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Abstract 
 

Cellular metabolism is very complex. Large scale networks that are used for modeling single-cell 

organism or tissue-specific systems typically comprise of several thousand reactions, each 

representing a unique biochemical conversion of substrate to product. These in silico models 

have the potential for predicting how a cell may respond to a perturbation in the form of either a 

genetic intervention or external stimulus. However, the sheer complexity of these networks 

remains an impediment for the construction of predictive kinetic ODE models, because the 

number of system parameters that need to be estimated typically far exceeds the available 

experimental data and most estimated parameters are not statistically identifiable. Alternatively, 

graph-based modeling of metabolic networks, where reactions can be denoted by nodes and their 

interactions described by directed edges, allow one to survey solely the topology of the network 

and identify structural features that may offer predictable dynamics. Moreover, graph theoretical 

tools allow for the discovery of modules, or a subset of reactions containing few inputs and 

outputs, that together function in concert to isolate perturbations from propagating to the rest of 

the network, a characteristic of metabolic robustness. In this regard, the systematic modularity 

analysis serves to reduce the complexity of metabolic models and identify modules that both 

confer robustness and reveal strong coupling among reactions that may not necessarily be 

intuitive by viewing a two-dimensional cartography of metabolism.  

In this thesis, the governing hypothesis is that retroactive, or cyclical, interactions in the 

form of feedback loops and metabolic cycles engender robustness, and serve as a defining 

structural feature for the systematic identification of functional modules. As such, a graph-

theoretical metric called the Shortest Retroactive Distance (ShReD) is introduced to be used in 
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conjunction with a known network partition algorithm to produce a hierarchical tree of modules, 

each enriched in cyclical pathways and allosteric feedback loops. Applied to a hepatocyte (liver 

cell) metabolic network, the ShReD-based partition identifies a ‘redox’ module that couples 

reactions from apparently distant pathways such as glucose, pyruvate, lipid, and drug metabolism 

through the shared production and consumption of NADPH, suggesting that cofactors greatly 

influence the modularity of the network. Recognizing that metabolic networks are not static, a 

metabolic flux-based edge weighting scheme is proposed to capture the relative engagement 

between reaction nodes in the graph network. Applying the ShReD-based partition algorithm to 

weighted adipocyte (fat cell) networks reveals that major physiological changes such as cellular 

differentiation lead to substantial reorganization in the modularity of the network. In addition, 

ShReD-based modularity serves as a platform for a targeted motif search within functional 

modules to discover novel metabolic substrate cycles (a.k.a. futile cycles), which have been 

recently proposed to be targets for obesity and even cancer. Identifying these substrate cycles 

requires elementary flux modes (EFM) computation, which would otherwise be infeasible on a 

large scale network.  

Prospectively, modularity analysis of metabolic networks provides theoretical guidance 

for which reaction rates and metabolite levels may be altered in the face of a perturbation. To 

experimentally confirm predictions, targeted metabolomics using tandem mass spectrometry 

(LC/MS-MS) is used to obtain absolute quantification of metabolite concentrations. As an 

example, an in silico model predicts a set of tryptophan-derived metabolites that can only be 

exclusively produced by the gut microbiome and may have anti-inflammatory properties.  In vivo 

levels of these indole-backbone metabolite levels are quantified in cecum samples from mice at 
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two different age groups. Statistically significant differences between the two groups suggest that 

age influences the microbiome composition as well as the metabolites they produce.   
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1. Introduction: Modularity and Robustness in Metabolic 
Systems 

1.1 Investigating Metabolic Perturbations 
 

Cellular metabolism is a complex dynamic process describing all chemical 

transformations of organic matter in living systems. For single cell organisms, such as bacterial 

E.coli or yeast S.cerevisae, the functional objective of the cell may be to maximize its growth 

and proliferate (Varma and B. O. Palsson, 1994). The cellular objective for higher order 

mammalian cells however may be not be as clear, since tissue specific cells participate in many 

unique functions to maintain organism-wide homeostasis (R. P. Nolan et al., 2006). In either 

case, the ability to predict how cells respond to metabolic perturbations would be invaluable in 

the context of both engineering microbes producing desirable chemicals or studying the 

metabolic effects of drug treatments. There are many types of perturbations that globally affect 

metabolism and they can be defined as any form of external intervention or stimulus that affects 

a cell’s nominal steady state. For example, genetic perturbations involve the knockout of a 

particular gene, which can drastically affect an organism’s metabolism compared to the nominal 

wild type case (Siddiquee et al., 2004). A transcriptional perturbation, as the name suggests, 

would be characterized as an external agent that acts to either activate or inhibit the transcription 

of certain genes by binding to transcriptional factors (Qin et al., 2007). In addition, a perturbing 

chemical agent may also directly bind allosterically and alter the activity of an enzyme, affecting 

both metabolic (Si et al., 2009) as well as signaling pathways (Yun et al., 2008). Finally, 

perturbations can include drastic shifts in the environment the cells experience, such as 
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temperature shifts (R. P. Nolan and Lee, 2010), or sudden accumulation or depletion of available 

substrates (Hoppe et al., 2007).   

Studying the impact of perturbations on cellular metabolism offers many practical 

applications. For decades, metabolic engineers have studied the impact of knocking out or up-

regulating genes to improve the production and secretion of desired compounds, both small 

molecules (Boghigian et al., 2010) as well as larger proteins in E.coli (Goeddel et al., 1979). 

However, even the most rational approaches to genetic modifications have produced 

counterintuitive results. For example, the knockout of a gene, intended to target a single 

pathway, may have a lethal impact by globally affecting the function of many reactions essential 

to the cell’s survival. Those reactions may draw from the pool of metabolic cofactors, such as 

ATP, NADH, or NADPH, and can broadly affect reactions in parts of metabolism conventionally 

thought to be distant from the point of perturbation (Blank et al., 2005). Even more surprising, a 

genetic intervention may have little or no impact on metabolism, as several enzymes may 

catalyze the same conversion of substrates to products (L. Zhu et al., 2012), which is known as 

redundancy. That biological systems exhibit both robustness as well as extreme fragility to 

certain perturbations is widely discussed in literature (Quinton-Tulloch et al., 2013a).  

The challenges involved in predicting the impacts of metabolic interventions are also 

relevant to mammalian systems, especially in the context drug targeting (Kitano, 2007). Killing 

pathogenic organisms, for example, requires targeting of fragile points. The pathogen Vibrio 

cholerae, the cause of cholera disease, can be treated using small-molecule inhibitor (virstatin) 

which acts on a transcriptional regulator ToxT that is unique to the organism (Hung et al., 2005). 

On the other hand, treatment of certain systemic disorders requires local targeting of specific 

enzymes while minimizing global impacts on metabolism causing adverse side effects. One such 
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disorder, the metabolic syndrome, characterized by hypertriglyceridemia, hypertension, high 

fasting glucose, and low high-density lipoprotein (HDL) is a nationally trending epidemic where 

insulin resistance can drastically alter sugar and fat metabolism to the extremes of type II 

diabetes and obesity (Parekh and Anania, 2007). Treatments have included thiazolidinediones, 

such as troglitazone, that act on a transcriptional factor PPAR-gamma, but severe hepatotoxicity 

induced by xenobiotic transformation in the liver prompted its withdrawal from the market (M. 

T. Smith, 2003). Recently, enzyme targeted drug interventions that alter liver cell (hepatocyte) 

and fat cell (adipocyte) metabolism have been proposed to provide a desired outcome such as 

reduced triglyceride synthesis and storage (Si et al., 2009). In this regard, siRNA mediated 

knockdown of specific genes by attacking mRNA fragments has gained increasing attention 

(Wilcox et al., 2006), and several companies have siRNA-based therapeutics as part of their 

pipelines to treat disorders at the level of metabolism (Whitehead et al., 2009). 

For the engineering and therapeutic applications discussed thus far, the importance of 

predicting metabolic outcomes is evident. Designing and implementing biological experiments to 

test the impact of such perturbations are time consuming and expensive. As such, quantitative 

models that can predict cellular behavior at various metabolic states would help identify more 

effective metabolic targets, as well as explain why some perturbations yield counterintuitive 

results. However, metabolic systems are very complex. The complexity of metabolism rises from 

the interplay of thousands of enzymes catalyzing the conversion of substrates to product, each 

with its own transcriptional and allosteric regulatory controls. The ability to map these processes 

has been greatly augmented by the genomics and transcriptomics revolution, which enable one to 

determine which genes are expressed in specific cell types. Meticulous interpretation of the data 

has led to the construction of large genome-scale databases cataloguing metabolism (KEGG) 
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(Minoru Kanehisa et al., 2010, 2006) which greatly aid in model curation. These model networks 

can then provide insight as to whether or not a perturbation would have a localized impact on 

metabolism, or a more drastic effect on parts of the network previously thought to be distant. 

Indeed, the relative ‘distance’ between certain reactions and the source of the perturbation is not 

always obvious, and conventional two-dimensional cartography of metabolism can be 

misleading at times. In this regard, novel quantitative modeling approaches enhance our 

understanding of how a perturbation propagates throughout cellular metabolism, and hopefully 

serve to reduce the number of costly experiments one has to perform in the lab.   

1.2 Modularity and Robustness 

1.2.1 Modularity 
 

A metabolic network can exhibit modularity, in that a subset of reactions and metabolites exhibit 

distinct functionality separable from other modules (Hartwell et al., 1999). Intuitively, metabolic 

modules should be semi-autonomous subgroups of reactions that have stronger interactions 

among themselves while exerting a weakened influence on the rest of the system, thus exhibiting 

minimum crosstalk with other modules. The compartmental nature of higher order eukaryotic 

systems offers an intuitive view of modularity. For example, a perturbation to a reaction taking 

place in the endoplasmic reticulum may not immediately impact reactions in the mitochondria. 

Moreover, it is also conceivable that subsets of reactions even across multiple compartments, if 

regulated a certain way, can function autonomously and isolate external perturbations from 

propagating to other modules. Kitano has qualitatively described this as biological robustness, 

and suggested the modularity of metabolic systems promotes this very robustness (Kitano, 2004). 

As such, the modularity of a metabolic network is directly related to robustness. Since robustness 



5 

 

is used in many different contexts (Larhlimi et al., 2011), we seek to define local and global 

robustness in response to a perturbation within a dynamical system context. 

1.2.2 System Context 
 

Cellular metabolism can be mathematically modeled as a dynamical system that exchanges 

energy and mater with its environment. The state space is characterized by variables representing 

metabolite concentrations and reaction rates. A Steady state refers to any state in which 

metabolite concentrations do not uncontrollably accumulate or deplete to the point that it is toxic 

to the cell.   This can be described mathematically in the case where a metabolic dynamic system 

features an asymptotically stable steady state, which occurs when the real parts of the linearly 

approximated Jacobian’s eigenvalues are all negative (Variano and Lipson, 2004).  One system 

property is homeostasis, which is the tendency of the system to remain in or near the current 

steady state.  A steady state is considered stable if minor fluctuations in the state variables do not 

cause great deviation from the reference steady state.  Feedback, a process in which downstream 

information can be used to modify the state upstream, is essential in controlling and regulating 

the state space.  Positive feedback loops allow transitions between two different stable states of a 

system, while negative feedback loops can maintain a downstream variable within a narrow 

range, despite widely fluctuating upstream activities.  The effects of such feedback loops may be 

local or global within the system.   

1.2.3 Local vs. Global Robustness 
 

For many engineering applications, the ability to maintain a steady state in the face of a 

perturbation is an important functional outcome. We refer to the ability of the system to maintain 

its current steady state or reach a new stable steady state due to perturbations as global 
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robustness.  Global robustness hence does not necessarily imply tendency towards homeostasis. 

While the terms stability and robustness are often used interchangeably in literature, a stable 

system need not necessarily be robust to perturbations, since the perturbation can lead the system 

towards toxicity.  

An alternate desirable functional outcome may be local robustness, where a perturbation 

causes changes within the state but only in parts of the subsystem. Kitano’s biological robustness 

certainly encompasses our local robustness definition. Equivalently, we can define local 

robustness in terms of metabolic control analysis using flux control coefficients that measure the 

local response of an enzyme to changes in its environment (Fell, 1992). It follows that local 

robustness is thus a state-dependent property, and that system-wide global robustness is a 

necessary condition for local robustness but local robustness is not a guaranteed consequence of 

global robustness. Conversely, a subset of state variables (i.e. flux rates) being locally robust to a 

perturbation does not imply global robustness, as some metabolites may never reach a new 

steady state concentration.  Our goal is to ultimately discover functional modules that confer 

local robustness, in that reaction fluxes within the perturbed module should be altered more than 

those outside the module. Performing in silico experiments on detailed kinetic metabolic models 

would enable the discovery of this modularity by computing the flux control coefficients for each 

enzyme-reaction pair.  

1.2.4 Analyzing Modularity Using Dynamic Models  
 

Indeed, the holy grail of mathematical modeling of metabolism as a system is to ultimately have 

organism or tissue-specific predictive dynamic models. These models are typically constructed 

as a system of ordinary differential equations (ODE) describing the change in concentration of 
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metabolites as a function of time (Chalhoub et al., 2007). The system’s metabolite concentration 

changes are governed by the rates of reactions that produce and consume the metabolites, which 

typically have highly nonlinear expressions based on enzyme kinetics. Michaelis-Menten type 

saturation kinetics are most commonly used, where the Vmax parameter represents the 

maximum attainable rate of the reaction (accounting for amount of enzyme) and the saturation 

Km parameter is a measure of the affinity the substrate has for the enzyme. Allosteric regulatory 

interactions greatly add to the complexity of the reaction expressions. Once the kinetic model is 

assembled, in silico experiments can be conducted to test the effect of perturbations such as gene 

knockouts, or enzyme knockdowns /inhibitions on metabolic fluxes by running simulations after 

varying relevant parameter values (e.g. reduced Vmax values to denote a knockdown or 

inhibition (R. P. Nolan and Lee, 2012). 

Unfortunately, despite ambitious strategies (Jamshidi and B. Ø. Palsson, 2008), the 

development of such large scale kinetic models remains a formidable challenge due to the 

number of parameters that have to be estimated for the model with limited data on metabolite 

transients (Maier et al., 2010). Some have tried to piece together kinetic models with parameters 

measured from in vitro enzyme kinetic experiments. However, the predictive power of these 

models is limited, presumably due partially to the fact that data collected in vitro may not reflect 

the in vivo environment (Alves et al., 2008). Recently, Nolan and Lee developed a predictive 

kinetic model to describe CHO cell metabolism, but only featured dynamics for a small set of 

exchange reaction fluxes, and used constrained-based modeling to determine intracellular fluxes, 

a technique referred to as dynamic flux balance analysis (R. P. Nolan and Lee, 2010, 2012). Such 

reduced models with lumped reaction kinetics are useful for simulating a subset of metabolism 
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that accounts for most of the carbon flux, but are limited for understanding the detailed 

influences of individual reactions.   

While this is somewhat discouraging, the question we are seeking to answer for a 

metabolic system: “What affects what?”, i.e. which reaction rates are significantly altered as a 

result of a perturbation and which less affected, need not necessarily require such a rigorously 

quantitative approach with kinetic models. Alternatively, structural or graph-based modeling of 

metabolism offers a semi-quantitative modeling platform to survey the connectivity of reactions 

and metabolites in a metabolic network. Such an approach allows one to investigate structural 

features of metabolism that may correspond to predictable dynamics (Prill et al., 2005). 

Moreover, the modularity of a metabolic network, determined based on topological structural 

features may offer predictable dynamics with regards to the system’s functional modularity and 

local robustness.  

1.3 Identifying Modularity Using Graph-Based Modeling 
 

A metabolic network graph comprises component nodes, typically either reactions or 

metabolites, and edges linking the nodes, denoting their connectivity relationships. Graph 

networks can be represented as metabolite-centric, where metabolites are treated as nodes, and 

the reactions that link a substrate to product are denoted as edges (Yoon et al., 2007). 

Alternatively, graphs can be represented as reaction-centric, where nodes refer to reactions or 

enzymes, and edges denote connectivity between reactions based on the production and 

consumption of intermediary metabolites (Ma et al., 2004). Metabolic graphs can also be 

bipartite, with two sets of nodes, both reaction and metabolite, and a link from a metabolite node 

to a reaction node if the latter consumes the particular metabolite, or a link from a reaction node 
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to a metabolite node if the latter is produced by the reaction (Ma’ayan, 2009). There is no 

universally accepted way of representing a metabolic network, as it depends on the modeling 

application. Metabolite-centric graphs have been considered the intuitive abstraction, as reactions 

represent flow of material, denoted by the edge. On the other hand, reaction-centric graphs focus 

on enzymes, the functional unit of metabolism.   

Representation of metabolic networks as graphs have allowed for the discovery of certain 

characteristic global topological properties, such as small world, scale-free organization, and 

structural modularity. The small world property suggests that despite networks being very 

complex, the average path length between components is surprisingly short, due in part to many 

hub metabolites that participate in many reactions. It is also related to the scale-free nature of 

metabolic networks, where the degree distribution (fraction of nodes with k connections, or 

degrees) is shown to follow a power law (H Jeong et al., 2000), albeit a contested claim 

(Goemann et al., 2011). Graph theory offers efficient algorithms for performing calculations 

such as shortest path (Floyd, 1962), and clustering coefficient (Ravasz et al., 2002). Several 

comprehensive reviews on how to represent networks as graphs and perform these calculations 

are available (Montañez et al., 2010).   

Several investigators have already looked into using graph-based tools to discover the 

modularity of metabolic networks (Ederer et al., 2003; Holme et al., 2003; Ma et al., 2004; Papin 

et al., 2004; S Schuster et al., 2002; J. Zhao et al., 2006). Ravasz and coworkers published a 

seminal paper in the field, reporting that scale-free networks with hub metabolites can also 

possess modularity if hierarchically organized (Ravasz et al., 2002). More recently, hierarchical 

modularity has been associated with enhanced global robustness to perturbations, by 

demonstrating that random attacks to a more modular linear dynamic system led to more 
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asymptotically stable solutions (Variano and Lipson, 2004). Various methodologies have been 

employed for systematically uncovering the hierarchical modularity of metabolic networks, 

which usually involve coupling the identification of a structural feature to a clustering or 

partition algorithm. For example, Ravasz investigated the topological overlap metric based on 

connectivity to obtain distances between nodes, and then used an average linkage clustering 

routine to obtain the hierarchical organization (Ravasz et al., 2002). Newman developed a metric 

that computed the difference between the actual and expected number of connections between 

two nodes and used a binary partition algorithm that maximizes a modularity score Q at each 

iteration (M. Newman and Girvan, 2004; M. E. J. Newman, 2006). A useful consequence of such 

top-down partitioning is that it enables the structural metric to be re-computed for each sub-

network in the hierarchy before a partition decision is made.  

1.4 Cyclical Interactions Confer both Local and Global Metabolic 
Robustness 

 

While the approaches thus far have successfully identified hierarchically organized structural 

modularity in metabolic networks, they have relied solely on local connectivity-based metrics. It 

follows that one can look for other motifs or structural features that confer robustness. In 

addition to facilitating robustness, the uncovered modules should also in principle uncover strong 

coupling between certain reactions. In this thesis, the governing hypothesis is that cyclical 

interactions help identify reactions that mutually influence each other and strongly affect each 

others’ reaction rates in the face of a perturbation, but also capture motifs that confer local 

robustness.  
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Kitano and others have long qualitatively described the role feedback control plays in 

maintaining cellular functions in the face of a perturbation (Kitano, 2004). Moreover, metabolic 

cycles are also gaining attention as a mechanism to retain substrates and contribute to system 

stability and robustness (Kritz et al., 2010). To provide a more quantitative evidence for these 

claims of system robustness, structural kinetic modeling (SKM) (Steuer et al., 2006), a recently 

proposed approach, has been used in the absence of detailed kinetic models of real systems. 

SKM takes into account both the stoichiometry as well as the dynamics of a locally linear 

approximation of the system at a particular steady state. The parameters of the system, which are 

represented as normalized degrees of saturation of a reaction with respect to a substrate, are then 

sampled at random. The result is an ensemble of kinetic models about a given steady state, and 

the stability of each model can be evaluated by the Jacobian matrix. A metabolic system here, 

whose structure is defined solely by the stoichiometry, is said to be more robust if a greater 

fraction of Jacobians from the ensemble denote asymptotically stable steady states (Steuer et al., 

2007; Reznik and Segre, 2010; Grimbs et al., 2007; Steuer et al., 2006). That is, the system is 

more likely to reach a stable steady state for a broad range of parameter values, implying greater 

global robustness to reaction perturbations denoted by altered parameter values. Using the 

Structural Kinetic Modeling (SKM) approach, Grimbs and coworkers report more quantitatively 

that metabolic systems with allosteric regulatory information embedded exhibit global robustness 

(Grimbs et al., 2007). Similarly, Reznik and Segre extended SKM to combine analytical and 

computational approaches to show that single input, single output metabolic cycles are always 

stable for a wide range of conditions tested (Reznik and Segre, 2010).  
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One can also show that these cyclical interactions may contribute to local robustness. To 

illustrate the impact of allosteric regulation, we consider a toy metabolic system, modeled by 

ODEs shown in Figure 1-1.  

 

Figure 1-1: Allosteric regulation attenuates impact of perturbations 

(A) Model kinetic reaction system with a fixed input rate R1 at 100 mol/s and rate expressions for 
R2, R3, and R4. (B) Rate of reaction 2 in mol/s as a function of time. The perturbation is caused by 
inhibitor I at t = 250s. (C) The values for the rate expression parameters.  
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An input of 100 mol/min (use of molar units is arbitrary) of flux is split at a branch point and is 

distributed between producing M5 and M4. An external agent, I, acts to allosterically inhibit 

R2’s reaction rate, as does the product of the reaction, M3. In this specific example, the inhibitor 

I acts to immediately drop R2’s reaction rate by 50%, but the system is able to partially 

compensate and recover the loss such that R2 only experiences at 25% reduction in flux once 

new steady state is reached. The accumulation of M2 post-perturbation does not explain the 

recovery in this case because the M2 concentration is in the saturated regime with respect to R2’s 

reaction rate and any increase in reaction rate that would be driven by the k3M2 term is offset by 

the M2/k2 term in the denominator of R2’s kinetic expression. On the other hand, with the 

immediate reduction in R2’s reaction rate, M3 depletes from ~800 moles to 550 moles, which 

alleviates the allosteric binding of the metabolite on the enzyme and accounts for the 25% 

recovery in reaction rate.  It is very important to note that not all systems with this structural 

motif will behave in this manner, as system dynamics are both parameter specific and state 

dependent. The intent here is more to show feasibility, or proof of principle, that allosteric 

inhibition can serve to locally attenuate a perturbation.   

 Similarly, the metabolic substrate cycle motif can also serve to isolate a perturbation and 

promote local robustness. For example, a similar toy model shown in Figure 1-2 involves the 

same branching as before, except a substrate cycles shuttles M3 back to M2 at the expense of a 

reduced cofactor.   
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Figure 1-2: Model substrate cycle 

 

With this system, one can show that a perturbation to R2 caused by inhibitor I, can be 

isolated to the substrate cycle if the same agent, I, also inhibits R4. That is, once at the new 

steady state post-perturbation, R2 and R4’s fluxes can both decrease by the same amount without 

altering the output fluxes R3 and R5. Once again, this behavior is not indicative of all substrate 

cycles. In fact, the reactions in the substrate cycle involving phosphofructokinase I and fructose 6 

bisphosphatase are regulated by AMP in opposite directions. That is, AMP inhibits FBPase I and 

activates PFK I, so a perturbation in the form of more available AMP would not be isolated by 

the substrate cycle, but rather would act as a switch for promoting glycolysis and shutting down 

gluconeogenesis. Similar to the example on allosteric regulation, we are simply highlighting that 
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this motif is in theory capable of local robustness in certain specific cases, defined by the 

parameters of the system.  

1.5 Modularity Based on Cyclical Interactions 
 

Since there is evidence to suggest that cyclical interactions in the form of substrate metabolic 

cycles and allosteric feedback contribute to dynamic robustness, it follows that looking for these 

structural features using graph-based modularity detection algorithm may uncover functional 

modularity. Recently, Saez- Rodriguez and coworkers explored retroactivity, a concept borrowed 

from systems theory that describes the effect of a downstream element on an upstream one 

(Saezrodriguez et al., 2005), in the context of modularity analysis.  In their work, retroactive 

connections were established if neighboring components mutually influenced each other, either 

directly based on stoichiometry, or indirectly based on feedback. They hypothesized that the 

ideal modularity of a network would be one where the retroactive connections between modules, 

or intermodular cross-talk would be minimized (Saez-Rodriguez et al., 2008), and partitioned 

networks using Newman’s modularity score (M. E. J. Newman, 2006). However, these 

retroactive connections are solely based on nearest-neighbor interactions and do not account for 

longer range cyclical interactions and feedback loops. In fact, many allosteric feedback 

mechanisms involve the inhibition of a reaction by a compound produced by a reaction several 

reaction steps downstream. In addition, while the example shown in Figure 1-2 involved a two-

reaction substrate metabolic cycle, there are examples of substrate cycles that span multiple 

reaction steps. For example, Gebauer and coworkers illustrate a 13 step substrate cycle that 

involves glycerophospholipid and pyrimidine metabolism with the overall consumption of ATP 

(Gebauer et al., 2012).  
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 In this light, the objective of this thesis is to extend the work of Saez-Rodriguez and 

coworkers by developing a graph-based metric to account for these more distant cyclical 

interactions. We propose a novel metric, ShReD (Shortest Retroactive Distance), which denotes 

the length of the shortest directed cycle that incorporates the two reaction nodes (Sridharan et al., 

2011). Similar to Saez-Rodriguez et al, we hypothesize that the ideal modularity would be one 

that minimizes cyclical interactions that span multiple modules. Analogous to Newman, who 

computed difference between the actual number of connections and the expected number of 

connections between two nodes, we say that if a reaction pair has a shorter ShReD than expected, 

then they should belong to the same module.  Combining this metric with Newman’s partition 

algorithm, the goal is to obtain a hierarchy of modules, each with a subset of reactions that 

feature feedback loops and metabolic cycles. In this introduction, we have thus far shown that 

these motifs confer local robustness, and modules with these motifs should in principle serve to 

isolate external perturbations. This thesis will now expand on the details of how to identify these 

ShReD-based modules how they reveal complex interactions among reactions, and provide some 

guidelines on how to experimentally monitor changes in metabolism. The following outline 

highlights the flow of the thesis.  

1.6 Thesis Outline 

Chapter 2 
 

We formalize the definition of the ShReD metric as a graph-based tool to capture distant cyclical 

interactions in a metabolic network. We develop a systematic algorithm for obtaining 

hierarchically organized modules of reactions. Finally, we test the algorithm on both an EGFR 
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signaling model as well as a liver metabolic network, featuring reactions for the drug metabolism 

of troglitazone.  

Chapter 3 

To determine if ShReD-based modules do indeed possess features that isolate perturbations, we 

perform a targetd motif search on modules obtained by partitioning hepatonet1, a large scale 

hepatocyte model. We look for cyclical elementary flux modes (EFM) to identify possible 

substrate cycles within modules.  

Chapter 4 

We seek to improve the ShReD-based modularity algorithm by weighting edges based on 

metabolic flux data. This way the metabolic network is not treated as static, but rather dynamic 

depending on the metabolic state of the cell. We develop a generally applicable metabolic flux-

based edge weighting scheme for reaction-centric graphs and apply ShReD-based partitioning on 

the adipocyte reaction network at multiple metabolic states, each with unique flux distributions. 

This allows for the comparison of modularity across different metabolic states for the same base 

network.  

Chapter 5 

To experimentally determine the impact of perturbations to metabolic modules, one needs to 

measure changes in metabolite concentrations before and after the perturbation. With a targeted 

metabolomics approach using tandem mass spectrometry (LC/MS-MS), one can quantify the 

absolute concentration of metabolites in a biological sample in a high throughput fashion. We 

seek to answer how altered tryptophan metabolism may affect the production of gut microbiome-

derived metabolites in mice. At the completion of this work, no known complete metagenome 
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model exists that accounts for all reactions present in all bacterial species present in the murine 

gut, so we could not identify the ShReD-based module that incorporates tryptophan metabolism. 

As an alternative, we utilize a probabilistic search algorithm to identify a set of metabolites, 

whose concentrations would be directly influenced by a change in tryptophan metabolism. We 

then quantify those metabolite concentrations in cecum and feces samples of mice for two 

different age groups.  
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2 Identification of Biochemical Network Modules Based on 
Shortest Retroactive Distances 

 

2.1 Abstract  
 

Modularity analysis offers a route to better understand the organization of cellular biochemical 

networks as well as to derive practically useful, simplified models of these complex systems. 

While there is general agreement regarding the qualitative properties of a biochemical module, 

there is no clear consensus on the quantitative criteria that may be used to systematically derive 

these modules. In this work, we investigate cyclical interactions as the defining characteristic of 

a biochemical module. We utilize a round trip distance metric, termed Shortest Retroactive 

Distance (ShReD), to characterize the retroactive connectivity between any two reactions in a 

biochemical network and to group together network components that mutually influence each 

other. We evaluate the metric on two types of networks that feature feedback interactions: (i) 

epidermal growth factor receptor (EGFR) signaling and (ii) liver metabolism supporting drug 

transformation. For both networks, the ShReD partitions found hierarchically arranged modules 

that confirm biological intuition. In addition, the partitions also revealed modules that are less 

intuitive. In particular, ShReD-based partition of the metabolic network identified a ‘redox’ 

module that couples reactions of glucose, pyruvate, lipid and drug metabolism through shared 

production and consumption of NADPH. Our results suggest that retroactive interactions arising 

from feedback loops and metabolic cycles significantly contribute to the modularity of 

biochemical networks. For metabolic networks, cofactors play an important role as allosteric 

effectors that mediate the retroactive interactions. 
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2.2 Introduction 
 

Hierarchical modularity has emerged as an organizational principle of biochemical networks, 

where larger less cohesive clusters of network components (e.g. metabolic enzymes or signaling 

molecules) comprise functionally distinct sub-clusters (Ravasz et al., 2002; Papin et al., 2004). 

For example, Ihmels and coworkers analyzed the co-expression patterns of metabolic genes in 

Saccharomyces cerevisiae to find coordinated regulation of individual pathways as well as 

higher-order functions such as biosynthesis and stress response that require multiple feeder 

pathways (Ihmels et al., 2004). Hierarchical organization was also observed by Gutteridge and 

coworkers for metabolic regulatory networks, where hub metabolites regulating many enzymes 

connect to modules of spoke metabolites that are chemically similar and/or regulate functionally 

related enzymes (Gutteridge et al., 2007).  

In recent years, observations on modularity have prompted metabolic engineers and 

synthetic biologists to consider whole pathways, rather than individual genes, as modular 

building units for cellular design (Heinemann and Panke, 2006). An emerging design rule is to 

assemble and express a coherent set of genes that encode the desired biochemical pathway along 

with regulatory mechanisms that modulate the activity of the pathway (Andrianantoandro et al., 

2006). Modularity analysis also offers a route to build practically useful, simplified models of 

complex biological systems. The size and complexity of biochemical networks reconstructed 

from genome databases has greatly increased over the years (Minoru Kanehisa et al., 2006, 

2010; Ogata et al., 1999), rendering the estimation of kinetic or regulatory parameters either 

impractical or outright infeasible. In this regard, the modularity of a biochemical network should 

allow the system to be partitioned into minimally interdependent parts, enabling systematic 
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derivation of coarse-grained, yet comprehensive models. Such coarse-grained models could 

greatly simplify the parameter estimation problem by substituting detailed reaction kinetics with 

less detailed module kinetics (Riel and Sontag).  

While there is general agreement that a biochemical module should represent a group of 

connected network components, and that the arrangement of modules in the network is 

hierarchical, there is less consensus on the criteria that should be used to systematically extract 

biologically meaningful modules (C. L. Barrett et al., 2009; Ederer et al., 2003; S Schuster et al., 

2002; J. Zhao et al., 2006). One recent argument was to focus on cyclical, or ‘retroactive,’ 

interactions between network components, as opposed to simple connectivity (Saez-Rodriguez et 

al., 2008). Biochemical pathways operate with direction, where upstream components (e.g. 

concentration of reactants) influence downstream components (e.g. concentration of products). 

In the case where a downstream component also influences an upstream component (e.g. via a 

feedback regulatory mechanism), the two components participate in a cycle and thus interact 

retroactively. Placing such components into the same module reduces the interdependence 

between different modules, consistent with the intuitive definition of a biological module. 

Indeed, metabolic cycles and feedback loops have been shown to confer robustness (Kitano, 

2004) by isolating external perturbations and attenuating their propagation through the entire 

network (Stelling et al., 2004).  

