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Abstract 

In recent decades, we have come to accept that children’s appropriation of 

written numbers is not automatic or simple.  Various studies of children’s use of notation 

point to several different types of notational practice possibly linked to stages in the 

understanding of place value in base-ten (Alvarado, 2002; Brizuela, 2004; Scheuer et al, 

2000; Seron & Fayol, 1994).  Scheuer et al (2000) discuss two distinct types of incorrect 

numerical notation strategies used by children: logogramic and compacted notation.  

Logogramic notation refers to children who write the entire number literally, such as 

100701 for one hundred seventy-one.  Compacted notation refers to children who 

remove some of the zeros from the logogramic coding while still not condensing the 

number entirely into its conventional form, such as 1071 for one hundred seventy-one.  

Scheuer speculates that perhaps these two types of notational strategies stem from 

different conceptual ideas about the numbers themselves, yet the study does not explore 

these ideas, focusing only on written numbers.  The study described in this paper 

examines Scheuer’s arguments by comparing numerical notation strategies with 

children’s performance on a task of decomposing numbers created by valued tokens 

that will provide insights into the children’s ideas. 

Results show that children who have mastered numerical notation and 

understanding for integers 1-99 do show different strategies of numerical notation for 

integers 100-999, when compared to children who are still struggling with numerical 

notation and understanding for integers 1-99.  Similarly, children who have mastered 

numerical notation and understanding for integers 100-999 show strategies of numerical 

notation for integers 1,000-9,999 that are different from those of children who are still 

struggling with numerical notation and understanding for integers 100-999. 

The ability to produce two-digit written numerals conventionally appears to occur 

prior to the understanding of numbers, as over 23% of the children in the sample 

produced conventional written numerals without showing an understanding of 

decomposition while no child who showed an understanding of decomposition was 

unable to produce the conventional number. 

Two types of numerical notation strategies; Full Literal Transcoding and 

Compacted Notation, are correlated with different numerical understandings.  Children 

using Compacted Notation tend to have an understanding of numerical composition that 

is closer to the conventional one held by adults than children using Full Literal 

Transcoding.
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Introduction 

The intricacies of our written number system are frequently under-

recognized in the teaching of elementary mathematics.  Components such as 

place-value and zero require certain cognitive abilities such as abstract thought, 

logical thinking, and inference.  In order to better comprehend all of the 

intertwined factors required to understand our written number system, it is 

necessary to first look at the origins of our knowledge of numbers and what 

characteristics comprise a number system, as well as the history of written 

number systems.  We are then able to look deeper into the steps children take 

when reconstructing the system for themselves.   

In this work, I distinguish between the number system and the written 

number system.  The number system is comprised of a finite set of elements (in 

our Arabic number system1, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) and the system 

defines relationships among these elements, which allows us to create infinite 

combinations.  The external representation of the number system forms a system 

in and of itself: the written number system.  The concepts embedded in the 

number system are represented externally in the written number system.  The 

separation and distinction between both systems may seem arbitrary and 

unnecessary; however, the learning of each in the young child involves distinct 

intellectual challenges. 

In his discussions of figurative and operative aspects of thought, Piaget 

(1962, 1965, 1971, 1973; Piaget & Inhelder, 1971) insists that there is a 

necessary interaction between figurative aspects and operative aspects of 

thought. In the use of our object of analysis, the reproduction of the numbers 

                                         
1
 Also known as the Hindu-Arabic system. 
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themselves could superficially be thought of as figurative; and the number 

system as a conceptual object is certainly operative.  However, we cannot 

understand the first without the second, just as Piaget thought of both aspects of 

thought as wholly interwoven and interconnected. 

In 1994, Zhang and Norman developed a “theory of distributed 

representations” to account for behavior in distributed cognitive tasks (tasks that 

involve both internal and external representations) and concluded the same thing 

that Piaget had inferred over forty years earlier about figurative and operative 

aspects of thought: that the representation of a cognitive task is not solely 

internal or external but distributed over these two indispensable parts.  Thus, 

external representations do not necessarily need to be re-represented internally 

because they directly activate processes. 

Previous studies of children’s numerical acquisition (Fuson & Kwon, 1992; 

Miura & Okamoto, 1989; Power & Dal Martello, 1990; Ross, 1986; Scheuer, 

1996; Seron & Fayol, 1994; Sinclair & Scheuer, 1993) have focused on place 

value notation, number decomposition, and oral numeration, yet there has been 

very little work on the correlation of any of these aspects with one another.  

For example, Scheuer et al (2000) discuss, amongst others, two distinct 

types of incorrect numerical notation strategies used by children: logogramic and 

compacted notation.  Logogramic notation refers to children who write the entire 

number literally, such as 100701 for one hundred seventy-one.  Compacted 

notation refers to children who remove some of the zeros from the logogramic 

coding while still not condensing the number entirely into its conventional form, 

such as 1071 for one hundred seventy-one.  Scheuer speculates that perhaps 
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these two types of notational strategies stem from different working ideas about 

the concept of number (the operative), yet her study only focuses on written 

numbers (the figurative); no data on children’s ideas is included.  The study 

described in this paper examines how the strategies described by Scheuer et al 

(2000) and others (e.g., Power & Dal Martello, 1990; Seron & Fayol, 1994) are 

related to children’s understanding of the structure of the number system. The 

core interest of the research described in this paper lies in the connections and 

interactions between numerical notations and numerical understandings.  I seek 

to answer the question: How are a child’s numerical notation strategies 

correlated in any way to his or her understanding of number decomposition? 

 

Sources of Knowledge 

 Before discussing what children do or do not “know” about numbers, it is 

necessary to explore what it means to “know” something.  Piaget (1962) 

distinguishes between three kinds of knowledge: physical knowledge, socio-

cultural (or conventional) knowledge, and logico-mathematical knowledge.  

Physical knowledge is the “knowledge of objects in external reality” (Kamii, 

Kirkland, & Lewis, 2001, p.25) such as color, weight, and physical properties, 

such as ‘round things roll and flat things don’t.’  The main source of physical 

knowledge is observation (Piaget, 1971).  

 Socio-cultural knowledge is the knowledge of conventions, created by 

people, such as languages and holidays.  The main sources of social knowledge 

are convention and social interaction; this includes interaction in a school setting.   
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 Logico-mathematical knowledge “ranges from empirical apprenticeship to 

experimental behavior”(Piaget, 1971, p.3).  It is the knowledge of mental 

relationships which “adds something to its environment, namely, structure 

elements that were not furnished in that form by events or objects outside the 

organism” (Piaget, 1971, p.101). One example of logico-mathematical knowledge 

is spontaneous categorization, such as classifying objects as similar or different.  

 While the concept of number and of numerosity stems from logico-

mathematical knowledge, numerical conventions grow from social knowledge, 

such as the words one, two, and three, and the numerals 1, 2, and 3, without 

which we would only have the concept of numerosity, but no words or signs2 to 

organize our thoughts. 

 Piaget and Inhelder (1971) also conceptualized two kinds of abstraction: 

empirical abstraction and reflective abstraction. Empirical abstraction focuses on 

certain properties of an object while ignoring others.  For example, in classifying 

by color, we ignore weight, shape, and other physical properties of an object.  

Reflective abstraction involves the making of mental relationships between and 

among objects.  “Having made the theoretical distinction between empirical and 

constructive abstraction, Piaget went on to say that in the psychological reality of 

the child, one cannot take place without the other” (Kamii et al., 2001, p.26).   

In the case of the written number system, we see each of these three 

types of knowledge (physical, socio-cultural, and logico-mathematical) and two 

types of abstraction (empirical and reflective) in constant interaction. For 

                                         
2
 Throughout this paper, I will be using the terms “sign” and “symbol” as distinguished by 

Saussure (1931) and Piaget (1965).  Symbols are idiosyncratic and bear a resemblance to the 
objects represented, such as tally marks and pictures, while signs are arbitrary and do not 
resemble the object represented and have their source in convention, such as letters and most 
numerals. 
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example, the shapes and meaning of numerals are acquired through social 

knowledge, yet the need for them would have never existed if it were not for our 

need to express our physical knowledge of numerosity.  Finally, understanding 

and extrapolating knowledge of our particular number system requires using our 

existing logico-mathematical knowledge, empirical abstraction, and reflective 

abstraction. 

With this perspective in mind, we can determine that in order to 

understand how children come to understand numerical representations we must 

first understand components that encompass the written number system. 

 

Representations 

Notational Systems 

 In 1976, Goodman noted the five principles governing all notational 

systems: syntactic disjointness, syntactic differentiation, unambiguity, semantic 

disjointness, and semantic differentiation.  It is due to these five principles that 

someone who has deciphered the notational system will be able, upon seeing 

another’s notation, to understand the meaning behind the representation.  

Further, notations can be iconic or noniconic (also referred to as symbols or 

signs, (see Piaget ,1965; Saussure, 1931).  Drawings are usually thought of as 

iconic (symbols), whereas writing and numerals are considered noniconic  or 

signs (Tolchinsky Landsmann & Karmiloff-Smith, 1992).  Though historically 

some numerals stemmed from iconic drawings, our modern use of them does not 

treat them as such; thus, they have evolved into signs.  
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Attempts to classify differences between notations on the basis of the 

iconic/noniconic distinction are ultimately problematic due to the subjective 

nature of the categories (Goodman, 1976), especially when looking at varying 

human alphabets, numerals, and drawings.  To aide the solution of this problem, 

Tolchinsky Landsmann and Karmiloff-Smith (1992) propose three distinguishing 

features for notational systems that transcend the realistic/arbitrary distinction at 

the heart of the iconic vs. noniconic and sign vs. symbol distinction: relative-

closure constraint, element-string constraint, and referential-communicative 

constraint. 

