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Abstract

Many digital image applications rely on the image quality. Unfortunately, images often are

degraded by noise and blur during the formation, transmission, and recording processes.

Hence, image restoration is a necessary processing step. Many current image restoration

methods lose edge information while removing the defects. This work focuses on developing

accurate mathematical models and efficient numerical algorithms for edge-preserving image

restoration problems. We first present a new regularization parameter-choice algorithm

broadly applicable to several image restoration approaches, which is suitable for large-scale

problems. Next, we consider three different types of image restoration scenarios, and present

algorithms for each. The first problem we consider is image denoising. In particular, we

explore the application of multigrid methods in solving the nonlinear anisotropic diffusion

denoising problem. Secondly, we introduce a projection-based algorithm to solve image

deblurring problem. For some applications, it is necessary to solve a least squares problem

with nonnegative constraints. Therefore, we also present a novel multiplicative nonnegative

least squares algorithm for image super-resolution and color image labeling. The conver-

gence analysis of each algorithm is studied. Finally, we demonstrate the applications of the

algorithms with many numerical experiments.
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Chapter 1

Introduction

Digital images play a more and more important role in human life. Even though there

exist vast differences among digital imaging devices, they all share the same underlying

physical processes – sampling and quantizing the image from a continuous world. Limited

by physical constraints, the obtained digital images are often degraded by defects [25,

106]. Developing efficient numerical image restoration methods has been a challenge for

researchers in different areas. This dissertation focuses on developing accurate mathematical

models and efficient numerical algorithms for different image restoration problems.

1.1 Image Restoration

The goal of image restoration is to remove defects which degrade image quality. Typically,

the degradation can be identified as noise and blur [7, 25, 40, 49, 95]. The process of remov-

ing noise is named “denoising”, and “deblurring” refers to the process of removing blur. The

difficulty of image restoration comes from the ill-posedness of the underlying mathematical

models and tremendous computational work involved in the restoration algorithms [58]. In

this section, we briefly review the mathematical models that are commonly used in the

literature.

1.1.1 Image Denoising

Image denoising is one of the oldest concerns and is still considered a necessary preprocessing

step for many applications [7, 25, 71, 95, 112, 113]. Before discussing any existing image

denosing technique, we first define the digital image formation model in spatial domain Ω

1
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as

X̃(s, y) = X(s, y) + E(s, y) for (s, y) ∈ Ω, (1.1)

where X̃(s, y) is the observed noisy (gray scale) intensity value at spatial position (s, y),

X(s, y) represents the “true” value, E(s, y) stands for the noise perturbation at pixel (s, y),

which is often assumed to be independent and identically distributed (iid). Many researchers

assume that E is white Gaussian noise [25], which is also our assumption in this work. In

practice, the images are stored as matrices. We abuse notation slightly and reuse X̃, X,

and E to denote matrices as well. For example, the (i, j) entry in the matrix X refers to

the continuous X sampled at the position (si, yj). Thus,

X̃i,j = Xi,j + Ei,j .

Figures 1.1a and 1.1b compare the noise-free cameraman image, X, and corresponding noisy

image, X̃.

Remark: In this work, most of the images used in experiments are 2-dimensional. In the

computation, we transform the 2-D m×m image into a vector by stacking each column in

the image, i.e.

x̃ = vec(X̃) = [X̃1,1, X̃2,1, · · · , X̃n,1, X̃1,2 · · · X̃n,2 · · · X̃m,m]T ,

where the exponent T means vector transformation. Then in vectorized form, if X is m×m,

x̃ = vec(X̃) = vec(X) + vec(E) = x+ η ∈ Rn,

with n = m2. In the numerical experiments, the noise level is defined as

noise level =
||η||2
||x||2

.

The methods used to solve the image denoising problem fall into two categories: energy

methods [7, 8, 47] and partial differential equation (PDE)-based methods [7, 28]. In this

work, we focus on the PDE-based denoising methods. Perhaps the simplest and best studied

PDE-based method is the linear diffusion process. Consider the heat equation [7]:

∂X

∂t
(t; s, y) = ∆X(t; s, y) in (0, T )× Ω, (1.2)

with the original noisy image X̃(s, y) as the initial condition. In the above equation, ∆

denotes the Laplace operator on the spatial variables s and y. The solution X(t; s, y) is

the restored version of the initial noisy image X̃(s, y). Recall (1.2) has a unique solution,
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X(t; s, y), which is a convolution of the initial noisy image X̃(s, y) with a Gaussian kernel,

G ∗ X̃ where G(t; s, y) = 1
4πt exp

(
− s2+y2

4t

)
. The drawback of this simple model is that it

loses edges or textures in the restored image because of the low-pass convolution filter, see

Figure 1.1c.

Remark: Throughout this work, we use Matlab command

colormap(‘Hot’);

to show the grayscale image. Hence the image color varies smoothly from black through

shades of red, orange, and yellow, to white, as the intensity value is increasing.

In order to overcome the oversmoothing by the use of Gaussian filters, an anisotropic

filter was introduced to the image denoising community by Perona and Malik in [90, 91].

The new anisotropic filter convolves the image only in the smooth area, i.e. the area where

the norm of the gradient is small. The nonlinear PDE used to describe the process in the

continuous setting is

∂X

∂t
(t; s, y) = div(c(|∇X|2)∇X)(t; s, y) in (0, T )× Ω, (1.3)

with noisy image X̃(s, y) as the initial condition and Neumann boundary conditions. In the

above equation, ∇ denotes the gradient operator. The diffusivity function, c(r2), controls

the diffusion direction. In [90], Perona and Malik propose the diffusivity function

c(r2) =
1

1 + r2/Γ
, Γ > 0, (1.4)

where threshold Γ is determined by the noise level in X̃(s, y). It is clear that c(|∇X|2) is a

decreasing function of the norm of gradient |∇X|, and that

c(r2) ≈

{
1 if r � 1

0 if r � 1
.

Therefore, (1.3) restricts the diffusion to within the smooth areas (i.e. the areas where the

norm of gradient is relatively small), and limits the amount of cross-edge diffusion in the

restored image. The restored image contains sharper edges than that computed by linear

Gaussian filter, see Figure 1.1d. While the Perona-Malik (PM) model performs well in

practice, it is mathematically ill-posed. This is the so-called Perona-Malik paradox [68].

In Chapter 3, we solve a regularized anisotropic diffusion equation with efficient numerical

methods.
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1.1.2 Image Deblurring

Image deblurring is a more complicated problem in which seriously attenuated features need

to be restored, usually in the presence of small amounts of noise. The continuous image

deblurring problem can be modeled by a Fredholm integral equation of first kind [40, 95],∫∫
K(s, y; ν, τ)X(ν, τ)dνdτ = B(s, y) in Ω, (1.5)

where the kernel function K and right-hand side B are known, and X is the unknown

function. This equation establishes a linear relationship between X and B determined by

K. K is called the point spread function (PSF) of the imaging system (see the Gaussian

PSF example in Figure 1.2).

An important special case of (1.5) is when the kernel is spatially invariant, K(s, y; ν, τ) =

K(s− ν, y − τ) [40, 54]. Further, the images are often degraded by noise, E . This model is

given by ∫∫
K(s− ν, y − τ)X(ν, τ)dνdτ ≈ B̃(s, y) = B(s, y) + E(s, y) in Ω, (1.6)

where B(s, y) now denotes the true blurred image without any noise.

The discretized version of (1.6) can be written in matrix-vector form as

Ax ≈ b̃ = b+ η, (1.7)

where square matrix A ∈ Rn×n, (n = m2 for an m ×m image), is determined by the PSF

and corresponding boundary conditions, b̃ = vec(X̃) ∈ Rn is the observed blurred and noisy

image, x = vec(X) ∈ Rn represents the unknown true image, η = vec(E) ∈ Rn denotes the

unknown iid noise.

Given a 256 × 256 image which is relatively small compared to the images taken by

digital cameras nowadays, the size of A is 65, 536 × 65, 536 which is large. Depending on

the PSF, the blurring matrix A is typically ill-conditioned [54, 58]. Therefore, solving (1.7)

in the present of noise is not useful, as we discuss below. We note that in the case A is not

full rank, one may replace (1.7) by computing x as

argmin
x
||Ax− b̃||22. (1.8)

However, in the presence of noise, this solution will also be worthless. The argument for

the rank deficient case is nearly identical to the full rank discussion following in 1.1.2.1.
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1.1.2.1 Singular Value Decompsition

Assume A ∈ Rn×n has full rank, which is satisfied by the numerical experiments in this

work, the singular value decomposition (SVD) of matrix A is formulated as

A = USV T =
n∑
i=1

siuiv
T
i ,

with unitary matrices U = [u1, u2, · · · , un] ∈ Rn×n and V = [v1, v2, · · · , vn] ∈ Rn×n, diago-

nal matrix S = diag[s1, s2, · · · , sn], where the si are real-valued with s1 ≥ s2 ≥ · · · ≥ sn > 0.

In this case, there exists a unique analytical solution of (1.8):

x =
n∑
i=1

uTi b̃

si
vi =

n∑
i=1

uTi b

si
vi︸ ︷︷ ︸

inverted signal

+
n∑
i=1

uTi η

si
vi︸ ︷︷ ︸

inverted noise

. (1.9)

Unfortunately, the above “naive” SVD solution (1.9) is deteriorated by presence of the

inverted noise components, see the “naive” restored image in Figure 1.4b. Here are the

underlying reasons [58].

• |uTi η| is small but nearly constant for white Gaussian noise, while both spectral coef-

ficients, |uTi b|, and singular values, si, decrease as i increases, see Figure 1.3a;

• |uTi b| � |uTi η| for small i,
∣∣∣uT

i b̃
si

∣∣∣ ≈ ∣∣∣uT
i b
si

∣∣∣;
• |uTi b| � |uTi η| for large i,

∣∣∣uT
i b̃
si

∣∣∣ ≈ ∣∣∣uT
i η
si

∣∣∣;
• singular vectors, vi, corresponding to large si represent low frequency information,

while vi corresponding to small si represent high-frequency information [58].

Therefore, (1.9) can be rewritten as

x =
k∑
i=1

uTi b̃

si
vi +

n∑
i=k+1

uTi b̃

si
vi

≈
k∑
i=1

uTi b

si
vi +

n∑
i=k+1

uTi η

si
vi, (1.10)

where k is chosen such that |uTk b| ≈ |uTk η|. The “naive” SVD solution (1.9) is mainly deteri-

orated by
∑n

i=k+1
uT

i η
si
vi living in the high-frequency space S⊥k = span{vk+1, vk+2, · · · , vn}.

This SVD analysis motivates the use of projection space regularization methods. The idea

is to keep the solution in the low-frequency space Sk = span{v1, v2, · · · , vk} and damp the

solution in the high-frequency space S⊥k .
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1.1.2.2 Projection Space Regularization

Motivated by the above SVD analysis, projection space regularization methods can be

achieved by introducing a spectral filter factor, φi, in (1.9). The general form of the filtered

solution is given by

x =
n∑
i=1

φi
uTi b̃

si
vi. (1.11)

Some classical examples of regularization methods whose solutions can be written in this

form include:

• Truncated SVD (TSVD) [51]:

φi ≡

{
1, i = 1, 2, · · · , k
0, i = k + 1, k + 2, · · · , n

with k as the regularization parameter. This method simply throws away the infor-

mation in the high-frequency space S⊥k , see the restored image in Figure 1.4c and

Equation (1.10).

• Tikhonov regularization [54, 58]:

φi ≡
s2
i

s2
i + λ

, λ ∈ [sn, s1].

with λ as the regularization parameter. Employing this spectral filter is equivalent to

solving the minimization problem

argmin
x
||Ax− b̃||22 + λ||x||22. (1.12)

The regularization parameter, λ, controls the tradeoff between two terms in (1.10)

and (1.12) and determines the desired smoothness of the solution. It is clear that

φi ≈

{
1, if si � λ

0, if si � λ

Therefore, Tikhonov regularization has an effect similar to TSVD (see the restored

image Figure 1.4d).

From Figure 1.4c and 1.4d, we observe both TSVD and Tikhonov regularization reduce

the blur. The main drawback of these simple projection space methods is that they only use

the low-dimensional smoothing subspace Sk to approximate the solution, which tends to

inhibit the reconstruction of the sharp edges. This is because edges contain high-frequency
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spectral components, whereas both the TSVD and Tikhonov subspaces Sk only contain the

low-frequency modes. If one simply increases the dimension, k, of Sk or decreases λ in

Tikhonov regularization (1.12) to include higher frequency components, then the solutions

will be deteriorated by the inverted noise term.

1.2 Efficient Numerical Algorithms

While an accurate mathematical model is the foundation of image restoration, developing

an efficient numerical method is a critical step in practice. In this section, we briefly go

over two numerical algorithms used in this work.

1.2.1 Multigrid Methods

Originally introduced as a way to solve elliptic boundary value problems, multigrid meth-

ods have been developed and applied to various problems [1, 3, 22, 32, 71, 107, 108, 120].

The optimality of multigrid methods suggests that they are potential good solvers or pre-

conditioners for systems with elliptic operators, which often appear in image restoration

problems.

By studying the effects of some simple relaxation schemes, such as the Jacobi and

Gauss-Seidel methods, researchers found these algorithms possess the so-called “smoothing

property”, i.e. they effectively eliminate oscillatory modes of the error and leave smooth

modes of the error undamped [22]. However, these smooth modes become more oscillatory

when represented on coarser grids. Based on these facts, a multigrid scheme uses relaxation

on the fine grid and, then, adds an interpolated coarse-grid correction which is computed by

relaxation on the coarse-grid residual equation. The process is called multigrid cycling [22,

107, 120].

Depending on the application, multigrid methods can be very different. In general,

however, multigrid methods involve two steps:

setup phase:

– choosing an appropriate relaxation algorithm;

– choosing suitable coarse-grid variables;

– choosing appropriate grid-transfer operators, i.e. restriction and interpolation

operators;

– designing effective coarse-grid equations.
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solution phase: uses the above components to perform normal multigrid cycling

until a desired stopping criterion is satised.

According to whether the problem associates with any kind of structured physical grids,

multigrid methods fall into two categories: geometric multigrid (GMG) methods [22, 107]

and algebraic multigrid (AMG) methods [21, 98]. GMG methods use geometrically struc-

tured coarse grids within the multigrid process. Traditional GMG methods use no matrix

information in defining the grid-transfer operators and, therefore, are not robust to the

discontinuous diffusivities considered in (1.3). However, the black box multigrid (BoxMG)

algorithm [3, 64, 65], which uses geometrically structured coarse grids in combination with

an interpolation operator designed to account for the effects of discontinuous diffusivities,

achieves fast multigrid convergence in many situations.

In contrast to GMG methods that work with structured grids, AMG methods make no

assumptions other than the given matrix and a right-hand side. They achieve efficiency

by tailoring both the coarse-grid structure and interpolation operator to account for jumps

in the coefficients in (1.3). This makes AMG methods more robust, and allows them to

be applied in a wide variety of applications. However, the cost for this robustness is that

they have a more expensive setup process due to the use of unstructured matrix storage

approaches.

1.2.2 Nonnegative Constrained Least Squares

In some applications [5, 13, 14, 15, 16, 38, 72, 73, 123], it makes sense to solve the least

squares problem (1.8) with nonnegative constraints, referred to as nonnegative least squares

(NNLS),

argmin
x

F1(x) = argmin
x
||Ax− b||22 s.t x ≥ 0. (1.13)

Because

||Ax− b||22 = (Ax− b)T (Ax− b)

= (Ax)T (Ax)− (Ax)T b− bT (Ax) + bT b

= xT (ATA)x− 2xT (AT b) + bT b,

define the symmetric positive semi-definite matrix Q = ATA, and vector h = AT b, then,

the NNLS (1.13) is equivalent to the following nonnegative quadratic program (NNQP),

argmin
x

F (x) = argmin
x

1
2
xTQx− xTh s.t x ≥ 0. (1.14)
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Since first proposed by Lawson and Hanson [72], there has been much work in the

literature on solving (1.13), based on techniques such as active set methods [13, 23, 72],

interior point methods [12], iterative approaches [70] etc., (see [33] for a complete review).

In this work, we present a new multiplicative algorithm. The new algorithm has a very

simple format and can be easily implemented on a parallel machine.

1.3 Contributions

The significant contributions of this work include developing an iterative regularization

parameter-choice algorithm, exploring multigrid solvers for anisotropic diffusion denoising,

deriving a new mathematical framework for a projection-based edge-preserving deblurring

method, and designing a new NNLS algorithm.

• Regularization parameter-choice method:

– A new regularization parameter-choice method based on the normalized cumula-

tive periodogram is proposed. The new algorithm can be applied to a very broad

range of parameter-dependent image restoration algorithms.

– An efficient Matlab implementation with Brent’s method is provided, see Ap-

pendix A.

• Multigrid methods for anisotropic diffusion denoising:

– A new fixed-point iteration method with multigrid solvers is designed for anisotropic

diffusion denoising.

– A comparison of the performance of BoxMG and AMG in solving anisotropic

diffusion equations is provided.

• Projection-based edge-preserving image deblurring:

– A new mathematical framework is developed for projection-based edge-preserving

image deblurring. A theoretical justification of the approach is given. A detailed

numerical study of the performance, with suggestions for parameter values and

tolerances, is given.

– An efficient Matlab implementation, with Kronecker product SVDs and an AMG

preconditioner, is developed; the numerical results presented in this work are

obtained from this code, which is available upon request.
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• Nonnegative least squares algorithm

– A new multiplicative algorithm is designed for NNLS (1.13). The theoretical

convergence analysis is presented.

– Two image processing applications, super-resolution restoration and color image

labeling, with efficient numerical implementations are explored.

1.4 Outline of the Work

The structure of the dissertation is as follows. Chapter 2 illustrates a new regulariza-

tion parameter-choice method which is based on normalized cumulative periodogram and

Brent’s method. Chapter 3 introduces the mathematical background of anisotropic diffu-

sion equation and its application in image denoising. A fixed-point iteration with multigrid

solvers is proposed. We also present the comparisons with other state-of-arts image de-

noising techniques. Chapter 4 presents a novel projection-based edge-preserving image

deblurring algorithm. Extensive performance testing that gives insight into robust choices

for tolerances and parameters is presented. Chapter 5 presents a new multiplicative NNLS

algorithm along with its convergence analysis. Efficient implementations for image super-

resolution and color image labeling are presented as examples. Final conclusions are given

in Chapter 6.
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(a) noise-free image (b) noisy image

(c) restored by Gaussian filter (d) restored by PM model (1.3)

Figure 1.1: Image denoising example with cameraman image. (a) true noise-free image. (b)
noisy image, noise level is 20%. (c) linear Gaussian filter with t = 2.56. (d) Perona-Malik
anisotropic diffusion (1.3) with stopping time t = 0.75 and threshold Γ = 0.2 in (1.4).
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(a) Point source (b) Point spread function

Figure 1.2: Point spread function. (a) single bright pixel. (a) the blurred point source, called
the point spread function.

(a) si, u
T
i b, and uT

i n (b)
uT

i b

si
vs

uT
i n

si

Figure 1.3: Plots of first 3000 singular values, si, coefficients, |uTi b| and |uT
i b|
si

, and error

coefficients, |uTi η| and |uT
i η|
si

. (a) plots of decreasing si, uTi b, and nearly constant uTi η. (b)

plots of decreasing uT
i b
si

and increasing uT
i η
si

.
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(a) blurring image (b) naive restoration

(c) TSVD restoration, k = 1699 (d) Tikhonov restoration, λ = 0.016

Figure 1.4: Restored images, the regularization parameters in TSVD and Tikhonov methods
are chosen with GCV method. (a) blurred and noisy image. (b) naive restored image. (c)
restored image by TSVD method. (d) restored image by Tikhonov regularization method.



Chapter 2

Regularization Parameter-Choice

Method

2.1 Introduction

As discussed in Chapter 1, image restoration problems are typically ill-posed, and we have

to use regularization techniques, such as TSVD and Tihkonov regularization, to obtain a

reasonable approximate solution. In the literature, there exist many different regularization

methods [11, 30, 51, 88, 97]. However, no matter which method is used, choosing a suitable

regularization parameter is a critical step. Some common parameter-choice methods used

in the image restoration community include the discrepancy principle [52, 54, 58], L-curve

methods [53, 59], and the generalized cross-validation (GCV) method [48, 89].

More recently, a method based on the normalized cumulative periodogram (NCP) has

been proposed [32, 56, 99]. Compared to traditional methods, such as L-curve approaches,

which only use the norm of the residual vector, the NCP method seeks to use more in-

formation available in the residual vector. The key idea of this method is to choose the

regularization parameter for which the residual vector changes from being dominated by

the remaining signal to being like white noise. By employing statistical tools, such as the

Komolgorov-Smirnov (KS) test [105], and fast Fourier transforms, this method leads to a

parameter-choice rule which is particularly well-suited for large-scale problems. See [99] and

the references therein for more details of the NCP regularization parameter-choice method.

