B3 , f2 f1 f1 f3 B2 , COLOUR RGB, 0, .3, .3 ,
POLYGONS f2 f1 f1 B3 , f1 f2 f2 B3 , f2 f1 f1 B2 , COLOUR RGB, 0, .3,

(a) Main Picture

Ab
Area1

Da

Ca

Bb

Cb

Dc

Area2

Area3

Cc

Db

Ba

Dd

0.35 0.40 0.45 0.50
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P1d PLOT CURVES 0.5, 0 , 0.5, .25 ,
 POLYGONS f2 f1 f1 f1 f2 f3 f1 B1 ,
f2 f1 f1 f1 f2 f3 f2 B3 , f2 f1 f1 f1 f3 f2 f1 B1 ,
f2 f1 f1 f1 f3 f2 f3 B2 , f1 f2 f2 f1 f3 f2 f3 B2 ,
COLOUR RGB, .6, .2, 0 , POLYGONS f2 f1 f1 f1 f3 f2 B3 ,
f1 f2 f2 f1 f3 f1 B1 , f1 f2 f2 f1 f3 f2 B3 , COLOUR RGB, 1, .3,
 0 , POLYGONS f1 f2 f2 f1 f3 B2 , f1 f2 f2 f1 f2 B3 ,
COLOUR RGB, 1, .5, 0 , POLYGONS f2 f1 f1 f1 B1 , f1 f2 f2 f1 B1 ,
f2 f1 f1 f1 B3 , f2 f1 f1 f3 B2 , COLOUR RGB, 0, .3, .3 ,
POLYGONS f2 f1 f1 B3 , f1 f2 f2 B3 , f2 f1 f1 B2 , COLOUR RGB, 0, .3,

(b) Area 1

Figure 11: Area 1 Holes

Recall that our aim is to construct a cover for all λ ∈ I1 ∪I2 ∪I3. It is sometimes

useful to examine particular parts of the cover over larger or smaller intervals than this.

For example we may check that a polynomial is positive on I2∪I3 by checking that it is

positive on the convex hull of the two intervals. Thus we define Ir to be the convex hull

of I2 and I3.

Claim 2.19. If λ ∈I , then Fal is in Wedge 1 formed by H(Da,Bb,Ca).

Proof.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0 (5)

(minimum estimate 0.0024163854 with mesh size 55) and

λ6 +2λ4 −2λ3 +λ2 −2λ+1 > 0

(minimum estimate 0.0066763173 with mesh size 20) imply that

Fal is in wedge 1.
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Figure 12: Area 1 Covering

Claim 2.20. If λ ∈Ir , then H(Da,Bb,Ca) is completely covered by Fa.

Proof.

λ7 −λ6 +λ4 +λ3 −λ2 > 0

(minimum estimate 0.0005209584 with mesh size 108) along with Equation (5) implies

that

Far is in wedge 2.

For λ ∈I1 we need the addition of the tile Ga to completely cover the top hole as Far

is no longer contained in Wedge 2.

Claim 2.21. If λ ∈I1, then Fa and Ga cover H(Da,Bb,Ca).

Proof.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0032048132 with mesh size 3) and

λ8 −λ7 +λ6 −λ5 +2λ4 −2λ+1 > 0
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(minimum estimate 0.0002031024 with mesh size 40) imply that

Gar is in wedge 2.

λ8 +λ7 −2λ6 +λ5 −λ4 +λ3 −λ2 +2λ−1 > 0

(minimum estimate 0.0118443120 with mesh size 1) implies

πx Far >πx Gal .

λ8 −λ6 +λ4 −λ2 +2λ−1 > 0

(minimum estimate 0.0033706200 with mesh size 3) implies

πy (Far s ∩Gal s) >πy Cal

This concludes the proof that the top hole H(Da,Bb,Ca) contained in Area 1 is covered

for all λ ∈I .

2.6.2 Bottom hole in Area 1

We now cover the bottom hole in Area 1. The majority of this hole is covered by two tiles

Ea, and Eb which leaves uncovered two smaller holes.

• H(Eb,Bb,Da) we cover with tile Gb.

• H(Eb,Bb,Ab) we cover with tile Ha.

By Remark 2.7

Da = f1000(I2) and

Ea = f10000(I2) = f1000( f0(I2))

overlap since I2 and f0(I2) overlap for λ> 1
2 . Thus there are no holes between Da and the

left edge of I0.
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Claim 2.22. If λ ∈ I , then tiles Ea and Eb cover all but two sub-holes of the bottom hole

in Area 1. (See Figure 12)

Proof.

2λ6 −λ3 +λ2 −2λ+1 > 0

(minimum estimate 0.0003575231 with mesh size 370) implies

πy (Ear s ∩Ebl s) >πy Dal .

1

2
λ6 +λ5 − 3

2
λ4 +2λ3 −λ2 > 0

(minimum estimate 0.0077964135 with mesh size 17) implies

πx Ebr >πx (Dabs ∩Bbl s).

λ6 −λ5 +λ2 +λ−1 > 0

(minimum estimate 0.0190919770 with mesh size 7) implies

πx (Eal s ∩Abr s) >πx Eal .

Claim 2.23. If λ ∈I , then Gb covers H(Eb,Bb,Da).

Proof.

λ8 −λ7 +λ6 −λ4 +2λ3 −λ2 > 0 (6)

(minimum estimate 0.0023535988 with mesh size 57) and

λ8 −λ7 +2λ5 −2λ4 +λ3 −λ2 +2λ−1 > 0

(minimum estimate 0.0013899660 with mesh size 95) imply

Gbl is in wedge 1.
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λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0024163854 with mesh size 55) along with Equation (6) imply that

Gbr is in wedge 2.

Claim 2.24. If λ ∈Ir , then H(Ab,Bb,Ea)=;.

Proof.

λ6 −λ5 +λ3 +λ2 −λ> 0

(minimum estimate 0.0008066868 with mesh size 70) implies

πy (Abr s ∩Bbl s) >πy Ebr .

Claim 2.25. If λ ∈I1, then Ha covers H(Ab,Bb,Ea).

Proof.

λ9 −λ8 +λ7 −λ6 +λ3 +λ2 −λ> 0 (7)

(minimum estimate 0.0017708133 with mesh size 5) and

λ8 −λ7 +λ6 −λ5 +λ2 +λ−1 > 0

(minimum estimate 0.0027501370 with mesh size 3) imply that

Hal is in wedge 1.

λ9 −λ8 +2λ6 −λ5 +λ3 −2λ+1 > 0

(minimum estimate 0.0004208982 with mesh size 20) along with Equation (7) imply that

Har is in wedge 2.
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This concludes the proof that the bottom hole contained in Area 1 is covered for all

λ ∈I . Therefore Area 1 is completely covered by tiles for all λ ∈I .

2.7 Area 2
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Figure 13: Area 2 Holes

In this section we produce 18 tiles that, taken together with the previous ones, cover

Area 2.