In this chapter, we extend the concept of retroactivity to account for cyclical interactions 

spanning distant parts of a biochemical network as exemplified by feedback loops of signaling 

and metabolic pathways. In earlier work (Saez-Rodriguez et al., 2008), retroactivity was only 

considered for interactions between nearest neighbors in a network. To investigate hierarchy, we 

adopted Newman’s algorithm for community detection (M. E. J. Newman, 2006) to successively 
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partition a network into modules containing cyclical interactions based on a round trip distance 

metric, which we call Shortest Retroactive Distance (ShReD). Applied to test models of a 

signaling network (Oda et al., 2005)  (Figure 2-1)  and a metabolic network (Figure 2-2), the 

ShReD-based partitions produced hierarchically arranged modules that confirm biological 

knowledge.   
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Figure 2-1 Graph image of the signaling network 

Each reaction in the network was a priori assigned to one of 11 canonical signaling pathways as 
described in Methods. The pathway assignments are indicated by the color of the reaction vertex 
in the network. (NA: not assigned; SGTP: small guanosine triphosphatase mediated signaling; 
PIP: phosphatidylinositol polyphosphate signaling; REC: recycling; ENDO: endocytosis; DEG: 
degradation; CELLC: cell cycle; MAPK: mitogen-activated protein kinase cascade; TRANS: 
transcription; CAS:  Ca2+ signaling; GPCR: G-protein coupled receptor mediated signaling; 
ERBB: erythroblastic leukemia viral oncogene homolog receptor signaling) 
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Figure 2-2: Graph image of hepatocyte metabolic network 

Each reaction in the network was a priori assigned to one of 10 textbook pathways as described 
in Methods. The pathway assignments are indicated by the color of the reaction vertex in the 
network. (TRANS: transport; DETOX: detoxification; GLYCO: glucose metabolism; PYRU: 
pyruvate metabolism; TCA: tca cycle; UREA: urea cycle; ROP: oxidative phosphorylation; 
LIPID: lipid metabolism; AA: amino acid metabolism; KET: ketone body metabolism) 
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In addition, the partitions also revealed modules that are less intuitive. For the metabolic 

network, we also examined the role of allosteric regulators and cofactors as network elements 

that determine the number of cyclical interactions and the hierarchical depth of modules.   

2.3 Methods 

2.3.1 Network Representation 
 

A common way to model a biochemical network using a graph is to represent the components as 

vertices and their interactions as edges. In this study, the focus is on understanding the 

hierarchical and modular relationship among reactions, treating metabolites as shared resources 

among modules. We therefore use a directed graph with vertices representing reactions and 

edges indicating a directional interaction between the connected reactions. Edges are drawn 

between two reactions (Figure 2-3a) if the product of one reaction is either a reactant (Figure 2-

3b) or allosteric effector of another reaction (Figure 2-3c). For reversible reactions, reactant-

product relationships are considered in both directions. 



26 

 

 
Figure 2-3: Network Representation 

(A) A reaction-centric representation of two different cases (B and C) where one reaction is 
upstream of another. (B) Reaction R1 produces a metabolite M2 that is consumed by reaction R2.  
(C) Reaction R1 produces a metabolite M2 that is an allosteric effector of the enzyme catalyzing 
reaction R2. 

 

2.3.2 Shortest Retroactive Distance 

 
We utilize round trip distance as a metric, which we call Shortest Retroactive Distance (ShReD), 

to characterize the connectivity between two vertices that interact retroactively. A retroactive 

interaction exists between two vertices i and j, if and only if there is a directional path from 

vertex i to j and a return path from vertex j to i. The retroactive interaction represents a 

mechanism for mutual feedback, and thus expresses interdependence. The ShReD of vertices i 

and j (ShReDij) is the sum of the shortest path distance from node i to j and the shortest return 

path distance from node j to i. In the example network of Figure 2-4, ShReD1,3 is 3 because there 

are two edges along the shortest path from R1 to R3 and there is one edge from R3 to R1.  
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Figure 2-4: Example Illustrating ShReD-based Network Partition 

(A) The example network comprises 8 reactions and 1 allosteric inhibition. (B) Graph 
representation of the reaction-to-reaction interactions in the example network. 

 

There is another cycle connecting the two reaction vertices, which also involves R4, R5 and R6. 

This cycle, however, is not the ShReD, as its length of 6 exceeds the ShReD value of 3. For a 

given network (or sub-network) a ShReD value is computed for every pair of vertices in the 

network (or sub-network). To compute the ShReD values, we first calculated the shortest 

distances between all pairs of vertices using the Floyd-Warshall algorithm (Floyd, 1962). The 

resulting all-pairs shortest path matrix was then added to its own transpose to generate a 

symmetrical ShReD matrix. When there is no path or no return path between two vertices, the 

ShReD value between these two vertices is infinity. The ShReD between a node and itself is 

zero. For the example network in Figure 2-4, the ShReD matrix is as follows:  
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2.3.3 Partition Algorithm 
 

Partitions were obtained by adapting Newman’s community detection algorithm (M. E. J. 

Newman, 2006), which was modified to generate partitions based on the ShReD metric, as 

opposed to simple connectivity. An overview of the algorithm flow is shown in Figure 2-5. 
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Figure 2-5:Schematic illustrating the flow of the partition algorithm 
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The initial step is to find the connected subnetworks in the parent network using a breadth-first 

traversal algorithm (TH, 2009), as it is possible that the parent network, represented as a reaction 

centric graph, may not be connected. For the search, the network is represented as an undirected 

graph, as we are interested in identifying the connectivity of vertices, regardless of direction. 

Each connected subnetwork is then partitioned into two daughter subnetworks to maximize a 

“modularity score” while ensuring that each subnetwork resulting from a partition retains at least 

one retroactive interaction, i.e. cycle. Applied recursively, the algorithm produces a hierarchical 

tree of binary partitions. 

 In Newman’s algorithm, the modularity score was computed as the difference between 

the actual and expected number of connections between two components. In this study, we 

computed the difference between the actual and expected ShReD to determine the modularity 

score. The expected ShReD between i and j, Pij, is computed as the arithmetic mean of the 

average of all non-zero and non-infinite ShReDs involving i and the average of all non-zero and 

non-infinite ShReDs involving j:  
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where Di and Dj are the number of non-zero and non-infinite ShReDs involving i and j 

respectively, and n is the total number of vertices in the network (or sub-network). We define a 

ShReD-based modularity matrix, G, as follows:  

 ijijij ShReDPG −=  (2.3)
 

The diagonal entries of G are set to zero, because both the expected and actual ShReD between a 

vertex and itself are zero. An entry Gij is also set to zero, if ShReDij is infinity. For the example 

network in Figure 2-4, the average ShReD of R1 and R2 are both 4.8. The expected ShReD 
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between R1 and R2, P12, is thus 4.8, and G12 is 1.8. The full matrix G for the example network is 

shown below. The ShReD-based modularity matrix differs from Newman’s connectivity-based 

modularity matrix, which does not take into account the direction of an interaction.  
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Defining the modularity score Q based on the ShReD-based modularity matrix G, we wish to 

find a vector s, which assigns each vertex in the network to one of the two partitioned sub-

networks to maximize Q:  

 
∑∑=

i j
jiij ssGQ
 (2.5)

 

where si is an element of a vector s.  Each si has a value of either -1 or 1.  An increase in Q is 

obtained in two cases: if Gij is positive and the vertices i and j are assigned to the same sub-

network (si = sj = 1 or si = sj = -1), or if Gij is negative and the two vertices are assigned to 

different subnetworks (si = 1 and sj = -1 or vice versa). The vector s maximizing Q can be found 

using spectral partitioning methods (Pothenf et al., 1990) as described by Newman(M. E. J. 

Newman, 2006). The solution to the maximization problem can be approximated by the leading 

eigenvector of G. For our example network (Figure 12), the leading eigenvector of G (Equation 

2.4) is given by v = [-0.41, -0.41, -0.41, 0.41, 0.41, 0.41, 0, 0], from which s is approximated as s 

= [-1, -1, -1, 1, 1,1, -1, -1]. All non-positive entries, including zero, in the eigenvector are 
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assigned the value -1. This partition assigns R1, R2, R3, R7 and R8 to one module, and R4, R5 and 

R6 to the other module. The reactions in the first module are not fully connected, which gives 

rise to two disconnected components, one comprising R1, R2 and R3 and the other comprising R7 

and R8. In this example, a single binary partition generated three separate modules, each 

consisting of a single cycle.  

 In Newman’s original community detection algorithm, partitioning of a subnetwork 

continues if the modularity score Q is greater than zero and the leading eigenvector s of the 

modularity matrix G has at least one positive and one negative element; otherwise the 

subnetwork is not further partitioned. The algorithm terminates if there is no subnetwork that can 

be further partitioned. In our algorithm, we modified the termination criterion to also check that 

there is a cycle in each subnetwork resulting from a partition operation. The check for a cycle 

was performed using an algorithm similar to topological sort (A. B. Kahn, 1962). For a given 

module abstracted as a directed graph, the number of incoming edges is computed for each 

vertex.  A vertex with zero incoming edges is removed from the graph along with its outgoing 

edges. The number of incoming edges is then recalculated for the remaining vertices.  The 

process repeats until there are no more vertices, in which case the graph has no cycles, or until 

there are no vertices with zero incoming edges, indicating the presence of a cycle. In our 

example, the Q score for the first partition is greater than zero (Q = 43.2) and each resulting 

subnetwork contained at least one cycle. Thus, the partitioned subnetworks are accepted as 

modules and the algorithm continues by finding the connected subnetworks in each module. The 

module comprising R1, R2, R3, R7 and R8 is not fully connected, and two subnetworks are found, 

one comprising R1, R2, and R3 and the other comprising R7 and R8. Neither subnetwork can be 

further partitioned, as every element in the leading eigenvector of the corresponding modularity 
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matrix has the same sign. Similarly, the module comprising R4, R5 and R6 cannot be further 

partitioned, as every element in the leading eigenvector of the corresponding modularity matrix 

has the same sign, and the algorithm terminates. 

2.3.4 Hierarchical Tree of Partitions 

 
The partitioning results are reported in the form of a hierarchical tree annotated with several 

properties. Each module is represented as a pie chart, where the size of each slice is proportional 

to the fraction of reactions that belong to the corresponding, pre-assigned canonical (textbook) 

grouping. The homogeneity index of a module corresponds to the fraction occupied by the largest 

slice in the pie chart. The homogeneity index therefore ranges from 0 to 1, where a larger 

number indicates greater homogeneity in terms of composition based on the canonical group 

assignments. The black lines connecting the nodes in the hierarchical tree represent ShReD-

based partitions, whereas the red lines represent the formation of components from partitions that 

include disconnected components. The depth of a module is determined as the number of black 

edges traversed from the root node to the module. The height of a module is determined as the 

largest possible number of black edges traversed from the module to a terminal leaf node.  

 The number of cycles within a module is used to compare the partitions obtained based 

on the ShReD and Newman’s connectivity metrics. While standard algorithms exist for counting 

the number of cycles in a graph (Johnson, 1977), the run time is proportional to the number of 

(non-unique) cycles. The number of cycles may be exponential in the number of vertices, and 

renders cycle counting as computationally inefficient. The cycle count is thus reported up to 

1,000 unique cycles. Any count above 1,000 is effectively reported as 1,000. In addition to 

cycles, we also determined the number of non-infinite shortest retroactive paths in a module as 
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well as the mean ShReD of the module. The mean ShReD of a module is calculated by averaging 

the corresponding non-infinite entries in the corresponding ShReD matrix.  

2.3.5 Models 
 

As case studies, we examined two types of biochemical networks that feature directed 

interactions and feedback loops.  

 

2.3.5.1 Signaling Model 
 

The signaling network was reconstructed based on a published model of epidermal growth factor 

receptor (EGFR) signaling (Oda et al., 2005). The model was downloaded as an SBML file and 

cast into the form of a stoichiometric matrix based on the directional interactions between 

signaling molecules defined in the SBML file. The model consisted of 322 signaling molecules 

(metabolites and proteins) participating in 211 signaling reactions. In addition to the signaling 

reactions, the model includes 238 allosteric interactions between the signaling molecules and 

reactions. The reactions in this model were a priori assigned to groups based on their previously 

catalogued function (Oda et al., 2005). For example, the reactions that convert ERK1/2 and 

PKB/akt into their active forms were assigned to the MAPK cascade and PIP signaling, 

respectively. This initial grouping, which reflects historical knowledge of signaling modularity, 

provided a basis for comparison between biological knowledge-driven, canonical associations 

versus partition-driven, systematically obtained network modules. The graph model for this 

network was shown in Figure 2-1.  
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2.3.5.2 Metabolic Model 
 

A stoichiometric network model of human hepatocyte metabolism was reconstructed from the 

KEGG reaction database and further augmented by the addition of xenobiotic transformation 

reactions, as well as regulatory interactions mediated by allosteric effectors. The model 

comprised 159 reactions, 146 metabolites, and 61 regulatory interactions. The xenobiotic 

transformation reactions were added to describe the metabolism of the anti-diabetic compound 

troglitazone (TGZ), including steps needed to supply conjugation substrates such as glutathione 

(GSH).  The regulatory interactions in the model reflect known allosteric effects of metabolites 

on reaction activity as described in a standard biochemistry textbook (Nelson and Cox, 2008). 

Information about the allosteric effects of metabolites was organized into a regulatory matrix, 

where the columns and rows represented the effector metabolites and reactions regulated by 

these metabolites, respectively. The inhibition or activation of a reaction j by an allosteric 

effector i was denoted by a negative one (-1) or positive one (+1), respectively, in the matrix 

element (i, j). For all other cases where there were no known allosteric interactions, a zero (0) 

was entered into the corresponding matrix element.  For example, the TCA cycle intermediate 

citrate allosterically inhibits phosphofructokinase I (PFK) to regulate the flux of glucose-derived 

substrates into the TCA cycle. In the regulatory matrix, this feedback inhibition is denoted by the 

value (-1) in the matrix element corresponding to (citrate, PFK).  Similar to the EGFR signaling 

model, the reactions of the metabolic model were assigned into one of the following groups 

based on their canonical memberships as defined in standard biochemistry textbooks: transport 

(TRANS), detoxification (DETOX), sugar metabolism (encompassing glycolysis, 

gluconeogenesis, pentose phosphate shunt, and glycogen metabolism) (GLYCO), pyruvate 

metabolism (PYRU), TCA cycle (TCA), urea cycle (UREA), oxidative phosphorylation (ROP), 
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lipid metabolism (LIPID), amino acid synthesis and degradation (AA), and ketone body 

production (KET). To test the impact of allosteric regulation on modularity, separate graph 

models were constructed by either omitting regulatory edges altogether, or just removing the 

cofactors (i.e. ATP, NADH and NADPH), which represented the majority of allosteric effectors. 

The cofactors were removed from the stoichiometric network model by deleting the 

corresponding rows of the stoichiometric matrix, which eliminated the regulatory edges 

reflecting cofactor-driven dependencies between reactions. 

2.4 Results 

2.4.1 Effect of Retroactive Interactions on Modularity: Signaling Network 
To examine the effect of cyclical, i.e. retroactive, interactions on modularity, we compared the 

partitions of the EGFR signaling network obtained using Newman’s connectivity (Figure 2-6a) 

and the ShReD metric (Figure 2-6b).  
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Figure 2-6: Hierarchical partitions of EGFR signaling network 

(A) Partitions obtained using Newman’s connectivity metric. The GPCR dominated module (ID: 22202) has 36 reactions and 28 cycles. 
(B) Partitions obtained using the ShReD metric. The GPCR dominated module (ID: 22203) has 39 reactions and 167 cycles. The terminal 
node (ID: 22219) has 99 reactions, but only 10 cycles. 
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Several qualitative similarities between the two partitions are evident. In both partitions, modules 

that possess a large fraction of reactions from phosphatidylinositol polyphosphate (PIP) signaling 

coupled to either intracellular Ca2+
 signaling (CAS) or small guanosine triphosphatase (SGTP) 

were identified. Quantitatively, both partitions reach a hierarchical depth of 6 and become more 

homogeneous closer to the terminal nodes of the partition tree. From the root to terminal nodes, 

the canonical group compositions of the modules (represented by the pie colors) trend toward a 

single, dominant group (Figure 2-7). At the terminal nodes (height zero), the fraction of reactions 

in a module belonging to a single canonical group, on average, exceeds 80 % for both Newman 

and ShReD partitions. 

 

Figure 2-7: Homogeneity of modules as a function of partition height 

 See methods for definition of homogeneity index 
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There are also notable differences between the two partitions. While both partitions extract 

modules predominantly consisting of G-Protein coupled Receptor (GPCR) activation reactions, 

the ShReD partition identifies greater hierarchy stemming from those modules. In the Newman 

partition, there are several terminal leaf nodes that predominantly comprise Mitogen Activated 

Protein Kinase (MAPK) reactions. Analogous terminal nodes are not present in the ShReD 

partition. The ShReD partition yields a large terminal node consisting of 99 reactions (Figure 2-

8, ID: 22219), whereas the largest terminal node of the Newman partition consists of 36 

reactions (Figure 2-9, ID: 22202).  

 

Figure 2-8: Network of terminal modules for EGFR model: Newman Partition 
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Figure 2-9: Network of terminal modules: ShReD-based partition.  

 

The largest terminal node in the Newman partition (Figure 2-8, ID: 22202) predominantly 

comprises GPCR transactivation reactions, whereas the largest terminal node in the ShReD 

partition (Figure 2-9, ID: 22219) comprises several signaling functions, including MAPK 

cascade, endocytosis, and cell cycle. Another notable difference is that while the average number 

of cycles in a module decreases with increasing depth for both partitions, a larger number of 

cycles are preserved in the ShReD partition at greater depths (Figure 2-10).   
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Figure 2-10: Number of Cycles as a function of Depth for EGFR model partitions 

 

2.4.2  Effect of Retroactive Interactions on Modularity:  
We next compared the Newman (Figure 2-11a) and ShReD partitions (Figure 2-11b) for the liver 

metabolic network, complete with regulatory edges and cofactors.  
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Figure 2-11: Hierarchical Partitions of Hepatocyte Metabolic Network 

(A) Partitions obtained using Newman’s connectivity metric. (B) Partitions obtained using the ShReD. Details of the reactions in the 
boxed modules are shown in Figures 9a and 9b. The other boxed module (ID: 15939) contains pyruvate kinase. 
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As was the case for the EGFR network, both partitions lead to modules that generally increase in 

homogeneity from the root node to the terminal nodes (Figure 2-12). 

 

Figure 2-12: Effect of the partition metric on the homogeneity index of hepatocyte network modules 

The height of the root node in the Newman partition tree is 2, whereas the height of the ShReD 
tree is 7. Error bars represent one standard deviation.   

 

However, unlike the EGFR network, the arrangement and compositions of the two partitions are 

drastically different (Figure 2-11). In contrast to the Newman partition, the ShReD partition 

generates modules with hierarchical depth, similar to the GPCR dominated modules of the EGFR 

network. In the case of the metabolic network, hierarchical depth was greatest for modules 

comprising reactions in and around glycolysis (GLYCO). Moreover, the terminal node modules 
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of the ShReD partition reach greater homogeneity compared to the Newman partition (Figure 2-

12, Figure 2-13). 

 

Figure 2-13:Network of Terminal Modules for Hepatocyte Model Partitions 

(A) Newman’s Partition. (B) ShReD-Based Partitioning. The interactions between modules 
represent interactions between reactions in the respective modules. The size of a module is 
proportional to the number of reactions in the module. 
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2.4.3 Impact of Allosteric Regulation 
 

The impact of metabolic regulation on ShReD-based modularity was investigated by comparing 

the partitions for the metabolic network model with (Figure 2-11b) and without the allosteric 

interactions (Figure 2-12a). The two models yield qualitatively similar hierarchical partitions 

with subtle differences in the placement of reactions into modules (Appendix XX). These 

differences include the placement of reactions coupled to the pyruvate kinase reaction, which is 

subject to a high degree of allosteric regulation relative to other reactions in the network. 
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Figure 2-14: ShReD partitions of modified hepatocyte metabolic models 

(A) Metabolic network with cofactors, but no regulatory edges. The boxed module (ID: 15982) contains pyruvate kinase. (B) Metabolic 
network with regulatory edges, but no cofactors. Note the absence of a redox module coupling detoxification reactions with lipid 
synthesis. 

 



47 

 

The quantitative impact of regulation is observed by comparing the number of ShReDs present in 

the network prior to the partition. At depth zero, there are approximately 250 additional ShReDs 

in the model with allosteric regulation compared to the model without regulation (Figure 2-15).  

 

Figure 2-15: Effect of Regulation on Number of ShReDs with Respect to Depth 

 Average number of ShReDs in a module as a function of partition depth.   

 

However, there is no obvious difference in the number of ShReDs between the two models at 

greater depths. There is also no obvious difference in the average ShReD at most depths, with the 

exception of depth zero, where the average ShReD is approximately 7 % shorter for the model 

with allosteric regulation compared to the model without regulation (Figure 2-16).   
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Figure 2-16: Effect of Regulation on the mean ShReD 

Average ShReD of a module as a function of partition depth. Error bars represent one standard 
deviation.  

 

2.4.4 Impact of Cofactors 

 
We next assessed the impact of cofactors such as ATP, NADH, and NADPH on ShReD-based 

modularity by comparing the partition generated for the complete metabolic model (Figure 2-

11b) to the partition for a partial model with regulatory edges, but lacking any interactions 

resulting from cofactors (Figure 2-14b). Qualitatively, the partitions reveal similar canonical 

groupings. Both partitions identify modules predominantly characterized by glucose metabolism 

(GLYCO) and modules predominantly characterized by amino acid metabolism (AA). Both 
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partitions also group together reactions of the TCA cycle (TCA), urea cycle (UREA) and 

pyruvate metabolism (PYRU). A major difference between the two partitions involves the 

reactions of lipid metabolism (LIPID) and detoxification (DETOX). For the complete model, the 

ShReD partition identifies a module consisting of reactions from LIPID, DETOX, GLYCO, and 

PYRU (Figures 2-11b and 2-17b: ID: 15995), whereas no analogous module is identified for the 

model without cofactors. The reactions of module 15995 either produce or consume NADPH to 

support detoxification and lipid synthesis (Figure 2-17b).   
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Figure 2-17: Redox modules from ShReD-based partition of the hepatocyte model  

Detailed composition of modules boxed in Figure 5b. (A) Coupled reactions of the TCA cycle 
and oxidative phosphorylation (highlighted in bold type) metabolizing NADH and FADH2. (B) 
Coupled reactions metabolizing NADPH.  
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Quantitatively, the number of ShReDs trends lower when the cofactors are absent, with the 

largest difference observed at zero depth (Figure 2-18).  

 

Figure 2-18: Partition Comparison between complete model and model with no cofactors: Number of ShReDs 

 

Conversely, the average ShReD of a module is generally larger when the cofactors are absent, 

with the largest difference again observed at zero depth (Figure 2-19). At greater depths (> 3), 

the average ShReD plateaus to a value between 2 and 3 edges for both models.   
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Figure 2-19: Partition Comparison between complete model and model with no cofactors: Mean ShReD 

 

2.4.5 Comparison With Local Retroactivity 

 
For completeness sake, we compared the partitions based on ShReD with partitions based on 

local, or nearest neighbor, retroactivity. To obtain local retroactivity partitions, the size of cycles 

was restricted to two edges, effectively eliminating all retroactive paths involving non-

neighboring vertices. Algorithmically, ShReDij was set to infinity, if ShReDij was greater than 2. 

Biochemically, a locally retroactive interaction represented either a reversible reaction catalyzed 

by a single enzyme or two irreversible reactions with opposite stoichiometry. For all cases, 

including the EGFR signaling network as well as various versions of the hepatocyte metabolic 

network, partitions based on local retroactivity failed to generate any modules.  
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2.5 Discussion 
 

In this work, we introduce the use of ShReD as a round trip distance metric, which can be 

combined with a partition algorithm (adapted from Newman’s earlier work on community 

detection) to systematically identify biochemical reaction modules that feature cyclical 

interactions. The notion of grouping together network components based on “retroactivity” was 

first proposed by Saez-Rodriguez and coworkers, who hypothesized that a strictly downstream 

component should have little impact on the activity of an upstream component unless there is a 

feedback or retroactive relationship (Saez-Rodriguez et al., 2008). It has been suggested that 

such feedback relationships contribute to robustness with respect to external perturbation, 

notably in signal transduction networks (Kitano, 2004). The ShReD metric accounts for cyclical 

interactions that span multiple reaction steps, and thus significantly extends on the prior work on 

retroactivity, which focused on local interactions between neighboring components. Previously, 

(shortest) path lengths between network components have been used to identify reaction modules 

by clustering, but without consideration of directionality and retroactivity (Ma et al., 2004).  

To evaluate the performance of ShReD as a module-detection metric, we performed two 

sets of comparisons. One set of comparisons involved the community detection algorithm 

presented by Newman, which also formed the basis for our partitioning algorithm. Newman’s 

original algorithm partitioned based on connectivity, and favored the placement of a pair of 

network elements (vertices in the graph representation) into the same module if the number of 

connections between the two elements exceeded the expected (e.g. average) number of 

connections assuming an equivalent network with edges placed at random. The second set of 

comparisons involved the special case of local feedback loops or cycles arising from reversible 
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reactions. The results of these comparisons were used to investigate how multi-step signaling 

loops or metabolic cycles, as opposed to conventional connectivity or reaction reversibility, 

contribute to the modular organization of biochemical networks. 

 Applied to a model network of EGFR signaling, the ShReD-based partitions generated 

modules with a greater number of cyclical interactions across all depths compared to Newman’s 

connectivity-based partitions (Figure 2-10), consistent with the premise of the ShReD metric. 

Our results suggest that the total number of cyclical interactions in a network or module at least 

partially dictates the hierarchical depth of ShReD-based partitions. The ShReD-based partitions 

of the EGFR model generated one large terminal module with 99 reactions (Figure 2-6b, ID 

22219), which could not be further modularized due to the relatively small number of cycles (a 

total of 10) in the module (~0.5 ShReDs per reaction).  In contrast, the GPCR dominated module 

(ID 22203) has 167 cycles and 774 ShReDs connecting just 39 reactions (~20 ShReDs per 

reaction), and can be further partitioned to generate 4 additional levels of hierarchy.   

In the case of the liver metabolic network, which has a substantially greater number of 

cycles (arising from allosteric feedback loops) compared to the EGFR signaling network, the 

difference between ShReD and Newman partitions is more dramatic. ShRed partitions again lead 

to greater hierarchy, reaching a depth of 7, whereas Newman’s partition only reaches a depth of 

3. The greater hierarchy achieved using the ShReD metric is significant, because the partition 

algorithm is essentially identical to Newman’s algorithm, i.e. the only difference is the metric 

used to calculate the modularity score Q. For both metrics, a module is further partitioned only if 

the Q score is positive after the partition. Indeed, the scoring criterion based on the ShReD 

metric is actually more stringent, because the algorithm performs an additional test to ensure that 

the modules resulting from a partition each has at least one cycle. In this regard, the greater 
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hierarchy generated by the ShReD (as opposed to the partition algorithm) gives credence to the 

metric for being able to identify hierarchical modules based on the preservation of cycles.  

The retroactive interactions captured by ShReD include not only reaction reversibility (as 

in previous work (Saez-Rodriguez et al., 2008)), but also cycles and feedback loops involving 

multiple reactions and allosteric effectors. Feedback loops resulting from allosteric regulation of 

an upstream enzyme by a downstream product represent an important regulatory motif that is 

common to biochemical networks. To examine the impact of feedback loops on modularity, 

ShReD partitions were obtained for the metabolic network with and without allosteric regulation. 

While qualitatively similar, the partitions differed in the placement of highly regulated reactions. 

For example, biochemistry textbooks generally associate pyruvate kinase (PK) with glycolysis, 

where the enzyme catalyzes the terminal step. The enzyme’s activity is subject to allosteric 

regulation by several sugar phosphates produced upstream in glycolysis. On the other hand, the 

enzyme’s product, pyruvate, is highly connected to the TCA cycle and amino acid pathways 

through anaplerosis and transamination reactions. When regulatory edges are absent, ShReD 

partitions place PK in one of the terminal leaf nodes along with reactions of lipid metabolism, 

pyruvate metabolism, the TCA cycle, oxidative phosphorylation and ketone body synthesis 

(Figure 2-14a, ID: 15982). When regulatory edges are present in the model, however, the 

partitions place PK in a module dominated by reactions of sugar metabolism (Figure 2-11b, ID 

15939), consistent with textbook biochemistry. In this regard, the ShReD metric captures the 

impact of both stoichiometric connectivity and feedback regulation in determining modularity.   

As many of the allosteric regulators were energy currency metabolites, we also examined 

the partitions for a partial metabolic model that lacks these cofactors. The resulting network 

contains fewer ShReDs, presumably reflecting an overall decrease in the total number of paths. 
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Compared to the complete model, the corresponding ShReDs (connecting the same reaction 

vertices) of the partial model are ~30% longer, indicating that allosteric feedback and other 

cofactor-dependent interactions more tightly couple the reactions in the network. In the present 

study, abstracting the metabolic network as a reaction-centric graph greatly facilitated the 

inclusion of cofactors in the modularity analysis, identifying both intuitive and non-canonical 

groupings that could not be identified by removing interactions effected by cofactors. For 

example, not including the cofactors in the model would completely isolate the oxidative 

phosphorylation reactions and carbamoyl phosphate production reaction from the rest of the 

metabolic network as disconnected components. Including the cofactors allows these reactions to 

be placed into modules; for the complete metabolic model, these reactions are kept together at a 

height of 2. Another example of cofactor-dependent modularity involves the association of 

NADH and FADH2 oxidation with different reactions in and around the TCA cycle (Figure 2-

17a). The partitions place NADH oxidation into a module (ID: 15984) that also contains 

isocitrate and alpha-keto glutarate dehydrogenases, which are NADH producing reactions in the 

TCA cycle. Similarly, FADH2 oxidation is placed in a module (ID: 15985) containing succinate 

dehydrogenase, which reduces FAD+ to FADH2. The coupling between TCA cycle reactions and 

oxidative phosphorylation is intuitive. However, the TCA cycle reactions are also highly 

connected to reactions in glutamate metabolism and β-oxidation, associations that may be 

subjectively less intuitive. In this light, ShReD partitions reflect an emphasis on cyclical 

interactions mediated by the cofactors. A third example of an intuitive, yet non-canonical 

grouping involves the drug transformation reactions. In the present study, the metabolic model 

included reactions that are induced by troglitazone, a hydrophobic anti-diabetic compound 

withdrawn from the market due to severe hepaotoxicity. Module 15995 illustrates the cyclical 
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interactions coordinating reactions of several different canonical pathways, including 

glutathione, lipid, glucose, and pyruvate metabolism (Figure 2-17b). A dominant characteristic 

(exhibited by seven of the nine reactions) of this module is the production and consumption of 

NADPH, again underscoring the significance of the cofactors in determining the modularity.  

To examine whether the influence of the cofactors reflected the relatively small size of 

the model network (comprising ca. 150 reactions), we also applied the ShReD-based modularity 

analysis to a larger model of the human liver (comprising ca. 2500 reactions) [21]. The analysis 

again identified cofactor modules centered on NADH and NADPH consumption and production, 

similar to the smaller liver model. Many of the terminal modules for the larger model comprised 

reactions that were grouped into analogous modules for the smaller model, suggesting that the 

size of the model did not qualitatively alter the structural organization of the metabolic network. 

Quantitatively, the maximum hierarchical depth was greater for the larger network, increasing 

from 7 to 16. The increased depth was presumably due to the greater detail of the HepatoNet1 

model, which includes many additional pathways of amino acid, lipid and nucleotide 

metabolism.  

2.6 Conclusion 
 

In this chapter, we present a novel methodology for modularity analysis that enables hierarchical 

partitions of biochemical networks by preserving feedback loops and other cyclical interactions. 