In this section, we illustrate a new parameter-choice method based on NCP and Brent’s

method [94].

The remainder of this chapter is organized as follows. Section 2.2 introduces NCP and its

14



15

(a) Normal distributed random numbers (b) Sum of Cosines

Figure 2.1: Examples of normalized cumulative periodogram for different vectors, x. Left:
vector x contains elements which are Matlab generated normal distributed random num-
bers; Right: vector x contains elements which are sum of cosine functions with different
periods. Blue line is the NCP plots. Two red dot-lines are the 95% Kolmogorov-Smirnov
test confidence limits. The NCP of the normal random numbers stays in the limits (left).

application in image processing. An efficient algorithm based on NCP and Brent’s method

is presented in Section 2.3.

2.2 Normalized Cumulative Periodogram

The periodogram is essentially a discrete Fourier transform of the input data.

Definition 2.1. Given 1D signal x ∈ Rn×1, denote bn2 c as the maximum integer less than
n
2 , the periodogram [18] is defined as the squared-magnitude of the discrete Fourier transform

(DFT)

p(wj) = |DFT(x)j |2 =
1
n

∣∣∣∣∣
n∑
i=1

x(i)e−2πıwji

∣∣∣∣∣
2

,

where wj = j−1
n for any j = 1, 2, · · · , q =

⌊
n
2

⌋
+ 1. Further, p(wj) = p(wn−j+1) for

j = q + 1, · · · , n.

The idea of the periodogram is to split the input data, x, into low- and high-frequency

components. If the input data x(t) appears to be very smooth (wiggly), then the values of

the periodogram for low (high) frequencies will be large relative to other values. We say

that the data set has an excess of low (high) frequency. For a purely random series, all of
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the frequencies should be of equal importance and thus the periodogram will vary randomly

around a constant.

A useful tool for describing the overall behavior of the periodogram is the normalized

cumulative periodogram

(ncp(x))k =

∑k
j=1 p(wj)∑q
j=1 p(wj)

, k = 1, 2, · · · , q =
⌊n

2

⌋
+ 1 (2.1)

Note that if x is white Gaussian noise, the plot of ncp(x) versus w should follow along a

straight line from (0, 0) to (0.5, 1). A test of the hypothesis that a signal is white noise

can be achieved by the Kolmogorov-Smirnov (KS) test [105]. Thus, we choose the largest

regularization parameter λ such that the residual vector looks like white noise. See Fig-

ure 2.1 for the example NCP plots of different data sets. As shown in Figure 2.1a, the NCP

plot of the normal random data stays in the 95% confidence band. While the data used in

Figure 2.1b are sum of several cosine functions. The NCP doesn’t stay in the confidence

band.

For a 2D image represented by the m ×m matrix, X, the NCP is defined in a similar

manner [56]. Let the q × q matrix Pi,j = |DFT(X)i,j |2 be the power spectrum of X where

q =
⌊
m
2

⌋
+1. The elements of P need to be reordered in order of increasing spatial frequency,

see the details in [56] and Appendix A. After reordering, the vector

p̂ = Πvec(P ), where Π is a permutation matrix,

holds all the power spectrum elements in order of increasing spatial frequency. Then, the

NCP of X, which is a vector of length q2 − 1, is defined as in Equation (2.1)

(ncp(X))k =

∑k
j=1 p̂(wj)∑q2−1
j=1 p̂(wj)

, k = 1, 2, · · · , q2 − 1.

In practice, in order to find a near optimal regularization parameter, Hansen et al. sug-

gest to solve the following minimization problem to select the regularization parameter [56]

argmin
λ

N (λ) := ||v − ncp(rλ)||1, (2.2)

where rλ is the computed residual vector using regularization parameter λ, i.e.

rλ = vec(X̃ −Xrestored),

and v is the straight line connecting (0, 0) and (0.5, 1).
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Algorithm 1 Brent-NCP Algorithm

1: Set a < c, b← a+ 3−
√

5
2 × (c− a)

2: λ← (a+ c)/2
3: Compute the residual rλ := x0 − x(λ), where x(λ) is the computed solution using

regularization parameter λ
4: Compute N (λ) = ||v − ncp(rλ)||1
5: while |λ− b| > tol do
6: Construct a trial parabolic fit
7: if parabolic fit is acceptable then
8: Take the parabolic step
9: else

10: Take a golden section step
11: end if
12: Update the values a, b, c, λ, compute N (λ) = ||v − ncp(rλ)||1.
13: end while
14: return λ

2.3 Brent-NCP Algorithm

Efficiently solving the minimization problem (2.2) is essential to the success of the parameter-

choice algorithm. Because N (λ) is not differentiable, solving (2.2) requires solving the reg-

ularization problem for different regularization parameters, λ, which is a time consuming

process. Since Brent’s method is characterized by quadratic convergence in case of smooth

functions and guaranteed linear convergence in case of nonsmooth or oscillatory functions,

we propose Algorithm 1 to minimize the number of search steps for (2.2).

Brent’s method combines the golden section search method with a parabolic interpo-

lation method to minimize N (λ) [6, 94]. Starting with 2 boundary points, a and b, the

third point, c, is computed with a golden section search step. At each iteration, Brent’s

method approximates N (λ) using an interpolating parabola through the existing 3 points.

The minimum of the parabola is taken as a guess for the minimum of N (λ). If it lies

within the bounds of the current interval, then the interpolating point is accepted, and is

used to generate a smaller interval. If the interpolating point is not accepted, then the

algorithm falls back to a golden section step. The details of Brent’s method, including some

additional checks to improve convergence, can be found in [6, 94]. For convenience, we

summarize Brent’s method applied to (2.2) as Algorithm 1. The Malab code is provided in

Appendix A.

Figure 2.2 shows an example illustrating the convergence of Brent’s method. Starting

with left and right bounds in Figure 2.2a, the Brent’s method gets the third points with
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(a) Initial two input bounds (b) Step 1: golden section search

(c) Step 4: parabolic interpolation (d) Converges at 9th iteration

Figure 2.2: Example illustrating the convergence of Brent’s method. The actual method
(golden section search or parabolic interpolation) used in Brent’s method at each iteration
is shown in 2.2d. In this example, the algorithm converges in 9 steps.

golden section step, see Figure 2.2b. Then it constructs a parabolic fit with these three

points. In the next step, it checks whether the fit is acceptable. In this example, the

parabolic fit is not acceptable. It takes another golden section step with the updated two

bounds. The algorithm stops at the 9th iteration when the interval become smaller than a

tolerance 2.2d.

In practice, the above Brent-NCP algorithm converges very quickly for all the regular-

ization methods considered in Chapter 3. Depending on the method used in the evaluation

of N (λ) in Steps 4 and 12, Algorithm 1 has many potential applications, see the numerical

experiments in Chapter 3.



Chapter 3

Multigrid Anisotropic Diffusion

Denoising

3.1 Introduction

As discussed in Section 1.1.1, the Perona-Malik model,

∂X

∂t
(t; s, y) = div(c(|∇X|2)∇X)(t; s, y) in (0, T )× Ω, (3.1)

with the noisy image, X̃, as the initial value and Neumann boundary conditions, performs

well in image denoising in practice. Theoretically, however, it is an ill-posed problem. This

is the so-called Perona-Malik paradox [68]. The underlying reason for this paradox is that

the forward-backward diffusion equation (3.1) is not well-posed. Defining the flux function

Φ(r) = rc(r2), the forward-backward diffusion process depends on the sign of first derivative

of Φ(r),

Φ′(r) = c(r2) + 2r2c′(r2),

• if Φ′(r) > 0, the PM model is a forward parabolic equation, and all edges are blurred;

• if Φ′(r) < 0, the PM model is a backward parabolic equation, and the edges are

sharpened.

In [90], Perona and Malik choose the diffusivity to be c(r2) = 1
1+r2/Γ2 , where Γ is a

threshold determined by the noise level [27, 91]. Given a threshold, Γ, the PM approach

shows the desirable result of removing noise in an image in regions where |∇X(t; s, y)| < Γ,

and sharpening edges in an image in regions where |∇X(t; s, y)| ≥ Γ.

19
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In [68], Kichenassamy proves that if the initial image, X̃(s, y), is not infinitely differ-

entiable, the weak solution of (1.3) does not exist. Consequently, he introduces the notion

of a “generalized solution”, which is piecewise linear and contains jumps. However, one

should neither expect uniqueness nor stability with respect to the initial image. Examples

of significantly differing solutions with nearly identical initial data have been reported [68].

The remainder of this chapter is organized as follows. Section 3.2 goes over the anisotropic

diffusion regularization methods and introduces our objective equation. A semi-implicit

discretization technique is discussed in Section 3.3. Section 3.4 discusses several related

regularization parameter-choice algorithms. Section 3.5 presents numerical experiments of

the new approach and comparisons with other image denoising methods.

3.2 Anisotropic Diffusion with Regularization

Although the ill-posedness of the PM model can be handled by applying an implicit spatial

discretization [113], in order to make the numerical implementation more predictable, it is

more natural to introduce regularization into the continuous PM model (3.1).

3.2.1 Spatial Regularization

Catté et al. introduce a spatial regularization that makes the forward-backward diffusion

process (3.1) become well-posed [29]. The idea is to replace the image gradient, ∇X by a

smoothed version, Gσ ∗ ∇X, in the diffusivity coefficient c(|∇X|2), where Gσ can be any

“low-pass filter”. In this work, we assume that Gσ is a Gaussian kernel with standard

deviation σ = 0.5. Since Gσ ∗ ∇X = ∇(Gσ ∗ X), the spatially regularized PM model

becomes
∂X

∂t
(t; s, y) = div(c(|∇(Gσ ∗X)|2)∇X)(t; s, y) in (0, T )× Ω. (3.2)

Catté et al. prove that there exists a unique solution for the regularized PM equa-

tion (3.2) with corresponding initial and boundary conditions [29]. Furthermore, this spatial

regularization makes the filter insensitive to noise. This avoids the shortcoming of the orig-

inal PM model, which cannot distinguish between “true” edges and “false” edges created

by the noise. Weickert et al. [116] propose an additive operator splitting (AOS) scheme to

solve (3.2). The diffusion stopping time, T , is the parameter controlling the restored image

quality.
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3.2.2 Reaction Diffusion Equation

While this spatial regularization makes the PM model well-posed, it leads to a process where

the solution always converges to a constant steady-state solution [113]. In order to get a

nontrivial result, it is then required to specify a stopping time, T0, such that the restored

image, X(T0), is a good representation of the denoised image. Sometimes, it is attempted

to circumvent this task by adding an additional reaction term [84],

∂X

∂t
(t; s, y) = div(c(|∇X|2)∇X)(t; s, y) + λ(X̃(s, y)−X(t; s, y)) in (0, T )× Ω. (3.3)

The reaction term, (X̃(s, y)−X(t; s, y)), keeps the steady-state solution close to the original

image, X̃(s, y). In practice, such a modification shifts the problem of specifying a stopping

time, T0, to the problem of determining the non-negative regularization parameter, λ.

Combining the spatial regularization (3.2) and reaction anisotropic diffusion (3.3) ap-

proaches, we get the anisotropic diffusion equation

∂X

∂t
(t; s, y) = div(c(|∇(Gσ∗X)|2)∇X)(t; s, y)+λ(X̃(s, y)−X(t; s, y)) in (0, T )×Ω, (3.4)

where we assume that Gσ is fixed and known. As discussed above, this PDE is not only

well-posed, but also has a non-trivial steady-state solution satisfying

0 = div(c(|∇(Gσ ∗X)|2)∇X)(s, y) + λ(X̃(s, y)−X(s, y)) in Ω. (3.5)

Thus, for a fixed regularization parameter λ, two approaches are possible: iterating the time

step in (3.4) until the steady state is reached, or solving (3.5)) using a fixed point iterative

approach. In either case, finding a near optimal regularization parameter is critical to

obtaining a good restored image, and requires that either (3.4) or (3.5) be solved for different

values of λ. We discuss methods for choosing such a value in Section 3.4.

In the case of solving (3.4) for a fixed λ, the issues to consider are the time step size

and how accurately to solve the resulting linear system at each time step. Weickert’s AOS

scheme is one method that can also be employed to solve (3.4) for each fixed λ. Unlike

using AOS to solve (3.2), the stopping time T is not considered a regularization parameter

– rather, the stopping time is given by the time step at which the solution appears to have

reached steady-state. The case of solving (3.5) by fixed point iteration for a given value

of λ, in contrast to the AOS approach for (3.4), requires a more accurate linear solve at

each iteration. The potential comparative upside, however, is that fewer overall iterations

will needed, and unintentional smoothing that may occur as a result of inaccurate solves

during timestepping to solve (3.4) are avoided. In this work, we consider two solvers for
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the linear systems that must be solved accurately with the fixed point approach: BoxMG

and AMG. Numerical results that compare AOS for solving (3.4) vs. fixed point iteration

with BoxMG to solve (3.5) vs. fixed point iteration with AMG to solve (3.5) are presented

in Section 3.5. In all three cases, in order to do a fair comparison, the same regularization

parameter selection scheme is employed.

3.3 Discretization and Multigrid Solvers

In [115], the authors compare three discretization schemes: both explicit and semi-implicit

schemes based on a 3 × 3 stencil, and an explicit scheme based on a 5 × 5 stencil. The

conclusion is that the 5×5 stencil explicit discretization scheme is superior than the explicit

scheme based on 3 × 3 stencils in terms of rotation invariance, accuracy, and avoidance of

blurring artifacts. However, results for the 3 × 3 AOS-stabilized semi-implicit approach

are comparable to those for the 5 × 5 explicit stencil. Therefore, we use a semi-implicit

discretization technique to discretize (3.5), which retains the memory advantage of using a

3 × 3 stencil. Instead of using a simple central difference scheme as in [116], we use more

points in computing c(|∇(Gσ ∗X)|2) to increase the stability [7].

Assuming the regularization parameter, λ, is known, the following fixed-point iteration

is used to compute the solution of (3.5),

λ(Xk+1 − X̃)(s, y) = div(c(|∇(Gσ ∗Xk)|2)∇Xk+1)(s, y), (3.6)

where the superscript, k, denotes a numerical approximation taken at the kth iteration. We

use central differences to approximate the derivatives of the image, X. In digital images, the

distance between adjacent grid points, h, is constant. For simplicity, we omit the distance h

in the following discretization formulas. The value of the divergence operator at grid point

(i, j) can then be written as

div(c∇X)i,j = ci+ 1
2
,j(Xi+1,j −Xi,j)− ci− 1

2
,j(Xi,j −Xi−1,j)

+ci,j+ 1
2
(Xi,j+1 −Xi,j)− ci,j− 1

2
(Xi,j −Xi,j−1)

= ci+ 1
2
,jXi+1,j + ci− 1

2
,jXi−1,j + ci,j+ 1

2
Xi,j+1 + ci,j− 1

2
Xi,j−1

−(ci+ 1
2
,j + ci− 1

2
,j + ci,j+ 1

2
+ ci,j− 1

2
)Xi,j

Notice that interpolation is needed to evaluate the diffusivity, c = c(|∇X̂|2), at locations
(i ± 1

2 , j) and (i, j ± 1
2). This can be done as follows, see also Figure 3.1. Denoting X̂ =

Gσ ∗ Xn, we use central differences and linear interpolation with a compact stencil to
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(a) (∇x̂)i,j+ 1
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(b) (∇x̂)i+ 1
2 ,j

Figure 3.1: Grid points involved in the approximation of the diffusivities c(|∇X̂|2) at grid
points (i, j + 1

2) and (i+ 1
2 , j) (marked by hexagons). The grid points represented by dots

are used to compute derivatives in the vertical direction, while the grid points represented
by squares are used to compute derivatives in the horizontal direction.

compute the diffusivity

ci,j+ 1
2

:= c

(X̂i,j+1 − X̂i,j)2 +

(
X̂i+1,j+1 − X̂i−1,j+1 + X̂i+1,j − X̂i−1,j

4

)2
 ,

and

ci+ 1
2 ,j := c

(X̂i+1,j+1 − X̂i+1,j−1 + X̂i,j+1 − X̂i,j−1

4

)2

+ (X̂i+1,j − X̂i,j)2

 .

Because of the Gaussian filter, Gσ, and the average used in computing the diffusivity, c,

the above discretization is less sensitive to noise than without the filter. In practice, this

also makes the discretization have a rotation-invariance property [7]. On the other hand,

using a compact stencil provides a good balance between accuracy and computational time.

The discretization of (3.6) is, then,

ai,jX
k+1
i,j −

(
ci+ 1

2
,jX

k+1
i+1,j + ci− 1

2
,jX

k+1
i−1,j + ci,j+ 1

2
Xk+1
i,j+1 + ci,j− 1

2
Xk+1
i,j−1

)
= λX̃i,j ,

where X̃ = I0, ai,j =
(
λ+

(
ci+ 1

2
,j + ci− 1

2
,j + ci,j+ 1

2
+ ci,j− 1

2

))
. In matrix-vector notation,

the above discrete form can be written as

A(xk, λ)xk+1 = λx̃. (3.7)

For fixed λ, the linearized diffusion equation (3.7) represents a fixed-point linearization

of the nonlinear PDE described by (3.5). This, naturally, leads to the fixed-point iteration

given as Algorithm 2, whose convergence proof can be found in [4]. However, for the sake of
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Algorithm 2 Fixed-Point Iteration for Fixed λ

1: while norm(xn+1 − xn)/norm(xn) > tolfp do
2: Compute the matrix An = A(xn, λ) in (3.7) with approximation xn

3: Compute the solution xn+1 of Anxn+1 = λx̃
4: end while
5: return In+1

completeness, we restate the theorem as follows. The proof is by constructing a contractive

function, Q,

(Q(Xk))i,j =
(ci+ 1

2
,j

ai,j
Xk+1
i+1,j +

ci− 1
2
,j

ai,j
Xk+1
i−1,j +

ci,j+ 1
2

ai,j
Xk+1
i,j+1 +

ci,j− 1
2

ai,j
Xk+1
i,j−1

)
+ λX̃i,j .

Note that if the coefficients of Xk+1 are strictly less than 1 for λ > 0, Q is a contraction

function in terms of ∞-norm, see [4] for the detailed information.

Theorem 3.1. For any positive regularization parameter, i.e. λ > 0, the fixed-point

scheme (3.7) has a unique bounded solution.

Note A(xn, λ) is an M-matrix, i.e. the off-diagonal entries of matrix A(xn, λ) are less

than or equal to zero, while the diagonal entries are positive, and are strictly diagonally

dominant. Therefore, multigrid methods can be effectively used to solve the linearized

problem [98, 107]. In this work, we use the BoxMG and AMG methods as black-box solvers

and compare their performance in solving the anisotropic diffusion equation (3.5).

3.4 Choosing Regularization Parameters

We will compare the performance of the AOS scheme for (3.2), (3.4) and fixed-point it-

erations with multigrid solvers for (3.5). The remaining outstanding issue in solving the

anisotropic diffusion equations given in (3.2), (3.4) and (3.5) is the choice of the regulariza-

tion parameters: the diffusion stopping time, T , and/or the parameter, λ.

In [114], Weickert points out that since the variance of the continuum solution of the

anisotropic diffusion equation at time t, var(X(t)), is monotonously decreasing, the relative

variance
var(X(t))

var(X̃)
, (3.8)

decreases monotonically from 1 to 0. This ratio measures the distance of X(t) from the

initial state X̃ and final state X(t) when t =∞. Prescribing a certain value for the above
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ratio provides a criterion for the stopping time. Assuming that the signal-to-noise ratio

(SNR) is known, [114] proposes to choose the stopping time, T0, to satisfy the relation

var(X(T0))
var(X̃)

=
1

1 + 1
SNR

. (3.9)

However, one of the drawbacks of this method is that it requires that the SNR be known

for the noisy image. Otherwise, the user must specify a threshold for the ratio (3.8). This

shifts the problem of choosing a stopping time to that of choosing a threshold. Moreover, as

pointed out by Weickert, criterion (3.9) tends to underestimate the optimal stopping time,

as even a well-tuned filter cannot avoid influencing the signal before eliminating the noise.

For these reasons, in the numerical results section we will use methods other than (3.9) for

selecting the stopping time for AOS.

In [79], Mrázek proposed a decorrelation criterion to choose the diffusion stopping time,

which is claimed to outperform (3.9). Given the assumption that the noise is uncorrelated

with the unknown true image, the decorrelation method for choosing the diffusion stopping

time, T , is to minimize the correlation coefficient (CC),

T = argmin
t≥0

cov(X(t)− X̃,X(t))√
var(X(t)− X̃) · var(X(t))

.

Note that this CC idea can be modified to choose λ in (3.5) according to

λ = argmin
λ

cov(Xλ − X̃,Xλ)√
var(Xλ − X̃) · var(Xλ)

, (3.10)

where Xλ is the restored image computed with the regularization parameter, λ.