The first feature, the relative-closure constraint, refers to the extent of 

closure of the system.  Drawings present a relatively open system because it is 

always possible to create new elements.  On the other hand, writing and number 

notations are relatively closed systems because while new combinations of the 

elements are infinite, the elements within the system are nearly finite (nearly 

because the invention and inclusion of new elements does exist, yet is extremely 

rare). In addition, any element that is added does not already have an element of 

the same meaning and purpose as one that already exists. 

The element-string constraint refers to the quality that strings can be 

parsed into discrete elements and retain separate meanings, such as in writing 

and numerical notation.  By contrast, it is difficult to define what the individual 

elements are in drawings. 

Finally, the referential-communicative constraint refers to the fact that 

there is a mapping from referent to notation and notation to referent.  Given a 

referent, there are a limited number of possible notations and given a notation 
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there are at most very few referents.  This is not true in drawing.  One final point 

to make about this constraint is that in the case of writing, for instance, the 

constraints refer specifically to the string of elements, not the interpretation of 

language.  For example, a novel may be interpreted in many different ways, but 

there is still only one way to interpret the actual string of elements in a word or 

sentence. 

 The simplest way to represent numbers is through a one-dimensional 

notational system.  For example, if we were to use stones, we could use one 

stone to represent “one,” two stones for “two,” and so on.  This has a single 

dimension: the quantity of stones.  Other one-dimensional systems would include 

tally marks, and even the body-counting system used by the Torres Islanders (in 

northern Australia), where each body part corresponds to a different number 

(Dehaene, 1997).  The first numerical notation systems invented in nearly all 

ancient civilizations were one dimensional, represented by physical objects 

(Zhang & Norman, 1995).  

In fact, looking at our own number system3 as well as dozens of other 

number systems used in civilizations without any contact with one another, the 

numerals symbolizing “one,” “two,” and “three” are just that, symbols, consisting 

of either horizontal or vertical bars (Arabic “2” and “3” were at one point two and 

three horizontal bars that became connected through human writing).  Yet at the 

number “four” or “five” almost all known civilizations moved from symbols to signs 

(Dehaene, 1997). 

                                         
3
 When referring to our own number system, I am referring to the Arabic (or Hindu-Arabic) number system 
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 The most obvious reason for a shift from symbol to sign is the noticeable 

fact that while one-dimensional systems may be simple and efficient for small 

numbers, they do not work well with large numbers since each number requires a 

new sign and name.  Large numbers require use of another dimension, for 

example, a base dimension and a power dimension4 (1X1D).  A number in a 

1x1D system can be represented as a polynomial: ∑aix
i.  Our Arabic numeral 

system is one example of a 1X1D system with the base dimension represented 

by the shapes of the ten digits (0-9) and a power dimension represented by the 

position of the digits (i.e. place-value), with a base ten.  Other types of base and 

power dimensions can be seen in Table 1. 

Some numeration systems have three dimensions5 (1x1)x1D: one main 

power dimension, one sub-base dimension, and one sub-power dimension.  The 

sub-base and sub-power dimensions together form the main base dimension.  

Numerals in (1x1)x1D systems can be expressed as ai(bijy
i )xi. The Babylonian 

numeral system is one example of a (1x1)x1D system with the main base 

dimension of sixty composed of a  sub-base of ten that is represented by quantity 

and and sub-power represented by the shape.  Other known (1x1)x1D systems 

include the Mayan system and Roman numerals.  Most of these systems use 

quantity to represent the sub-base dimension and shape for the sub-power 

dimension.  The Babylonian and Mayan systems were both two of the first 

systems to utilize position as the main power dimension while the Roman system 

used shape. 

                                         
4
 I will denote two-dimensional systems as (base x power) as done by Zhang and Norman (1995). 

5
 I will denote three-dimensional systems as [(sub-base x sub-power)x main power] as done by 

Zhang and Norman (1995). 
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Table 1 

The representational structure of some 1x1D systems taken from Zhang and Norman (1995) 
 

System Example Base Base dimension Power Dimension 

Abstract ∑aix
i X ai xi 

Arabic 447 

4x102+4x101+7x100 

10 ai=shape 

0, 1, 2, …, 9 

xi=position 

. . . 102  101  100 

Aztec 
 

1x202+2x201+7x200 

20 ai=quantity 

quantities of •’s 

’s and ’s 

xi=shape 

•              

   200     201    202 

Greek νµξ 

4x102+4x101+7x100 

10 ai=shape 

α, β, γ, …, θ 

xi=shape 

ι           κ           λ  …  

1x101  2x101  3x101 

ρ         σ           τ   … 

1x102 2x102     3x102 

 

  When we look at the convergence of most civilizations on the Arabic 

numerical system, we notice several components of the system useful to modern 

life.  The main stepping stones of any written system are the abilities to reduce a 

large corpus of information into a more compact representation, to use elements 

and codes which are consistent across the system, and to produce notations 

themselves which are legible for other readers (Gardner & Wolf, 1983).   

According to Zhang and Norman (1995), any distributed cognitive task can 

be analyzed by three aspects: formal structures, representations, and processes.  

“Formal structures specify the information that has to be processed in a task; 

representations specify how the information to be processed is represented 
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across internal and external representations; and processes specify the actual 

mechanisms of information processing” (p. 290).  Just as with Piaget’s three 

kinds of knowledge (physical, socio-cultural, and logico-mathematical), these 

three aspects (formal structures, representations, and processes) are closely 

interrelated.  The same formal structure can be executed by different 

representations, and different representations can trigger different processes.  

Though the main focus of this paper is the representational aspect of numerical 

knowledge, we must also constantly keep in mind the formal structure and the 

processes.  For example, when viewing children’s incorrect written 

representations, we must consider incorrect notions the child may hold about the 

structure of the number system.  In addition, if the same child incorrectly 

decomposes numbers, we must look at the possibility that both of these errors 

are reflective of the same misunderstanding or of the same breakdown in the 

processing of numbers, as well as the possibility that the errors have different 

origins. 

In Arabic numerals, separating dimensions and identifying and shifting 

positions are all done externally, leaving as internal the processes of retrieving 

base values, and multiplication tables.  Some languages, such as Chinese, 

further relieve cognitive load as they state explicitly in the number name what the 

base value is.  This affects the ability of children to learn the number system, as 

will be shown later (see Miller et al, 1995; Dehaene, 1997).  At the level of bases, 

the Arabic system can be seen as being of a manageable size: larger bases 

require more symbols but less computation, smaller bases require fewer 
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symbols, but computation becomes more burdensome (imagine the confusion 

that would come with only working in binary). 

At the level of symbols, the Arabic system’s ten symbols are easy to write 

and work with, thus fulfilling effectively two functions simultaneously: 

representation and calculation.  While this dual use may seem intuitive to us, as 

adult users of the Arabic system, many cultures did not make use of a numerical 

representation system with a dual use throughout history, using objects such as 

abacuses and Roman counting boards to do operations while using numerals 

simply to notate the result.  In fact, it is largely argued that Arabic numerals led to 

the invention of algebra due to the possibilities created when using the same 

system for representation and calculation (Zhang & Norman, 1994).  This is one 

explanation for why the Greeks, though highly advanced in geometry, never 

developed an algebra (Zhang & Norman, 1995). 

According to Strauss and Stavey (1982), in the course of mastering 

notational systems children often lose, at least temporarily, some of the basic 

intuitions underlying a domain because they are so overpowered by the implicit 

demands of the system itself.  Similarly, Goldin (1998) claims that the interaction 

between internal and external representation is fundamental to effective teaching 

and learning.  Therefore, as the internal and external systems interact, children 

may lose certain aspects of the domain until they realize that the particular 

aspect is necessary and reacquire it. 

It has also been found that preliterate children are already setting personal 

constraints on what appears “good for reading.”  Strings of letters are “good” if 

they contain more than two and less than nine elements provided that none of 
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the adjacent elements are identical (Ferreiro & Teberovsky, 1979).  The 

qualifying restrictions, however, for which numbers are “good” do not have these 

constraints, showing that children have already separated written numbers and 

written language into two different systems not only containing different 

elements, but also governed by different rules (Tolchinsky Landsmann & 

Karmiloff-Smith, 1992).  This further illustrates the fact that children already 

understand numbers as being governed by a system with its own rules, before 

even entering formal schooling. 

 

Internal Representations 

Numerical Systems and Internal Representation 

 Based on the dimensionality of numeration systems, Zhang and Norman 

(1995) analyzed number representation at four levels: dimensionality, 

dimensional representation, bases, and symbol representation.  Each level has 

its own abstract structure despite varying representational structures within 

levels.  For instance, in the case of dimensionality, different systems can have 

varying dimensions, yet each has the same abstract structure in that it represents 

the same entity: numbers.   

The level of dimensional representations is the level whereby systems 

with the same dimensionality vary in the physical properties used to represent 

the dimensions.  For example, in Table 1 we can see three different 1x1D 

systems that use shape x position; quantity x shape; and shape x shape.  This 

level is critical for the representational effect of the notational system (Zhang & 

Norman, 1995).  A system such as Arabic numerals with a position power 
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dimension allows for simple arithmetical algorithms such as addition with 

carrying, subtraction with decomposition, piece-wise multiplication, and long 

division.  Systems with other power dimensions cannot make any use of these 

algorithms. 

At the level of bases, systems have the same dimensionality, the same 

dimensional representation, and different bases.  This level is important for 

memorization and retrieval: larger bases require more symbols, and larger 

addition and multiplication tables. 

Finally, at the level of symbol representations, the first three levels are the 

same, but the symbols used are different, this likely has no representational 

effect except in the reading and writing of the numerals (Zhang & Norman, 1995). 

