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Abstract. This paper compares the performance of penalty and Lagrange multiplier approaches
for the necessary unit-length constraint in the computation of liquid crystal equilibrium configura-
tions. Building on previous work in [SIAM J. Sci. Comput., 37 (2015), pp. S157–S176; SIAM J.
Numer. Anal., 53 (2015), pp. 2226–2254], the penalty method is derived and well-posedness of the
linearizations within the nonlinear iteration is discussed. In addition, the paper considers the effects
of tailored trust-region methods in the context of finite-element discretizations and nested iteration
for both formulations. Such methods are aimed at increasing the efficiency and robustness of each
algorithm’s nonlinear iterations. Three representative elastic equilibrium problems are considered
to examine each method’s performance. The first two configurations have analytical expressions
for their exact solutions and, therefore, convergence to the true solution is considered. The third
problem considers complicated boundary conditions, relevant in ongoing research, simulating sur-
face nano-patterning. Finally, a novel multigrid scheme is introduced and tested for electrically and
flexoelectrically coupled models to establish scalability for highly complicated applications. The La-
grange multiplier method is found to outperform the penalty method in a number of measures, the
developed trust regions are shown to improve robustness, and nested iteration proves highly effective
at reducing computational costs.
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1. Introduction. Liquid crystals are substances that possess mesophases with
characteristics spanning those of isotropic liquids and solid crystals. That is, liquid
crystals are fluid yet exhibit long-range structured ordering. This paper considers
nematic liquid crystals which consist of rod-like molecules whose average pointwise
orientation is represented by a vector, n(x, y, z) = (n1, n2, n3)

T . This orientation
vector is known as the director and is assumed to be headless for nematics. Therefore,
n and −n are indistinguishable at any point in the domain, Ω, due to molecular
symmetry. An important constraint on the director vector field is that n remain of
unit length pointwise throughout Ω. Thorough overviews of liquid crystal physics are
found in [21, 55, 59].

The deformable ordering of liquid crystal structures, coupled with the materi-
als’ birefringent and dielectric properties, has led to many important applications
and discoveries, most famously in display technologies. Additional modern applica-
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NEMATIC LIQUID CRYSTAL CONSTRAINED OPTIMIZATION B51

tions include nanoparticle organization, photorefractive cells [36], and liquid crystal
elastomers designed to produce effective actuator devices such as light-driven mo-
tors [60] and artificial muscles [57]. Numerical simulations of liquid crystal equilibrium
configurations are used to optimize device designs, analyze experiments, and suggest
the presence of new physical phenomena [1, 6]. Many current technologies and ex-
periments, including bistable devices [17, 45], require simulations with anisotropic
physical constants on two-dimensional (2D) and 3D domains.

To this end, a theoretically supported energy-minimization finite-element ap-
proach using Newton linearization and a Lagrange multiplier for the pointwise con-
straint was developed in [1, 2]. The approach effectively enforces the unit-length
constraint while converging to energy-minimizing configurations. However, alterna-
tive approaches to efficiently impose unit-length conformance exist. Penalty methods
are widely applied to liquid crystal equilibrium problems [6, 30, 34] and are utilized
extensively to simplify the Leslie–Ericksen equations [24, 40] in nematohydrodynam-
ics simulations [42, 43, 44]. In addition, penalty methods are used for unit-length
constraints in certain ferromagnetic problems [35].

In this paper, we focus on the Frank–Oseen elastic free-energy model, comparing
the performance of a penalty approach for the necessary unit-length constraint to
that of the Lagrange-multiplier implementation developed in [1, 2]. The analysis of a
penalty formulation in the context of the energy-minimization algorithm and subse-
quent comparison to the Lagrange multiplier scheme undertaken here are important
in understanding the potential trade-offs between accuracy and computational cost of
the methods. Additionally, taking advantage of the energy-minimization framework,
we derive several cheap and nonintrusive tailored trust-region methods. These trust-
region approaches include 1D- and 2D-subspace minimization techniques [14, 15, 49].
A modified penalty method that normalizes the director after each step, similar to
the approach in [28], is also introduced.

The resulting algorithms are tested on three benchmark elastic problems. Ana-
lytical expressions exist for the exact solutions to two of the configurations and one
simulates nano-patterned boundary conditions which, as seen in [2], present a challeng-
ing configuration with regard to unit-length conformance. In each of the experiments
conducted, the Lagrange multiplier method outperforms the penalty approaches in
a number of measures. Moreover, the proposed trust-region methods are shown to
improve convergence robustness and nested iteration (NI) proves exceptionally effec-
tive at reducing computational costs. Finally, a novel Braess–Sarazin-type multigrid
scheme [13] is introduced for electrically and flexoelectrically coupled problems and
demonstrates scalability for highly complicated models with coupled physics.

The energy model and minimization approaches are elaborated in section 2. In
section 3, well-posedness for the intermediate Newton linearizations that arise in the
penalty formulation is discussed. The trust-region methods are derived and investi-
gated in section 4. Section 5 outlines the computational implementation and discusses
the numerical results. The multigrid method is presented in section 6. Finally, section
7 gives some concluding remarks, and future work is discussed.

2. Energy model and minimization. While a number of elastic free-energy
models exist [20, 26, 55], we consider the Frank–Oseen free energy [55]. The equi-
librium, elastic free energy is represented by a functional depending on deformations
of the nondimensional director field, n. Liquid crystal samples favor stable configu-
rations attaining minimal free energy. As in [1, 2], let K̄i, i = 1, 2, 3, be the Frank
constants [26] with K̄i ≥ 0 by Ericksen’s inequalities [23], and define the dimensionless
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B52 ADLER, EMERSON, MACLACHLAN, AND MANTEUFFEL

tensor

Z = κn⊗ n+ (I− n⊗ n) = I− (1− κ)n⊗ n,

where κ = K̄2/K̄3. In general, we consider the case that K̄2, K̄3 �= 0. For both scalar
and vector quantities, denote the classical L2(Ω) inner product and norm as 〈·, ·〉0 and
‖ · ‖0, respectively, and the standard Euclidean inner product and norm as (·, ·) and
| · |. Throughout this paper, we assume the presence of Dirichlet boundary conditions
or mixed Dirichlet and periodic boundary conditions on a rectangular domain and,
therefore, utilize the null Lagrangian simplification discussed in [1, 55]. Thus, the
Frank–Oseen elastic free energy for a domain, Ω̄, is written

∫
Ω̄

w̄F dV̄ =
1

2
K̄1‖∇x̄ · n‖20 +

1

2
K̄3〈Z∇x̄ × n,∇x̄ × n〉0,(2.1)

where∇x̄ represents the standard differential operator for Ω̄. Foundational theoretical
work establishing the existence of minimizing director fields for this energy model is
considered in [31]. Note that if κ = 1, Z is reduced to the identity and the energy
becomes a Div-Curl system. The Frank constants may be determined experimentally
for different liquid crystal types, are often anisotropic (i.e., K̄1 �= K̄2 �= K̄3), and may
depend on temperature [21].

The one-constant approximation such that K̄1 = K̄2 = K̄3 is a widely applied
simplification of (2.1) discussed in [16, 28, 43, 44, 51, 55]. This simplification signifi-
cantly reduces the complexity of the elastic free-energy functional for both theoretical
analysis and computational simulation. While this approximation is accurate in many
scenarios, it neglects anisotropic physical characteristics, which play major roles in
liquid crystal phenomena [7, 38]. Therefore, both the penalty and Lagrange mul-
tiplier methods considered below do not rely on as strong an assumption, and the
computational results address configurations where anisotropy is important.

2.1. Penalty and Lagrange multiplier energy minimization. The admis-
sible equilibrium state for a liquid crystal sample is one that minimizes the system
free energy in (2.1), subject to the local constraint (n,n) = 1. Here, we discuss two
energy-minimization approaches that impose this constraint via a penalty method or
with Lagrange multipliers. First, let σ be a fixed length scale and K represent a char-
acteristic Frank constant. To nondimensionalize the elastic free energy in (2.1), we
apply the spatial change of variables, x̄ = σx, divide the free energy by σK, and define
nondimensional Frank constants, Ki =

K̄i

K , i = 1, 2, 3. Note that the change of vari-
ables also scales derivatives. Thus, to compute free-energy minimizing configurations,
we define the nondimensionalized functional

F(n) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0(2.2)

on a dimensionless domain Ω with dimensionless differential operator ∇. Throughout
this paper, we will make use of the spaces

H(div,Ω) = {v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)},
H(curl,Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3},

as well as

HDC(Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = g},
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NEMATIC LIQUID CRYSTAL CONSTRAINED OPTIMIZATION B53

with norm ‖v‖2DC = ‖v‖20+‖∇·v‖20+‖∇×v‖20 and appropriate boundary conditions
B(v) = g. Here, we assume that g satisfies appropriate compatibility conditions
for the operator B. For example, if B represents full Dirichlet boundary conditions
and Ω has a Lipschitz continuous boundary, it is assumed that g ∈ H

1
2 (∂Ω)3 [29].