The Brent-NCP method in previous chapter provides a viable alternative to above ap-

proaches and is flexible enough that it can be used to find either the stopping time in (3.2)

or the λ in (3.5). In practice, Algorithm 1 converges very quickly for all the regulariza-

tion methods considered. In the following experiments, we use Algorithm 1 to find three

regularization parameters.

• stopping time for (3.2) with AOS scheme

• regularization parameter λ in (3.5) with the fixed-point iteration and Multgird solver;

• regularization parameter in total variation regularization.
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3.5 Numerical Results

This section is devoted to presenting the results obtained with the proposed algorithm.

Comparisons with the AOS scheme for (3.2) [116] and (3.4), TV denoising [30, 97] and the

block matching 3D (BM3D) method [37] are also presented.

3.5.1 Comparison Measures

After getting the restored image, we compute the mean structure similarity (MSSIM) of the

restored and noise-free images as a measurement of the restored image quality [110]. Given

any two discrete images, X and Z, the structure similarity (SSIM) measure is defined as

SSIM(X,Z) =
(2µXµZ + c1)(2cov(X,Z) + c2)
(µ2
X + µ2

Z + c1)(σ2
X + σ2

Z + c2)
(3.11)

where µX and µZ are the means of images X and Z respectively, σX and σZ are the

variances of images X and Z, cov(X,Z) is the covariance of the two images, and c1 and

c2 are two parameters to stabilize the division with small denominators, the defaults are

c1 = 0.0001, c2 = 0.0009.

In practice, SSIM is calculated on local windows rather than over the whole image. As

in [110], we use a normalized 11×11 circular-symmetric Gaussian weighting matrix w, with

standard deviation of 1.5. As the result, for kth local window, Xk and Zk, local mean, µXk ,

variance, σXk , and covariance, cov(Xk, Zk), in the SSIM measure (3.11) are modified as

µXk =
11∑

i,j=1

wi,jX
k
i,j , σXk =

 11∑
i,j=1

wi,j(Xk
i,j − µXk)2

 ,

cov(Xk, Zk) =
11∑

i,j=1

wi,j(Xk
i,j − µXk)(Zki,j − µZk).

In order to get a single overall similarity measure of the two images, the MSSIM is the mean

of the SSIM of the local windows,

MSSIM(X,Z) =
1
n

n∑
k=1

SSIM(Xk, Zk).

We also consider the traditional image-quality measurement, the peak signal-to-noise

ratio (PSNR) [109],

PSNR = 20× log10

(
max(X)√

MSE

)
,
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(a) Luminance shift image, PSNR =
19.5,MSSIM = 0.91

(b) White Gaussian noise, PSNR =
19.5,MSSIM = 0.31.

Figure 3.2: Comparison of MSSIM and PSNR. (a) luminance-shift image. (b) white Gaus-
sian noise. Note (a) and (b) have the same PSNR index, 19.5, the MSSIM of (a) is 0.91,
which is much larger than that for (b), 0.31.

where max(X) is the maximum possible intensity value of the clean image, and MSE is

the mean squared error between the clean and noisy images. Our experiments show that

MSSIM is more suitable for measuring the quality of denoised images, see Figure 3.2. In

this figure, both the luminance-shift image and the one with white noise have the same

PSNR index, 19.5; however, by visual quality, the luminance-shift image is noise-free, and

is much better than the one with white noise. This is shown from the MSSIM index: the

MSSIM of the luminance-shift image is 0.91, while the MSSIM for the image with white

noise is 0.31.

3.5.2 Experiments

We consider 5 common test images, also used in [37], and add various levels of Gaussian

noise to these images to test the algorithms. We include both the MSSIM and PSNR as

measures of the restored image quality for the convenience of comparison with other papers,

but note the results in Figure 3.2.

As mentioned previously, the quality of the restored image depends on the value of the

regularization parameter. Thus, no matter which regularization scheme is employed, there

will be an outer loop over the regularization parameter values. We initially consider two

possibilities – choosing the λ that minimizes the CC functional (3.10) vs. choosing the λ that

minimizes the NCP functional (2.2). We show experimentally in the next section that each
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of these has a well-defined minimum, and use Brent’s method to solve for that minimum (i.e.

Brent-CC and Brent-NCP). For AOS applied to solve (3.2), the regularization parameter

is the stopping time T , and the CC or the NCP approach can be used to determine this

value. If solving either (3.4) (with AOS) or (3.5) (fixed point with BoxMG or AMG), the

undetermined regularization parameter is λ.

The numerical experiments are outlined as follows

• In Subsection 3.5.2.1, we fix the regularization approach as that of solving (3.5) using

fixed point iteration with BoxMG as the linear solver. Then we investigate the use of

the CC functional vs. the NCP functional to choose λ.

• In Subsection 3.5.2.2, we fix the selection approach (i.e. outer iteration) as Brent-NCP

and compare results given using three algorithms: AOS to solve (3.4) for each λ (we

refer to this as AOS-R); solving (3.5) with fixed point iteration and BoxMG as the

linear solver; solving (3.5) with fixed point iteration and AMG as the linear solver.

• To illustrate the applicability of our Brent-NCP regularization parameter selection

approach, in Subsection 3.5.2.3, we fix the selection approach as Brent-NCP and

apply it to finding the regularization parameter (stopping time, T ) for AOS applied

to (3.2) and to finding the regularization parameter λ in Total Variation, a well-known

denoising scheme. We compare these results with the traditional AOS scheme as

presented in [79] and against the BoxMG results obtained in the previous subsection.

• We conclude with a comparison of the diffusion-based denoising techniques to the

block-based denoising technique known as BM3D in Subsection 3.5.2.4.

For the anisotropic diffusion approach based on (3.5), two important technical param-

eters need to be fixed: the outer stopping tolerance for the fixed-point iteration, tolfp, and

the inner stopping tolerance for the multigrid solvers for each linearization, tolmg. In Fig-

ure 3.3, we investigate the effects of varying tolfp with tolmg fixed at 0.1. Note that while the

optimal λ changes significantly with tolfp, the quality of the restored image, as measured

by the NCP distance is much less sensitive. Similarly, Table 3.1 compares the effects of

the inner stopping tolerance, tolmg, with tolfp fixed at 10−3. Note that the computed regu-

larization parameter is essentially unchanged by choosing larger values of tolmg. Thus, we

take tolmg = 0.1 in the experiments here to improve the overall efficiency of the approach,

in combination with tolfp = 10−3.
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(a) BoxMG, noise level = 0.3 (b) BoxMG, noise level = 1.0

Figure 3.3: Test of the tolerance of the fixed-point iteration, tolfp, NCP-λ plots for cam-
eraman image. For given regularization parameter, λ, on the x-axis, the y-axis shows the
NCP distance measurements of the restored images computed using the corresponding λ.
As tolfp decreases from 10−1 to 10−5, the NCP-λ plot converges to a limiting curve for
different noise levels, 0.3 (left) and 1.0 (right).

3.5.2.1 Optimizing CC vs NCP for Choosing λ

We first show experimentally that there are unique minimizers for both (2.2) and (3.10),

and that employing Brent’s method achieves these minimizers. We solve our objective

function (3.5) using the fixed-point iteration with BoxMG as the inner linear solver, where

the regularization parameters are computed using Brent’s method. For the CC method,

instead of computing N (λ) in Steps 4 and 12, we calculate the correlation coefficient as in

Equation (3.10). Figures 3.4 and 3.5 show the results for two test images: cameraman and

fingerprint, with noise level varying from 0.3 to 0.6. The dots shown in Figures 3.4 and 3.5

are the results computed using Brent’s method. It is clear that the computed solutions are

the minimizers of the NCP distance and correlation coefficient functions.

Figures 3.4 and 3.5 also show the MSSIM and PSNR measurements of the restored

images. Compared to the CC method, one of the advantages of the NCP approach is that the

MSSIM and PSNR measurements of the restored images corresponding to the minimizers of

the NCP distance are close to the maximum values of MSSIM and PSNR that are achieved.

While this is also nearly true for the CC method applied to the cameraman image, it is

obviously not the case for the fingerprint image, which has more texture information than

the cameraman image. This experiment shows that the NCP method is more stable than

the CC method and that minimizing the NCP correlates nicely and consistently across

images with achieving large MSSIM or PSNR measures of the restored images.
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Next, we compare the restored image quality computed using these regularization parameter-

choice methods. The results are shown in Table 3.2. For the images with little texture

information, such as the cameraman image, the results using CC are comparable to those

using NCP, especially for low noise levels. However, for large noise levels, or images with

lots of texture information, NCP clearly outperforms CC. This is especially noticeable in

the fingerprint image; with a noise level of 1.0, the regularization parameter chosen based

on the NCP criterion yields a significant improvement on that chosen based on the CC

criterion, particularly when considering their MSSIM measures of 0.40 and 0.11.

3.5.2.2 Comparison of AMG, BoxMG, and AOS for regularized diffusion

We first compare the restored images computed using two different multigrid solvers, BoxMG

and AMG, using both solvers in the computation of the optimal regularization parameters

using Brent’s method for the cameraman image with different noise levels. The results are

shown in Table 3.3, where we see that the number of Brent’s method and linearization

steps are nearly the same for both solvers. This is also true for the computed regulariza-

tion parameters. Furthermore, from the results in Table 3.4, we can see that the MSSIM

and PSNR measurements of restored images when using BoxMG and AMG to solve the

anisotropic diffusion equation (3.5) are almost the same. Note that while the iteration

counts for AMG look better than those for BoxMG, BoxMG is computationally faster. As

shown in Table 3.3, BoxMG is about 6 times faster than AMG in terms of computational

time, due to the combination of the more expensive setup phase within AMG and its use

of unstructured storage and indirect addressing. While AMG is known to be very robust

and effective for highly discontinuous diffusivities, these results show that the added costs

required for AMG do not pay off in this situation.

As mentioned in Section 3.2, the AOS scheme can be applied directly to solve the time-

dependent regularized anisotropic diffusion equation (3.4). We call this scheme AOS-R. We

use an outer iteration to find λ by the Brent-NCP Algorithm 1. In each iteration with fixed

λ, we solve for the steady-state solution of the regularized diffusion equation with AOS-R,

with τ = 0.5. This inner iteration stops when the relative difference between two consecutive

steps measured in the Frobenius norm becomes less than 10−5. Numerical experiments

indicate that smaller timesteps or a more accurate stopping criterion do not improve these

results. The quality measures of the results are shown in Table 3.4. From this table, we

can see that both the AMG and BoxMG solvers for (3.5) (reported results are for λ values

chosen using Brent-NCP as the outer wrapper in each case as well) outperform the AOS-R
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for (3.4) in terms of accuracy. The results suggest that solving somewhat inaccurately over a

possibly large number of time steps permits some unintentional smoothing into the process

of solving for the steady state solution, whereas solving (3.5) by fewer, and more accurate,

fixed point steps, prevents this problem (see also [9]). Another interesting feature to note

is that the PSNR values for the AOS-R results are very static with respect to noise level

for each test problem. We consider this further evidence of the pitfalls of using PSNR to

measure restored image quality (see also examples in [109]).

3.5.2.3 Comparison with Unregularized AOS and Total Variation Denoising

We test the applicability of the Brent-NCP Algorithm 1 by computing the diffusion stopping

time in (3.2) for the AOS scheme and the regularization parameter, λ, for TV denoising.

For the AOS scheme, in the experiments of [79, 116], the authors use fixed time steps, τ ,

to compute the restored images. If we use a fixed time step, say τ = 0.5, the computational

time for the high noise level images will become very large compared with the other methods.

Moreover, in [116], Weickert et al. point out that AOS with semi-implicit time-stepping is

stable for all time steps. Therefore, instead of fixing the time step, τ , we fix the number of

time steps to be 10, i.e. the time step, τ = T
10 , where T is the stopping time returned by

the Brent’s method. The reason we choose τ = T
10 is illustrated later in the discussion.

The objective function for TV is

argmin
x

TV(X) +
λ

2
‖X − X̃‖2f , (3.12)

where TV(X) =
∫∫

Ω |∇X|, and λ is the regularization parameter [97], ‖ · ‖f represents the

Frobenius norm. Here, we use the algorithm proposed by Chambolle [30] to solve (3.12).

Different regularization parameters, λ, have tremendous impact on the restored image qual-

ity. Traditionally, the regularization parameter is chosen by trial and error. Recent research

into better ways to choose the regularization parameter has included methods based on im-

age geometry or local variance estimators [41, 103]. Figure 3.6 shows the MSSIM and PSNR

measurement of the restored images computed using TV denoising, where the regularization

parameters are computed using the Brent-NCP method replacing the anisotropic diffusion

solves in Step 4 and 12 with the TV minimization in (3.12). Note that minimizing the NCP

correlates nicely with achieving large MSSIM or PSNR measures of the restored images.

Table 3.5 gives comparisons of the unregularized AOS scheme for (3.2) (AOS-U) with

diffusion time, T , chosen by the Brent-NCP algorithm, TV denoising with regularization

parameter, λ, chosen by the Brent-NCP algorithm, and the traditional AOS scheme (AOS-

T) where the diffusion time, T , is chosen as in [79], with τ = 0.5s. For the AOS scheme with
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the Brent-NCP method for choosing the stopping time in (3.2), we found that 10 discrete

time steps were sufficient to give restored images of quality comparable to the other two

methods in our results. The quality of the restored images using anisotropic diffusion with

the proposed algorithm is comparable to that of the images computing using the AOS-U

and TV denoising. They all are clearly better than the results by AOS-T, especially in the

MSSIM measures. As shown in Figure 3.7, it is difficult to see any difference in the detail

regions shown for the restored Barbara images. One possible way to enhance the restored

image quality using the AOS-T scheme is to use a very small time step, τ . However, due

to the added cost of the additional time steps, the execution time will become much longer

than the other schemes. Since all these methods are greatly dependent on the choice of reg-

ularization parameters, which are all computed using the Brent-NCP algorithm, this table

also shows the broad applicability of the Brent-NCP algorithm in choosing regularization

parameters.

3.5.2.4 Comparison with Block-Based Denoising

While diffusion-based denoising techniques are common in the literature, many other ap-

proaches are also possible. Among them, BM3D proves to be very effective and is one of the

best denoising methods in the literature [37]. BM3D is a block-based approach that collects

the local information in a noisy image and groups similar 2D image fragments together into

3D data arrays. Then, a collaborative filtering technique is used to deal with these 3D

groups. Table 3.6 compares BM3D with the anisotropic diffusion approach presented here.

One of the disadvantages of the BM3D algorithm is that it requires the user to input the

estimated noise level. Given an accurate estimated noise level, the restored images from

BM3D have better quality than those generated by anisotropic diffusion in terms of both

MSSIM and PSNR. However, noise estimation itself is a difficult research area [75]. If the

input noise level is not accurate, the restored images can have a bad quality, especially if

the noise level is underestimated, see Figure 3.7. This is also shown in Table 3.6. We use

these different noise level inputs: the exact noise level, n0, an underestimated noise level,

0.7×n0, and an overestimated noise level, 1.3×n0. The MSSIM and PSNR measurements

decrease substantially for the underestimated case. Here, we point out that, in practice, it

is very difficult to accurately estimate the true noise level. For this reason, it is not fair

to compare between anisotropic diffusion denoising and BM3D by simply looking at the

measurements without considering the algorithms’ requirements.
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(a) NCP-λ for NCP parameter choice (b) CC-λ for CC parameter choice

(c) MSSIM-λ for NCP parameter choice (d) MSSIM-λ for CC parameter choice

(e) PSNR-λ for NCP parameter choice (f) PSNR-λ for CC parameter choice

Figure 3.4: Anisotropic diffusion restored image quality for cameraman image, where the
noise level varies from 0.3 to 0.6. The markers are the restored image measurements com-
puted using the optimal regularization parameters, λ, which are computed using Brent-NCP
(left) and Brent-CC (right). As shown in the plots, the restored images using the regular-
ization parameters chosen by Brent-NCP (left) are near optimal, i.e. near maximum of the
MSSIM and PSNR measures. But the results using the regularization parameter chosen by
Brent-CC (right) are not so close to the near optima.
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(a) NCP-λ for NCP parameter choice (b) CC-λ for CC parameter choice

(c) MSSIM-λ for NCP parameter choice (d) MSSIM-λ for CC parameter choice

(e) PSNR-λ for NCP parameter choice (f) PSNR-λ for CC parameter choice

Figure 3.5: Anisotropic diffusion restored image quality for fingerprint image, where the
noise level varies from 0.3 to 0.6. The markers are the restored image measurements com-
puted using the optimal regularization parameters, λ, which are computed using Brent-NCP
(left) and Brent-CC (right). As shown in the plots, the restored images using the regular-
ization parameters chosen by Brent-NCP (left) are near optimal, i.e. near maximum of the
MSSIM and PSNR measures. But the results using the regularization parameter chosen by
Brent-CC (right) are not so close to the near optima.
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(a) NCP-λ (b) NCP-λ

(c) MSSIM-λ (d) MSSIM-λ

(e) PSNR-λ (f) PSNR-λ

Figure 3.6: TV restored image quality for cameraman (left) and fingerprint (right), where
the noise level varies from 0.3 to 0.6. The markers are the restored image measurements
computed using the optimal regularization parameters, λ, which are computed using Brent-
NCP and TV denoising.
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(a) noise-free (b) noisy

(c) AOS-U (d) TV (e) AD

(f) BM3D with under-estimated
noise level

(g) BM3D with exact noise level (h) BM3D with over-estimated
noise level

Figure 3.7: Detailed restored Barbara image by different methods. The noise level in the
noisy image (b) is 0.2. The regularization parameters for AOS-U, TV, and AD are computed
use Brent-NCP method. The MSSIM and PSNR measurements for the restored images are
shown in Tables 3.4, 3.5, and 3.6.
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Table 3.2: Comparison of NCP and CC criteria for choosing the regularization parameter,

λ. All the results are computed using Brent’s algorithm and fixed-point iteration with the

BoxMG solver. The highlighted numbers show the measurements, CC or NCP, that gave

the highest value of measure (MSSIM and PSNR, respectively) for each experiment. One

experiment is one row of the table.

images noise level MSSIM PSNR
noisy CC NCP noisy CC NCP

cameraman

0.1 0.52 0.84 0.84 25.5 30.2 29.8
0.2 0.31 0.76 0.77 19.5 25.7 26.7
0.3 0.21 0.71 0.72 16.0 23.4 24.9
0.4 0.16 0.66 0.68 13.5 21.7 23.6
0.5 0.12 0.63 0.65 11.5 20.5 22.6
0.6 0.10 0.60 0.63 10.0 19.6 21.9
0.7 0.08 0.59 0.61 8.6 19.3 21.2
0.8 0.06 0.58 0.59 7.5 19.1 20.7
0.9 0.05 0.58 0.58 6.4 18.9 20.3
1.0 0.04 0.57 0.57 5.5 18.8 20.0

house

0.1 0.44 0.84 0.84 24.3 31.8 31.5
0.2 0.23 0.78 0.78 18.3 28.2 28.2
0.3 0.14 0.73 0.74 14.8 25.4 26.3
0.4 0.10 0.68 0.71 12.3 22.7 25.0
0.5 0.07 0.64 0.69 10.3 20.9 24.1
0.6 0.05 0.64 0.67 8.8 20.5 23.3
0.7 0.04 0.63 0.65 7.4 19.8 22.6
0.8 0.03 0.62 0.64 6.3 19.7 22.1
0.9 0.03 0.62 0.63 5.2 19.5 21.6
1.0 0.02 0.62 0.63 4.3 19.4 21.1

barbara

0.1 0.62 0.72 0.84 25.6 24.5 28.7
0.2 0.38 0.66 0.71 19.6 23.5 24.9
0.3 0.26 0.62 0.64 16.0 22.9 23.5
0.4 0.19 0.59 0.60 13.5 22.4 22.8
0.5 0.14 0.57 0.58 11.6 21.9 22.3
0.6 0.10 0.55 0.56 10.0 21.4 21.8
0.7 0.08 0.53 0.54 8.7 20.9 21.5
0.8 0.07 0.51 0.52 7.5 20.5 21.2
0.9 0.05 0.50 0.51 6.5 20.1 20.9
1.0 0.04 0.49 0.50 5.6 19.6 20.6

boat

0.1 0.57 0.80 0.82 25.3 30.0 30.4
0.2 0.31 0.67 0.72 19.3 25.9 27.4
0.3 0.19 0.60 0.66 15.8 23.9 25.8

Continued on Next Page. . .
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Table 3.2 – Continued

images noise level MSSIM PSNR
noisy CC NCP noisy CC NCP

0.4 0.13 0.56 0.62 13.3 22.6 24.7
0.5 0.10 0.53 0.59 11.4 21.9 23.9
0.6 0.07 0.52 0.57 9.8 21.5 23.3
0.7 0.06 0.47 0.55 8.4 19.5 22.8
0.8 0.04 0.47 0.53 7.3 19.3 22.3
0.9 0.04 0.46 0.52 6.3 19.1 21.9
1.0 0.03 0.46 0.51 5.3 18.8 21.6

fingerprint

0.1 0.84 0.91 0.92 24.6 27.5 28.2
0.2 0.61 0.83 0.82 18.6 24.3 24.5
0.3 0.43 0.14 0.73 15.0 15.9 22.4
0.4 0.31 0.13 0.66 12.5 15.9 21.0
0.5 0.23 0.13 0.59 10.6 15.8 20.0
0.6 0.18 0.12 0.53 9.0 15.7 19.2
0.7 0.14 0.12 0.49 7.7 15.7 18.6
0.8 0.11 0.12 0.46 6.5 15.6 18.2
0.9 0.09 0.11 0.43 5.5 15.6 17.9
1.0 0.08 0.11 0.40 4.6 15.6 17.6
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Chapter 4

Edge-Preserving Projection-Based

Deblurring

4.1 Introduction

As discussed in Section 1.1.2, the continuous spatial-invariant image deblurring model can

be written as a Fredholm integral equation of the first kind,∫∫
K(s− ν, y − τ)X(ν, τ)dνdτ ≈ B̃(s, y) = B(s, y) + E(s, y),

with the corresponding discretized model in matrix-vector form

Ax ≈ b̃ = b+ η.