2.7.1 Bottom left hole in Area 2

We first show that the bottom left hole in Area 2, H(Bb,Cc,Dc) is covered by tiles. The tile

Ed covers the majority of this hole leaving two smaller holes to its left and right.

Claim 2.26. For λ ∈I the position of Ed is as pictured in Figure 14.

Proof.

λ6 −λ5 +λ4 −λ2 +2λ−1 > 0

(minimum estimate 0.0056766960 with mesh size 24) implies

πy (Bbr s ∩Ccl s) >πy Edl .
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Figure 14: Area 2 Covering

λ6 +λ5 −λ4 > 0

(minimum estimate 0.0100573390 with mesh size 14) implies

πy Edt >πy Ddl .

1

2
λ6 − 3

2
λ5 + 3

2
λ4 −2λ3 +λ2 > 0

(minimum estimate 0.0062788268 with mesh size 22) implies

πx Edt >πx (Bbr s ∩Dcbs).

−1

2
λ6 + 1

2
λ5 − 3

2
λ4 +2λ3 −2λ+1 > 0

(minimum estimate 0.0046376002 with mesh size 29) implies

πx (Dcbs ∩Ccl s) >πx Edt .
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Of the two smaller holes on either side of tile Ed we first cover the one to the left,

namely H(Bb,Dc,Ed).

Claim 2.27. For λ ∈I tile Gf covers H(Bb,Dc,Ed).

Proof.

λ8 −λ7 +λ6 −λ4 +2λ3 −λ2 > 0 (8)

(minimum estimate 0.0023535988 with mesh size 57) and

λ8 −λ7 +2λ5 −2λ4 +λ3 −λ2 +2λ−1 > 0

(minimum estimate 0.0013899660 with mesh size 95) imply that

Gf l is in wedge 1.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0024163854 with mesh size 55) along with Equation (8) imply that

Gf r is in wedge 2.

Next we show H(Cc,Dc,Ed) is covered.

Claim 2.28. If λ ∈I , then Gg l is contained in wedge 1 formed by H(Cc,Dc,Ed).

Proof.

λ8 −λ7 +2λ6 −2λ5 +2λ4 −2λ3 +2λ−1 > 0 (9)

(minimum estimate 0.0024948060 with mesh size 53) and

λ7 +λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0055122880 with mesh size 24) imply that

Gg l is in wedge 1.
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Claim 2.29. For λ ∈Ir , H(Cc,Dc,Ed) is covered by the tile Gg.

Proof.

λ8 −λ7 +λ5 +λ4 −λ3 > 0

(minimum estimate 0.0003364350 with mesh size 167) along with Equation (9) imply

that

Ggr is in wedge 2.

For λ ∈I1 we need the additional the tile Hb.

Claim 2.30. For λ ∈I1, H(Cc,Dc,Gg) is covered by the tile Hb.

Proof.

2λ8 −2λ7 +λ6 −λ5 +2λ4 −λ3 > 0 (10)

(minimum estimate 0.0047337820 with mesh size 2) and

λ9 −λ7 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0017063686 with mesh size 5) imply that

Hbl is in wedge 1.

λ9 −λ8 +λ7 −λ6 +λ5 +λ4 −2λ3 +2λ−1 > 0

(minimum estimate 0.0005518500 with mesh size 15) along with Equation (10) imply

that

Hbr is in wedge 2.

This concludes the proof that the bottom left hole H(Bb,Cc,Dc) in Area 2 is covered

for all λ ∈I .
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2.7.2 Bottom right hole in Area 2

We now show that the hole bordered by the line x = 1
2 and the tiles Cc and Dd as pictured

in Figure 13(b) is covered. The bottom vertex of this hole is defined by Ccr s ∩ {x = 1
2 }. As

in Figure 10 we take the vertices of this hole to define three wedges and three lines.

Claim 2.31. If λ ∈I , then Gh covers the top edge of the bottom right hole in Area 2.

Proof.

λ8 −λ7 + 1

2
λ5 + 1

2
λ4 −λ3 +λ− 1

2
> 0

(minimum estimate 0.0018850746 with mesh size 71) implies

πx (Ghr s ∩Ddbs) > 1

2
.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0 (11)

(minimum estimate 0.0024163854 with mesh size 55) implies

πy Ghl is above Line 2.

Claim 2.32. If λ ∈I1, then Gh completely covers the bottom right hole in Area 2.

Proof.

λ8 −λ7 +λ6 −λ5 +2λ4 −2λ+1 > 0

(minimum estimate 0.0002031024 with mesh size 40) along with Equation (11) imply

that

Ghl is in wedge 1.

For λ ∈Ir the addition of the tile Jc is needed to cover the hole below Gh.

Claim 2.33. If λ ∈Ir , then Jc covers the hole bordered by the Cc,Gh and the line x = 1
2 .

Proof.

λ11 −λ10 +λ9 −λ8 +λ6 −λ5 +2λ4 −2λ+1 > 0 (12)
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(minimum estimate 0.0010304495 with mesh size 55) and

λ10 −λ9 +λ8 +λ3 −2λ+1 > 0

(minimum estimate 0.0004453600 with mesh size 126) imply that

Jcl is in wedge 1.

λ11 −λ10 +2λ8 −2λ7 +λ6 −λ5 +2λ4 −λ3 > 0

(minimum estimate 0.0010955991 with mesh size 52) along with Equation (12) imply

that

Jcr is in wedge 2.

This concludes the proof that the bottom right hole in Area 2 is covered for all λ ∈I .

2.7.3 Top right hole in Area 2

In this section we cover the hole H(Db,Dc,Dd) (See Figures 13 and 14). We first show that

for λ ∈I1,Gdl covers the left edge of the hole and Jb covers the right edge.

Claim 2.34. If λ ∈I1, then Gdl is contained in Wedge 1 obtained from H(Db,Dc,Dd).

Proof.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0032048132 with mesh size 3) and

λ8 −λ7 +λ6 −λ5 +2λ4 −2λ+1 > 0

(minimum estimate 0.0002031024 with mesh size 40) imply that

Gdl is in wedge 1.

Claim 2.35. If λ ∈I1, then Jb covers H(Db,Dd,Gd).
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Proof.

λ10 −λ9 +λ8 −λ6 +2λ5 −λ4 > 0 (13)

(minimum estimate 0.0009758190 with mesh size 9) and

λ11 −λ10 +2λ8 −2λ7 +λ6 −λ5 +2λ4 −λ3 > 0

(minimum estimate 0.0003710732 with mesh size 22) imply that

Jbl is in wedge 1.

λ11 −λ10 +λ9 −λ8 +λ5 +λ4 −λ3 > 0

(minimum estimate 0.0007341919 with mesh size 11) along with Equation (13) imply

that

Jbr is in wedge 2.

For λ ∈ Ir we cover H(Db,Dc,Dd) with tiles Gd and Ja. We show that for λ ∈ Ir ,Gdl

covers the right edge of the hole and Ja covers the left edge.

