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Abstract 

As children develop, physically and cognitively, many of them strive for 

personal independence. For children diagnosed with chronic diseases, their 

desire to act independently might lead them to become involved in their own 

healthcare, performing diagnostic and therapeutic tasks using medical devices. 

This research identified a typical age at which children are more capable of 

performing tasks with home health care devices (i.e., blood glucose meters, 

nebulizers) with minimal error. In addition, this research evaluated the relation of 

child development and device complexity to the prevalence of use errors. Nine 

years of age emerged as a threshold at which a majority of children could 

perform medical device tasks with minimal error. Moreover, children’s age and 

working memory capacity and device complexity accounted for a significant 

proportion of the variance in use error rate. Additionally, the researcher provided 

a method for quantifying device complexity as well as a metric for estimating the 

rate of potential for use errors by children. 
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1. Introduction 

As children develop, physically and cognitively, many of them strive for 

personal independence. Children develop a sense of industry as they meet 

developmental milestones and accomplish new tasks, such as assuming academic 

responsibilities, regulating emotions, and interacting with peers appropriately 

(Erikson, 1956; Howe et al., 2011). For children diagnosed with chronic diseases, 

their desire to act independently might lead them to become involved in their 

own healthcare. For example, children might request to perform self-monitoring 

tasks or administer their medication independently. However, children’s 

developmental capabilities play a critical role in the success of their 

independence. To assure the child’s safety, it is imperative that parents and 

clinicians have a comprehensive understanding of the child’s biological and 

cognitive capabilities before relinquishing self-care tasks (Clarke, 2011; Scott, 

2013). Releasing health-related responsibilities prematurely can lead to poor 

disease management (McNally, Rohan, Pendley, Delamater, & Drotar, 2010). 

However, there is limited literature available on the age and developmental 

variables that predict readiness. Such knowledge would enhance parent’s and 

clinician’s assessments of whether children are developmentally equipped to 

assume health-related tasks that are central to their wellbeing; tasks that need 

to be performed correctly or else harm could occur. 

A better understanding of the developmental prerequisites to readiness 

would enable medical device manufacturers to design devices that are more 
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developmentally appropriate for children. Two of the most common chronic 

diseases among children – type 1 diabetes and asthma – require the use of home 

health care devices to manage symptoms effectively. Specifically, diabetes 

requires frequent blood glucose monitoring with a blood glucose meter and 

multiple daily insulin dosing with a vial and syringe, insulin pen, or pump. Asthma 

typically requires the use of one or more inhalation devices, such as a metered 

dose inhaler or nebulizer. Unfortunately, many of these medical devices do not 

account for the variability in developmental skill mastery among children. Rather, 

they appear to be designed for use by adults even though they might be 

indicated for adults as well as children.  

Although developmental changes are relatively predictable, each child 

has a unique trend of growth with an individual personality, learning style, and 

experiential background (Bredekamp, 1987). Therefore, certain medical device 

elements might create a barrier to performing autonomously. For instance, the 

medical device might contain components that require strength exceeding that 

of the child or text that is above the child’s reading level. A better understanding 

of the developmental milestones that predict readiness will inform the 

development of device user interfaces and ultimately, ensure that children who 

are ready to manage aspects of their own care have the resources to do so with 

minimal chance of making an error.  

The notion of accounting for user characteristics when designing medical 

devices echoes the U.S. Food and Drug Administration’s (FDA) philosophy. 
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However, it merely speaks to one major element the FDA recommends medical 

device manufacturers consider when developing devices. To inform 

manufacturers of the practices that promote safe and effective medical device 

use, the FDA document entitled, “Applying Human Factors and Usability 

Engineering to Medical Devices“ (U.S. Food and Drug Administration, 2016) 

identifies three major human factors engineering considerations for error 

prevention. Medical device manufacturers should account for characteristics 

subject to the devices’ intended users, use environments, and device user 

interface. This thesis focuses on the user- and device-specific variables that might 

pose a barrier to proper medical device use by children.  

In addition to evaluating the extent to which children’s developmental 

capabilities affect performance, the researcher assessed how a characteristic 

subject to the device user interface, the device complexity level, affects use error 

rate. Variability in user interface complexity might influence children’s ability to 

use medical devices effectively. There is a wide array of medical devices 

representing varying levels of complexity in today’s market. The devices range 

from simple (e.g., thermometers, peak flow meters) to complex (e.g., infusion 

pumps, ventilators). Several studies have shown that user performance 

decreases as task complexity increases (Just & Carpenter, 1992; Anderson & 

Jeffries, 1985; Sohn & Doane, 2003). The result is likely applicable to device 

complexity, noting that highly complex tasks and device both comprise a 

relatively high number of information elements (e.g., functions, information 
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cues). Decreases in performance were attributed to the complex tasks’ excessive 

demand on working memory (i.e., short-term memory). The tasks contained a 

high number of information elements and subsequently, required a cognitive 

capacity exceeding that of the participants. These findings suggest that medical 

devices with higher complexity are potentially more cognitively demanding and, 

as a result, increase the chance of errors. Thus, the researcher provides a method 

for quantifying device complexity to enable the assessment of the relationship 

between medical device complexity and use error rate.  

In short, the researcher’s first aim was to examine the relationship 

between child development and children’s readiness for managing aspects of 

their health care. Specifically, it would achieve this by (1) identifying the 

transition point in development (i.e., chronological age) that indicates a child is 

capable of using home health care devices (i.e., blood glucose meters, nebulizers) 

with a minimal chance of making an error and (2) evaluating the extent to which 

child development variables contribute to use error rate. The second aim was to 

develop a method to quantify a device’s level of complexity and relate device 

complexity to the prevalence of use errors by children. 
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2. Survey of Literature on Child Development 

The Association for the Advancement of Medical Instrumentation (AAMI; 

2009) HE75 defines a use error as an “undesirable or unexpected event resulting 

from the interaction between a user and a device.” The researcher utilizes use 

error rate to gauge the level of risk associated with using home health care 

devices, and ultimately estimate children’s readiness for successful chronic 

disease management.  

Asthma and type 1 diabetes are particularly prevalent chronic diseases 

among children. As of 2014, approximately 6.3 million children in the United 

States had been diagnosed with asthma (Centers for Disease Control and 

Prevention, 2014). Moreover, about 84,100 U.S. children received a type 1 

diabetes diagnosis (International Diabetes Federation, 2015). As such, children 

commonly rely on home health care devices to manage their symptoms, such as 

blood glucose meters, insulin pumps, insulin pens, nebulizers, and inhalers. The 

following subsections expand on biological and cognitive aspects of child 

development that might influence use error rate with the abovementioned home 

health care devices. Specifically, the subsections address the following 

developmental factors: 

 Biological aspects 

o Neurological development 

o Hand function 

o Hand size 
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 Cognitive aspects 

o Understanding of numerosity 

o Language development 

o Working memory capacity 

In addition, this section discusses the literature on the relationship 

between age and children’s readiness to self-administer treatment with home 

health care devices. 

2.1. Biological Development 

Biological processes refer to changes in a child’s body, such as the 

development of neurological and motor function, as well as changes in body size 

(Santrock, 2013, p.13). The literature on neurological development suggests that 

children as young as six years of age are capable of participating in aspects of 

their own care.  

2.1.1. Neurological Development 

Lenroot and Giedd (2006) utilized anatomical magnetic resonance 

imaging to study brain development in children (as cited in Santrock, 2011). By 

age six, a child’s brain has grown to approximately 95% of its adult size. The most 

rapid growth was shown to take place in the frontal lobe, which contributes to 

the development of executive function. Such functioning impacts children’s 

ability to sustain attention in demanding tasks as well as plan and organize new 

actions (Gogtay & Thompson, 2010; Munakata, Casey, & Diamond, 2004). 
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Previous research has shown that children’s executive functioning level is 

associated with adhering to diabetes treatment routines and their ability to self-

manage their disease (McNally, Rohan, Pendley, Delamater, & Drotar, 2010). 

Children with relatively high executive functioning were more likely to adhere to 

treatment and ultimately hit more glycemic targets. 

Furthermore, around six years of age, the temporal and parietal lobes 

begin to accelerate in growth. The temporal and parietal lobes attribute to the 

acquisition of various cognitive processes, such as the development of language 

and spatial abilities. For children diagnosed with a chronic disease, well-

developed language skills likely facilitate children’s comprehension of medical 

device labeling or their understanding of device training. Moreover, children’s 

capacity to understand spatial relations likely aids in recognizing which medical 

device components fit together during assembly, as spatial abilities support 

differentiating among shapes.  