As discussed in Chapter 1, the least squares solution will be deteriorated by the noise term

on the right-hand side.

Projection-based methods employ the idea of approximating the solution within a sub-

space, Sk, with smaller dimension [57, 60, 78]. Besides TSVD and Tikhonov regularization,

most of the current iterative regularization algorithms for large-scale algorithms achieve

this by projecting the problem onto a subspace which has similar spectral properties as the

subspace spanned by singular vectors. The subspace Sk is very often the Krylov subspace

associated with applying, for example, CGLS [46, 61, 87], MINRES [86] or GMRES [100],

to the original problem. These projection methods, and in particular those based on Krylov

subspaces, have proven themselves useful as efficient computational tools in many applica-

tions.

The main disadvantage of the projection methods is that the use of a low-dimensional

subspace Sk for the regularized solution tends to inhibit the reconstruction of the sharp

50
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edges in the solution. This is because such features require a large number of high-frequency

spectral components, whereas the TSVD or Krylov subspace Sk typically contains the low-

frequency components. Unfortunately, if one simply increase the dimension, k, of Sk in

order to include components with higher frequency, e.g., by performing more iterations of

the iterative method, then more inverted noise enters the solution [58].

In this chapter, we presents a new edge-preserving projection (EPP) algorithm which is

based on the powerful projection paradigm, but augmented in such a way that we include

a controlled amount of the high-frequency components in the computed solution. First we

use Sk to compute a smooth regularized solution and, then, we add components from the

orthogonal complement S⊥k in a controlled way, in order to better represent the desired

features in the solution. This approach is inspired by the PP-TSVD algorithm [57] for

computing piecewise constant (or polynomial) solutions.

The remainder of this chapter is organized as follows. Section 4.2 presents the new

edge-preserving algorithm and the convergence analysis. Section 4.3 discusses the efficient

numerical implementation issues. Section 4.4 presents numerical experiments of the new

deblurring algorithm and comparisons with other state-of-art deblurring algorithms.

4.2 The Projection-Based Edge-Preserving Algorithm

This section presents the main ideas of the algorithm, while the implementation details for

large-scale problems are discussed in the next section.

4.2.1 Mathematical Model

Assume Wk ∈ Rn×k is a matrix with orthonormal columns that span the subspace Sk,
and let W0 be the matrix containing the orthonormal basis vectors for the complementary

space S⊥k . The matrix WkW
T
k is the L2 orthogonal projection matrix associated with Sk.

The fundamental assumption here is that the columns of Wk represent “smooth” modes

in which it is possible to distinguish the signal, b, from the noise, η, in (1.6). In other

words, considering W T
k b̃ = W T

k b + W T
k η and W T

0 b̃ = W T
0 b + W T

0 η, then, the assumptions

are equivalent to

||W T
k b|| > ||W T

k η|| and ||W T
0 b|| < ||W T

0 η||.

Our strategy is then to compute the solution of the following modified projection problem

min
x∈B
||Lx||p s.t. B = {x : argmin

y
||(AWkW

T
k )y − b||2} (4.1)
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where L and p define a (semi-)norm suited for the problem, typically 1 < p < 2.

The choice of the combination of L and p is important and, of course, somewhat problem

dependent. However, if L approximates a gradient operator, and p < 2, then the norm

||Lx||p allows us to compute regularized solutions that are less smooth than the solutions

computed by p = 2 [57, 58]. Compared to 2-norm minimization, minimization of the 1-norm

is known to be more robust to outliers in that a small number of isolated large errors do not

usually change the solution. However, if p = 1, the solution may not be unique. A similar

edge enhancing effect is also achieved with p greater than but close to 1. In this work, L is

set as the discrete approximation to the first-order gradient operator. For an m×m image,

denote I ∈ Rm×m as the identity matrix, and define

L =

(
L0 ⊗ I
I ⊗ L0

)
, where L0 =


−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . . . . .

...

0 0 · · · −1 1

 ∈ Rm×m,

where ⊗ is the Kronecker product. Given r×c matrix P and p×q matrix Q, the Kronecker

product of P ⊗Q is the rp× cq matrix

P ⊗Q =


P1,1Q P1,2Q · · · P1,cQ

...
...

. . .
...

Pr,1Q Pr,2Q · · · Pr,cQ

 . (4.2)

Note that the null space of L, N (L) = span{1}, where all entries of 1 ∈ Rn are 1, and

n = m2.

4.2.2 Uniqueness Analysis

In [44], Eldén et al. provide an explicit solution of (4.1) for the case of p = 2. The authors

also prove the uniqueness condition for the minimizer. In [60], Hansen et al. propose an

algorithm, MTSVD, for the case p = 2 where Wk consists of the first k singular vectors.

They further develop an algorithm, PP-TSVD, for the case p = 1 with the same Wk [57].

In this work, we extend these results by solving (4.1) for 1 < p < 2 and for different choices

of Wk. We first present the following lemma before showing analysis of (4.1).

Lemma 4.1. The minimization problem

argmin
x
||Ax− b||p, p > 1, (4.3)

has a unique minimizer, x∗, if and only if A has full column rank.
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Proof. (Proof by contradiction)

Suppose there exists a unique minimizer, x∗, for the p-norm minimization problem (4.3),

and A does not have full column rank. Then, for any nonzero y ∈ N (A),

||A(x∗ + y)− b||p = ||Ax∗ − b||p

Hence, x∗ + y 6= x∗ is another minimizer. This is a contradiction to that x∗ is the unique

minimizer.

On the other hand, suppose A has full column rank, and there are two minimizers,

x1 6= x2 for (4.3), such that

||Ax1 − b||p = ||Ax2 − b||p = β ≥ 0.

• If β = 0, then, Ax1 − b = Ax2 − b = 0⇒ A(x1 − x2) = 0. A having full column rank

implies that x1 = x2. This is a contradiction of the assumption x1 6= x2.

• If β > 0, by Minkowski’s Inequality [62],∥∥∥∥A(x1 + x2

2

)
− b
∥∥∥∥
p

=
∥∥∥∥1

2
(Ax1 − b) +

1
2

(Ax2 − b)
∥∥∥∥
p

≤ 1
2
||Ax1 − b||p +

1
2
||Ax2 − b||p

=
1
2
β +

1
2
β = β, (4.4)

with equality if and only if (Ax1− b) and (Ax2− b) are linearly dependent. However,

since β is the minimum of ||Ax− b||p for all x ∈ Rn, it is a contradiction to have∥∥∥∥A(x1 + x2

2

)
− b
∥∥∥∥
p

< β.

Therefore, we must have equality in (4.4), meaning that (Ax1 − b) and (Ax2 − b) are

linearly dependent, i.e. there exists α ≥ 0 such that

(Ax1 − b) = α(Ax2 − b). (4.5)

– If α = 1, Ax1 − b = Ax2 − b ⇒ A(x1 − x2) = 0. A having full column rank

implies that x1 = x2. This is a contradiction with assumption x1 6= x2.

– If α 6= 1, (4.5) implies

A(x1 − αx2)− (1− α)b = 0.
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Hence, ∥∥∥∥A(x1 − αx2

1− α

)
− b
∥∥∥∥
p

= 0 < β,

which means there exists
(
x1−αx2

1−α

)
∈ Rn such that

∥∥∥A(x1−αx2
1−α

)
− b
∥∥∥
p

= 0 < β.

This contradicts that with β is the minimum of (4.3).

The following theorem shows the existence and uniqueness of the solution of (4.1).

Theorem 4.2. The minimization problem

min
x∈B
||Lx||p s.t. B = {x : argmin

y
||(AWkW

T
k )y − b||2}

has a unique minimizer, x∗, if and only if

N (AWkW
T
k ) ∩N (L) = {0}.

Proof. From [44], the constraint set in (4.1), B, can be written as

B = {x : x = (AWkW
T
k )†b+ Px′, x′ arbitrary},

where † represents the Moore-Penrose pseudoinverse [2], P = I − (AWkW
T
k )†(AWkW

T
k ) is

the projection onto N (AWkW
T
k ).

Let b̃ = (AWkW
T
k )†b. Solving the constrained minimization (4.1) is equivalent to solving

the following unconstrained problem

argmin
x′

||LPx′ − (−Lb̃)||p.

By Lemma 4.1, the above minimization problem has a unique solution if and only

if N (LP ) = {0}. This is true for P = I − (AWkW
T
k )†(AWkW

T
k ), the projection onto

N (AWkW
T
k ), if and only if N (AWkW

T
k ) ∩N (L) = {0}.

4.2.3 Algorithm

From the proof of Theorem 4.2, we can solve the constrained minimization problem (4.1) by

a two-step algorithm. We suppose the restored image contains the smooth components in Sk,
represented by Wkxlf, and the edge-correction components in the orthogonal complement

S⊥k , represented by W0xhf, so that the image, x, is represented as

x = Wkxlf +W0xhf.

Further, xlf and xhf can be computed independently as shown in Algorithm 3.
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Algorithm 3 Edge-Preserving Projection Algorithm
1: Compute the smooth component, Wkxlf, using the 2-norm minimization problem

xlf = argmin
x
||(AWk)x− b||2, (4.6)

2: Compute the correction component, W0xhf , using the p-norm minimization problem

xhf = argmin
x
||(LW0)x− (−LWkxlf)||p. (4.7)

3: The restored solution is
x = Wkxlf +W0xhf.

4.2.4 Choosing Projection Spaces

From Lemma 4.1, a sufficient condition for the uniqueness of x is that both AWk and LW0

have full column rank. Hence, (4.6) and (4.7) in Algorithm 3 have unique solutions xk
and x0, correspondingly. Theoretically, we can choose any subspace Sk and its orthogonal

compliment S⊥k with corresponding Wk and W0. In practice, however, in order to get an

efficient numerical implementation, we have to choose suitable basis vectors for Sk and its

orthogonal complement S⊥k with the following requirements:

• ||W T
k b|| > ||W T

k η|| and ||W T
0 b|| < ||W T

0 η||;

• AWk and LW0 have full column rank;

• there exist efficient numerical algorithms to compute the matrix-vector multiplications

for A, Wk, W0 and their transpose.

4.2.4.1 Singular Vectors

In [57, 60], Hansen et al. propose MTSVD and PP-TSVD algorithms using singular vectors

as the basis vectors. Therefore, it comes naturally to use singular vectors as the basis

vectors for Sk and S⊥k .

Theorem 4.3. Let L be the discrete approximation to the gradient operator, A be an n×n
blurring matrix, and assume Wk = [v1, v2, · · · , vk] where vi are the first k right singular

vectors of A with corresponding nonzero singular values σi 6= 0. Then the minimization

problem

min
x∈B
||Lx||p, s.t. B = {x : argmin

y
||(AWkW

T
k )y − b||2}

has a unique solution if 1 /∈ S⊥k .
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Proof. WkW
T
k 1 is the orthogonal projection of 1 onto subspace Sk, and since 1 /∈ S⊥k , there

exists {α1, α2, · · · , αk} which is not all zero, such that

WkW
T
k 1 =

k∑
i=1

αivi.

Hence,

AWkW
T
k 1 = A

(
k∑
i=1

αivi

)
=

k∑
i=1

αiσivi.

||AWkW
T
k 1||22 =

k∑
i=1

α2
i σ

2
i > 0 ⇒ AWkW

T
k 1 6= 0.

Therefore, 1 /∈ N (AWkW
T
k ), and N (AWkW

T
k )∩N (L) = {0} because N (L) = span{1}.

Note that for many blurring operators, A, Sk contains low-frequency components, and

S⊥k contains relatively high-frequency components. It is therefore likely that the projection

of 1 onto Sk is not zero.

4.2.4.2 Discrete Cosine Transform

Another suitable set of basis vectors for this approach are those associated with spectral

transforms such as the discrete sine or cosine transforms (DST or DCT) and their multi-

dimensional extensions [55, 58]. Recall for 1D m-by-1 signals, the DCT matrix is defined

as

C1d
ij =


1√
m

if i = 0√
2
m cos( (2j+1)iπ

2m ) if i > 0
for i, j = 0, 1, 2, · · · ,m− 1

The rows of the above matrix are orthonormal. The 2-dimensional DCT matrix is the Kro-

necker product of the above matrix [76], C = C1d⊗C1d with ⊗ defined as in Equation (4.2).

These basis vectors, which are the rows of the DCT matrix, have the desired spectral prop-

erties. The multiplications with Wk, W0, and their transposes are equivalent to computing

either a fast transform or its inverse, which can be implemented efficiently [58].

Theorem 4.4. Let L be the discrete approximation to the gradient operator, A ∈ Rn×n

be an blurring matrix, Wk = [w1, w2, · · · , wk] where wi are rows of the 2-D DCT matrix,

transposed. Then the minimization problem

min
x∈B
||Lx||p, s.t. B = {x : argmin

y
||(AWkW

T
k )y − b||2}

has a unique solution if and only if 1 /∈ N (A).
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Proof. If 1 /∈ N (A), from the definition of DCT matrix and Wk, we have AWkW
T
k 1 =

A1 6= 0. Because N (L) = span{1}, it is clear that N (AWkW
T
k ) ∩ N (L) = {0}. From

Theorem 4.2, Equation (4.1) has a unique solution.

On the other hand, if Equation (4.1) has a unique solution, from Theorem 4.2, {1} 6∈
N (AWkW

T
k ), which implies AWkW

T
k 1 = A1 6= 0, i.e. 1 /∈ N (A).

4.3 Computational Issues and Numerical Implementations

While the above analysis guarantees the existence and uniqueness of the solution to Equa-

tion (4.1), it is critical to develop efficient numerical implementation for large-scale prob-

lems, which must take the following three issues into account:

• choose the optimal dimension of the smooth subspace, Sk;

• choose suitable basis vectors for Sk and S⊥k ;

• solve the p-norm minimization problem (4.7) efficiently.

The optimal subspace dimension, k, can be computed with the methods mentioned in

Chapter 1. In our experiments in Section 4.4, we use the GCV method to select a suitable

k. The reason for this choice of GCV method is explained later in Section 4.4.

4.3.1 Choosing Projection Spaces

As discussed in previous section, singular vectors and the 2-D DCT matrix can be used as

the basis vectors for Sk and S⊥k . In this section, we will address numerical implementation

issues with these choices.

4.3.1.1 Kronecker Product of Singular Vectors

For large-scale deblurring problems, it is impossible to get Wk = [v1, · · · , vk] by computing

the SVD of the blurring matrix A without utilizing its structure. Fortunately, in most

realistic problems, the point spread function in Equation (1.6) is separable, or can be

approximated by a separable one [58, 66, 76, 81]. Hence, the blurring matrix A can be

represented as a Kronecker product defined as in Equation (4.2),

A ≈ A1 ⊗A2.

Given the SVDs of the two matrices A1 and A2,

A1 = U1S1V
T

1 , A2 = U2S2V
T

2 ,
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the SVD of the matrix A is (approximately)

A ≈ USV T = ((U1 ⊗ U2)Π)(ΠT (S1 ⊗ S2)Π)((V1 ⊗ V2)Π)T , (4.8)

where the permutation matrix Π ensures that the diagonal elements of ΠT (S1⊗S2)Π appear

in descending order. Then, the first k columns in (V1 ⊗ V2)Π consist of the basis vectors vi
in Sk, while S⊥k contains the rest of the singular vectors.

If the Kronecker product approximation is reasonably accurate, the solution of Equa-

tion (4.6), xlf, can be approximated using the explicit formula

xlf ≈
k∑
i=1

uTi b̃

si
vi, (4.9)

where the singular vectors are those in the approximation. However, if the Kronecker

product approximation is not accurate, we can solve (4.6) with Wk coming from the ap-

proximate iteratively. In our experiments, we use the above approximation (4.9) as xlf

in (4.6). Future research includes replacing the approximation by an iterative algorithm to

solve Equation (4.6) in the case of singular vectors as basis in Wk.

4.3.1.2 Discrete Cosine Transform

For the DCT basis, there is no such explicit solution formula for Equation (4.6). However,

the DCT of a m × m matrix can be implemented in an very efficient way using an FFT

algorithm that costs O(m log(m)) operations. The matrix-vector multiplications with Wk

and its transpose are equivalent to computing either the DCT or its inverse. Therefore,

it is unnecessary to form the matrix AWk explicitly to solve Equation (4.6). Some fast

implementation techniques can be found in [58].

4.3.2 Iteratively Reweighted Least Squares and AMG Preconditioner

The key to the success of the EPP Algorithm 3 is an efficient solver for the p-norm mini-

mization problem (4.7), where the iteratively reweighted least squares (IRLS) method [17,

72, 85, 117] is widely used. IRLS is identical to Newton’s method with line search. This

approach reduces the p-norm problem to the solution of a sequence of weighted least squares

problems, which can be solved using standard least squares algorithms. In [85], Osborne

shows that the IRLS method is convergent for 1 < p < 3.

For convenience, we briefly summarize the IRLS algorithm for solving the following

general p-norm problem,

argmin
x
||Âx− b̂||pp.
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Algorithm 4 Iterative Reweighted Least Squares

1: x̂0 = 0 (starting vector)
2: for j = 0, 1, 2, . . . do
3: rj = Âx̂j − b̂
4: Dj = diag(|rj |(p−2)/2)
5: yj = argmin

x
||Dj(Âx− (−rj))||2 (determined iteratively)

6: yj = 1
p−1y

j

7: αj = argmin
α

f(x̂j + αyj) (line search)

8: x̂j+1 = x̂j + αjyj

9: end for

Denote the jth iteration vector by x̂j , the diagonal matrix, Dj , is determined by jth residual

vector rj = Âx̂j − b̂

Dj = diag
(∣∣∣Âx̂j − b̂∣∣∣ p−2

2

)
.

The Newton search direction, except for a scaling, is identical to the solution of the weighted

least squares problem

argmin
x
||Dj(Âx− (−rj))||2. (4.10)

However, as the solution, x̂j , gets close to the optimal solution, x̂∗, for 1 < p < 2, the

diagonal elements in Dj increase to infinity (leading to ill-conditioning) and this tendency

increases as p approach 1. Hence, the matrix DjÂ in Equation (4.10) becomes increasingly

ill-conditioned as the iterations converge. It is very difficulty to find a suitable preconditioner

if trying to solve the least squares problem (4.10) directly.

Consider the corresponding normal equations,

ÂTD2
j Âx = −ÂTD2

j r
j = −ÂTD2

j (Âx̂
j − b̂)

Define qj+1 = x+ x̂j . The normal equations can be rewritten as

ÂTD2
j Âq

j+1 = ÂTD2
j b̂. (4.11)

The benefit of the above transformation is that the right-hand side in the new Equa-

tion (4.11) depends on iteration j only through Dj , which is known in jth iteration.1

Note that in Equation (4.7), Â = LW0 and b̂ = −LWkxlf, so Equation (4.11) can be

rewritten as

W T
0 (LTD2

jL)W0qj = −W T
0 (LTD2

jL)Wkxlf. (4.12)

1Thanks to Eric de Sturler for pointing this out.
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Since the condition number of the diagonal matrix D2
j increases as the algorithm converging

to the optimal minimizer, preconditioning is helpful in solving Equation (4.12). Recall

that L is a gradient operator. Hence, LTD2
jL represents a diffusion operator with large

discontinuities in the diffusion coefficient. As discussed in Chapter 1, AMG methods are

robust when the diffusion coefficients are discontinuous and vary widely [98, 107]. Therefore,

we employ a AMG method to develop a right preconditioner, M , to solve Equation (4.12).

The right preconditioned problem is

[W T
0 (LTD2

jL)W0M ]q̃j = −W T
0 (LTD2

jL)Wkxlf, (4.13)

where qj = Mq̃j . In our implementation, given a vector, z, the matrix-vector multiplication,

Mz, is implemented in three steps:

1. Multiply by W0, z̃ = W0z

2. Use AMG method to solve (LTD2
jL)u = z̃, get the intermediate vector, u.

3. Multiply by W T
0 , z = W T

0 u

Note the matrix W T
0 (LTD2

jL)W0 is symmetric positive definite if D2
j is positive definite.