Claim 2.36. If λ ∈ Ir , then Gdl is contained in Wedge 2 obtained from the top right hole

H(Db,Dc,Dd) in Area 2.

Proof.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0024163854 with mesh size 24) and

λ8 −λ7 +λ5 +λ4 −λ3 > 0

(minimum estimate 0.0003364350 with mesh size 167) imply that

Gdr is in wedge 2.

Claim 2.37. If λ ∈Ir , then Ja covers the hole H(Db,Dc,Gd).
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Proof.

λ10 −λ9 +λ8 +λ3 −2λ+1 > 0 (14)

(minimum estimate 0.0004453600 with mesh size 126) and

λ11 −λ10 +λ9 −λ8 +λ6 −λ5 +2λ4 −2λ+1 > 0

(minimum estimate 0.0010304495 with mesh size 55) imply that

Jal is in wedge 1.

λ11 −λ10 +2λ8 −2λ7 +λ6 −λ5 +2λ4 −λ3 > 0

(minimum estimate 0.0010955991 with mesh size 52) along with Equation (14) imply

that

Jar is in wedge 2.

This concludes the proof that the top right hole H(Db,Dc,Dd) in Area 2 is covered for

all λ ∈I .

2.7.4 Top left hole in Area 2

We complete the cover of Area 2 by showing that the hole in the top left corner is covered

by 9 additional tiles. We first note some basic features of the tiles in this area that hold

for λ ∈I . First we see that the top portion of this hole is covered by a row of 4 tiles whose

bottom edges all lie on the same horizontal line y =−λ7 +λ6 −λ5 +λ4.

Fb = f100021(I2),

Fc = f011020(I1),

Fd = f011021(I2),

Gc = f1000212(I0) = f100021( f2(I0)),
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This follows by Remark 2.6 since the bottom edges of I1, I2, and f2(I0) lie on the same

horizontal line.

We also observe by Remark 2.7 that the left side of Gc lies on the same line as that of

Ge = f1000210(I1) and that the two tiles overlap each other.

We now continue by verifying the position of the remaining tiles needed to cover the

top left hole in Area 2.

Claim 2.38. For λ ∈I tiles Fb,Fc and Gc cover the left side of the top edge H(Bb,Dc,Cb).

Proof.

λ7 −λ6 +λ5 −2λ4 +λ3 > 0

(minimum estimate 0.0078147049 with mesh size 17) implies

πy (Cbbs ∩Bbr s) >πy Fbl .

λ6 −λ5 +λ4 −λ2 +2λ−1 > 0

(minimum estimate 0.0056766960 with mesh size 24) implies

πy Fbl is above Line 2.

2λ7 −2λ6 +2λ4 −2λ+1 > 0

(minimum estimate 0.0046456559 with mesh size 29) implies

πy (Fbr s ∩Fcl s) >πy Cbl .

λ8 −λ7 +2λ6 −2λ5 +2λ4 −2λ3 +2λ−1 > 0

(minimum estimate 0.0024948060 with mesh size 53) implies

πy (Fcr s ∩Gcl s) >πy Cbl .

Claim 2.39. For λ ∈Ir the top edge of H(Bb,Dc,Cb) is covered by the three tiles Fb,Fc and

42



Gc.

Proof.

λ8 −λ7 +λ5 +λ4 −λ3 > 0

(minimum estimate 0.0003364350 with mesh size 167) implies

πy Gcr is above Line 1.

The claim then follows by Claim 2.38 since Ir ⊂I .

Claim 2.40. For λ ∈ I1 the top edge of H(Bb,Dc,Cb) is covered by the four tiles Fb,Fc,Gc

and Fd.

Proof.

λ8 −λ7 +λ6 −λ5 +2λ4 −2λ+1 > 0

(minimum estimate 0.0002031024 with mesh size 40) implies

πy (Gcr s ∩Fdl s) >πy Cbl .

λ7 −λ6 +λ5 +λ4 −2λ3 +2λ−1 > 0

(minimum estimate 0.0110743600 with mesh size 1) implies

πy Fdr is above Line 1.

We have shown that the tiles Ge and Gc overlap. Next we show that Ge covers the

bottom vertex of H(Bb,Dc,Cb). This leaves two smaller holes on either side of Ge.

Claim 2.41. If λ ∈I , then Ge covers the bottom vertex of the top left hole in Area 2.

Proof.

λ8 −λ7 +2λ5 −2λ4 +λ3 −λ2 +2λ−1 > 0
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(minimum estimate 0.0013899660 with mesh size 95) implies

πy (Bbr s ∩Dcl s) >πy Gel .

Now we cover the hole to the left of tile Ge.

Claim 2.42. For λ ∈I the hole H(Bb,Fc,Ge) is covered by tile Ia.

Proof.

λ10 −λ9 +2λ8 −2λ7 +λ6 −λ4 +λ3 −λ2 +2λ−1 > 0 (15)

(minimum estimate 0.0000707320 with mesh size 1867) and

λ10 −λ9 +2λ7 −2λ6 +λ5 −λ4 +2λ3 −λ2 > 0

(minimum estimate 0.0005762899 with mesh size 230) imply that

Ial is in wedge 1.

λ9 +λ6 −λ5 −λ3 +2λ−1 > 0

(minimum estimate 0.0004459880 with mesh size 296) along with Equation (15) imply

that

Iar is in wedge 2.

We now cover the hole to the right of tile Ge. Note that the tile bordering the right-

hand side of the hole changes as λ varies.

Claim 2.43. For λ ∈I1 the tile Ec is to the left of the tile Dc.

Proof.

λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0008150606 with mesh size 10) implies

πx Dcl >πx Ecl .
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Claim 2.44. For λ ∈Ir the tile Dc is to the left of the tile Ec.

Proof.

−λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0004424410 with mesh size 127) implies

πx Ecl >πx Dcl .

Thus by Claim 2.43 we aim to cover H(Ec,Gc,Ge) for λ ∈ I1. This is covered by the

two tiles Ib and Ka as shown in Figure 14.

Claim 2.45. For λ ∈I1 the hole H(Ec,Gc,Ge) is covered by the tile Ib.

Proof.

λ10 −λ9 +λ8 +λ3 −2λ+1 > 0

(minimum estimate 0.0018466510 with mesh size 5) and

1

2
(λ9 −λ8 +3λ7 −3λ6 +λ5 +λ3 −2λ+1) > 0

(minimum estimate 0.0015459776 with mesh size 6) imply that

Ibl is in wedge 1.

λ10 −λ8 +2λ7 −λ6 > 0

(minimum estimate 0.0032137298 with mesh size 3) implies

πy Ibt >πy Gcl .

Claim 2.46. For λ ∈ I1 the hole H(Gc,Ge,Ib) is covered by the tile Ka.

Proof.