“In complex numerical tasks, as well as in many other tasks, people need 

to process the information perceived from external representations and the 

information retrieved from internal representations in an interwoven, integrative, 

and dynamic manner.  External representations are the representations in the 

environment, as physical symbols or objects (e.g. written symbols, beads of 

abacuses) and external rules, constraints, or reflections embedded in physical 

configurations” (Zhang & Norman, 1995, p.279). 

Language Effects on Internal Representations of Number 

 Despite the multitude of numerical notations throughout history, today 

almost every country and culture use the same convention and base-ten 

notation.  However, the shape of the numbers varies slightly from culture to 

culture.  As stated earlier, this convergence upon one system is largely credited 

to the efficiency of the system and its ease of use.  However, this convergence 
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has not been found in oral numeration.  Some languages still have remnants of a 

different number system such as some Australian aborigines using numbers 

words in base-two and Eskimo and Yoruba concurrently use bases ten, twenty, 

and sixty. 

 Base-ten has taken over the oral representation of number in most 

modern languages, though to different extents in varying languages.  Asian 

languages such as Chinese are the most simple, reflecting perfectly the decimal 

structure.  There are only names for 1 through 9, then four multipliers for 10; 100; 

1,000; and 10,000.  Any number is then read through decomposition (13 is ten-

three, 27 is two-ten-seven, etc).  English lies in slightly more complicated form, 

adding names for 11-19, and decades 20-90 that do bear resemblance to 1-9 

though are not predictable from the other number words.  French uses almost the 

same system as English with a slight peculiarity: 70, 80, and 90 do not have their 

own number words, they are, respectively, “soixante-dix” (sixty-ten), “quatre-

vingt” (four-twenty), and “quatre-vingt-dix” (four-twenty-ten).  German, on the 

other hand, reverses the decades and units in reading numbers (432 becomes 

four hundred two and thirty). 

 Does this language difference in the oral representation of number have 

cognitive consequences for the speakers?  Are all languages the same for 

computation or are speakers of certain languages, by simplicity of their oral 

numerations, starting out with a mathematical advantage?  Many studies have 

pointed to the superiority of Asians over English-speaking or French-speaking 

children in mathematics (Dehaene, 1997). However, it can be difficult to tease 

apart the effects of language versus schooling and home environment. 
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 Miller, Smith, Zhu, and Zhang (1995) asked age-matched Chinese and 

U.S. children to recite the counting sequence as far as possible.  At age four, 

Chinese children already counted up to about forty and U.S. children the same 

age recited up to about fifteen.  In fact, at all tested ages, U.S. children lagged 

about one year behind Chinese children.  Miller attributed this difference to the 

regularity of the Chinese language since the U.S. children were equal with the 

Chinese children up to the number twelve.  After this, there was a sharp drop as 

the U.S. children struggled to remember the rest of the sequence and the 

Chinese children continued the sequence using the transparency of their number 

system. 

 Chinese children also show much more ease in the understanding of 

place-value.  When asked to form numbers such as 25 from blocks, many 

Chinese children automatically choose two blocks of ten units and five single-unit 

blocks while most U.S. children of the same age will count 25 individual blocks 

(Dehaene, 1997). 

Looking to curb this difference, at the beginning of the twentieth century 

the Welsh relinquished their old oral representation of numbers in favor of 

simplified transparent number words similar to those used in Chinese.  However, 

this new oral numeration system has not allowed the Welsh to achieve the same 

mathematical competencies as the Chinese: the new number words are so long 

that memory suffers (Dehaene, 1997). 

Cognitive Foundations of Numerical Understanding 

 As discussed previously, we know that Arabic numerals are more efficient 

than Roman and many other types of numerals for calculation, even though they 
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all represent the same entities.  Zhang and Norman (1995) point out that this 

“representational effect” (that different representations of the same abstract 

notion can lead to dramatically different cognitive behaviors) has had profound 

influence throughout history in the development of arithmetic, algebra, and 

mathematics in general.  “The Arabic numeration system, remarkable as is its 

simplicity, has been regarded as one of the greatest inventions of the human 

mind” (Zhang & Norman, 1995, p. 272).  That being said, how does the internal 

representation of numbers relate to our Arabic external representation? 

Dehaene (1997) discusses one possible link from our numerical cognition 

to our number system: it has been shown in numerous studies that human 

infants distinguish between one, two, and three objects, yet not much beyond this 

point (Starkey & Cooper, 1980; Strauss & Curtis, 1981).  While our number 

system was not created by infants, this innate numerical intuition in childhood 

does have an extension to number discrimination in adults.  Bourdon (1908, as 

cited in Dehaene, 1997) found that the time required to name the number of dots 

in an array grew slightly from 1 to 3, then increased sharply beyond this point.  

Thus, the decision to move from bars or dots to signs after “three” was likely 

influenced by number discrimination abilities.  Distinguishing III from IIII at a 

glance is difficult (Dehaene, 1997). 

Models of Number Processing 

What is the extent to which different numerical skills involve independent 

cognitive systems? One prominent theory on this topic is the modular model 

developed by McCloskey and colleagues (1992).  McCloskey’s model proposes 

three functionally distinct number processing systems: a numeral comprehension 
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system that recodes stimulus numbers into an abstract semantic code, a 

calculation system that includes memory for number facts, and a number 

production system that receives output from the comprehension or calculation 

systems and converts it to written or spoken responses. The three systems and 

related subsystems are assumed to be functionally and neurologically 

independent.   

In this model, simple number repetition engages phonological 

input and output as well as syntactic processing mechanisms. Individual number 

words or elements gain lexical access.  Syntactic processing then allows the 

determination of the relations between elements.  For instance, the 

comprehension of 47 entails the selection of the separate elements 4 and 7 and 

syntactic ordering into correct sequence.   

It is proposed that in calculation, the mathematical symbols are processed 

first (e.g., +). Then, arithmetic facts are accessed (e.g., 12 + 9). Third, the 

calculation procedure is executed (e.g., 12 + 9=21). In this model, all number 

processing, including number repetition, must engage a component of semantic 

representation.   

Although McCloskey’s model is both simple and comprehensive, the 

assumptions on which it has been based have been called into question on a 

number of accounts and some alternative architectures have been proposed 

(e.g., Campbell, 1994; Campbell & Clark, 1992; Dehaene, 1992).  Dehaene 

(1992) introduced the “triple code theory” which proposes that number 

processing operates on three types of codes: a visual-Arabic form, an auditory-

verbal code, and an analog magnitude representation.  The Arabic form mediates 
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digital input, output, and some multi-digit operations, the analog magnitude code 

provides the basis for numerical size comparisons and estimation, and the 

auditory-verbal code mediates verbal input and output as well as counting 

operations and memorized multiplication and addition facts.  In this model, 

number processing proceeds independently of the initial notation after input.  

This differs from McCloskey’s hypothesis since in the Dehaene model differences 

in mathematical performance can be attributable to different pathways invoked by 

various notations.  Thus, Arabic numerals and number words could differ in their 

capacity to activate certain calculation subsystems. 

In McCloskey’s model and its varying alternatives, verbal working memory 

is required during mental arithmetic to retain the numbers, operations, and 

intermediate results.  It is easy to see, then, why a system such as Arabic 

numerals, that seems to balance memory load with computational difficulty so 

well, became the universal standard.  However, if it is true that number words 

can invoke different methods of number processing, we need to look further at 

individual as well as language-specific differences in the comprehension of both 

written and spoken numbers. 

 

External Representations 

Theories of Place-value Acquisition 

According to Dehaene (1997) "place-value coding is a must if one wants 

to perform calculations using simple algorithms" (p. 98).  Consider calculations in 

the Greek or Roman numerical system.  They are inconvenient for a variety of 

reasons; one apparent reason being that nothing indicates that N or L (50) are 
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greater than E or V (5).  For this reason, Greeks and Romans could never 

perform calculations without the use of the abacus.  Place value allows, for us, 5, 

50, 500, etc to be of transparent magnitude.  We must only memorize 10 digits 

and products 2x2 through 9x9. 

A formal theory behind the perception, production, and learning of 

numerical notation was put forth by Power and Longuet-Higgins (1978), which 

describes the learning of the number system as analogous to a computer 

program that learns through example.  According to this model, when people 

translate between oral numbers and Arabic numerals they construct an 

intermediate semantic representation.  A complex numeral such as one thousand 

four hundred and thirty-two has the structure ((one thousand) ((four hundred) and 

(thirty-two))) which is articulated when read aloud.  The writer must then transfer 

the representation created by the oral structure into a written numeral using the 

known set of rules (or vice versa).  Complicating this writing is also the mastery 

of an “over writing” (Power & Dal Martello, 1990; Seron & Fayol, 1994) operation 

that children must learn in order to avoid the addition of zeros.  This overwriting 

comes hand in hand with the comprehension of a concept of place-value as the 

child must learn the manner in which to assure that each numeral fits into the 

correct “place.” 

 While the Power and Longuet-Higgins (1978) theory makes sense from a 

computational perspective, do the explanations and answers of children as they 

grasp this concept correspond to the model?  In an attempt to see the part 

played by the children in the reconstruction of the system, Sinclair and Scheuer 

(1993) devised two tasks concerning the interpretation and understanding of 
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written numerals with children from Argentina and Switzerland.  According to 

Sinclair and Scheuer, “understanding of written numerical notations is a 

construction process that is necessary to the understanding of our numeration 

system, and it participates in and directly influences mathematical cognition.  The 

grasp of numerical notation is thus deserving study in its own right, and is not to 

be approached exclusively as means of representing knowledge acquired in 

other domains (cognition, counting, computation)” (p. 203). 