Otherwise, the positive definiteness of D2
j is guaranteed by adding a small positive number,

δ, to the diagonal elements. The first thought is to solve Equation (4.13) with conjugate

gradient (CG) method [61]. However, this requires the preconditioner, M , is also symmetric

positive definite. In our experiments, we use Gauss-Seidel method in the pre- and post-

relaxations. Hence, the AMG residual reduction operator is not symmetric [98], and, thus,

the preconditioner is not symmetric. Therefore, we have to solve Equation (4.10) with

GMRES algorithm with right AMG preconditioner [100]. Future research includes replacing

the Gauss-Seidel iteration by red-black Gauss-Seidel in pre-relaxation and black-red Gauss-

Seidel in post-relaxation. In this case, the new AMG preconditioner will be symmetric.

Hence, it is possible to solve the preconditioned normal equations with the CG method.

4.4 Numerical Results

In this section, we present numerical experiments using the EPP algorithm and a comparison

with total variation deblurring.



61

(a) Gaussian PSF, ρ = 0, σ1 = σ2 = 5 (b) Out-of-focus PSF, r = 5

Figure 4.1: Point spread functions.

4.4.1 Image Quality Measures and PSFs

The “noise level” of a test image is defined as

noise level =
||η||2
||b||2

.

The quality of restored images are measured by the MSSIM (see Chapter 3), and relative

error, which is defined as

relative error =
||xrestored − x||2

||x||2
.

In the following experiments, the test images are generated with two common types of

PSFs: Gaussian blur and out-of-focus blur, with reflexive boundary condition.

• Gaussian PSF

pij = exp
(
−1

2
[
i−k
j−l
]T [ σ2

1 ρ2

ρ2 σ2
2

][
i−k
j−l
])

,

where the parameters σ1, σ2 and ρ determine the width and the orientation of the

PSF, (k, l) is the center pixel of the PSF. If ρ = 0, then the horizontal and vertical

components of the blur is separable. In Figure 4.1a, in this example, ρ = 0, σ1 = σ2 =

5.

• out-of-focus PSF

pij =

{
1
πr2

if(i− k)2 + (j − l)2 ≤ r2

0 otherwise
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where (k, l) is the center pixel of PSF, and r is the radius of the blur. In Figure 4.1b,

r = 5. The PSF is symmetric but not separable. Therefore, it is impossible to

efficiently compute an accurate SVD. In the numerical experiments shown later, the

use of approximate singular vectors dramatically degrades the restored image quality.

In order to compute the truncation parameter, k, we can either use Brent-NCP method

in Chapter 2, or use GCV method [36]. However, GCV method can be implemented very

efficiently if the singular vectors or DCT basis are known ahead of time, which is true in this

problem. Therefore, it is convenient to compute the truncation parameter, k, with GCV

method. The GCV functional is defined as

GCV(j) =

∑n
j+1(b̂)2

(n− j)2
, for j = 1, 2, · · · , n− 1,

where b̂ = uib̃ for singular vectors ui, or b̂ = DCT(b) for DCT basis, see the implementation

details in [36]. However, as noted in [36], the GCV method always provides a parameter that

is too large. Further, in our experiments, we assume the singular vectors are approximated

by a Kronecker product, which might be not accurate. Hence, we choose k to be equal to

2/3 of the output from GCV algorithm, where the factor of 2/3 is chosen by experiments.

Two stopping criteria, which are used in the numerical experiments, are chosen by trial-and-

error. Experimental results computed with smaller tolerances are qualitatively similar to

those computed with the following tolerances, but the computational time is much longer.

• Stopping criteria in IRLS Algorithm 4: 10−3.

• Stopping criteria in GMRES in Step 5 of Algorithm 4: 10−2.

4.4.2 Choosing Norm Parameter: p

In Algorithm 3, p can be any number between 1 and 2. For smaller p, the solution tends

to have sharper edges. On the other hand, as p gets closer to 1, the p-norm minimization

in Equation (4.7) becomes more ill-conditioned requiring more computational work.

Table 4.1 shows the results of the restored out-of-focus blurred images using DCT-EPP

algorithm. The first column shows test images which are commonly used in testing image

restoration algorithms: cameraman, clock, house, resolution. The size of these images are

256×256 pixels. The second column is the radius of blur, r, which varies from 5 to 15 pixels.

The noise levels in the test images, varying from 1% to 10%, are shown in the third column.

The fourth column presents the computed truncation parameter k. The relative errors and

MSSIMs of the restored images of Equation (4.6), xk, are shown in Columns 5 and 6. The
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relative errors and MSSIMs for the final restored images computed using different p-norms,

p = 1.01, 1.05, 1.1, 1.2, are shown in the last 8 columns.

As shown in the table, compared to the restored quality of xk, the final restored images,

x, have larger MSSIM and smaller relative errors. This means the correction step (4.7)

improves the restored image quality. This is also illustrated in Figures 4.2 and 4.3. The

corrections, x0, contain edge information. In terms of the p-norms, the restored images

computed using p = 1.01 are better than the results using larger p.

In the case of Gaussian blur, the restored results are shown in Table 4.2 and Figures 4.4

and 4.5. As in the above discussion for the case of out-of-focus blur, the correction step

Equation (4.7) in DCT-EPP algorithm with p = 1.01 improves the restored image quality.

For Guassian blur, we get similar conclusions when using singular vectors as the basis

vectors for Sk and S⊥k , see Table 4.4 and Figures 4.6 and 4.7. However, if the blur is out-of-

focus blur, which is not separable, the SVD-EPP algorithm performs poorly in terms of the

MSSIM measure and relative error, see Table 4.3. As discussed in previous section, if the

PSF is non-separable, the singular vectors of the blurring matrix, A, are approximated by

Kronecker product of two Toeplitz matrices. In the experiments, the smooth component,

xk, is approximated by the SVD solution (4.9). Compared to the separable Gaussian blur

case, the smooth components, xk, have larger relative error and smaller MSSIM measures,

see Table 4.3. Therefore, the final restored images are degraded in this step. Future research

includes replacing the direct approximation by solving Equation (4.6) with some iterative

algorithms, such as LSQR [87], LSMR [46] etc.

4.4.3 Comparison with Total Variation Deblurring

In this section, we compare the performance of the EPP algorithm with the TV deblurring

algorithm proposed in [63]. The TV method has been used to solve image restoration

problems since it was introduced by Rudin, Osher, and Fatemi [97]. The TV method has

the ability to preserve edges in the object image [30, 63, 97]. The objective function of TV

deblurring can be written as

argmin
x
||Ax− b||22 + λ||x||TV , (4.14)

where ||·||TV is the TV regularization term, ||x||TV =
∑n

i=1 |∇xi|2, and λ is an undetermined

positive regularization parameter. In [63], the authors propose an iterative algorithm for

Equation (4.14) by solving the following objective minimization problem

argmin
y

{
argmin

x
||Ax− b||22 + λ1||x− y||22

}
+ λ2||y||TV
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in two steps:

• Deblurring Step:

xdeblur = argmin
x
||Ax− b||22 + λ1||x||22.

• Denoising Step:

xtv = argmin
y
||xdeblur − y||22 + λ2||y||TV .

One drawback of above method is that, instead of one undetermined regularization

parameter, there are two, λ1 and λ2, to be determined. In [74], the authors use the GCV

method to find the optimal λ1 given a fixed λ2. The regularization parameters, however,

have to be updated in each iteration, which is time-consuming. In our experiments, we select

λ1 with the GCV method, and compute the solutions to the restoration problem with several

different λ2 in a reasonable range with small gaps. The optimal λ2 is chosen according to

the MSSIM measure, which requires the true images are known. In comparison, for the

EPP algorithm, the only truncation parameter, k, is computed using the GCV method.

As shown in Tables 4.5 and 4.6, the restored results by the TV method qualitatively have

similar image quality as those by EPP algorithm. However, the EPP algorithm outperforms

the TV method in the case of large levels of blur and noise. For small levels of blur and

noise, the TV method performs better in terms of MSSIM. However, as shown in the tables,

in the case of small noise level, the TV results have better image quality in terms of MSSIM

without the denoising step. In terms of relative error, most of the TV results have smaller

relative error without the denoising step, which raises the question about the effectiveness

of the denoising step.
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(a) blurred-noisy image (b) xk

(c) x0 (d) x

Figure 4.2: DCT-EPP restored cameraman image: out-of-focus blur, r = 5, noise level is
5%. The correction (c) clearly contains edge information, and the final restored image (d)
is visually better than (b).
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(a) blurred-noisy image (b) xk

(c) x0 (d) x

Figure 4.3: DCT-EPP restored cameraman image: out-of-focus blur, r = 15, noise level is
1%. The correction (c) clearly contains edge information, and the final restored image (d)
is visually better than (b).
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(a) blurred-noisy image (b) xk

(c) x0 (d) x

Figure 4.4: DCT-EPP restored cameraman image: Gaussian blur, σ = 5, noise level is 1%.
The correction (c) clearly contains edge information, and the final restored image (d) is
visually better than (b).
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(a) blurred-noisy image (b) xk

(c) x0 (d) x

Figure 4.5: DCT-EPP restored cameraman image: Gaussian blur, σ = 5, noise level is 5%.
The correction (c) clearly contains edge information, and the final restored image (d) is
visually better than (b).
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(a) blurred-noisy image (b) xk

(c) x0 (d) x

Figure 4.6: SVD-EPP restored cameraman image: Gaussian blur, σ = 5, noise level is 1%.
The correction (c) clearly contains edge information, and the final restored image (d) is
visually better than (b).
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(a) blurred-noisy image (b) xk

(c) x0 (d) x

Figure 4.7: SVD-EPP restored cameraman image: Gaussian blur, σ = 5, noise level is 5%.
The correction (c) clearly contains edge information, and the final restored image (d) is
visually better than (b).



71
T

ab
le

4.
1:

O
ut

-o
f-

fo
cu

s
P

SF
:

co
m

pa
ri

so
n

of
th

e
re

st
or

ed
im

ag
es

by
D

C
T

-E
P

P
A

lg
or

it
hm

3
w

it
h

di
ffe

re
nt

p
-n

or
m

s,
p

=

1.
01
,1
.0

5,
1.

1,
1.

2.
T

he
hi

gh
lig

ht
ed

nu
m

be
rs

sh
ow

th
e

ch
os

en
p
-n

or
m

th
at

ga
ve

th
e

hi
gh

es
t

va
lu

e
of

m
ea

su
re

(r
el

at
iv

e
er

ro
r

an
d

M
SS

IM
,

re
sp

ec
ti

ve
ly

)
fo

r
ea

ch
ex

pe
ri

m
en

t.
O

ne
ex

pe
ri

m
en

t
is

on
e

ro
w

of
th

e
ta

bl
e.

A
s

sh
ow

n
in

th
e

ta
bl

e,
as

ex
pe

ct
ed

,

p
=

1.
01

ga
ve

th
e

be
st

re
su

lt
s.

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(r

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2

ca
m

er
am

an

5
1

25
19

0.
14

8
0.

61
7

0.
13

8
0.

13
8

0.
13

8
0.

13
9

0.
69

4
0.

69
3

0.
69

1
0.

68
8

5
5

15
70

0.
16

0
0.

59
8

0.
15

3
0.

15
3

0.
15

3
0.

15
4

0.
65

6
0.

65
6

0.
65

4
0.

65
1

5
10

12
54

0.
16

8
0.

56
9

0.
16

1
0.

16
1

0.
16

1
0.

16
1

0.
62

9
0.

62
8

0.
62

7
0.

62
5

10
1

13
21

0.
17

7
0.

52
4

0.
16

2
0.

16
2

0.
16

3
0.

16
4

0.
61

9
0.

61
8

0.
61

6
0.

61
1

10
5

42
7

0.
20

4
0.

49
3

0.
19

5
0.

19
6

0.
19

6
0.

19
7

0.
55

6
0.

55
5

0.
55

4
0.

54
8

10
10

42
4

0.
20

5
0.

49
4

0.
19

7
0.

19
7

0.
19

7
0.

19
8

0.
55

3
0.

55
3

0.
55

1
0.

54
6

15
1

77
4

0.
19

5
0.

49
1

0.
17

8
0.

17
8

0.
17

9
0.

18
0

0.
58

6
0.

58
5

0.
58

1
0.

57
5

15
5

21
6

0.
23

1
0.

46
8

0.
22

4
0.

22
4

0.
22

4
0.

22
5

0.
51

4
0.

51
2

0.
51

1
0.

50
8

15
10

19
6

0.
23

5
0.

47
0

0.
22

7
0.

22
7

0.
22

7
0.

22
8

0.
51

2
0.

51
1

0.
51

0
0.

50
8

cl
oc

k

5
1

21
91

0.
08

1
0.

74
0

0.
07

5
0.

07
5

0.
07

5
0.

07
5

0.
79

7
0.

79
6

0.
79

5
0.

79
3

5
5

14
63

0.
09

4
0.

69
5

0.
08

9
0.

08
9

0.
08

9
0.

09
0

0.
73

9
0.

73
8

0.
73

7
0.

73
5

5
10

11
52

0.
10

3
0.

66
6

0.
09

9
0.

09
9

0.
09

9
0.

10
0

0.
69

9
0.

69
9

0.
69

8
0.

69
7

10
1

67
6

0.
11

3
0.

65
4

0.
10

9
0.

10
9

0.
10

9
0.

10
9

0.
69

4
0.

69
4

0.
69

3
0.

69
1

10
5

42
4

0.
12

1
0.

65
8

0.
11

8
0.

11
8

0.
11

8
0.

11
8

0.
67

9
0.

67
9

0.
67

8
0.

67
7

10
10

38
1

0.
12

4
0.

64
9

0.
12

0
0.

12
0

0.
12

0
0.

12
1

0.
67

0
0.

67
0

0.
67

0
0.

66
9

15
1

77
2

0.
11

3
0.

64
0

0.
10

6
0.

10
6

0.
10

6
0.

10
7

0.
69

2
0.

69
1

0.
69

0
0.

68
8

15
5

20
5

0.
13

2
0.

65
1

0.
13

0
0.

13
0

0.
13

0
0.

13
0

0.
66

6
0.

66
6

0.
66

6
0.

66
6

15
10

17
4

0.
13

5
0.

64
7

0.
13

2
0.

13
2

0.
13

2
0.

13
2

0.
66

0
0.

66
0

0.
65

9
0.

65
9

ho
us

e

5
1

24
28

0.
07

9
0.

69
3

0.
06

7
0.

06
7

0.
06

7
0.

06
8

0.
76

5
0.

76
4

0.
76

2
0.

75
9

5
5

14
96

0.
09

3
0.

66
0

0.
08

4
0.

08
5

0.
08

5
0.

08
5

0.
71

6
0.

71
5

0.
71

4
0.

71
1

5
10

12
72

0.
10

0
0.

63
7

0.
09

2
0.

09
2

0.
09

2
0.

09
3

0.
68

7
0.

68
7

0.
68

6
0.

68
3

C
on

ti
nu

ed
on

N
ex

t
P

ag
e.

..



72
T

ab
le

4.
1

–
C

on
ti

nu
ed

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(r

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2
10

1
60

1
0.

12
3

0.
59

6
0.

11
5

0.
11

5
0.

11
6

0.
11

6
0.

64
9

0.
64

9
0.

64
7

0.
64

3
10

5
43

9
0.

13
7

0.
57

8
0.

13
0

0.
13

1
0.

13
0

0.
13

1
0.

60
9

0.
60

8
0.

61
0

0.
60

8
10

10
38

5
0.

14
1

0.
57

5
0.

13
6

0.
13

6
0.

13
6

0.
13

7
0.

60
4

0.
60

3
0.

60
3

0.
60

0
15

1
75

2
0.

12
4

0.
58

5
0.

11
0

0.
11

0
0.

11
0

0.
11

2
0.

65
1

0.
65

0
0.

64
9

0.
64

4
15

5
19

8
0.

15
8

0.
56

5
0.

15
3

0.
15

3
0.

15
3

0.
15

4
0.

58
7

0.
58

7
0.

58
6

0.
58

5
15

10
18

7
0.

16
1

0.
56

2
0.

15
6

0.
15

6
0.

15
7

0.
15

7
0.

58
0

0.
57

9
0.

57
9

0.
57

8

re
so

lu
ti

on

5
1

25
60

0.
16

8
0.

50
1

0.
15

7
0.

15
7

0.
15

8
0.

15
8

0.
66

0
0.

65
9

0.
65

3
0.

64
5

5
5

16
16

0.
19

6
0.

47
6

0.
18

8
0.

18
8

0.
18

8
0.

18
9

0.
60

1
0.

59
9

0.
59

7
0.

59
1

5
10

15
39

0.
20

2
0.

44
8

0.
19

6
0.

19
6

0.
19

7
0.

19
7

0.
53

6
0.

53
4

0.
53

1
0.

52
8

10
1

81
0

0.
22

6
0.

40
3

0.
22

1
0.

22
1

0.
22

1
0.

22
1

0.
50

6
0.

50
5

0.
50

2
0.

50
0

10
5

56
9

0.
24

8
0.

46
4

0.
24

3
0.

24
3

0.
24

3
0.

24
3

0.
52

2
0.

52
1

0.
51

9
0.

51
5

10
10

42
6

0.
25

3
0.

45
4

0.
24

9
0.

24
9

0.
24

9
0.

25
0

0.
50

3
0.

50
3

0.
50

2
0.

49
8

15
1

81
0

0.
23

5
0.

40
0

0.
22

7
0.

22
7

0.
22

7
0.

22
8

0.
49

9
0.

49
8

0.
49

5
0.

49
0

15
5

53
8

0.
25

0
0.

39
6

0.
24

5
0.

24
5

0.
24

6
0.

24
6

0.
45

7
0.

45
7

0.
45

5
0.

45
0

15
10

29
7

0.
25

8
0.

41
0

0.
25

6
0.

25
6

0.
25

6
0.

25
6

0.
45

9
0.

45
8

0.
45

7
0.

45
4



73
T

ab
le

4.
2:

G
au

ss
ia

n
P

SF
:

co
m

pa
ri

so
n

of
th

e
re

st
or

ed
im

ag
es

by
D

C
T

-E
P

P
A

lg
or

it
hm

3
w

it
h

di
ffe

re
nt

p
-n

or
m

s,
p

=

1.
01
,1
.0

5,
1.

1,
1.

2.
T

he
hi

gh
lig

ht
ed

nu
m

be
rs

sh
ow

th
e

ch
os

en
p
-n

or
m

th
at

ga
ve

th
e

hi
gh

es
t

va
lu

e
of

m
ea

su
re

(r
el

at
iv

e
er

ro
r

an
d

M
SS

IM
,

re
sp

ec
ti

ve
ly

)
fo

r
ea

ch
ex

pe
ri

m
en

t.
O

ne
ex

pe
ri

m
en

t
is

on
e

ro
w

of
th

e
ta

bl
e.

A
s

sh
ow

n
in

th
e

ta
bl

e,
as

ex
pe

ct
ed

,

p
=

1.
01

ga
ve

th
e

be
st

re
su

lt
s.

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(σ

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2

ca
m

er
am

an

5
1

11
18

0.
17

0
0.

57
3

0.
16

2
0.

16
2

0.
16

2
0.

16
3

0.
64

2
0.

64
2

0.
64

0
0.

63
5

5
5

73
9

0.
18

5
0.

52
9

0.
17

6
0.

17
6

0.
17

7
0.

17
7

0.
59

7
0.

59
6

0.
59

4
0.

58
9

5
10

59
3

0.
19

4
0.

51
9

0.
18

6
0.

18
6

0.
18

6
0.

18
7

0.
57

4
0.

57
3

0.
57

2
0.

56
9

10
1

33
8

0.
21

3
0.

48
8

0.
20

4
0.

20
5

0.
20

5
0.

20
5

0.
54

6
0.

54
5

0.
54

3
0.

53
9

10
5

25
0

0.
22

6
0.

46
7

0.
21

8
0.

21
8

0.
21

9
0.

21
9

0.
51

2
0.

51
1

0.
51

0
0.

50
6

10
10

17
8

0.
23

9
0.

48
0

0.
23

1
0.

23
1

0.
23

1
0.

23
2

0.
51

9
0.

51
8

0.
51

7
0.

51
4

15
1

16
6

0.
24

2
0.

47
6

0.
23

4
0.

23
4

0.
23

4
0.

23
5

0.
51

7
0.

51
6

0.
51

4
0.

51
2

15
5

13
2

0.
24

8
0.

47
6

0.
24

0
0.

24
0

0.
24

0
0.

24
1

0.
51

3
0.

51
2

0.
51

1
0.

50
9

15
10

12
3

0.
25

1
0.

47
1

0.
24

3
0.

24
3

0.
24

3
0.