However, past work on medical device use by children showed that 

children were unable to perform tasks correctly until roughly 11 years of age 

(Naughten, 1982; Perwien, Johnson, Dymtrow, & Silverstein, 2000). Perwien et al. 

(2000) examined children’s blood glucose testing skills and found that 10.9 was 

the mean age of children who were able to perform glucose monitoring tasks. 

Tasks included obtaining a sufficient sample of blood and applying the sample to 

the test strip properly. Furthermore, Naughten (1982) conducted a study 

examining the relationship between age and children’s ability to use insulin 



 

 9 

administration devices properly. The findings were similar to the previous study 

in that children were able to perform tasks with insulin administration devices 

successfully around 11.2 years of age. Although the literature on neurological 

development indicate that the brain develops substantially early in life, there 

seem to be additional factors creating a barrier to children’s mastery of self-care 

tasks.  

2.1.2. Hand Function and Size 

According to Santrock (2013, p.106), during middle and late childhood 

(i.e., six to 12 years of age), children’s hand strength and manual dexterity 

develop and refine considerably. It is not until around eight to ten years of age 

that children develop the ability to coordinate their fingers to manipulate objects 

with ease and precision. Children younger than eight might experience difficulty 

performing medical device tasks that require well-developed hand function. For 

example, children might not possess the fine motor skill to remove a blood 

glucose meter test strip from its vial with ease, or sufficient hand strength to 

remove a cap.  

Furthermore, children’s hand size might affect their ability to perform 

tasks with medical devices. Children with a relatively small hand size might be at 

a disadvantage depending on the extent to which the device was designed to fit 

in an average adult hand. For example, children with a hand length shorter than 

that of a metered-dose inhaler’s height might experience difficulty taking an 

asthma treatment due to their inability to reach the inhaler’s canister. 
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Consequently, children’s hand function and size might have affected their ability 

to perform the aforementioned glucose monitoring and insulin administration 

tasks successfully. 

2.2. Cognitive Development 

Many medical devices require children to possess complex cognitive skills. 

For instance, medical devices tend to require sufficient working memory capacity 

for effective decision making and problem solving, as well as the literacy 

knowledge to read and comprehend device labeling. Specifically, blood glucose 

monitoring requires the ability to perform numeric operations with three digit 

numbers to interpret the results correctly. Effective administration of asthma 

medication requires measurement skills for calculating doses.  

2.2.1. Functional Numerosity Development 

Piaget, Inhelder, and Weaver (1969) studied cognitive development in 

children and found that individuals who are seven to 11 years of age develop the 

ability to perform tasks that require concrete operations. Such operations pertain 

to actions that are mentally reversible, also referred to as conservation. Piaget et 

al. (1969) indicated that children who possess the cognitive ability to understand 

conservation are more likely to grasp concepts related to demonstrating 

functional numerosity (e.g., numeric ordering, serialization).  

Conservation refers to a child’s ability to form a scheme of and mentally 

manipulate something that is not physically present. A standard study that 
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demonstrates the concept of conservation involves presenting a child with two 

identical clay balls. The experimenter rolls one clay ball into a long, thin strip, and 

asks the child whether the two pieces (i.e., clay ball vs. clay strip) contain the 

same amount of clay. A child who has not yet acquired the ability to perform 

concrete operations would reply that the long strip consists of more clay than the 

ball. To respond correctly, children need to mentally reverse the action by 

envisioning the clay’s size as if it were rolled back into a ball. Children do not 

normally develop this ability until around seven or eight years of age. Many tasks 

related to self-managing chronic disease symptoms require children to perform 

concrete operations, such as adding or comparing number values. For instance, a 

child performing a blood glucose test needs to determine whether the blood 

glucose value is too high or low relative to a value considered to be in the healthy 

range. 

However, there is a potential barrier to adequate administration by 

children who have mastered concrete operations. Although Piaget’s research on 

conservation suggests that children as young as seven are capable of performing 

the mathematical operations required to use their devices successfully, the 

Common Core Standards (National Governors Association Center for Best 

Practices, Council of Chief State School Officers, 2010) do not introduce these 

concepts until second grade. Therefore, children are typically eight or nine years 

of age when they master mathematical operations related to measuring and 

algebraic thinking. Consequently, children might commit numerosity-related use 
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errors because they have not learned mathematical concepts for which they are 

capable of understanding. 

2.2.2. Language Development 

As children develop the numerosity skills  required to reason logically, they 

become increasingly able to communicate effectively (Santrock, 2013). For 

example, children who possess the ability to form concrete operations are more 

likely to use comparatives appropriately in speech (e.g., “My blood sugar is 

higher than it’s supposed to be”).  

Another aspect of language development that supports children’s ability 

to participate in health-related tasks concerns literacy level. Early in elementary 

school, children are taught the fundamentals of reading, such as the 

development of rudimentary vocabulary and grammar concepts. However, the 

taxing demand reading imposes on emergent readers results in minimal 

resources available to comprehend the material.  

Once children reach fourth grade (nine to ten years of age) they have 

typically acquired the reading skills necessary to fully understand printed 

material. However, the extent to which the child comprehends the text is 

dependent upon its appropriateness given the child’s reading level. For example, 

children who read at a fourth-grade level are less likely to understand a medical 

device’s instructions-for-use (IFU) written at a seventh-grade reading level. 

Unfortunately, medical device labeling might create a barrier to proper medical 

device use considering that the FDA document entitled, “Guidance on Medical 
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Device Patient Labeling,” (U.S. Food and Drug Administration, 2001) recommends 

medical device manufacturers design the device labeling such that the text is 

written at an eighth-grade level or below. Consequently, the available learning 

aids might exceed a child’s reading level.  

2.2.3. Working Memory Development 

Working memory is responsible for storing and manipulating information 

in short-term memory (Myatchin & Lagae, 2013). According to Miller (1956), 

working memory has a limited capacity. Humans can store and process seven, 

plus or minus two pieces of information. Cowan (2004) conducted an extensive 

review of literature succeeding Miller’s (1956) research on working memory 

capacity and indicated that an average adult has a capacity of about four items, 

and fewer in children. Children’s working memory capacity is comparable to that 

of adults, approximately three to four items, at ten years of age (Riggs, 

McTaggart, Simpson, & Freeman, 2006). Several studies identified a relationship 

between working memory capacity and children’s performance attending to and 

carrying out complex cognitive tasks and daily activities. For example, 

developmental increases in working memory have a positive effect on children’s 

ability to read, solve problems, and perform mental calculations (Bull & Scerif, 

2001; Hitch, Towse, & Hutton, 2001). Therefore, working memory capacity might 

contribute to children’s ability perform health-related tasks. For example, 

children with a working memory capacity greater than three items might be 

more apt to comprehend medical device learning aids (e.g., IFU, on-screen 
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prompts, training), measure medication doses accurately, and perform device 

steps in the correct sequential order (e.g., remembering to wash hands prior to 

lancing for glucose testing). 

2.3. Summary of Child Development Variables  

The literature on child development identified that there is inevitable 

variability among children of the same chronological age (Sroufe, Cooper, 

DeHart, & Bronfenbrenner, 1992). Thus, it is unlikely that all children with chronic 

diseases converge in their ability to self-manage their illness at the same age. 

Individual children develop biologically and cognitively at different rates. 

Therefore, one or more developmental milestones might influence readiness.  

Subsequently, the researcher sought to identify the developmental 

variables that tend to plateau during childhood. The National Institutes of Health 

(NIH) collected data using the NIH Toolbox for the Assessment of Neurological 

and Behavioral Function (Hodes, Insel, Landis, & On behalf of the NIH Blueprint 

for Neuroscience Research, 2013) and found that data on children’s dexterity and 

working memory capacity supported non-linear relationships with age (Tulsky et 

al., 2013; Wang, Bohannon, Kapellusch, Garg, & Gershon, 2015). As such, 

children with more developed fine motor skills and greater working memory 

capacities might commit relatively fewer use errors. In addition, the literature led 

to the consideration of grip strength, hand size, reading ability, and functional 

numerosity as variables that might influence use errors rates.  
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3. School Nurse Interviews 

A critical role of a school nurse is to provide health care to children with 

chronic diseases. Therefore, the researcher completed interviews with two 

school nurses to inform the primary study’s design. The main objectives for 

conducting the interviews were to (1) identify the types of home health care 

devices and chronic diseases school nurses encounter most frequently, and (2) 

gain a clinical perspective on children’s readiness to manage aspects of their own 

care.  