Furthermore, let HDC
0 (Ω) = {v ∈ H(div,Ω) ∩ H(curl,Ω) : B(v) = 0}. Note that

if Ω is a Lipshitz domain and B imposes full Dirichlet boundary conditions on all
components of v, then HDC

0 (Ω) = H1
0 (Ω)

3 [29, Lemma 2.5].

2.2. Lagrange multiplier formulation. For this approach, the pointwise unit-
length constraint is imposed by a continuous Lagrange multiplier. Following [1, 2],
the Lagrangian is defined as

L(n, λ) = F(n) +

∫
Ω

λ(x)((n,n) − 1) dV,(2.3)

where we assume that λ ∈ L2(Ω). Note that while this technical assumption is widely
suitable in physical applications and used in the theoretical developments of this
paper, nematic configurations exist, for instance, those containing defects, where the
square integrability assumption on λ is not satisfied. The Lagrangian above has been
nondimensionalized in the same fashion as the free-energy functional. In dimensional
form, the Lagrange multiplier, λ̄, is a pressure term. The dimensionless Lagrange

multiplier in (2.3) is defined to be λ = σ2λ̄
K . First-order optimality conditions, given

by

Ln[v] =
∂

∂n
L(n, λ)[v] = 0 ∀v ∈ HDC

0 (Ω),

Lλ[γ] =
∂

∂λ
L(n, λ)[γ] = 0 ∀γ ∈ L2(Ω),

are derived and linearized to yield the Newton update equations

(2.4)

[ Lnn Lnλ

Lλn 0

] [
δn
δλ

]
= −

[ Ln

Lλ

]
,

where each of the system components is evaluated at the current approximations nk

and λk, while δn = nk+1 − nk and δλ = λk+1 − λk are the desired updates to these
approximations. The matrix-vector multiplication indicates the direction that the
derivatives in the Hessian are taken. That is,

Lnn[v] · δn =
∂

∂n
(Ln(nk, λk)[v]) [δn], Lnλ[v] · δλ =

∂

∂λ
(Ln(nk, λk)[v]) [δλ],

Lλn[γ] · δn =
∂

∂n
(Lλ(nk, λk)[γ]) [δn],

where the partials denote Gâteaux derivatives in the respective variables. The above
system represents a linearized variational system for which we seek solutions δn and
δλ. The complete system is found in [2].

2.3. Penalty method formulation. In order to define the penalty approach,
the free-energy functional in (2.2) is augmented with a weighted, positive term,

P(n) = K1〈∇ · n,∇ · n〉0 +K3〈Z∇× n,∇× n〉0 + ζ〈n · n− 1,n · n− 1〉0,(2.5)
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B54 ADLER, EMERSON, MACLACHLAN, AND MANTEUFFEL

where ζ > 0 represents a constant weight, penalizing deviations of the solution from
the unit-length constraint. Thus, in the limit of large ζ values, unconstrained mini-
mization of (2.5) is equivalent to the constrained minimization of (2.2). In dimensional

form, similar to the Lagrange multiplier, ζ̄ represents a pressure. Using ζ = σ2 ζ̄
K , the

functional in (2.5) has been nondimensionalized in the same way as the Lagrangian.
In order to minimize P(n), we compute the Gâteaux derivative of P(n) with respect
to n in the direction v ∈ HDC

0 (Ω). Hence, the first-order optimality condition is

Pn(n)[v] =
∂

∂n
P(n)[v] = 0 ∀v ∈ HDC

0 (Ω).

Computation of this derivative yields the variational problem

Pn(n)[v] = 2K1〈∇ · n,∇ · v〉0 + 2K3〈Z∇× n,∇× v〉0
+ 2(K2 −K3)〈n · ∇ × n,v · ∇ × n〉0 + 4ζ〈v · n,n · n− 1〉0 = 0

for all v ∈ HDC
0 (Ω).

As with the Lagrangian formulation, the variational problem above contains non-
linearities. Therefore, Newton iterations are again applied, requiring computation of
the second-order Gâteaux derivative with respect to n. The Newton linearizations
are written

∂

∂n
(Pn(nk)[v]) [δn] = −Pn(nk)[v] ∀v ∈ HDC

0 (Ω),(2.6)

where

∂

∂n
(Pn(nk)[v]) [δn] = 2K1〈∇ · δn,∇ · v〉0 + 2K3〈Z(nk)∇× δn,∇× v〉0

+ 2(K2 −K3)
(
〈δn · ∇ × v,nk · ∇ × nk〉0

+ 〈nk · ∇ × v, δn · ∇ × nk〉0 + 〈nk · ∇ × nk,v · ∇ × δn〉0
+ 〈nk · ∇ × δn,v · ∇ × nk〉0 + 〈δn · ∇ × nk,v · ∇ × nk〉0

)

+ 4ζ
(〈nk · nk − 1,v · δn〉0 + 2〈δn · nk,v · nk〉0

)
.(2.7)

Completing (2.6) with the above second-order derivative computation yields a lin-
earized variational system to be solved for δn.

3. Well-posedness of the penalty Newton linearizations. Existence and
uniqueness of solutions to the discrete form of the linearization systems described in
(2.4) are established in [2] under reasonable assumptions. These results are readily
adapted to the discrete form of the penalty method linearizations in (2.6) [5].

Let a(δn,v) denote the bilinear form defined in (2.7) for fixed nk and let F (v) be
the linear functional on the right-hand side of the linearization in (2.6). Using finite
elements to approximate the desired update, δn, and considering a discrete space
Vh ⊂ HDC

0 (Ω) yields the discrete linearized system to find δnh ∈ Vh such that

a(δnh,vh) = F (vh) ∀vh ∈ Vh.(3.1)

Throughout the rest of this section, the developed theory applies exclusively to
discrete spaces. Therefore, except when necessary for clarity, we drop the subscript
h along with the notation, δn. For instance, we write a(u,v) to indicate the bilinear
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form in (3.1) operating on the discrete space Vh × Vh. Furthermore, we refer to the
following set of assumptions.

Assumption 3.1. Consider an open bounded domain, Ω, with a Lipschitz-
continuous boundary. Further, assume that there exist constants 0 < α ≤ 1 ≤ β,
such that α ≤ |nk|2 ≤ β and Z(nk(x)) remains uniformly symmetric positive defi-
nite with lower and upper bounds on its Rayleigh quotient, η and Λ, respectively, as
in [2, Lemma 2.1]. Finally, assume that Dirichlet boundary conditions are applied.

While the assumption above and the theory below explicitly concern full Dirichlet
boundary conditions, the theory is equally valid for mixed Dirichlet and periodic
boundary conditions on a rectangular domain.

In order to establish well-posedness of (3.1), we show that the functional, F (v), is
continuous and that the bilinear form, a(u,v), is continuous and coercive. Here, the
lemmas are stated without proof, as they are similar to those in [2]. For full details,
see [5].

Lemma 3.2. Under Assumption 3.1, F is a bounded linear functional on Vh.
Lemma 3.3. Under Assumption 3.1, a(u,v) is continuous.
Following the theory established in [2], two coercivity lemmas for a(u,v) are

given. The first addresses the case when κ = 1. The second considers coercivity when
κ lies in a neighborhood of unity, κ ∈ (1 − ε2, 1 + ε1). Let α0 > 0 be the coercivity
constant from [2, Lemma 3.7].

Lemma 3.4. Under Assumption 3.1, if κ = 1 and 2ζ(1− α) < α0, there exists a
β0 > 0 such that β0‖v‖2DC ≤ a(v,v) for all v ∈ Vh.

Therefore, a(u,v) is coercive for κ = 1 if ζ is not so large in comparison to the
pointwise lower bound on the director length as to overwhelm α0.

The assumption that κ = 1 can be loosened to include additional anisotropy and
retain coercivity of a(u,v). Let C > 0 such that ‖v‖20 ≤ C

(‖∇ · v‖20 + ‖∇ × v‖20
)
.

The following extends the results of [2, Lemma 3.8] to the penalty method.
Lemma 3.5 (small data). Under Assumption 3.1, if

β1 =
min(K1,K3)

C + 1
− 2ζ(1− α) > 0,

there exists ε1, ε2 > 0, dependent on β = max |nk|2, such that for κ ∈ (1− ε2, 1 + ε1),
a(u,v) is coercive.

The above lemmas allow for the formulation of the following summary theorem.
Theorem 3.6. Under Assumption 3.1, if the conditions of Lemmas 3.4 or 3.5

are satisfied, the discrete variational problem in (3.1) is well-posed.
Proof. Lemmas 3.2 and 3.3 imply that F (v) and a(u,v) are continuous, re-

spectively. Lemmas 3.4 or 3.5 imply that a(u,v) is coercive. Therefore, by the
Lax–Milgram theorem [12], (3.1) is a well-posed discrete variational problem.

Therefore, the discretization of the linearizations arising in the penalty method are
always well-posed under the assumption of small anisotropy in the system coefficients
and sufficient conformance to the unit-length constraint. Note that the closer α is to
unity, the larger ζ may be while still maintaining coercivity in the theoretical analysis.