24
4

0.
51

3
0.

51
2

0.
51

1
0.

50
7

cl
oc

k

5
1

11
06

0.
10

2
0.

68
6

0.
09

8
0.

09
8

0.
09

8
0.

09
9

0.
72

8
0.

72
8

0.
72

7
0.

72
4

5
5

64
6

0.
11

5
0.

66
4

0.
11

2
0.

11
2

0.
11

2
0.

11
2

0.
68

8
0.

68
8

0.
68

8
0.

68
6

5
10

50
1

0.
12

0
0.

64
9

0.
11

6
0.

11
6

0.
11

6
0.

11
7

0.
67

3
0.

67
3

0.
67

2
0.

67
1

10
1

30
0

0.
12

6
0.

65
5

0.
12

3
0.

12
3

0.
12

3
0.

12
3

0.
67

2
0.

67
1

0.
67

1
0.

67
0

10
5

20
0

0.
13

3
0.

65
0

0.
13

0
0.

13
0

0.
13

0
0.

13
0

0.
66

5
0.

66
5

0.
66

5
0.

66
4

10
10

15
2

0.
13

6
0.

64
7

0.
13

4
0.

13
4

0.
13

4
0.

13
4

0.
65

8
0.

65
8

0.
65

8
0.

65
8

15
1

14
6

0.
13

6
0.

64
6

0.
13

3
0.

13
3

0.
13

3
0.

13
4

0.
65

8
0.

65
8

0.
65

8
0.

65
7

15
5

10
9

0.
14

0
0.

64
3

0.
13

8
0.

13
8

0.
13

8
0.

13
8

0.
65

2
0.

65
2

0.
65

2
0.

65
1

15
10

78
0.

14
5

0.
64

2
0.

14
2

0.
14

2
0.

14
2

0.
14

2
0.

64
9

0.
64

9
0.

64
9

0.
64

8

ho
us

e

5
1

10
62

0.
10

6
0.

63
6

0.
09

7
0.

09
7

0.
09

8
0.

09
8

0.
69

0
0.

68
9

0.
68

8
0.

68
5

5
5

71
8

0.
11

8
0.

60
5

0.
11

2
0.

11
2

0.
11

2
0.

11
3

0.
65

0
0.

64
9

0.
64

8
0.

64
5

5
10

51
9

0.
13

2
0.

57
9

0.
12

6
0.

12
6

0.
12

6
0.

12
6

0.
61

4
0.

61
4

0.
61

3
0.

61
0

C
on

ti
nu

ed
on

N
ex

t
P

ag
e.

..



74
T

ab
le

4.
2

–
C

on
ti

nu
ed

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(σ

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2
10

1
35

6
0.

14
3

0.
57

7
0.

13
7

0.
13

8
0.

13
8

0.
13

8
0.

60
3

0.
60

3
0.

60
2

0.
60

0
10

5
23

6
0.

15
4

0.
56

5
0.

14
9

0.
15

0
0.

15
0

0.
15

0
0.

58
7

0.
58

7
0.

58
6

0.
58

5
10

10
19

0
0.

16
1

0.
55

9
0.

15
6

0.
15

6
0.

15
6

0.
15

6
0.

57
9

0.
57

9
0.

57
9

0.
57

7
15

1
16

2
0.

16
6

0.
56

1
0.

16
1

0.
16

1
0.

16
2

0.
16

2
0.

57
6

0.
57

5
0.

57
5

0.
57

4
15

5
10

4
0.

18
1

0.
56

4
0.

17
7

0.
17

8
0.

17
8

0.
17

8
0.

57
4

0.
57

4
0.

57
3

0.
57

3
15

10
90

0.
18

4
0.

56
6

0.
18

1
0.

18
1

0.
18

1
0.

18
1

0.
57

5
0.

57
5

0.
57

5
0.

57
4

re
so

lu
ti

on

5
1

13
50

0.
20

8
0.

46
5

0.
20

2
0.

20
2

0.
20

2
0.

20
3

0.
56

5
0.

56
4

0.
56

1
0.

55
2

5
5

93
2

0.
23

3
0.

42
1

0.
22

9
0.

22
9

0.
22

9
0.

22
9

0.
49

0
0.

48
9

0.
48

7
0.

48
1

5
10

75
4

0.
24

2
0.

42
4

0.
23

9
0.

23
9

0.
23

9
0.

23
9

0.
47

8
0.

47
7

0.
47

6
0.

47
2

10
1

33
0

0.
25

7
0.

46
6

0.
25

5
0.

25
5

0.
25

5
0.

25
5

0.
50

2
0.

50
1

0.
50

1
0.

49
9

10
5

21
4

0.
26

3
0.

47
1

0.
26

1
0.

26
1

0.
26

1
0.

26
2

0.
49

4
0.

49
3

0.
49

3
0.

49
2

10
10

16
7

0.
26

7
0.

47
1

0.
26

5
0.

26
5

0.
26

5
0.

26
5

0.
49

2
0.

49
2

0.
49

1
0.

49
0

15
1

16
0

0.
26

7
0.

47
8

0.
26

5
0.

26
5

0.
26

5
0.

26
6

0.
50

6
0.

50
5

0.
50

4
0.

50
3

15
5

11
8

0.
27

4
0.

47
8

0.
27

1
0.

27
1

0.
27

1
0.

27
1

0.
49

9
0.

49
9

0.
49

8
0.

49
7

15
10

97
0.

27
7

0.
47

3
0.

27
3

0.
27

3
0.

27
3

0.
27

4
0.

49
0

0.
48

9
0.

48
9

0.
48

8



75
T

ab
le

4.
3:

O
ut

-o
f-

fo
cu

s
P

SF
:

co
m

pa
ri

so
n

of
th

e
re

st
or

ed
im

ag
es

by
SV

D
-E

P
P

A
lg

or
it

hm
3

w
it

h
di

ffe
re

nt
p
-n

or
m

s,
p

=

1.
01
,1
.0

5,
1.

1,
1.

2.
T

he
hi

gh
lig

ht
ed

nu
m

be
rs

sh
ow

th
e

co
m

pu
te

d
sm

oo
th

co
m

po
ne

nt
s,
x

lf
.

C
om

pa
re

d
to

T
ab

le
s

4.
1,

4.
2

an
d

4.
4,

in
te

rm
s

of
bo

th
re

la
ti

ve
er

ro
r

an
d

M
SS

IM
,

th
e

qu
al

it
y

of
x

lf
is

w
or

se
.

T
he

po
ss

ib
le

re
as

on
s

ar
e

di
sc

us
se

d
in

Se
ct

io
n

4.
3.

1.
1.

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(r

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2

ca
m

er
am

an

5
1

56
46

0.
23

9
0.

44
9

0.
24

3
0.

24
2

0.
24

2
0.

24
2

0.
52

3
0.

52
2

0.
52

1
0.

51
9

5
5

24
26

0.
22

1
0.

45
8

0.
22

2
0.

22
2

0.
22

2
0.

22
2

0.
51

5
0.

51
4

0.
51

4
0.

51
2

5
10

12
38

0.
22

0
0.

49
2

0.
21

3
0.

21
3

0.
21

3
0.

21
2

0.
56

7
0.

56
6

0.
56

6
0.

56
4

10
1

26
24

0.
26

4
0.

35
7

0.
26

8
0.

26
7

0.
26

7
0.

26
7

0.
41

0
0.

41
0

0.
40

9
0.

40
8

10
5

83
2

0.
23

5
0.

45
2

0.
23

5
0.

23
5

0.
23

4
0.

23
4

0.
50

9
0.

50
8

0.
50

7
0.

50
5

10
10

44
3

0.
23

5
0.

45
4

0.
23

1
0.

23
1

0.
23

1
0.

23
1

0.
52

0
0.

51
9

0.
51

7
0.

51
3

15
1

21
50

0.
32

0
0.

20
7

0.
32

4
0.

32
4

0.
32

4
0.

32
3

0.
23

7
0.

23
7

0.
23

7
0.

23
5

15
5

50
4

0.
25

5
0.

42
4

0.
25

2
0.

25
2

0.
25

2
0.

25
2

0.
48

1
0.

48
0

0.
47

9
0.

47
5

15
10

33
8

0.
25

1
0.

42
7

0.
24

7
0.

24
7

0.
24

7
0.

24
7

0.
47

8
0.

47
7

0.
47

6
0.

47
4

cl
oc

k

5
1

49
32

0.
13

5
0.

52
0

0.
13

5
0.

13
5

0.
13

4
0.

13
4

0.
59

0
0.

58
9

0.
58

9
0.

58
7

5
5

14
89

0.
13

1
0.

59
3

0.
12

4
0.

12
4

0.
12

4
0.

12
4

0.
67

1
0.

67
1

0.
67

1
0.

67
0

5
10

13
11

0.
13

4
0.

57
6

0.
12

4
0.

12
4

0.
12

4
0.

12
4

0.
64

2
0.

64
2

0.
64

2
0.

64
1

10
1

26
29

0.
15

5
0.

41
9

0.
15

6
0.

15
6

0.
15

6
0.

15
5

0.
47

1
0.

47
1

0.
47

1
0.

46
9

10
5

77
7

0.
14

0
0.

54
7

0.
13

8
0.

13
8

0.
13

8
0.

13
8

0.
59

9
0.

59
8

0.
59

8
0.

59
6

10
10

46
7

0.
13

8
0.

60
1

0.
13

3
0.

13
3

0.
13

3
0.

13
3

0.
65

1
0.

65
1

0.
65

0
0.

64
9

15
1

20
68

0.
20

1
0.

23
8

0.
20

5
0.

20
5

0.
20

5
0.

20
5

0.
28

0
0.

28
0

0.
27

9
0.

27
6

15
5

41
0

0.
14

5
0.

58
6

0.
14

3
0.

14
3

0.
14

3
0.

14
3

0.
62

3
0.

62
3

0.
62

3
0.

62
2

15
10

26
1

0.
14

5
0.

60
3

0.
14

3
0.

14
3

0.
14

3
0.

14
3

0.
63

9
0.

63
9

0.
64

0
0.

63
9

ho
us

e

5
1

48
65

0.
13

8
0.

56
2

0.
13

8
0.

13
8

0.
13

8
0.

13
8

0.
62

1
0.

62
1

0.
62

0
0.

61
9

5
5

17
94

0.
13

5
0.

57
5

0.
13

1
0.

13
1

0.
13

1
0.

13
1

0.
63

2
0.

63
3

0.
63

2
0.

63
1

5
10

11
98

0.
14

2
0.

56
4

0.
13

0
0.

13
0

0.
13

0
0.

13
0

0.
62

7
0.

62
7

0.
62

6
0.

62
5

10
1

24
91

0.
16

6
0.

44
9

0.
16

6
0.

16
6

0.
16

6
0.

16
5

0.
50

3
0.

50
3

0.
50

2
0.

49
9

C
on

ti
nu

ed
on

N
ex

t
P

ag
e.

..



76
T

ab
le

4.
3

–
C

on
ti

nu
ed

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(r

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2
10

5
67

4
0.

15
3

0.
52

9
0.

15
0

0.
15

0
0.

15
0

0.
15

0
0.

57
6

0.
57

5
0.

57
4

0.
57

3
10

10
46

7
0.

15
3

0.
54

7
0.

14
8

0.
14

8
0.

14
9

0.
14

9
0.

59
0

0.
58

9
0.

58
9

0.
58

7
15

1
18

88
0.

21
2

0.
32

0
0.

21
5

0.
21

5
0.

21
5

0.
21

4
0.

35
9

0.
35

9
0.

35
8

0.
35

6
15

5
43

6
0.

16
4

0.
53

9
0.

16
3

0.
16

3
0.

16
3

0.
16

3
0.

56
9

0.
56

9
0.

56
8

0.
56

7
15

10
23

6
0.

16
9

0.
54

3
0.

16
7

0.
16

7
0.

16
7

0.
16

7
0.

57
0

0.
56

9
0.

56
9

0.
56

8

re
so

lu
ti

on

5
1

65
32

0.
26

9
0.

28
9

0.
27

1
0.

27
1

0.
27

0
0.

27
0

0.
39

7
0.

39
6

0.
39

3
0.

39
0

5
5

26
64

0.
25

9
0.

28
2

0.
26

0
0.

26
0

0.
26

0
0.

26
0

0.
37

3
0.

37
2

0.
37

0
0.

36
6

5
10

18
21

0.
25

3
0.

33
1

0.
25

1
0.

25
1

0.
25

1
0.

25
1

0.
41

7
0.

41
6

0.
41

5
0.

41
3

10
1

37
41

0.
30

5
0.

17
8

0.
31

0
0.

31
0

0.
31

0
0.

30
9

0.
23

3
0.

23
2

0.
23

1
0.

22
7

10
5

10
36

0.
27

7
0.

27
5

0.
27

5
0.

27
5

0.
27

5
0.

27
5

0.
37

8
0.

37
7

0.
37

5
0.

37
0

10
10

86
8

0.
27

7
0.

26
5

0.
27

8
0.

27
8

0.
27

8
0.

27
8

0.
35

1
0.

35
0

0.
34

7
0.

34
5

15
1

25
42

0.
33

3
0.

12
3

0.
33

9
0.

33
8

0.
33

8
0.

33
7

0.
16

5
0.

16
4

0.
16

3
0.

16
0

15
5

74
6

0.
28

3
0.

24
5

0.
28

3
0.

28
3

0.
28

3
0.

28
3

0.
32

5
0.

32
4

0.
32

3
0.

31
7

15
10

53
1

0.
27

7
0.

29
1

0.
27

4
0.

27
4

0.
27

4
0.

27
4

0.
35

7
0.

35
5

0.
35

4
0.

35
1



77
T

ab
le

4.
4:

G
au

ss
ia

n
P

SF
:

co
m

pa
ri

so
n

of
th

e
re

st
or

ed
im

ag
es

by
SV

D
-E

P
P

A
lg

or
it

hm
3

w
it

h
di

ffe
re

nt
p
-n

or
m

s,
p

=

1.
01
,1
.0

5,
1.

1,
1.

2.
T

he
P

SF
is

G
au

ss
ia

n
bl

ur
.

T
he

hi
gh

lig
ht

ed
nu

m
be

rs
sh

ow
th

e
ch

os
en

p
-n

or
m

th
at

ga
ve

th
e

hi
gh

es
t

va
lu

e

of
m

ea
su

re
(r

el
at

iv
e

er
ro

r
an

d
M

SS
IM

,
re

sp
ec

ti
ve

ly
)

fo
r

ea
ch

ex
pe

ri
m

en
t.

O
ne

ex
pe

ri
m

en
t

is
on

e
ro

w
of

th
e

ta
bl

e.
A

s
sh

ow
n

in

th
e

ta
bl

e,
as

ex
pe

ct
ed

,
p

=
1.

01
ga

ve
th

e
be

st
re

su
lt

s.

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(σ

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2

ca
m

er
am

an

5
1

11
19

0.
17

0
0.

57
4

0.
16

2
0.

16
2

0.
16

2
0.

16
3

0.
64

2
0.

64
1

0.
64

0
0.

63
7

5
5

74
0

0.
18

5
0.

52
9

0.
17

6
0.

17
6

0.
17

6
0.

17
7

0.
59

7
0.

59
6

0.
59

5
0.

59
1

5
10

59
4

0.
19

4
0.

51
9

0.
18

6
0.

18
6

0.
18

6
0.

18
7

0.
57

4
0.

57
3

0.
57

2
0.

56
8

10
1

33
9

0.
21

3
0.

49
1

0.
20

4
0.

20
4

0.
20

5
0.

20
5

0.
54

8
0.

54
7

0.
54

6
0.

54
2

10
5

25
0

0.
22

6
0.

47
3

0.
21

9
0.

21
9

0.
22

0
0.

22
0

0.
51

8
0.

51
7

0.
51

5
0.

51
2

10
10

18
0

0.
23

8
0.

47
5

0.
23

1
0.

23
1

0.
23

1
0.

23
2

0.
51

4
0.

51
3

0.
51

2
0.

50
8

15
1

16
6

0.
24

2
0.

47
6

0.
23

4
0.

23
4

0.
23

4
0.

23
5

0.
51

7
0.

51
6

0.
51

4
0.

51
2

15
5

13
4

0.
24

8
0.

48
0

0.
24

0
0.

24
0

0.
24

0
0.

24
1

0.
51

6
0.

51
5

0.
51

4
0.

51
1

15
10

12
4

0.
25

1
0.

47
2

0.
24

3
0.

24
3

0.
24

3
0.

24
4

0.
51

1
0.

51
0

0.
50

9
0.

50
7

cl
oc

k

5
1

11
06

0.
10

2
0.

68
7

0.
09

8
0.

09
8

0.
09

8
0.

09
8

0.
72

8
0.

72
8

0.
72

7
0.

72
6

5
5

64
6

0.
11

5
0.

66
4

0.
11

2
0.

11
2

0.
11

2
0.

11
2

0.
68

8
0.

68
8

0.
68

8
0.

68
6

5
10

50
2

0.
12

0
0.

64
9

0.
11

6
0.

11
6

0.
11

6
0.

11
7

0.
67

3
0.

67
2

0.
67

2
0.

67
1

10
1

30
0

0.
12

6
0.

65
5

0.
12

3
0.

12
3

0.
12

3
0.

12
3

0.
67

2
0.

67
1

0.
67

1
0.

67
0

10
5

20
2

0.
13

3
0.

65
0

0.
13

0
0.

13
0

0.
13

0
0.

13
0

0.
66

5
0.

66
5

0.
66

5
0.

66
4

10
10

14
6

0.
13

7
0.

64
6

0.
13

4
0.

13
4

0.
13

4
0.

13
4

0.
65

7
0.

65
7

0.
65

7
0.

65
6

15
1

14
6

0.
13

6
0.

64
6

0.
13

3
0.

13
3

0.
13

3
0.

13
4

0.
65

8
0.

65
8

0.
65

8
0.

65
8

15
5

10
9

0.
14

0
0.

64
3

0.
13

8
0.

13
8

0.
13

8
0.

13
8

0.
65

2
0.

65
2

0.
65

2
0.

65
1

15
10

78
0.

14
5

0.
64

2
0.

14
2

0.
14

2
0.

14
2

0.
14

2
0.

64
9

0.
64

9
0.

64
9

0.
64

9

ho
us

e

5
1

10
63

0.
10

6
0.

63
6

0.
09

7
0.

09
7

0.
09

8
0.

09
8

0.
69

0
0.

68
9

0.
68

8
0.

68
5

5
5

71
9

0.
11

8
0.

60
6

0.
11

2
0.

11
2

0.
11

2
0.

11
2

0.
65

0
0.

65
0

0.
64

9
0.

64
6

5
10

52
0

0.
13

1
0.

57
9

0.
12

6
0.

12
6

0.
12

6
0.

12
6

0.
61

4
0.

61
4

0.
61

3
0.

61
0

C
on

ti
nu

ed
on

N
ex

t
P

ag
e.

..



78
T

ab
le

4.
4

–
C

on
ti

nu
ed

P
SF

no
is

e
le

ve
l

k
x

lf
x

im
ag

es
(σ

)
(%

)
re

la
ti

ve
M

SS
IM

re
la

ti
ve

er
ro

r
M

SS
IM

er
ro

r
1.

01
1.

05
1.

1
1.

2
1.

01
1.

05
1.

1
1.

2
10

1
35

6
0.

14
3

0.
57

6
0.

13
7

0.
13

8
0.

13
8

0.
13

8
0.

60
3

0.
60

2
0.

60
2

0.
60

0
10

5
23

6
0.

15
4

0.
56

5
0.

14
9

0.
15

0
0.

15
0

0.
15

0
0.

58
7

0.
58

7
0.

58
6

0.
58

5
10

10
19

0
0.

16
1

0.
55

9
0.

15
5

0.
15

5
0.

15
6

0.
15

6
0.

58
1

0.
58

1
0.

58
0

0.
57

8
15

1
16

2
0.

16
6

0.
56

1
0.

16
1

0.
16

1
0.

16
2

0.
16

2
0.

57
6

0.
57

5
0.

57
5

0.
57

4
15

5
11

5
0.

17
7

0.
56

3
0.

17
2

0.
17

2
0.

17
3

0.
17

3
0.

57
6

0.
57

6
0.

57
6

0.
57

5
15

10
90

0.
18

4
0.

56
6

0.
18

1
0.

18
1

0.
18

1
0.

18
1

0.
57

5
0.

57
5

0.
57

5
0.

57
4

re
so

lu
ti

on

5
1

13
16

0.
20

8
0.

46
0

0.
20

2
0.

20
2

0.
20

2
0.

20
3

0.
56

6
0.

56
4

0.
56

1
0.

55
3

5
5

93
4

0.
23

3
0.

42
7

0.
22

9
0.

22
9

0.
22

9
0.

22
9

0.
49

0
0.

48
9

0.
48

8
0.

48
3

5
10

75
4

0.
24

2
0.

42
4

0.
23

9
0.

23
9

0.
23

9
0.