To the best of our knowledge, the present study is the first to build a module detection method 

that focuses on cycles or feedback loops as the key structural feature. The present study is also 

the first to account for cofactors in modularity analysis, further emphasizing the role of pathway 

regulation in network modularity. Previously, studies on modularity have generally ignored 
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cofactors, citing methodological challenges arising from having to place these highly connected 

hub metabolites into particular modules [20-22]. It should be noted that the current analysis, 

which does not weight the edges in calculating the ShReDs, implicitly assumes that all reactions 

in the network are equally engaged. Clearly, the levels of engagement can be expected to vary 

across different reactions, and should ideally be weighted appropriately, by using quantitative 

activity data such as metabolic flux. For example, a high glycolytic flux may confer a larger 

weight to edges representing PK regulation, which in turn may impact the overall modularity of 

the network. Moreover, cells subjected to different chemical or genetic perturbations will likely 

exhibit different flux dynamics, which would need to be reflected in the metric to obtain 

partitions that meaningfully analyze the modularity of a dynamic system such as the biological 

cell. A thorough examination of the role of reaction engagements in modularity analysis is 

discussed in Chapter 4.  
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3 Using ShReD-Based Hierarchical Modularity to Identify 
Cyclical Elementary Flux Modes  

3.1 Abstract  
 

The hierarchical modularity of metabolic networks provides a framework for understanding the 

functional organization of cellular metabolism. Systematic modularity analysis of networks 

systematically uncovers reaction groupings that may not be intuitive based on a two-dimensional 

cartography of metabolism. In the previous chapter, the ShReD-based partition algorithm was 

proposed to discover modules that are enriched in cyclical interactions that may offer local 

robustness to perturbations. In this chapter, we seek to identify substrate (futile) cycles within 

ShReD-based modules by searching for cyclical elementary flux modes (EFM). Substrate cycles 

have been discussed in literature as promising bioenergetics targets for disorders such as obesity, 

and were shown in this introduction to confer local robustness. Identification of novel substrate 

cycles in large scale networks (>1000 reactions) is challenging, so applying quantitative tools to 

discover novel substrate cycles would be invaluable. Since an exhaustive set of EFMs for a large 

scale network is computationally limiting, we focus on a targeted subset of reactions for the 

motif search. Here, we report that our methodology is able to identify substrate cycles in ShReD-

based modules for the hepatonet1 model, a large scale liver model. While prior work only 

focused on identifying substrate cycles that consume ATP, we report potential substrate cycles 

that have a net production or consumption of a wide range of cofactors and hub metabolites.  
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3.2 Introduction 
 

Graph-based modeling of metabolism has shown that whole-cell or tissue-specific metabolic 

networks may be functionally organized into hierarchical modules (M. E. J. Newman, 2006; 

Ravasz et al., 2002). Modularity analysis allows for the identification of interactions between 

reactions that may not necessarily be intuitive from a two-dimensional cartography of 

metabolism, such as the one presented in the KEGG atlas (Minoru Kanehisa et al., 2010). For 

example, we recently introduced the Shortest Retroactive Distance (ShReD) as a metric to 

capture distant cyclical interactions among reactions in a network to uncover modules enriched 

in feedback loops and metabolic cycles that spanned several canonical textbook pathways, thus 

revealing unexpected reaction groupings (Sridharan et al., 2011). Such a systematic hierarchical 

partitioning of the network allows an investigator to then survey the local topology of the 

network at a desired modular resolution to identify important motifs in the context of the 

module’s biochemical function. Since motif searches on large scale networks are 

computationally expensive (Grochow and Kellis, 2007), systematic approaches to focus the 

search towards a local neighborhood would be very valuable.  

 One motif of particular importance is the metabolic substrate cycle, which can be 

described as a set of reactions that serve to replenish any metabolite participating in the cycle 

without a net catabolic or anabolic function. These cycles would be thermodynamically 

infeasible without the involvement of a metabolic cofactor, or ion exchange across membranes. 

The most commonly known substrate cycles involve reactions from glycolysis and 

gluconeogenesis that are simultaneously active: inter-conversion of glucose and glucose 6-

phosphate; fructose 6-phosphate and fructose 1,6-bisphosphate; and phosphoenolpyruvate and 

pyruvate. Once thought to be futile, and hence the synonymous terminology in literature, these 
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cycles have more recently been ascribed roles in cellular functions such as thermogenesis (Reidy 

and Weber, 2002) and metabolic control (Sazanov and Jackson, 1994). Substrate cycles can 

maintain an independent steady-state cycle flux, which can in theory fluctuate without altering 

other fluxes in the metabolic network provided the cycle has minimal effect on cofactor pools. 

This feature promotes local robustness to external perturbations, which is an important property 

of modularity (Stelling et al., 2004). Conversely, if a substrate cycle quantitatively impacts the 

consumption or generation of a cofactor, then the enzymes of the substrate cycle could be up-

regulated or down-regulated to selectively adjust the cofactor level. In fact, a substrate cycle in 

adipose tissue, namely the esterification and hydrolysis of triglycerides, have been investigated 

as bioenergetics targets for the treatment of obesity (Tseng et al., 2010). Differential expression 

of substrate cycle enzymes has also been explored as a possible approach to alter cancer cell 

metabolism (Locasale and Cantley, 2010).  

 Applied to large-scale model reconstructions of metabolic networks, systematic 

identification of the cycle motif using computational tools can lead to the discovery of novel 

substrate cycles. Gebauer and coworkers recently pointed out that substrate cycles and cyclical 

elementary flux modes (EFMs) are equivalent, and showed that the latter can be identified by 

applying existing EFM enumeration algorithms, provided that the model network has been 

appropriately reduced to remove exchange reactions and associated metabolites (Gebauer et al., 

2012). Using the EFMEvolver algorithm (Grosse et al., 2009), which is based on a genetic 

algorithm, they enumerated over 200,000 EFMs in the cytosol with a medium length (defined as 

the number of reaction steps in the cyclical EFM) of 35. However, the cell’s physiology may or 

may not be able to coordinate the operation and regulation of substrate cycles spanning a large 

number of reaction steps. Moreover, substrate cycles that span a large number of reaction steps 
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across several metabolic modules may not be as amenable for experimental intervention, since 

alteration of enzyme activities would be required for multiple metabolic pathways. Since a 

complete and exhaustive EFM enumeration on large scale networks is not yet computationally 

feasible, this approach will also inevitably preclude the identification of some substrate cycles 

that may be more relevant in the context of modularity and metabolic function. For example, the 

prior work limited the EFM search to only those substrate cycles involving ATP consumption. 

However, many previously identified substrate cycles involve NADH, NADPH or ion transfer 

across membranes.  

Therefore, we propose an alternative approach for the computational identification of 

potential substrate cycles in the context of the hierarchical modularity of the metabolic network. 

In this study, we apply ShReD-based partitioning on a large scale liver network (hepatonet1) 

(Gille et al., 2010), and conduct an exhaustive EFM analysis on individual modules rather than 

the whole network using EFMtool (Terzer and Stelling, 2008). Since ShReD-based modules are 

identified based on cyclical interactions, they should in principle be conducive to identifying 

substrate cycles. The EFM search is exhaustive for all but a small number of modules at the top 

of the hierarchy, which contained too many reactions for EFMtool to complete the enumeration 

within a reasonable time. In this manner, the discovered cyclical EFMs are placed in the context 

of the overall functional organization of the network. We identify cyclical EFMs involved in 

transport, lipid synthesis, folate metabolism, sugar metabolism, and amino acid metabolism, with 

the net transformation of several different cofactors including NADH, NADPH, as well as other 

hub metabolites such as sulfate, phosphate, and hydronium ions.   
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3.3 Methods 

3.3.1 Substrate Cycles and Model Representation 
 

The model system in Figure 3-1A shows a substrate cycle between two reactions [R2,R4] 

operating at the expense of a reduced cofactor ER. Here, the set [R2,R4] is also a cyclical EFM, if 

the cofactor is not included in the balance. However, for the system described in Figure 3-1B, the 

same set of reactions do not constitute a substrate cycle because R2 also produces M5, and the 

cycle [R2,R4] thus has a net catabolic function on substrate M1. In this case, [R2,R4] is not a 

cyclical EFM. These model systems can be abstracted as reaction-centric graphs, where an edge 

is drawn from a reaction Ri to another reaction Rj if a metabolite produced by the first reaction Ri 

is consumed by the second reaction Rj. Based on this scheme, the model systems shown in 

Figure 3-1A and Figure 3-1B can be represented by identical reaction-centric graphs (Figure 3-

1C). This example illustrates that while all substrate cycles can be represented as a directed cycle 

in a reaction centric graph, not all directed cycles necessarily represent substrate cycles.  

Consequently, it is necessary to perform an additional check to determine whether a directed 

cycle in a reaction graph also constitutes a cyclical EFM.  
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Figure 3-1: Substrate cycles and model representation 

(A) Substrate cycle involving R2 and R4 at the expense of ER. (B) This system does not possess a 
substrate cycle because of the net production of M5. (C) Both systems (A) and (B) can be 
represented by the same reaction-centric graph.  
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However, the same set of reactions for the system described in Figure 3-1B does not constitute a 

substrate cycle because R2 also produces M5, and the cycle [R2,R4] has a net catabolic function 

on substrate M1. In this case, [R2,R4] is not a cyclical EFM.  Both of these systems can be 

abstracted as the same reaction-centric graph where if a metabolite produced by Ri is consumed 

by reaction Rj, then an edge is drawn from Ri and Rj (Figure 3-1C). It follows that all substrate 

cycles will be represented as a directed cycle in a reaction centric graph. However, not all 

directed cycles denote substrate cycles, and one has to check if the reactions constitute a cyclical 

EFM first.  

3.3.1.1 Hepatonet1 Model 
 

The hepatonet1 model (Gille et al., 2010), a large scale model of liver metabolism, was 

downloaded in SBML format and converted to a stoichiometric matrix (S-matrix).  From this 

model, two sub-models were constructed, one for ShReD-based partitioning (hepShReD), and 

one for EFM analysis (hepEFM). For the hepShReD model, inorganic hub compounds such as 

H2O and H+ were removed, as they are involved in a majority of metabolic reactions and thus 

define reaction interactions only in a generic manner. However, energy cofactors such as ATP, 

NADH, and NADPH were kept, as they mediate important regulatory interactions. The 

hepShReD model was then abstracted as a reaction-centric graph. Reaction nodes that either 

produce or consume an extracellular metabolite were removed from the network. The resulting 

network comprised of 1418 reactions. The hepEFM model was constructed by removing all hub 

and cofactor metabolites from the original hepatonet1 model. Removing these metabolites was 

necessary to compute substrate cycles using EFM analysis, as cofactors should not be balanced 
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in a substrate cycle. Similar to the hepShReD model, reactions producing or consuming 

extracellular metabolites were also removed. 

3.3.2 ShReD-based Partitioning of Network 
 

The hepShReD graph was iteratively partitioned based on the ShReD-metric as described in our 

previous work (Sridharan et al., 2011). Briefly, a ShReD value (length of the shortest directed 

cycle spanning two reaction nodes) was computed for every reaction pair in a given sub-network, 

starting from the parent network comprising of all 1418 reactions. A binary partition was made 

for each sub-network to maximize a modularity score such that reactions that have a strong 

cyclical interaction, as determined by short ShReD values, are placed together into the same 

module. If a partitioned sub-network was not completely connected, it was broken down into its 

connected components. The result was a hierarchical tree of modules, each comprising a subset 

of reactions from the original 1418 reactions.  

3.3.3 Identification of Cyclical EFMs within Modules 
 

To identify and enumerate all the EFMs within each module, the S-matrix corresponding only to 

those reactions within the module was extracted from the hepEFM S-matrix, to which EFMTool 

(Terzer and Stelling, 2008) was applied. To check whether a modular EFM was also a cycle, the 

reactions involved in a particular EFM were abstracted as a reaction-centric sub-graph. We then 

determined, using depth first search (DFS), whether there existed a set of strongly connected 

components (SCCs) involving all the vertices. SCCs describe a group of nodes where each node 

can reach every other node via a directed path. In this case, the existence of a set of SCCs 

equates to the presence a substrate cycle, where each node is only traversed once in the cyclic 

path. There are no cases in which set of SCCs would be identified where a reaction node 
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traversed more than once as in Figure 3-2, because such a set would not have been identified as 

an EFM. In the following example, subsets [Ri,Rj] and [Rj,Rk] each constitute a cyclical EFM on 

their own. 

 

Figure 3-2: Example of directed cycle that is not a cyclical EFM 

 

All modules in the hierarchical tree of partitions for hepShReD were sorted by height (defined as 

the maximum path length from the specified module to a terminal node). Modular EFM analysis, 

as described above, was performed on each module in the hierarchical partition tree in order of 

increasing height. Modules at lower height contain fewer reactions, and EFMTool is more likely 

to complete the exhaustive search. For modules higher up in the hierarchy, if EFMTool was 

unable to complete the search within one hour, the program moved on to the next module. 

Searching for modular EFMs using this ‘bottom up’ approach starting from the terminal modules 

is preferable to starting from the root parent node coming ‘top down’, which could take longer to 

complete by spending an hour on each module towards the top.   

3.3.4 Net Consumption of Cofactors and Hub Metabolites 
 

Once a cyclical EFM was identified as a potential substrate cycle, the stoichiometric matrix for 

the original network model was used to determine which cofactors and hub metabolites were net 
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consumed or produced for the cycle. This was done for all unique substrate cycles, and a tally 

was kept for how many cyclical EFMs each cofactor was either net consumed or produced.    

 

3.4 Results 

3.4.1 ShReD-based Partition of Hepatonet1 Model 
 

The ShReD-based hierarchical partitioning of the hepShReD sub-model yields 2098 modules, 

each of which comprises a subset of the original 1418 intracellular reactions (Figure 3-3). The 

parent module contains all 1418 reactions, but it is not completely connected and is broken into 

its connected components. A ShReD-based binary partition is then performed on the largest 

connected component, which divides reactions between those contained in the modules denoted 

by Figure 3-3A and the rest of the network. After each binary partition, reaction pairs within 

each sub-network have shorter ShReD values on average than do reaction pairs across the two 

partitioned sub-networks. In this manner, reactions that are tightly coupled through cyclical 

interactions are identified and reactions that remain together at further depths in the hierarchy are 

in theory most functionally related. Only nine modules close to the parent node in the hierarchy 

contained too many reactions for EFMtool to complete. Interestingly, the number of cyclical 

EFMs within modules did not correlate with the size of the module, in that the density of cyclical 

EFMs is far greater in some parts of the hierarchy. For example, module 143829 in Figure 3-3B 

contains 226,014 cyclical EFMs for 121 reactions (Table1). However, module 144976 in Figure 

3-3A contains more reactions (139), but only 8 cyclical EFMs (Table1). Module 143829 also has 

the most number of cyclical EFMs of all modules for which EFMtool completed.  
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Figure 3-3: ShReD-based partition of hepatonet1 model 
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Table 1: Sample cyclical EFMs in modules 
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3.4.2 Modular Functions and Representative Substrate Cycles 
 

For each boxed group in Figure 3, the recognizable metabolic functions of the module with the 

most number of reactions in that group are listed along with representative cyclical EFMs in 

Table 1. We report the reactions as cyclical EFMs and not substrate cycles. While any substrate 

cycles can be represented as a cyclical EFM, not every cyclical EFM is necessarily an active 

substrate cycle, For module 144976 in Figure 3-3A, which comprises of reactions involved in 

cholesterol synthesis and very low density lipoprotein (VLDL) metabolism, we list a cyclical 

EFM that represents a common motif where two reversible reactions carry out the same 

biochemical transformation but are catalyzed by different cofactors. In this case, the conversion 

of 3-Keto-4-methylzymosterol(r) to 4alpha-Methylzymosterol-4-carboxylate(r) is mediated by 

NADPH/NADP in one reaction and NADH/NAD in the other. Substrate cycling in this case 

could result in a net transformation of NADPH to NADH or NADH to NADPH depending on 

the direction of the cycling.  

Many cyclical EFMs involve transport reactions across membranes. In module 143829 

(Figure 3-3C), many reactions involve the transport of TCA cycle intermediates such as citrate, 

malate, and succinate between the cytosol and mitochondria. Depending on the cycling direction, 

the function of such substrate cycles, if active, could be the net transfer of protons or phosphate 

ions across the mitochondrial membrane. These transport-based cyclical EFMs are contained 

within a module that also contains TCA cycle reactions, suggesting a relationship between 

energy production reactions and membrane charge transfer in order to mediate the proton 

gradient required for oxidative phosphorylation.  
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In some cases, the relationship between the function of certain cyclical EFMs and their 

modular placement is intuitive. For example, module 141811 (Figure 3-3G) comprises reactions 

in sugar metabolism, amino acid metabolism, and protein synthesis. Within this module, the 

cyclical EFM involving the inter-conversion of fructose-6-phosphate and fructose 1,6 

bisphosphate is a step in both glycolysis and gluconeogenesis. Similarly, the cyclical EFM 

involving the production and degradation of glutathione at the expense of ATP directly 

influences the metabolism of glutamate, cysteine, and glycine, the three amino acids required for 

the synthesis of glutathione. However, we also found less intuitive associations between cyclical 

EFMs and biochemical modules. Many ShReD modules group together reactions that span 

several distinct textbook pathways based on the shared production and consumption of metabolic 

cofactors. For example, a cyclical EFM in module 142886 (Figure 3-3D) that involves N-

Glycolyneuraminate (NeuNGc) metabolism belongs to the same module as lactate 

dehydrogenase. The close interaction between these reactions with ostensibly unrelated functions 

exists because of the shared production and consumption of cytosolic NADH. Similarly, a 

cyclical EFM in module 142887 (Figure 3-3E) captures the one carbon pool cycle in folate 

metabolism with a net production of NADPH, which directly connects to lipid biosynthesis and 

other reactions that require that cofactor.  

3.4.3 Modular Cyclical EFM Length 
 

For each module that contained at least one cyclical EFM, the mean cyclical EFM length (length 

being defined as the number of reactions that span the cycle) was computed and plotted against 

the module size (Figure 3-4). The mean cyclical EFM length for modules ranges from two (2) to 

nine (9). While there is a general trend that modules with more reactions have a greater mean 

cyclical EFM length, the correlation is not strong. For module 141811 (Figure 3-5), which 
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contains the most number of reactions for which EFMtool was able to complete, the distribution 

of cyclical EFM length is shown (Figure 3-5). For this particular module, the distribution of 

lengths is bimodal with a large cluster of cyclical EFMs between lengths two (2) and five (5) and 

another cluster between length nine (9) and eleven (11).  

 

 

Figure 3-4: Mean cyclical EFM length vs. Module size 
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Figure 3-5: Cyclical EFM Distribution for module 141811 (Figure 3-3F) 

 

3.4.4 Many Different Cofactors and Hub Metabolites are Involved in 
Substrate Cycles 

 

An important motivation of this work was to highlight that many substrate cycles exist that 

consume/generate cofactors other than ATP. Table 2 enumerates the number of unique cyclical 

EFMs among all modules that have a net production and consumption of selected cofactors or 

hub metabolites. Cytosolic hydronium, phosphate, and sulfate ions have the most number of 

cyclical EFMs with a net consumption or production, reflecting the number of unique substrate 

cycles involved in membrane transport (Module 143830, Figure 3-3B). We found that the 

number of cyclical EFMs that use NADH(c)/NAD(c) is similar to the number of cyclical EFMs 
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that use NADPH(c)/NADP(c). Many reversible reactions are catalyzed by either cofactor, and 

thus our algorithm identifies cycles where one reaction consumes NADH(c) in one direction and 

the other reaction consumes NADPH(c) in the reverse direction. Lastly, we find that many 

cyclical EFMs utilized deoxy-nucleotide triphosphates, suggesting substrate cycles may be 

involved in nucleotide metabolism.   

Table 2: List of cofactors and the number of cyclical EFMs producing and consuming them.  

Hub 
Metabolite 

Number of 
Cyclical EFMs: 
Net Consumed 

Number of 
Cyclical EFMs: 
Net Produced 

H+(PG)(c) 70504 70446 
Pi(c) 55051 55102 
Sulfate(c) 33046 33046 
H2O(c) 15015 14960 
ATP(c) 155 217 
ADP(c) 208 152 
NADH(c) 24 24 
NADPH(c) 19 20 
UDP(c) 106 151 
AMP(c) 0 21 
GTP(c) 69 45 
CTP(c) 94 47 
dATP(c) 143 120 
dGTP(c) 58 58 
dAMP(c) 27 37 
dUTP(c) 155 96 
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3.5 Discussion 
 

In this study, we highlight that computational tools can greatly augment the discovery of novel 

substrate cycles in metabolic networks that would be otherwise difficult by simply surveying a 

two-dimensional map of textbook metabolic pathways. For example, for module 143829 (Figure 

3-3C, Table 1), we list a cyclical EFM involving propionate metabolism. However, this potential 

substrate cycle would not have been identified by solely glancing at the interactive online KEGG 

pathway map for propionate metabolism because the metabolite 2-Methyl-3-oxopropanoate at 

the completion of this work is not classified into a pre-assigned pathway. As such, computational 

motif searches on complete metabolic networks is advantageous in that all reactions that take 

place in a specific cell type or organism are a part of the search, as opposed to just those 

displayed in a map representation. However, exhaustive motif searches on large scale networks 

are only computationally feasible for motifs comprised of a small number of nodes (Grochow 

and Kellis, 2007). For example, identifying all directed cycles spanning just two reaction nodes 

is feasible for a large scale metabolic network comprising a few thousand reactions, but 

enumeration of all directed cycles spanning multiple reaction steps is computationally inefficient 

with existing algorithms, because the number of cycles may grow exponentially with the number 

of vertices.  

Gebauer and coworkers recently described the importance of computationally identifying 

substrate cycles that span multiple reaction steps by searching for cyclical EFMs. Unfortunately, 

due to the current computing limitations for exhaustive EFM enumeration on large scale 

networks, any approach to tackle this problem is inherently limited to identifying a targeted 

subset of all possible substrate cycles in the network. For example, the same group utilized the 
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EFMevolver (Grosse et al., 2009) algorithm, which targets a specific subset of cyclical EFMs 

that produce a certain metabolite, in this case ATP (an artificial ADP phosphorylation reaction 

was added to be coupled to these substrate cycles) (Gebauer et al., 2012). In our work, we relax 

the constraint of targeting only ATP consuming cyclical EFMs, and instead utilize a constraint 

on the search space to a systematically determined local neighborhood of reactions, or modules. 

In this manner, we compromise our ability to find longer cyclical EFMs, as evidenced by the 

distribution of cyclical EFM lengths (Figure 3-5) obtained for the module with the largest 

number of reactions for which EFMtool completed. This distribution spans between 2 and 13 

reaction steps, compared to lengths of up to 100 reaction steps identified by Gebauer et al. 

(Gebauer et al., 2012). While our approach likely misses many longer substrate cycles, we can 

identify substrate cycles that utilize many different cofactors other than just ATP, as our EFM 

computation on the modules was exhaustive. Determining local neighborhoods for motif 

searches can be challenging, and often invokes arbitrary rules such as defining a fixed radius 

(path distance) of search around a reaction of intereset. In this regard, ShReD-based modules 

provide a systematically derived localization of reaction groups enriched with cyclical 

interactions, making them conducive to capturing substrate cycles in the context of their 

metabolic function.  

Thus far, we have been meticulous about not using the terms ‘cyclical EFM’ and 

‘substrate cycle’ interchangeably, because the identified cyclical EFMs are solely based on the 

stoichiometry and specified reaction directionality in the model. That is, they only represent the 

possibility of substrate cycling for a set of reactions and do not necessarily determine whether or 

not the substrate cycle is actually active in vivo. For example, many identified cyclical EFMs 

involve two reversible reactions where one consumes NADP and produces NADPH in the 
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forward direction, and the other consumes NADH and produces NAD in the reverse direction 

(Table 1, Module 144976, Figure 3-3A). However, whether or not these reactions can indeed 

operate in opposite directions at the same time with a net conversion of NADP to NADPH at the 

expense of NADH (or vice versa) depends on the intracellular concentrations of the species 

involved and the ∆G driving force. In one such example, Sazanov and coworkers report substrate 

cycling between isocitrate and ketoglutarate, where NAD-dependent isocitrate dehydrogenase 

(IDH) catalyzes the conversion of isocitrate to ketoglutarate and NADP-dependent IDH 

catalyzes the conversion of ketoglutarate back to isocitrate (Sazanov and Jackson, 1994).  

The presented methodology for the identification of potential substrate cycles obviously 

hinges on the accuracy of the model used. Metabolic models are constantly updated with 

increased knowledge as to which genes are expressed in specific organisms or human tissue. 

Inaccurate model curation will inevitably impact the results of the presented algorithm. For 

example, at the completion of this work, the reaction catalyzed by CMP-Neu5Ac hydroxylase for 

N-Glycolylneuraminate (NeuNGc) synthesis is still present in the hepatonet1 model (Table 1, 

Module 143829). Our algorithm identifies a substrate cycle incorporating this reaction for a net 

production or consumption of NADH(c) depending on the direction of cycling. However, reports 

suggest that the gene for CMP-Neu5Ac hydroxylase is absent in human tissue (Chou et al., 

2002). Confusingly, this reference was cited by the authors of the hepatonet1 model as 

justification for including this reaction. The onus is therefore on the user of the algorithm to 

decide if the identified cyclical EFMs represent biologically feasible substrate cycles in the 

particular tissue or cell type.  

This methodology also relies on the accuracy of the modularization of the network, and 

ShReD-based partitioning is a reaction assignment algorithm that is not always perfect. If the 
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systematically uncovered modularity of the network is sub-optimal, then it is possible that some 

recognizable substrate cycles in literature would not be uncovered by the algorithm because the 

reactions involving them may split early with the ShReD-based partition algorithm, and the 

modules for which those reactions are present together, close to the parent module in the 

hierarchy, may have too many reactions for EFMtool to complete. For example, Peterson and 

coworkers have previously reported cycling in the rat liver involving pyruvate carboxylase, 

malate dehydrogenase, and malic enzyme with a net loss of NADH and NADPH (Petersen et al., 

1995). However, while all the reactions required for this substrate cycle are present in the human 

hepatonet1 model, our algorithm does not identify this substrate cycle because cytosolic malic 

enzyme only remains together with mitochondrial pyruvate carboxylase and malate 

dehydrogenase in 141802, which contained too many reactions for EMFtool to complete. As 

such, the modularity of the network itself may need improvement. For example, in this study, all 

edges in the reaction-centric graph were treated as static and weighted equally for the ShReD 

distance metric. However, we show in the next chapter that metabolic-flux weighted networks 

will result in different modularity, depending on the metabolic state of the system. If the 

aforementioned substrate cycle was highly active with a relatively large cyclic flux, then a 

network modularity based on metabolic flux data may reflect this tight engagement between 

reactions by placing those reactions in the same module (Sridharan et al., 2012). However, high 

resolution flux data using isotope labeling are a daunting challenge for such a large scale 

network, and approximate flux data using Flux Balance Analysis can be used instead.    

Prospectively, the discovery of new substrate cycles in metabolic networks using 

computational tools may yield novel drug targets in the context of obesity treatment or even 

cancer. For example, thiazolidinediones (TZDs) activate (PPAR)-ϒ in adipocytes, which induces 
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glycerol kinase gene expression and promotes a futile cycle between triglyceride degradation and 

synthesis from fatty acids and glycerol (Guan et al., 2002). They showed that TZD treatment of 

adipocytes reduces the secretion of free fatty acids, whose levels in serum are associated with 

obesity and insulin insensitivity. Moreover, the activity of this substrate cycle appears to be 

greatly enhanced in a murine animal model for cancer cachexia (Beck and M J Tisdale, 2004), 

suggesting that many substrate cycles are differentially expressed in tumor cells. In fact, the Cori 

cycle is another substrate cycle with increased activity in cachetic patients, where the lactic acid 

produced in the tumor is converted back to glucose in the liver at the expense of six ATP 

molecules (Michael J Tisdale, 2005). In addition, the cyclical EFM we report in Module 142887 

(Figure 3-3E, Table 1) is involved in folate metabolism, and folate receptors are up-regulated in 

cancer cells, providing targets for cancer therapy (Low et al., 2008). However, the role of this 

potential substrate cycle in cancer metabolism remains to be investigated. While the hepatonet1 

model lists the reaction catalyzed by dihydrofolate reductase as reversible, most report that the 

reaction favors the direction of making tetrahydrofolate at the expense of NADPH (Bailey and 

Ayling, 2009). Indeed, many inter-organ substrate cycles, such as the Cori cycle, would not be 

computationally identified in tissue-specific metabolic models, which may prompt one to 

investigate metabolic networks spanning several organs in future work.  
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3.6 Conclusion 
 

In this chapter, we used ShReD-based modules to focus the search of cyclical EFMs to within 

modules. In this manner, the EFM calculation was exhaustive for all but a few modules. Potential 

substrate cycles were identified that had a net production and consumption of a wide range of 

cofactors and hub metabolites. However, we have shown that this methodology hinges on the 

accuracy of the modularization, in that some substrate cycles may not be identified because 

reactions split early in the hierarchical partitioning. We therefore seek ways to improve ShReD-

based modularity algorithm. It was mentioned that weighting edges based on metabolic flux data 

can allow the partitioning of metabolic state-dependent networks. The next chapter delves into 

the details of this novel weighting scheme.    
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4 Metabolic Flux-Based Modularity Using ShReD  

4.1 Abstract  
 

Graph-based modularity analysis has emerged as an important tool to study the functional 

organization of biological networks. However, few methods are available to study state-

dependent changes in network modularity using biological activity data. We develop a weighting 

scheme, based on metabolic flux data, to adjust the interaction distances in a reaction-centric 

graph model of a metabolic network. The weighting scheme was combined with a hierarchical 

module assignment algorithm featuring the preservation of metabolic cycles to examine the 

effects of cellular differentiation and enzyme inhibitions on the functional organization of 

adipocyte metabolism. Our analysis found that the differences between various metabolic states 

primarily involved the assignment of two specific reactions in fatty acid synthesis and 

glycerogenesis. Our analysis also identified cyclical interactions between reactions that are 

robust with respect to metabolic state, suggesting possible co-regulation. Comparisons based on 

cyclical interaction distances between reaction pairs suggest that the modular organization of 

adipocyte metabolism is stable with respect to the inhibition of an enzyme, whereas a major 

physiological change such as cellular differentiation leads to a more substantial reorganization.   

4.2 Introduction 
 

The topology of interactions in a biological network is often studied by modeling the network as 

a graph, which allows the use of established algorithms and metrics such as shortest path analysis 

(Floyd, 1962) and betweenness centrality (Girvan and M. E. J. Newman, 2002). Graph 

theoretical models have yielded useful insights into not only the global topology of biological 

networks, but also local interactions that form distinct substructures, frequently referred to as 



83 

 

modules (Holme et al., 2003; J. Zhao et al., 2006). Indeed, there is growing consensus that many 

types of biological networks possess modular character. Hierarchically arranged modules have 

been identified in metabolic networks, where larger, more heterogeneous subnetworks comprise 

smaller, more cohesive subnetworks (Papin et al., 2004; Ravasz et al., 2002). Hierarchical 

modularity has also been observed for gene interaction networks (Treviño et al., 2012) and 

protein interaction networks (Yook et al., 2004). 

 Despite the important insights obtained from topological analysis, almost all of the graph-

based studies to date have examined a biological network under a single static condition (Ideker 

and Krogan, 2012). For instance, Potapov and coworkers note that shortest path analysis, applied 

to a static network, may offer limited information because the length of an edge in the graph 

model may not correlate well with the overall efficiency of a particular biochemical 

transformation represented by the edge (Potapov et al., 2008). There is increasing evidence that 

biological network organization is dynamic and state dependent, which cannot be adequately 

studied from a static point of view. As a result, there has been growing interest in augmenting the 

topological information of biological networks for graph-based analysis with observed activity 

data. Recently, Tang and coworkers used gene expression data to construct time-course protein 

interaction networks, and found that functional modules detected in the time-course networks 

more closely matched known regulatory complexes than those detected in the static networks (X. 

Tang et al., 2011). In another example, Greenblum and coworkers constructed a metagenomic 

network of the human gut microbiome using gene expression data, and showed that state-specific 

networks representing lean or obese individuals exhibited different topological properties, 

including modularity (Greenblum et al., 2011). Similarly, Taylor and coworkers found that 

dynamic changes in the organization of the protein-protein interaction network, rather than 
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expression levels of individual proteins, correlated strongly with breast cancer prognosis (Taylor 

et al., 2009). Interestingly, mutations in hub proteins connecting different modules were found to 

be more frequently associated with cancer phenotypes than mutations in hub proteins that are 

highly connected with other proteins in the same modules, suggesting that alterations in global 

modularity may occur in cancer. 

 In the case of a metabolic reaction network, gene or even protein expression data may not 

best capture the interactions between the network’s components, as mRNA levels or enzyme 

concentrations do not necessarily correlate with reaction rate or metabolite turnover. A more 

comprehensive snapshot of the physiological state may be provided by a metabolic network’s 

reaction flux distribution, which directly reflects the relative engagements of enzymes, 

integrating the various layers of regulatory processes active in the cell. Intuitively, the flux of a 

reaction can be used to weight the interaction mediated by the reaction. For example, Yoon and 

coworkers applied flux-based weights to adjust the edge distances in a graph model of murine 

adipocyte metabolism, and thereby reflect metabolic state-dependent variations in the 

interactions between metabolite pools (Si et al., 2007; Yoon et al., 2007). While intuitive, this 

weighting scheme assumes that the metabolic network is modeled as a metabolite centric graph, 

where the edges represent reactions. For the purpose of studying the interactions between 

enzymes, it is often useful to model the metabolic network as a reaction centric graph, where the 

nodes represent enzymes and edges represent interactions between the enzymes mediated by 

metabolite substrates and effectors (Ma et al., 2004). The benefit of a reaction-centric graph, 

particularly in the context of modularity analysis, is that a metabolite is not constrained to a 

module. Instead, a metabolite is more appropriately modeled as a shared resource, and reactions 

define the functional identity of a module. To our knowledge, a scheme to weight the edges of a 
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reaction-centric graph has not yet been described in the literature. The purpose of this study was 

therefore to develop a generally applicable method for incorporating activity data such as 

metabolic flux into modularity analysis using graph models where the nodes, rather than the 

edges, represent the network’s functional components.  