λ13 −λ12 +2λ10 −2λ9 +λ8 −λ7 +2λ6 −λ5 > 0 (16)

45



(minimum estimate 0.0001538496 with mesh size 52) and

λ12 −λ11 +λ10 −λ8 +2λ7 −λ6 > 0

(minimum estimate 0.0004045816 with mesh size 20) imply that

Kal is in wedge 1.

λ13 −λ12 +λ11 −λ10 +λ7 +λ6 −λ5 > 0

(minimum estimate 0.0003044013 with mesh size 27) along with Equation (16) imply

that

Kar is in wedge 2.

We now consider λ ∈ Ir . For these values of λ the tile Dc is to the left of the tile Ec.

Thus the hole we aim to cover is bordered by tiles Ge,Gc and Dc. For these values the

hole is completely covered by the tile Ib. We finish the cover of Area 2 by showing the

following.

Claim 2.47. For λ ∈Ir the hole H(Dc,Gc,Ge) is covered by the tile Ib.

Proof.

λ10 −λ9 +λ8 −λ6 +2λ5 −λ4 > 0 (17)

(minimum estimate 0.0015119755 with mesh size 38) and

1

2
(λ9 −λ8 +3λ7 −3λ6 +λ5 +λ3 −2λ+1) > 0

(minimum estimate 0.0008000951 with mesh size 70) imply that

Ibl is in wedge 1.

λ10 −λ9 +λ7 +λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0005827540 with mesh size 97) along with Equation (17) imply
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that

Ibr is in wedge 2.

This concludes the proof that the four holes contained in Area 2 are covered for all

λ ∈I . Therefore Area 2 is completely covered by tiles for all λ ∈I .

2.8 Area 3
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(b) Area 3

Figure 15: Area 3 Hole

We finish with the cover of Area 3. A subsection of this area which we call Area 3 zoom

will be covered in the next section. To cover the main part of Area 3 we need the addition

of 8 more tiles. We first consider the tiles

Ee = f10020(I1),

Ef = f01120(I1),and

Eg = f10021(I2).

By Remark 2.6 we see that πy Eel =πy Ef l =πy Eg l . By Remark 2.7 we also see that Ee and

Eg overlap for λ> 1
2 as this is true of f0(I1) and f1(I2).

To show that the tile Ee covers the left edge of the hole in Area 3 we must show that
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area3zoomd textplot 0.497, 0.1275,'Area3 zoom ' ;

PLOT ...
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Figure 16: Area 3 Covering

πy Eel is above the line with slope 2 passing through the point defined by Babs ∩Cbr s . We

must also show that πy Eet is above the top of the hole.

Claim 2.48. If λ ∈I , then Ee covers the left edge of the hole in Area 3.

Proof.

λ6 −λ5 +λ4 −λ2 +2λ−1 > 0

(minimum estimate 0.0056766960 with mesh size 24) implies

πy Eel is above Line 2.

λ6 −λ4 +2λ3 −λ2 > 0

(minimum estimate 0.0186954386 with mesh size 8) implies

πy Eet >πy Bal .
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We now examine the right portion of the hole in Area 3.

Claim 2.49. If λ ∈I , then there is no hole in Area 3 to the right of both Ef and Eg.

Proof.

λ5 −λ4 + 1

2
λ3 − 1

2
λ2 +λ− 1

2
> 0

(minimum estimate 0.0088659029 with mesh size 15) implies

πx (Ef r s ∩Babs) > 1

2
.

λ6 −λ5 + 3

2
λ3 − 1

2
λ2 −λ+ 1

2
> 0

(minimum estimate 0.0098295358 with mesh size 14) implies

πx (Egr s ∩Babs) > 1

2
.

We now differentiate between two cases for the relative position of tiles Ef and Eg.

Claim 2.50. For λ ∈I1 the tile Ef lies to the left of the tile Eg as pictured in Figure 16. The

hole H(Ba,Ee,Ef) is covered by the tile Hc.

Proof.

λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0008150606 with mesh size 10) implies

πx Eg l >πx Ef l .

λ9 −λ8 +2λ6 −λ5 +λ3 −2λ+1 > 0 (18)

(minimum estimate 0.0004208982 with mesh size 20) and

1

2
(λ9 −λ8 +λ7 −λ6 +λ5 −λ4 +3λ3 −λ2 −2λ+1) > 0
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(minimum estimate 0.0006841144 with mesh size 12) imply that

Hcl is in wedge 1.

λ8 −λ7 +λ6 −λ4 +2λ3 −λ2 > 0

(minimum estimate 0.0023535988 with mesh size 4) along with Equation (18) imply that

Hcr is in wedge 2.

Claim 2.51. For λ ∈ Ir the tile Eg lies to the left of the tile Ef . The hole H(Ba,Ee,Eg) is

covered by the tile Hc.

Proof.

−λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0004424410 with mesh size 127) implies

πx Ef l >πx Eg l .

λ9 −λ8 +λ6 +λ5 −λ4 > 0 (19)

(minimum estimate 0.0002172697 with mesh size 258) and

1

2
(λ9 −λ8 +λ7 −λ6 +λ5 −λ4 +3λ3 −λ2 −2λ+1) > 0

(minimum estimate 0.0006597469 with mesh size 85) imply that

Hcl is in wedge 1.

λ8 −λ7 +2λ5 −2λ4 +λ3 −λ2 +2λ−1 > 0

(minimum estimate 0.0040677810 with mesh size 14) along with Equation (19) imply
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that

Hcr is in wedge 2.

By examining the addresses of tiles

Ef = f01120(I1) and

Fe = f011201(I2) = f01120( f (I2))

we see that their left sides both lie along a common line because the same is true for the

left side of f1(I2) and the left side of I1. The same is true of tiles

Db = f1002(I0) and

Eg = f10021(I2) = f1002( f1(I2))

as the left side of f1(I2) also lies on the same line as the left side of I0. Thus by Claim 2.50

we see that Fe is to the left of Db for λ ∈ I1 and by Claim 2.51 Fe is to the right of Db for

λ ∈Ir . Thus we need to cover a different hole for each of the two intervals.

Claim 2.52. For λ ∈I1 the hole H(Cb,Ee,Fe) is covered by the tile Hd.

Proof.

λ9 −λ8 +λ7 −λ5 +2λ4 −λ3 > 0 (20)

(minimum estimate 0.0015154824 with mesh size 6) and

λ8 −λ7 +2λ6 −2λ5 +2λ4 −2λ3 +2λ−1 > 0

(minimum estimate 0.0024948060 with mesh size 4) imply that

Hdl is in wedge 1.

λ9 −λ8 +2λ6 −λ5 +λ3 −2λ+1 > 0
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(minimum estimate 0.0004208982 with mesh size 20) along with Equation (20) imply

that

Hdr is in wedge 2.

Claim 2.53. For λ ∈Ir the hole H(Cb,Db,Ee) is covered by the tile Hd.

Proof.