The most common chronic diseases the school nurses encounter are type 

1 diabetes and asthma. The school nurses reportedly provide support to most of 

those children on a daily basis and utilize several types of devices to aid in 

symptom management, including blood glucose meters, insulin pumps, inhalers, 

nebulizers, and peak flow meters. Therefore, the researcher determined that the 

primary study include devices intended for use by children with diabetes or 

asthma to increase the generalizability of the results. 

Furthermore, both school nurses expressed concern regarding the lack of 

training children receive on their devices. In their experience, children receive 

little to no training on their device unless a parent or caregiver opts to bring the 

child to a respiratory or diabetes clinic. One nurse opined that the lack of training 

results in a clear increase in error. For example, she has observed several children 

with diabetes develop infections because they did not wash their hands before 

lancing themselves for glucose testing.  
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The researcher asked the school nurses to explain how they assess 

whether a child is capable of participating in aspects of their own care. Both 

school nurses responded that the strongest indications of success are children’s 

cognitive and emotional abilities. Children’s reading ability and understanding of 

numerosity appear to pose as barriers to performing autonomously with home 

health care devices. One nurse explained that many children with asthma are 

unable to read the labeling on albuterol packaging. Accordingly, some children 

fail to differentiate among the packages and tend to bring the wrong medication 

type to school. Moreover, some children experience difficulty reading the inhaler 

dose counter’s value. The children are unable to determine whether there is 

medication left in the inhaler and, as a result, fail to alert their parent or 

caregiver that they need a new canister.  

In addition, the school nurses explained that children’s ability to manage 

their stress and anxiety plays a role in using home health care devices 

successfully. However, aspects of emotional development appeared to pertain 

specifically to devices that contain needles, such as  auto-injectors and pre-filled 

syringes.  

Lastly, one nurse said that children’s physical development influences 

home health care device use. She explained that many children with diabetes 

experience difficulty depositing enough blood onto the test strip to activate the 

meter due to the strip’s small size and the children’s limited dexterity. 
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 The interview responses fortified the researcher’s presumption that 

aspects of cognitive and biological development influence children’s ability to 

use home health care device safely and effectively. As such, the researcher 

designed the primary study to include assessments of children’s reading ability, 

understanding of numerosity, fine motor ability, as well as several additional 

aspects of development identified in the literature.  

Notably, the researcher did not evaluate children’s emotional intelligence 

during the primary study because it was outside the scope of this thesis. While 

children’s emotional development likely impacts task performance, it is fairly 

difficult to assess, noting that valid measures of emotional intelligence require a 

great deal of time to administer. 
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4. Review of Literature on Design Complexity 

Devices with relatively high complexity might increase use error rate, 

considering that a standard method for increasing the usability of a device is to 

minimize excess complexity (Association for the Advancement of Medical 

Instrumentation, 2009). To test this theory, the researcher sought to identify a 

method for quantifying the complexity of home health care devices. 

Unfortunately, a product class-specific method did not appear to exist in the 

literature. Therefore, the researcher surveyed the literature on complexity 

metrics related to a seemingly relevant concept called design complexity. 

Design complexity pertains to the extent to which a given device or 

system will affect the amount of effort (i.e., man-weeks) required by the designer 

(Crespo-Varela, Medina, & Kremer, 2012). Several studies have identified 

methods for assessing design complexity within a variety of domains, such as 

software, electrical, and product (Ameri, Summers, Mocko, & Porter, 2008; 

Claasen, 2003; Zhang, Li, & Tan, 2010). Crespo-Varela et al. (2012) surveyed the 

literature on design complexity to identify the methods potentially applicable to 

calculating medical device design complexity. Crespo-Varela et al. (2012) included 

design complexity measures based on their generalizability. The aim was to 

identify the design complexity measure(s) most predictive of the FDA’s decision 

time of approval. They utilized the device manufacturer’s 510(k) submission date 

and FDA’s decision date to calculate decision time of approval. Crespo-Varela et 

al. (2012) deemed the methods developed by Bashir and Thomson (1999) and 
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Roy, Evans, Low, and Williams (2011) as valid measures to quantify medical 

device design complexity. The design complexity scores the metrics yielded were 

strongly associated with the FDA’s decision time of approval. 

Bashir and Thomson’s (1999) metric pertains to device functionality. The 

procedure involves decomposing device functions into hierarchical levels. The 

top level represents basic functions, and subsequent levels denote subfunctions. 

Bashir and Thomson (1999) illustrate the concept by decomposing a battery 

charger’s functions. They indicated that the battery charger’s basic, top-level 

function was supplying DC power. They proceeded by decomposing the basic 

function into subfunctions, which included assembling components, protecting 

the device, converting power, and providing an interface. Bashir and Thomson 

(1999) broke down each sub-function until they could not be decomposed 

further. To quantify design complexity, they implemented Equation 1. 

Equation 1: Design complexity 

𝐷𝑒𝑠𝑖𝑔𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ∑ 𝐹𝑗 ∗ 𝐽

𝑙

𝑗=1

 

 
where, 
Fj is the number of functions at level j  
l is the number of levels 
 

 

Essentially, for each level, they multiplied the number of functions at that 

level by the level’s position in the hierarchy. Then, they calculated the sum of the 

products. As such, complexity is an objective measure of device functionality, 
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such that increasing the number of device functions leads to an increase in 

complexity level.  

Conversely, Roy et al. (2011) measured design complexity based on the 

commonality of device components. Specifically, Roy et al. (2011) quantified 

design complexity according to the number of device part variations and total 

number of combinations, which they referred to as the design ratio. Equation 2 

illustrates the method for calculating the design ratio. They considered device 

parts with a relatively low design ratio as more complex. 

Equation 2: Design ratio 

𝐷𝑒𝑠𝑖𝑔𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑖) =  
𝑛𝑖

𝑛
 

 
where, 
ni = number of product variants that use part variant i 
n = total number of product variants 
 
 

 Roy et al.’s (2011) metric concerned device variants, a logical 

consideration when the aim is to reduce design complexity and ultimately, 

decrease device manufacturing cost and design time. However, the researcher 

was unable to find theoretical evidence that would reasonably support a 

hypothesis involving the design ratio as a significant predictor of use error rate. 

Therefore, Roy et al.’s (2011) metric is not discussed further. 

Ultimately, Bashir and Thomson’s (1999) metric appeared to be a 

promising method for predicting use error rate due to its function-driven nature. 

Increasing device functionality generally leads to a rise in complexity (Norman, 
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2002). Increasing the number of device functions likely increases the number of 

information cues processed and distinct actions executed by the user. As 

mentioned in a previous section, the brain is limited in its capacity for processing 

and storing information. Increasing the number of information elements the user 

has to attend to while performing a task decreases performance (Anderson & 

Jeffries, 1985; Just & Carpenter, 1992; Miller, 1994; Sohn & Doane, 2003). 

Subsequently, a device with a relatively high number of functions and 

components might impose excessive cognitive demand on working memory, 

leading to a decrease in task performance. 
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5. Device Complexity 

5.1. Device-User Complexity Model 

The literature identified Bashir and Thomson’s (1999) functional 

decomposition model a valid technique for estimating the amount of time a 

designer will spend developing a new device. To increase the likelihood that the 

model is predictive of use error rate, the researcher modified the functional 

decomposition procedure. The new model assumes a more user-centered 

process. Unlike Bashir and Thomson’s (1999) model, the new model omits 

functions that map to components with which the end user does not interact, 

such as a mechanical clock’s motor. Figure 1 illustrates the modified functional 

decomposition model workflow, hereafter referred to as the Device-User 

Complexity (DUC) model.  
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Figure 1: Device-User Complexity (DUC) workflow diagram 
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Figure 1 provides a higher-level visual representation of the following 

steps: 

Step 1. Record the function that represents the device’s main objective 

for use at the functional tree’s first hierarchical level. For example, the user’s 

overall goal for using a wrist watch is to monitor the current time continuously. 

Figure 2 illustrates a wrist watch Device-User Complexity (DUC) functional tree. 

 
Figure 2: Wrist watch DUC functional tree 

Step 2. Consider a primary device component. When considering a wrist 

watch, such as the one presented in Figure 3, the primary component might be 

the watch’s wristband, face, crown, or battery cover. 
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Figure 3: Wrist watch primary components 

Step 3. Identify whether the component’s function contributes to 

accomplishing the user’s overall goal. To increase the likelihood that use error 

rate is predictive of the Device-User Complexity (DUC) score, the model only 

includes functions that pertain to actions that are: 

 Necessary for accomplishing the device’s primary objective for use. 