 With this principle in mind, Sinclair and Scheuer (1993) asked first-grade 

children, without verbalizing (though the children were not stopped if they did 

read the number aloud) to complete two tasks: comparing written numerals and 

explaining the meaning of digits in two-digit numerals.  Of sixty children studied, 

five could not count beyond ten, eight only went into the teens, seventeen 

counted to between twenty and twenty-nine, eight to between thirty and thirty-

nine, eighteen continued to between forty and seventy-nine, and four children 

counted to one hundred or beyond.  Since no difference was found between the 

three groups of children (upper middle class Swiss children, middle class 

Argentine children, and lower class Argentine children) we can assume that this 

is representative of children with similar oral numeration structures to Spanish 

and French, the languages used in the study. 

 Sinclair and Scheuer (1993) found four main strategies used by children to 

determine the greater number.  The first was number of digits.  All children 

correctly identified that numbers with more digits are greater than numbers with 

fewer digits (only positive integers were used); however, this strategy obviously 
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only works with limited pairs of numbers.  Children who could not write 10 and/or 

15 used this approach.   

 The second approach involved matching the written numbers to spoken 

numbers and deciding which one came first/last in the counting sequence.  The 

children that used this approach achieved correct responses when the written 

numbers were read aloud correctly but some children did fall victim to incorrect 

oral deciphering. 

 The third type of strategy used was face-value comparison.  In this case 

children compared parts of the numbers independently of their place.  Many of 

these comparisons were additive, such as saying that 19 is greater than 21 

because one and nine is bigger than two and one.  This argument was largely 

unsuccessful though some correct responses did stem from it by chance. 

 Quickest and most successful was the fourth type of strategy.  In it, 

children compared cardinalities of numerals in the same position, allowing the 

left-most digit to override the others. 

 Most children did not use just one type of strategy throughout the task.  

Some children began with strategy one and when it was no longer useable (i.e., 

two numbers had the same number of digits), they used strategy three.  These 

children clearly have not yet grasped a place-value concept.  Others attempted to 

use all of the strategies, mostly only failing on those where strategy three was 

attempted.  Some also used so many strategies that they would lose sight of their 

own approach, such as comparing left-most digits in numbers with different 

numbers of digits. 
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 In explaining place-value, five children did not clearly attribute any 

meaning to the separate digits. They gave explanations such as “I don’t know” or 

evaded the question while four children wrote down the whole counting sequence 

to express a number (e.g., 1, 2, 3 …17 to express 17).  They would not accept 

the individual number on its own.  All of the other children (51/60) interpreted the 

bi-digits conventionally, that is, they maintained that the two digits written 

together represented the whole collection.  However, their explanations of the 

meaning of the individual digits were not necessarily conventional.  In using one-

point tokens to express the numbers, some children maintained that there was 

one token for each digit or that both digits are for all of the tokens.  However, 

more than half of the children interpreted digits as corresponding to their face 

value, that is, while recognizing that the entire number together stood for all of 

the tokens, the digits when taken separately each stood for the number of tokens 

of the single digit quantity (such as explaining that the “1” and “5” in “15” stood for 

1 and 5 tokens respectfully).  Some of the children knew that this explanation 

was not quite adequate and that somehow all of the tokens had to be accounted 

for, yet did not understand how, even adding extra digits for the leftover tokens 

despite previously stating that the original number stood for all of the tokens 

(such as adding a “9” onto the end of “15” in the previous example to account for 

the 9 tokens leftover in the explanation). 

 Twelve of the sixty children in the study considered that the whole 

collection must be accounted for in their explanation of the numeral, yet it was 

not always clear how the partition should take place; noting that even once 
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children accept that multi-digit numbers are more than individual digits, it is still 

not apparent what each place holder actually represents. 

 Also of note is Sinclair and Scheuer’s (1993) finding that, though the study 

found children from every community were in each strategy group, on average 

the children from upper middle class and middle class neighborhoods performed 

better than the lower class children, pointing out that this is not merely a factor of 

natural development, but is also influenced in some way by the social 

environment.  We could also relate this to the Power and Longuet-Higgins (1978) 

model if perhaps the lower class children had less numerical exposure and thus 

had not yet seen enough examples to generate more advanced responses. 

 In a related study, in individual interviews with children from widely diverse 

urban, rural, public and private school communities, Ross (1986) presented 

children with twenty-five sticks and asked them to count the sticks and write 

down the number.  After this, Ross circled the “5” and asked, “Does this part 

have anything to do with how many sticks you have?” then subsequently 

indicated the “2” and asked the same question.   

The children’s responses were categorized into 4 levels; Level 1: the 

individual digits have no numerical meaning; Level 2: the child invents a meaning 

for the individual digits, unrelated to place value; level 3: the individual digits have 

some meaning related to place value, but it is a partial and confused idea, such 

as the ones place indicating tens or both places indicating ones; and Level 4: the 

digits represent the whole quantity partitioned into groups of tens and ones.  

Ross (1986) found that it was not until grade four that half of the children in the 

class reached level 4.  By grade 5, only two-thirds of the children knew that the 5 
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meant five sticks and the 2 meant twenty sticks.  This is surprising as children of 

this age are taught arithmetic algorithms based on an understanding of place-

value; such as long division, multi-digit multiplication, subtraction with borrowing, 

and addition with carrying. 

Silvern and Kamii (1988, as cited in Kamii, 1989) performed an almost 

identical study with sixteen tokens with very similar results, except that this time 

only 35% of fourth graders gave a mathematically sound answer.  One possible 

explanation for this discrepancy is that children at this age are still using number 

words to guide their notational understanding so it may be easier to extrapolate 

that the “2” in “twenty-five” is twenty than to realize that the “1” in “sixteen” is ten.  

In fact, “teen” numbers have been found to be harder for children to understand 

in terms of correlation between written and spoken numbers (DeLoache & 

Willmes, 2000). 

Children’s Written Numbers 

It has been shown that children reconstruct our numerical written symbol 

system slowly over a period of many years, grasping cardinality around the age 

of six or seven (Sinclair & Tieche-Christinat, 1992).  Thus, we may be able to 

better understand how children understand the system by looking at their early 

attempts at construction.  Sinclair, Siegrist, and Sinclair (1983) interviewed 45 

four, five, and six year olds in Geneva, Switzerland, who had received no formal 

academic mathematical instruction.  The children were presented with up to eight 

objects and asked to “put down what is on the table.”  They were later asked to 

write specific numerals, without any objects given.  Sinclair et al (1983) found 

that there were six types of notation that children produced: global 



Gabrielle A. Cayton: Qualifying Paper 1 

 27 

representations of quantity (such as lines), representations of the object kind 

(such as a B for three balls, or a house for five houses, with no attention paid to 

quantity), one-to-one correspondence with symbols (any objects at all, such as 

letters, of which the numerosity of the object was the same as the numerosity of 

the symbols), cardinal value alone (a numeral or number word), and cardinal 

value and object-kind (such as “4 pencils”).  Sinclair and her colleagues found 

that global responses were mainly used among four-year-olds while cardinal 

values (with or with object-kind) were found mainly among children over five-and-

a-half years old.  The other types were found amongst children in the middle of 

the age range (between four and five and a half years of age).   

We could use this as an example of the notational system being 

reconstructed as children move from one-dimensional symbolic systems towards 

the social convention of signs.  It can be seen from this example alone how the 

younger children used types most similar to the earliest symbolic representations 

of number and the older children used those which are most similar to (or exactly 

the same as) the most modern forms. 

If we look at children’s acquisition of number signs, various studies of 

children’s use of notation point to several different types of notational practice 

possibly linked to stages in the understanding of multi-digit numbers (Brizuela, 

2004).  In one such study, Bergeron and Herscovics (1990) studied five-year-old 

children grasping the convention of two-digit numerals.  They found three 

different levels of understanding.  First, in the juxtaposition stage, children 

understand that two digits side-by-side acquire a global meaning (e.g., 15 is a 

“fifteen” and not a “one-five”).  Next, in the chronological stage, the child 
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understands that when writing “fifteen” the “1” should be written first, but does not 

necessarily position the “5” to the right of the “1.”  Finally, in the conventional 

stage, the child produces two-digit numbers in their conventional positions, 

regardless of the chronology of number placement.  It should also be pointed out 

that these stages are not mutually exclusive.  A child can be in the chronological 

stage for numbers 20 through 30 but in the conventional stage for numbers 10 

through 20 and while age may contribute to the results, response levels are 

never very neatly correlated to age (Sinclair & Tieche-Christinat, 1992). 

This phenomenon of stage co-occurrence was also noted by both 

Pontecorvo (1985) and Sinclair (1988, as cited in Scheuer, 1996).  They noted 

that children, when asked to note “in another way” will change from conventional 

notations to one-to-one correspondences or visa versa.  It has also been 

recognized that children who represent number in a conventional manner in a 

school setting may revert to an unconventional manner outside of the school 

environment (Bergeron, Herscovics, & Sinclair, 1992); this occurrence can also 

be described as one example of the trend that Piaget (1965) coined décalage.  