In the penalty approach, ζ must also be chosen appropriately to achieve accurate
representation of the unit-length constraint. As discussed above, in dimensional form,
the penalty parameter represents a constant pressure term energetically penalizing
deviations from the unit-length constraint. If ζ is too small, constraint conformance
becomes poor and the functional minimum does not accurately represent the con-
strained minimum. Alternatively, if ζ is too large, the solvability of the intermediate
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variational systems degrades. In the theoretical analysis, the neighborhood admit-
ting coercivity around κ = 1 shrinks. Furthermore, as ζ grows, the associated linear
systems become increasingly ill-conditioned and the interaction between the penalty
and elastic free-energy terms becomes progressively more imbalanced. Related effects
contributing to ill-conditioning are often observed in Ginzburg–Landau-type penalty
approaches and certain applications of Landau–de Gennes models [8, 9, 48]. On the
other hand, the proof of well-posedness does not require establishing an inf-sup condi-
tion that necessitates subtle choices of finite-element spaces, as used for the Lagrange
multiplier approach in [2, 33].

In the numerical implementation to follow, no special effort was made to ensure
solvability, and few ill effects are seen at large values of ζ, especially in the presence
of trust regions. Nonetheless, if the need arose, a bootstrap algorithm for the penalty
weight could be implemented. The size of ζ can also affect convergence of the non-
linear iterations. In previous work concerning static liquid crystal configurations in
the context of a least-squares finite-element approach, the unit-length constraint was
essentially enforced via a penalty method [6]. In this framework, large weights were
needed to ensure constraint conformance, which subsequently influenced nonlinear
convergence. Such behavior is also expected in the context of energy minimization
when large penalty weights are necessary.

4. Robust Newton step methods. The Newton method applied to the La-
grange multiplier formulation discussed in [1, 2] employs näıve damped Newton step-
ping. That is, for a computed Newton update direction, δn, a constant damping
factor, 0 < ω ≤ 1, is applied such that the new iterate is given as nk+1 = nk + ωδn.
Such an approach aims to improve convergence robustness when dealing with an inac-
curate initial guess on coarse grids. However, this procedure may miss opportunities
to take larger steps in “good” descent directions that effectively reduce the free energy.

Trust-region techniques are specifically designed to improve the robustness and
efficiency of iterative procedures such as Newton’s method. Updates are confined
to a neighborhood, known as a trust region, where the accuracy of the linearized
first-order optimality conditions is “trusted.” These neighborhoods are expanded or
contracted based on a measure of the model fidelity for a computed update. Sig-
nificant research has produced both theoretical support and practical applications
of such techniques [49]. This section discusses adaptations of constrained and un-
constrained trust-region methods for the Lagrangian and penalty approaches dis-
cussed in section 2. These methods are unintrusive and seamlessly integrate into
the energy-minimization framework above. For a general overview of trust-region
methods, see [49].

4.1. Trust-region approaches for the penalty formulation. Using the
penalty functional in (2.5), the desired energy minimization is unconstrained. For
this subsection, we denote the discretized forms of ∂

∂n (Pn(nk)[v]) [δn] and Pn(nk)[v]
as Uk and fk, respectively. The quadratic model of the penalty functional, for a given
nk, is written

Mk(δn) = P(nk) + fTk δn+
1

2
δnTUkδn.(4.1)

As a consequence of the well-posedness theory in section 3, the matrix Uk is positive
definite for each iteration. Therefore, we follow the methodology in [15, 53], computing
steps by solving a trust-region minimization problem.
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We seek an efficiently computable correction, δn, that approximately minimizes
the model in (4.1). In the following, we introduce two approaches to computing step
length and direction for this problem. The performance of these techniques is vetted
in the numerical experiments below.

Damped Newton stepping is equivalent to taking a small step in the descent
direction, −U−1

k fk. This is an effective means of finding energy-minimizing solutions
for both the penalty and Lagrangian methods. Therefore, in the first approach, a
simple step selection technique is used in which the step is chosen satisfying the
constrained minimization problem

δn(Δk) = argmin

{
P(nk) + fTk δn+

1

2
δnTUkδn :

|δn| ≤ Δk, δn = μU−1
k fk

}
,(4.2)

where Δk indicates the trust-region radius for iterate nk. Candidate solutions of (4.2)
are easily computed to be −U−1

k fk, the full Newton step, which may or may not be
inside the trust region, and ± Δk

|U−1
k fk|U

−1
k fk, representing steps to the trust region

boundary.
An important aspect of trust-region methods is the adjustment of the trust-region

radius and application of a computed step. This typically involves a measure of a
computed step’s merit. For a computed step, δn, we calculate the ratio,

ρk =
P(nk)− P(nk + δn)

Mk(0)−Mk(δn)
,

of the actual to the predicted reduction in P due to the computed step. The closer
ρk is to 1, the more accurately the quadratic model behavior matches that of the true
functional.

If the ratio, ρk, is deemed acceptable, the step is applied and the trust region
expands, remains static, or shrinks depending on the specific value of ρk. If ρk is
too small, the step is rejected, the trust-region radius is shrunk, and the process
is repeated. To quantify, let 0 < η3 < η1 < η2 be positive constants, along with
0 < C1 < 1 < C3. Further, let Δ̄ be a maximum limit on the trust-region size. Using
these parameters, the specific decision trees for accepting a step and subsequently
adjusting the trust region are given in Procedures 1 and 2, respectively.

Procedure 1. Solution update.

if ρk > η3 then
Accept step: nk+1 = nk + δn.

else
Reject step: nk+1 = nk.

end

Procedure 2. TR size adjustment.

if ρk < η1 then
Shrink region: Δk+1 = C1Δk.

else if ρk > η2 and |δn| = Δk then
Expand region: Δk+1 = min(C3Δk, Δ̄).

else
Keep region constant: Δk+1 = Δk.

end
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Table 1

Trust-region parameters for the penalty and Lagrangian formulations.

Penalty
η1 = 0.25 η2 = 0.75 η3 = 0.125 C1 = 0.5

C3 = 1.3 Δinc = 0.3 Δ̄ = 100 Δinit = 0.3

Lagrangian
η1 = 0.5 η2 = 0.25 winc = 0.1 wdec = 0.1
wlev = 0.1 wmin = 0.1 winit = 0.2 −

For our algorithm, if the components of the ratio, ρk, are very small and the
computed step lies on the interior of the trust region, representing a full step toward
satisfying the first-order optimality conditions, we choose to apply the step regardless
of ρk and the trust region remains static. In this way, the trust-region minimization
approach is used until we trust in the application of full Newton steps to obtain the
first-order optimality conditions. A set of typical values for the trust-region parame-
ters above are listed in Table 1 and used in the numerical methods below.

A number of well-founded techniques improving trust-region step selection exist,
including dogleg and 2D subspace methods [15, 25, 49]. Because the 2D subspace
method subsumes both the simple step selection approach above and dogleg methods,
it is chosen as the alternative step selection computation here. Steps are computed
by solving

δn(Δk) = argmin

{
P(nk) + fTk δn+

1

2
δnTUkδn :

|δn| ≤ Δk, δn = μ1fk + μ2U
−1
k fk

}
.(4.3)

Again, the candidate solutions for (4.3) are efficiently computable, amounting to solv-
ing for the zeroes of a fourth-order polynomial.

4.1.1. A renormalization penalty method. In addition to the standard
penalty method discussed above, a modification is also considered in the numeri-
cal experiments below. Once the approximation to the solution has been updated
with a computed and accepted step, the new approximation is renormalized at the
finite-element nodes. That is, the updated approximation is projected onto the unit
sphere at each finite-element node. In this way, the lower bound in Assumption 3.1, α,
remains closer to unity, allowing for larger penalty weights. This procedure is similar
to that presented in [28] for a discrete Lagrange multiplier formulation. There, the
approach is derived within a nullspace method framework. Here, renormalization is
applied to the penalty method, with and without trust regions and NI.

This renormalization aims at improving unit-length conformance for solutions
computed by the penalty method. The expectation is that this will lead to enhanced
constraint conformance at lower penalty weights. However, unless the renormalization
scaling is relatively uniform across nodes, the Newton direction may be significantly
altered. Throughout this paper, this modification will be referred to as the “renor-
malization” penalty method.

4.2. A trust-region method for the Lagrange multiplier formulation.
Applications of trust-region techniques to optimization problems with nonlinear con-
straints have also been developed. However, certain challenges arise in the theory and
practical use of such methods [46]. Here, we consider existing trust-region approaches
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in the context of finite-element methods. For this subsection, let Wk be the matrix as-
sociated with a finite-element discretization of the second-order derivative of (2.2) (i.e.,
the functional without the Lagrange multiplier term), given by ∂

∂n (Fn(nk)[v]) [δn].
For the trust-region approach, write the constraint

(4.4) c(n) = 〈n · n− 1,n · n− 1〉0 = 0.