 Applicable in the most common use case.  

For example, a watch’s face provides the time, enabling the user to 

achieve the ultimate goal of monitoring the current time continuously. Moreover, 

a watch user interacts with the watch’s face frequently. Therefore, the 

component meets the aforementioned requirements and included in the DUC 

functional tree at the second hierarchical level.  
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Conversely, the watch’s battery cover relates to an auxiliary function. The 

action associated with the component’s purpose – changing the battery (action) 

to restore power (component’s purpose) – is a low-frequency maintenance 

action. Furthermore, the initial placement and replacement of a watch battery is 

not a typical task of the primary user. As such, users are less likely to commit use 

errors related to replacing the battery, and thus excluded from the DUC 

functional tree.  

Notably, the DUC functional tree excludes functions associated with static 

device labels or markings. Typically, designers implement such elements to 

prevent use errors (Association for the Advancement of Medical Instrumentation, 

2009). For instance, tick marks drawn on a watch’s face facilitate accurate time 

measurements. As such, static labels and markings that are designed 

appropriately are presumably less likely to influence device complexity. 

Step 4. Decompose the function further, when appropriate. To determine 

whether the function affords further decomposition, identify whether the 

primary component associated with the function consists of subcomponents. In 

Figure 4, the watch’s face, a primary component, has three subcomponents, 

including the hour hand, minute hand, and second hand.  

When there are additional subcomponents to address, proceed to Step 5. 

Otherwise, continue with Step 8. 
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Figure 4: Wrist watch subcomponents 

Step 5. Consider a particular subcomponent. In Figure 4, the hour hand is 

a subcomponent of the watch’s face. 

Step 6. Determine whether the subcomponent’s function pertains to 

accomplishing the leading function, and applicable in a typical use case. In the 

wrist watch example, the hour hand supplies the current hour, which enables the 

watch’s face to provide the time of day. Moreover, a watch user interacts with 

the watch’s hour hand frequently. Therefore, the DUC functional tree includes 

the hour hand’s function. Place a subfunction that meets the requirements at the 

following hierarchical level in the DUC functional tree. Exclude a subfunction that 

does not fulfill the requirements. 

Step 7. Decompose the subfunction further, if possible. When the 

subcomponent associated with the leading subfunction consists of one or more 
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subcomponents, repeat Steps 5 – 7. After decomposing all applicable 

subfunctions, proceed with Step 8. 

Step 8. Determine whether the primary component has alternative 

functions. When the primary component has one or more unaddressed 

alternative functions, repeat Steps 3 – 8 for each. Then, continue to Step 9. 

A single component can have several functions. Consider a digital watch 

that displays the current time, a stopwatch, and timer. The watch has a button 

that enables the user to toggle among the three display modes. Thus, the single 

component has three functions, each of which afford decomposing. According to 

Weinger, Gardner-Bonneau, Wiklund, & Kelly (2011) “…with multifunctionality 

comes increased cost and complexity, decreased usability, and increased risk of 

use errors” (p. 700). Therefore, the DUC score accounts for all applicable device 

functions.  

Step 9. Repeat Steps 2 – 8 until the DUC functional tree addresses all 

primary device components. Then, compute the DUC score by employing Bashir 

and Thompson’s (1999) equation. Figure 5 and Equation 3 demonstrate the 

procedure. 
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Figure 5: Wrist watch DUC functional tree 
 

 
Equation 3: Wrist watch DUC calculation 

𝐷𝑈𝐶 = ∑ 𝐹𝑗 ∗ 𝐽

𝑙

𝑗=1

 

 
𝑫𝑼𝑪 = (𝟏)(𝟏) + (𝟑)(𝟐) + (𝟑)(𝟑) = 𝟏 + 𝟔 + 𝟗 = 𝟏𝟔 

For each level, multiply the level’s hierarchical position by the number of 

functions at that level. In Figure 5, there is one function at the first hierarchical 

level, (1)(1) = 1, three functions at the second hierarchical level, (3)(2) = 6, and 

three functions at the third hierarchical level, (3)(3) = 9. The DUC score is the 

summation of the products, 1 + 6 + 9 = 16. The score represents a given device’s 

complexity level. The researcher conducted a preliminary study to valid the DUC 

model. 
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5.2. Preliminary Study 

5.2.1. Purpose 

The purpose of conducting the preliminary study was to validate the DUC 

model for Human Factors application. The metric was adapted from Bashir and 

Thomson’s (1999) functional decomposition method, which estimates the 

number of hours required to design a product. The main objective of developing 

the DUC model was to determine the extent to which device complexity level 

predicts the potential for use errors. The researcher sought to assess the DUC 

model’s validity by examining the relationship between participant perceived 

complexity and device complexity scores, which the researcher quantified using 

the DUC procedure. 

5.2.2. Method 

5.2.2.1. Participants 

The researcher recruited twelve participants from Tufts University Human 

Factors classes. Participants received course credit for participating in the study. 

The researcher assigned all participants a numerical identifier to preserve 

anonymity. The average age of participants was 22.33 years (SD = 1.55). 

Furthermore, the sample of participants included seven females and five males. 

 



 

 31 

5.2.2.2. Devices 

Participants evaluated six devices from three device categories, including: 

two kitchen thermometers (Figure 6 and Figure 7), watches (Figure 8 and Figure 

9), and coffee makers (Figure 10 and Figure 11). The researcher calculated the 

DUC score for each device (Appendix A. ). Each device had a distinct score. 

 
Figure 6: Taylor® Classic Instant Read Pocket  
Thermometer (Kitchen Thermometer 1) –  DUC 8 
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Figure 7: Oneida® Digital Probe Thermometer 

(Kitchen Thermometer 2) – DUC 44 
 

 
Figure 8: Kate Spade® Watch (Watch 1) –  

DUC 14 
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Figure 9: Casio® Sport Watch (Watch 2) –  

DUC 66 
 
 

 
Figure 10: Mr. Coffee® TF5 Coffee Maker (Coffee 

Maker 1) –  DUC 29 
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Figure 11: Cuisinart® Grind & Brew Automatic  

Coffee Maker (Coffee Maker 2) – DUC 112 

5.2.2.3. Experimental Protocol 

All experiments took place in the Human Factors Usability Laboratory 

Observation Room at Tufts University (Figure 12). Upon arrival, the researcher 

provided participants with the informed consent form. Participants were given 

sufficient time to review the form before consenting to participate in the study. 
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Figure 12: Human Factors Usability Lab Observation Room 

The researcher presented participants with six devices as well as the 

devices’ associated IFUs. Next to the devices was a Windows 7 desktop computer 

that displayed a Qualtrics survey. The researcher instructed participants to assess 

the complexity of each device and then respond to survey questions. To ensure 

participants understood the study procedure, the researcher walked each 

participant through three practice questions before allowing the participant to 

work independently. Notably, the researcher instructed the participants to use 

the IFUs solely as a resource for developing an understanding of each device’s 

interface, rather than a factor in their assessments.  

Each IFU was different regarding its legibility and layout. To ensure the 

IFUs’ designs did not bias the participants’ responses (e.g., rating a device as 

more complex due to the IFU’s poor legibility), the researcher revised the IFUs 
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such that the layouts were presented in a consistent format. To increase 

participants’ understanding of how each device functioned, each revised IFU 

displayed three to four images of the device, a list of device components, and 

step-by-step manufacturer instructions on how to use the device.  

5.2.3. Survey 

The survey questions asked participants to assess the complexity of each 

device. Specifically, participants were shown two devices at a time and prompted 

to compare the devices’ complexity levels on a sliding scale. Each survey question 

displayed one device on either side of the scale (Figure 13).  

 
Figure 13: Survey sample question 

Adjusting the slider’s bar toward a device signified the extent to which 

the participant perceived that device as more complex than the other. For 
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example, pushing the slider bar slightly to the right indicated that the device on 

the right was slightly more complex than the device on the left. Notably, leaving 

the slider in the scale’s center indicated that the participant perceived the two 

devices as equally complex.  

The researcher designed the survey to emulate a tournament. All 

participants responded to all possible device pairings. For example, participants 

compared the digital thermometer to the five other devices. Notably, the survey 

presented the device pairings in random order to prevent order effects. 

Participants compared devices on a continuous scale from negative five to 

five (Figure 14). The actual survey did not display the value labels in Figure 14. 