While we may assume that children have mastered a system when they are 

reliably and consistently reproducing its formal structure, it has been found that 

“counting and number recognition are weak evidence for the understanding of 

the true meaning of these systems” (Bialystok & Codd, 1996, p. 289).  However, 

Bialystok and Codd do not refer to number production specifically.  Therefore, we 

can still wonder, what can conventional number production inform us about 

children’s understanding of the meaning of the system? 
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Sinclair and Tieche-Christinat (1992) found that children begin by having 

intuitions about the precise meaning of digits in particular positions by setting up 

part-to-part relations in the spoken number that correspond part-to-part to the 

notation.  This finding is backed by Fuson and Kwon (1992) who propose that 

children learn spoken patterns and written patterns simultaneously, by relating a 

particular number-word to a particular numeral.  However, understanding that the 

“2” in “26” corresponds to the word “twenty” still occurs many years before 

understanding that the “2” doesn’t just signify to pronounce “twenty” but that 

because of its placement in the number the “2” itself actually represents the 

cardinal number twenty.  Also of note is Brizuela’s (2004) account of a young girl 

trying to account for the difference in the “3” representing three and the “3” 

representing thirty by rotating the number to create a “capital three.”  Similar 

accounts of number rotation were also noted by Alvarado (2002) with Spanish-

speaking children.  These instances of children attempting to manipulate 

numbers to create a new meaning point to both the fact that children are 

developmentally ready to learn about and understand place-value but also that 

they do not intuitively understand that the single-digit numeral changes its own 

meaning simply by its position in the number and does not need further 

manipulation.  

 

The Interaction between Internal and External Representations 

Dictation and Reading of Numerals by Children 

 A lot can be learned about children’s early understanding of place value 

and the number system by how children write down numbers that they hear.  
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Verbal numbers are used mainly in conversation while written numbers are used 

mainly for calculation and writing down large numbers.  Thus, children do not 

tend to focus on writing numerals in school until first or second grade and even 

then only gradually increase the number of digits that are written.  This being the 

case, Power and Dal Martello (1990) conducted a study of Italian second graders 

taking numerical dictation of one, two, three, and four digit numerals with and 

without internal zeros.  Since the Italian language has a similar transparency of 

number words to other romance languages as well as to English, findings in this 

study could be considered as typical of most Western children.  The second 

graders in this study correctly annotated all numbers below 100, demonstrating 

that they were both trying to succeed and also that they had mastered the 

number system in this range, making the findings of larger numbers quite 

remarkable.  For numbers above 100, Power and Dal Martello found both lexical 

(such as using a 7 instead of an 8) and syntactical (adding extra zeros, 

misarranging number, etc) errors, though the syntactical errors far outweighed 

the lexical, indicating a misunderstanding of the system and not simply a mistake 

on the part of the child.  There were also significantly more errors for four-digit 

than three-digit numbers, demonstrating that there are indeed steps in the 

acquisition of the system and it is not simply an “all or nothing” understanding; 

that is, each number range poses new problems or elicits prior problems once 

again. 

 Several trends were observed in syntactic errors.  For three digit numbers 

without internal zeros, 14/22 errors were of type X00XX (e.g., 10025 for one 

hundred and twenty-five) and 6 errors were of type X0XX (e.g., 1025).  This 
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difference can be described as children who have not yet learned how to 

incorporate their knowledge of hundreds (100, 200, 300, etc.) with knowledge of 

two-digit numbers versus children who are beginning to write three-digit numbers 

with internal zeros (e.g., 105 as one hundred and five) without understanding 

place-value.  Backing this interpretation is the result that 18 of 22 errors of three-

digit numbers with internal zeros were of type X00X (e.g., 1005 as one hundred 

and five), since the second type of error found without internal zero is no longer 

an error with this number type. 

 A similar result was found in four-digit numbers, but with obviously more 

types of internal zero errors.  For instance, the number 3194 was incorrectly 

transcribed by five different children as 30194, 30010094, 300010094, 

30000194, and 300000100904.   

 All of these responses suggest that children form separate constituents for 

thousands, hundreds, and tens and then concatenate them.  While this may not 

be immediately surprising, it is quite noteworthy that even after children seem to 

have mastered place-value and cease concatenation in three-digit numbers, they 

begin a new learning process with four-digit numbers, demonstrating that they do 

not yet truly understand the system, but are in many cases still memorizing 

individual number rules.  This result supports the findings of Karmiloff-Smith 

(1979).  In observing children learning both mathematical procedures and 

language skills, Karmiloff-Smith noted that "each time a procedure in a 

representational system is functioning adequately and automatically, the child 

steps up to a metaprocedural level and considers the procedure as a unit in its 

own right" (p. 91).  Further, "each time children develop an adequate tool for 
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representing their knowledge, and once the tool functions well procedurally, then 

the tool is considered metaprocedurally as a problem-space in its own right” 

(p.92).  Karmiloff-Smith also noted that “young children juxtapose their 

procedures whereas older subjects can take their procedures as units” (p.92). 

 As stated on page 2 of this paper, Scheuer et al (2000) conducted a 

similar dictation study with Spanish-speaking children and discuss, among 

others, two distinct types of incorrect numerical notation strategies used by 

children: logogramic and compacted notation.  Logogramic notation refers to 

children who write the entire number literally, such as 100701 for one hundred 

seventy-one while compacted notation refers to children who remove some of the 

zeros from the logogramic coding while still not condensing the number entirely 

into its conventional form, such as 1071 for one hundred seventy-one.  These 

two error types are quite similar to the errors noted by Power and Dal Martello 

(1990).  Scheuer speculates that perhaps these two types of notational strategies 

stem from different ideas about the numbers themselves, yet Scheuer’s study 

only focuses on written numbers and she never goes on to test this speculation. 

 As Seron and Fayol (1994) pointed out, it remains to be determined where 

in the functional architecture of number processing the children’s transcoding 

errors originate.  Is it the result of inadequate comprehension of the verbal 

number forms, difficulties located at the production stage of Arabic forms, 

inadequate comprehension of the number system itself, or a conjunction of two 

or three of those possibilities? 

 Seron and Fayol (1994) devised a follow-up experiment aimed at 

answering whether the children in the Power and Dal Martello (1990) study 



Gabrielle A. Cayton: Qualifying Paper 1 

 33 

comprehended correctly the verbal number forms and to further understand what 

role language might have in this process.   

 As mentioned earlier, the French language has a very similar numeration 

system to English and Italian, aside from the forms for 70, 80, and 90 which 

translate to sixty-ten, four-twenty, and four-twenty-ten respectively.  However, in 

Wallonia, a region of Belgium where French is spoken, the words for 70 and 90 

mirror those used in English and most romance languages.  Due to this small 

difference in the languages, Seron and Fayol (1994) conducted a similar 

transcoding experiment to Power and Dal Martello (1990) to see if the French 

and Walloon children would have any differences in numerical dictation or 

understanding of the written number system caused by the differences in the oral 

numeration of each language. 

 Seron and Fayol (1994) adopted a longitudinal approach by interviewing 

children at three sessions, each distant by a three month interval, and coding for 

the types of errors present in Power and Dal Martello (1990) in each separate 

type of number, which they termed Unit-Hundred (UH, this would include 

numbers such as two hundred); Hundred-Unit (HU, such as one hundred and 

three); Hundred-Decade (HD, such as one hundred and thirty); and Hundred-

Teen (HT, such as one hundred and thirteen); as well as each of these types 

following a thousand (MU, UM, MD, MT, DM, TM).  For example, 1,001; 2,000; 

1,010; 1,013; 10,000; and 13,000, respectively. 

 Five different tasks were then administered: In Task 1, children were 

asked to write ninety-five orally presented numbers that covered all of the 

categories listed above.  Task 2 was a number magnitude comparison task 
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where children indicated which of two orally presented numbers was the larger 

one.  Task 3 was a grammaticality judgment task whereby each child was asked 

to determine whether a sequence of number words was legal or not.  The aim of 

Task 4 was to evaluate the semantic component of the McCloskey (1992) model 

(see description on page 18).  Children were presented with oral numbers and 

asked to represent the quantity using tokens of three different colors representing 

one franc, ten francs, and one hundred francs.  Finally, in Task 5, children were 

asked to write down Arabic numerals corresponding to tokens presented to them. 

 As opposed to the Power and Dal Martello (1990) task and the Scheuer et 

al (2000) task, which interviewed children only once, Seron and Fayol were able 

to explore order of acquisition of the various number forms using their set-up of 

three interviews over six months.   In the case of Task 1, there was a significant 

order of acquisition of UH then HU (e.g., 200 precedes 104), followed by HT/HD 

(e.g. 113 or 120 would be acquired next).  For four-digit numbers, the order of 

MU, MT, then MD was also significant (e.g., 1,002 precedes 1,014, followed by 

1,040). 

 Seron and Fayol found very similar lexical and syntactical errors to Power 

and Dal Martello (1990) and Scheuer et al (2000).  Not surprisingly, certain 

incorrect syntactical responses were seen only by French children such as 6018 

for “soixante-dix-huit” (seventy-eight) and 42017 for “quatre-vingt dix-sept” 

(ninety-seven).  Interestingly, these errors are very similar to those produced by 

French adult aphasics (DeLoache & Seron, 1982), indicating that this is likely an 

error at the level of processing or comprehension, not an error at the stage of 

production (though we cannot be certain: it is always possible that two different 
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sources of error produce the same outcome as was discussed on page 12 of this 

paper). 

 In the number comparison task (Task 2), most children did too well to 

allow for an analysis due to a ceiling effect, indicating children are able to 

elaborate from an oral number to a corresponding quantity without first 

transcribing the number.  This also indicated a lack of place-value concept, since 

the same numbers that were correctly judged to be greater than others when 

presented orally were then transcribed using fewer digits.  The grammaticality 

judgment task (Task 3) also had a ceiling effect. 

 Task 4 (semantic representation) was the first task to show a marked 

difference between the numerical structures of the two languages.  Walloon 

children made less than 1 percent errors (8 out of 900 responses created over 10 

children) while French children made 53 errors (also out of 900 responses over 

10 children).  Twenty-two of these errors were semantic errors in the 

representation of complex tens (for instance, 79 was represented by 7 tens 

tokens plus 19 units tokens or 6 tens tokens and nine units tokens6).  These 

types of errors were seen both in numbers in the 70s and in the 90s7. 