The Gâteaux derivative of (4.4) is

(4.5)
∂

∂n
c(n)[v] = 4〈n · n− 1,n · v〉0.

Finally, let ck be the column vector representing the finite-element discretized form
of (4.5) at iterate nk.

One of the significant advantages of finite-element discretizations is the inherent
sparsity of the resulting matrices. Trust-region algorithms in the Byrd–Omojokun
family [14, 50, 56] require computation of the generally nonsparse matrix Nk, whose
columns form an orthonormal basis for the orthogonal complement of ck, as well as
the formation and inversion of the matrix NT

k WkNk. In general, the matrix NT
k WkNk

is not sparse and quite large, asWk has dimension m×m and Nk is m×(m−1), where
m is the number of discretization degrees of freedom for n. Storage and computation
with these dense matrices proves to be prohibitive, even on relatively small grids.
Therefore, any advantages garnered by the use of these trust regions is outweighed
by loss of the finite-element sparsity. Similarly, trust-region methods based on the
fundamental work in [58] suffer from sparsity fill-in issues for large matrices in the
context of finite-element methods.

To preserve sparsity properties, while still maintaining some advantages of a trust-
region approach, we implement a simple trust-region method specifically fitted to
the Lagrange multiplier formulation of the minimization problem. For the Lagrange
multiplier approach in section 2.2, we compute a Newton update direction, δχ =
[δn δλ]T . This update is meant to bring nk and λk closer to satisfying the first-order
optimality conditions. Let L0(nk, λk) represent the finite-element discretized form of
the right-hand side of (2.4) for nk and λk. Define the proportions wk and wlim such
that 0 < wlim ≤ wk ≤ 1, where wlim is a lower bound for wk. For a given step, wkδχ,
the expected change in |L0(nk, λk)| is equal to wk|L0(nk, λk)|. Therefore, we define
the ratio

ρk =
|L0(nk, λk)| − |L0(nk + wkδn, λk + wkδλ)|

wk|L0(nk, λk)| .

This ratio compares the change in L0(n, λ) predicted by the linearized model to the
true change in L0(n, λ) for a computed step.

Let 0 < η2 < η1 and winc, wdec ∈ (0, 1]. Since wk is a scaling factor, rather than
a radius length, step selection and trust-region adjustment differ slightly from the
procedures discussed above and are given in Procedures 3 and 4, respectively.
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Procedure 3. Solution update.

if ρk > η2 or wk = wlim then
Accept step:
[nk+1 λk+1]

T = [nk λk]
T+wkδχ.

else
Reject step:
[nk+1 λk+1]

T = [nk λk]
T .

end

Procedure 4. TR size adjustment.

if ρk < η2 then
Shrink region:
wk+1 = max(wlim, wk − wdec).

else if η2 < ρk < η1 then
Keep region constant:
wk+1 = wk.

else
Expand region:
wk+1 = min(wk + winc, 1).

end

5. Numerical results. In this section, we compare the performance of the
methods outlined above for three benchmark equilibrium problems. The general al-
gorithm utilized by each method has three stages; see Algorithm 5. The outer stage
implements NI [54], where, at each level, the approximation to the solution is itera-
tively updated. These updates are computed via one of the methods described above.
In general, the iteration stopping criterion, on a given level, is based on a set toler-
ance for the approximation’s conformance to the first-order optimality conditions in
the standard Euclidean l2-norm. For the renormalization penalty method, the New-
ton iteration tolerance is based on the reduction of the ratio of the energy from the
previous step to the current step rather than conformance to the first-order optimality
conditions. In the numerical experiments carried out below, both tolerances were held
at 10−4. The approximate solution is then transferred to a finer grid. In the current
implementation, these finer grids represent uniform refinements of the initial coarse
grid. However, adaptive refinement could also be performed.

The components of the variational problems in (2.4) and (2.6) are discretized with
finite elements on each grid. Both formulations use Q2×Q2×Q2 elements for n, while
the Lagrange multiplier approach uses P0 elements for λ, as in [1, 2]. In this section,
the arising matrices are inverted using the UMFPACK LU decomposition [18, 19]. In
section 6, we introduce an optimally scaling multigrid method with improved time to
solution. The algorithm’s discretizations and grid management are performed with
the widely used deal.II finite-element and scientific computing library [10].

For the simulations considered throughout this section, the length scale is taken to
be one micron such that σ = 10−6 m. Furthermore, here and in subsequent sections,
the characteristic Frank constant is taken to be K = 6.2 × 10−12 N, the value of K̄1

for 5CB, a common liquid crystal, for convenience in adjusting relative parameter
sizes. This rescaling, for instance, yields parameters K1 = 1, K2 = 0.62903, and
K3 = 1.32258 for 5CB. Finally, note that throughout this section the penalty weight,
ζ, is dimensionless. Each of the problems below is posed on a unit-square domain in
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Algorithm 5. General minimization algorithm with NI.

0. Initialize solution approximation on coarse grid.
while Refinement limit not reached do

while Nonlinear iteration tolerance not satisfied do
1. Assemble discrete components of System (2.4) or (2.6) on current
grid, H .
2. Compute correction to current approximation.
3. Update current approximation.

end
4. Uniformly refine the grid to size h.
5. Interpolate solution uH → uh.

end

the xy-plane, such that Ω = {(x, y) | 0 ≤ x, y ≤ 1}. It is assumed that this domain
represents a uniform slab. That is, the vector n may have nonzero z-component
but ∂n

∂z = 0. Thus, the nondimensional free energies reported in this section are
free energies per dimensionless unit-length in the z-direction. Dirichlet boundary
conditions are applied at the y-edges and periodic boundary conditions are assumed
at the boundaries x = 0 and x = 1. The experiments to follow consider an 8 × 8
coarse mesh ascending in six uniform refinements to a 512× 512 mesh.

For the numerical experiments, each of the trust-region methods discussed above
is applied. For the penalty trust-region methods, the initial trust-region radius is
set to Δinit. At each refinement level, the trust-region radius is reset to Δinit plus
an incremental increase, Δinc, with a maximum of Δ̄. The Lagrangian trust-region
approach sets the initial value of wk to winit. After each refinement, wk is reset to
winit plus wlev, up to a maximum of 1. These increments are due to the increasing
accuracy of the iterates at each grid level. The constants are outlined in Table 1.

The nontrust-region, damped Newton stepping approach is also performed for
both formulations as a comparison benchmark with an initial ω = 0.2, increasing
by 0.2 at each refinement to a maximum of 1. While this approach could readily be
improved, for example by including inexact line searching via the Wolfe conditions [49],
here we compare the trust-region methods outlined above with this näıve stepping
approach, as was used in [1, 2]. The performance of each of these methods is discussed
below. In the results to follow, all reported free energies are computed using only the
elastic free-energy quantities without any augmentations, such as the penalty terms.

5.1. Twist equilibrium configuration. The first set of experiments consider
a generalized twist equilibrium configuration. A related twist configuration was used
in [2], without error analysis, for the Lagrange multiplier formulation. Here, the
problem is used as a baseline for comparison and each method’s error convergence is
considered. For this experiment, and the tilt-twist experiment in the next subsection,
let the general form of the solution be

(5.1) n =
(
cos(θ(y)) cos(φ(y)), cos(θ(y)) sin(φ(y)), sin(θ(y))

)
.

Note that the known analytical solutions have a 1D structure, but the numerical
experiments below are full 2D simulations. For the twist configuration, let θ0 = π

8 .
At the boundaries θ(0) = −θ0, θ(1) = θ0, and φ(0) = φ(1) = 0. The Frank constants
for this problem are K1 = 1.0, K2 = 1.2, and K3 = 1.0. The analytical equilibrium
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Table 2

Statistics for the twist equilibrium solution with the different formulations and penalty weights.
Included is the system free energy, the computed L2-error on the finest grid, and the minimum and
maximum deviations from unit director length at the quadrature nodes. Approximations of the cost
in WUs for the corresponding method with no trust regions and simple trust regions are included.
Dashes indicate divergence.

Type Free energy L2-error Min. Dev. Max Dev. Cost TR cost

Lagrangian 0.370110 2.076e-11 −1.43e-14 7.00e-15 1.350 1.340

Pen. ζ = 101 0.358832 1.589e-02 −3.96e-02 −3.59e-05 1.371 1.354

Pen. ζ = 102 0.368481 1.993e-03 −4.32e-03 −1.16e-05 1.376 1.355

Pen. ζ = 103 0.369931 2.107e-04 −4.32e-04 −3.68e-06 1.440 1.418

Pen. ζ = 104 0.370092 2.143e-05 −4.32e-05 −1.14e-06 1.448 1.420

Pen. ζ = 105 0.370108 2.154e-06 −4.32e-06 −3.32e-07 1.447 1.426

Pen. ζ = 106 0.370110 2.157e-07 −4.32e-07 −7.27e-08 − 1.436

Pen. ζ = 107 0.370110 2.158e-08 −5.05e-08 −9.98e-09 − 1.465

Pen. ζ = 108 0.370110 2.158e-09 −5.18e-09 −1.06e-09 − 1.516

Pen. ζ = 109 0.370110 2.168e-10 −5.19e-10 −1.06e-10 − 1.639

solution for these boundary conditions and Frank constants is derived, under a rotated
coordinate system, in [55]. The solution is given by

n = (cos(θ0(2y − 1)), 0, sin(θ0(2y − 1)))

with true free energy 2K2θ
2
0. This corresponds to an expected free energy of 0.37011.