The researcher allocated or “awarded” the quantity to the slider bar’s left to the 

device on the right and vice versa (Figure 15).  
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Figure 14: Survey measurement scale 
 

 
Figure 15: Survey measurement scale score allocation 

Each device appeared five times in the survey. To calculate a final device 

complexity rating, the researcher summed participants’ five ratings of a 

particular device. Therefore, participants’ final device complexity ratings of the 
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six devices produced a ranking. Importantly, the ordinal values possessed 

continuous variable properties. A typical ranking scale merely denotes the one-

point difference between any two items. Eliciting head-to-head comparisons on a 

continuous measurement scale was advantageous because the final complexity 

ratings indicated the extent to which participants perceived a device as more 

complex than another, and not purely a rank difference. 

5.2.4. Results and Discussion 

The tournament process for head-to-head comparisons produced a 

distribution of ratings that reflected the perceived magnitude of the difference 

between any device and all other devices in the tournament. Figure 16 provides 

the average final complexity rating for each device.  

 
Figure 16: Participants’ average final complexity rating per device. Bars indicate +/- 1 
standard deviation. 
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The reasonably low standard deviation for each device suggests that 

there was high agreement among participants regarding their assessments of 

device complexity. To determine the degree of participant agreement, the 

researcher evaluated the interrater reliability using intraclass correlation 

coefficients (ICC) (McGraw & Wong, 1996). The ICC for participant complexity 

ratings was .99, 95% CI [.981, .999], indicating excellent reliability among 

participants. Refer to Appendix B. for the SPSS (IBM, Armonk, NY) output. 

The relationship between DUC scores and participants’ perceptions of 

device complexity appeared non-linear (Figure 17). Therefore, the researcher ran 

a curve estimation regression analysis to determine the model that fit the data 

best. The results indicated that a logarithmic trend was an optimal fit, R2 = .98. 

The proportion of variance in DUC scores accounted for 98.3% of the variance in 

participants’ complexity ratings with adjusted R2 = 97.9%, a high size effect 

according to (Cohen, 1988). The positive value indicates that the variables have a 

positive relationship. Therefore, participants rated devices with higher DUC 

scores as more complex.  
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Figure 17: DUC score and participants' average complexity rating per device 

The variables’ logarithmic relationship suggests that once a device 

reaches a particular complexity level, small incremental differences in complexity 

become increasingly difficult to detect. These findings align with Weber’s Law, 

which expresses the general relationship between the intensity level of a 

stimulus and the minimum amount the stimulus’ intensity must be altered for a 

person to perceive a change. The phenomenon is commonly referred to as the 

difference threshold. According to Weber’s Law, the difference threshold is a 

constant proportion of the stimulus’ initial intensity level. For example, lighting a 

candle in a dark room causes a noticeable increase in illumination level. However, 

a difference in illumination level is less noticeable when a candle is lit in a room 

containing 150 burning candles. Small changes in intensity are difficult to detect 

when the baseline intensity level is relatively high. Thus, participants were more 
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sensitive to a certain increase in complexity when device complexity was 

relatively low and less sensitive to the same increase in complexity when the 

device’s overall complexity was higher. 
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6. Primary Study  

6.1. Research Questions 

The primary study examined the relationship between child development 

and a child’s readiness for participating in the administration of his or her health 

care. The researcher predicted that children who are ten years of age and older 

are capable of demonstrating task mastery with home health care devices.  

The researcher gauged children’s task mastery by comparing their 

performance to that of adults. The primary study explored the impact of child 

development variables on use error rate. The researcher hypothesized that as 

children develop biologically (i.e., hand size, grip strength, dexterity) and 

cognitively, (i.e., reading ability, working memory capacity, understanding of 

numerosity) use error rate decreases. In addition, the primary study related 

device complexity to the prevalence of use errors. The researcher hypothesized 

that there is a positive relationship between DUC scores and use error rate.  

6.2. Method 

6.2.1. Participants 

The primary study included fifty-eight participants from two distinct 

groups: adults and children. The researcher recruited Tufts University 

undergraduates to represent the adult user group. Four adult females and three 

adult males participated in the study. The adult group consisted of seven 

individuals ranging in age from 19 to 21 years (M = 20.30 years, SD = .75 years). 
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Although the FDA defines an adult as 22 years of age or older, the researcher 

classified Tufts students as adults due to prior study results that showed 

individuals nearing the FDA’s pediatric upper age limit received relatively high 

scores on cognitive and motor ability tests (Center for Devices and Radiological 

Health, FDA, n.d.; Hodes, et al., 2014; Tulsky et al., 2013; Wang et al., 2013).   

The researcher recruited the adult participants from Human Factors 

courses. The researcher required them to have at least a Sophomore standing 

and 3.5 cumulative grade point average (GPA) to facilitate the assessment of 

child performance relative to individuals who demonstrated superior academic 

ability.  

 Fifty-one children participated in the study. The researcher recruited 

child participants from the Medford, Arlington, and Somerville communities. The 

child group consisted of 26 males and 25 females ranging in age from six to 12 

years (M = 9.51 years, SD = 2.04 years). Moreover, the study included seven to 

eight child participants at each age.  

The study screened for individuals receiving or eligible for special 

education services (e.g., Individualized Education Plan) or a 504 Plan. Additional 

exclusion criteria included individuals who did not speak English fluently or had 

experience using a blood glucose meter or nebulizer. 

Each participant received a $30 Amazon gift card for participating in the 

study. Adult participants received the additional compensation of extra course 

credit for their participation. 
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6.2.2. Functional Metrics 

The literature identified several biological and cognitive factors that have 

a potential impact on use error rate. This section describes how the researcher 

measured and scored each developmental variable. 

6.2.2.1. Hand Length 

Description: The researcher collected anthropometric data on participant 

hand length.  

Procedure: Participants placed their dominant hand on a piece of paper. 

The researcher marked either side of the hand’s base and traced the hand.  

 Scoring: The researcher measured the distance from the hand’s base to 

the middle finger’s tip in centimeters using a tape measure at a later point in 

time. 
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6.2.2.2. Grip Strength 

Description: The researcher measured participant grip strength using a 

dynamometer (Figure 18). 

 
Figure 18: Jamar® Plus Digital Dynamometer 
 

Procedure: Participants wrapped their dominant hand around the 

dynamometer’s handle, and positioned their arm at a right angle against the 

trunk. With the wrist in a neutral position, participants squeezed the handle with 

maximum force. Participants repeated the procedure with their non-dominant 

hand.  

Scoring: The dynamometer provided a value indicating the amount of 

force participants were able to produce in pounds. The researcher recorded the 

strength of participants’ dominant and non-dominant hands. 
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6.2.2.3. Dexterity 

Description: The researcher administered the NIH Toolbox 9-Hole 

Pegboard Dexterity Test to assess participants’ manual dexterity. Reuben et al. 

(2013) conducted a study that confirmed the test’s validity. The pegboard is 

shown in Figure 19. 

 
Figure 19: Jamar® 9-Hole Peg Test Kit 
 

Procedure: Participants placed nine pegs into the pegboard’s holes one at 

a time using only their dominant hand. When all nine holes were filled, 

participants removed the pegs one at a time from the pegboard. The researcher 

prompted participants to complete the task as quickly as possible. Participants 

completed one practice trial and one timed trial. Then, participants repeated the 

procedure with their non-dominant hand. 
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Scoring: The researcher recorded the amount of time it took participants 

to complete the task in seconds. The researcher only recorded data from the 

second trial with each hand. 

6.2.2.4. Working Memory 

Description: The researcher measured the working memory of 

participants using the NIH Toolbox List Sorting Working Memory Test. Tulsky et al. 

(2013) confirmed that the test is a valid measure of working memory capacity.  

Procedure: The test requires participants to remember a series of items 

and then recite them in the correct order. The researcher used an iPad 2 to 

administer the test. The test’s first task required participants to immediately 

recall and sequence a series of animals that were presented on the screen one at 

a time. For each object, the iPad displayed a picture, and provided the object’s 

name orally (i.e., played an audio recording) and visually (i.e., written text). 

Participants were instructed to recite the objects is size order from smallest to 

largest. Each food list increased by one food item until the participant responded 

to two consecutive lists incorrectly.  

The second task included both food and animals in each series. 

Participants were instructed to recite the food first in size order from smallest to 

largest, followed by the animals in size order smallest to largest. The test ended 

when participants responded to two consecutive lists incorrectly.  