23
9

0.
47

8
0.

47
7

0.
47

6
0.

47
2

10
1

32
9

0.
25

7
0.

46
6

0.
25

5
0.

25
5

0.
25

5
0.

25
5

0.
50

2
0.

50
1

0.
50

0
0.

49
8

10
5

21
4

0.
26

3
0.

47
1

0.
26

1
0.

26
1

0.
26

1
0.

26
2

0.
49

4
0.

49
3

0.
49

3
0.

49
2

10
10

17
0

0.
26

6
0.

46
3

0.
26

3
0.

26
3

0.
26

3
0.

26
3

0.
49

1
0.

49
1

0.
49

0
0.

48
9

15
1

16
1

0.
26

7
0.

47
9

0.
26

5
0.

26
5

0.
26

5
0.

26
6

0.
50

5
0.

50
5

0.
50

4
0.

50
3

15
5

11
8

0.
27

4
0.

47
7

0.
27

1
0.

27
1

0.
27

1
0.

27
2

0.
49

9
0.

49
9

0.
49

8
0.

49
7

15
10

98
0.

27
7

0.
47

3
0.

27
3

0.
27

3
0.

27
3

0.
27

4
0.

48
9

0.
48

9
0.

48
9

0.
48

8



79

Table 4.5: Out-of-focus PSF: comparison of the restored images by the TV Algorithm with

different regularization parameters λ1 and λ2. The highlighted the numbers show the defects

of the TV deblurring in Section 4.4.3, i.e. the results of first step solution xlf are better

than the final restored solution xtv. Compare to the restored results by the proposed EPP

method in Tables 4.1, 4.2 and 4.4, the TV deblurring performs better in the small blurring

case, for example, r = 5 in PSF. However, if the blurring is large, such as r = 10, 15, the

EPP restored results in Tables 4.1, 4.2 and 4.4 are better.

images PSF noise level λ1 λ2 relative error MSSIM
(r) (%) xlf xtv xlf xtv

cameraman

5 1 0.079 0.5 0.138 0.150 0.700 0.677
5 5 0.113 0.5 0.145 0.153 0.612 0.656
5 10 0.222 0.5 0.154 0.159 0.566 0.626
10 1 0.047 0.5 0.165 0.172 0.612 0.606
10 5 0.092 0.5 0.176 0.180 0.544 0.571
10 10 0.097 0.5 0.188 0.187 0.422 0.495
15 1 0.033 0.5 0.179 0.184 0.563 0.562
15 5 0.069 0.5 0.192 0.195 0.501 0.520
15 10 0.091 0.5 0.206 0.205 0.422 0.462

clock

5 1 0.089 0.5 0.074 0.083 0.799 0.788
5 5 0.146 0.5 0.081 0.086 0.682 0.755
5 10 0.262 0.5 0.090 0.092 0.610 0.707
10 1 0.064 0.5 0.097 0.102 0.732 0.725
10 5 0.097 0.5 0.104 0.107 0.636 0.676
10 10 0.150 0.5 0.112 0.112 0.561 0.627
15 1 0.033 0.5 0.103 0.106 0.702 0.702
15 5 0.071 0.5 0.113 0.114 0.613 0.646
15 10 0.150 0.5 0.122 0.122 0.583 0.617

house

5 1 0.082 0.5 0.072 0.082 0.758 0.738
5 5 0.134 0.5 0.081 0.086 0.677 0.714
5 10 0.214 0.5 0.090 0.092 0.612 0.684
10 1 0.067 0.5 0.101 0.107 0.680 0.669
10 5 0.081 0.5 0.109 0.111 0.602 0.634
10 10 0.145 0.5 0.119 0.120 0.549 0.596
15 1 0.035 0.5 0.111 0.115 0.653 0.648
15 5 0.088 0.5 0.125 0.127 0.595 0.608
15 10 0.112 0.5 0.138 0.138 0.528 0.559

resolution

5 1 0.078 0.5 0.156 0.175 0.667 0.660
5 5 0.111 0.5 0.165 0.180 0.531 0.619
5 10 0.122 0.5 0.173 0.183 0.392 0.548
10 1 0.060 0.5 0.198 0.209 0.573 0.569

Continued on Next Page. . .
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Table 4.5 – Continued

images PSF noise level λ1 λ2 relative error MSSIM
(r) (%) xlf xtv xlf xtv

10 5 0.069 0.5 0.204 0.213 0.466 0.517
10 10 0.095 0.5 0.215 0.221 0.376 0.452
15 1 0.030 0.5 0.214 0.222 0.527 0.531
15 5 0.052 0.5 0.225 0.231 0.440 0.477
15 10 0.064 0.5 0.235 0.237 0.337 0.397
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Table 4.6: Gaussian PSF: comparison of the restored images by the TV Algorithm with

different regularization parameters λ1 and λ2. The highlighted the numbers show the defects

of the TV deblurring in Section 4.4.3, i.e. the results of first step solution xlf are better

than the final restored solution xtv. Compare to the restored results by the proposed EPP

method in Tables 4.1, 4.2 and 4.4, the TV deblurring performs better in the small blurring

case, for example, σ = 5 in PSF. However, if the blurring is large, such as σ = 10, 15, the

EPP restored results in Tables 4.1, 4.2 and 4.4 are better.

images PSF noise level λ1 λ2 relative error MSSIM
(σ) (%) xlf xtv xlf xtv

cameraman

5 1 0.020 0.5 0.165 0.167 0.621 0.624
5 5 0.076 0.5 0.174 0.176 0.577 0.587
5 10 0.128 0.5 0.181 0.182 0.543 0.559
10 1 0.010 0.5 0.204 0.205 0.522 0.528
10 5 0.034 0.5 0.212 0.213 0.502 0.507
10 10 0.090 0.5 0.218 0.219 0.490 0.496
15 1 0.007 0.5 0.232 0.232 0.485 0.489
15 5 0.020 0.5 0.236 0.236 0.476 0.479
15 10 0.025 0.5 0.249 0.249 0.450 0.455

clock

5 1 0.021 0.5 0.096 0.098 0.731 0.730
5 5 0.107 0.5 0.104 0.106 0.686 0.693
5 10 0.178 0.5 0.110 0.110 0.637 0.654
10 1 0.017 0.5 0.122 0.123 0.667 0.668
10 5 0.066 0.5 0.126 0.126 0.654 0.656
10 10 0.132 0.5 0.129 0.129 0.643 0.645
15 1 0.012 0.5 0.133 0.133 0.655 0.655
15 5 0.038 0.5 0.136 0.136 0.643 0.644
15 10 0.111 0.5 0.138 0.138 0.639 0.640

house

5 1 0.025 0.5 0.098 0.101 0.678 0.676
5 5 0.083 0.5 0.108 0.110 0.635 0.641
5 10 0.166 0.5 0.115 0.116 0.605 0.615
10 1 0.007 0.5 0.136 0.137 0.594 0.595
10 5 0.041 0.5 0.145 0.145 0.577 0.579
10 10 0.078 0.5 0.152 0.151 0.554 0.558
15 1 0.007 0.5 0.157 0.157 0.573 0.574
15 5 0.047 0.5 0.165 0.165 0.570 0.571
15 10 0.075 0.5 0.171 0.171 0.558 0.560

resolution

5 1 0.009 0.5 0.200 0.206 0.558 0.566
5 5 0.039 0.5 0.216 0.220 0.481 0.503
5 10 0.074 0.5 0.226 0.228 0.424 0.453
10 1 0.011 0.5 0.254 0.254 0.488 0.492

Continued on Next Page. . .
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Table 4.6 – Continued

images PSF noise level λ1 λ2 relative error MSSIM
(σ) (%) xlf xtv xlf xtv

10 5 0.055 0.5 0.257 0.257 0.475 0.479
10 10 0.110 0.5 0.259 0.259 0.460 0.465
15 1 0.007 0.5 0.263 0.263 0.484 0.486
15 5 0.031 0.5 0.266 0.266 0.481 0.483
15 10 0.057 0.5 0.268 0.268 0.478 0.480



Chapter 5

Nonnegative Least Squares

Algorithm

5.1 Introduction

Numerical problems with nonnegativity constraints on solutions are pervasive throughout

science, engineering and business. In order to preserve inherent characteristics of solutions

corresponding to amounts and measurements, associated with, for instance, image restora-

tion and reconstruction [26, 73, 82, 122], or chemical concentrations [13], it makes sense to

respect the nonnegativity so as to avoid physically absurd and unpredictable results. This

viewpoint has both computational as well as philosophical underpinnings.

In numerical linear algebra, nonnegativity constraints very often arise in least squares

problems, called nonnegative least squares (NNLS), which were first presented in the book

by Lawson and Hanson [72]. The first widely used NNLS algorithm was designed by Lawson

and Hanson. A variation of their algorithm is available as lsqnonneg in Matlab. More

recently, NNLS computations have been generalized to approximate nonnegative matrix

or tensor factorizations [16, 69, 73, 122, 124], or to obtain low-dimensional representations

of nonnegative data, see [33] for a review of NNLS problems and algorithms. Similar

multiplicative iteration of this form is shown in [19] and its parallel application for model

predictive control in [20].

In this section, we present a new iterative NNLS algorithm along with its convergence

analysis. At each iteration of our algorithm, the new value of x in (1.14) is computed by

multiplying the current value by a factor that depends on the quality of the approximation

in (1.14). We prove that the quality of the approximation improves monotonically, and the

83
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iteration is guaranteed to converge to a locally optimal solution.

The remainder of this chapter is organized as follows. Section 5.2 presents the new

multiplicative NNLS algorithm and the convergence analysis. Section 5.3 explores the

applications of the algorithm in two image processing problems, image super-resolution

and color image labelling.

5.2 Multiplicative Iteration and Its Convergence Analysis

5.2.1 Multiplicative Iteration

Recall the NNLS problem

argmin
x

F1(x) = argmin
x
||Ax− b||22 s.t. x ≥ 0, (5.1)

is equivalent to minimizing the following nonnegative constrained quadratic programming

problem:

argmin
x

F (x) = argmin
x

1
2
xTQx− xTh s.t. x ≥ 0, (5.2)

where Q = ATA ∈ Rn×n is positive semi-definite, h = AT b ∈ Rn. In this analysis, we

assume there is no zero column in A. Hence, the diagonal elements in Q are all positive.

Note that F (x) is bounded from below, i.e. F (x) ≥ −bT b.
Our proposed multiplicative update for solving (5.2) is

xi ← xi

[
2(Q−x)i + h+

i + δ

(|Q|x)i + h−i + δ

]
, (5.3)

where Q+ = max(Q, 0), Q− = Q+ − Q, |Q| = abs(Q) = Q+ + Q−, h+ = max(h, 0),

h− = h+−h, “max” and “abs” are element-wise comparison, and constant 0 < δ � 1 keeps

the iteration monotonically convergent. Notice the multiplicative factor,

2(Q−x)i + h+
i + δ

(|Q|x)i + h−i + δ
,

is always nonnegative. Hence, given a nonnegative initial guess, the updates obey the

nonnegativity constraints. In terms of computational wise, the algorithm involves only two

matrix-vector multiplications in each iteration.
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Because

xk+1
i − xki =

[
2(Q−x)i + h+

i + δ

(|Q|x)i + h−i + δ

]
xki − xki

=
[

2(Q−x)i + h+
i − (|Q|x)i − h−i

(|Q|x)i + h−i + δ

]
xki

= −
[

(Qx)i − hi
(|Q|x)i − h−i + δ

]
xki

= −
[

xki
(|Q|x)i − h−i + δ

]
((Qx)i − hi)

= −γk∇(F (xk)),

where the step-size γk =
[

xk
i

(|Q|x)i−h−i +δ

]
, and ∇(F (x)) = Qx−h. Therefore, our multiplica-

tive update is an element-wise iterative gradient descent method.

Remark: If bothQ and h contain nonnegative elements only, the multiplicative update (5.3)

reduce to

xi ← xi

[
hi

(Qx)i

]
. (5.4)

The reduced iteration (5.4) is called the image space reconstruction algorithm (ISRA) [38].

The convergence analysis of ISRA can be found in the literature [42, 92]. Recently, the

theoretical upper limit of the convergence rate of ISRA has been shown in [5, 50]. The

applications of ISRA can be found in computed tomography [38], image deblurring [14],

image super-resolution [93]. In [73], Lee and Seung generalize the idea of ISRA to the

problem of non-negative matrix factorization (NMF).

Remark: Other similar research can be found in the literature [101, 102]. Instead of

requiring Q to have nonnegative elements, the authors propose a multiplicative algorithm

for symmetric positive definite matrix Q and positive vector h.

In [19] and [20], the authors proposed similar multiplicative iteration. The advantage of

our algorithm is that (5.3) guarantees the iteration converges to local minimum monotoni-

cally.

5.2.2 Convergence Analysis

In this analysis, we first show convergence analysis with the assumption that the optimal

solution of (5.2), x∗, is strictly positive. The general case will be discussed later. Similarly

to [73, 101, 102], this convergence analysis is based on construction of an auxiliary function

for F (x) in (5.2).



86

Figure 5.1: Plot illustrating auxiliary functionG(x, y) and objective function F (x). The new
multiplicative NNLS algorithm (5.3) is constructed by searching the minimum of auxiliary
function G(x, y) in each iteration.

Definition 5.1. For positive vectors, x, y, an auxiliary function, G(x, y), of F (x), has the

following two properties

• F (x) < G(x, y) if x 6= y;

• F (x) = G(x, x).

Figure 5.1 illustrates the relationship between auxiliary function, G(x, y), and objective

function, F (x). In each iteration, the updated x is computed by minimizing the auxiliary

function. The iteration stops when it converges to a stationary point, i.e. a local minimum,

of the objective function. The following lemma is presented in [73, 101, 102], for the sake

of completeness, we include it here.

Lemma 5.2. Assume G(x, y) is an auxiliary function of F (x), then F (x) is strictly de-

creasing under the update

xk+1 = argmin
x

G(x, xk),

as long as xk+1 6= xk.

Proof. By the definition of an auxiliary function G(x, y), if xk+1 6= xk, we have

F (xk+1) < G(xk+1, xk) ≤ G(xk, xk) = F (xk).
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In order to derive an auxiliary function for F (x), we first present the following lemma,

which is a generalization of Lemma 1 in [101].

Lemma 5.3. Let P be a n × n nonnegative real symmetric matrix, x be a n × 1 positive

vector. Define the diagonal matrix D

Dij =

{
0 if i 6= j
(Px)i

xi
otherwise

Then, the matrices, (D ± P ), are positive semi-definite.

Proof. Consider the matrices,

M1 = diag(xi)(D + P )diag(xi), M2 = diag(xi)(D − P )diag(xi),

where diag(xi) represents the diagonal matrix with vector x on the main diagonal. Since

x is a positive vector, diag(xi) is invertible. Hence, D ± P are congruent with M1, M2,

respectively. The matrices D ± P are positive semi-definite if and only if M1 and M2 are

positive semi-definite [62]. For any nonzero vector z,

zTM1z =
∑
ij

(Dij + Pij)xixjzizj

=
∑
ij

Dijxixjzizj +
∑
ij

Pijxixjzizj

=
∑
i

Diix
2
i z

2
i +

∑
ij

Pijxixjzizj

=
∑
i

(Px)ixiz2
i +

∑
ij

Pijxixjzizj

=
∑
ij

Pijxixjz
2
i +

∑
ij

Pijxixjzizj

=
1
2

∑
ij

Pijxixj(zi + zj)2 ≥ 0

Similarly,

zTM2z =
1
2

∑
ij

Pijxixj(zi − zj)2 ≥ 0.

Therefore, D ± P are positive semi-definite.

The following lemma constructs an auxiliary function for (5.2).

Lemma 5.4. For any positive vectors, x, y, define the diagonal matrix, D(y), with diagonal

element

Dii =
(|Q|y)i + h−i + δ

yi
, i = 1, 2, · · · , n
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where δ > 0. The function

G(x, y) = F (y) + (x− y)T∇F (y) +
1
2

(x− y)TD(y)(x− y)

is an auxiliary function for

F (x) =
1
2
xTQx− xTh.

Proof. The second property of auxiliary function, G(x, x) = F (x), is obviously true. All we

need to show is the first property, G(x, y) > F (x) for x 6= y. Notice that Q is the Hesssian

matrix of F (x). The Taylor expansion of F (x) at y is

F (x) = F (y) + (x− y)T∇F (y) +
1
2

(x− y)TQ(x− y)

hence,

G(x, y)− F (x) =
1
2

(x− y)T (D(y)−Q)(x− y).

Therefore, G(x, y) > F (x) if and only if (D(y)−Q) is positive definite.

Recall that |Q| = Q+ +Q−, |Q|y = Q+y +Q−y,

D(y)−Q = diag
(

(|Q|y)i + h−i + δ

yi

)
−Q

= diag
(

(|Q|y)i + h−i + δ

yi

)
− (Q+ −Q−)

= diag
(

(Q+y)i
yi

)
−Q+ + diag

(
(Q−y)i
yi

)
+Q− + diag

(
h−i + δ

yi

)
From Lemma 5.3,

(
diag

(
(Q+y)i

yi

)
−Q+

)
and

(
diag

(
(Q−y)i

yi

)
+Q−

)
are positive semi-

definite. Further, diag
(
h−i +δ
yi

)
is positive definite. Thus, (D(y) − Q) is positive definite.

Therefore, G(x, y) > F (x) for any vectors x 6= y.

We now prove the convergence of multiplicative iteration (5.3).

Theorem 5.5. The objective function F (x) in (5.2) is monotonically decreasing under the

multiplicative update

xk+1
i = xki

[
2(Q−xk)i + h+

i + δ

(|Q|xk)i + h−i + δ

]
,

with δ > 0. It attains a local minimum at the limit point of the iteration.

Proof. Lemma 5.2 and 5.4 show that the objective function F (x) is monotonically decreasing

under the update

xk+1 = argmin
x

G(x, xk) if xk+1 6= xk.
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It remains to show that the iteration (5.3) approaches a local minimum of G(x, xk). This

can be shown by taking the first partial derivative of G(x, y) with respect to x, and setting

it to 0,

∇xG(x, xk) = ∇F (xk) +D(xk)(x− xk) = 0 (5.5)

Hence, for 0 < δ � 1,

x = xk − (D(xk))−1∇F (xk)

= xk − (D(xk))−1(Qxk − h+ δ − δ)

= xk − (D(xk))−1(|Q|xk + h− + δ − 2Q−xk − h+ − δ)

= xk − (D(xk))−1(|Q|xk + h− + δ) + (D(xk))−1(2Q−xk + h+ + δ)

= (D(xk))−1(2Q−xk + h+ + δ)

= diag
(

2Q−xk + h+ + δ

|Q|xk + h− + δ

)
xk (5.6)

The second-to-last equality is because (D(xk))−1(|Q|xk + h− + δ) = xk.

On the other hand, the decreasing sequence {F (xk+1)} is bounded below −bT b. There-

fore, it converges to its lower bound F ∗. Because F (x) is continuous, given any closed finite

interval [a, b], there exists x∗ ∈ [a, b] such that F (x∗) = F ∗. Since F (x∗) is a local minimum

of F (x), the gradient of F (x) at x∗ is zero, i.e.

∇F (x∗) = Qx∗ − h = 0.

Equivalently,
2(Q−x∗)i + h+

i + δ

(|Q|x∗)i + h−i + δ
= 1,

which means x∗ is a stationary vector. Thus, the sequence {F (xk)} converges to its mini-

mum F (x∗) as {xk} approaches its limit point x∗.

Remark: The Lagrangian function of (5.2) is

L(x, µ) =
1
2
xTQx− xTh− µx, (5.7)

with Lagrangian multiplier µi ≥ 0. Assuming x∗ is the optimal solution of (5.7), the

Karush-Kuhn-Tucker (KKT) conditions [83] are

x∗ ◦ (Qx∗ − h− µ) = 0 (5.8)

µ ◦ x∗ = 0, (5.9)
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with ◦ denoting the Hadamard product. If x∗i > 0, from above two equations, µi = 0 and

(Qx∗)i − hi = 0, gives
2(Q−x∗)i + h+

i + δ

(|Q|x∗)i + h−i + δ
= 1.

Because the multiplicative factor in (5.3) equals to one, the stationary limit of the iteration

is the optimal solution x∗.

Remark: The multiplicative iteration (5.3) requires a positive constant δ. Without the

positive δ, the iteration can’t be guaranteed to monotonically converge. Theoretically, δ

can be any positive number.

5.2.3 Nonnegative Sparse Optimum and Acceleration

In the previous discussion, we restricted the optimal solution, x∗, to have all positive ele-

ments. In practice, however, x∗ may contain zero components. As shown in the previous

lemmas and theorem, starting with a positive initial guess, x0, the iteration sequence defined

by (5.3), {xk}, is always positive. Hence, the computed iteration can’t get to an optical

solution with a zero component exactly. Nevertheless, the sequence {xk} monotonically

converges to the optimal solution.