λ9 −λ8 +λ7 −λ6 +λ5 +λ4 −2λ3 +2λ−1 > 0 (21)

(minimum estimate 0.0027836850 with mesh size 21) and

λ8 −λ7 +2λ6 −2λ5 +2λ4 −2λ3 +2λ−1 > 0

(minimum estimate 0.0046355690 with mesh size 13) imply that

Hdl is in wedge 1.

λ9 −λ8 +λ6 +λ5 −λ4 > 0

(minimum estimate 0.0002172697 with mesh size 258) along with Equation (21) imply

that

Hdr is in wedge 2.

We now cover the hole in Area 3 below the tile Eg and to the right of the tile Db. We

cover the majority of this hole with the introduction of tiles He,Hf and Gi. This leaves

one last hole which we cover in the next section (Area 3 zoom). We now show that these

tiles cover all but the hole left for Area 3 zoom.

By Remark 2.7 we see that the tiles

Gi = f0112012(I0) and

He = f01120120(I1) = f0112012( f0(I1))

overlap each other. We also see their right sides lie along a common line since this is true
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of f0(I1) and I0.

Claim 2.54. If λ ∈I , then Gi covers the bottom of the hole bordered by Ef ,Db and the line

x = 1
2 .

Proof.

λ7 −λ6 +2λ5 −λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0024163854 with mesh size 55) implies

πy (Dbr s ∩ {x = 0.5}) >πy Gil .

To finish the cover in this area we focus on the tiles He and Hf . The position of these

two tiles switch with respect to each other as λ varies. In either position we show that

the hole bordered by Db,Eg and Gi is covered by He and Hf .

Claim 2.55. For λ ∈I1 the hole H(Db,Eg,Gi) is covered by He and Hf .

Proof.

λ8 −λ7 + 3

2
λ6 − 3

2
λ5 + 1

2
λ4 + 1

2
λ3 −λ+ 1

2
> 0

(minimum estimate 0.0000139420 with mesh size 574) implies

πx (Hf r s ∩Egbs) > 1

2
.

λ9 −λ8 +2λ6 −λ5 +λ3 −2λ+1 > 0

(minimum estimate 0.0004208982 with mesh size 20) implies

πy Hel is above the Line 2.

λ9 −λ7 +λ6 +λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0040274060 with mesh size 2) implies

πy (Her s ∩Hf l s) >πy Ef l .
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Claim 2.56. For λ ∈Ir the hole H(Db,Eg,Gi) is covered by He and Hf .

Proof.

λ8 −λ7 + 1

2
λ6 + 1

2
λ5 − 1

2
λ4 − 1

2
λ3 +λ− 1

2
> 0

(minimum estimate 0.0000053457 with mesh size 10476) implies

πx (Her s ∩Egbs) > 1

2
.

λ9 −λ8 +λ6 +λ5 −λ4 > 0

(minimum estimate 0.0002172697 with mesh size 258) implies

πy Hf l is above the Line 2.

1

2
(λ9 −λ7 +3λ6 −3λ5 +λ4 +λ3 −2λ+1) > 0

(minimum estimate 0.0021591542 with mesh size 26) implies

πy (Hf r s ∩Hel s) >πy Ef l .

2.9 Area 3 zoom

We now focus on the last remaining hole which is contained in Area 3 zoom. It is enclosed

by three tiles with He on the top, Db on the left, and Gi on the right. In this section parts

of the cover include tiles of rank up to 17. Some of the tiles are so small that the relative

position of them with respect to other tiles changes dramatically as λ varies. Thus we

break down the interval I into even finer subintervals than in the previous sections and

consider the cover for Area 3 zoom on each of these subintervals.

2.9.1 Covering for λ ∈I1

We first consider λ ∈I1 and show that the tiles in Area 3 zoom excluding Ma,Mb and Oa

are in the relative positions shown in Figure 18.
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(a) Main Picture
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(b) Area 3 zoom

Figure 17: Area 3 zoom Hole

By Remark 2.6 the bottom edges of the tiles

Ka = f10021020120(I1),

Kb = f01120120121(I2),and

Kc = f10021020121(I2)

all lie along the same horizontal line. By Remark 2.7 we see that

Jd = f0112012012(I0) and

Kb = f01120120121(I2) = f0112012012( f1(I2))

also overlap. Since the left side of f0(I1) lies on the same line as the left side of I0 we see

that the left sides of Kb and Jd also lie on a common line. The same is true of the right

sides of tiles

Je = f1002102012(I0) and

Ka = f10021020120(I1) = f1002102012( f0(I1))
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since it is true of f0(I1) and I0.

f2 f1 f1 f3 f2 f1 f3 f1 B1 , f1 f2 f2 f3 f1 f2 f3 f2 B3 ,
COLOUR RGB, 1, 0, 1 , POLYGONS f1 f2 f2 f3 f1 f2 f3 B2 ,
COLOUR RGB, .6, .2, 0 , POLYGONS f2 f1 f1 f3 B2 , COLOUR RGB, 0, .3, .3 ,
VIEW 0.494 ..0.5, 0.127 ..0.133 , STYLE PATCHNOGRID , TRANSPARENCY .25 :

 
hed textplot 0.497, 0.1325,'He ' :
gid textplot 0.4995, 0.1295,'Gi ' :
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jdd textplot 0.4965, 0.1295,'Jd ' :
jed textplot 0.4977, 0.1295,'Je ' :
kad textplot 0.4967, 0.1315,'Ka ' :
kbd textplot 0.49745, 0.1315,'Kb ' :
kcd textplot 0.4984, 0.1315,'Kc ' :
mad textplot 0.49695, 0.1301,'Ma ' :
mbd textplot 0.49723, 0.1301,'Mb ' :
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Figure 18: Area 3 zoom Covering, λ= .6439 ∈I1

Claim 2.57. If λ ∈I1, then Ka is to the left of Kb which is to the left of Kc.

Proof.

λ12 −2λ11 +λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0005899280 with mesh size 14) implies

πx Kbl >πx Kal .

λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0008150606 with mesh size 10) implies

πx Kcl >πx Kbl .

Claim 2.58. For λ ∈I1 the top edge of the hole H(Db,Gi,He) is covered by Ka,Kb and Kc.
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Proof.

2λ11 −2λ10 +2λ9 −λ8 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0006047157 with mesh size 14) implies

πy (Kar s ∩Kbl s) >πy Hel .

λ12 −λ10 +2λ9 −λ8 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0003688030 with mesh size 22) implies

πy (Kbr s ∩Kcl s) >πy Hel .

λ12 −λ11 +2λ9 −2λ8 +λ7 −λ6 +2λ5 −λ4 > 0

(minimum estimate 0.0002389339 with mesh size 34) implies

πy Kal is above Line 2.

λ12 −λ11 +λ9 +λ8 −λ7 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0007097347 with mesh size 12) implies

πy Kcr is above Line 1.