Scoring: Participants received points for recalling and ordering the lists 

correctly. The score ranges from 0-26. 
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6.2.2.5. Reading Ability 

Description: To assess the participants’ reading ability, the researcher 

used the San Diego Quick Assessment of Reading Ability (SDQA) (La Pray & Ross, 

1969). SDQA measures participants’ ability to recognize words out of context, 

also known as isolated word recognition. Smith Jr and Harrison (1983) conduct a 

study comparing SDQA to two widely used graded word reading tests and found 

that the scores were statistically significantly correlated with SDQA scores. 

Therefore, Smith Jr and Harrison (1983) deemed SDQA a reasonable alternative 

for rapidly determining reading level estimates.  

SDQA consists of 13 graded word lists, with ten words in each list. La Pray 

and Ross (1969) designed the metric such that each list represents a distinct 

grade level spanning from pre-primer (i.e., preschool) to eleventh grade. 

Procedure: The researcher presented participants with a word list two 

grades below the participant’s grade level. Participants read the words from each 

list aloud. The researcher terminated the test when participants read three or 

more words incorrectly on a single list. 

 Scoring: The participant’s reading level was the grade level associated 

with the last word list in which the participant read at least eight words correctly. 

6.2.2.6. Functional Numerosity  

Description: A functional numerosity test assessed participants’ ability to 

read and sequence numerical values spanning from one to three digits. 
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Furthermore, the test evaluated the extent to which participants  understood 

decimal notation. 

Procedure: Participants read the five numbers aloud from an iPad screen. 

Then, the researcher instructed participants to sort the numbers from smallest to 

largest. 

Scoring: Participants received points for reading and sequencing the 

numbers correctly. The score ranges from 0-5. 

6.2.3. Survey 

Participants responded to a paper-based survey. Parents of child 

participants completed the survey on their child’s behalf. The researcher had 

three main objectives for distributing the survey. The first objective was to 

ensure participants met the study inclusion criteria. Participant responses  

enabled the researcher to confirm the accuracy of the information collected 

during the screening process, thereby ensuring the individuals qualified to 

participate in the study. The second objective was to elicit data requested by the 

NIH Toolbox iPad application. The application required the entry of certain 

information to administer the assessments, such as participant handedness. The 

researcher’s third objective for distributing the survey was to collect responses to 

several questions that pertained to exploratory variables that the research team 

thought might affect use error rate. 
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6.2.4. Devices 

All participants interacted with four home health care devices intended 

for use by the pediatric population. To increase the generalizability of the study 

results, the researcher assessed participant performance using devices with 

varying indications for use. Specifically, participants performed hands-on tasks 

with two different blood glucose meters (Figure 20 and Figure 21) and nebulizers 

(Figure 22 and Figure 23). Blood glucose meters are typically used by individuals 

diagnosed with diabetes to monitor the approximate level of glucose in their 

blood. Individuals diagnosed with a respiratory disease, such as asthma, chronic 

obstructive pulmonary disease (COPD), or cystic fibrosis commonly use 

nebulizers to administer their medication in the form of a breathable mist. 

 
Figure 20: Nipro® SideKick Blood Glucose Testing System  

(Blood glucose meter 1) 
 



 

 52 

 
Figure 21: OneTouch® VerioIQ Blood Glucose Monitoring  

System (Blood glucose meter 2) 
 

 
Figure 22: Philips® Respironics InnoSpire Elegance  

Compressor Nebulizer System (Nebulizer 1) 
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Figure 23: PARI® eRapid Nebulizer System (Nebulizer 2) 

To assess the extent to which device complexity predicted use error rate, 

each device category (i.e., blood glucose meters, nebulizers) included one device 

with a relatively low and high level of complexity. The researcher utilized the DUC 

procedure to quantify device complexity (Appendix C. ).  

Importantly, the researcher modified the DUC procedure such that the 

functional trees were task-driven. The function trees excluded device 

components that did not pertain to the study tasks outlined in the following 

thesis section. For example, to ensure the devices did not lose power during 

study sessions, the researcher charged the devices before each session. As such, 

participants were not given the opportunity to interact with warning messages 

involving the device power levels, thereby eliminating the possibility of 

committing a use error related to that device component.  
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6.2.5. Tasks 

The researcher employed FDA recommended medical device usability 

testing procedures to acquire use error rates (U.S. Department of Health and 

Human Services, FDA, 2016). Participants performed a series of hands-on tasks 

with four medical devices; two nebulizers and blood glucose meters. The 

researcher designed the primary study such that the medical device tasks 

simulated true use-case scenarios. The intent was to expose the wide range of 

use errors children might commit when placed under inopportune, yet realistic 

circumstances. Specifically, participants did not have prior experience using 

blood glucose meters or nebulizers or receive training before performing the 

medical device tasks. According to Wiklund, Kendler, & Strochlic (2016), 

designing the study to impose stress on participants increases the likelihood of 

uncovering dangerous use errors. 

Notably, participants performed the tasks without parental support. 

Specifically, the researcher asked parents to limit their involvement during the 

session to simply observing the child. When the participant encountered an 

obstacle that prevented them from advancing to the next task step, the 

researcher provided assistance.  

The medical devices included in the study were cleared/approved for 

market. However, participants were merely asked to manipulate the devices and 

simulate their use. The researcher did not instruct participants to inhale 

medicine through the nebulizers or lance themselves for glucose testing. The 
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devices’ associated packaging and documentation (e.g., instructions-for-use 

[IFU]), quick reference guide [QRG]) were available to the participants for all 

tasks. To account for ordering effects on participants’ performance with the 

devices, the researcher counterbalanced the order in which participants 

interacted with each device. 

After administering the functional tests, the researcher oriented 

participants to each device, including brief descriptions of the devices’ intended 

users and indications for use. Before working with each device, participants read 

a task description aloud from a card and then performed the task. The researcher 

read the task information to participants who did not demonstrate the literacy 

skills to read the material independently.  

Participants performed the same task with both nebulizers. The task 

prompted participants to imagine they returned home from the pharmacy with 

the new device and the physician instructed them to take a 2.5 ml breathing 

treatment. The researcher provided participants with saline nebulizer solution 

(i.e., sodium chloride) to prepare the device for a treatment. Each participant 

utilized a new mouthpiece to simulate the inhalation to prevent cross-

contamination by multiple users. The new mouthpiece was not attached to any 

other nebulizer pieces to ensure participants did not inhale any residual 

medication. 

The task involving blood glucose meters instructed participants to take a 

blood glucose test, and then locate and read the last three blood glucose values 
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the meter saved. The researcher did not require participants to prick themselves 

with the lancing device or interact with any medicine. Rather, the participants 

simulated the blood glucose test with control solution.  

To determine whether participants read and interpreted the glucose 

value correctly, the researcher prompted participants to (1) read the glucose 

value they attained, and indicate whether the glucose value was (2) good or bad, 

(3) too high or low, and (4) the action s/he would take next (e.g., take insulin, eat 

a snack). Notably, before performing blood glucose meter tasks, the researcher 

explained the diabetes-related concepts necessary to interpret the glucose value 

correctly. Moreover, participants had access to a chart that specified normal 

blood sugar levels for children with diabetes. 

6.2.6. Interviews 

After performing each task, participants responded to a series of 

interview questions. First, participants’ rated the device’s ease of use on a 7-

point scale (Figure 24). The researcher color-coded the scale to increase the 

reliability of responses from children who had difficulty reading the scale’s text.  
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Figure 24: Ease of use scale 

Then, the researcher asked participants to recall whether they made any 

mistakes (i.e., use errors) during the task. According to Wiklund et al. (2016), 

participants might commit use errors that are difficult for the researcher to 

detect, such as misinterpreting an on-screen menu option’s label. When 

participants reported committing a use error during the primary study, the 

researcher asked follow-up questions to facilitate accurate documentation. In 

addition, the researcher asked participants to recall any times when they almost 

made a mistake, but ultimately did not (i.e., close call) or found a certain aspect 

of the task confusing or difficult (i.e., operational difficulty) (Wiklund et al., 

2016). 

After participants had performed tasks with both devices in a particular 

device category, the researcher followed up on any use errors, close calls, 

operational difficulties, or instances when the researcher needed to intervene 

and provide assistance. The interview’s purpose was to ascertain the root causes 
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associated with the issues. The root cause analysis aided in differentiating 

between interaction problems associated with personal developmental deficits 

and those associated with underlying design issues. For example, a child might 

commit a use error because the device’s display suffers from low contrast. 

Therefore, we can attribute the error to a usability issue that is not child-specific.  
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6.2.7. Experimental Protocol 

During the recruiting process, the researcher provided participants with 

information regarding the study procedure and basic elements of informed 

consent (e.g., foreseeable risks, benefits, confidentiality of records). The 

researcher scheduled individuals (or parents of individuals) who expressed 

interest in (their child) participating in the study and met the study inclusion 

criteria. All study activities took place at Tufts University’s Human Factors 

Usability Lab (Figure 25). Each study session lasted up to 1.5 hours. 