In Chapter 2, we defined a new metric, termed Shortest Retroactive Distance (ShReD), to 

capture feedback and other cyclical interactions in a metabolic network (Sridharan et al., 2011). 

Based on the earlier work of Saez-Rodriguez and coworkers on retroactivity (Saez-Rodriguez et 

al., 2008), ShReD was used to solve for modular partitions that would minimize cyclical 

interactions between modules while maximizing such interactions within a module. While the 

earlier work on retroactivity focused on nearest neighbor interactions, for example mediated by 

the product of a reversible reaction, the ShReD-based analysis also considered interactions 

between distant parts of a network. In the present study, we further expand the use of ShReD as a 

modularity analysis metric by developing a weighting scheme to reflect phenotypic state-

dependent variations in reaction-to-reaction interactions. We focus on flux data due to the 

integral nature of the information content in such data, reflecting the functional outcomes of 

transcriptional, translational, and post-translational mechanisms of enzyme activity regulation. 

Flux data can be obtained using a number of different methods, including isotopic (typically 13C) 

labeling, metabolic flux analysis (MFA), and flux balance analysis (FBA), Generally, 

mathematical model-based analysis of isotopic enrichment of multiple metabolite pools offers 

the greatest resolution. Flux balance analysis is a constrained optimization based approach 

typically used to estimate fluxes in conjunction with a metabolic objective function. The problem 

is usually severely underdetermined in FBA. In the present chapter, we used a constrained 

optimization based approach to estimate metabolic fluxes, but without assuming a metabolic 
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objective. Rather, we minimized the sum of squared differences between the measured and 

estimated exchange fluxes, as the problems were well constrained. Applied to a model of 

adipocyte metabolism, ShReD-based modules obtained using flux weights more consistently 

reflected recognizable functions of established pathways compared to the modules obtained 

without the weights. Comparisons of modules obtained using several different flux sets 

representing distinct metabolic states identified robust reaction pairs that repeatedly partitioned 

into the same module across many levels of modular hierarchy, suggesting possible co-

regulation.   

4.3 Methods 

4.3.1 Adipocyte Model and Fluxes 
 

A stoichiometric network model of adipocyte central carbon metabolism was formulated by 

slightly modifying a previously published model (Si et al., 2007). The modifications were as 

follows. Reactions were removed for ketone body metabolism, because these reactions carried 

negligible flux. Reactions were added for glyceroneogenesis to allow the synthesis of glycerone-

phosphate from phosophoenolpyruvate. The number of reactions and metabolites in the modified 

model were 72 and 79, respectively, with 48 independent steady state balances and 22 measured 

exchange rates. The system was underdetermined by a degree of two. Metabolic flux 

distributions were calculated for four different phenotypic states: immature adipocyte (day 4 

post-induction), mature adipocyte (day 12 post-induction), mature adipocyte treated with an 

inhibitor for lactate dehydrogenase (LDH), and mature adipocyte treated with an inhibitor for 

pyruvate carboxylase (PCX). Rates of metabolite uptake and output (exchange rates) describing 

these phenotypic states were taken from our previous work (Si et al., 2007, 2009). Fluxes were 

calculated by minimizing the sum of squared differences between measured and calculated 
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metabolite exchange rates subject to stoichiometric balance constraints. The reaction definitions 

of the adipocyte model and flux distributions corresponding to the four phenotypic states are 

listed in Appendix A.  

4.3.2 Flux-based ShReD 
 

In the previous chapter, we defined the ShReD metric to characterize the connectivity between 

two biochemical network components that interact retroactively (Sridharan et al., 2011). 

Connectivity relationships between reactions in a metabolic network as defined by stoichiometry 

can be modeled using a directed graph with vertices representing reactions and edges indicating a 

directional interaction between connected reactions. Edges are drawn between two reactions if 

the product of one reaction is a reactant of the other reaction. Based on this graph model, the 

ShReD of reaction nodes i and j is computed as the sum of the shortest path distance from node i 

to j and the shortest return path from node j to i. In computing the shortest path distance and 

shortest return path distance, each edge can be assigned the same unit distance to consider a 

nominal state where the interactions between reactions are solely determined by network 

topology. Alternatively, each edge can be assigned a different weight that reflects the 

engagement of the biochemical interaction represented by the edge. For a pair of metabolic 

reactions, a quantitative measure of this interaction can be obtained from the flux of the 

intermediary metabolite. Consider the example in Figure 4-1A.  
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Figure 4-1: Metabolic Flux-based Edge Weighting 

Examples of metabolic flux-based edge weighting in the case of (A) one reaction producing the 
intermediary metabolite and (B) multiple reactions producing the intermediary. In panel (A), vi 
refers to the flux of reaction Ri. 

 

Reaction R1 produces 100 mol/min of metabolite M2, of which 60 mol/min is directed towards 

R2 and the remainder towards R3. Assuming that the pool of M2 is homogeneous, we attribute a 

stronger influence of R1 on R2 relative to R3. Intuitively, a stronger influence is modeled as a 

smaller edge weight (shorter path distance), whereas a weaker influence is modeled as a larger 

edge weight (longer path distance). Formally, we define the edge distance between a connected 

pair of reaction nodes as the inverse of the fraction of the intermediate metabolite production flux 

that is directed towards the destination reaction node. In the example of Figure 4-1A, the 

dimensionless edge distance D1,2 between R1 and R2 is given by:  
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 D1,2 =1
60

100
=1.67 (4.1) 

The edge distance between R1 and R3 is given by: 

 50.2
100

40
13,1 ==D  (4.2) 

The above definition can be extended in a straightforward manner to cases when more than one 

reaction produces the metabolite that mediates the interaction between two reactions (Figure 4-

1B). These cases often involve energy cofactors such as ATP, NADH, or NADPH, which are 

produced and consumed by many reactions. In the example of Figure 4-1B, the total steady state 

flux of M0 is 100 mol/min, of which 70 and 30 mol/min is directed towards R3 and R4, 

respectively. Based on the assumption that the metabolite pool is homogeneous and the 

contributions of the upstream reactions to this pool are indistinguishable, the directed interaction 

from R1 to R3 is the same as the interaction from R2 to R3. The weighting would be the same if v1 

and v2 are each 50, or if v1 is several orders of magnitude smaller than v2. Even if v1 = 0.01, it has 

to be assumed that 70% of that small flux is directed towards R3, because the source of the 

intermediary metabolite flux cannot be distinguished by the downstream enzymes. Similarly, the 

interaction from R1 and R4 is the same as the interaction from R2 to R4. Generalizing for a pair of 

reactions Ri and Rj connected through an intermediary metabolite M produced by an arbitrary 

number reactions N, the edge distance from node Ri to Rj is given by: 

 j

N

k
kij vvD ∑

=

=
1

 (4.3)  

In equation 3, the index k refers to the set of reactions Rk that produce the intermediary 

metabolite M, vk is the flux of Rk, and vj is the flux of the reaction Rj. When vj is close to zero, 

the corresponding edge distance is very large, as is any ShReD that includes this edge. In such 
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cases, allowing a ShReD to reach an arbitrarily large value could exaggerate the numerical 

difference between reactions whose fluxes are not statistically different from zero. Therefore, the 

value of a flux-weighted ShReD was capped with an upper bound. For numerical convenience, 

the cap was set at 100, as fewer than 5 % of all ShReDs calculated in this study exceeded this 

value. The calculation of ShReDs based on flux weights is illustrated in Figure 4-2. Distinct flux 

distributions (Figures 4-2A and 4-2C) can result in different ShReDs for the same reaction pair 

(Figures 4-2B and 4-2D). 
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Figure 4-2: Example of Metabolic Flux-based ShReD 

Circles and boxes show reactions and metabolites, respectively. The top and bottom numbers in the 
circles refer to the reaction number and corresponding flux, respectively. The ShReDs are 
highlighted with grey circles and boxes. (A) Day 4 model flux distribution around reaction nodes 
comprising the ShReD for the reaction pair [R42, R50]. The reactions comprising the ShReD are as 
follows. R50: palmitate synthesis, R48: oxidative phosphorylation, R34: pyruvate dehydrogenase and 
citrate synthase, R54: mitochondrial transport of 2-oxoglutarate and malate, R42: citrate lyase. (B) 
Reaction-to-reaction distances calculated using the fluxes shown in panel (A) and equation 3. Note 
that the path from R50 to R42 in ShReD42,50 proceeds through R48, R34, and R54 due to the long 
weighted distance from R50 to R42, which in turn is due to the relatively small contribution of R50 to 
the CoA flux. (C) Day 12 model flux distribution around reaction nodes comprising ShReD42,50. (D) 
Reaction-to-reaction distances calculated using the fluxes shown in panel (A) and equation 3. Note 
that ShReD42,50 for the Day 12 model involves only R42 and R50, as the contribution of R50 to the 
CoA flux is significantly larger compared to the Day 4 model. 
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4.3.3 Partition Algorithm 
 

Partitions of flux-weighted and unweighted network models were generated using Newman’s 

community detection algorithm (M. E. J. Newman, 2006) similar to what was described in the 

previous chapter. The overall algorithm flow is shown in Figure 4-3 

 

Figure 4-3: Algorithm workflow for ShReD-based partitioning using flux-weighted edges. 

.
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Briefly, the partitioning algorithm begins by finding the connected subnetworks in the parent 

network using a breadth-first traversal algorithm (Cormen et al., 2001), as it is possible that the 

parent network, represented as a reaction centric graph, may not be fully connected. Each 

connected subnetwork is then partitioned into two daughter subnetworks to maximize a 

modularity score. Applied recursively, the algorithm produces a hierarchical tree of modules. 

Unlike our previous work, we do not require each daughter subnetwork to contain at least one 

cycle as a criterion for partition. It is sufficient that at least one daughter subnetwork contains at 

least one cycle. This relaxation allows the algorithm to find solutions (reaction node 

assignments) that result in a partition where single reaction nodes peel off from a larger 

subnetwork. While the single reaction nodes obviously cannot possess a cycle, this should not 

preclude further partitioning of the larger subnetwork. 

4.3.4 Modularity Matrix 
 

In the previous chapter, we computed a modularity score based on the difference between the 

actual and expected ShReD assuming that each edge in the graph model has equal length, or 

weight. In this study, we modify the modularity matrix from which the modularity score is 

calculated to account for the skewness of weighted ShReD distributions. The desired modularity 

matrix V has a positive entry Vij if the corresponding ShReD between a pair of reaction nodes is 

small relative to the expected ShReD, whereas it has a negative entry if the corresponding 

ShReD is large. Due to the skewing effect of the flux weights on the ShReD distribution, the 

determination of whether a weighted ShReD is small or large relative to expectation was based 

on a log ratio.  Formally, we define an entry Vij in the modularity matrix V as follows.  

 Vij = ln
pij

1− pij









  (4.4)  
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In equation 4, pij is the fraction of all weighted ShReDs involving reaction Ri or Rj that is longer 

than the ShReD between Ri and Rj (ShReDij). If exactly half of all ShReDs involving Ri or Rj are 

longer (or shorter) than ShReDij, then Vij is zero. Otherwise, Vij is positive or negative depending 

on the rank of ShReDij relative to all other ShReDs involving Ri or Rj. As an example, consider 

the subnetwork shown in Figure 4-9B (module #7249). The flux weighted ShReD matrix for this 

subnetwork is shown in Figure 4-4. 

 

Figure 4-4: ShReD matrix of module #7249 in the Day 12 partition. 

 

There are a total of 26 ShReDs involving R24 or R31, including the ShReD between R24 and 

R31 (ShReD24,31). Of these, ShReD24,31 ranks 11th in terms of length. Applying equation 4, p24,31 

= 10/25 = 0.4, and V24,31 = -0.41. If pij = 0, pij is arbitrarily set to 0.01. The smallest Vij value is 

thus -4.60, which is on the same order of magnitude as the other entries in the modularity matrix.  
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4.3.5 Optimization of the Modularity Score 
 

To generate a partition, we assign each reaction in a subnetwork into one of two daughter 

subnetworks as in the previous chapter. The goal is to find a set of assignments, represented by a 

binary vector s, that maximizes the modularity score (M. E. J. Newman, 2006). The modularity 

score Q is defined based on the modularity matrix V: 

 Q = Vijsis j = sVsT

j

∑
i

∑  (4.5)  

Each element si or sj of vector s has a value of either -1 or 1. An increase in Q is obtained in two 

cases: if Vij is positive and reactions i and j are assigned to the same subnetwork (si = sj = 1 or si 

= sj = -1), or if Vij is negative and the two reactions are assigned to different subnetworks (si = 1 

and sj = -1 or vice versa). A solution to the maximization problem can be found using a number 

of different optimization methods. For example, an approximate solution can be obtained using 

eigenvalue decomposition (M. E. J. Newman, 2006). In this study, we used a genetic algorithm 

(GA). While the GA was computationally less efficient than the eigenvalue decomposition 

method, it yielded superior solutions (s vectors) with larger Q scores. The GA was implemented 

using custom code written in MATLAB with the following parameters. The initial population of 

solutions comprised 100 randomly generated s vectors. The population size was kept constant. A 

fixed fraction (60 %) of the solutions was selected for reproduction based on fitness (Q score). 

New individuals were bred through crossover and mutation. During crossover, an element in the 

offspring s vector was assigned the same value as the corresponding elements in the parent s 

vectors if the values were the same in both parents. Otherwise, the element was randomly 

assigned either -1 or 1. The mutation (sign change) rate was set to 20 %. The GA terminated 

when the average Q score of the population reached a plateau with an absolute slope < 0.05 with 
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respect to generation number. The fittest solution (s vector with the largest Q score) generated 

over the course of the GA was used for the partition. For the subnetworks encountered in this 

study, termination was reached generally within 200 generations. For the example subnetwork of 

Figure 4-9B (Module #7249), the GA terminated in 117 generations, and clearly outperformed 

the eigenvalue solution (Figure 4-5). 

 

Figure 4-5: GA solution outperforms eigenvector approximation 
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In cases where the subnetwork size was sufficiently small (< 9 reactions), an exhaustive search 

was performed to find a globally optimal solution. The runtime for the complete partitioning of 

the Day 12 model was 180 seconds using the GA and 85 seconds using the eigenvalue 

approximation on a laptop computer with a 2.2 GHz CPU (Intel Core 2 Duo) and 4 GB of 

physical memory.  

4.3.6 Hierarchical Tree of Modules 
 

The partitioning results are reported in the form of a hierarchical tree annotated with several 

properties. Each module is represented as a pie chart, where the size of each slice is proportional 

to the fraction of reactions that belong to the corresponding, pre-assigned canonical (textbook) 

grouping. The homogeneity index of a module corresponds to the fraction occupied by the 

largest slice in the pie chart. The homogeneity index therefore ranges from 0 to 1, where a larger 

number indicates greater homogeneity in terms of composition based on the canonical group 

assignments. The black lines connecting the nodes in the hierarchical tree represent ShReD-

based partitions, whereas the red lines represent the formation of components from partitions that 

include disconnected components. The depth of a module is determined as the number of black 

edges traversed from the root node to the module. The height of a module is determined as the 

largest possible number of black edges traversed from the module to a terminal leaf node.  

4.3.7 Partition Score for Reaction Pairs 
 

To determine the correlation between modularity and flux weighted ShReD-based partitioning, 

we define a partition score H for a pair of reaction nodes by scaling the number of shared 

modules in the partition tree with respect to the partition depth of the terminal modules for the 

reaction nodes:  



98 

 

 H ij = Shared −1
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 (4.6)  

where Shared is the number of modules in the partition hierarchy that include both reactions i 

and j, and mi and mj are, respectively, the maximal depth of reactions i and j. The numerical 

range of H is thus from 0 to 1. A value of zero indicates that the two reactions are immediately 

separated after the first partition operation, whereas a value close to one indicates that the two 

reactions remain together in the same module through many rounds of partition operations. 

4.3.8 Reaction Pair H-V Space Euclidean Distance 
 

To assess the impact of metabolic state and its corresponding flux distribution on the hierarchical 

partition of reaction modules, a Euclidean distance is computed for each reaction pair in the H-V 

(partition score – modularity score) coordinate space from its original location corresponding to 

the first metabolic state to its new location corresponding to the second state. All coordinates are 

normalized to the mean partition score and modularity score of the corresponding flux-weighted 

partition.   

4.4 Results 

4.4.1 Effects of Weighting Edges on ShReD Distribution 
 

Weighting the edges that define the interactions between the reaction nodes substantially 

impacted the overall distribution of ShReDs. In the un-weighted case, when all edges have the 

same unit distance, the ShReDs are close to normally distributed, with a skewness of  -0.048 

(Figure 4-6).  
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Figure 4-6: Distribution of ShReD values for the un-weighted adipocyte network 

The histogram only shows ShReDs with value<100 

 

In the weighted cases, the distributions clearly skew to the right. For example, the skewness of 

the Day 12 model is 1.57 (Figure 4-7).  
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Figure 4-7: Distribution of ShReD values for Day 12 flux-weighted model 

The histogram only shows ShReDs with value <100 

 

This difference in ShReD distribution between the weighted and un-weighted cases motivated an 

adjustment from the modularity metric presented in the previous chapter. In the previous chapter, 

the entries for the modularity matrix were computed as the difference between the expected and 

actual ShReD of two reaction nodes, where the expected ShReD was calculated as the arithmetic 

average of all ShReDs involving either one of the two reaction nodes. This calculation assumed 

that the overall ShReD distribution is close to normal, and that the arithmetic average reasonably 
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represents the expected ShReD between two nodes. With the incorporation of reaction flux-

based weights, many reaction-to-reaction interactions were orders of magnitude weaker (and the 

corresponding graph distances were longer) than the average interaction, for example, due to the 

involvement of amino acid reactions whose fluxes were negligible compared to those of glucose 

and lipid metabolism. Therefore, in this study we introduce a modified modularity matrix V, 

which ranks the ShReD between two reaction nodes relative to the distribution of all ShReDs 

involving either one of the two reaction nodes. There is a positive correlation (R2=0.35, p<0.01) 

between the un-weighted ShReD and the corresponding weighted ShReD. The correlation 

analysis was performed on reaction pairs with ShReD < 100, since the maximal ShReD value 

was capped at 100 (see Methods). The positive correlation suggests that the topology of the 

metabolic network as defined by the stoichiometry has some influence on the closeness of 

cyclical interactions between enzymes as defined by the fluxes of the reactions connecting the 

enzymes (Figure 4-8).  
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Figure 4-8: Comparison of un-weighted vs. weighted ShReDs. 

Scatter plot of Day 12 weighted ShReD and un-weighted ShReD for all reaction pairs [I,j]. The 
plot only shows reaction pairs with ShReD value < 100. Points (i) and (ii) represent reaction pairs 
[R28,R64] and [R43,R50].  

 

However, the correlation is not very strong, as there are many instances where a relatively short 

un-weighted ShReD corresponds to a relatively long weighted ShReD (Figure 4-8, i), and a long 

un-weighted ShReD corresponds to a short weighted ShReD (Figure 4-8, ii).  
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4.4.2 Effects of Edge-Weighting on ShReD-based Network Partition 
 

The ShReD-based hierarchical partition of modules for the un-weighted adipocyte model is 

compared to the partition for the flux-weighted Day 12 model (Figure 4-9). There are striking 

similarities between the two partitions. In both cases, the transport reactions and a few amino 

acid metabolism reactions peel off from the original network after the first partition. 

Additionally, several key interactions between reactions are conserved. The partitions point to 

close interactions between carbohydrate metabolism, lipid metabolism, and citrate-malate cycle 

for both the un-weighted case (Figure 4-9A: Module #7288) and the flux-weighted case (Figure 

4-9B: Module #7299). Similarly, there is tight coupling between triglyceride synthesis and 

degradation that persists through multiple partition levels for both cases (Figure 4-9A: Module # 

7279, Figure 4-9B: module #7280).  

However, there are also several qualitative differences between the two partitions. The 

un-weighted partition broadly distributes TCA cycle and amino acid reactions across various 

branches in the hierarchical partition tree (Figure 4-9A). However, in the flux-weighted case, the 

a priori assigned textbook associations largely remain intact (Figure 4-9B: Module #7224, 

Module #7287).  Quantitatively, the flux-weighted partition has a greater average homogeneity 

index between heights 1-7 in the hierarchy (Figure 4-10), where height zero corresponds to 

terminal nodes.  At height zero, the average homogeneity is similarly high for both the weighted 

and un-weighted cases due to the large number of single reaction modules.  
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Figure 4-9: Comparison of partitions for unweighted and weighted networks.  

 



105 

 

4.4.3 Comparing Dynamic vs. Static Weighting Schemes 
 

In the absence of flux data, topological data other than cyclical connectivity could be used to 

guide modularity analysis. Metabolite degrees (Croes et al., 2006) were investigated as an 

example of connectivity-based weights reflective of network topology from a static perspective. 

Briefly, the edge distance from a reaction node Ri to reaction node Rj was determined as the 

number of reactions in the network that consume the intermediary metabolite connecting Ri and 

Rj. The rationale was that the influence of Ri on Rj would be strongest if Rj is the only reaction 

consuming the intermediary metabolite produced by Ri. The influence would be weaker if the 

intermediary metabolite was consumed not only by Rj, but also by many other reactions in the 

network. Applying this weighting scheme to the adipocyte model (Figure 4-10), we find that 

ShReD-based partitioning of the metabolite degree-weighted network results in average 

homogeneity index values that lie between the un-weighted network and the flux-weighted 

network.  
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Figure 4-10: Average homogeneity index of modules vs. height  

 

This result suggests that the metabolite degree-weighted network is an improvement over the un-

weighted network, but is less effective than the flux-weighted network at capturing the relative 

engagements between the reactions.  

4.4.4 Robust Interaction Pairs 
 

We next investigated whether the modularity score Vij of two reaction nodes in the initial un-

partitioned network could predict the degree to which the two reaction nodes remain together in 

the hierarchical partitioning. The degree to which two reaction nodes remain together was 

assessed by the partition score Hij, which scales the number of modules shared by both reaction 

nodes with respect to the total depth of the partitions for each reaction node (see Methods for 

definition of depth). A scatter plot of the partition score and the modularity score for the Day 12 
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flux-weighted model shows a significant positive correlation (R2 = 0.45, p<0.01) for reaction 

pairs with a positive modularity score (Figure 4-11).   

 

Figure 4-11: Scatter plot of partition score (H) and modularity score (V) for Day 12 model 

 A red box is drawn around reaction pairs with Hij>0.7 and Vij>3.0  

 

 

Of particular interest are the reaction pairs that fall in the upper right hand corner, chosen here to 

be reaction pairs with Vij > 3.0 and Hij > 0.7. Reaction pairs satisfying this criterion were 

selected from all four flux-weighted adipocyte models (Day 4, Day 12, and Day 12 with PCX or 
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LDH inhibition). Forty reaction pairs, or roughly 1.5% of the possible 2556 reaction pairs, 

satisfied the criterion for at least one of the four models. A heat map displaying the number of 

models (of the four adipocyte models) for which a given reaction pair meets the criterion shows 

that 17 of the 40 reaction pairs robustly partition together across the different metabolic states 

(Figure 4-12).  

 

Figure 4-12: Heatmap showing the number of models a reaction pair had Hij>0.7 and Vij>3.0 

A reaction pair was designated as robust if Hij>0.7 and Vij>3.0 in all four models. The robust 
reaction pairs are shown as black squares in the heat map.   
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One such reaction pair is [R32, R50] (for reaction definitions, see Supplementary Table 1), 

which corresponds to NADPH production from the pentose phosphate shunt and NADPH 

consumption for palmitate synthesis, respectively. To determine whether these robust reaction 

pairs could be identified solely based on stoichiometry in the absence of flux information, each 

of the 17 reaction pairs were mapped onto a corresponding plot of modularity and partition 

scores for the un-weighted adipocyte model (Figure 4-13).  

 

Figure 4-13: Scatter plot of Hij and Vij for all pairs in the un-weighted model.  

  The red asterisks denote 17 robust reaction pairs identified in Figure 4-12 

  



110 

 

Overall, the correlation between the partition and modularity scores, albeit still significant, was 

weaker for the model without flux weights (R2=0.11, p<0.01). Only 5 of the 17 robust reaction 

pairs identified in Figure 4-12 have partitions scores > 0.7, and only 3 reaction pairs also have 

modularity scores > 3.0 in the un-weighted H-V plot. The three reaction pairs are [R34, R36] 

corresponding to pyruvate dehydrogenase/citrate synthase and isocitrate dehydrogenase in the 

TCA cycle, [R51, R52], corresponding to triglyceride synthesis and degradation and [R57, R58], 

corresponding to glutamate synthesis and degradation. The remaining robust reaction pairs 

identified in the four flux-based partitions are not found in the un-weighted network partition. 

For example, the robust pair [R29, R30], which corresponds to reactions in glycolysis, has 

relatively low partition and modularity scores in the un-weighted case.  

4.4.5 Impact of Metabolic State on Modularity 
 

The partitions of the four flux-weighted models show clear differences in hierarchical 

modularity. The differences are mainly due to the placement of the reactions catalyzed by 

phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PCX). For the Day 4 

model, the first partition of the initial network isolates both enzymes from the main network 

along with transport reactions that do not have any cyclical interactions (Figure 4-14A: Modules 

#7337, 7336 respectively).  
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Figure 4-14: ShReD-based partition for (A) Day 4 model and (b) LDH-inhibition model  
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For the Day 12 model, PEPCK is tightly coupled to the TCA cycle reactions (Figure 4-9B, 

Module #7312), and PCX is coupled to carbohydrate metabolism (Figure 4-9B, Module #7252). 

For the LDH-inhibition model, PEPCK is coupled to carbohydrate metabolism reactions (Figure 

4-14B, Module #7233) while PCX is coupled to triglyceride metabolism and reactions that 

produce NADPH (Figure 4-14B, Module #7231).  

To quantitatively assess and visualize the overall impact of metabolic state on the 

hierarchical partitioning of modules, we computed the Euclidean distance a reaction pair moves 

in the normalized H-V space of a flux-weighted model relative to another flux-weighted model 

(See Methods). A large distance implies that the reaction pair’s partition and modularity scores 

(the coordinates of the H-V space) are substantially influenced by the change in metabolic state, 

whereas a short distance suggests that the change in metabolic state has little impact on the 

reaction pair’s placement in the module hierarchy. These distances are shown as heat maps for 

the changes in flux distribution between Day 4 and Day 12 (Figure 4-15A) and Day 12 and Day 

12 with LDH inhibition (Figure 4-15B).   
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Figure 4-15: Heat map of H-V euclidean distance between two states 

(A) Comparison of Day 4 to Day 12 and (B) Day 12 to Day 12 with LDH inhibition 
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For both models, the heat maps feature several dark regions (reflecting very little 

movement). These regions largely correspond to reaction pairs involving amino acid metabolism, 

but also include reaction pairs involved in carbohydrate metabolism (e.g. [R27, R30]), and the 

TCA cycle (e.g. [R39, R41]). Overall, it is clear that the change in flux distribution between Day 

4 and Day 12 has a more pronounced effect on modularity compared to the change in flux 

distribution between Day 12 and Day 12 with LDH inhibition. A similar observation was made 

for the change in flux distribution between Day 12 and Day 12 with PCX inhibition, which also 

had a smaller impact on modularity compared to the change in flux distribution between Day 4 

and Day 12 (Fig 4-16). 

 

Figure 4-16: Heatmap for H-V Euclidean distance: Day 12 to Day 12 PCX inhibition.  
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4.5 Discussion 
 

In this chapter, we present a novel methodology for investigating the impact of different 

metabolic states on the functional organization of metabolic networks. The methodology utilizes 

metabolic flux data as weights for a graph-based partitioning method that conserves cyclical 

interactions. Previously, we assessed the cyclical interactions based on ShReDs calculated by 

assuming static interactions, and thus a uniform graph distance, between each connected reaction 

pair. In the present study, we allow the interactions, and thus the graph distances, to vary with 

the metabolic state.  

 Unlike the un-weighted case, the weighted ShReD distribution displays significant 

skewness (Figure 4-7), indicating that the arithmetic mean is not representative of the average or 

expected ShReD. A likely reason for the skewness is that some reactions, particularly those 

involved in amino acid metabolism, carry negligible flux compared to other parts of central 

carbon metabolism such as glycolysis and the TCA cycle. As the edge weights of a ShReD are 

inversely proportional to the fluxes of the reactions comprising the ShReD, a ShReD that 

includes one or more reactions carrying negligible flux can be very large, and thus skew the 

arithmetic mean of the distribution. For this reason, it is possible for a reaction pair to have a 

relatively small ShReD in an un-weighted network, but a relatively large ShReD in a 

corresponding weighted network. For example, the ShReD for the reaction pair [R28, R63] in the 

unweighted network is two (2) (Figure 4-8, i), since R28 (3-phosphoglycerate synthesis in 

glycolysis) and R63 (proline synthesis) interact cyclically via the production and consumption of 

NADH and NAD+. However, in the weighted network, the directional interaction from R28 to 

R63 is very weak, since only a very small fraction of the NADH produced by glycolysis is used 

for proline synthesis. The corresponding edge distance is 1251, which is approximately 50-times 
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the average of non-infinite ShReDs in the network (25). As a result, the weighted ShReD 

between these two reactions traverses an alternate sequence of reaction nodes, comprising 10 

reactions spanning parts of glycolysis and the TCA cycle, 2-oxoglutarate synthesis, and 

glutamate synthesis (Figure 4-17). 

 

Figure 4-17:Comparison of unweighted (A) and weighted (B) ShReD reaction path.  

 

The ShReD value of this cycle is ~60. This ShReD value is still relatively large compared 

to other weighted ShReD values in the distribution, implying a relatively weak cyclical 

interaction. Conversely, a relatively long ShReD in the unweighted network can yield a 

relatively short ShReD in the weighted network. For example, the unweighted ShReD for the 

reaction pair [R40, R52], corresponding to mitochondrial malate synthesis and triglyceride 

degradation respectively, is the largest non-infinite ShReD at 11 (Figure 4-8 ii). However, every 
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edge in this cycle carries a relatively large flux, resulting in a weighted ShReD value of 22, 

which is close to the average ShReD of the weighted network.  

A comparison of the hierarchical partition trees for the unweighted and weighted (Day 

12) models shows that the weighted model yields greater functional homogeneity of modules 

based on the canonical pathway assignments of the constituent reactions (Figures 4-9, 4-10). 

This suggests that the network topology alone, as defined by the network’s reaction 

stoichiometry, is insufficient to capture the functional associations between reactions that are 

reflected in the textbook pathway assignments. In the previous chapter, we augmented the 

stoichiometric information by including known regulatory interactions between reactions. Edges 

denoting regulatory interactions were drawn from one reaction node to another if the product 

metabolite of the first reaction allosterically regulated the second reaction. The presence of these 

regulatory edges had a significant impact on the modularity of the network. However, for many 

cell types, information regarding regulatory mechanism is incomplete or difficult to obtain, 

requiring extensive manual searches of the literature. Therefore, an un-weighted network will 

almost certainly contain only partial information regarding functional interactions between 

reactions. One way to upgrade the information content is to incorporate metabolic flux data, 

which provides a snapshot of cellular metabolic state, and reflects the integral of various 

regulatory processes active in the cell. In this study, we found that incorporating flux data as 

weights for directed interactions between reactions resulted in homogeneous modules that are 

more in line with textbook knowledge on biochemical pathway organization.    

However, we found that some module inhomogeneity persists deep into the hierarchy 

even for the weighted models. A majority of these inhomogeneous modules include one or more 

robust reaction pairs that consistently partition together across the different metabolic states 
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examined in this study. One such module, found at depth 7 of the Day 12 model partition  

(Figure 4-9B, Module #7299), points to a tight coupling between carbohydrate metabolism, 

citrate malate cycle, and lipid metabolism, mediated through the production and consumption of 

NADPH. This module includes the reaction pair [R32, R50], corresponding to NADPH 

production via the pentose phosphate shunt and palmitate synthesis respectively, which was one 

of the 17 robust reaction pairs with both a high modularity score and a high partition score for all 

four flux-weighted partitions. We have previously observed that the interactions mediated by 

cofactors, which are ubiquitously present throughout metabolism, can couple reactions spanning 

seemingly distant pathways. Prior studies have often removed cofactors or ‘currency 

metabolites’ prior to network modularization due to the difficulty of assigning them to distinct 

functional modules. While ShReD-based partitioning can also be performed after the removal of 

cofactors, our prior work suggests that cofactors are essential in mediating metabolic cycles and 

allosteric feedback loops, and should thus be retained if the goal is to identify modules based on 

cyclical interactions. 

 One possible biochemical basis underlying the robust reaction pairs is co-regulation. For 

example, reaction R50, catalyzed by 3-oxoacyl-(acyl-carrier-protein) reductase, requires 

NADPH as a cofactor for activity (Carlisle-Moore et al., 2005), while both enzymes catalyzing 

the lumped reaction R32, glucose 6-phosphate dehydrogenase and 6-phosphogluconate 

dehydrogenase, are allosterically regulated by NADPH (Ozer et al., 2001; Rippa et al., 1998). 