The existence of an analytical expression for the solution to this problem allows for the
computation of an L2-error for each computed approximation. This error is computed
as ‖u−uh‖0 using seventh-order Gaussian quadrature on each element, where u and
uh are the true solution and discrete approximation, respectively.

Table 2 compares the performance of the Lagrange multiplier method to the
penalty method without renormalization. The runs were performed with NI and the
approximate work, measured in terms of assembling and solving a single lineariza-
tion step on a 512 × 512 grid and referred to as a work unit (WU), is given for the
corresponding method with no trust regions and the simple trust-region approaches,
respectively. The work approximation is computed by summing the number of nonze-
roes in each matrix across all grids and dividing by the number of nonzeroes in the
(fixed) sparsity pattern at the finest level. This estimates the total computational
cost, assuming the presence of multigrid solvers that scale optimally with grid size
as in section 6, in terms of assembling and solving a single linearization step on the
finest grid. The nontrust-region, damped Newton stepping discussed above diverged
for penalty parameters of ζ = 106 and greater. However, smaller damping parame-
ters may yield convergence. Both penalty-method trust-region approaches converged
without modification.

The table demonstrates the superior performance of the Lagrange multiplier
method for this problem across all statistics with lower error, cost, and tighter con-
formance to the constraint. The penalty method does not match the free energy of
the Lagrangian formulation until reaching a penalty weight of 106 and, without trust
regions, encounters divergence issues for these large penalty weights. While trust
regions do not significantly reduce overall computations costs, Table 2 suggests that
they significantly improve robustness. Finally, it should be noted that the average
condition number of the linearization matrices for the penalty formulation scales with
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Table 3

A comparison of renormalization penalty methods, with and without trust-region approaches,
for the twist solution. For each algorithm, the computed L2-error on the finest grid and an approx-
imation of the cost in WUs is included.

No trust region Simple trust region 2D trust region

Type L2-error Cost L2-error Cost L2-error Cost

Pen. ζ = 101 1.457e-02 1.338 1.457e-02 1.334 1.457e-02 1.334

Pen. ζ = 102 8.932e-05 1.338 8.931e-05 1.334 8.931e-05 1.334

Pen. ζ = 103 3.358e-06 1.339 3.357e-06 1.334 3.357e-06 1.335

Pen. ζ = 104 1.523e-07 1.340 1.116e-07 1.336 1.116e-07 1.336

Pen. ζ = 105 6.260e-08 8.113 3.595e-09 1.364 3.592e-09 1.340

Pen. ζ = 106 6.356e-06 81.120 1.688e-02 73.052 1.098e-07 2.731

Table 4

Statistics for the twist equilibrium solution with different penalty weights. Here, the penalty
method with renormalization and 2D-subspace minimization is considered. Included is the system
free energy, the computed L2-error on the finest grid, the minimum and maximum deviations from
unit director length at the quadrature nodes, and an approximation of the cost in WUs for the
corresponding method.

Type Free energy L2-error Min. Dev. Max Dev. 2D TR cost

Pen. ζ = 101 0.370168 1.457e-02 −4.58e-11 4.58e-11 1.334

Pen. ζ = 102 0.370111 8.931e-05 −1.68e-11 1.68e-11 1.334

Pen. ζ = 103 0.370110 3.357e-06 −5.18e-12 5.16e-12 1.335

Pen. ζ = 104 0.370110 1.116e-07 −1.45e-12 1.43e-12 1.336

Pen. ζ = 105 0.370110 3.592e-09 −3.16e-13 2.98e-13 1.340

Pen. ζ = 106 0.370110 1.098e-07 −4.04e-14 2.20e-14 2.731

the magnitude of ζ. While poorer conditioning increases the difficulty of the lin-
ear solves, the accuracy of the overall method is still improving with larger penalty
weights up to ζ ≈ 109.

The results in Tables 3 and 4 show the performance of the renormalization penalty
method with and without trust regions. Table 4 provides additional statistics for the
2D-subspace minimization trust-region approach shown in Table 3. For the twist
equilibrium solution, the renormalization penalty method obtains better error values
for smaller penalty weights than the unmodified penalty method. In Table 4, using the
2D-subspace minimization trust-region approach, we obtain an error of 3.592e-09 with
a penalty weight of only ζ = 105. Moreover, the minimum and maximum deviations
of the director at the quadrature nodes is closer to that of the Lagrangian method.
However, the performance improvements rely more heavily on the penalty parameter.
While an error measure closer to the Lagrange multiplier formulation is achieved
for ζ = 105, performance degrades at ζ = 106, with notable jumps in costs for all
methods recorded in Table 3. The increases in error are due to the algorithm beginning
to emphasize the unit-length constraint over proper director orientation. Correctly
selecting the penalty weight represents a fundamental difficulty for this method.

Figure 1(a) displays the number of iterations required to reach the specified it-
eration tolerance within an NI scheme alongside the final solution computed by the
Lagrange multiplier formulation in Figure 1(b). Counts for both the Lagrange mul-
tiplier approach and penalty formulation, with and without renormalization, for a
penalty parameter ζ = 103 are shown. In general, the trust-region methods signifi-
cantly reduce iteration counts on the coarse grids. However, on the finer grids, this
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Fig. 1. (a) Number of iterations required to reach iteration tolerance for each method with NI.
The penalty weight for the penalty formulation was ζ = 1000. Only the 2D-subspace minimization
trust-region approach is displayed, as the behavior of simple trust regions is similar. (b) The final
computed solution for the Lagrangian formulation on a 512×512 mesh (restricted for visualization).

reduction is not sustained due to the efficiency of NI. Because the improved iteration
counts are confined to the coarsest grids, overall cost reduction is generally small. For
example, the approximate cost for the Lagrange multiplier method was reduced very
slightly from 1.350 WUs to 1.340 WUs, only resulting in a 1 second drop in overall
time to solution.

Table 5 both summarizes the efficiency of NI and highlights the strengths of
certain applications of trust-region methods. For all the constraint enforcement for-
mulations, NI offers very clear cost improvements. Coupling NI with the Lagrange
multiplier method for this problem is quite powerful, yielding the fastest run time
and highest accuracy. Trust regions have a clear impact on time to solution in the
absence of NI but offer modest time to solution improvements when coupled with NI.

Table 5

Twist statistics comparison for NI and trust region combinations. The solve cost column dis-
plays an approximation of the work in WUs for the corresponding method. The overall time to
solution is also presented. Dashes indicate divergence.

Lagrangian

Method Solve cost Run time
No NI No TR 61 17,975s
NI No TR 1.350 550s

No NI TR 10 3,071s
NI TR 1.340 548s

Renormalization penalty: ζ = 105

Method Solve cost Run time
No NI No TR 38 11,838s
NI No TR 8.113 2,272s

No NI TR 29 9,172s
No NI TR 2D 32 10,147s
NI TR 1.364 585s
NI TR 2D 1.340 584s

Unmodified penalty: ζ = 105

Method Solve cost Run time
No NI No TR 142 41,013s
NI No TR 1.474 593s

No NI TR 63 18,425s
No NI TR 2D 64 19,287s
NI TR 1.426 569s
NI TR 2D 1.424 574s

Unmodified penalty: ζ = 109

Method Solve cost Run time
No NI No TR − −
NI No TR − −

No NI TR 1,016 294,349s
No NI TR 2D 1,736 511,874s
NI TR 1.639 641s
NI TR 2D 1.958 764s
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If the penalty method is used, pairing NI with trust regions increases robustness
and cost consistency. For example, the use of trust regions overcomes prominent
divergence issues for the unmodified penalty method with ζ = 109 and maintains low
costs for the renormalization penalty method at ζ = 105. In addition to the improved
error performance for ζ = 105, the renormalization penalty method is generally faster
than the unmodified penalty approach with the same penalty weight. The slightly
slower overall run times when NI is paired with trust regions, in comparison with the
unmodified penalty method, are due to the work involved in normalizing the director
after each iteration. As discussed above, a shortcoming of the renormalization penalty
method is sensitivity to parameter choice.

5.2. Tilt-twist equilibrium configuration. For this problem, n retains the
form in (5.1) and the same boundary conditions are applied with θ0 = π

4 and Frank
constants of K1 = 1.0, K2 = 3.0, and K3 = 1.2. Twist solutions incorporating a
nonplanar tilt deviating from parallel alignment with the xz-plane are investigated
in [39, 41]. There, it is shown that nonplanar twist solutions become energetically op-
timal at a computable threshold depending on the relationship of the Frank constants,
which is satisfied for the chosen parameters. The resulting configuration considered
below is not detectable using a one-constant simplification and highlights the accuracy
of the energy-minimization approach. The analytical, energy-minimizing, tilt-twist so-
lution is defined implicitly for a rotated coordinate system in [39, 55]. The associated
analytical, free energy for the chosen parameters is 3.59294.