 
Figure 25: Human Factors Usability Lab 

When participants arrived at the usability lab, the researcher provided 

each parent and adult participant with a consent form and survey. Child 

participants received assent forms. Once the researcher addressed all questions 

concerning the consent and assent forms, the study activities began. The 
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researcher asked parents of child participants to remain in the usability lab for 

the study session’s duration. Notably, the researcher recorded each study session 

to facilitate data entry. Study session activities included: 

 Explaining the study’s purpose. 

 Administering functional tests. 

 Orienting participants to each medical device, including brief 

descriptions of the devices’ intended users and indications for use. 

 Instructing participants to perform one hands-on task with each 

medical device. 

 Collecting participants’ subjective rating of each device’s ease of use. 

 Asking participants whether they recalled making any mistakes, 

incidences of close calls, or operational difficulties. 

 Following up on any use errors, close calls, operational difficulties, or 

assists that were not addressed during the post-task interview. 

 Compensating the participant. 

6.2.8. Data Collection  

As participants performed the study tasks, the researcher utilized 

checklists to determine whether participants were taking the appropriate actions 

with each device. The researcher generated the checklists using the perception, 

cognition, and action (PCA) task analysis technique (International 

Electrotechnical Committee (IEC), 2015). The procedure facilitated a more 

comprehensive understanding of the task workflow and aided in identifying the 

types of errors that could result in harm.  
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During approximately half of the study sessions, a research assistant 

recorded the information in a Microsoft® Excel spreadsheet simultaneously. The 

research team collected the following data: 

 Use errors 

 Close calls 

 Operational difficulties 

 Instances of assistant from the researcher 

 Ease of use ratings 

 Level of IFU usage 

 

To ensure the research team was consistent in their assessments, the 

researcher developed guidelines to which the team adhered during the study 

sessions. Table 1 describes the criteria the researcher implemented to document 

the extent of participant IFU usage.  

Table 1: IFU usage scoring criteria 

IFU score Description 

1 
The participant did not acknowledge the IFU (e.g., did not remove the 
IFU from its packaging). 

2 
The participant acknowledged the IFU (e.g., removed the IFU from its 
packaging, unfolded or opened the IFU), but did not reference the IFU’s 
text or graphics. 

3 
The participant referenced the IFU’s text or graphics, but did not read all 
IFU text that pertained to accomplishing the task.  

4 
The participant read all IFU text that pertained to accomplishing the 
task. 
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The researcher developed similar criteria for use errors, close calls, and 

operational difficulties. For example, the blood glucose meter IFU instructs users 

to wash the injection site before performing a blood glucose test to reduce the 

chance of infection. Therefore, the researcher definitively determined that 

participants who did not use the hand sanitizer provided or indicate that they 

would wash the injection site committed the use error. Furthermore, the 

research team documented participant reported root causes and any comments 

about their experience working with the devices. 

Notably, the researcher collected data on device ease of use and IFU 

usage to ensure the primary study fully emulated a typical validation usability 

test design. The analyses involving these data are outside the scope of this thesis, 

and thus not addressed in the Results section. 

6.3. Results and Discussion 

6.3.1. Age and Use Error Rate 

The first research objective pertained to evaluating the relationship 

between use error rate and age. The researcher sought to investigate the 

transition point when children become capable of participating in their own care. 

Table 2 provides descriptive statistics of use error rate categorized by age group 

and subgroup. In this section, use error rate refers to the average number of 

safety-related use errors children committed with all devices. The intent was to 

generate results that are generalizable to a wide range of home health care 
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devices on the market that are intended for use by children. Overall, use error 

rate appeared to decline with age. The scatter plot in Figure 26 represents the 

continuous relationship between children’s age and use error rate.  

Table 2: Use error descriptive statistics for groups and subgroups 

Age groups N Range Mean SD 

Children (6 – 12 years) 51 1.8 – 9.0 5.5 0.3 

    6 years 7 7.0 – 9.0 8.3 0.7 

    7 years 8 5.5 – 8.3 6.9 0.8 

    8 years 7 4.8 – 7.8 6.3 1.3 

    9 years 7 3.5 – 6.5 5.0 1.1 

    10 years 7 2.8 – 5.8 4.6 1.0 

    11 years 8 1.8 – 5.3 3.7 1.3 

    12 years 7 1.8 – 4.5 3.6 1.2 

Adults (19 – 21 years) 7 2.3 – 4.0 3.3 0.7 

 

 
Figure 26: Use error rate and children’s age 
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An initial visual inspection of the data’s trend revealed a potential 

curvilinear relationship between the variables. Use error rate appeared to 

decrease steadily and reach a plateau at later ages. This triggered further analysis 

to determine the best-fit line. A curve estimation regression analysis confirmed 

that a logarithmic model optimized the fit. Therefore, the researcher 

transformed the x-axis (age) logarithmically to base 10 to coax the independent 

and dependent variables into a linear relationship. To determine the extent to 

which age and use error rate were related, the researcher computed a Pearson 

product-moment correlation coefficient. Refer to Appendix D. for the primary 

study SPSS output. 

The correlation results indicate that there was a statistically significant 

negative relationship between the two variables, r = -.84, p < .001. Overall, age 

was strongly associated with the average number of use errors children 

committed with all devices. The variables’ negative relationship indicates that 

children who were older were less likely to commit use errors. Furthermore, the 

variables’ curvilinear relationship denotes little variation among older children 

relative to younger children regarding the number of use errors they committed. 

The result suggests that at a particular point in development, children converge 

in their ability. Therefore, the six to 12 age range might contain the minimum age 

required to perform medical device tasks with minimal error. 

To identify the point in development when children possess the 

prerequisites to perform medical device tasks successfully, the researcher 



 

 65 

compared children’s performance to that of adults. The adult group included 

Tufts University students who possessed high cognitive and physical ability. The 

intent was to identify the minimum number of use errors the adult population is 

likely to commit with each medical device.  

Table 3 describes the use errors that adults and child participants 

committed during the study. The table excludes use errors that were unique to a 

particular device. 
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Table 3: Number and percentage of participants who committed particular use errors (UEs) 

Use error description 
No. of adults who 
committed UE (%) 

No. of children who 
committed UE (%) 

Blood glucose meters   

Did not check the expiration date 7 (100) 51 (100) 

Did not wash hands  6 (85.7) 50 (98.0) 

Did not close the vial cap immediately  3 (42.9) 30 (58.8) 

Did not touch sample to the test strip’s 
channel  

2 (28.6) 33 (64.7) 

Did not discard the test strip properly 1 (14.3) 13 (25.5) 

Did not interpret the test result correctly 0 (0) 20 (39.2) 

Sample was too small 0 (0) 17 (33.3) 

Did not select a correct injection site 0 (0) 16 (31.4) 

Applied the sample to the test strip before 
inserting the test strip into the meter’s port 

0 (0) 10 (19.6) 

Read the blood test result incorrectly 0 (0) 9 (17.6) 

Inserted the test strip in the wrong 
orientation into the meter  

0 (0) 5 (9.8) 

Removed more than one test strip from the 
vial 

0 (0) 4 (7.8) 

Nebulizers   

Did not inspect for damage 6 (85.7) 51 (100) 

Dispensed too much solution 4 (57.1) 30 (58.8) 

Did not secure lips around the mouthpiece 2 (28.6) 13 (25.5) 

Did not dispense solution into the medicine 
cup 

1 (14.3) 28 (54.9) 

Dispensed too little solution 1 (14.3) 12 (23.5) 

Spilled solution 1 (14.3) 10 (19.6) 

Did not breathe through the mouthpiece 0 (0) 22 (43.1) 

Did not sit upright during the treatment 0 (0) 9 (17.6) 

Note. Participants might have committed a particular use error one or more times with 
one or both devices. 

The scatter plot in Figure 27 compares the average number of use errors 

children and adults committed with all devices. The area between the dotted 
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lines represents the 99% confidence interval for mean adult use error rate, 99% 

CI [2.336, 4.306]. The confidence interval indicates the range estimated to 

contain the population mean for adult participants. The researcher selected a 

slightly higher confidence level than the typical 95% level to increase the 

likelihood that the interval contained the true mean. The researcher defined the 

99% confidence interval upper limit as an estimation of the maximum number of 

use errors adults are likely to commit when performing tasks with medical 

devices similar to those in the study.  