λ12 −λ11 +λ10 −2λ9 +λ8 > 0

(minimum estimate 0.0009349909 with mesh size 9) implies

πy Hel >πy Kal .

We next show that two tiles Jd and Je cover the bottom vertex of the hole leaving just

the space between them to be covered.

Claim 2.59. If λ ∈I1, then Jd and Je cover the bottom vertex of the hole H(Db,Kb,Gi).
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Proof.

λ12 −λ8 +λ7 +λ3 −2λ+1 > 0

(minimum estimate 0.0004810968 with mesh size 17) implies

πx (Dbr s ∩Kbbs) >πx Kbl .

λ12 −λ9 +2λ8 −λ7 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000880828 with mesh size 91) implies

πx Kar >πx (Gil s ∩Kabs).

λ10 −λ9 +λ8 +λ3 −2λ+1 > 0

(minimum estimate 0.0018466510 with mesh size 5) implies

πy (Dbr s ∩Gil s) >πy Jdl .

We now show that for λ ∈I1 the tiles Ma and Mb cover the remaining hole.

Claim 2.60. For λ ∈I1 the hole H(Jd,Je,Kb) is covered by Ma and Mb.

Proof.

λ15 −λ14 +λ13 −λ12 +2λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0 (22)

(minimum estimate 0.0000035520 with mesh size 2253) and

λ14 −λ13 +2λ12 −λ11 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0001420280 with mesh size 57) imply that

Mal is in Wedge 1.

λ14 −λ13 +2λ12 −λ11 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0
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(minimum estimate 0.0001420280 with mesh size 57) along with Equation (22) imply

that

Mbr is in Wedge 2.

2λ15 −2λ14 +λ12 +λ11 −λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000341254 with mesh size 235) implies

πy (Mar s ∩Mbl s) >πy Kal .

We have now completed the cover of the left half of I0 for λ ∈I1.

2.9.2 Common features in covering for λ ∈Ir
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POLYGONS f2 f1 f1 f3 B2 , COLOUR RGB, 0, .3, .3 , VIEW 0.494 ..0.5, 0.127
..0.133 , STYLE PATCHNOGRID , TRANSPARENCY .25 :
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Figure 19: Area 3 zoom Covering, λ= .6458 ∈I2a

To cover Area 3 zoom for λ ∈Ir we start by showing the relative positions of the tiles

Ka,Kb,Kc and Kd is as pictured in Figure 19.

Claim 2.61. For λ ∈Ir the tiles of rank 11 appear from left to right in the order Ka,Kd,Kc,

and Kb as in Figure 19.
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Proof.

−λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0004424410 with mesh size 127) implies

πx Kdl >πx Kal .

λ12 −2λ11 +λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0001340605 with mesh size 418) implies

πx Kcl >πx Kdl .

−λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0004424410 with mesh size 127) implies

πx Kbl >πx Kcl .

Claim 2.62. For λ ∈ Ir the top edge of the hole H(Db,Gj,He) is covered by Ka,Kb,Kc and

Kd.

Proof.

λ12 −λ10 +2λ9 −λ8 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000985634 with mesh size 569) implies

πy (Kar s ∩Kdl s) >πy Hel .

2λ11 −2λ10 +2λ9 −λ8 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0003261560 with mesh size 172) implies

πy (Kdr s ∩Kcl s) >πy Hel .
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λ12 −λ10 +2λ9 −λ8 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000985634 with mesh size 569) implies

πy (Kcr s ∩Kbl s) >πy Hel .

λ12 −λ11 +2λ9 −2λ8 +λ7 −λ6 +2λ5 −λ4 > 0

(minimum estimate 0.0007075379 with mesh size 80) implies

πy Kal is above Line 2.

λ12 −λ11 +λ9 +λ8 −λ7 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0005009600 with mesh size 112) implies

πy Kbr is above Line 1.

λ12 −λ11 +λ10 −2λ9 +λ8 > 0

(minimum estimate 0.0008873708 with mesh size 64) implies

πy Hel >πy Kal .

Claim 2.63. If λ ∈Ir , then Je covers the left edge of the hole H(Db,Gj,Kc).

Proof.

λ12 −λ8 +λ7 −λ6 +2λ5 −λ4 > 0

(minimum estimate 0.0000339551 with mesh size 1650) implies

πx (Dbr s ∩Kcbs) >πx Kcl .

λ10 −λ9 +λ8 −λ6 +2λ5 −λ4 > 0

61



(minimum estimate 0.0015119755 with mesh size 38) implies

πy (Dbr s ∩Gjl s) >πy Jel .

2.9.3 Covering for λ ∈I2

For λ in this range we split the interval I2 into three subintervals. Let

I2a : = [.6458, .64605],

I2b : = [.64605, .64625], and

I2c : = [.64625, .6466].

Thus I2 =I2a ∪I2b ∪I2c .

For λ ∈ I2b the bottom vertex of the hole is covered by the tiles Jd and Je. We first

show that the right edge of the hole in Area 3 zoom is covered by Jd for λ ∈Ir \I2a .

Claim 2.64. If λ ∈Ir \I2a , then Jd covers the right edge of the hole H(Db,Gj,Kd).

Proof.

λ12 −λ9 +2λ8 −λ7 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0000283630 with mesh size 1622) implies

πx Kdr >πx (Gjl s ∩Kdbs).

Then the claim follows by Claim 2.63.

Claim 2.65. If λ ∈I2b , then Je and Jd cover the hole H(Db,Gj,Kc).

Proof.

λ12 +λ11 −λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000380663 with mesh size 211) implies

πy (Jer s ∩ Jdl s) >πy Kcl .
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Then the claim follows by Claim 2.63 and Claim 2.64.

Therefore we have shown Area 3 zoom is covered by tiles for all λ ∈ I2b . Next we

show Area 3 zoom is covered for all λ ∈I2a by including the additional tile Mb.

Claim 2.66. If λ ∈I2a , then Mb covers the hole H(Gj,Jd,Kb).

Proof.

λ15 −λ14 +λ13 −λ12 +λ11 −λ9 +2λ8 −λ7 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0 (23)

(minimum estimate 0.0000723120 with mesh size 139) and

λ15 −λ14 +λ12 +λ11 −λ10 > 0

(minimum estimate 0.0000157611 with mesh size 635) along with Claim 2.63 imply that

Mbl is in wedge 1.

λ14 −λ13 +2λ12 −2λ11 +λ10 −λ9 +2λ8 −λ7 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0002066510 with mesh size 49) along with Equation (23) imply

that

Mbr is in wedge 2.

Therefore we have shown Area 3 zoom is covered by tiles for all λ ∈ I2a . Next we

show Area 3 zoom is covered for all λ ∈I2c . By Claims 2.63 and 2.64 for λ ∈I2c we must

cover the hole bordered by Je, Jd and Kc. We do this with the addition of the two tiles Mc

and Md.