For the tilt-twist equilibrium solution, the damped Newton stepping approach
converged for all the penalty weights considered. Table 6 details the statistics for the
unmodified penalty method compared with the Lagrange multiplier method. Again,
the Lagrange multiplier method outperforms the penalty method in each category.
The free energy of the Lagrange multiplier method is not obtained by the penalty
method until ζ reaches 108.

It should be noted that the behavior of the error for the Lagrangian method, as
well as the penalty method for weights greater than 107, is affected by the implicit
definition of the true solution. The analytical solution for the tilt-twist equilibrium
configuration is implicitly defined by a complicated set of equations, which are solved
approximately at the appropriate quadrature points using Mathematica. Solving these
equations involves successive root finding for an intricate set of integrals where the
unknowns are limits of integration. Approximation error creates an artificial limit for
the computed error at accuracies smaller than 10−7.

Considering Table 7, the renormalization penalty method does not perform as
well as in the previous problem. For each of the methods outlined in the table, the
renormalization approach fails to reach an equivalent accuracy before performance
degrades. In addition, as with the simpler twist problem, performance of the renor-
malization method is sensitive to an appropriate choice of penalty weight. However,
the method does find the true free energy at a lower penalty weight, ζ = 104, than
the approach without renormalization. For ζ = 104, the penalty method without
renormalization has a slightly lower error measure but has not accurately matched
the analytical free energy. While the unmodified method more accurately resolves the
orientation of the director in comparison with the renormalization method, it slightly
shrinks the director length to attain the smaller free energy seen in Table 6.

Compared to the unmodified penalty method, computational costs generally re-
main steadier with increasing penalty weight. It is also apparent, in both Tables 3 and
7, that trust regions improve both robustness and accuracy for the renormalization
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Table 6

Statistics for the tilt-twist equilibrium solution with the different formulations and penalty
weights. Included is the system free energy, the computed L2-error on the finest grid, and the
minimum and maximum deviations from unit director length at the quadrature nodes. Approxima-
tions of the cost in WUs for the corresponding method with no trust regions and simple trust regions
are included.

Type Free energy L2-error Min. Dev. Max Dev. Cost TR cost

Lagrangian 3.59294 4.717e-07 −7.89e-10 7.88e-10 1.463 1.447

Pen. ζ = 104 3.59052 4.606e-04 −5.00e-04 −1.21e-05 2.735 2.665

Pen. ζ = 105 3.59269 4.590e-05 −5.00e-05 −3.56e-06 2.743 2.667

Pen. ζ = 106 3.59291 4.253e-06 −5.01e-06 −8.05e-07 2.782 2.678

Pen. ζ = 107 3.59293 2.735e-07 −5.83e-07 −1.14e-07 2.809 2.723

Pen. ζ = 108 3.59294 4.340e-07 −6.00e-08 −1.22e-08 2.885 2.747

Pen. ζ = 109 3.59294 4.676e-07 −6.01e-09 −1.24e-09 3.218 2.879

Table 7

A comparison of renormalization penalty methods, with and without trust-region approaches,
for the tilt-twist solution. For each algorithm, the computed L2-error on the finest grid and an
approximation of the cost in WUs are included.

No trust region Simple trust region 2D trust region

Type L2-error Cost L2-error Cost L2-error Cost

Pen. ζ = 103 4.708e-03 1.335 4.533e-03 1.332 4.493e-03 1.332

Pen. ζ = 104 1.085e-03 1.335 8.662e-04 1.332 8.536e-04 1.333

Pen. ζ = 105 1.650e-03 1.336 9.487e-04 1.333 7.012e-04 1.333

Pen. ζ = 106 9.414e-01 87.362 5.375e-04 1.341 7.344e-04 1.341
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Fig. 2. (a) Number of iterations required to reach iteration tolerance for each method with NI.
The penalty weight for the penalty formulation was ζ = 1000. Only the 2D-subspace minimization
trust-region approach is displayed, as the behavior of simple trust regions is similar. (b) The final
computed solution for the Lagrangian formulation on a 512×512 mesh (restricted for visualization).

method. In Table 7, for a penalty weight of 106, without trust regions, there is a large
jump in computational cost and a significant loss of accuracy which is controlled in
the presence of either trust-region approach.

Figure 2(a) presents similar behavior to Figure 1(a), in that trust regions pro-
ductively reduce the number of iterations on the coarsest grids but have less effect on

D
ow

nl
oa

de
d 

01
/1

3/
16

 to
 1

30
.6

4.
11

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEMATIC LIQUID CRYSTAL CONSTRAINED OPTIMIZATION B67

iteration counts on the finest levels. This is again due to the efficacy of NI. Nonethe-
less, for the unmodified penalty method with NI and a penalty weight of ζ = 109,
trust regions successfully reduce the computational cost from 3.218 WUs to 2.879
WUs. This results in an 8.9% decrease in overall time to solution. Improvements
from trust regions for the Lagrange multiplier method are smaller, decreasing compu-
tational costs from 1.463 WUs to 1.447 WUs and reducing overall time to solution by
only 0.82%. Figure 2(b) displays the solution computed by the Lagrange multiplier
approach.

5.3. Nano-patterned boundary conditions. In this numerical experiment,
we use Frank constants K1 = 1.0, K2 = 0.62903, and K3 = 1.32258. Letting r = 0.25
and s = 0.95, the boundary conditions are defined as

n1 = 0,(5.2)

n2 = cos
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
,(5.3)

n3 = sin
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
,(5.4)

where Xm = −s sin(2π(x+r))
−s cos(2π(x+r))−1 and Xp = −s sin(2π(x+r))

−s cos(2π(x+r))+1 . The result is a sharp tran-

sition from vertical nematics to planar-aligned rods followed by a rapid transition back
to vertical alignment at each boundary, as shown in Figure 3. Such boundary condi-
tions produce configuration distortions throughout the interior of the domain. Due
to this complexity, no known analytical solution currently exists. The performance of
the Lagrangian formulation for this problem was studied in [2], but the challenging
nature of enforcing the unit-length constraint observed therein makes the problem a
good candidate for comparing the constraint enforcement techniques discussed above.
Moreover, as the configuration is important in physical applications [6, 7], performance
across methods is pertinent for determining the most effective approach.

The more complicated nature of the nano-patterned boundary conditions is re-
flected in the data of Table 8. The overall approximate costs for the methods with
and without trust regions are larger than previous examples and the unit-length con-
straint is more difficult to capture. Nevertheless, the Lagrange multiplier method
provides an accurate and cost-effective approach. The penalty method without trust
regions diverges for penalty weights greater than ζ = 104. At higher penalty weights,
even the trust-region approach suffers jumps in computational costs. At ζ = 109, the
system becomes overconstrained and accuracy begins to degrade. Hence, results for
this weight are not included.

As with the tilt-twist equilibrium solution, the renormalization penalty method
approaches the Lagrangian formulation’s free energy and unit-length constraint bounds
earlier than the unmodified penalty method, at ζ = 105. It also yields a lower com-
putational cost for most penalty weights. However, as was seen in the tilt-twist data,
matching the energy earlier than the unmodified penalty approach does not directly
indicate higher accuracy in resolving the correct orientation of the director. Moreover,
notable divergence issues are apparent in Table 9 for the renormalization method at
high penalty weights, even when applying the simple trust-region scheme.

Tables 8 and 9 reinforce the conclusion that trust regions positively influence the
robustness of penalty method approaches. While the simple trust-region approach
works most effectively for the nonrenormalization penalty method, the 2D-subspace
minimization approach is more favorable for the renormalization penalty formulation.

Table 10 reiterates the efficacy of NI for efficient computation and trust regions for
robustness. The cost savings from trust regions within an NI scheme are slightly higher
for this problem due to its complexity. Table 10 also shows that the renormalization
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Fig. 3. (a) Line plot representing values of the director components n2 (dashed) and n3 (solid)
along the boundary for nano-patterned boundary conditions. (b) The final computed solution for the
Lagrangian formulation on a 512 × 512 mesh (restricted for visualization).

Table 8

Statistics for the nano-patterned equilibrium solution with the different formulations and penalty
weights. Included is the system free energy and the minimum and maximum deviations from unit
director length at the quadrature nodes. Approximations of the cost in WUs for the corresponding
method with no trust regions and simple trust regions are included. Dashes indicate divergence.