However, if we know ahead of time that the solution is sparse ahead, we can add a

regularization term to (5.1),

argmin
x

F̂ (x) = argmin
x
||Ax− b||22 + λ||x||1, x ≥ 0, λ > 0 (5.10)

with nonnegative λ as the regularization parameter. Note that for nonnegative x, ||x||1 =∑n
i=1 xi. The corresponding quadratic programming problem is

argmin
x

F̂ (x) = argmin
x

1
2
xTQx− xTh+ λ

n∑
i=1

xi, x ≥ 0, λ > 0 (5.11)

The new multiplicative iteration for (5.11) is

xi ← xi

[
2(Q−x)i + h+

i

(|Q|x)i + h−i + λ

]
. (5.12)

The convergence analysis for (5.12) is similar to the previous analysis for (5.3), with the

auxiliary function

Ĝ(x, y) = F̂ (y) + (x− y)T∇F̂ (y) +
1
2

(x− y)T D̂(y)(x− y)

and diagonal matrix, D̂(y),

D̂ii =
(|Q|y)i + h−i + λ

yi
, yi > 0, i = 1, 2, · · · , n.
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Theorem 5.6. The objective function F̂ (x) in (5.11) is monotonically decreasing under the

multiplicative update

xk+1
i = xki

[
2(Q−xk)i + h+

i

(|Q|xk)i + h−i + λ

]
,

with λ > 0. It attains the minimum at the limit point of the iteration.

The proof of Theorem 5.6 is similar to the proof for Theorem 5.5 (replace δ by λ). In

the case of a sparse optimal solution, x∗, the regularized multiplicative iteration converges

to a solution with zero components faster than the iteration without regularization (5.3),

5.3 Image Processing Applications

In this section, we show the use of the proposed NNLS algorithm by applying it to image

super-resolution and color image labeling problems. Our purpose here is to illustrate the

application of the proposed NNLS algorithm. We leave the detailed comparison of this

algorithm with other NNLS algorithms for future research.

5.3.1 Numerical Convergence Example

The goal of this set of experiments is to show that the multiplicative iteration 5.3 converges

monotonically and compare the convergence rate with MRNSD [82]. The two real-world

datasets can be downloaded from the University of Florida Sparse Matrix Collection [39].

• HB/bcsstk21 dataset. Harwell-Boeing 3600× 3600 sparse symmetric positive definite

matrix with condition number 1.76e + 07 and 26600 nonzero entries (approximately

0.2% sparsity).

• Gset/G61 dataset. 7000 × 7000 sparse symmetric matrix with condition number

1.70e + 18 and 34296 nonzero entries( approximately 0.07% sparsity). The nonzero

elements are uniformly distributed in matrix.

We generate an absolute value of sine function vector, x, on interval [0, 20] and the right-

hand side vector, b = A ∗ x. Hence, we can compute the relative error at each iteration.

The iteration stops either the tolerance criteria are satisfied or max number of iterations

is reached. Because, typically, both algorithms don’t converge quickly. We set the max

number of iterations to be 10 times the length of vector x. The tolerance, which is 10−6, is

set for the relative difference between current and previous iterations. Our initial guess is

set to be a random positive vector generate with Matlab rand command.
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(a) HB/bcsstk21 dataset (b) Gset/G61 dataset

Figure 5.2: Relative errors at each iteration for algorithm (5.3) and MRNSD.

Figure 5.2a and 5.2b show the iteration history of Algorithm 5.3 and MRNSD. Note in

both our algorithm and MRNSD, there are 2 matrix-vector multiplications in each iteration.

Hence, we don’t show the computational time, which is affected by the implementation

details. Here we see that both algorithms reduces the relative errors dramatically in the

first several iterations. The reductions become slower as iteration increasing. In addition,

we see that our algorithm (5.3) produces solutions with lower relative error than MRNSD

in the first test. In the second test, both algorithms have the similar performance. A more

detailed comparison leaves for the future research.

5.3.2 Image Super-Resolution

Image super-resolution (SR) refers to the process of combining a set of low resolution images

into a single high resolution image [31, 35]. Typically, it is a accomplished in two steps:

registration and reconstruction. In the registration step, the relative displacement of each

low-resolution image from a reference image is computed. Then the high resolution image

is computed by solving a linear inverse problem.

Image registration, which plays a central role in the context of SR reconstruction, refers

the process of spatially matching the reference and target images, so that the pixels in

the two images correspond to the same physical region of the scene being imaged. Many

methods have been developed for various types of problems [24, 125]. In this experiment, we

assume that the transformations between low-resolution images are purely translational [43],

which can be computed by a transform model estimation, such as that proposed by Chung

et al. [35].
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Once the low-resolution images have been registered, all the pixels can be combined to

form a composite image. This image is no longer sampled on a uniform rectangular grid.

Reconstructing the high-resolution image requires interpolation and re-sampling. In the

experiments, we use bilinear interpolation, which is commonly used because of the trade-off

between performance and computational complexity [121].

The underlying SR forward mathematical model is written as the following linear sys-

tem [35]

yk = DkSkx+ nk, k = 1, 2, · · · ,K (5.13)

where

• x is the unknown high resolution image;

• yk is kth the low resolution image;

• Sk is the bilinear interpolation matrix depending on the displacement computed by

registration step;

• Dk is the sparse decimation matrix, see [31] for more information;

• nk represents unknown errors in the observed data, such as discretization errors and

noise.

Equation (5.13) is solved by computing the following NNLS problem

argmin
x

1
2

K∑
k=1

||DkSkx− yk||2, s.t. x ≥ 0

The mathematical framework used here is the inexact Gauss-Newton method for super-

resolution in [35] 1. We use our NNLS algorithm and MRNSD to solve the above mini-

mization problem. In these experiments, Dk, Sk and yk are all nonnegative. Hence, the

proposed algorithm is in the reduced form of ISRA. Our test data-set is taken from the

Multi-Dimensional Signal Processing Research Group (MDSP) [45]. Numerical experiments

show that if the NNLS algorithms stop in 25− 30 iterations, the results are visually better.

Hence, we set the max iteration to be 25 in both our NNLS algorithm 5.3 and MRNSD

algorithm.

Figures 5.3a and 5.3b show 2 of the 30 uncompressed 57×49 grayscale low-resolution text

image. The high-resolution computed by our algorithm is shown in Figure 5.3d. Figure 5.3c
1Thanks to Julianne Chung and James Nagy for providing the Matlab code.
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shows the computed high-resolution image by MRNSD algorithm. The high-resolution

image has the size of 285 × 245. Figures 5.4a and 5.4b show 2 of 16 low-resolution EIA

images with size 90 × 90. Figures 5.4c and 5.4d show the reconstructed 360 × 360 high-

resolution images by MRNSD and our algorithm, correspondingly. As shown in the figures,

the high-resolution images are visually much better than the corresponding low-resolution

images.

Remark: The purpose of these experiments is to show our new NNLS algorithm (5.3) can

be employed in super-resolution problem. The reconstructed high-resolution image quality

depends heavily on the particular model being used, especially image registration model [31].

The least square solvers play a less important role in this problem.

5.3.3 Color Image Labeling

The goal of image labeling is to divide the image into several constituent parts. There are

many existing methods, including the Mumford-Shah functional method [80], the level set

method [111], and the snake method [67, 118]. Among these approaches, Markov random

fields (MRF) based interactive image segmentation techniques have become popular because

of their robustness [96]. These techniques require users to impose hard constraints by

indicating certain pixels (seeds) that absolutely have to be part of the labeling k. Intuitively,

the hard constraints provide clues as to what the user intends to segment. Denote X as the

m-by-n test RGB images, Xij represent a 3-by-1 vector at pixel (i, j).

The class set is denoted by C = {1, 2, · · · ,K}. The probabilistic labeling approaches

compute a probability measure field for each pixel (i, j),

X = {Xk
ij : k ∈ C, i = 1, 2, · · · ,m, j = 1, 2, · · · , n}

with the constraints
K∑
k=1

Xk
ij = 1, Xk

ij ≥ 0, ∀k ∈ C. (5.14)

Denoting Nij = {(i′, j′) : min{|i′− i|, |j′− j|} = 1} as the set of neighbors of pixel (i, j), the

cost function are in the following quadratic form

argmin
x

K∑
k=1

m∑
i=1

n∑
j=1

α
2

∑
(i′,j′)∈Nij

ωiji′j′(Xk
i′j′ −Xk

ij)
2 +Dk

ijX
k
ij

 , (5.15)

with the constraints (5.14). Dk
ij is the cost of assigning label k to pixel (i, j). The first

term,
∑

(i′,j′)∈Nij
ωiji′j′(Xk

i′j′−Xk
ij)

2, which controls the granularity of the regions, promotes
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Algorithm 5 NNLS Algorithm MRF Image Segmentation

1: while norm((Xk)new − (Xk)old)/norm((Xk)old) > tol do
2: Update the probability measure field

(Xk
ij)

new = (Xk
ij)

old ∗
2α
∑

(i′,j′)∈Nij
ωiji′j′X

k
ij + (Dk

ij)
− + λij

αXk
ij

(∑
(i′,j′)∈Nij

ωiji′j′
)

+ α
∑

(i′,j′)∈Nij
ωiji′j′X

k
ij + (Dk

ij)+

3: Update the Lagrangian parameter

λnew
ij = λold

ij ∗
1∑
kX

k
ij

4: end while
5: return (Xk)new

smooth regions. The spatial smoothness is controlled by the positive parameter, α, and

weight, ω, which is chosen such that ωiji′j′ ≈ 1 if the neighbouring pixels (i, j) and (i′, j′)

are likely to belong to the same class and ωiji′j′ ≈ 0 otherwise. In these experiments, ω is

defined to be the cosine of the angle between two neighbouring pixels,

ωiji′j′ =
XT
ijXi′j′

|Xij | · |Xi′j′ |
.

The cost of labeling k at each pixel (i, j), Dk
ij , is trained with a Gaussian mixture

model [119] using seeds labeled by the user. Given sample mean, µk, and variance, σk, for

the seeds with labeling k, Dk
ij is computed as the Mahalanobis distance [77] between each

pixel of the image and the seeds,

Dk
ij =

1
2

K∑
k=1

(Xij − µk)T (Σk)−1(Xij − µk) +
1
2

log(Σk).

The KKT optimality conditions

α
∑

(i′,j′)∈Nij

ωiji′j′(Xk
ij −Xk

i′j′) +Dk
ij − λij = 0

αXk
ij

 ∑
(i′,j′)∈Nij

ωiji′j′

− α ∑
(i′,j′)∈Nij

ωiji′j′X
k
ij +Dk

ij − λij = 0

yield a two-step Algorithm 5.

We implement our NNLS algorithm without explicitly construct the matrix Q. Fig-

ure 5.5 shows the results of the labeled images. The images are segmented into different

areas nicely using this new algorithm. This example shows another application of our NNLS

algorithm (5.3).
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(a) low resolution image (1) (b) low resolution image (2)

(c) restored high resolution image: MRNSD (d) restored high resolution image: Algo-
rithm 5

Figure 5.3: 5.3a and 5.3b are 2 sample 57×49 low-resolution images out of 30. 5.3c and 5.3d
are the reconstructed high-resolution image with size 285× 245, by MRNSD and proposed
algorithm correspondingly. Note that both algorithms stop at 25 iterations, and the cost
of each iteration of the proposed algorithm is about the same as the cost of MRNSD (2
matrix-vector multiplications are the major cost)..
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(a) low resolution image (1) (b) low resolution image (2)

(c) Restore high resolution image: MRNSD (d) Restored high resolution image: Algo-
rithm 5

Figure 5.4: 5.4a and 5.4b are 2 sample 90×90 low-resolution images out of 16. 5.4c and 5.4d
are the reconstructed high-resolution image with size 360× 360, by MRNSD and proposed
algorithm correspondingly. Note that both algorithms stop at 25 iterations, and the cost
of each iteration of the proposed algorithm is about the same as the cost of MRNSD (2
matrix-vector multiplications are the major cost).
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(a) flowers (b) segmented image

(c) Satellite image (d) segmented image

(e) Manhattan skyline (f) segmented image

Figure 5.5: Image labeling results using MRF model solved by the proposed NNLS algorithm



Chapter 6

Concluding Remarks

In this work, we discuss some mathematical schemes and numerical implementations for

large-scale image restoration problems. We develop two edge-preserving algorithms for

image restoration and a novel multiplicative NNLS algorithm. Although this work focuses

on image restoration problems, ill-posed inverse problems arise in many other scientific

applications, and the developed numerical methods can be used in other fields as well.

The mathematical contributions of this work include developing an efficient Brent-NCP

parameter-selection algorithm for large-scale regularization problems. For image deblur-

ring problem, we develop the theory for a new edge-preserving deblurring framework (4.1)

based on the projection space idea. In Chapter 5, we design a new multiplicative NNLS

algorithm (5.3) and give theoretical convergence analysis for the algorithm.

In terms of computational contributions, we explore the applications of multigrid meth-

ods and compare the performance of BoxMG and AMG in anisotropic diffusion denois-

ing problem, show by examples the broad range of applications of Brent-NCP parameter-

selection algorithm in several existing parameter-dependent algorithms. In the edge-preserving

deblurring problem, we implement an efficient and competitive algorithm, including devel-

oping the Kronecker product SVDs and AMG preconditioner, and running extensive numer-

ical tests to determine several parameters. We also illustrate the potential applications of

the new multiplicative NNLS algorithm in the context of image super-resolution and color

image labeling.

Some future work includes:

Implementing Symmetric AMG Preconditioners As discussed in Chapter 4, be-

cause we use Gauss-Seidel method in the pre- and post-relaxations, which causes our AMG

99
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residual reduction operator is not symmetric. Hence, we can’t use preconditioned CG

method to solve the normal equation (4.12). However, if we replace the Gauss-Seidel method

by red-black Gauss-Seidel method in pre-relaxation and black-red Gauss-Seidel method in

post-relaxation, the new AMG conditioner is symmetric. Therefore, it is possible to solve

the normal equation with CG-type algorithms, which might be faster than current GMRES

solver.

Studying the Singular Vectors for the Non-separable PSF in EPP Algorithm

As discussed in Chapter 4, if the PSF is non-separable, we have to approximate the singular

vectors with Kronecker products of two smaller matrices. In our experiments, we compute

the low-frequency components, xlf, by the explicit approximation

xlf =
k∑
i=1

uTi b̃

si
vi.

However, the results in Table 4.3 show that the MSSIM measures are smaller and relative

errors are larger than DCT-EPP results in Table 4.1. Another approach to compute the xlf

is to solve the minimization problem (4.6)

argmin
x
||(AWk)x− b||2,

with iterative methods. It would be interesting to see the restored results using iterative

algorithms, such as LSQR [87], LSMR [46] etc. to compute xlf.

Multiple Subspaces Projection Edge-Preserving Deblurring Recently, Chung et

al. developed a windowed approach for spectral regularization of deblurring problem [34].

By providing a regularization parameter for each spectral subspace, this windowed regu-

larization approach effectively restored blurred images, particularly for high-noise data. In

Chapter 4, we split the spectral space into two subspaces, and computed components of

the solution living in the two subspaces with different methods. A natural extension is

partitioning the spectral space into more subspaces, and computing components in each

subspaces separately. We have tried to partition the spectral space into 3 subspaces, and

compute components living in first two subspaces while ignoring the last subspace, which is

totally dominated by noise; however, there remain some unsolved numerical implementation

issues.

Theoretical Properties of Projection-Based Regularization In [104], the authors

studied two fundamental properties of TV methods:
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• edge locations of image features tend to be preserved and under certain conditions,

are preserved exactly;

• intensity change experienced by individual features is inversely proportional to the

scale of each feature.

These results help explain how and why TV image restoration can remove noise while leaving

relatively intact larger-scaled image features. The goal of our projection regularization is the

same as TV regularization. It would be interesting to investigate the theoretical properties

of projection regularization.

Systematic Comparing the NNLS Algorithm with Others In [82, 10], Nagy et

al. proposed another NNLS algorithm – modified residual norm steepest descent algorithm

(MRNSD) and its extension to weighted least squares problems, WMRNSD. As our algo-

rithm (5.3), there are two matrix-vector multiplications in each iteration. Their numerical

experiments show that MRNSD, especially when used with a preconditioner, is competi-

tive to the unconstrained Krylov subspace methods. It would be interesting to compare

the performance of our NNLS algorithm, MRNSD, WMRNSD, and other existing NNLS

algorithms, using some benchmark NNLS problems.

Exploring the Parallel Implementation of the NNLS Algorithm In our multi-

plicative NNLS algorithm, the components in each new iteration do not depend on each

other, so they can be computed simultaneously, hence, can be easily implemented on par-

allel machines. Exploring the parallel implementation of the new algorithm with different

applications is an interesting problem.



Appendix A

Brent-NCP Matlab Code

function xmin = brentNCP(ax, cx, tol, denoisingMethod, im_n)

% Brent-NCP method: compute the near optimal regularization parameter in [ax, cx]

% Inputs:

% ax: left bound

% cx: right bound

% tol: tolerance, iterations stops when interval becomes less than tol

% denoisingMethod: function handle, user input denoising method,

% (can be replace by other parameter-dependent method)

% im_n: noisy image, argument for denoisingMethod

% Output: xmin: regularization parameter

% Donghui Chen, 2012

% initialization

gold = 1 - (-1+sqrt(5))/2;

ITMAX = 100;

ZEPS = 10^(-10);

e = 0;

% let a = min(ax, cx), b = max(ax, cx)

if ax < cx, a = ax; b = cx; else a = cx; b = ax; end;

bx = a + gold*(b-a); % golden section step

102
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x = bx; w = bx; v = bx;

fx = compNCPdist(denoisingMethod, im_n, x); % compute the NCP distance

fw = fx; fv = fw;

% iteration

for iter = 1:ITMAX

xm = 0.5*(a+b);

tol1 = tol*abs(x) + ZEPS;

tol2 = 2*tol1;

if (abs(x-xm) <= (tol2-0.5*(b-a)))

xmin = x;

fprintf(’succeeded after %d steps\n’, iter);

return;

end

% fit a parabola

r = 0; q = r; p = q;

if (abs(e) > tol1)

r = (x-w)*(fx-fv);

q = (x-v)*(fx-fw);

p = (x-v)*q - (x-w)*r;

q = 2*(q-r);

if (q > 0)

p = -p;

end

q = abs(q);

r = e;

e = d;

end

if (~(abs(p) >= abs(0.5*q*r) || p <= q*(a-x) || p >= q*(b-x)))

% parabolic fit is good

d = p/q;

u = x+d;
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if (u-a < tol2 || b-u < tol2), d = tol1*sign(xm-x); end;

else

% golden-section step.

if x >= xm

e = (a-x);

else

e = (b-x);

end

d = gold*e;

end

% update the new point, the step size is either d or tol1

if abs(d) >= tol1

u = x+d;

else

u = x+tol1*sign(d);

end

fu = compNCPdist(denoisingMethod, im_n, u); % compute the NCP distance

% update a, b, v, w, x

if (fu <= fx)

if u >= x, a = x; else b = x; end;

[v, w, x] = shift(v, w, x, u);

[fv, fw, fx] = shift(fv, fw, fx, fu);

else

if u < x, a = u; else b = u; end;

if (fu <= fw || w == x)

v = w; w = u; fv = fw; fw = fu;

elseif (fu <= fv || v == x || v == w)

v = u; fv = fu;

end

end

end

disp(’failed requirements after %d steps\n’, ITMAX);
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%------------------------------------------------------------------

function [a, b, c] = shift(a, b, c, d)

a = b;

b = c;

c = d;

%------------------------------------------------------------------

function dist = compNCPdist(denoisingMethod, im_n, mu)

% Compute the NCP distance

% Inputs:

% denoisingMethod: function handle, user input denoising method,

% (can be replace by other parameter-dependent method)

% im_n: noisy image

% mu: current regularization parameter

% Output: dist: the NCP distance between the residual and white Gaussian noise

% Donghui Chen 2012

im_c = denoisingMethod(im_n, mu); % compute restored image

res = im_c - im_n; % residual image

dist = NCPdist(res); % the NCP distance between the residual and white Gaussian noise

%------------------------------------------------------------------

function dist = NCPdist(X)

% Compute the cumulative periodogram of the 2D image X

% Per Christian Hansen, IMM, Nov. 17, 2004.

[n1, n2] = size(X);

q1 = (floor(n1/2));

q2 = (floor(n2/2));

for i=1:q1

for j=1:q2

R(i,j) = i^2+j^2;
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end

end

[dummy, perm] = sort(reshape(R,q1*q2,1));

Z = abs(fft2(X)).^2;

d = reshape(Z(1:q1,1:q2), q1*q2, 1);

D = d(perm);

D = D(2:end); % Get rid of DC component.

v = linspace(0, 1, size(D,1))’; % NCP of the white Gaussian noise

cp = cumsum(D)/sum(D);

dist = norm(v-cp, 1); % NCP distance between input image and white Gaussian noise
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