 Since Task 5 was intended to test the production component of 

McCloskey (1992), the same numbers were used as in the Task 4.  This time, out 

of the 1800 responses, there were 304 errors, 196 (64.5%) of which came from 

the French children.  This language difference was not significant, but there was 

                                         
6
 Since 6 tens tokens and 19 units tokens would be considered a correct response, Seron and 

Fayol (1994) did not list how many children made this coding as opposed to the expected coding 
of 7 tens tokens and 9 units tokens. 
7
 Both the French and Walloon numeration systems use quatre-vingt (four-twenty) to represent 

80, thus this number was not explored in the study which was focusing on the language 
differences in the oral representations of numbers, specifically 70-79 and 90-99. 
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a significant effect of session, showing steady improvement over the six months 

that the study lasted.  In addition, the French children made more than twice as 

many errors than the Walloon children with complex tens. 

 The types of tasks at which the children from Wallonia excelled versus 

erred demonstrate that their difficulties in transcoding from oral numbers to 

Arabic numerals were mainly due to the production of the numerals themselves 

and not a difficulty in understanding what numerosity the spoken number referred 

to.  The same cannot be said for French children, who produced token 

arrangements very similar to their transcoding errors (from oral numbers to 

Arabic numerals).   

 That being said, both groups performed better than the U.S. children in 

comprehension of the base-ten structure of written word numerals reviewed by 

Fuson (1990).  This cannot be explained linguistically as was done with the 

French/Walloon difference since English is more transparent than French in 

higher numbers and contains similar irregularities to the Walloon number system.  

However, we must keep in mind that Fuson (1990) reviewed many studies of 

unselected samples of children at varying tasks and Seron and Fayol (1994) 

interviewed only children who presented no mathematical difficulties. 

 With these differences amongst children of different languages that have 

such similar numerical structures, we would expect to find that children with a 

greater difference in their oral numerical systems would perform at an even 

greater disparity.  This is exactly what Miura and Okamoto (1989) showed.  They 

interviewed 24 U.S. first graders and 24 Japanese first graders using base-ten 

blocks.  The equivalence between ten unit-blocks and one ten-block was 
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explained explicitly to the children.  Children were then asked to read a number 

written on a card (11, 13, 28, 30, and 42 in random order) and show that number 

by using the blocks.  These representations were then scored as one of three 

types: a) one-to-one (i.e., the child only used unit blocks), b) canonical base-ten 

representation (i.e., the child incorporated both ten-blocks and unit blocks with no 

more than 9 unit blocks), or c) non-canonical base-ten representation (i.e., the 

child incorporated both ten-blocks and unit blocks, allowing there to be more than 

9 unit blocks, such as 1 ten-block and 18 unit blocks for 28). 

 The children also performed more explicit place-value tasks such as being 

shown the number 32 and being asked to point to the number in the ones place 

and in the tens place.  They then were told to show the 3 and the 2 using base-

ten blocks.  After, they were shown a 44 along with its construction and asked 

which set of 4 blocks showed the first 4 and which showed the second 4.  The 

children were also showed non-canonical construction of 3 ten-blocks and 12 

unit-blocks and asked to represent the number.  If the number was correct, they 

were asked if the 4 and the 2 had anything to do with the number of blocks.  On a 

fifth task, the children were given 13 unit blocks and asked to put 4 blocks each 

into plastic cups and then give the total.  Children were then shown the number 

13 and asked if the 1 and the 3 had anything to do with how many blocks there 

were.  This was then repeated with 26 blocks. 

 The results of the Miura and Okamoto (1989) study were as overwhelming 

as expected:  67% of Japanese children used a canonical base-ten 

representation for all five numbers compared to only 8% of U.S. children.  In fact, 

50% of the U.S. children did not use a canonical representation for any number.  
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When asked to create another representation of the same number, 79% of the 

Japanese children were able to think of a different method of representation 

while only 13% of U.S. children did so.  This last difference should be taken with 

a grain of salt, however, since children who used a canonical representation first 

could be assumed to understand the equivalency with unit blocks only, thus the 

second result is merely repeating the first. 

 The explicit place-value tasks were also quite telling.  42% of Japanese 

children answered all of the questions correctly compared to 16% of U.S. 

children.  In fact, every Japanese child got at least one place-value question 

correct while half of the U.S. children did not get a single correct answer. 

Surprisingly, and contrary to popular belief, the U.S. children in this study had 

been taught about place-value using manipulative materials, pictorial arrays, and 

expanded notation; yet the Japanese children had only been explicitly working 

with numbers 1-9 in school at the point of the testing.  The reality that the U.S. 

children had not understood the place-value lessons while the Japanese children 

found it intuitive seems to only be explained by the explicitness of the canonical 

forms in the Japanese oral numeration.  When numbers have names such as 

ten-one and two-ten eight (the English translation of two Japanese numbers used 

in this experiment) it seems only natural to construct the number exactly as it is 

told, with the number of ten-blocks and unit blocks explicit.  Lacking a system for 

producing oral numeration that explicitly incorporates place-value, English-

speaking children must develop an understanding of the concept in some other 

way (Miura & Okamoto, 1989).  While the use of manipulatives has been 
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explored, it continues to appear as though U.S. children do not understand place-

value until past the primary grades (Fuson, 1986). 

 Studies such as Miura and Okamoto (1989) and Seron and Fayol (1994) 

demonstrate the varying difficulties that children may have in interpreting oral 

numbers into canonical base-ten forms and vise versa.  In addition, Scheuer 

(1996) and Power and Dal Martello (1990) indicate similar difficulties in 

interpreting spoken numbers into written numerals and the reverse.  However, 

there has not yet been any analysis comparing how these two relationships (i.e., 

oral numbers with canonical base-ten and oral numbers with written numerals) 

are interrelated.  If we look at the heart of these authors’ hypothesis and 

conclusions, there are many suppositions of numerical representations through 

tokens as being indicative of a child’s internal representation and understanding 

of the number.  By definition, numerical notation is one type external 

representation of a number.  Numerical notations, as discussed earlier, are also 

our modern numerical tool and contain within them a great deal of information 

about the number.  We must then question, how are these two types of 

representation (internal and external) related?  Do children who make a particular 

error in one type of representation (i.e., oral, written, canonical) make similar 

errors to one another in the other type of representation? 
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The Study 

Objective  

The study reported in this paper examines young children’s understanding 

of place value in the base-ten number system through their use of numerical 

notation and strategies in object manipulation tasks.  Various studies of children’s 

use of notation point to several different types of notational practices possibly 

linked to stages in the understanding of place value in base-ten (Alvarado, 2002; 

Brizuela, 2004; Scheuer et al, 2000; Seron & Fayol, 1994, among others).  As 

discussed earlier, many children use similar incorrect strategies to write numbers 

such as 10071 or 1071 for one hundred seventy-one.  I seek to examine what 

correlations, if any, exist between children’s techniques of representing multi-digit 

numbers and their knowledge of place value and number composition.  The 

particular analysis presented in this paper focuses on two particular incorrect 

notation strategies termed Full Literal Transcoding (Seron & Fayol, 1994) and 

Compacted Notation (Scheuer et al, 2000) and their correlation with correct and 

incorrect decomposition strategies.  I seek to answer the question: How is a 

child’s numerical notation strategy correlated in any way to his or her 

understanding of number decomposition?  Broader questions that are also 

addressed include: What can we learn from looking at children’s numerical 

notation?  Are children’s numerical notations correlated to their nonverbal 

representations of number?  Do children’s incorrect notations help us to 

understand incorrect concepts of the number system? 
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Methods 

Sample 

Participants were 45 kindergarten and first grade children (21 male, 24 

female; ages ranging from 4;10 to 7;11, mean age 6;2) from a public school 

within the greater Boston area in a community that is racially, ethnically, and 

culturally diverse.   Each child was individually interviewed in the reading, writing, 

and decomposing of 2-digit, 3-digit, and 4-digit numbers as shown in Table 2. 

Two kindergarten children were not included in the analysis due to either not yet 

conserving number (a necessity for the decomposition task) or refusal to answer 

enough questions to allow for categorization of strategies used.  For this same 

reason, ten children are not included in the analysis of four-digit numbers as they 

did not answer enough questions. 

Table 2  

Numbers used in Tasks 1 through 3 

Series 1 2 digit – “transparent” 8 with final 0 40 60 70 80 90 
Series 2 2 digit –nontransparent with final 0 50 30 20   
Series 3 2 digit – transparent without 0 43 64 79 88 91 
Series 4 2 digit – nontransparent without 0 53 21 19 35 17 
Series 5 3 digit – without 0 127 143 324 465 132 
Series 6 3 digit – internal 0 101 207 301 401 504 

Series 7 3 digit – final 0 300 760 640 430 910 
Series 8 4 digit – without 0 1127 3143 4324 5465 7132 
Series 9 4 digit – X0XX 3064 2053 1019 4035 5091 
Series 10 4 digit – XX0X 2101 3504 1401 4207 1706 
Series 11 4 digit – XXX0 1300 3760 2640 1430 1910 

 

                                         
8
 The transparency of a number refers to the degree to which a number sounds like its written 

form when spoken aloud.  For example, in English, 60 is more transparent than 30 since the “6” is 
clearly heard in the pronunciation of the number.  We cannot say that 60 is completely 
transparent since the “ty” does not sound exactly like “ten” or “zero.”  For more information on 
transparency, see Alvarado & Ferreiro (2002).   
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Task Details 

Each child engaged in an individual interview of approximately 30 minutes 

in the style of a Piagetian Clinical Interview (Piaget, 1965), where the child was 

asked to write and read numbers as well as name the total value of a group of 

tokens, of which each color was assigned a value, to pinpoint his or her 

understanding of our base-ten number system.  Each interview was videotaped 

and later transcribed to look for any relevant statements or actions made by the 

child that could be overlooked while the interview was occurring. 