Similarly, reaction R44, catalyzed by malic enzyme, is product-inhibited by NADPH (Shearer et 

al., 2004), which is a required cofactor for reaction R50. Another co-regulated robust reaction 

pair is [R34, R48], corresponding to the first steps in the TCA cycle (pyruvate dehydrogenase 

and citrate synthase) and oxidative phosphorylation, respectively. Oxaloacetate is a limiting 
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substrate for citrate synthase, and also a competitive inhibitor of oxidative phosphorylation 

(Dervartanian and Veeger, 1964). Reactions R34 (pyruvate dehydrogenase/citrate synthase), R36 

(isocitrate dehydrogenase) and R41 (malate dehydrogenase) are steps in the TCA cycle regulated 

by ATP, which could explain the robustness of interactions between reaction pairs [R34, R36] 

and [R34, R41] (Shearer et al., 2004; Nelson and Cox, 2008; Martinez-Rivas and Vega, 1998). 

While the partitions of the four flux-weighted models share similar modules as exemplified by 

the robust reaction pairs, they also exhibit notable differences. For the Day 4 partition, reactions 

catalyzed by PCX and PEPCK both split off immediately from the parent network at depth one 

of the hierarchy. This split is due to the very low flux carried by these reactions at Day 4, which 

excludes them from significant cyclical interactions with any of the other reaction nodes. Day 4 

represents an early stage of differentiation when an immature adipocyte phenotype is expected. 

While lipogenic genes are activated, the fluxes of lipid synthesis and triglyceride accumulation 

remain low at this stage relative to other parts of central carbon metabolism. Our results suggest 

that PCX and PEPCK, which catalyze upstream steps in glycerogenesis and fatty acid synthesis 

from glucose, are not yet integral to any major functional modules in the immature adipocyte. 

However, at Day 12 (Figure 4-9B), PEPCK is tightly coupled to the TCA cycle reactions, 

mediated through the consumption and production of ATP, and PCX is coupled to carbohydrate 

metabolism and triglyceride metabolism (Figure 4-9B Module #7252). Indeed, there is a striking 

difference between Day 4 and Day 12 partitions based on the relative distances between the 

corresponding pairs of reactions in the H-V space. In comparison, there is a more subtle 

difference between the partitions of Day 12 and Day 12 with LDH inhibition. These observations 

suggest that the inhibition of one enzyme is not enough to drastically alter modularity. In 

contrast, the transition from an immature phenotype on Day 4 to a mature phenotype on Day 12 
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represents a concerted set of changes across cellular metabolism, which is reflected in the 

broadly altered modularity.  

4.6 Conclusions 
 

Taken together, our results support the notion that network modularity is influenced by both the 

connectivity of the network’s components as well as the relative engagements of the connections. 

The major contribution of this chapter is a generally applicable methodology to incorporate 

activity data into a systematic partitioning framework featuring the conservation of cyclical, or 

retroactive, interactions. We found two key benefits of incorporating metabolic flux data. First, 

comparisons across different metabolic states can identify conserved modules comprising 

robustly interacting reactions that may be co-regulated by a common allosteric effector. Second, 

embedded in the flux data is information on the various layers regulatory processes active in the 

cell, which can be used to augment connectivity relationships defined by stoichiometry. In the 

context of modularity analysis, the implication is that lack of detailed knowledge on regulatory 

mechanisms can be at least partially addressed using experimentally observable data. On the 

other hand, the reliance on experimental data is also a limitation in the scalability of our 

methodology. As modularity analysis is an approach to study complex networks, it is ideally 

applied to large-scale systems rich with complexity. Unfortunately, resolving the flux 

distribution of a large-scale metabolic network, for example using 13C isotope labeling, remains 

experimentally demanding and technically challenging. One way to address this limitation in 

scalability could be to utilize solutions from constraint-based methods such as Flux Balance 

Analysis that require relatively few measurements. Rather than rely on flux data reflecting an 

observed metabolic state, flux data could be used that reflect an optimized state or a range of 



121 

 

attainable states. An added benefit of using such model-derived flux data could be to enable 

efficient exploration of different module configurations accessible to a metabolic network 

In summary, we have extended our previously developed methodology for ShReD-based 

modularity analysis by considering non-uniform interactions between retroactively connected 

reactions. Whether the modules defined by cyclical interactions between their constituent 

reactions indeed contribute to some recognizable system property warrants further study. In the 

next chapter, we investigate the presence of substrate cycles within ShReD-based modules, as we 

have shown that such a motif may serve to limit the propagation of perturbations through the 

network, and thereby add to the stability of the system. 
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5 Modularity Analysis Guides Experimentation Using 
Targeted Metabolomics 

5.1 Abstract  
 

The modularity of a metabolic network based on Shortest Retroactive Distances revealed tightly 

coupled interactions between reactions that may not be necessarily apparent based on a two 

dimensional cartography of metabolism. Moreover, it has been shown that the modularity of the 

system is state-dependent when the relative engagements between the reactions are taken into 

account. This theoretical framework for mapping the functional organization of the cellular 

system can guide hypotheses regarding how metabolism would be affected if a particular module 

or several modules were perturbed. These hypotheses can then be tested experimentally by 

measuring the appropriate changes in the concentration of metabolites, consumed or produced by 

reactions involved in the perturbed module. As such, in silico predictions leads to a targeted 

analysis of specific metabolite concentrations, thus invoking the experimental work flow of 

targeted metabolomics using tandem mass spectrometry (LC/MS-MS). In this chapter, we 

highlight an experimental biological application where targeted metabolomics is used to monitor 

changes in metabolism of the gut microbiota as a function of mice age. We focus on tryptophan 

metabolism, and investigated the in vivo concentrations of gut microbiota derived metabolites 

with tryptophan as the substrate. At the completion of this work, metagenomic networks 

incorporating microbiota sequencing data were not available to partition and identify ShReD-

based modules containing tryptophan metabolism reactions. We therefore used a probabilistic 

search tool to identify microbiota produced tryptophan-derived metabolites   
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5.2 Introduction 
 

The human gastrointestinal (GI) tract is colonized by ~1014 bacteria belonging to ~1,000 species 

that are collectively termed the microbiota. Disruptions in the microbiota composition 

(dysbiosis) are increasingly correlated to not only gut diseases such as inflammatory bowel 

disease (IBD) and colitis (Chassaing and Darfeuille-Michaud, 2011), but also obesity, insulin 

resistance and type 2 diabetes (Burcelin et al., 2011; Turnbaugh and J. I. Gordon, 2009). There is 

increasing evidence that the functional outputs of the microbiota, specifically the metabolites 

they produce, are important modulators of host physiology. For example, recent work from our 

laboratory demonstrated that the tryptophan (TRP)-derived bacterial metabolite indole attenuates 

indicators of inflammation and improves tight junction properties in intestinal epithelial cells 

(Bansal et al., 2010). An increase in the conversion of dietary choline into trimethylamine by the 

gut microbiota has also been correlated to non-alcoholic fatty liver disease (Dumas et al., 2006) 

and cardiovascular diseases (Z. Wang et al., 2011). 

 Despite a high level of interest, only a handful of bioactive microbiota metabolites in the 

GI tract have been identified. One major challenge is that the spectrum of metabolites present in 

the GI tract is extremely complex, as the microbiota can carry out a diverse range of 

biotransformation reactions, including those that are not present in the mammalian host (Van 

Duynhoven et al., 2011). Classical approaches such as isolating and culturing individual bacteria 

and identifying metabolites produced in these cultures has not yielded much success, as many 

bacterial species in the GI tract cannot be cultured under standard laboratory conditions. 

Moreover, this approach also does not account for community-level interactions between the 

bacteria as metabolites produced by one bacterial species can be utilized or modified by other 

species resident in the local microenvironment. Another challenge is that it is also extremely 
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difficult to determine whether a metabolite is the product of microbiota or host metabolism, as 

most metabolite classes are present in both bacteria and mammals due to the high degree of 

conservation of metabolic pathways across organisms. 

 In addressing these challenges, metabolomics of fecal or bodily fluid samples has 

emerged as an attractive approach to explore the metabolite profiles of the GI tract, and to 

compare these profiles under different conditions. Mass spectrometry (MS)-based approaches 

have been especially useful in high-throughput identification of a broad spectrum of metabolites. 

For example, a recent study by Zheng and co-workers (Zheng et al., 2011) used chromatographic 

separation coupled with MS to characterize the impact of antibiotic treatment on the metabolome 

of rat fecal and urine samples, and observed that the levels of more than 200 metabolites were 

significantly altered. Interestingly, TRP-derived compounds such as indole and tryptamine were 

among the significantly altered metabolites in both fecal and urine samples. In a related study, 

Antunes and co-workers (Antunes et al., 2011) used Fourier transform ion cyclotron resonance 

MS to detect more than 2,000 metabolite features in murine fecal samples, and found that a 

single high dose of streptomycin causes significant changes in 88% of these features. In addition 

to MS, high-resolution NMR spectroscopy has also been used to broadly profile the metabolites 

whose levels in feces, bodily fluids or host tissues are significantly altered by interventions (such 

as bariatric surgery) that are expected to perturb the gut microbiota (J. V Li et al., 2011). In 

general, MS offers greater sensitivity compared to NMR, and has become the dominant 

analytical platform for metabolomics (Lu et al., 2009). 

  To date, a majority of MS studies on profiling GI tract metabolites have utilized an 

untargeted approach to achieve high throughput. While this approach offers the benefit of 

potential for discovery, it also has several drawbacks. Due to the complexity of the mass spectra 
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obtained, especially when full scan tandem mass spectrometry (MS/MS) is employed, metabolite 

identification can be difficult, as it is difficult to discriminate between ions and ion fragments 

having the same mass-to-charge ratio (m/z). High-resolution time-of-flight (TOF) mass 

spectrometers can somewhat alleviate this problem (Lu et al., 2009). However, quantification 

remains a challenge, because the dynamic range of different metabolites in a biological sample 

can span up to nine orders of magnitude (Want et al., 2005), and an untargeted approach 

precludes tailoring of MS parameters for ionization and fragmentation of specific, low-

abundance metabolites. In contrast, targeted approaches, where the analytes are determined a 

priori, can use quantitative methods such as multiple reaction monitoring (MRM) that afford 

custom optimization of MS parameters for individual metabolites to enable sensitive detection. 

On the other hand, a targeted approach is limited in its discovery potential, as only a focused set 

of metabolites is analyzed simultaneously. Expanding the number of MRM transitions, and thus 

detecting more analytes in a single run, requires a reduction in the dwell time to preserve peak 

shape, which can compromise sensitivity (Lu et al., 2009).   

 In this work, we present a novel targeted metabolomics methodology that addresses the 

inherent discovery limitation by integrating an in silico prediction step into the MS workflow to 

identify bioactive microbiota metabolites. To date, bioinformatics tools have been utilized in 

metabolomics generally for post-hoc analysis to process raw data (Brown et al., 2011), or 

perform statistical comparisons (Martin et al., 2010). Recently, Greenblum and co-workers 

presented an elegant metagenomic study that places obesity or IBD-associated variations in 

human gut microbiota gene abundances in the context of a microbial community-level metabolic 

network reconstructed in silico (Greenblum et al., 2011). Here, we similarly model microbiota 

metabolism using a metabolic network representing a single “microbial metabolic organ” to 
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computationally explore the products of microbiota metabolism. We thus exploit efficient 

computational algorithms for network analysis and the growing catalogue of annotated microbial 

genomes to conduct in silico discovery experiments. As a result, the analytical effort can focus 

on a relatively small number of metabolites to support facile quantitation. To validate our 

methodology, we use computational pathway analysis to predict bacterial products of tryptophan 

(TRP) metabolism, and utilize MRM coupled with liquid chromatography (LC) to quantify the 

levels of the predicted metabolites in murine cecum and feces. To determine bioactivity of the 

metabolites, we use a Gaussia luciferase (Gluc) reporter system measuring aryl hydrocarbon 

receptor (AhR) activation. Our results have the potential to facilitate mechanistic studies on host-

bacteria interactions in the intestinal tract.  

5.3 Materials and Methods 

5.3.1 Materials 
 

All chemicals including HPLC-grade solvents and high-purity metabolite standards were 

purchased from Sigma-Aldrich (St. Louis, MO) unless noted otherwise.   

5.3.2 Metabolite Extraction 
 

Metabolites were extracted from cecum or fecal pellets luminal contents and fecal samples using 

a solvent-based method (Sellick et al., 2010) with minor modifications. Briefly, 1.5 ml of ice-

cold methanol/chloroform (2:1, v/v) was added to a sample tube containing a pre-weighed 

luminal content or fecal sample. After homogenization on ice, the sample tube was centrifuged 

under refrigeration (4 oC) at 15,000 × g for 10 min. The supernatant was then transferred to a 

new sample tube through a (70-µm) cell strainer. After adding 0.6 mL of ice-cold water, the 



127 

 

sample tube was vortexed vigorously and centrifuged under refrigeration (4 oC) at 15,000 × g for 

5 min to obtain phase separation. The upper and lower phases were separately collected into 

fresh sample tubes with a syringe, taking care not to disturb the interface. To improve signal 

intensity for MS, 500 µL of the polar phase was concentrated by solvent evaporation in a Savant 

speedvac concentrator (Thermo Scientific, Asheville, NC), and then reconstituted in 50 µL of 

methanol/water (1:1, v/v). Extracted metabolites were stored at -80oC until analysis. 

5.3.3 Metabolite Analysis using LC/MS-MS 
 

Prior to sample analysis, MS parameters were optimized for each target metabolite to identify the 

MRM transition (precursor/product fragment ion pair) with the highest intensity under direction 

injection at 10 µL/min. The following parameters were optimized operating in positive mode: 

declustering potential (DP), entrance potential (EP), collision energy (CE), and collision cell exit 

potential (CXP). The optimized parameter values for the target metabolites analyzed in this study 

are shown in SI Appendix Table S1.  

Table 3: Optimized MS parameters for indole and indole-derivatives.  

Compound  Precursor 
(Da)  

Product (Da) DP (V) EP (V)  CE (V)  CXP (V)  

Indole  118.0  91.0  41.0  10.0  27.0  2.5  

Indole 3-acetate  176.0  130.0  31.0  9.0  19.0  4.0  

Indole 3-acetamide  175.0  130.0  26.0  10.0  19.0  4.0  

Tryptamine  161.0  144.2  11.0  4.0  15.0  4.0  

Hydroxyindole  134.1  77.1  26.0  10.0  37.0  2.5  

Tryptophan  205.0  188.0  21.0  10.0  17.0  4.0  
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The target metabolites in samples were detected and quantified on a triple quadrupole linear ion 

trap mass spectrometer (3200 QTRAP, AB SCIEX, Foster City, CA) coupled to a binary pump 

HPLC (1200 Series, Agilent, Santa Clara, CA). Peak identification and integration were 

performed using Analyst software (version 5, Agilent, Foster City, CA). Samples were 

maintained at 4oC on an autosampler prior to injection. Chromatographic separation was 

achieved on a hydrophilic interaction column (Luna 5 µm NH2 100 Å 250 mm × 2 mm, 

Phenomenex, Torrance, CA) using a solvent gradient method (Bajad et al., 2006). Solvent A was 

an ammonium acetate (20 mM) solution in water with 5 % acetonitrile (v/v). The pH of solvent 

A was adjusted to 9.5 immediately prior to analysis using ammonium hydroxide. Solvent B was 

pure acetonitrile.  Injection volume was 10 µL. The gradient method, including solvent flow rate 

and composition, is shown in SI Appendix, Table S2.  

Table 4: LC Gradient Profile 

Time  

(min)  

Flow rate  

(µL/min)   

A  

(%)   

B  

(%)   

0  300  15  85  

15  300  100  0  

28  300  100  0  

30  300  15  85  

50  300  15  85  

 

5.3.4 Partition of Metabolites in Extraction Solvent 
 

Since only the upper (polar) phase of the biphasic metabolite extract was used for analysis, the 

partition of all five metabolites between the two phases was determined for absolute 
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quantification. Briefly, 5 µL of the metabolite’s stock solution (1 mg/mL) was dispensed into a 

1.5 mL microfuge tube. To this pure stock solution, 750 µL of 2:1 methanol:chloroform was 

added, followed by 300 µL of water. Following centrifugation and phase separation, the upper 

phase was collected and analyzed for the target metabolite using the corresponding optimized 

MRM parameters. The difference between measured and theoretical amounts of the metabolite 

was used to determine the partition between phases. For example, the theoretical amount of 

tryptophan in the stock solution-solvent mixture is 25 nmol. The measured concentration in the 

upper phase was 34 µM, which corresponds to an estimated total amount of ~27 nmol in the 

upper phase (volume 800 µL), suggesting that all of the tryptophan is recovered within a margin 

of (e.g. pipetting) error. Similarly, all other metabolites analyzed in this study showed full 

partition into the upper phase, except indole. For indole, of the 42 nmol dispensed, only 17 nmol 

was recovered in the upper phase, indicating that the actual amount of indole extracted from the 

tissue is ~2.5 times greater than the measured amount.  

 

5.3.5 Statistical Analysis 
 

Comparisons of medians between the metabolite levels of young and old mice were performed 

with the non-parametric two-sided Mann-Whitney U-test. The null hypothesis that the two 

medians are the same was rejected for p < 0.05. 

5.4 Results 

5.4.1 Predicted Metabolite Set 
 

A probabilistic search of possible biochemical transformations was conducted with tryptophan as 

the source metabolite using a previously published algorithm (Yousofshahi et al., 2011) run in 



130 

 

reverse. The search was limited to only reactions not present in murine metabolism, thus 

producing a list of high frequency metabolites that can potentially be produced by the gut 

microbiome using tryptophan as the source (Unpublished Result, Lee Laboratory, Figure 5-1).  

 

Figure 5-1: High frequency metabolites: in silico prediction of tryptophan derived metabolites 
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5.4.2 Quantification of Metabolites using Multiple Reaction Monitoring 
(MRM) 

 

Of the 12 high-frequency metabolites predicted by the pathway algorithm to be derived from 

TRP by bacteria, a subset was selected for MRM analysis based on availability of pure standards 

and ease of ionization and fragmentation. For example, indole 3-acetaldehyde was excluded, 

because a high-purity was not available to generate a standard curve. Indole 3-pyruvate was 

excluded, because it ionized poorly, and thus had a high limit of detection (LOD) in comparison 

with the other metabolites targeted for analysis. The final panel of metabolites targeted for 

analysis comprised indole, hydroxyindole, indole 3-acetate, indole 3-acetamide, tryptamine and 

TRP. Hydroxyindole was added to the panel based on recent reports suggesting that it is derived 

from indole through bacterial reactions (21). All six metabolites were simultaneously identified 

and quantified in murine fecal and cecum extracts using MRM MS following separation by 

hydrophilic interaction chromatography (HILIC) (Materials and Methods). Metabolite 

identification was performed based on both chromatographic retention time and mass signatures, 

as we found that even an optimized MRM transition (precursor-product ion pair) did not always 

uniquely identify a metabolite in a complex biological sample. For indole, the optimal ion pair 

transition based on MS signal intensity was 118/91 m/z. The elution time of this transition 

ranged from 2.2 and 2.9 min for standards containing the corresponding high-purity chemical 

(Figure 5-2). 
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Figure 5-2: Indole Peak for MRM 118>91 for 107 ng/L standard.  

The linear response of signal area under curve (AUC) with respect to concentration is shown for 

concentrations up to 85 µM (Figure 5-3; R2 = 0.998, p < 10-4), with an estimated LOD (defined 

as the peak height of 10-times the baseline signal) of 4.6 µM. 

 

Figure 5-3: Linear response of Indole peak MRM AUC vs Concentration 
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For tissue extracts, we observed multiple peaks corresponding to the signal-optimized indole 

transition, highlighting the importance of matching the retention time to unambiguously identify 

a metabolite (Figure 5-4, Figure 5-5 for chromatograms of all metabolites). 

 

Figure 5-4: Indole MRM in cecum extract 
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Figure 5-5: Representative chromatograms of all metabolites in both standards and cecum extracts.  

Representative chromatograms for standards (left) and metabolite extracts of week 5 cecum samples (right) for 
(A) Indole 3-Acetate, MRM: 176>130 (B) Indole 3-Acetamide, MRM: 175>130 (C) Hydroxyindole MRM: 
134.1>77.1 (D) Tryptophan MRM: 205>188 (E) Tryptamine, MRM: 161>144.2 
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To determine whether the MRM method could be used to detect physiological differences in 

metabolite levels, we compared the fecal pellet and cecum concentrations of TRP and its 

derivatives in young (age 6 weeks) and old (age 15 weeks) female C56BL/6 mice fed standard 

chow (Figure 5-6). 

 

Figure 5-6: In vivo concentrations of metabolites in cecum and feces 
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All six metabolites were detected in both fecal pellet and cecum extracts from young and old 

mice. For cecum extracts, statistically significant differences (p < 0.05) were found between 

young and old mice for all metabolites except tryptamine. For fecal extracts, statistically 

significant differences were found only for indole 3-acetate. Unlike the fecal extracts, metabolite 

levels in the cecum extracts could be meaningfully expressed as tissue concentrations by 

normalizing the absolute molar quantities with respect to the weight of the source tissues and 

approximating tissue density with that of water (1 g/ml). For example, after accounting for the 

partition of indole between the polar and nonpolar phases of the metabolite extraction solvent 

(Materials and Methods), the normalized tissue concentrations for indole ranged from 9.7 to 40 

µM These are conservative estimates, as it is expected that the efficiency for the extraction of 

metabolites from tissue into solvent is less than 100 %.   

5.4.3 Activation of AhR by Microbiota Metabolites 
 

We investigated if the identified microbiota metabolites could be putative ligands in host cells 

and activate eukaryotic signaling pathways. Specifically, we investigated the ability of identified 

microbiota metabolites to act as agonists for the AhR, as previous studies (Heath-Pagliuso et al., 

1998) have shown that endogenous TRP-derived metabolites can activate AhR signaling. MCF-7 

cells with a stably integrated Gaussia luciferase (Gluc) reporter plasmid for AhR binding activity 

were incubated with 100 uM microbiota metabolites or 20 nM TCDD (positive control) for 48 h, 

and luciferase activity in culture supernatants was measured. Exposure to TCDD, a high-affinity 

AhR agonist, resulted in a 2-fold increase in the rate of AhR-driven luciferase activity 

(RLU/h/RFU) as compared to the solvent control (Unpublished Result, Jayaraman Laboratory, 

Figure 5-7).  
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Figure 5-7: Activation of AhR  

 

Exposure to indole-3-acetate, tryptamine and indole-3-pyruvate also resulted in similar induction 

of AhR activity. Indole-3-acetamide resulted in a 1.3-fold statistically significant (p < 0.02) 

increase in AhR binding activity at 24 h but not at 48 h. Interestingly, indole did not induce 

activation of AhR, suggesting that the core indole moiety is by itself not sufficient to elicit a 

significant response.  

5.5 Discussion 
 

In this study, we present a methodology for the prediction, identification and quantification of 

gut microbiota metabolites that integrates computational pathway analysis into a targeted 

metabolomics workflow. The effects of physiological or pathological perturbations on the 
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microbiota have been investigated using metagenomic analyses characterizing the composition 

of the gut microbial community, the enrichment (or depletion) of bacterial genes, or the 

expression levels of genes for specific metabolic pathways (Jones et al., 2008; Handelsman, 

2004; Turnbaugh et al., 2006). A limitation of these analyses is that they do not provide direct 

information on the products of bacterial metabolism such as which molecules are formed from 

bacterial biotransformation reactions and the concentrations at which these metabolic products 

are present. Thus, the ability to unambiguously identify bacterial metabolites and quantify their 

levels in the GI tract is expected to have a significant impact on the study of human gut 

microbiome function.  

One limitation of the in silico metabolite prediction step is that its reliability is predicated 

on the accuracy and completeness of the KEGG pathway database. While the KEGG database is 

continually and frequently updated, it is certainly possible that our predictions lag behind newly 

published discoveries regarding microbiota metabolism. For example, Wikoff and coworkers 

recently identified indole 3-propionate as a TRP-derived metabolite that is produced by the gut 

microbiota (Wikoff et al., 2009).  However, at the time of completion of this work, this 

metabolite was not listed in the KEGG compound database, and thus could not be identified by 

our algorithm. Similarly, the discrimination of bacterial metabolites from metabolites that could 

also be produced by host cells depends on an accurate model of host metabolism. The most 

relevant host genomes, e.g., mouse and human, have been sequenced and largely annotated, and 

several published models are available that exhaustively catalogue the metabolic reactions. 

However, prior studies with genome-scale model reconstruction suggest that several iterations 

may be required until the published models can be considered stable, consensus reconstructions 

(Aziz et al., 2012).  
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Another limitation of the prediction algorithm is that it does not differentiate between 

reactions based on their gene abundance or expression level when constructing a possible 

biotransformation route. Consequently, each candidate reaction that can be connected to the 

source metabolite has an equal likelihood of selection, which unlikely reflects the true 

engagements of metabolic reactions in the gut microbiota. In principle, metabolites produced by 

reactions encoded by genes that are highly abundant and/or highly expressed should more likely 

be present at quantifiable levels compared to the products of depleted or minimally expressed 

pathways. In this regard, both of the present limitations of the in silico prediction step could 

addressed by incorporating metagenomic data on as they become available. Our pathway 

construction already accepts user-specified selection weights, and could be extended in a 

straightforward manner to explore a microbiota metabolic network weighted by relative gene 

abundances or expression levels.    

 A key advantage of MRM as a MS technique for targeted metabolomics is that the 

detection of precursor-product ion pairs offers greater specificity compared to full scan MS, 

while allowing absolute quantitation. This targeted approach also allows for enhanced sensitivity 

as well as improved LOD, because instrument-specific parameters can be tailored and optimized 

for the detection of each individual MRM transition, whereas full scan methods are restricted to 

one fixed set of parameters for all analytes, which may be suboptimal for the ionization and 

fragmentation of certain metabolites. In practice, even optimized MRM transitions may not 

represent a unique mass signature for a metabolite, as there are cases where multiple analytes 

present in a biological sample share the same transition. For example, indole 3-acetamide shows 

a strong signal for the 175 → 130 transition, as does arginine, a highly abundant amino acid. 

This overlap in MRM transitions by different compounds underscores the critical importance of 
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chromatographic separation in identifying metabolites. Another common problem that 

potentially compromises specificity is the tendency for metabolites possessing thermally labile 

bonds to decompose due to heated electrospray ionization (HESI). For example, a sample 

containing only high-purity TRP showed a strong signal for the indole transition (118 → 91) at 

the same retention time as TRP (Figure 5-4), presumably due to partial decomposition into 

indole at the ion source.  

 To our knowledge, this is the first study to use MRM to quantify physiological 

concentrations of microbiota-produced metabolites present in intestinal tissue extracts. While the 

literature on absolute concentrations of microbiota metabolites is relatively sparse, we found 

good agreement between our results and previously reported values. In an early study, Whitt and 

coworkers used an enzymatic assay to determine an indole concentration of ~40 nmol/g tissue in 

murine cecum (Whitt and Demoss, 1975), which is comparable to our results (16 - 31 nmol/g 

tissue in cecum of young mice). The earlier study also reported that indole was absent in the 

cecum of germ-free mice, which is consistent with our pathway analysis algorithm’s prediction 

that indole is a product of bacterial metabolism. A comparison of samples from young and old 

mice suggests that the age of the host impacts the levels of microbiota metabolites in the GI tract 

as reflected in cecum and fecal concentrations of bacterial TRP derivatives. This observation is 

consistent with several recent studies showing that age may influence levels of other microbiota-

associated metabolites. For example, Vaahtovuo and coworkers reported differences in bacteria-

derived cellular fatty acids in stool samples between 5 - 7 and 15 - 19 weeks old mice 

(Vaahtovuo et al., 2001).  

The AhR is a ligand-activated transcription factor that plays an important role in the 

mucosal immune system (Ying Li et al., 2011), and several TRP-derived chemicals have been 
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identified as AhR ligands (Bjeldanes et al., 1991). In our study, we observed that three of the 

predicted TRP derivatives (indole 3-acetate,tryptamine and indole 3-pyruvate) were able to 

activate AhR in a dose-dependent manner (Figure 5-7). This result is consistent with a previous 

study by Heath-Pagliuso et al., who showed that tryptamine and indole-3-acetate function as 

AhR agonists (Heath-Pagliuso et al., 1998). However, this previous study, while assuming that 

these two metabolites could be derived from TRP through enzymatic reactions, did not confirm 

that they are actually present in the GI tract in quantifiable amounts. In this work, we show that 

putative AhR agonists like tryptamine and indole-3-acetate are present in the cecum at 

intracellular concentrations (i.e., the levels present in the cecal bacteria and the surrounding 

tissue) ranging from 1 to 5 µM, and that they activate the AhR in vitro at concentrations of ~100 

µM. This apparent discrepancy between the measured concentration of metabolites and the 

concentrations required to activate the AhR in vitro could be due to two reasons. First, the 

measured concentration of these metabolites is a conservative estimate, as it does not account for 

the extraction efficiency. Second, the concentrations needed to activate the AhR in vitro are 

extracellular concentrations (i.e., concentrations in the culture medium), and since the AhR is an 

intracellular (cytosolic) receptor, the extracellular medium concentrations may not equate to 

intracellular levels, depending on the rates of uptake and metabolism inside the cells. Further 

analysis is needed to model the kinetics of ligand uptake and processing that lead to the 

activation of the AhR.   

 An obvious extension of this work is to predict and identify molecules that can be derived 

by the intestinal microbiota from different source metabolites. One such source metabolite could 

be the amino acid phenylalanine that is reduced in the serum of germ-free mice, and therefore, a 

source of putative bioactive molecules. The methodology described here can also be applied to 
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identifying bioactive derivatives of environmental contaminants such as bisphenol A that can be 

generated in vivo by the GI tract microbiota and either have increased activity or have potentially 

different spectrum of activity (Van de Wiele et al., 2005).  
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6 Future Directions and Recommendations 
 

We aim to demonstrate in this thesis that modularity analysis of metabolic networks enables one 

to study the functional organization of cellular metabolism in ways that many not be immediately 

intuitive looking at a two-dimensional atlas. Modularity serves to identify groups of reactions 

that may mutually influence each others’ reaction kinetics, and as a whole module, possesses 

structural features that confer robustness. In the first chapter, we introduced both global and local 

robustness, and showed that cyclical interactions are important structural motifs that provide 

those properties. Using ShReD-based partitioning on either un-weighted or metabolic flux-based 

weighted reaction-centric networks, one can uncover functional modules that are enriched in 

cyclical interactions. However, whether or not ShReD-based modules actually do capture a 

subset of reactions that isolate external perturbations from propagating to the rest of the network 

still remains a challenging research question yet to be addressed.  

One approach could be to use pseudo-kinetic models guided by experimental 

metabolomics data and apply metabolic control analysis to show that for a particular perturbed 

enzyme, flux control coefficients for fluxes within the perturbed module are on average greater 

than flux control coefficients for fluxes outside the perturbed module. In fact, the formalism for 

modular control analysis has been recently proposed (Acerenza and Ortega, 2007; Ortega and 

Acerenza, 2011), as has control analysis in the context of metabolic robustness (Quinton-Tulloch 

et al., 2013b). However, the main challenge with this approach is that the features identified by 

ShReD require detailed topology of larger scale networks, but kinetic models are only available 

for simpler collapsed networks. For example, Klaus and coworkers provide a kinetic model for 

the hepatocyte using linlog kinetics (Visser, 2003; Heijnen, 2005) based on transient 
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metabolomics data on intracellular metabolite concentrations and also provide flux control 

coefficients for each enzyme-flux pair (Maier et al., 2010). However, their model stoichiometry 

is simplified to only 69 reactions, compared to the 2539 reactions in the large scale hepatocyte 

model (hepatonet1) presented by Gille and coworkers (Gille et al., 2010). As a result, while we 

have some information on the dynamics of the hepatocyte, relating structural partitioning 

identified using graph-based modularity analysis to flux control is limited because of the 

topological information lost in the model reduction process.  

Moreover, even the structural analysis of detailed large scale networks faces its own set 

of limitations. Many models are still solely based on stoichiometry and do not have embedded 

regulatory information. The Brenda enzyme database (I. Schomburg et al., 2002) provides 

citations to publications referring to allosteric regulation for each documented enzyme involved 

in metabolism. However, incorporating this information into tissue or organ specific models not 

an easily automatable process because ad hoc judgments are sometimes required regarding 

whether or not a particular allosteric regulation mechanism applies cross-species. For example, 

much of the literature on allosteric regulatory interactions has involved bacterial species. While 

the structure and function of many enzymes have been evolutionarily conserved, it is still 

difficult to determine if regulatory mechanisms identified in bacterial systems applies to higher 

order organisms. It is also challenging to determine the relative strength of regulatory 

interactions. Indeed, known Km saturation constants along with absolute metabolite 

concentration levels using metabolomics approaches should provide some information on how to 

appropriately weight the regulatory links.  