Type Free energy Min. Dev. Max Dev. Cost TR cost

Lagrangian 3.89001 −6.92e-05 5.89e-05 2.864 2.779

Pen. ζ = 103 3.88331 −1.80e-02 7.32e-03 2.868 2.749

Pen. ζ = 104 3.88819 −6.58e-03 5.81e-03 2.886 2.757

Pen. ζ = 105 3.88965 −1.60e-03 2.01e-03 − 2.805

Pen. ζ = 106 3.88996 −2.90e-04 4.55e-04 − 3.736

Pen. ζ = 107 3.89001 −7.92e-05 1.01e-04 − 4.797

Pen. ζ = 108 3.89001 −6.76e-05 5.83e-05 − 22.328

Table 9

A comparison of renormalization penalty methods, with and without trust-region approaches,
for the nano-pattern solution. For each algorithm, the computed free energy on the finest grid and
an approximation of the cost in WUs is included. Dashes indicate divergence.

No trust region Simple trust region 2D trust region
Type Free energy Cost Free energy Cost Free energy Cost

Pen. ζ = 103 3.89006 1.682 3.89006 1.666 3.89006 1.666

Pen. ζ = 104 3.89002 1.683 3.89002 1.669 3.89002 1.669

Pen. ζ = 105 − − 3.89001 2.133 3.89001 2.433

Pen. ζ = 106 − − − − 3.89001 5.418

penalty method with NI and trust regions has a somewhat shorter overall run time
than that of the Lagrange multiplier approach. Moreover, the renormalization ap-
proach matches the free-energy and unit-length conformance of the Lagrangian for-
mulation. However, while the overall run time and approximate cost of the approach
are slightly larger, the accuracy of the Lagrange multiplier formulation is expected to
be much higher. For the Lagrange multiplier approach, the l2-norm of the first-order
optimality conditions is 7.386e-13, whereas the same measure for the renormalization
penalty method is 1.603e-02.
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Table 10

Nano-pattern statistics comparison for NI and trust region combinations. The solve cost column
displays an approximation of the work in WUs for the corresponding method. The overall time to
solution is also presented. Dashes indicate divergence.

Lagrangian

Method Solve cost Run time
No NI No TR 63 18,861s
NI No TR 2.864 983s

No NI TR 10 3,113s
NI TR 2.779 960s

Renormalization penalty: ζ = 105

Method Solve cost Run time
No NI No TR 35 10,918s
NI No TR − −

No NI TR 32 9,893s
No NI TR 2D 34 10,976s
NI TR 2.133 789s
NI TR 2D 2.433 901s

Unmodified penalty ζ = 105

Method Solve cost Run time
No NI No TR 169 49,654s
NI No TR − −

No NI TR 73 21,415s
No NI TR 2D 75 22,366s
NI TR 2.805 958s
NI TR 2D 3.530 1,202s

In all the experiments above, the accuracy per unit cost of the Lagrange multiplier
method convincingly outperforms that of either of the penalty methods. In agreement
with previous experience in [6], where large weights were needed to ensure appropri-
ate unit-length conformance, the performance of both penalty methods is intricately
linked with the magnitude of the penalty parameter and efficiency degrades as weights
increase. As discussed above, a balance between strict unit-length enforcement and
the convergence and efficiency of the method must be sought. Problems with more
drastic deformation features or larger intrinsic free energy generally require larger
penalty weights to ensure accurate free-energy representation and unit-length coher-
ence. The Lagrangian formulation offers better constraint conformance and advanced
linear solvers for saddle point problems, like the multigrid solver proposed below, are
available to further increase its efficiency.

Trust regions significantly improve the robustness of the penalty approach, en-
abling the method to attain accuracy comparable to that of the Lagrange multiplier
scheme. The associated robustness improvements and the limited cost of the trust-
region methods make them attractive for either constraint formulation. The simple
trust-region approach works best for the unmodified penalty method with stopping
tolerances based on the first-order optimality conditions, whereas the 2D-subspace
minimization trust regions are most effective for the renormalization penalty method
with an energy reduction based stopping tolerance. Though larger penalty weights
are generally necessary, the unmodified penalty method offers more consistent error
reduction and performance with respect to an increasing weight.

6. Multigrid solver. With the superiority of the Lagrange multiplier approach
paired with NI and trust regions established above, we demonstrate the full efficiency
of the scheme for problems with electric and flexoelectric coupling as well as more
complicated nano-patterened boundary conditions. In addition, a highly efficient,
coupled multigrid method for the associated linear systems is introduced. Let φ̄ be
an electric potential, let ε̄0 denote the permittivity of free space, and let ēs and ēb be
flexoelectric constants following the sign convention of Rudquist and Lagerwall [52].
Further, let the dimensionless constants ε⊥ and εa denote the perpendicular dielectric
permittivity and dielectric anisotropy of the liquid crystal, respectively. Finally, let
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φ0 > 0 be a characteristic voltage and define a dimensionless potential φ = φ̄
φ0
.

We then construct dimensionless parameters ε0 =
ε̄0φ

2
0

K , es = ēsφ0

K , and eb = ēbφ0

K .
Nondimensionalizing in similar fashion to the elastic functional, the dimensionless
flexoelectric functional with appropriate boundary conditions is

F(n, φ) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0 − ε0ε⊥〈∇φ,∇φ〉0
− ε0εa〈n · ∇φ,n · ∇φ〉0 + 2es〈∇ · n,n · ∇φ〉0 + 2eb〈n×∇× n,∇φ〉0.

For a full derivation of the Lagrange multiplier approach extended to include
electric and flexoelectric effects, see [1]. Using the electric potential, φ, the discretized
and linearized system is written

M
⎡
⎣ n

φ
λ

⎤
⎦ =

⎡
⎣ A B1 B2

BT
1 −D 0

BT
2 0 0

⎤
⎦
⎡
⎣ n

φ
λ

⎤
⎦ =

⎡
⎣ fn

fφ
fλ

⎤
⎦ .

Define blocks of M as

Â =

[
A B1

BT
1 −D

]
, B̂ =

[
B2

0

]
.(6.1)

Furthermore, let û = [n φ]T and f̂û = [fn fφ]
T . With these block definitions, the

“exact” Braess–Sarazin update, originally formulated in [13] for Stokes flows, is used
and takes the form

(6.2)

[
ûk+1

λk+1

]
=

[
ûk

λk

]
+

[
γbR B̂

B̂T 0

]−1 ([
f̂û
fλ

]
−
[

Â B̂

B̂T 0

] [
ûk

λk

])
,

where R is an appropriate preconditioner for Â and γb is a weighting parameter. For
our multigrid approach, the matrix

[
γbR B̂

B̂T 0

]

is only approximately inverted, leading to an “inexact” Braess–Sarazin method [61].
We use Q2 elements for both n and φ, and, hence, the degrees of freedom for the
components of n and φ are collocated. Considering the work in [3], we construct
the preconditioner, R, by extracting 4 × 4 blocks of Â corresponding to the nodally
collocated degrees of freedom for n and φ. With careful permutation of the degrees
of freedom in (6.2), R becomes a block-diagonal matrix consisting of these 4 × 4
collocation blocks.

Comparative studies of Braess–Sarazin-type relaxation schemes in a multigrid
framework for Stokes flows are found in [37], while numerical studies of their exten-
sion to multigrid methods for magnetohydrodynamic equations are performed in [3].
Here, as part of the underlying multigrid method, we use standard finite-element
interpolation operators and Galerkin coarsening. In this section, we investigate the
performance of the multigrid method as a preconditioner for GMRES.

We first study the optimal value of the relaxation parameter. The solver conver-
gence tolerance, which is based on a ratio of the current solution’s residual to that
of the initial guess, remains fixed at 10−6 for each grid level and Newton step. For
these experiments, the parameter γb was varied from 1.00 to 2.00 in increments of
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Table 11

Relevant dimensionless constants for parameter study simulations.

K1 K2 K3 ε⊥ εa es eb
Simple flexo. 1.0 4.0 1.0 7.0 0.0 1.5 −1.5
5CB flexo. 1.0 0.62903 1.32258 7.0 11.5 2.5 −2.5
Fréedericksz 1.0 0.62903 1.32258 7.0 11.5 − −

0.05. Displayed in Figure 4(a) are the pertinent multigrid iteration counts, averaged
over Newton iterations, on a 512 × 512 grid with respect to varying values of γb for
three problems with electric or flexoelectric coupling. The boundary conditions for
the two flexoelectric problems consider a doubling of the nano-pattern described by
(5.2)–(5.4) such that the pattern contains a second strip parallel to the xy-plane.
Therefore, these problems have four sharp transitions at each boundary. While there
is no applied electric field, the curvature induced by the nano-patterning generates an
internal electric field due to the flexoelectric properties of the liquid crystals [1, 47].
The electric problem models a Fréedericksz transition [27], where, at the Dirichlet
boundaries, n = (1, 0, 0)T and a voltage is applied such that φ = 1 at y = 1 and φ = 0
at y = 0. With the Frank constants used in this problem, the applied voltage is above
the critical threshold, inducing a true Fréedericksz transition. For these simulations,
σ remains equal to 10−6 m, the characteristic Frank constant is again taken to be
K = 6.2 × 10−12 N, the K̄1 value for 5CB, and φ0 = 1 V. These values imply that
ε0 = 1.42809. Additional relevant, dimensionless, elastic, and electric parameters are
listed in Table 11.