The three tasks focused on different aspects of the child’s understanding 

of the number system: written numerals and the consistency of words with 

symbols (Tasks 1 and 3) and the correspondence between words and object 

numeracy (Task 2).  While the focus of the study is on multi-digit numbers, it was 

also necessary to include numbers less than ten in every task to understand the 

child’s representation of those numbers and its correspondence to greater 

numbers. For example, Alvarado (2002) and Alvarado and Ferreiro (2002) noted 

some interesting connections and differences between a child’s notation for 

single-digit numbers and the same numbers in a different place-value, such as 

differing orientations of the numbers.  Brizuela (2004) also reported on one child 

discussing “capital numbers” and how numbers change when in different 

positions just as letters do.  Questions in the interview were about numbers 

ranging from 10-9,999; however, numbers 1,000-9,999 were not included for ten 

children that expressed the desire to end the interview and were already 

demonstrating a guessing strategy with smaller numbers. 
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Task 0: Introduction 

 Each child was given a pencil and paper and told that we would be talking 

about numbers. The child was asked introductory questions such as: “What’s the 

biggest number you know?”; “Do you know how to count from 1 to X?”; “Could 

you put down those numbers on the paper?”  The introduction task ended once I 

was familiar and comfortable with the general knowledge, vocabulary, and 

number fluency of the child. 

Task 1: Written numerals 

 The written numerals task is based on the work of Brizuela (2004).  In this 

task, I aimed to understand the child’s fluency with written numbers.  Every child 

was asked to write at least two numbers from each structural type such as X0, 

XX, XX0, etc.  Children who wrote the first two numbers in a series (see each 

row of Table 2) conventionally were presented with the next category.  Children 

who wrote at least one number incorrectly received 1-3 more numbers until the 

child’s strategy within that series was apparent (see Table 2 for a complete list of 

numbers presented). 

Task 2: Object numeracy in the base-ten system 

 This task was designed for the purpose of understanding the 

consistencies/inconsistencies in the child’s understanding of our number system 

without the use of notation.  In the object numeracy tasks, children were 

presented with a number of tasks involving the use of counters (poker chips) of 

different colors.  Counters were chosen based on the work of Nunes Carraher  

(1985) performing similar tasks in the understanding of place value in young 

children and illiterate adults.  The child was told that red counters are worth 1 
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point, blue counters are worth 10 points, white counters are worth 100 points, 

and brown counters are worth 1,000 points.  The child was presented with the 

same numbers as in Task 1 but in token-form and asked how many points 

he/she has.  Once again, children who correctly named the first two numbers 

within a series were presented with the next series.  Children who named at least 

one number incorrectly received 1-3 more numbers until the child’s strategy with 

that series was apparent. 

Task 3: Reading Numerals 

 In the reading numerals task, children were asked to read from a piece of 

paper the same numbers that they were asked to write in Task 1. Once again, 

children who correctly read the first two numbers within a series were presented 

with the next series.  Children who read at least one number incorrectly received 

1-3 more numbers until the child’s strategy with that category was apparent. Only 

Tasks 1 and 2 are analyzed in this paper.  Results from Task 3 will not be 

discussed in this paper. 

Analysis 

 Transcripts of the interviews were reviewed along with any notes made 

during or after the interview, the written work of the children, and the physical 

manipulations of the children during the object numeracy tasks.  These pieces 

constituted the data for the study. 

 Data was arranged into categories for different types of strategies.  In 

Task 1, children were classified by the strategy used to produce written 

numerals. Written numeral strategies were coded separately for each type of 
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number (for a complete list of numbers and number types, see Table 2).  There 

were seven categories coded:  

A) Idiosyncratic, various strategies – Child has no consistent strategy for 

writing numerals in the given number range (i.e., 10-99, 100-999, 1,000-

9,999).  

B) Other – The child has a consistent strategy not used by any other 

children. 

C) Full Literal Transcoding (FLT) – Child writes out number literally, for 

example, 100701 or 10071 for one hundred seventy-one.  This category is 

taken from Seron and Fayol (1994).  This is similar to the Scheuer et al 

(2000) category of logogramic notation except that Scheuer would only 

allow for 100701 to be considered in this category.  I allow for both types 

of literal transcoding (100701 and 10071) as FLT since for children who 

are conventionally writing 2-digit numbers, “71” has become the literal 

writing of seventy-one. 

D) Compacted Notation (CN) – Child writes extra zeros in numbers but 

fewer than the FLT notation, for example, 1071 for one hundred and 

seventy-one.  

E) Correct Strategy, some errors – The child correctly notates most 

numbers, but makes at least two errors within the given number range, for 

example, making one error in series 5 and one error in series 6 to total two 

errors in 3-digit numbers. 
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F) Error due to incorrect use of comma – This category only pertains to 

numbers over 999.  The child uses a comma in notation and leaves out 

zeros.  For example, one thousand seventy-one would be written 1,71.  

G) Zero or one error - Children making only one error in a given number 

range were considered to be demonstrating proficiency with numerical 

notation in the range.  This was to account for natural human error such 

as forgetting a number requested or mishearing the interviewer.  For 

example, a child whose only error was writing 137 for one hundred and 

twenty-seven would be considered proficient in 3-digit numbers. 

 

As can be seen by the descriptions, categories A, B, and C, and D all 

produce incorrectly written numbers while E and F produce many correct 

numbers with a few mistakes.  Category G produced at most 1 incorrect number 

in the number range. 

In Task 2, children were classified by the strategy used to decipher the 

point value of the tokens. Decomposition number strategies were coded 

separately for each type of number.  The same six categories were used for each 

type of number:  

A) Incorrect Understanding – Child fails to understand the multiplicative 

nature of the tokens.  The most common example of this is counting every 

token as one point regardless of its color. 

B) Varied Strategies – Child shows some understanding of token value, 

but does not have a consistent strategy for naming the number 

represented by the tokens, resulting in at least two errors. 
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C) Counting by ones – Child does show some understanding of token 

value, but can only add up the points by counting by ones (i.e., pointing to 

a 10-point token and counting (1, 2, 3, …, 10), leading to at least two 

errors with larger numbers. 

D) Ordering/Combining Difficulty – Child correctly adds each individual 

color token correctly, but makes several errors in adding the colors 

together to form a single number. 

E) Correct Strategy, some errors – The child correctly adds the tokens in a 

conventional manner, but makes at least two errors within the given 

number range. 

F) Zero or 1 error - Children making only one error in a given number 

range were considered to be demonstrating proficiency with numerical 

decomposition in the range.  This was to account for natural human error 

such as miscounting or forgetting the number counted to. 

 

Results  

In the analysis presented here, I sought to compare and contrast 

children’s responses on Tasks 1 and 2 (notation of number and decomposition of 

number).  Table 3 relates the results in Tasks 1 and 2 for the case of two-digit 

numbers.  It shows that 40 of 43 children (93%), fell into one of three cases: 

Incorrect understanding of tokens in Task 2 with idiosyncratic notation in Task 1 

(9 of 43 children, 21%); Incorrect understanding of tokens in Task 2 with correct 

notation in Task 1 (10 of 43 children, 23%); and Correct decomposing with 

tokens in Task 2 with correct notation in Task 1 (21 of 43 children, 49%).  No 
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child displayed correct decomposing with tokens in Task 2 and incorrect notation 

in Task 1.  It is interesting to note that half of the children (10/19) who did not 

understand how to use the tokens still produced correct notation while all of the 

children who were not able to produce correct notation were also unable to 

understand the tokens.  One possible explanation for this finding is that the 

children who were producing correct notations with incorrect tokens had simply 

memorized two-digit numbers each as their own entity, but still did not 

understand how the numbers were constructed. 

Table 3 

Two-digit number decomposition and notation strategies 

 

Note: N=43; cells containing zero responses are shaded for clarity 

In the case of three- and four-digit numbers (Table 4), we do see children 

spread out over more of the cases.  This time, the table also included information 

on children’s performance in previous number groups.  When analyzing three-

digit performance, children who performed in the zero or 1 error group with both 

  Decomposing 

Notation 

Incorrect 
understanding 

Varied 
strategies 

Counting 
by 1s 

Ordering 
difficulty 

Correct 
strategy, 
some 
errors 

Zero or 1 
error 

Idiosyncratic, 
various 
strategies 

9 0 0 0 1 0 

Other 
 
 

0 0 0 0 0 0 

FLT 
 
 

0 0 0 0 0 0 

Compacted 
 
 

0 0 0 0 0 0 

Correct strategy, 
some errors 0 0 0 0 0 0 

Zero or 1 error 
 10 0 0 0 2 21 
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notation and the tokens tasks with two-digit numbers were compared with 

children who were in an error group in at least one of those tasks.  This was done 

to see if children who had performed perfectly in the previous number range 

would go on to have different types of problems with the next number range than 

children who had difficulty in the pervious range.   