With biological research, decisive experimentation is what ultimately provides tangible 

and beneficial outcomes. Modularity analysis serves as a modeling platform to provide novel 
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representations of metabolism and help predict cellular responses to various experimental 

metabolic interventions. As discussed, the aforementioned methodologies have great room for 

improvement. However, with ever expanding databases consisting of tissue-specific gene 

expression data, regulatory information, as well as a recent surge in establishing high throughput 

metabolomics protocols (e.g. monitoring intracellular redox, Appendix B) should all aid in 

bridging the gap between theoretical systems biology and experimental biochemistry.  

  



146 

 

Appendix A: Supplementary for Chapter 4 
Table S1: Adipocyte model reaction definitions 

Reaction Stoichiometry 
 Transport 

1 Glucose-E  �  Glucose 
2 Lactate  �  Lactate-E 
3 Glycerol  �  Glycerol-E 
4 Palmitate  �  Palmitate-E 
5 TG  �  TG-E 
6 Alanine-E  �  Alanine 
7 Aspartate-E  �  Aspartate 
8 Asparagine-E  �  Asparagine 
9 Glutamine-E  �  Glutamine 

10 Glutamate-E  �  Glutamate 
11 Glycine-E  �  Glycine 
12 Proline-E  �  Proline 
13 Serine-E  �  Serine 
14 Tyrosine-E  �  Tyrosine 
15 Histidine-E  �  Histidine 
16 Isoleucine-E  �  Isoleucine 
17 Leucine-E  �  Leucine 
18 Lysine-E  �  Lysine 
19 Methionine-E  �  Methionine 
20 Phenylalanine-E  �  Phenylalanine 
21 Threonine-E  �  Threonine 
22 Valine-E  �  Valine 
23 O2-E  �  O2 

 Carbohydrate Metabolism 
24 Glucose + ATP  �  Glucose 6-Phosphate + ADP 
25 Glucose 6-Phosphate  �  Fructose 6-Phosphate 
26 Fructose 6-Phosphate + ATP  �  Glyceraldehyde 3-Phosphate + ADP 
27 Glycerone-Phosphate  �  Glyceraldehyde 3-Phosphate 
28 Glyceraldehyde 3-Phosphate + NAD + ADP  �  3-Phosphoglycerate + NADH + 

ATP 
29 3-Phosphoglycerate  �  Phosphoenolpyruvate 
30 Phosphoenolpyruvate + ATP  �  Pyruvate + ADP 
31 Pyruvate + NADH  �  Lactate + NAD 
32 Glucose 6-Phosphate + 2 NADP  �  2 NADPH + Ribulose 5-Phosphate 
33 Ribulose 5-Phosphate + Erythrose 4-Phosphate  �  Fructose 6-Phosphate + 

Glyceraldehyde 3-Phosphate 
 TCA Cycle/ Oxidative Phosphorylation 

34 Pyruvate-M + Oxaloacetate-M + NAD-M  �  NADH-M + Citrate-M 
35 Pyruvate-M + ATP  �  Oxaloacetate-M + ADP 
36 Citrate-M + NAD-M  �  2-Oxoglutarate-M + NADH-M 
37 2-Oxoglutarate-M + CoA + NAD-M  �  NADH-M + Succinyl-CoA-M 
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38 Succinyl-CoA-M + ADP  �  CoA + Succinate-M + ATP 
39 FAD-M + Succinate-M  �  FADH2-M + Fumarate-M 
40 Fumarate-M  �  Malate-M 
41 Malate-M + NAD-M  �  NADH-M + Oxaloacetate-M 
48 NADH-M + 0.5 O2 + 2.3 ADP  �  2.3 ATP + NAD-M 
49 FADH2-M + 0.5 O2 + 1.4 ADP  �  1.4 ATP + FAD-M 

 Lipid Metabolism 
46 Oxaloacetate + ATP  �  Phosphoenolpyruvate + ADP 
47 Phosphoenolpyruvate + 2 ATP + 2 NADH  �  Glycerone-Phosphate + 2 NAD + 

2 ADP 
50 8 Acetyl-CoA + 14 NADPH + 7 ATP  �  8 CoA + 14 NADP + Palmitate + 7 

ADP 
51 Glycerone-Phosphate + 3 Palmitate + NADH  �  NAD + Tripalmitoylglycerol 
52 Tripalmitoylglycerol  �  3 Palmitate + Glycerol 

 Citrate/ Malate Shuttle 
42 Citrate + CoA + ATP  �  Acetyl-CoA + Oxaloacetate + ADP 
43 Oxaloacetate + NADH  �  Malate + NAD 
44 Malate + NADP  �  NADPH + Pyruvate 
45 Citrate + NADP  �  2-Oxoglutarate + NADPH 
53 Pyruvate  �  Pyruvate-M 
54 Citrate-M  �  Citrate 
55 2-Oxoglutarate + Malate-M  �  2-Oxoglutarate-M + Malate 

 Amino Acid Metabolism 
56 Pyruvate + Glutamate  �  2-Oxoglutarate + Alanine 
57 ATP + Aspartate + Glutamine  �  Glutamate + Asparagine 
58 Oxaloacetate + Glutamate  �  2-Oxoglutarate + Aspartate 
59 Glutamine  �  Glutamate 
60 2-Oxoglutarate + NADH  �  NAD + Glutamate 
61 Serine  �  Glycine 
62 Serine  �  Pyruvate 
63 2 NADH + Glutamate  �  2 NAD + Proline 
64 Phenylalanine  �  Tyrosine 
65 Tyrosine  �  Fumarate-M 
66 Histidine  �  Glutamate 
67 Isoleucine + 2 CoA  �  FADH2-M + Acetyl-CoA + 2 NADH-M + Succinyl-CoA-

M 
68 Leucine + ATP  �  Acetyl-CoA + FADH2-M + 2 NADH-M 
69 Lysine + CoA  �  FADH2-M + 3 NADH + 2 NADH-M 
70 Serine + Methionine + ATP + CoA  �  Acetyl-CoA + NADH 
71 Threonine + CoA  � Acetyl-CoA + NADH + Glycine 
72 Valine + CoA  �  FADH2-M + 4 NADH + Succinyl-CoA-M 

Suffixes E and M refer to extracellular and mitochondrial metabolites, respectively.  
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Table S2: Flux distributions 

Reaction Day 4  Day 12 Day 12 w/ LDH 
inhibition 

Day 12 w/ PCX 
inhibition 

1 268.0 266.0 212.0 341.0 
2 359.7 200.0 119.0 428.0 
3 5.0 8.6 19.8 20.6 
4 0.3 1.1 1.0 0.8 
5 0.9 4.8 2.3 2.9 
6 -15.4 0.7 0.6 -0.5 
7 0.0 0.0 0.0 0.0 
8 -2.4 -3.0 -1.1 -4.3 
9 4.3 -11.2 -12.0 4.3 

 10 1.5 0.4 0.4 0.3 
11 -8.8 -7.2 -5.3 -6.8 
12 -1.2 -0.4 -0.5 -2.1 
13 9.2 5.7 4.6 5.7 
14 0.6 -0.4 0.0 0.0 
15 2.5 0.0 0.0 0.0 
16 9.5 8.2 6.1 7.5 
17 10.6 8.8 6.8 7.9 
18 2.8 0.3 0.0 0.0 
19 0.8 0.0 0.0 0.0 
20 0.6 0.4 0.0 0.0 
21 0.8 1.6 0.6 1.1 
22 5.8 5.5 3.3 3.8 
23 499.0 726.2 662.7 617.0 
24 268.0 266.0 212.0 341.0 
25 265.8 209.1 186.6 300.2 
26 268.0 266.0 212.0 341.0 
27 472.3 628.0 483.4 580.9 
28 742.5 950.9 720.9 962.7 
29 742.5 950.9 720.9 962.7 
30 532.3 655.6 462.6 736.6 
31 359.7 200.0 119.0 428.0 
32 2.2 56.9 25.4 40.8 
33 2.2 56.9 25.4 40.8 
34 178.8 375.7 305.1 280.3 
35 1.1 137.8 69.6 63.7 
36 161.2 224.2 226.2 205.4 
37 183.6 259.0 243.3 223.3 
38 198.9 272.7 252.7 234.6 
39 198.9 272.7 252.7 234.6 
40 200.1 272.7 252.7 234.6 
41 177.7 237.9 235.6 216.7 
42 2.4 105.4 49.7 59.5 
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43 0.0 22.3 13.3 18.0 
44 22.4 57.2 30.5 35.9 
45 15.3 46.1 29.3 15.5 
46 0.0 80.1 35.3 37.3 
47 210.2 375.4 293.5 262.4 
48 762.6 1148.3 1049.6 972.3 
49 235.3 304.0 275.7 261.7 
50 3.0 15.5 7.9 9.5 
51 5.9 13.4 22.1 23.5 
52 5.0 8.5 19.8 20.6 
53 180.0 513.5 374.7 344.0 
54 17.6 151.5 79.0 75.0 
55 22.4 34.9 17.2 17.9 
56 15.4 -0.7 -0.6 0.5 
57 2.4 3.0 1.1 4.3 
58 2.4 3.0 1.1 4.3 
59 1.9 14.2 13.1 0.0 
60 10.7 13.5 12.6 2.3 
61 8.0 5.7 4.6 5.7 
62 0.4 0.0 0.0 0.0 
63 1.2 0.4 0.5 2.1 
64 0.6 0.4 0.0 0.0 
65 1.2 0.0 0.0 0.0 
66 2.5 0.0 0.0 0.0 
67 9.5 8.2 6.1 7.5 
68 10.6 8.8 6.8 7.9 
69 10.6 8.8 6.8 7.9 
70 0.8 0.0 0.0 0.0 
71 0.8 1.6 0.6 1.1 
72 5.8 5.5 3.3 3.8 

All units are in mmol/g-DNA/2 days. Values shown are mean fluxes (n = 6). Fluxes for the Day 
4 condition were calculated using data taken from (Si et al, 2007). Fluxes for all other conditions 
were calculated using data taken from (Si et al, 2009).   
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Appendix B: LC/MS-MS Method for Quantifying Cofactor 
Ratios and Correlation with Optical Fluorescence 
Microscopy 
 

Abstract/Summary 
 

The non-invasive spatial mapping of cell metabolic status within a tissue could provide 

substantial advancements in disease diagnosis, assessing therapeutic efficacy, and understanding 

tissue development.  Here, we describe a two-photon excited fluorescence microscopy technique 

using only endogenous cell fluorescence to assess the metabolic status of mesenchymal stem 

cells undergoing adipogenic and osteoblastic differentiation.  Using liquid chromatography/ mass 

spectrometry and quantitative PCR, we validate the sensitivity of an optical redox ratio of 

FAD/(NADH+FAD) to stem cell differentiation. Furthermore, we probe the underlying 

physiological mechanisms, which relate the onset of differentiation to a decrease in the optical 

redox ratio.  Because traditional assessments of stem cells and engineered tissues are destructive, 

time consuming, and logistically intensive, the development and validation of a non-invasive, 

label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a 

powerful tool for rapid, high-content characterization of cell and tissue cultures.   

 

LC/MS-MS Correlations with Optical Redox Ratio 
 
To validate our optical sensitivity to the cofactors NADH and FAD, intracellular metabolites 

were extracted and measured through liquid chromatography / mass spectrometry (LC/MS-MS).  
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In order to achieve sufficient signal intensity from the mass spectrometer (Figure Appendix B-1) 

using a single cell culture, confluent T75 flasks of differentiating MSCs were used.   

 

Figure Appendix B-1: Standards of NAD, NADH, and FAD 

 

To facilitate optical imaging of each T75 flask with our high NA objective, a 3/8 inch hole was 

drilled in a sterile environment and a 25mm glass coverslip (No 1.5) was adhered to the flask 

using an aquarium-safe silicone sealant.  MSC cultures undergoing adipogenic differentiation, 

osteogenic differentiation, or MSC propagation at a range of post-induction time points up to 2 

weeks (n=22 cultures) were assessed through TPEF imaging (n=10 fields per culture) and 

immediately sacrificed for metabolite extraction.   
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To extract intracellular metabolites from each cell culture after imaging, a previously 

established extraction protocol was modified.  Briefly, cells were trypsinized and centrifuged to 

form pellets, which were collected in 1.5mL microfuge tubes. A 2:1 mixture of 

methanol:chloroform by volume (500µL) was added to each pellet.  The pellets were flash frozen 

in liquid nitrogen for 30 seconds and then allowed to thaw, followed by a brief 10 second vortex.  

This freeze/thaw step was then repeated twice, and then 200µL of ice cold water was added to 

each sample. Samples were then centrifuged for 1 minute at 15,000 g to form a biphasic mixture, 

and the upper (polar) phase was collected for LC/MS-MS analysis. 

The LC/MS-MS analysis was performed using a 3200 QTRAP Hybrid Triple Quadrupole 

Linear Ion Trap mass spectrometer (AB SCIEX, Foster City, CA) coupled to a 1200 Series 

Binary LC System (Agilent Technologies, Santa Clara, CA).  To establish standard curves for 

NAD+, NADH, and FAD, 0.01g of each compound was dissolved in 10mL of 50:50 v% 

methanol:water to obtain a 1g/L stock solution. The stock solutions were diluted 100-fold, and 

subsequently serially diluted to obtain a set of standards ranging from 1-10mg/L.  All 

compounds and solvents were purchased from Sigma-Aldrich (St. Louis, MO).   

 The chromatographic separation, slightly modified from a previous protocol, was 

achieved using a Synergi Fusion-RP (reversed phase) column (150 mm X 2 mm inner diameter, 

4 µm 80Å particles; Phenomenex, Torrance, CA), which was kept at ambient temperature.  The 

aqueous mobile phase A was composed of 15mM tributyl amine and 10mM acetic acid in HPLC 

grade water. The solution was stirred overnight as the pH gradually equilibrated to 8.45. Mobile 

phase B was pure methanol. The separation was performed using an LC gradient that was 

determined to provide the desired peak quality.  Injection volume for each sample was 10µL. 
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Appendix B, Table 1 

Step 
Time 
(min) 

Flow rate 
(µL/min) 

A 
(%) 

B 
(%) 

1 0 200 80 20 
2 5 200 80 20 
3 10 200 68 32 
4 15 200 65 35 
5 25 200 40 60 
6 50 200 10 90 
7 55.1 200 10 90 
8 55.2 200 80 20 
9 62 200 80 20 

 

Mobile phase A = 15mM tributyl amide and 10mM acetic acid  

Mobile phase B = methanol 

 

To measure each compound, a 10mg/L solution was injected using a syringe via direct infusion 

at 10µL/min. The mass spectrometer was operated in negative mode with the curtain gas (CUR) 

set at 30.0, collision gas (CAD) at 5, IonSpray Voltage (IS) at -4500.0, the temperature (TEM) of 

the turbo gas in the TurboIonSpray at 400°C, and both Ion Source Gases (GS1 and GS2) at 60.0. 

Several compound dependent parameters, including the declustering potential (DP), the entrance 

potential (EP), the collision energy (CE), as well as the collision cell exit potential (CXP) were 

selected to optimize the intensity of the precursor/product transition for each analyte (Appendix 

B, Table 2).   
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Appendex B, Table 2 

Compound Precursor 
(Da) 

Product 
(Da) 

DP 
(V) 

EP 
(V) 

CE 
(V) 

CXP 
(V) 

NAD+ 662.2 540.2 -10 -10.5 -22 -22 
NADH 664.2 79 -65 -4.5 -128 -4 
FAD 784.1 79 -55 -9 -130 -2 

 

The mass spectrometer acquisition method was operated in multiple reaction monitoring 

(MRM) mode, simultaneously scanning for the precursor/product transitions of NAD+, NADH, 

and FAD. The dwell time for each analyte was 500ms, and the total cycle time was therefore 1.5s 

with 2455 cycles per sample run.   

For both the standards and cell extracts, the areas under the NAD+, NADH, and FAD 

peaks were quantified using Analyst software (Version 1.5, AB Sciex). (Standard curves 

exceeding R2=0.995 were achieved, and used to calculate the concentration of each cofactor.  

Based on the measured concentrations, redox ratios of FAD/(NADH+FAD) and 

NAD+/(NADH+NAD+) were computed for each culture, and a linear regression with the optical 

redox ratio was performed.   

Results 
 

To confirm that this optical redox ratio is both sensitive and specific to intracellular changes in 

NADH and FAD concentrations within differentiating stem cell cultures, the average optical 

redox ratio was compared with the ratio of cofactor concentrations extracted and measured using 

liquid chromatography / tandem mass spectrometry (LC/MS-MS).  Bone marrow-derived 

mesenchymal stem cell (MSC) cultures (n=22) undergoing adipogenic differentiation, osteogenic 

differentiation, or MSC propagation at different post-induction time points were monitored 
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through TPEF imaging and immediately sacrificed for metabolite extraction.  The average 

optical redox ratio of each culture prior to metabolite extraction exhibited a strong correlation 

(R=0.765, p<0.0001) with the intracellular ratio of NAD+/(NADH+NAD+) regardless of the 

treatment group, suggesting FAD fluorescence is in direct equilibrium with local NAD+/NADH 

ratios (Figure Appendix B-2).   

 
Figure Appendix B-2: Correlation between LC/MS-MS measurement of redox and optical redox ratio 
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Appendix C: Source Code and Example Model 
 

In this section, all the source code for the ShReD-based partitioning of a metabolic model with 
fluxes is provided in this section. This includes the code for constructing the hierarchical tree of 
partitions 

Model Format 
The input to the Shred_Network() function is an excel file for the metabolic model. The proper 
format for the model is provided below for a liver metabolic network provided by Maier and 
coworkers (Maier et al., 2010).  
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Stoich_Matrix: This sheet contains the stoichiometric matrix of the model along with 

reversibilities. Irreversible reactions are denoted by 0 and reversible reactions by 1. Only 

metabolites that should mediate interactions between reactions are included. For example, 

cofactors such as NAD and NADPH are included. However, hub metabolites such as H2O or 

protons (H
+
) are not included.  
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Reg_Matrix: If regulatory information is to be included for the ShReD partitioning, the 
regulatory matrix should hold a +1 if the metabolite is a positive regulator of a reaction and a -1 
if the metabolite negatively inhibits the reaction.  
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Flux: This sheet lists the metabolic flux for each reaction in the model. In this particular 
example, the ShReD-based partitioning was done for the un-weighted case so all flux values are 
listed as 1. However, if flux-based weights are desired, then the metabolic flux distribution 
should be listed in this sheet.  
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Classifications: In this sheet, each reaction is classified to a canonical textbook metabolic 
pathway. This provides the information for the module pie charts, where each slice represents the 
fraction of reactions in the module that belong to a specific classified pathway. In this case, 
reactions were grouped as either glucose metabolism (GLUC), pyruvate metabolism (PYRU), 
redox reaction (REDOX), or TCA cycle.  
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Colormap: Here, each classification group is given a RGB color scale to denote what color the 
slice in the pie should be for the particular classification group.  
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Shred_Network() 
The Shred_Network function is the executable function for ShReD-based partitioning. The 
function definition is listed below.   

function  [raw_data,raw_result] = 
Shred_Network(inputfilename,include_flux,include_vi sual)  
  
%inputfilename  = The filename of the model. This i s a string. For example,  
%'my_model.xls'  
  
%include_flux is a true/false boolean for whether o r not flux data should  
%be included  
  
%include_visual is a true/false boolean for whether  or not a visual should  
%be created. Since the visual takes a long time to generate, it's not  
%always desired.  
  
%raw_data is a text file dump describing how each m odule gets partitioned.  
%raw_result takes the raw data and provides a clean  cell array table with  
%each module ID and which reactions are present in each module.  
  
global  filename  
filename = inputfilename;  
global  fid_counters;  
  
%raw_rg are the reaction groupings.  
[Output_1,Output_2,raw_rg]=xlsread(filename, 'Classifications' );  
global  network_size;  
network_size = size(raw_rg,1);  
  
fid_counters = fopen( 'counters.txt' , 'w' );  
  
%Input the flux vector  
[Output_1,Output_2,raw_fluxes]=xlsread(filename, 'Flux' );  
fluxes = raw_fluxes(2:end,2);  
fluxes = cell2mat(fluxes);  
  
%Run the ShReD  
ShreddNewman_run(filename, 'Stoich_Matrix' , 'Reg_Matrix' , 'Shred_Output' ,false,f
alse,true,include_flux,fluxes)  
  
%The ShReD produces all the raw data in a .log file , which then gets read  
raw_data = readDataFromLogFile( 'Shred_Output.log' );  
xlswrite(filename,raw_data, 'Raw_Data' );  
  
%The raw result takes the raw data and organizes a cell array with module  
%ID and which reactions are present in that module.   
  
raw_result = get_results(raw_data,raw_rg);  
raw_result = change_raw_result(raw_result,raw_data) ;  
  
[~,~,cmap]=xlsread(filename, 'Colormap' );  
sheetinfo = cmap(2:end,1);  
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%sheetinfo = unique(raw_rg(:,2));  
tally_vec = get_tally(filename);  
  
%Making the visual  
if (size(raw_data,1)>3)  
    if (include_visual)  
        [xcoords,ycoords,unique_ids]=get_piechart_c oordinates(raw_data);  
        
make_image(raw_data,raw_result,sheetinfo,tally_vec, xcoords,ycoords,filename);  
        make_legend(filename,sheetinfo);  
    end  
    get_module_data(raw_data,raw_result,filename);  
else  
    fprintf( 'No Shred-Based Partitioning Possible\n' );  
end  
  
delete( 'pie_temp.png' );  
delete( 'test_bar.png' );  
delete( 'test_text.png' );  
delete( 'test_matrix.png' );  
delete( 'text_matrix.png' );  
delete( 'bar_matrix.png' ) 
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ShReD_Network Function Calls  
Function calls, originating from the executable Shred_Network(). The function definitions for each function in the graph is listed in 
alphabetical order. Function i points to function j if i calls j in the function definition.   
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allow_partition 
In chapter 3, we only partitioned if both sub-graphs had at least one cycle 

function  bool = allow_partition(s,adjmatrix)  
  
    vec_index_1 = find(s==1);  
    vec_index_2 = find(s==-1);  
  
    matrix1 = adjmatrix(vec_index_1,vec_index_1);  
    matrix2 = adjmatrix(vec_index_2,vec_index_2);  
  
     is_cycle_1 = 0;  
        if (isempty(matrix1)~=1)  
            is_cycle_1 = util_hasCycle(matrix1);  
        end  
        is_cycle_2 = 0;  
        if (isempty(matrix2)~=1)  
            is_cycle_2 = util_hasCycle(matrix2);  
        end  
  
    if (is_cycle_1 ==1 & is_cycle_2 ==1)  
        bool = 1;  
    else  
        bool = 0;  
    end  
 

all_possible_s 
function  [max_Q,max_s] = all_possible_s(bmatrix)  
  
%get max Q by testing all possible s vectors  
% only for small adjacency matrices  
global  compare_GA_eig_fid;  
%02/15/2012  
max_Q = 0;  
max_s = get_random_s(size(bmatrix,1));  
for (i=0:2^size(bmatrix,1)-1)  
    temp_s = zeros(size(bmatrix,1),1);  
    binary_string = dec2bin(i);  
    for (j=1:length(binary_string))  
        if (str2num(binary_string(j))==1)  
            temp_s(j,1) = 1;  
        else  
            temp_s(j,1) = -1;  
        end  
        Q_temp = temp_s'*bmatrix*temp_s;  
        if (Q_temp > max_Q)  
            max_Q = Q_temp;  
            max_s = temp_s;  
        end  
    end  
end  
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fprintf(compare_GA_eig_fid, '%i\t%f\t%f\n' ,size(bmatrix,1),max_Q,max_Q);  
 

change_moduleid_vec 
function  new_vec = change_moduleid_vec(old_vec,raw)  
  
% change the id of the modules to account for the a rtificial child node 
creation in the  
%hierarchy  
  
new_vec = old_vec;  
[cyto_new,cyto_old]=get_cyto_matrix(raw);  
[matrix_old,unique_old] = get_connectivity_matrix(c yto_old);  
  
for (i=1:length(old_vec))  
   k = find(unique_old==old_vec(i));  
   parent = get_parent(k,matrix_old);  
   children_of_parent = getChildren(parent,matrix_o ld);  
   if (length(children_of_parent)==1)  
       new_vec(i) = unique_old(parent);  
   end  
end  
  
     

change_raw_result 
function  raw_result_new = change_raw_result(raw_result,raw_ data)  
  
%Change module IDs to account for artificial child node creation in the  
%hierarchy.  
  
vec = raw_result(1,:);  
index = 1;  
for (i=1:2:length(vec))  
    vec_new(index) = cell2mat(vec(i));  
    index = index + 1;  
end  
  
vec_new_changed = change_moduleid_vec(vec_new,raw_d ata);  
  
index = 1;  
for (i=1:2:length(vec))  
    vec_new_changed_cell(i) = num2cell(vec_new_chan ged(index));  
    index = index + 1;  
end  
vec_new_changed_cell(i+1)=cellstr( '' );  
raw_result(1,:) = vec_new_changed_cell;  
raw_result_new = raw_result;  
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The output here is the raw_result, which has each module ID in the top row with which reactions are 
contained in the module below along with its canonical textbook function in the adjacent column.  

check_equality 
function  is_equal = check_equality(s_vec,pop_matrix);  
  
%determine if an s vector or its negation is presen t in the population of  
%svectors  
is_equal = 0;  
for (i=1:size(pop_matrix,2))  
    if (isequal(s_vec,pop_matrix(:,i)))  
        is_equal = 1;  
    end  
    if (isequal(-s_vec,pop_matrix(:,i)))  
        is_equal = 1;  
    end  
end  

dump_module_shred 
Input: Module adjacency matrix 
Output: Textfile output for all ShReD paths with cofactor and non-cofactor interactions.  

Floyd_warshall_all_sp 
Input: Sparse directed graph A.  
Output: Matrix of all pairs of shortest paths from node i to node j.  

GA2_s_vector 
function  [total_max_Q,s_return,generation] = GA_s_vector(bm atrix,adjmatrix)  
  
global  compare_GA_eig_fid;  
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%bmatrix = either G or V matrix from ShReD  
%adjmatrix = adjacency matrix  
%total_max_Q = the maximum Q score of all s vectors  in the population over  
%the GA  
%s_return = the s_vector that gave the maximum Q  
% genration = the number of generations before the GA terminates.  
  
%This version doesn't make sure the partition yield s modules with two  
%cycles  
% parameters for the GA:  
  
%population size is the number of s_vectors in the population.  
if (size(bmatrix,1)<9)  
    [total_max_Q,s_return]=all_possible_s(bmatrix);  
else  
    population_size = 100;  
  
    % selection is the fraction of the population that gets killed each  
    % generation due to lack of fitness. Basically the fraction of s vectors  
    % that give the least Q score are removed.  
    selection = 0.4;  
  
    %mutate percentage is the fraction of the populatio n after selection that  
    %is subject to mutation.  
    mutate_percentage = 0.2;  
  
    %mutate vars is the number of variables that get mu tated for the 
s_vectors  
    %that were selected to get mutated.  
    mutate_vars_orig = 2;  
  
    keep_ratio = 0.1;  
  
    global  fid_counters;  
  
    %initialize the population as mXn matrix where m is  the number of 
elements  
    %in the s_vector and n is the number of s_vectors. Each column is an  
    %individual in the population. The s_vectors are ra ndom, but are allowed  
    %only if a partition is possible as a result.  
    len = size(bmatrix,1);  
    pop_matrix = zeros(len,population_size);  
  
    total_max_Q = 0;  
    s_return = get_random_s(len);  
  
    pop_possible = 1;  
    for (i=1:population_size)  
        is_allow = 0;  
        count_iterations = 0;  
        while (is_allow==0)  
            s_rand = get_random_s(len);  
            if (check_equality(s_rand,pop_matrix)==0)  
                is_allow = 1;  
            end  
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            count_iterations = count_iterations + 1 ;  
            if (count_iterations>size(bmatrix,1)*100)  
                is_allow = 1;  
                pop_possible = 0;  
            end  
        end  
        pop_matrix(:,i) = s_rand;  
    end  
  
    if (pop_possible == 1)  
        is_loop = 1;  
        generation = 1;  
        while (is_loop == 1)  
            % Obtain Q score for all the s_vectors in the popul ation, sort 
them,  
            % and figure out which s_vectors need to be killed off based on 
the  
            % selection percentage.  
            Q_array = get_Q_array(pop_matrix,bmatri x);  
            [Q_array_sorted,Q_sort_index]=sort(Q_ar ray);  
            num_remove = ceil(population_size*selec tion);  
            num_keep = ceil(keep_ratio*num_remove);  
  
            % Keep random keep_percent of the bad population.  
            remove_index = Q_sort_index(1:num_remov e);  
            keep_vec = 
get_random_selection_vec(length(remove_index),num_k eep);  
            remove_index(keep_vec) = [];  
  
            % Remove the unfit solutions  
            pop_matrix(:,remove_index) = [];  
  
            %Determine which s_vectors should be subject to a m utation  
            num_mutate = ceil(size(pop_matrix,2)*mu tate_percentage);  
            pick_mutate_s_vec = 
get_random_selection_vec(size(pop_matrix,2),num_mut ate);  
  
  
            %mutate each s_vec  
            for (i=1:length(pick_mutate_s_vec))  
                is_allow = 0;  
                counter = 0;  
                while (is_allow==0)  
                    %The number of variables to mutate can be one more or one  
                    %less the specified value  
                    x = ceil(rand()*3);  
                    if (x==1)  
                        mutate_vars = mutate_vars_o rig - 1;  
                    elseif (x==2)  
                        mutate_vars = mutate_vars_o rig;  
                    elseif (x==3)  
                        mutate_vars = mutate_vars_o rig + 1;  
                    end  
                    pick_mutate_vars_vec = 
get_random_selection_vec(size(pop_matrix,1),mutate_ vars);  
                    for (j=1:length(pick_mutate_vars_vec))  
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                        s_mutated = pop_matrix(:,pi ck_mutate_s_vec(i));  
                        if (s_mutated(pick_mutate_vars_vec(j)) == 1)  
                            s_mutated(pick_mutate_v ars_vec(j)) = -1;  
                        elseif (s_mutated(pick_mutate_vars_vec(j)) == -1)  
                            s_mutated(pick_mutate_v ars_vec(j)) = 1;  
                        end  
                    end  
                    %ensure that the mutated s_vectors still allow for a 
partition  
                    if (check_equality(s_mutated,pop_matrix)==0)  
                        is_allow = 1;  
                    end  
                     counter = counter +1;  
                     if (counter>10*size(bmatrix,1))  
                         is_allow = 1;  
                         boom = 1;  
                          fprintf(fid_counters, 'Bmatrix:%i\t Genration:%i\t 
Size of Pick Mutate Vec:%i\t Iteration:%i 
\n' ,size(bmatrix,1),generation,length(pick_mutate_s_ve c),i);  
                     end  
                end  
                if (counter<=100*size(bmatrix,1))  
                    pop_matrix(:,pick_mutate_s_vec( i)) = s_mutated;  
                end  
  
            end  
  
            %Get next generation population. For a population s ize number of  
            %iterations, randomly select two parents from the o riginal 
population  
            %and have them mate. The get_child function takes t wo parents, 
and  
            %produces a child - if the element of both parents is the same, 
the  
            %child retains that element, but if they are differ ent, then 
which  
            %parent's trait to retain is randomly chosen.  
  
            pop_matrix_new = zeros(size(bmatrix,1), 1);  
            for (i=1:population_size)  
                is_allow = 0;  
                counter = 0;  
                while (is_allow == 0)  
                    parents = get_random_selection_ vec(size(pop_matrix,2),2);  
                    parent_1 = pop_matrix(:,parents (1));  
                    parent_2 = pop_matrix(:,parents (2));  
                    s_child = get_child(parent_1,pa rent_2);  
                    if (check_equality(s_child,pop_matrix_new)==0)  
                        is_allow = 1;  
                    end  
                    counter = counter + 1;  
  
                end  
                pop_matrix_new(:,i) = s_child;  
  
            end  
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            pop_matrix = pop_matrix_new;  
            Q_matrix(generation,:) = Q_array;  
            Q_ave(generation) = mean(Q_array);  
            generation = generation + 1;  
            fit = 1;  
            if (generation>101)  
                a = [1:length(Q_ave)];  
                b = Q_ave;  
  
                c = a(length(a)-100:length(a));  
                d = b(length(b)-100:length(b));  
                fit = polyfit(c,d,1);  
            end  
  
            Q_array_new = get_Q_array(pop_matrix,bm atrix);  
            max_Q = max(Q_array_new);  
            max_Q_index = find(Q_array_new == max_Q );  
            s_GA_optimal = pop_matrix(:,max_Q_index (1));  
            if (max_Q>total_max_Q)  
                total_max_Q = max_Q;  
                s_return = s_GA_optimal;  
            end  
            generation  
            fit(1)  
  
  
            %Terminate the GA after some number of generations.  This 
termination  
            %criterion should change based on some function of the elbow arm.  
            if (abs(fit(1))<0.05)  
                is_loop = 0;  
                generation  
            end  
        end  
  
        % Keep track of the average and stdev Q at each gen eration so that Q 
can be  
        % plotted as a function of a generation.  
        for (i=1:size(Q_matrix,1))  
            Q_matrix_plot(i,1) = i;  
            Q_matrix_plot(i,2) = mean(Q_matrix(i,:) );  
            Q_matrix_plot(i,3) = std(Q_matrix(i,:)) ;  
        end  
        s_eig = get_s_eig(bmatrix);  
        Q_eig = s_eig'*bmatrix*s_eig;  
        Q_matrix_plot;  
        
fprintf(compare_GA_eig_fid, '%i\t%f\t%f\n' ,size(bmatrix,1),total_max_Q,Q_eig);  
    else  
        max_Q = 0;  
        s_GA_optimal = get_random_s(len);  
        fprintf(compare_GA_eig_fid, '%i\t%f\t%f\n' ,size(bmatrix,1),0,0);  
    end  
     



172 

 

end  
 
 

generate_s_vec 
generate a random s vector, used for the genetic algorithm 
 
function  s = generate_s_vec(length);  
  
for (i=1:length)  
    r = rand();  
    if (r>0.50)  
        s(i) = 1;  
    else  
        s(i) = -1;  
    end  
end  
 
 

get_connectivity_matrix2 
Input: two column matrix (cyto_matrix) with parent module in the left column and child module 
in the right column.  