The parameter studies suggest that the optimum γb value, while problem depen-
dent, varies only slightly, ranging from 1.10 to 1.20. Additionally, the iteration counts
are relatively insensitive to increases in γb above the ideal value. Correspondingly,
the multigrid solve timings remain relatively robust for γb values above the optimal
magnitude. Similar behavior is observed in applications to magnetohydrodynamic
simulations where the best choice for γb is 1.0 [3]. While choosing an appropriate
value for γb is important, the method is resilient and optimal scaling persists with
respect to parameter choices above the ideal value. Moreover, theory informing the
choice of γb as part of standard Braess–Sarazin relaxation for fluids exists in [37],
where a lower bound for γb is prescribed.

Figure 4(b) displays the average total setup and solve times across grids and
varying solver tolerances for the Braess–Sarazin-type multigrid scheme, compared
with the UMFPACK direct solver, applied to the flexoelectric problem with the 5CB
constants outlined in Table 11. The optimal parameter value, γb = 1.10, is used.
With Q2–Q2–P0 elements for n, φ, and λ, respectively, the matrices on the 512× 512
grid are of dimension 4,464,644× 4,464,644 with 289,969,900 nonzero entries. Note
that the number of Newton steps does not vary for the multigrid tolerances used and
exactly matches that of the method with the UMFPACK solver, implying that the
Newton method is robust with respect to solver tolerance within a reasonable range.

On the finest grid, the multigrid solver is more than 2.8 times faster than the direct
approach for a linear solve tolerance of 10−5 and 3.8 times faster with a tolerance of
10−2. Furthermore, the Braess–Sarazin multigrid scheme scales optimally with grid
size for each of the tolerance values and outpaces the direct approach by the 16× 16
mesh for solver tolerances up to 10−8. These timing intersections occur considerably
earlier than for the multigrid method with Vanka-type relaxation discussed in [1].
Moreover, the optimal scaling remains for larger values of γb, with the multigrid-
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Fig. 4. (a) The average number of multigrid iterations for varying γb on a 512 × 512 grid.
(b) The average time to solution for the Braess–Sarazin-type multigrid scheme with varying solver
tolerances compared to the UMFPACK direct solver.

Table 12

A comparison of timing breakdowns for runs using the UMFPACK direct solver or the Braess–
Sarazin multigrid scheme. Each solver is run with and without trust regions. The applied solver
tolerance is listed in parentheses.

UMFPACK Braess–Sarazin (1e-5) Braess–Sarazin (1e-2)
Trust-region type None Simple None Simple None Simple

System assembly 138.5s 133.6s 136.0s 130.4s 135.2s 131.1s
Data conversion − − 137.0s 132.5s 137.1s 132.8s

Linear setup/solve 1091.0s 1084.2s 391.0s 378.5s 296.0s 290.2s
Memory/output 277.8s 279.6s 305.9s 301.4s 305.8s 302.9s

Total time 1507.3s 1497.4s 969.9s 942.8s 874.1s 857.0s

based approach outperforming UMFPACK on all mesh sizes from 32× 32 onward for
values as large as γb = 2.0 at all solver tolerances. With a preconditioner parameter
of γb = 2.0 and a solver tolerance of 10−6, the multigrid method remains more than
twice as fast as the UMFPACK solver on the finest level.

Table 12 details a timing breakdown of the UMFPACK direct solver’s perfor-
mance compared to that of the Braess–Sarazin-type multigrid scheme for linear solve
tolerances of 10−5 and 10−2. With and without trust regions, the computed free en-
ergy between the solvers is identically 7.927. However, Braess–Sarazin-type multigrid
reduces overall run time by approximately 37% and 43%, respectively. This speed-
up is most notable when considering the fact that overall run time for the multigrid
experiments includes porting variables to types compatible with the Trilinos computa-
tional library [32] and computing collocation information for the Braess–Sarazin-type
relaxation. The solver demonstrates good performance for the flexoelectric simula-
tion incorporating sharp transitions considered here, as well as problems with steep
boundary layers, as in [3]. Using the Lagrange multiplier formulation, NI, multigrid,
and trust regions, we obtain a robust and efficient algorithm.

7. Discussion and future work. In this paper, we have compared the perfor-
mance of the Lagrange multiplier method developed in [2] with a penalty formulation.
Such penalty approaches are often applied in liquid crystal simulations to enforce the
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challenging unit-length constraint. The experiments also included a renormalization
penalty method motivated by the well-posedness theory presented in section 3. The
ensuing algorithms were compared for three benchmark equilibrium problems. The
experiments suggested that the Lagrange multiplier method coupled with NI is the
most accurate and efficient approach for enforcing the unit-length constraint. Im-
provements for penalty formulations, such as augmented Lagrangian schemes, exist
but require thoughtful adaptation for use in the context of finite-element methods and
pointwise constraints. These schemes will be studied in future work as an intermediate
approach between the two methods [49].

The numerical results, while not perfectly generalizable, edify the performance of
these types of Newton methods in other settings, as this application shares structural
similarities with other problems considering coupled multiphysics and constraints,
such as magnetohydrodynamics. In addition, the results parallel the preference for
two- and three-field formulations in the context of fully incompressible elasticity in
place of penalty-type methods (commonly called nearly incompressible formulations)
to improve accuracy and avoid phenomena such as volumetric locking [11, 22].

Trust-region schemes, developed in the context of finite-element discretizations,
were introduced and readily improved robustness, enabling competitive accuracy
for the penalty formulations. These methods naturally integrate into the energy-
minimization framework with very little extra cost. In particular, the trust-region
method introduced for the Lagrange multiplier formulation in section 4.2 maintains
discretization sparsity while still effectively measuring step merit. Such a method is
generalizable to a broad range of nonlinear optimization problems using finite-element
discretizations. Additionally, without NI, the applied trust regions significantly ac-
celerate convergence.

All the gathered experimental results imply that NI should be used when consid-
ering any of the methods above. More broadly, so long as sufficiently good approx-
imations are representable on coarser grids, NI may be productively applied in the
context of general Newton-type methods, in conjunction with trust regions, to improve
approximations on finer grids while emphatically reducing computational work. In ad-
dition, we expect the precision and efficiency of the iterative schemes to be sustained
for a variety of finite-element discretizations. The discretization spaces used in the nu-
merical experiments are considered due to their relationship with the well-posedness
results in [2]. Nevertheless, the energy-minimization implementation and trust-region
methods are not discretization dependent. Moreover, multigrid methods with Braess–
Sarazin-type relaxation have been successfully applied for other discretizations and
applications [3, 4]. While the use of higher-order elements may affect the conditioning
of the linear systems, thereby impacting linear solver iteration counts, improvements
precipitating from NI and trust regions could also grow.

In the final section, a Braess–Sarazin-type multigrid method, based on work in [3],
was introduced for the Lagrange multiplier formulation and successfully applied to
highly difficult liquid crystal problems with electric and flexoelectric coupling. The
parameter studies indicated robustness with respect to larger than optimal values of
the weighting parameter, γb, and optimal scaling was observed. Furthermore, the
method quickly and accurately computed the expected equilibrium configurations.

The current implementation utilizes uniform grid refinement to build the NI hier-
archy of grids. Future work will include study of adaptive refinement techniques.
Because the energy minimization formulation does not yield an obvious a poste-
riori error estimator, new techniques will be explored to flag cells for refinement.
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With an accurate and efficient approach for liquid crystal equilibrium configurations
established, research into the application of energy-minimization finite-element ap-
proaches to liquid crystal flow problems will also be undertaken.
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[27] V. Fréedericksz and V. Zolina, Forces causing the orientation of an anisotropic liquid,

Trans. Faraday Soc., 29 (1933), pp. 919–930.
[28] E. C. Gartland, Jr., and A. Ramage, A renormalized Newton method for liquid crystal

director models with pointwise unit-vector constraints, SIAM J. Numer. Anal., 53 (2015),
pp. 251–278.

[29] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-
Verlag, Berlin, 1986.

[30] R. Glowinski, P. Lin, and X. B. Pan, An operator-splitting method for a liquid crystal model,
Comput. Phys. Comm., 152 (2003), pp. 242–252.

[31] R. Hardt, D. Kinderlehrer, and F. -H. Lin, Existence and partial regularity of static liquid
crystal configurations, Commun. Math. Phys., 105 (1986), pp. 547–570.

[32] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,

R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.

Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
An overview of the Trilinos Project, ACM Trans. Math. Software, 31 (2005), pp. 397–423.

[33] Q. Hu, X. -C. Tai, and R. Winther, A saddle point approach to the computation of harmonic
maps, SIAM J. Numer. Anal., 47 (2009), pp. 1500–1523.

[34] Q. Hu and L. Yuan, A Newton-penalty method for a simplified liquid crystal model, Adv.
Comput. Math., 40 (2014), pp. 201–244.
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