Table 4 

Three-digit number decomposition and notation strategies 

  Decomposing 

Notation 

Incorrect 
understanding 

Varied 
strategies 

Counting 
by 1s 

Ordering/ 
combining 
difficulty 

Correct 
strategy, 
some errors 

Zero or 1 
error 

Idiosyncratic, 
various 
strategies 

4 1 0 1 0 0 

Other 
 
 

1 0 0 0 0 0 

FLT 
 
 

3 0 0 1 1 1 

Compacted 
 
 

1 0 0 1 1 3 

Correct strategy, 
some errors 

0 0 0 0 1 0 

Zero or 1 error 
 

0 0 0 0 1 12 

Note: N=43;  

Light gray = Correct with Tasks 1 and 2 in 2-digit numbers;  

Dark gray = Incorrect with at least one task in 2-digit numbers 

 

Similarly, when analyzing four-digit number performance, Table 5 included 

information on how children who performed in the zero or 1 error group with both 

notation and the tokens tasks with three-digit numbers compare with children 

who were in an error group for at least one task.  Surprisingly, every combination 

of notation strategy with decomposing strategy was utilized solely by children 

who performed at ceiling with the previous number group or by children who did 

not perform at ceiling with the previous number group.  In other words, children 
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who have mastered numerical notation and understanding (an indicated by the 

token task) for integers 1-99 show different strategies of numerical notation for 

integers 100-999 than children who are still struggling with 1-99.  Similarly, 

children who have mastered numerical notation and understanding for integers 

100-999 show different strategies of numerical notation for integers 1,000-9,999 

than children who are still struggling with 100-999. 

 

Table 5 

Four-digit number decomposition and notation strategies 

 

Note: N=33;  

Light gray = Correct with Tasks 1 and 2 in 3-digit numbers;  

Dark gray = Incorrect with at least one task in 3-digit numbers 

 

 

For the next analysis, I isolated the Full Literal Transcoding (FLT) and 

Compacted Notation (CN) categories among the children to explore Scheuer’s 

hypothesis that perhaps the children using these notational strategies have 

  Decomposing 

Notation 

Incorrect 
understanding 

Varied 
strategies 

Counting 
by 1s 

Ordering/ 
combining 
difficulty 

Correct 
strategy, 
some errors 

Zero or 1 
error 

Idiosyncratic, 
various 
strategies 

11 0 0 1 0 0 

Other 
 
 

6 0 0 2 0 0 

FLT 
 
 

0 0 0 0 0 0 

Compacted 
 
 

0 0 0 1 0 3 

Correct strategy, 
some errors 

0 0 0 0 1 0 

Error due to use 
of comma 
 

0 0 0 1 1 1 

Zero or 1 error 
 

0 0 0 0 0 5 



Gabrielle A. Cayton: Qualifying Paper 1 

 51 

different numerical concepts.  The results support that these two incorrect 

strategies of numerical notation do appear to be correlated with different 

numerical understanding.  Of 6 children that used FLT to notate 3-digit numbers, 

only 2 children (33%) had correctly decomposed and notated 2-digit numbers.  

Meanwhile, of 6 children that used CN to transcribe 3-digit numbers, 5 (83%) had 

correctly decomposed and notated 2-digit numbers (see Table 6). 

Table 6 

Two- and Three- digit interaction amongst children using FLT and CN 

Note: N = 12 

 

Next, I looked at these two types of notation in three-digit numbers 

compared not to whether children performed perfectly with two-digit numbers, but 

whether they demonstrated that they understood that the various tokens were 

worth different values, even if unable to correctly utilize this fact.  Three out of 6 

(50%) of those using FLT DO NOT understand the value of individual tokens, 

while 5 out of 6 (83%) of those using CN DO understand the symbolic value of 

the tokens (see Table 7).  Though the sample was too small to perform any 

statistical tests, these results do indicate that this topic is worth further 

exploration in a larger-scale study.  Together, Tables 6 and 7 both point to the 

possibility that children using CN have a more advanced understanding of the 

number system than those using FLT.  This is a surprising result seeing that both 

of these strategies are incorrect, never taught, and both formed by the over-use 

of zero in numerical notation. 

 Incorrect with at least one task 
on 2-digit numbers 

Correct with both tasks on 2-
digit numbers 

FLT with 3-digit numbers 4 2 

CN with 3-digit numbers 1 5 
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Table 7 

Three-digit number decomposition amongst children using FLT and CN 

Note: N = 12 

 

Discussion 

These results lead us to wonder: why do FLT and CN repeatedly come up 

as strategies and what causes them to be related to different numerical 

understandings?  They are certainly strategies never taught in school such that 

children would not be repeating from example.  In the case of FLT, one could call 

it the numerical equivalent of sounding out the spelling of a word, which children 

are taught to do in written language.  If this is the case, it still does not explain the 

prevalence of CN.  Why do children choose to eliminate some but not all zeros in 

a number?  Moreover, why do children who are performing this way appear to be 

closer to a conventional numerical understanding as demonstrated in their token 

interpretation?  Seron and Fayol (1994) posit that perhaps children are absorbing 

some rules of notation, such as the “overwriting” of zeros, but are not yet 

grasping the entire concept of the place-value system.  The data described here 

does seem to support this possibility, as even children who understood the 

concept of the tokens still did not seem to realize that they could use each color 

token to represent each digit of the number.  

This leads us to the next obvious question, which is: are numerical 

notation strategies shaped by numerical understanding or does the notation 

influence what children think about numbers (i.e., their numerical 

understanding)?  The lack of a single child who displayed a conventional 

 Incorrect Understanding of 
tokens 

Correct Understanding of 
tokens 

FLT 3 3 

CN 1 5 
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understanding of the tokens task yet produced idiosyncratic numerical notation 

seems to point in the direction of the notation as a reflection of the child’s 

understanding.  In the case of children with an idiosyncratic understanding of the 

tokens task yet conventional notation, one potential explanation is simply 

memorization.  First grade children have had many classroom experiences 

writing numbers 1-100.  For the child who does not yet have the proper number 

concept to allow for a place-value understanding, memorization is the key to 

producing numbers within this range.  This would also help to explain why this 

category only showed up for numbers less than 100.  Above 100, the children 

have not yet received formal instruction, so the memorization factor does not 

come into play and thus there were no children who did not understand the 

tokens task that produced correct notation for numbers above 100. 

Noticing that performance in one number range is correlated to the next 

range (i.e., performance with two digits predicts a range of performance with 

three digits), we must then ask if there is a critical number of digits after which, 

when children have mastered both writing and decomposing, they could begin to 

produce numbers with any number of digits.  This question and the preceding 

ones will be addressed in further studies towards my dissertation.  The next 

study conducted will include numbers beyond 9,999 and also a fourth task.  In 

Task 4, students will be orally presented with a number and then asked to write 

the number and compose it using the tokens.  In this task, we will be able to see 

if the students’ notational strategy influences how they choose to compose the 

number.  In addition, some students may revise the notation after noticing 

correlations with the tokens that they were unaware of previously.  Finally, the 
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need for a larger sample size is apparent.  The difference in performance 

between children using FLT and CN strategies could be quite a remarkable 

finding, but it is evident that we first need to reproduce the study on a larger 

scale. The plan for this larger study is currently underway. 

 

Conclusions 

 Though many numerical systems have existed throughout time, the world 

has converged on one system in a manner unprecedented by any other form of 

communication.  This is likely due to the manner in which the Arabic number 

system creates an ideal balance between memory usage, ease of manipulation, 

and simplicity of understanding.  However, when expecting children to converge 

upon the same understanding, it is important to keep in mind the thousands of 

years that it took for this system to develop and become the world’s norm.  In 

Psychogenesis and the History of Science, Piaget and Garcia (1989) 

demonstrate parallels between individual development of children’s 

understanding of physical phenomenon and the history of the field of mechanics.  

Similar parallels can also be drawn in the field of mathematics and the acquisition 

of the number system (Safuanov, 2004). 

 There are several theories about how children come to understand the 

number system using various metaphors such as computer programs that learn 

through experience and the reconstruction of history over a period of years 

(Bergeron & Herscovics, 1990; Bergeron, Herscovics, & Sinclair, 1992; 

DeLoache & Seron, 1982; McCloskey, 1992; Piaget & Garcia, 1989; Sinclair, & 

Tieche-Christinat, 1992; Power & Longuet-Higgins, 1978; and others).  
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Regardless of the process that seems to takes place while children are learning 

the number system, it is clear that children do go through various stages of both 

internal and external ways of representing numbers. 

 By looking at children’s external representations and explanations of 

numerical notation we can learn a plethora of information about what children are 

grasping as we teach them about numbers both in school and in daily life.  There 

are also noticeable differences in children’s understanding of place-value 

correlated to their native language (Dehaene, 1997; Miller, Smith, Zhu, & Zhang, 

1995; Miura & Okamoto, 1989; Power & Dal Martello, 1990).  Asian languages 

that act as transparent clarifiers of numerical quantity help children, at least in 

primary grades, a great deal with learning to write, read, and manipulate 

numbers. 

 We can see through Brizuela’s (2004) and Alvarado’s (2002) accounts of 

children attempting to rotate or otherwise alter digits to change their meaning as 

a sign that children are attempting, yet with difficulty, to make sense of the 

number system.  These accounts remind us that while we take the use of place-

value for granted, it is not obvious, as can be seen by the thousands of years that 

it took to develop. 

 That being said, we still have much to learn about how children 

understand this unique and global system.  The data presented in this paper 

show that we may be able to learn quite a bit about how children understand the 

number system by looking at their notational strategies.  One further point of 

exploration is the number zero.  What do children understand is the role of this 

object in numbers?  How is it related to place-value?  Having taken thousands of 
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years to develop this symbol of null quantity (and even longer to incorporate it as 

a place holder within written numeral), we cannot assume that its meaning is 

intuitive to children.  As a follow-up to this study, plans for a larger, longitudinal 

study have begun tracing the same children from kindergarten until third grade 

with their oral, nonverbal, and written representations of number.  Using this 

longitudinal approach, we will be able to see not only the correlations between 

one representation and another, but also the order in which certain types of 

representations develop. .Until we answer more of these questions, we cannot 

begin to state that we understand how children represent numbers, internally or 

externally. 
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