Output: connectivity matrix of the module hierarchy based on the cyto_matrix 

function  [matrix,unique_ids] = get_connectivity_matrix2(cyt o_matrix)  
 
if (iscell(cyto_matrix(1,1))~=1)  
    cyto_matrix = num2cell(cyto_matrix);  
end  
        col_1 = cyto_matrix(:,1);  
        col_2 = cyto_matrix(:,2);  
        col_total = [col_1;col_2];  
  
  
    for (i=1:length(col_total))  
          col_total_real(i)=cell2mat(col_total(i));  
    end  
  
% col_total_real = [root;col_total_real(find(col_to tal_real)~=root)'];  
unique_ids = unique(col_total_real);  
length_matrix = length(unique_ids);  
  
%Create Matrix - length of the unique_id matrix  
  
matrix = zeros(length_matrix,length_matrix);  
  
%For each row in cyto_matrix, place a 1 for the con nectivity in the matrix  
%by comparing the strings (get_matrix_index)  
  



173 

 

for (i=1:size(cyto_matrix,1))  
     
    id_1 = cell2mat(cyto_matrix(i,1)); % parent  
    id_2 = cell2mat(cyto_matrix(i,2)); %child  
     
    index_1 = find(unique_ids==id_1); %index of unique ID where parent is  
    index_2 = find(unique_ids==id_2); %index of uniqueIDs where child is  
     
    matrix(index_1,index_2) = 1; %matrix(parent,child)  
end  
 
 

get_child 
function  s_child = get_child(parent_1,parent_2)  
  
%part of genetic algorithm (GA2_s_vector)  
%get child of two parent s vectors  
for (i=1:length(parent_1))  
    if (parent_1(i) == parent_2(i))  
        s_child(i) = parent_1(i);  
    else  
        x = rand();  
        if (x>0.5)  
            s_child(i) = parent_1(i);  
        else  
            s_child(i) = parent_2(i);  
        end  
    end  
end  
 
 

getChildren 
Input: Module ID and connectivity matrix 
Output: children of the module 

function  children = getChildren(index,matrix)  
children = find(matrix(index,:));  

get_cyto_matrix 
cyto_matrix is basically a two column matrix with left column for parent modules and right column for 
child modules. The old cyto matrix is based on the original partition data, and the new cyto matrix is after 
removing artificial nodes as explained in get_results.  

function  [cyto_matrix_new,cyto_matrix_old] = get_cyto_matri x(raw)  
  
%Get original cytomatrix = cytomatrix_old  
matrix_index = 1;  
size_r = size(raw);  
for (i=2:size_r(1))  



174 

 

    cyto_matrix(matrix_index,1) = raw(i,4);  
    cyto_matrix(matrix_index,2) = raw(i,1);  
    matrix_index = matrix_index +1;  
     
    char_happens = char(raw(i,6));  
    if (char_happens(1)== 'd' )  
        c = textscan(char_happens, '%s %s %d %s %d' );  
        cyto_matrix(matrix_index,1)=raw(i,1);  
        cyto_matrix(matrix_index,2)=c(3);  
        matrix_index=matrix_index+1;  
        cyto_matrix(matrix_index,1)=raw(i,1);  
        cyto_matrix(matrix_index,2)=c(5);  
        matrix_index = matrix_index + 1;  
    end  
end  
cyto_matrix_old = cyto_matrix;  
  
%Fix the cytomatrix to get cyto_matrix_new  
[matrix_old,unique_ids]=get_connectivity_matrix(cyt o_matrix);  
matrix_new = remove_redundancies(matrix_old);  
sum_entries = 0;  
for (i=1:size(matrix_old,1))  
    for (j=1:size(matrix_old,2))  
        if (matrix_old(i,j)==1)  
            sum_entries = sum_entries + 1;  
        end  
    end  
end  
  
  
if (sum_entries==1)  
    cyto_matrix_old(1,1)=num2cell(0);  
    for (i=1:size(cyto_matrix_old,1))  
        for (j=1:size(cyto_matrix_old,2))  
            cyto_matrix_new(i,j) = cyto_matrix_old( i,j);  
        end  
    end  
else  
   cyto_matrix_new = get_cyto_from_connectivity(mat rix_new,unique_ids);  
end  
  
%Remove situation where node's parent is itself.  
rem_vec(1) = 100;  
if (sum_entries~=1)  
    rem_index = 1;  
    for (k=1:size(cyto_matrix_new,1))  
        if (cyto_matrix_new(k,1)==cyto_matrix_new(k,2))  
            rem_vec(rem_index)=k;  
            rem_index = rem_index + 1;  
        end  
    end  
    if (rem_vec(1)~=100)  
        cyto_matrix_new(rem_vec,:)=[];  
        cyto_matrix_new = num2cell(cyto_matrix_new) ;  
    end  
end  
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get_cyto_from_connectivity 
function  cyto_new = get_cyto_from_connectivity(matrix,uniqu e_ids)  
  
index = 1;  
for (i=1:size(matrix,1))  
    for (j=1:size(matrix,2))  
        if (matrix(i,j)==1)  
            cyto_new(index,1)=unique_ids(i); %parent  
            cyto_new(index,2)=unique_ids(j); %child  
            index = index + 1;  
        end  
    end  
end  
 

 

get_depth_vec 
function  depth_vec  = get_depth_vec(matrix)  
  
size_matrix = size(matrix);  
depth_vec = ones(size_matrix(1),1);  
  
for (i=2:size_matrix(1))  
    parent_index = i;  
    while (parent_index~=1)  
        parent_index = get_parent(parent_index,matr ix);  
        depth_vec(i) = depth_vec(i) + 1;  
    end  
end  
  
depth_vec = depth_vec -1;  
 

get_height_vec_red 
function  [heights] = get_height_vec_red(m , red_matrix)  
  
%get height of module but only ShReD-based partitio ns count  
%modules breaking into connected components are den oted by red lines  
n = size(m,1);  
heights = zeros(n,1);  
  
parents = zeros(n,1);  
for  i = 1:n  
  for  j = 1:n  
    if  (m(i,j) == 1)  
      parents(j) = i;  
    end  
  end  
end  
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rootNode = find(parents == 0);  
  
heights = get_red_heights(m,red_matrix,parents,root Node);  
  
end  
  
function  [heights] = get_red_heights(m, red_matrix, parents  , i)  
  
  n = size(m,1);  
  heights = zeros(n,1);  
  children = getChildren(i,m);  
  maxHeight = 0;  
  
  for  (j = 1:length(children))  
    child = children(j);  
    newHeights = get_red_heights(m,red_matrix,paren ts,child);  
    heights = heights + newHeights;  
    heightOption = newHeights(child);  
    if  (red_matrix(i,child) < 1)  
      heightOption = heightOption + 1;  
    end  
    if  (heightOption > maxHeight)  
      maxHeight = heightOption;  
    end  
  end  
  heights(i) = maxHeight;  
end  
 

get_module_data 
function  A = get_module_data(raw,raw_result,filename)  
  
%A outputs a cell array of module data, including i d, size, cycle count,  
%etc.  
fid = fopen( 'ave_std_shredd.txt' );  
lines = textscan(fid, '%s' , 'delimiter' , '\n' );  
lines = lines{1,1};  
for (i=2:size(lines,1))  
    line = lines(i);  
    line = line{1};  
    line = str2num(line);  
    B(i-1,:) = line;  
end  
  
old_vec = B(:,1);  
new_vec = change_moduleid_vec(old_vec,raw);  
B(:,1) = new_vec;  
A =xlsread( 'Shred_Example_Data.xls' );  
  
% A is the larger matrix  
% B has the shred information  
  
for (i=1:size(B,1))  
    module_id = B(i,1);  
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    k=find(A(:,1)==module_id);  
    A(k,10)=B(i,2);  
    A(k,11)=B(i,3);  
    A(k,12)=B(i,4);  
end  
  
A(:,6) = [];  
header(1,1) = cellstr( 'Module_ID' );  
header(1,2) = cellstr( 'Size' );  
header(1,3) = cellstr( 'Cycle_Count' );  
header(1,4) = cellstr( 'Cycle/Size' );  
header(1,5) = cellstr( 'Number of Canonical Groupings' );  
header(1,6) = cellstr( 'Homogeneity Index' );  
header(1,7) = cellstr( 'Depth' );  
header(1,8) = cellstr( 'Height' );  
header(1,9) = cellstr( 'Average_Shred' );  
header(1,10) = cellstr( 'Standard_Deviation_Shred' );  
header(1,11) = cellstr( 'Number of Shreds' );  
  
xlswrite(filename,header, 'Module_Report' , 'A1' )  
xlswrite(filename,A, 'Module_Report' , 'A2' );  
delete( 'Shred_Example_Data.xls' );  
  
vec = raw_result(1,:);  
index = 1;  
for (i=1:2:length(vec))  
    vec_new(index) = cell2mat(vec(i));  
    index = index + 1;  
end  
  
vec_new_changed = change_moduleid_vec(vec_new,raw);  
  
index = 1;  
for (i=1:2:length(vec))  
    vec_new_changed_cell(i) = num2cell(vec_new_chan ged(index));  
    index = index + 1;  
end  
vec_new_changed_cell(i+1)=cellstr( '' );  
raw_result(1,:) = vec_new_changed_cell;  
  
xlswrite(filename,raw_result, 'Module_Composition' );  
[~,~,modules]=xlsread(filename, 'Module_Composition' );  
  
  

get_module_reactions 
Input: module id, raw_result 
output: vector of reaction ids contained in the module  
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get_parent 
 

function  parent_index = get_parent(source_index,matrix)  
  
%Get parent of a module (source_index) in the hiera rchy  
column = matrix(:,source_index);  
parent_index = find(column); 
 

get_piechart_coordinates 
For each module, obtain the x and y coordinate for where the pie chart should be placed in the 
image.  

function  [xCoords,yCoords,unique_ids]=get_piechart_coordina tes(raw)  
  
y_scale = 180;  
x_scale = 240;  
  
[cyto_matrix_new,cyto_matrix_old] = get_cyto_matrix (raw);  
[matrix,unique_ids] = get_connectivity_matrix2(cyto _matrix_new);  
depth_vec = get_depth_vec(matrix);  
width_vec = getWidths(depth_vec,matrix,x_scale);  
xCoords = getXCoordinates(width_vec,depth_vec,matri x)+0.5*width_vec;  
yCoords = y_scale*depth_vec+100; 
 

get_Q_array 
 
function  Q_array = get_Q_array(pop_matrix,bmatrix)  
  
for (i=1:size(pop_matrix,2))  
    s_i = pop_matrix(:,i);  
    Q_array(i) = s_i'*bmatrix*s_i;  
end  
 

get_random_s 
function  s_rand = get_random_s(len)  
  
for (i=1:len)  
    a = rand();  
    if (a>0.50)  
        s_rand(i) = 1;  
    else  
        s_rand(i) = -1;  
    end  
end  
  
s_rand = s_rand';  
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get_random_selection_vec 
function  selection_vec = get_random_selection_vec(n,k)  
% Part of genetic algorithm GA2_s_vector  
vec = [1:n];  
for (i=1:k)  
     
    x =ceil(rand()*length(vec));  
    selection_vec(i) = vec(x);  
    index = find(vec == selection_vec(i));  
    vec(index) = [];  
end  
     
     

get_red_depth_vec 
function  [depths] = get_red_depth_vec(m , red_matrix)  
%Get depth of module but only ShReD-based partition s count, not breaking  
%into components (as denoted by red lines in the hi erarchy)  
  
n = size(m,1);  
depths = zeros(n,1);  
  
  
parents = zeros(n,1);  
for  i = 1:n  
  for  j = 1:n  
    if  (m(i,j) == 1)  
      parents(j) = i;  
    end  
  end  
end  
rootNode = find(parents == 0);  
  
depths = get_red_depths(m,red_matrix,parents,rootNo de,0);  
  
end  
  
function  [depths] = get_red_depths(m, red_matrix, parents ,  i,d)  
  n = size(m,1);  
  depths = zeros(n,1);  
  depths(i) = d;  
  children = getChildren(i,m);  
  
  for  (j = 1:length(children))  
    child = children(j);  
    newD = d;  
  
    if  (red_matrix(i,child) < 1)  
      newD = newD + 1;  
    end  
    depths = depths + get_red_depths(m,red_matrix,p arents,child,newD);  
  end  
end  
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get_red_matrix 
 
function  [red_matrix,matrix_new,unique_new] = get_red_matri x(raw);  
  
%Determine if an edge between two modules in the hi erarchy is based on  
%breaking down into connected components (not Shred -based partitioning).  
%Information gets stored in a matrix.  
[cyto_matrix_new,cyto_matrix_old]=get_cyto_matrix(r aw);  
[matrix_old,unique_old]=get_connectivity_matrix(cyt o_matrix_old);  
[matrix_new,unique_new]=get_connectivity_matrix2(cy to_matrix_new);  
  
red_matrix = zeros(length(unique_new),length(unique _new));  
  
raw_mat = raw(3:size(raw,1),1:4);  
raw_mat = cell2mat(raw_mat);  
  
vec = raw_mat(:,1);  
for (i=1:length(unique_new))  
    k = find(unique_new(i)==vec);  
    if (raw_mat(k,1)==raw_mat(k,4))  
        children = getChildren(i,matrix_new);  
        for (j=1:length(children))  
            red_matrix(i,children(j))=1;  
        end  
    end  
end  
  
 
 

getXCoordinates 
function  xcoords = getXCoordinates(width_vec,depth_vec,matr ix)  
  
maxDepth = max(depth_vec);  
numNodes = size(matrix,1);  
xcoords = zeros(numNodes,1);  
for  depth = 0:maxDepth  
    for  i = 1:numNodes  
        if  (depth_vec(i) == depth)  
            if  (depth == 0)  
                xcoords(i) = 0;  
            else  
                parent = get_parent(i,matrix);  
                xcoordSum = xcoords(parent);  
                for  child = getChildren(parent,matrix)  
                    if  (child < i)  
                        xcoordSum = xcoordSum + wid th_vec(child);  
                    end  
                end  
                xcoords(i) = xcoordSum;  
            end  
        end  
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    end  
end  
  

get_results 
 

function  concat_2 = get_results(raw,rg)  
%raw = raw_data file  
%rg -first column = reaction, 2nd column = reaction  type.  
% The output is module ID on top and all the reacti ons contained in that  
% module below along with the reaction grouping to the side.  
  
size_r = size(raw);  
  
id = raw(2:size_r(1),1);  
modules = raw(2:size_r(1),7:size_r(2));  
id = id';  
modules = modules';  
concat = [id;modules];  
%concat has the IDs in the first row and the reacti ons for each module in  
%columns.  
  
size_c = size(concat);  
size_rg = size(rg);  
vec(1)=cellstr( 'NA' );  
for (i=1:size_c(2))  
    concat_2(:,2*i-1) = concat(:,i);  
    isloop = 1;  
    index = 1;  
    while (isloop==1)  
        a = concat(index+1,i);  
        isloop_2 = 1;  
        index_2 = 1;  
        while (isloop_2==1)  
            if (strcmp(rg(index_2,1),a)==1)  
                %vec stores what type the given reaction is  
                vec(index) = rg(index_2,2);  
                isloop_2 =0;  
            end  
            index_2 = index_2 + 1;  
            if (index_2>size_rg(1))  
                isloop_2=0;  
            end  
        end  
        if (isnan(cell2mat(a))==1)  
            isloop = 0;  
        end  
        index = index + 1;  
        if (index+1>size_c(1))  
            isloop=0;  
        end  
        %Have found all reaction types.  
    end  
    size_vec = size(vec);  
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    if (size_vec(1)==1)  
        vec = vec';  
    end  
    size_vec = size(vec);  
    concat_2(2:size_vec(1)+1,2*i) = vec;  
    clear vec  
    vec(1)=cellstr( 'none' );  
end  
             
  

get_rxn_matrix_2 
function  [ ReactionAdjMatrix, interaction_matrix, ReactionL abels,  
numReactions ] =get_rxn_matrix_2( inputFile, inputS heet, fluxes, 
regulationSheet, regulation)  
  
% Obtain reaction adjacency matrix with accounting for flux weights.  
% Called by ShreddNewman_run if flux weights are us ed.  
global  filename;  
r =regexp (inputFile, '\.' , 'split' );  
if  (regulation)  
    s= strcat(r(1), '_reactionRegCyto.txt'  );  
else  
    s= strcat(r(1), '_reactionCyto.txt'  );  
end  
fid = fopen(char(s(1)), 'w+' );  
fid_cyto = fopen( 'rxn_cyto.txt' , 'w+' );  
% read from xls  
[numData, textData] = xlsread(inputFile, inputSheet );  
  
  
  
reversibility = numData(1,:);  
adjMatrix = numData(3:end, :);  
numMetabolites = size (adjMatrix,1);  
numReactions = size(adjMatrix, 2);  
ReactionLabels(1:numReactions) = textData(2,3:end);  
  
formattedTextData(1:numMetabolites) = textData(3:en d,2);  
formattedTextData(numMetabolites + 1:numMetabolites  + numReactions) = 
textData(2,3:end);  
  
%08/24/11 - changed inf*ones to zeros  
ReactionAdjMatrix = inf*ones(numReactions,numReacti ons);  
interaction_matrix = zeros(numReactions,numReaction s);  
  
  
  
  
fid_distance = fopen( 'flux_distances.txt' , 'w+' );  
for  i = 1: numReactions  
    column =  adjMatrix (:, i);  
    assert (sum (column < 0) > 0); % at least one negative entry in the 
column  
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    potential_metabolites = find ((column ~= 0));  
     
    for  j = 1: size (potential_metabolites, 1)  
        if ((fluxes(i)>0 & column(potential_metabolites(j))>0)  || (fluxes(i)<0 
& column(potential_metabolites(j))<0))  
            row = adjMatrix(potential_metabolites(j ),:);  
            for (k=1:length(row))  
                if ((fluxes(k)>0 & row(k)<0)||(fluxes(k)<0 & row(k)>0) )  
                    interaction_matrix(i,k) = 1;  
                    fprintf(fid_cyto, 'R%i\tR%i\n' ,i,k);  
                    fprintf(fid, 'First Reaction:%i\tSecond 
Reaction:%i\tMetabolite:%i\t' ,i,k,potential_metabolites(j));  
                    total_consumed = 0;  
                    for (l=1:length(row))  
                        if ((fluxes(l)>0 & row(l)<0)||(fluxes(l)<0 & 
row(l)>0))  
                            total_consumed = total_ consumed - 
row(l)*fluxes(l);  
                            fprintf(fid, 'Flux(%i):%f\t' ,l,-row(l)*fluxes(l));  
                        end  
                    end  
                    distance = total_consumed/-((fl uxes(k)*row(k)));  
                    fprintf(fid, 'Distance:%f\n' ,distance);  
                    fprintf(fid_distance, '%f\n' ,distance);  
                    if (ReactionAdjMatrix(i,k)>distance)  
                        ReactionAdjMatrix(i,k) = di stance;  
                        intermediate(i,k) = potenti al_metabolites(j);  
                    end  
                end  
            end  
        end  
    end  
end  
  
fclose(fid_distance);  
%Regulation  
[reg_num,~,reg]=xlsread(inputFile,regulationSheet);  
for (i=1: numReactions)  
    reg_column = reg_num(:,i);  
    regulators = find(reg_column~=0);  
    for (j=1:length(regulators))  
        row = adjMatrix(regulators(j),:);  
        for (k=1:length(row))  
            if ((row(k)>0 & fluxes(k)>0)||(row(k)<0 & fluxes(k)<0) )  
                ReactionAdjMatrix(k,i) = 1;  
                interaction_matrix(k,i) = 1;  
                fprintf(fid, 'R%i\tREG\tR%i\tvia metabolite 
%s\n' ,k,i,char(reg(regulators(j)+1,1)));  
                fprintf(fid_cyto, 'R%i\tR%i\n' ,k,i);  
            end  
        end  
    end  
end  
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ReactionAdjMatrix = ReactionAdjMatrix  - diag (diag (ReactionAdjMatrix));  
  
% ADded 08/25/2011  
for (i=1:size(ReactionAdjMatrix,1))  
    for (j=1:size(ReactionAdjMatrix,2))  
        if (ReactionAdjMatrix(i,j)==inf || isnan(ReactionAdjMa trix(i,j))==1)  
            ReactionAdjMatrix(i,j) = 0;  
        end  
    end  
end  
xlswrite(filename,intermediate, 'intermediate' );  
fclose(fid);  
  
  

getWidths 
Calculate the width each pie chart will take in the hierarchical tree.  

function  width_vec = getWidths(depth_vec,matrix,x_scale)  
  
maxDepth = max(depth_vec);  
numNodes = size(matrix,1);  
width_vec = zeros(numNodes,1);  
for  depth = maxDepth:-1:0  
    for  i = 1:numNodes  
        if  (depth_vec(i) == depth)  
            widthSum = 0;  
            children = getChildren(i,matrix);  
            if  (size(children,2) == 0)  
                width_vec(i) = x_scale;  
            else  
                for  child = getChildren(i,matrix)  
                    widthSum = widthSum + width_vec (child);  
                end  
                width_vec(i) = widthSum;  
            end  
        end  
    end  
end  
 

make_image 
Make the image for the hierarchical tree of modules (pie charts) 
 
function  make_image 
(raw,raw_result,sheetinfo,tally_vec,xCoords,yCoords ,filename)  
  
y_scale = 180;  
x_scale = 240;  
[cyto_matrix_new,cyto_matrix_old] = get_cyto_matrix (raw);  
[matrix,unique_ids] = get_connectivity_matrix2(cyto _matrix_new);  
[matrix_old,unique_ids_old]=get_connectivity_matrix (cyto_matrix_old);  
  



185 

 

depth_vec = get_depth_vec(matrix);  
num_nodes = size(depth_vec,1);  
width_vec = getWidths(depth_vec,matrix,x_scale);  
  
  
A = im2uint8(255*ones((2+max(depth_vec))*y_scale,wi dth_vec(1),3));  
  
[raw_new,visual_data]=get_quant_results(raw_result, sheetinfo,tally_vec);  
  
%Remove the first line of visual_data so that the n ode doesn't get a  
%uniform composition:  
  
visual_data(1,:) = [];  
pie([1,1])  
visual_data = cell2mat(visual_data);  
data_matrix = raw(2:size(raw,1),1:3);  
data_matrix = cell2mat(data_matrix);  
% Get rid of top redundancy  
data_matrix(1,:) = [];  
  
%datamatrix holds id, size, cyclecount  
for  i = 1:num_nodes  
   composition_index = find(visual_data(:,1) == uni que_ids(i));  
   k = find(data_matrix(:,1)==unique_ids(i));  
   if (size(composition_index,1)==0)  
       new_id = unique_ids(i);  
       %If it has no composition get its child's compositi on (in original  
       %heirarchy, before collapsing it.  
       old_id_index = find(unique_ids_old==new_id);  
       child = getChildren(old_id_index,matrix_old) ;  
       if (size(child,2)==1)  
           composition_index = find(visual_data(:,1 )==unique_ids_old(child));  
           k = find(data_matrix(:,1)==unique_ids_ol d(child));  
       end  
   end  
    
   if (size(composition_index,1)==0)  
       composition = zeros(length(sheetinfo),1);  
       composition(1) = 1;  
   else  
       composition = visual_data(composition_index, 2:(size(visual_data,2)));  
   end  
    
   module_id = unique_ids(i);  
   size_module = data_matrix(k,2);  
   cycle_count = data_matrix(k,3);  
    
    module_id = unique_ids(i);  
   size_module = data_matrix(k,2);  
   cycle_count = data_matrix(k,3);  
   report(i,1)=module_id;  
   report(i,2) = size_module(1);  
   report(i,3) = cycle_count(1);  
   report(i,4) = cycle_count(1)/size_module(1);  
   report(i,5) = length(sheetinfo)-sum(composition= =0);  
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   report(i,6) = max(composition)>50; %homogeneity index  
   report(i,7) = max(composition)/100; %dominance factor  
    
%    id_string = strcat('Size:',num2str(size_module ),' 
Cycles:',num2str(cycle_count));  
   id_string = strcat( 'ID:' ,num2str(module_id), ' Size:' ,num2str(size_module), 
' Cycles:' ,num2str(cycle_count(1)));  
    
map = xlsread(filename, 'Colormap' );  
map = map/255;  
  
%labeling  
for (p=1:size(map,1))  
    labeling(p) = cellstr( '' );  
end  
   pie(composition+0.00001,labeling);  
   colormap(map);  
   handle = gcf;  
    
   find_vec = find(composition~=0);  
   if (size(find_vec,2)==1)  
       annotation(handle, 'line' ,[0.517073170731707 0.517073170731707], ...  
        [0.513376996805112 
0.853035143769968], 'Color' ,map(find_vec,:), 'LineWidth' ,8);  
   end  
   annotation(handle, 'textbox' , ...  
    [0.30 0.5 1 0.1], ...  
    'String' ,id_string, ...  
    'FontSize' ,40, ...  
    'FitBoxToText' , 'off' , ...  
    'EdgeColor' , 'none' );  
   saveas(handle, 'pie_temp.png' , 'png' );  
   C = imread( 'pie_temp.png' );  
   C = imresize(C,0.2);  
    
   red_matrix = get_red_matrix(raw);  
    
   xCoord = round(xCoords(i)-x_scale/2+1);  
   yCoord = round(yCoords(i)-y_scale/2+1);  
   A(yCoord:(yCoord+y_scale-1),xCoord:(xCoord+x_sca le-1),:) = C;  
   if  (i > 1)  
       parent = get_parent(i,matrix);  
       x1 = xCoords(i);  
       y1 = yCoords(i);  
       x2 = xCoords(parent);  
       y2 = yCoords(parent);  
       dist = sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)) ;  
       x1short = round(x1+(x2-x1)*(dist-70)/dist);  
       x2short = round(x2+(x1-x2)*(dist-70)/dist);  
       y1short = round(y1+(y2-y1)*(dist-70)/dist);  
       y2short = round(y2+(y1-y2)*(dist-70)/dist);  
       for  k = 0:2  
           pixels = drawLine(y1short,x1short+k,y2sh ort,x2short+k);  
           for  j = 1:size(pixels,1)  
               if (red_matrix(parent,i)==0)  
                A(pixels(j,1),pixels(j,2),:) = [0,0 ,0];  
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               else  
                A(pixels(j,1),pixels(j,2),:) = [255 ,0,0];   
               end  
           end  
       end  
   end  
   close  
end  
  
[red_matrix,matrix_new,unique_new]=get_red_matrix(r aw);  
height_vec = get_height_vec_red(matrix_new,red_matr ix);  
  
xlswrite(filename,red_matrix, 'red_matrix' );  
xlswrite(filename,matrix_new, 'matrix_new' );  
xlswrite(filename,unique_new, 'unique_new' );  
  
  
depth_vec = get_red_depth_vec(matrix_new,red_matrix );  
report(:,8) = depth_vec;  
report(:,9) = height_vec;  
heading(1,1) = cellstr( 'Module_ID' );  
heading(1,2) = cellstr( 'Size' );  
heading(1,3) = cellstr( 'Cycle_Count' );  
heading(1,4) = cellstr( 'Cycle/Size' );  
heading(1,5) = cellstr( 'Num_Pies' );  
heading(1,6) = cellstr( 'Homogeneity' );  
heading(1,7) = cellstr( 'Dominance Factor' );  
heading(1,8) = cellstr( 'Depth' );  
heading(1,9) = cellstr( 'Height' );  
  
export(1,:) = heading;  
export(2:size(report,1)+1,1:9) = num2cell(report);  
  
xlswrite( 'Shred_Example_Data' ,export);  
  
  
% image_string = strcat(sheetname,'.png');  
image_file = strcat(filename, '.png' );  
imwrite(A,image_file, 'png' );  
 

make_legend 
function  make_legend(filename,sheetinfo)  
% make a legend for the colors and what canonical m etabolic pathways they  
% represent.  
% filename = string filename of the model  
% The cell array of the color map uploaded from the  model spreadsheet  
% This function is called by Shred_Network()  
  
vec = sheetinfo;  
  
colormap=xlsread(filename, 'Colormap' );  
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num_groups = length(vec);  
A = im2uint8(255*ones(num_groups*100+50,700,3));  
  
for (i=1:num_groups)  
figure1 = figure;  
  
% Create textbox  
annotation(figure1, 'textbox' , ...  
    [0.3 0.5 0.8 0.1], ...  
    'String' ,vec(i), ...  
    'FitBoxToText' , 'off' , ...  
    'FontSize' ,20, ...  
    'LineStyle' , 'none' );  
  
handle = gcf;  
saveas(handle, 'test_text.png' , 'png' );  
image = imread( 'test_text.png' );  
text_matrix = image(360:420,350:620,:);  
var = 100*i-95;  
A(var:var+60,5:275,:) = text_matrix;  
imwrite(text_matrix, 'text_matrix.png' , 'png' );  
close  
figure2 = figure;  
  
% Create rectangle  
annotation(figure1, 'rectangle' , ...  
    [0.3 0.5 0.2 0.05], ...  
    'FaceColor' ,colormap(i,:)/255);  
    saveas(handle, 'test_bar.png' , 'png' );  
    image_2 = imread( 'test_bar.png' );  
    close  
    bar_matrix = image_2(405:455,360:750,:);  
    A(var:var+50,300:690,:)=bar_matrix;  
    imwrite(bar_matrix, 'bar_matrix.png' , 'png' );  
end  
     
imwrite(A, 'Legend.png' , 'png' ); 
 

readDatafromLogFile 
function  [result] = readDataFromLogFile(file)  
  
%reads in the rawoutput file Output.log produced by  the partition funcitons  
%and produces the raw data in a cell array format.  
fid = fopen(file);  
lines = textscan(fid, '%s' , 'delimiter' , '\n' );  
fclose(fid);  
lines = lines{1,1};  
rows = size(lines,1);  
columns = 0;  
for  r=1:rows  
   line = lines{r,1};  
   line = textscan(line, '%s' , 'delimiter' , '\t' );  
   line = line{1,1};  
   c = size(line,1);  
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   if  columns < c  
      columns = c;  
   end  
end  
result = cell(rows,columns);  
for  r=1:rows  
   line = lines{r,1};  
   line = textscan(line, '%s' , 'delimiter' , '\t' );  
   line = line{1,1};  
   for  c = 1:columns  
      if  c <= size(line,1)  
         result{r,c} = line{c,1};  
         [num, stat] = str2num(line{c,1});  
         if  stat == 1  
            result{r,c} = num;  
         end  
      else  
         result{r,c} = NaN;  
      end  
   end  
end  
 
The output from the log file (raw_data) looks like this:   

 

Take module 4900, the parent id. An artificial module 4901 that holds all the reactions in 4900 is 
created, which is divided into 4902 and 4903. The get_results() and subsequent functions remove 
these artificial modules from the hierarchical tree of modules.  

ShreddNewman_computeCompMatrix 
% returns a reduced matrix, and a relevant mapper, based on the compnentID  
% and the assignment of nodes in the componentIndex  vector.  
  