Claim 2.67. If λ ∈I2c , then Mc and Md cover the hole H(Jd,Je,Kc).

Proof.

−λ15 +2λ14 −λ13 +λ12 −2λ11 +λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0
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f2 f1 f1 f3 f2 f1 f3 f1 B1 , f1 f2 f2 f3 f1 f2 f3 f2 B3 ,
COLOUR RGB, 1, 0, 1 , POLYGONS f1 f2 f2 f3 f1 f2 f3 B2 ,
f2 f1 f1 f3 f2 f1 f3 B2 , COLOUR RGB, .6, .2, 0 ,
POLYGONS f2 f1 f1 f3 B2 , COLOUR RGB, 0, .3, .3 , VIEW 0.494 ..0.5, 0.127
..0.133 , STYLE PATCHNOGRID , TRANSPARENCY .25 :

 
hed textplot 0.4945, 0.1325,'He ' :
gjd textplot 0.4995, 0.1295,'Gj ' :
dbd textplot 0.495, 0.1295,'Db ' :
jed textplot 0.496, 0.1295,'Je ' :
jdd textplot 0.49817, 0.1295,'Jd ' :
kad textplot 0.49585, 0.1325,'Ka ' :
kbd textplot 0.49828, 0.1325,'Kb ' :
kcd textplot 0.49745, 0.1325,'Kc ' :
kdd textplot 0.49665, 0.1325,'Kd ' :
mcd textplot 0.49687, 0.1312,'Mc ' :
mdd textplot 0.49724, 0.1312,'Md ' :
nad textplot 0.4971, 0.1294,'Na ' :
display P, he, gj, db, jd, je, ka, kb, kc, kd, mc, md ;
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Figure 20: Area 3 zoom Covering, λ= .6463 ∈I2c

(minimum estimate 0.0001332740 with mesh size 106) implies

πx Mdl >πx Mcl .

λ15 −λ14 +λ13 −λ12 +2λ11 −λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0 (24)

(minimum estimate 0.0000380156 with mesh size 396) and

λ14 −λ13 +2λ12 −λ11 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0001705389 with mesh size 83) imply that

Mcl is in wedge 1.

λ14 −λ13 +2λ12 −λ11 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0001705389 with mesh size 83) along with Equation (24) imply
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that

Mdr is in wedge 2.

2λ15 −2λ14 +λ12 +λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0000175130 with mesh size 800) implies

πy (Mcr s ∩Mdl s) >πy Kcl .

Therefore we have shown that the left half of I0 is covered by tiles for all λ ∈I2.

2.9.4 Covering for λ ∈I3
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Figure 21: Area 3 zoom covering, λ= .6472 ∈I3

By Claims 2.63 and 2.64 to show that Area 3 zoom is covered by tiles for λ ∈ I3 we

must cover the hole H(Jd,Je,Kc). We again cover a portion of this hole with tiles Mc and

Md although the position of the two tiles have been interchanged. This is shown by the

claim below.
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Claim 2.68. If λ ∈I3, then Md is to the left of Mc.

Proof.

λ15 −2λ14 +λ13 −λ12 +2λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0001563810 with mesh size 52) implies

πx Mcl >πx Mdl .

Claim 2.69. If λ ∈I3, then Mc and Md cover the top edge of the hole H(Jd,Je,Kc).

Proof.

λ15 −λ14 +λ12 +λ11 −λ10 > 0

(minimum estimate 0.0000380156 with mesh size 166) implies

πy Mdl is above line 2.

λ15 −λ14 +λ12 +λ11 −λ10 > 0

(minimum estimate 0.0000380156 with mesh size 166) implies

πy Mcr is above line 1.

λ15 −λ14 +λ13 −2λ12 +λ11 > 0

(minimum estimate 0.0002405585 with mesh size 34) implies

πy Kcl >πy Mdl .

1

2
(2λ14 −2λ13 +3λ12 −3λ11 +λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1) > 0

(minimum estimate 0.0000622188 with mesh size 129) implies

πy (Mdr s ∩Mcl s) >πy Kcl .
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To show that the hole H(Jd,Je,Md) is covered, we need to write I3 = I3a ∪I3b ∪I3c

where

I3a : = [.647, .64707],

I3b : = [.64707, .64718], and

I3c : = [.64718, .6472].

Claims 2.70 and 2.71 below show that for λ ∈ I2b the two tiles La and Lb cover this last

remaining hole.

Claim 2.70. Ifλ ∈I3a∪I3b , then La and Lb cover the bottom vertex of the hole H(Jd,Je,Md).

Proof.

λ13 −λ12 +2λ11 −λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0 (25)

(minimum estimate 0.0004332883 with mesh size 17) and

λ15 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000072718 with mesh size 991) imply that

Lal is in Wedge 1.

λ15 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000072718 with mesh size 991) along with Equation (25) imply

that

Lbr is in Wedge 2.

Claim 2.71. If λ ∈I3b , then La and Lb cover the hole H(Jd,Je,Md).

Proof. This follows from Claim 2.70 and the fact that

λ15 +λ14 −λ13 −λ12 +2λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0
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(minimum estimate 0.0000020560 with mesh size 2530) implies

πy (Lar s ∩Lbl s) >πy Mcl .

Therefore we have shown Area 3 zoom is covered by tiles for all λ ∈ I3b . To show it

is covered by tiles for λ ∈ I3a we need the addition of the tile Na. This covers the hole

bordered by the tiles La,Lb and Mc.

Claim 2.72. If λ ∈I3a , then Na covers the hole H(La,Lb,Mc).

Proof.

λ18 −λ17 +λ16 −λ15 +2λ14 −λ13 −λ12 +2λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0 (26)

(minimum estimate 0.0000163050 with mesh size 172) and

λ18 −λ17 +λ15 +λ14 −λ13 > 0

(minimum estimate 0.0000130608 with mesh size 215) imply that

Nal is in Wedge 1.

λ17 −λ16 +2λ15 −λ14 −λ12 +2λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0000519470 with mesh size 54) along with Equation (26) imply

that

Nar is in Wedge 2.

Therefore by Claim 2.70 and Claim 2.72, Area 3 zoom is covered by tiles for allλ ∈I3a .

For λ ∈ I3c the left side of tile Gj is to the left of the left side of tile Jd. Therefore on this

interval the hole we aim to cover is bounded by Je,Gj and Mc.

Claim 2.73. For λ ∈I3c the left side of Gj is to the left of the left side of Jd.
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Proof.

−λ11 + 1

2
λ10 − 1

2
λ9 +2λ8 −λ7 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0035981160 with mesh size 1) implies

πx Jdl >πx Gjl .

To cover this hole we include the tile Nb. This combined with La and Lb covers the

hole bounded by Je,Gj and Mc.

Claim 2.74. For λ ∈I3c the right edge of the hole H(Gj,Je,Mc) is covered by La and Lb.

Proof.