% if componentIndexVecotr = [1 3 5 1 1 1]  
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% and component ID is 1, then we will generate a 4x 4 compMatrix with  
% edges internal to that component  
  
  
function  [compMatrix, compMapper]=ShreddNewman_computeCompM atrix(matrix, 
componentID,componentIndexVector) ;  
  
% find rows and columns to eliminate  
compMapper = find (componentIndexVector == componen tID);  
  
compMatrix = matrix (compMapper, compMapper);  
  
end  
 
  

ShreddNewman_get_Q_and_Eigenvector 
% this function starts with the Newmans B matrix, a nd then computes  
% the eigenvalues/vectors for the B matrix, and cal culates the corresponding 
Q.  
% 
  
function  [Q, EigVector]= ShreddNewman_get_Q_andEigenVector (BMatrix)  
  
    [V,D]=eig(BMatrix);  
    EigVector= (V(1:size(BMatrix,1),size(BMatrix,1) ))';   %#ok<FNDSB> 
    Q_fid = fopen( 'get_Q.txt' , 'w' );  
    fprintf(Q_fid, 'interation\ti\tj\tQ\n' );  
    sMatrix =zeros(size(BMatrix, 1));  
    Q=0;  
    iteration =1;  
    for  i=1:size (BMatrix,1)  
        for  j=1:size (BMatrix,1)  
            s_i = EigVector(i);  
            s_j = EigVector(j);  
            if ((s_i <= 0 &&s_j <= 0)||(s_i >= 0&& s_j >= 0))  
                s=1;  
            else  
                s=-1;  
            end ;  
            sMatrix(i,j) = s;  
            Q=Q+(BMatrix(i,j))*s;  
            fprintf(Q_fid, '%f\t%f\t%f\t%f\n' ,iteration,i,j,Q);  
            iteration = iteration+1;  
        end ;  
    end ;  
     
 
end  
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ShreddNewman_partition 
function  [ShreddNewman_finalMap, ShreddNewman_finalMapHisto ry 
]=ShreddNewman_partition(matrix, traditionalNewman,  retroactivity)  
  global  ShreddNewman_fid;  
  global  ShreddNewmanModuleReport_fid;  
  global  ShreddNewmanModuleResults;  
  global  ShreddNewman_partitionID;  
  global  RC; %RC = Results - Cellarray  
  global  RI; % Row Index  
  RI = 1;  
   
  % set the initial partition ID.  
  ShreddNewman_partitionID=  floor (100* size(matri x,1));  
    % a global map to keep track of the mapping.  Initi ally every node is  
    % in the "1" group.  
    global  ShreddNewman_finalMap;  
    ShreddNewman_finalMap = ones(size(matrix,1),1);  
     
    global   ShreddNewman_finalMapHistory ;  
    ShreddNewman_finalMapHistory  = ShreddNewman_fi nalMap;  
     
   ShreddNewmanModuleResults = [];  
     
    % shows the history of the components.  
%     global  ShreddNewman_componentHistory;  
%     ShreddNewman_componentHistory= ones(size(matr ix,1),1);  
     
    % a nx1 matrix that marks the affiliations of nodes  to their finest 
module  
    group=ones(size(matrix,1),1);  
  
    % oldMapper maps from one level of the recursion to  the next. Used when  
    % returning from the recursive partitioning call. ( at the top level  
    % here it is not).  
    oldMapper = ( 1:size(matrix,1))';  
    recursionCounter = 0;  
    
     
    fprintf(ShreddNewman_fid, 'MyID\tsize\tcycleCount\tparentalID\tMy 
component # within parent\tWhat Happens to me\tMy r eactions... \n' );  
    fprintf(ShreddNewman_fid, '%d\t%d\t%d\t--\t--\tI am root!\tAll reactions 
are included in Root!\n' , ShreddNewman_partitionID, size(matrix,2),  
util_CycleCount(matrix) );  
    %util_CycleCount(matrix)  
    ShreddNewman_partition_rec(recursionCounter, 
matrix,matrix,group,ShreddNewman_partitionID,oldMap per, traditionalNewman, 
retroactivity);  
%     document the modules  
%         Nodes Size    Cycles  Depth   Cycles/Size  Is_Leaf_Node    
Is_Homogeneous  
    
fprintf(ShreddNewmanModuleReport_fid, 'ModuleID\tSize\tCycleCount\tDepth\tCycl
es/Size\tIs_LeafNode\tIs_Homogeneous\n' );  
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    for  i = 1: size(ShreddNewmanModuleResults, 1)  
        fprintf(ShreddNewmanModuleReport_fid, '%d\t%d\t%d\t%d\t%f\t%d\t%d\n' , 
ShreddNewmanModuleResults(i,1), ShreddNewmanModuleR esults(i,2), 
ShreddNewmanModuleResults(i,3),ShreddNewmanModuleRe sults(i,4), 
ShreddNewmanModuleResults(i,5), ShreddNewmanModuleR esults(i,6) , 
ShreddNewmanModuleResults(i,7));    
    end  
     
end  

 

ShreddNewman_partition_rec 
% recursive partitioning function 
This is where the partitioning happens: The Q and t he optimal s vector can be 
computed many different ways, for example by GA, or  eigenvector 
approximation.   
  
% February 4, 2011: modified to account for not par titioning when both  
% children don't have cycles.  
  
%  traditional Newman = not retroactive and not shr edd.  
%  Recursive partitioning:  
% stopping critera:  
% if traditionalnewman: single-node-componennt, or bad eigenvalues  
% if ~traditionalnewman:  same as above, AND both c hildren of partition do  
% not have cycles.  
  
function  
[recursionCounter,group]=ShreddNewman_partition_rec (recursionCounter, 
orig,matrix,group,parentPartitionID,oldMapper, trad itionalNewman, 
retroactivity)  
global  ShreddNewman_finalMap;  
global  ShreddNewman_fid;  
global  ShreddNewman_reactionData;  
global  ShreddNewmanModuleResults;  
global  ShreddNewman_partitionID;  
  
%Begin Gautham 03/13/2011 11:45pm  
global  ave_std_shredd_fid  
%End Gautham 03/13/2011 11:45pm  
  
  
  
cyclesDontMatter = traditionalNewman;  
  
[ numConnectedComponents, CCsize, componentIndexVec tor] = 
util_getComponents(matrix);  
% 
% fprintf(ShreddNewman_fid,'\n');  
% util_printIndents(ShreddNewman_fid, recursionCoun ter);  
% fprintf(ShreddNewman_fid,'RC=%d PartitionID=%d ma trixSize=%d 
Componnts=%d\n', recursionCounter, parentPartitionI D, size(matrix,2), 
numConnectedComponents );  



193 

 

  
% if a module with more than one component, then wr ite it now -- as it will  
% be made into seperate components  
  
ModuleHasHomogenousComposition = true;  
  
if  (numConnectedComponents > 1)  
     
    tempIndexVector = ones (1,size(matrix,2));  
    [ModuleMatrix, ModuleMapper] = ShreddNewman_com puteCompMatrix(matrix, 
1,tempIndexVector) ;  
    % fprintf(ShreddNewman_fid,'MyID\tsize\tcycleCount\ tparentalID\tMy 
component # within parent\t\What Happens to me\n');  
    fprintf(ShreddNewman_fid, '%d\t%d\t%d\t%d\t0\tbecomes %d copmponents\t' , 
parentPartitionID, size(matrix,2), util_cycleCount (matrix) 
,parentPartitionID,  numConnectedComponents );  
    % make me an official partition and print all my re actions  
     %util_cycleCount (matrix)  
     
    ModuleHasHomogenousComposition = true;  
     
    oldComposition = util_findComposition(oldMapper (ModuleMapper(1)));  
     
    for  x=1:size(ModuleMatrix,1)  
  
        text = sprintf( '%s' , 
char(ShreddNewman_reactionData(oldMapper(ModuleMapp er(x)))));  
        fprintf(ShreddNewman_fid, '%s\t' , char(text));  
        newComposition  = util_findComposition( old Mapper(ModuleMapper(x)));  
        if  (~strcmp(char(oldComposition), char(newComposition ) ))  
            ModuleHasHomogenousComposition= false;  
        end  
    end  
    fprintf(ShreddNewman_fid, '\n' );  
     
end  
  
ModuleCycleCount = 0;  
  
for  componentID=1:numConnectedComponents  
    %Gautham 03142986  
    test_index = 1;  
    % Make the component Matrix/Mapper  
    [compMatrix, compMapper] = ShreddNewman_compute CompMatrix(matrix, 
componentID,componentIndexVector) ;  
     
    %% 6 lines below on 11/11/2011 at 420pm  
    CC_matrix = zeros(size(compMatrix,1),size(compM atrix,1));  
    for (i=1:size(compMatrix,1))  
        for (j=1:size(compMatrix,2))  
            if (compMatrix(i,j) ~=0)  
                CC_matrix(i,j) = 1;  
            end  
        end  
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    end  
    localCycleCount = util_cycleCount (CC_matrix);  
%     util_cycleCount (compMatrix);  
    ModuleCycleCount = ModuleCycleCount + localCycl eCount; %indivdiual sum of 
cycles in each component make up the sume of cycles  in the current Module.  
    componentHasHomogenousComposition= true;  
    componentIsLeaf = false;  
    oldComposition = util_findComposition( oldMappe r(compMapper(1)));  % 
composition of first member of the group  
     
     
    % each component gets a new ID:  
    ShreddNewman_partitionID= ShreddNewman_partitio nID+1;  
    component_partitionID = ShreddNewman_partitionI D;  
     
    % initialize  conditions:  
     
    Q=-1;  
    part_a_has_cycle =0; part_b_has_cycle =0;  
    mixedEValues =0;  
     
     
     
    if  CCsize(componentID) > 1  
        % stopping critera:  
        % if traditionalnewman: single-node-componennt, or bad eigenvalues  
        % if ~traditionalnewman:  same as above, AND both c hildren of  
        % partition do not have cycles.  
         
        % reduce the matrix based on componnent ID and node s belonging  
        % to the component:  
         
        hasCycles = util_hasCycle (compMatrix);  
        part_a_has_cycle =0; part_b_has_cycle =0;  
         
        if  (hasCycles || cyclesDontMatter)  
            %Gautham 03/14/2011 at 12:05am - changed the output  of the  
            %function below  
            [BMatrix,ave_shred,std_shred,num_shred]  = 
ShreddNewman_populate_BMatrix2(compMatrix, traditio nalNewman, retroactivity);  
            fprintf(ave_std_shredd_fid, '%d\t%d\t%d\t%d 
\n' ,component_partitionID,ave_shred,std_shred,num_shre d);  
            %compute Q & eigenvalues  
%             [~,~,EigVector,Q]=test_split(compMatr ix,BMatrix);  
            % Below commented out 07/03/2011 230pm  
             
            %09/08/11  
%             [Q,EigVector] = GA_s_vector(BMatrix,c ompMatrix);  
            % 08/26/11  
%             [Q,EigVector] = get_MINLP_s(BMatrix);  
%              [Q, EigVector] = ShreddNewman_get_Q_ andEigenVector (BMatrix);  
             %02/15/2012  
             [Q,EigVector] = GA2_s_vector(BMatrix,c ompMatrix);  
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             %Changed from size(x,2) to length() because of the Eigenvector  
             %could be a column vector. 12/02/2012 at 11:34pm.  
              
            mixedEValues = length (find(EigVector>= 0)) > 0 && length 
(find(EigVector<0)) > 0;  
        end  
         
        if  ((cyclesDontMatter || hasCycles) && mixedEValues & & Q>0.1)  
             
             
            % process the left partition first:  
            ShreddNewman_partitionID= ShreddNewman_ partitionID+1;  
            leftPartitionID = ShreddNewman_partitio nID;  
             
             
            for  i=1:size(compMatrix,1);  
                s_i = EigVector(i);  
                % take into account the compMapper!!  
                if (s_i< 0.0000000000001)  
                    group(oldMapper(compMapper(i))) =leftPartitionID;  
                end  
            end  
             
            
[part_matrix_a,mapper_a]=ShreddNewman_split(orig,le ftPartitionID,group,oldMap
per);  
            part_a_has_cycle = util_hasCycle (part_ matrix_a);  
             
            % process the right partition  
            ShreddNewman_partitionID= ShreddNewman_ partitionID+1;  
            rightPartitionID = ShreddNewman_partiti onID;  
             
            for  i=1:size(compMatrix,1);  
                s_i = EigVector(i);  
                % take into account the compMapper!!  
                if (s_i >=0.0000000000001)  
                    group(oldMapper(compMapper(i))) =rightPartitionID;  
                end  
            end  
            [part_matrix_b,mapper_b 
]=ShreddNewman_split(orig,rightPartitionID,group,ol dMapper);  
            part_b_has_cycle = util_hasCycle (part_ matrix_b);  
             
            % keep the two lines below if you don't want the cy cle count  
            % check. Edited 11/07/11 at 10:36pm  
             
            part_a_has_cycle = 1;  
            part_b_has_cycle = 1;  
             
            if  (part_a_has_cycle && part_b_has_cycle)  
                 
                % 
fprintf(ShreddNewman_fid,'MyID\tsize\tcycleCount\tp arentalID\tMy component # 
within parent\t\What Happens to me\n');  
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                fprintf(ShreddNewman_fid, '%d\t%d\t%d\t%d\t%d\tdivided into %d 
and %d!\t' , component_partitionID, size(compMatrix,2),  
localCycleCount,parentPartitionID, componentID, lef tPartitionID, 
rightPartitionID );  
                % make me an official partition and print all my re actions  
                 
                for  x=1:size(compMatrix,1)  
                    text = sprintf( '%s' , 
char(ShreddNewman_reactionData(oldMapper(compMapper (x)))));  
                    fprintf(ShreddNewman_fid, '%s\t' , char(text));  
                    newComposition  = util_findComp osition(  
oldMapper(compMapper(x)));  
                    if  (~strcmp(char(oldComposition), char(newComposition ) ))  
                        componentHasHomogenousCompo sition= false;  
                    end  
                end  
                fprintf(ShreddNewman_fid, '\n' );  
                % recursively call paritioning on mychildren:  
                recursionCounter = recursionCounter +1;  
                [recursionCounter, Output_2] 
=ShreddNewman_partition_rec(recursionCounter,orig,p art_matrix_a,group,leftPar
titionID,mapper_a, traditionalNewman, retroactivity );  
                [recursionCounter, 
Output_2]=ShreddNewman_partition_rec(recursionCount er,orig,part_matrix_b,grou
p,rightPartitionID,mapper_b, traditionalNewman, ret roactivity);  
                recursionCounter = recursionCounter -1;  
            end  
             
        end  
         
    end  
     
    if  (~part_a_has_cycle || ~part_b_has_cycle)  
        componentHasHomogenousComposition = true;  
        componentIsLeaf = true;  
        for  i=1:size(compMatrix,1);  
            
ShreddNewman_finalMap(oldMapper(compMapper(i)))=com ponent_partitionID;  
        end  
        fprintf(ShreddNewman_fid, '%d\t%d\t%d\t%d\t%d\tcreate Partition %d\t' , 
component_partitionID, size(compMatrix,2),  
localCycleCount,parentPartitionID, componentID, com ponent_partitionID );  
        % print all my reactions  
        for  x=1:size(compMatrix,1)  
            text = sprintf( '%s' , 
char(ShreddNewman_reactionData(oldMapper(compMapper (x)))));  
            fprintf(ShreddNewman_fid, '%s\t' , char(text));  
            newComposition  = util_findComposition(  
oldMapper(compMapper(x)));  
            if  (~strcmp(char(oldComposition), char(newComposition ) ))  
                componentHasHomogenousComposition= false;  
            end  
        end  
        fprintf(ShreddNewman_fid, '\n' );  
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    end  
     
    
%'ModuleID\tSize\tCycleCount\tDepth\tCycles/Size\tI s_LeafNode\tIs_Homogeneous
\n');  
    ModuleInfo = [  component_partitionID size(comp Matrix,1) localCycleCount  
recursionCounter  localCycleCount/size(compMatrix,1 )  componentIsLeaf 
componentHasHomogenousComposition];  
    ShreddNewmanModuleResults = [ShreddNewmanModule Results; ModuleInfo]; 
%#ok<AGROW> 
     
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % document the parent component if we had multipe c omponents:  
    if  (componentID == numConnectedComponents && componen tID > 1)  
        ModuleInfo = [ parentPartitionID  size(Modu leMatrix,1) 
ModuleCycleCount  recursionCounter  ModuleCycleCoun t/size(ModuleMatrix,1)  0 
ModuleHasHomogenousComposition];  
        ShreddNewmanModuleResults = [ShreddNewmanMo duleResults; ModuleInfo]; 
%#ok<AGROW> 
    end  
  
  
end  
%Gautham 03/14/2011 at 11:52am  
% fclose(ave_std_shredd_fid)  
%End Gautham at 03/14/2011 11:52am  
end  

ShreddNewman_populate_Bmatrix 
 
  
%key idea here is to compute a Bmatrix, a symmetric  matrix, This is the same 
as the G-matrix in Chapter 2 and the V matrix in Ch apter 3. The computation 
of V is default, and the computation based on arith metic average and expected 
ShReD is commented out.  
  
%Gautham 03/13/2011 - Changed the output of the mat rix to hold the average  
%shred of the module as well as the standard deviat ion of the shreds.  
  
function  
[bmatrix,ave_shred,std_shred,num_shred]=ShreddNewma n_populate_BMatrix2(adjmat
rix, traditionalNewman, retroactivity)  
  
%Begin Gautham 03/13/2011 11:49pm  
%initialized to 0 because we won't always be dealin g with Shreds so it  
%should output 0 by default.  
global  ave_std_shredd_fid;  
global  network_size;  
global  filename;  
  
ave_shred = 0;  
std_shred = 0;  
num_shred = 0;  
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bmatrix = zeros (size(adjmatrix,1));  
  
% doing directional newman algorithm  
if  (traditionalNewman)  
    %  disp (adjmatrix);  
     
    m  = sum(sum(adjmatrix));  
    if  (m ~= 0)  
        for  i=1:size(adjmatrix,1)  
            outdegreeI = sum(adjmatrix(i, 1:size(ad jmatrix,1)));  
            for  j=1:size(adjmatrix,1);  
                indegreeJ = sum(    adjmatrix(1:siz e (adjmatrix,1), j) );  
                % adjmatrix - (outdegree of i)*(indegree of j) / 2m  
                bmatrix(i,j) =  adjmatrix (i,j) - (  outdegreeI * indegreeJ / 
(2*m));  
                 
            end ;  
        end ;  
    end  
    % make it summetrical to account for the difference  between  
    % connectivity (i to j and j to i) and the expected  # of connectsion  
    % between i and j and the # of connectsion between j and i  
    % BM (i,j) = #conns (i,j) - expecte # of conns for i,j  
    bmatrix = bmatrix + bmatrix';  
     
else  
  
    FWdistance = floyd_warshall_all_sp (sparse(adjm atrix));  
    shredd = FWdistance + FWdistance';  
      shredd(shredd>10000)=10000;  
     
    % for all distances greater than 1, replace with ve ry large numbers! if  
    % doing local retroactivity:  
     
    if ( retroactivity)  
        shredd(shredd > 1) = 100000;  
    end  
     
 fid_dist = fopen( 'dist.txt' , 'w' );  
 fid_P_ij = fopen( 'expected_actual.txt' , 'w' );  
 fprintf(fid_P_ij, 'Iteration:\ti\tj\tShred_ij\tExpected Shred\n' );  
 iteration = 1;  
    for  i=2:size(shredd,1);  
        for  j=1:i-1;  
            fprintf( 'Second Loop: i:%ij;%i\n' ,i,j)  
            row_i = shredd(i,:);  
            row_i([i,j]) = [];  
            row_j = shredd(j,:);  
            row_j(j)=[];  
            shred_dist = sort([row_i,row_j]);  
            index = bsearch(shred_dist,shredd(i,j)) ;  
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%                 expected_shred_dist = 
get_expected_shred_dist(FWdistance,i,j);  
%                 p = 
sum(expected_shred_dist>=shredd(i,j))/length(expect ed_shred_dist);  
%Below 07042011  
  
%08/18/11  
%Find all the shreds out of i, then the ones out of  j. then get a  
%distribution of shreds that only involvei and j. F ind p which is the  
%probability that a randomly selected shred will be  greater than the  
%shred_ij, then calculate b as log(p/1-p)  
                    
        p=(length(shred_dist)-index)/length(shred_d ist);  
        %consider making all large shreds have small p  
        if (p==0)  
            p = 0.01;  
        end  
        if (p==1)  
            p = 0.99;  
        end  
  
        bmatrix(i,j) = log(p/(1-p));  
        bmatrix(j,i) = bmatrix(i,j);  
%                     bmatrix(i,j) = p-.5;  
        if (i==j)  
            bmatrix(i,j)=0;  
        end  
%                     test = 5;  
                     
%                     End 07042011  
%Do line below for normal old bmatrix, and comment out stuff above.  
%                bmatrix(i,j) = -shredd (i,j) + (av gShredd(i) + 
avgShredd(j))/2;  
%                 
fprintf(fid_P_ij,'%f\t%f\t%f\t%f\t%f\n',iteration,i ,j,shredd(i,j),(avgShredd(
i)+avgShredd(j))/2);  
%             end;  
        end ;  
    end ;  
  
    bmatrix_made = 1  
    size(bmatrix,1)  
    fclose(fid_P_ij);  
    % zero the diagonal for shredd based analysis  
    % more efficient than checking to make sure not to subtract the avgs 
above.  
    bmatrix = bmatrix - diag (diag(bmatrix));  
    fclose(fid_dist);  
%     xlswrite('Shredd_dump.xlsx',bmatrix,'bmatrix' );  
end  
  
if (size(bmatrix,1)==network_size)  
    xlswrite(filename,bmatrix, 'Mod_Matrix' );  
    xlswrite(filename,shredd, 'Shred_Matrix' );  
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end  
end  
  
   

ShreddNewman_run 
 

function  ShreddNewman_run(inputFile, inputSheet, regulation Sheet, outputFile,  
traditionalNewman, retroactivity, includeRegulation , include_flux,fluxes)  
% Takes in stochiometric matrix in the input sheet of the inputFile  
% creates a directional adjacnecy matrix  
% calls ShreddNewman on it.  
% 
% inputFile - filename of .xlsx spreadsheet with ad jacency matrix  
% inputSheet - sheet in .xlsx file containing matri x  
% outputFile - base filename for all outputfiles.  
% traditionalNewman: if true: runs the traditional newman method  
% retroactivity: if true, run local retroactivity w here all distances are  
% set to 1  
% if both traditionalNew and retroactivity are fals e, then run Newman using  
% shredd metric  
  
global  ShreddNewman_fid;  
global  ShreddNewmanModuleReport_fid;  
  
global  ShreddNewman_reactionData;  
  
global  ShreddNewmanCompositionLegend;  %composition legend  
global  compare_GA_eig_fid;  
global  filename;  
  
compare_GA_eig_fid = fopen( 'compare_GA_eig.txt' , 'w+' );  
fprintf(compare_GA_eig_fid, 'Module_Size\t Q_GA\t Q_eig\n' );  
  
%Gautham 03/14/2011 at 1:52pm  
global  ave_std_shredd_fid;  
ave_std_shredd_fid = fopen( 'ave_std_shredd.txt' , 'w' );  
fprintf(ave_std_shredd_fid, 'Module Id \t Average_Shred \t 
Standard_Deviation_Shred \t Num_Shred \n' );  
%End Gautham 03/14/2011 at 1:52pm.  
  
  
ShreddNewman_fid = fopen(strcat(outputFile, '.log' ), 'w+' );  
ShreddNewmanModuleReport_fid = fopen(strcat(outputF ile, '_ModuleReport' ), 
'w+' );  
% read in spreadsheet and generate a reaction graph  
  
if (include_flux)  
    
[recMatrix,interaction_matrix,ShreddNewman_reaction Data,Output_4]=get_rxn_mat
rix_4(inputFile, inputSheet, fluxes, regulationShee t, includeRegulation);  
else  
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    [recMatrix, ShreddNewman_reactionData, Output_3 ] = 
util_WriteReactionMatrixForCytoscape(inputFile, inp utSheet, regulationSheet, 
includeRegulation);  
end  
  
xlswrite(filename,recMatrix, 'recMatrix' );  
  
[Output_1,Output_2,legend_raw]=xlsread(inputFile, 'Classifications' );  
ShreddNewmanCompositionLegend = legend_raw(:,2);  
  
ShreddNewman_partition(recMatrix, traditionalNewman , retroactivity);  
  
  
fclose (ShreddNewman_fid );  
fclose (ShreddNewmanModuleReport_fid );  
fclose(ave_std_shredd_fid);  
fclose(compare_GA_eig_fid);  
  
% write out the reaction matrix in adjacency list f ormat.  
if  (includeRegulation)  
    ram_fid = fopen(strcat(inputFile, '_ReactionAdjacencyMatrixWithReg' ), 
'w+' );  
else   
       ram_fid = fopen(strcat(inputFile, '_ReactionAdjacencyMatrix' ), 'w+' );  
end  
util_writeAdjMatrix( recMatrix, ShreddNewman_reacti onData, ram_fid );  
  
end 
 

ShreddNewman_split 
%splits a partition matrix from the original one.  
  
% the part_matrix will be an n x n matrix of the si ze of the partition.  
% the mapper is a mapping from from the NEW nodes n umbers (1... n) to the  
% old node numbers (i.e. if mapper is 3 5 7, then n ode 0 of this partition  
% is the older node 3, and node 1 of this partition  is the old node 5, nad  
% so on  
  
function  [part_matrix,mapper] = 
ShreddNewman_split(orig,partition,group,oldMapper)  
  
  
  
mapper = zeros(size(group)); %keep track of remappings  
partCount = 0; %number of nodes in new partition  
  
  
for  i=1:size(oldMapper, 1)  
    if  (group (oldMapper(i)) == partition)  
        partCount = partCount+1;  
        mapper (partCount) = oldMapper(i);  
    end ;  
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end ;  
mapper(mapper == 0) = [];  
  
  
%making the new adjacency matrix for the first part ition  
part_matrix = zeros(partCount,partCount);  
for  j=1:size(mapper);  
    for  i=1:size(mapper);  
        %disp('split values')  
        %disp(orig(mapper(i),mapper(j)))  
        part_matrix(i,j)=orig(mapper(i),mapper(j));  
        part_matrix(j,i)=orig(mapper(j),mapper(i));  
    end ;  
end ;  

util_cycleCount 
input: Adjacency matrix for directed graph 
output: Number of directed cycles in the graph. This is approximate for larger graphs, since run 
time is factoral in the size of the adjacency matrix.  

util_getComponents 
function [ componentNum, componentLengths, nodeComponents] =  
util_getComponents(adjMatrix)  
  
% Takes in an adjacency matrix and returns the numb er of connected components 
in the graph, a  
% vector of the lengths of all components , and a v ector identifying the 
component  
% of each node (i.e. if nodeComponents(i) == 5, nod e i is in component 5)  
  
    numNodes = length(adjMatrix);  
  
    nodeComponents(1:numNodes) = 0;  
    visited(1:numNodes) = 0;  
  
    componentNum = 0;  
    componentLengths = [];  
     
    while  min(visited) == 0  
        thisComponentLength = 0;  
        componentNum = componentNum + 1;  
        [value, node] = min(visited);  
        to_visit = node;  
         
        while  numel(to_visit) ~= 0  
            currentNode = to_visit(1);  
            visited(currentNode) = 1;  
            to_visit(1) = [];  
            for  i = 1:numNodes  
                if  (adjMatrix(currentNode, i) >= 1 || adjMatrix(i, 
currentNode) >= 1) && visited(i) == 0  
                    to_visit = [to_visit i];  



203 

 

                    visited(i) = 1;  
                end  
            end  
        end  
  
        for  i = 1:numNodes  
            if  visited(i) == 1  
                nodeComponents(i) = componentNum;  
                thisComponentLength = thisComponent Length + 1;  
                visited(i) = 2;  
            end  
        end  
         
        %if thisComponentLength > 1  
            componentLengths = [componentLengths th isComponentLength];  
        %end 
    end  
  
end   
 

util_hasCycle 
input: Adjacency matrix for directed graph 
output: graph has at least one directed cycle 

util_writeReactionMatrixForCytoscape 
Get adjacency matrix if no flux weights are provided. Called by ShreddNewman_run 

function  [ ReactionAdjMatrix, ReactionLabels,  numReactions  ] 
=util_WriteReactionMatrixForCytoscape( inputFile, i nputSheet, 
regulationSheet, regulation)  
  
  
r =regexp (inputFile, '\.' , 'split' );  
if  (regulation)  
    s= strcat(r(1), '_reactionRegCyto.txt'  );  
else  
    s= strcat(r(1), '_reactionCyto.txt'  );  
end  
fid = fopen(char(s(1)), 'w+' );  
  
% read from xls  
[numData, textData] = xlsread(inputFile, inputSheet );  
  
  
reversibility = numData(1,:);  
adjMatrix = numData(3:end, :);  
numMetabolites = size (adjMatrix,1);  
numReactions = size(adjMatrix, 2);  
ReactionLabels(1:numReactions) = textData(2,3:end);  
  
formattedTextData(1:numMetabolites) = textData(3:en d,2);  
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formattedTextData(numMetabolites + 1:numMetabolites  + numReactions) = 
textData(2,3:end);  
  
ReactionAdjMatrix = zeros(numReactions);  
  
  
for  i = 1: numReactions  
    column =  adjMatrix (:, i);  
%     assert (sum (column < 0) > 0); % at least one  negative entry in the 
column  
  
    outgoingMetabolites = find ((column > 0));  
     
    
     
    for  j = 1: size (outgoingMetabolites, 1)  
        % find -1 in the row in outgoingMetabolites (j)  
        row = adjMatrix (outgoingMetabolites (j), : );  
        for  k = 1: size (row, 2)  
            %if ((row(k) == -1) && (i ~=k))  
            if  ((row(k) < 0) && (i ~=k))  
                ReactionAdjMatrix (i, k) = 1;  
                
fprintf(fid, '%s\tRR.\t%s\n' ,char(formattedTextData(i+numMetabolites)),char(fo
rmattedTextData(k+numMetabolites)));  
                %   fprintf(fid,'m%s\t-->\tR%s\t-->m%s\t--
>\tR%s\n',char(formattedTextData(incomingMetabolite s(z))),char(formattedTextD
ata(i+numMetabolites)), 
char(formattedTextData(outgoingMetabolites(j))),cha r(formattedTextData(k+numM
etabolites)));  
            end  
             
            if  (reversibility (k))  
                if  ((row(k) > 0) && (i~=k) )  
                    ReactionAdjMatrix (i, k) = 1;  
                    
fprintf(fid, '%s\tRR*\t%s\n' ,char(formattedTextData(i+numMetabolites)),char(fo
rmattedTextData(k+numMetabolites)));  
                end  
                 
            end  
        end  
         
    end  
  
  
  
    if  (reversibility (i) == 1)  
         
        incomingMetabolites = find ((column < 0));  
  
        for  z = 1:size (incomingMetabolites, 1)  
            row = adjMatrix (incomingMetabolites (z ), :);  
            for  k = 1: size (row, 2)  
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                %05/26/2011 removed the && reversibility(k) in the line  
                %below.  
                if  ((row(k) < 0) && (i ~=k))  
                    ReactionAdjMatrix (i, k) = 1;  
                    fprintf(fid, '%s\tRR--
R\t%s\n' ,char(formattedTextData(i+numMetabolites)),char(for mattedTextData(k+n
umMetabolites)));  
                end  
                if  (reversibility (k))  
                    if  ((row(k) > 0) && (i~=k) )  
                        ReactionAdjMatrix (i, k) = 1;  
                        
fprintf(fid, '%s\tRR*\t%s\n' ,char(formattedTextData(i+numMetabolites)),char(fo
rmattedTextData(k+numMetabolites)));  
                    end  
                 
                end  
            end         
        end  
    end  
     
end  
  
  
if (regulation)  
    % add  regulation to reaction network  
     
    [regnumData, regTextData] = xlsread(inputFile, regulationSheet);  
     
    % assert all reactions are specified as in the non- regulation sheet  
    regLabels = regTextData(1,3:end);  
  
    reverseAdjMatrix= zeros(size(adjMatrix, 1), siz e (adjMatrix,2));  
    %create a reverse adjMatrix  
    for  i= 1: numReactions  
        if  (reversibility (i) == 1)  
            reverseAdjMatrix(:,i) = -adjMatrix(:,i) ;  
        end  
         
    end  
     
     
     
    for  i= 1: numReactions  
         
        column =  regnumData (:, i);  
        MetabolitesRegulatingReaction =    find ((c olumn ~= 0));  
         
         
        for  metaboliteJ = 1: size(MetabolitesRegulatingReactio n,1)  
            % find all reactions producing metabolite metabolit eJ. look in 
adjMatrix  
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            reactionsProducingMetaboliteJ = find 
(adjMatrix(MetabolitesRegulatingReaction(metabolite J), :) > 0);  
            additional = find 
(reverseAdjMatrix(MetabolitesRegulatingReaction(met aboliteJ), :) > 0);  
            reactionsProducingMetaboliteJ = [ react ionsProducingMetaboliteJ, 
additional]; %#ok<AGROW> 
             
            for  z=1: size (reactionsProducingMetaboliteJ, 2)  
                ReactionAdjMatrix (reactionsProduci ngMetaboliteJ(z),i) = 1;  
                fprintf(fid, '%s\trREG\t%s\n' , 
char(formattedTextData(numMetabolites+reactionsProd ucingMetaboliteJ(z))), 
char(formattedTextData(i+numMetabolites)));  
            end  
   
        end  
         
    end  
end  
  
  
ReactionAdjMatrix = ReactionAdjMatrix  - diag (diag (ReactionAdjMatrix));  
  
  
fclose(fid);  
  
end  
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Final Output Hierarchical Tree of Modules 
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