λ13 −λ12 +λ11 −λ9 +2λ8 −λ7 > 0

(minimum estimate 0.0005178308 with mesh size 2) and

λ15 −λ11 +λ10 −λ9 +2λ8 −λ7 > 0

(minimum estimate 0.0000918143 with mesh size 9) imply that

Lbr is in Wedge 1.

λ15 +λ14 −λ13 −λ12 +2λ11 −λ10 −λ6 +2λ5 −λ4 −λ3 +2λ−1 > 0

(minimum estimate 0.0000822900 with mesh size 10) implies

πy (Lar s ∩Lbl s) >πy Mcl .

To show that Area 3 zoom is covered by tiles for allλ ∈I3c we cover the hole H(Je,La,Mc)

with the tile Nb.

Claim 2.75. If λ ∈I3c , then Nb covers the hole H(Je,La,Mc).

Proof.

λ18 −λ17 +λ16 −λ15 +λ14 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0 (27)
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(minimum estimate 0.0000585182 with mesh size 14) and

λ18 −λ17 +2λ15 −2λ14 +λ13 −λ12 +2λ11 −λ10 > 0

(minimum estimate 0.0000775613 with mesh size 11) imply that

Nbl is in Wedge 1.

λ17 −λ16 +λ15 +λ14 −λ13 +λ12 −2λ11 +λ10 +λ6 −2λ5 +λ4 +λ3 −2λ+1 > 0

(minimum estimate 0.0000306896 with mesh size 27) along with Equation (27) imply

that

Nbr is in Wedge 2.

Therefore Area 3 zoom is covered by tiles for all λ ∈I3c . Thus the left half of the pri-

mary overlap I0 is covered by tiles for all λ ∈I1∪I2∪I3. This completes the proof of the

Main Theorem.

3 Open questions

The study of “fat” Sierpinski triangles in this thesis has lead us to consider a few open

questions we hope to answer in the future. The method we used to proveΛλ has nonempty

interior involved the creation of a set N which satisfies Criterion 1.17. Since any set N

satisfying this criterion is a subset of the attractor we chose to show Λλ is generalized

radial for λ ∈I1∪I2∪I3. We have also shown a lower bound for the parameter λ, given

by λ∗, for which the attractor can be generalized radial. However, this does not imply

the attractor has empty interior below this lower bound for the generalized radial case. A

natural continuation of our work is to determine if Λλ has empty interior below this pa-

rameter. In particular, can another set N with nonempty interior be defined that satisfies

Criterion 1.17 for λ<λ∗?

Another question arising from the proof of our Main Theorem involves the attractor
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for parameter values in the interval between I1 and I2. In Conjecture 1.15 we state our

belief that the attractor is not generalized radial for any λ ∈ (.64415, .64578). Can this

conjecture be shown to be true? If so, can it still be shown the attractor has nonempty

interior for λ in this interval?

There is one question which would simplify the proof of our Main Theorem greatly

if the answer to it is positive. This question asks if the property of nonempty interior

is "monotone" as λ increases. That is, given Λ
λ̊

has nonempty interior does Λλ have

nonempty interior for all λ ≥ λ̊? If the answer to this question is positive then finding

a single set N satisfying Criterion 1.17 for a given value of λ would imply the attractor

has nonempty interior for all λ greater than or equal to that value. Thus checking our

cover at the left endpoint of I1 would be sufficient to prove our Main Theorem as well

as answer the second open question. On the other hand if it can be shownΛλ has empty

interior for any value of λ between the intervals I1 and I2 then it would be shown the

property of nonempty interior is not monotone.

We have shown that finding a set N with nonempty interior satisfying Criterion 1.17

is sufficient to show that the attractor of an iterated function system has nonempty in-

terior. We would like to know if this property of the attractor is also necessary for the at-

tractor to have nonempty interior. That is, if an attractor has nonempty interior is there

a subset of the attractor with nonempty interior that maps onto itself under the iterated

function system?

A somewhat less related question asks if there are examples of self-similar sets with

positive measure but empty interior in R. However, what we have accomplished in this

thesis could easily be applied to iterated function systems in higher dimensions. For

example our proof could be generalized to apply to a “fat” Sierpinski pyramid.

We have also examined the feasibility of extending our ideas to other iterated func-

tion systems in the plane. One iterated function system we have considered is the “fat”

Sierpinski carpet.

The standard contraction rate for the Sierpinski carpet is 1
3 . As we increase the con-

traction rate for this iterated function system from 1
3 , the corresponding attractor again

becomes “fat”. For contraction rates between .48 and 1
2 we noticed that the attractor ap-
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Figure 22: Standard Sierpinski Carpet

pears to have holes in a pattern analogous to that of the radial case for the “fat” Sierpinski

triangle.

Figure 23: “Fat” Sierpinski Carpet

The “fat” Sierpinski carpet is the resulting attractor of an iterated function system

with 8 maps. Unlike the “fat” Sierpinski triangle the individual components of the Sier-

pinski carpet do not pairwise overlap. Thus it is not clear what subset of the plane should

be chosen to construct a covering set N as we have done with the “fat” Sierpinski triangle.

In the future we would like to continue this work and generalize our methods to easily

distinguish between empty and nonempty interior for the attractor associated to any

iterated function system.
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4 Labels

Label Subset
Aa f0(I1)
Ab f0(I0)
Ba f10(I2)
Bb f01(I0)
Ca f100(I2)
Cb f011(I2)
Cc f100(I0)
Da f1000(I2)
Db f1002(I0)
Dc f1000(I1)
Dd f0110(I1)
Ea f10000(I2)
Eb f01010(I1)
Ec f01102(I0)
Ed f01101(I2)
Ee f10020(I1)
Ef f01120(I1)
Eg f10021(I2)
Fa f010121(I2)
Fb f100021(I2)
Fc f011020(I1)
Fd f011021(I2)
Fe f011201(I2)
Ga f1000020(I1)
Gb f1000202(I0)
Gc f1000212(I0)
Gd f0110212(I0)
Ge f1000210(I1)
Gf f1000120(I1)

Label Subset
Gg f1000121(I2)
Gi f0112012(I0)
Gj f1002102(I0)
Ha f10000021(I2)
Hb f01101202(I0)
Hc f01120210(I1)
Hd f10020121(I2)
He f01120120(I1)
Hf f10021020(I1)
Ia f011020120(I1)
Ib f011020121(I2)
Ja f0110212012(I0)
Jb f0110212102(I0)
Jc f0110121021(I2)
Jd f0112012012(I0)
Je f1002102012(I0)
Ka f10021020120(I1)
Kb f01120120121(I2)
Kc f10021020121(I2)
Kd f01120120120(I1)
La f0112012012012(I0)
Lb f0112102012102(I0)
Ma f10021020120121(I2)
Mb f01120120121020(I1)
Mc f01120120120121(I2)
Md f10021020121020(I1)
Na f01120120120121020(I1)
Nb f10021020121020120(I1)
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