 
Figure 27: Use error rate by age group. The area between the dotted line indicates the 99% 
CI for adult use error rate. 

Figure 28 represents the percentage of children at each age who 

performed the medical device tasks with minimal error. The researcher defined 
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minimal error as falling below the 99% confidence interval upper limit for adult 

participants.  

 
Figure 28: Percentage of children who performed with minimal error by age 

All participants who were eight years of age or younger fell below the 

interval upper limit. Those children committed a high number of use errors 

compared to adult participants. Forty-three percent of children who were nine 

years of age performed with minimal error. The substantial rise suggests there 

were 9-year-olds who had met the developmental milestones necessary to use a 

medical device successfully. It appeared there were additional variables creating 

a barrier to sufficient performance for children who were younger than nine.  

The percent decreased slightly in children who were ten years of age; 

twenty-nine percent performed with minimal error. The drop in performance is 
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noting that the study design was cross-sectional, rather than longitudinal. The 

random sample of nine-year-olds might have been more developmentally 

equipped to perform the medical device tasks than those who were ten years of 

age. Moreover, the small sample sizes likely inflated the minor discrepancies 

between children close in age. 

More than half of children who were 11 and 12 years of age performed 

with minimal error. Although this is high compared to the sample of younger 

children, roughly 40% of 11- and 12-year-olds committed an excessive number of 

use errors. As such, children’s developmental capabilities might play a significant 

role in their ability to use medical devices adequately. These results align with 

the previous notion that children might not converge in their ability at the same 

age. Therefore, the researcher sought to investigate the developmental 

milestones the children who performed well had met.  

The following subsections assess the relationship between various 

external factors and use error rate. Understanding the degree to which each 

variable was related to use error rate facilitated a more accurate interpretation of 

the factors that had the strongest association with task performance. The 

researcher categorized the data collected from the functional assessments and 

survey into two variable groups: (1) developmental and (2) exploratory. 

6.3.2. Developmental Variables and Use Error Rate 

The literature indicated several developmental variables that might have 

a strong relationship with use error rate. The researcher measured two higher-
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level aspects of child functioning, including biological and cognitive. This section 

discusses the extent to which use error rate was related to the following 

developmental variables: 

 Biological 

o Hand length 

o Dominant and Non-dominant dexterity 

o Dominant and Non-dominant grip strength 

 Cognitive 

o Working memory 

o Reading ability 

o Functional numerosity 

 

The study protocol included valid metrics to assess children’s level of 

biological and cognitive development, each of which is described in the Method 

section. Table 4 provides descriptive statistics of children’s functional assessment 

results. 

Table 4: Descriptive statistics of children’s functional assessment results 

Developmental variable Range Mean SD 

Biological     

Hand length (cm) 12.3 – 18.8 15.2 1.5 

Dominant dexterity (seconds) 16.7 – 26.2 21.0 2.6 

Non-dominant dexterity (seconds) 16.7 – 35.9 23.6 4.2 

Dominant grip strength (lbs) 14.4 – 67.0 33.5 12.3 

Non-dominant grip strength (lbs) 14.6 – 67.3 31.6 11.3 

Cognitive    

Working memory (number correct) 8 – 23 16.2 3.4 

Reading ability (grade level) -2 – 11 5.3 3.4 
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Functional numerosity (number correct) 0 – 5 3.3 1.8 

  Note. Reading ability of -2 = Below preschool; -1 = Preschool; 0 = Kindergarten 

The scatter plot in Figure 29 illustrates the relationship between hand 

length and the number of use errors children committed with all devices. The 

green data points represent children who perform the tasks with minimal error.  

 
Figure 29: Use error rate and children’s hand length 

Thirty-six percent of children who had a hand length of at least 14.06 cm 

performed with minimal error. Therefore, possessing a hand length below 

approximately 14 cm (5.5 inches) might create a barrier to performing 

autonomously with medical devices. To confirm the accuracy of this result, the 

researcher computed a Pearson correlation to assess the strength of association 

between children’s hand length and use error rate. 
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Hand length was significantly correlated with the average number of use 

errors children committed with all devices, r = -.696, p < .001. The negative value 

indicates that children with relatively longer hands were less likely to commit use 

errors. However, most developmental variables tend to correlate with age. Thus, 

children’s age might have influenced the significant result. This triggered further 

analysis to determine the unique variance between hand length and age. The 

researcher ran a partial correlation and controlled for age to eliminate its impact 

on the result. Hand length and use error rate were not significantly correlated 

while controlling for age, r = .023, p = .436. Therefore, the researcher cannot 

conclude that children’s hand length influenced use error rate. 

The researcher ran an additional Pearson correlation to determine 

whether the other developmental variables were highly associated with use error 

rate and age. Notably, the researcher conducted a Spearman correlation to 

evaluate the extent to which functional numerosity scores were related to age 

because the data were not normally distributed. 

The results indicated that all developmental variables were significantly 

correlated with use error rate as well as age (Table 5). Therefore, the preceding 

correlation analyses assessing the relationship between developmental variables 

and use error rate, control for the effects of age. Running partial correlations 

enabled the researcher to examine the unique influences of developmental 

variables on use error rate. 
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Table 5: Correlation between developmental variables and age 

Developmental variables 
Use error rate 

Correlation coefficient 
Age 

Correlation coefficient 

Hand length -.696** .848** 

Dominant grip strength -.737** .871** 

Non-dominant grip strength -.712** .832** 

Dominant dexterity -.411* -.541** 

Non-dominant dexterity -.596** -.682** 

Working memory -.685** .690** 

Reading ability -.751** .785** 

Functional numerosity  -.795** .884** 

Note. * p < .01; ** p < .001  

As discussed previously, children’s grip strength might influence their 

ability to perform some home health care device tasks. Medical devices tend to 

require a relatively high amount of grip strength. For example, during the 

primary study, children likely employed grip strength when opening vial caps for 

glucose testing and connecting nebulizer components. As such, the researcher 

utilized a dynamometer to assess the amount of force participants were able to 

produce with their hands. The scatter plots in Figure 30 and Figure 31 represent 

the relationship between use error rate and children’s dominant and non-

dominant grip strength, respectively. 
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Figure 30: Use error rate and children’s dominant grip strength 
 
 

 
Figure 31: Use error rate and children’s non-dominant grip strength 

 When the variance from age was eliminated, use error rate was not 
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or non-dominant grip strength, r = -.070, p = .316. Similar to children’s hand size, 

age appeared to control the relationship between grip strength and 

performance. Therefore, the researcher cannot conclude that children’s grip 

strength was related to committing use errors. Subsequently, the researcher did 

not include an analysis concerning the level of grip strength children who 

performed with minimal error possessed. 

The researcher hypothesized that children’s level of fine motor ability was 

significantly related to use error rate. Both school nurses expressed that children 

with poor dexterity are less likely to perform medical device tasks successfully. 

Moreover, the literature indicated that dexterity tends to plateau during 

childhood, suggesting that children’s age might not have a strong influence on 

the relationship between fine motor skills and committing use errors .  

The researcher administered the 9-Hole Pegboard test to assess children’s 

level of fine motor skill. The scatter plots in Figure 32 and Figure 33 illustrate the 

association of use error rate and children’s dominant and non-dominant 

dexterity, respectively. The values on the x-axes represent the total number of 

seconds it took children to complete the task. Higher values indicate lower levels 

of fine motor ability. 



 

 76 

 
Figure 32: Use error rate and children’s dominant dexterity 
 

 
Figure 33: Use error rate and children’s non-dominant dexterity 
 

The partial correlation results indicated that use error rate was not 

significantly correlated with dominant, r = -.079, p = .292, or non-dominant 
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might depict a relationship between the variables, the analysis revealed that age 

influenced their association greatly. The researcher cannot conclude that 

children’s level of dexterity had an impact on performing the tasks. Overall, all 

biological variables were not significantly related to committing a greater number 

of use errors. 

The researcher hypothesized that use error rate would decrease as 

children’s working memory capacity increased. The literature indicated that 

developmental increases in working memory tend to have a positive effect on 

children’s ability to communicate and problem solve effectively. The fact that 

children’s working memory capacity typically plateaus around ten years of age 

lead to the prediction that working memory capacity impacts children’s ability to 

perform medical device tasks properly.  

Figure 34 represents the relationship between children’s working 

memory score and use error rate. The values on the y-axis represent the score 

participants received on the working memory test. A higher score signifies a 

greater working memory capacity. The researcher ran a partial correlation to 

assess the variables’ relationship. 
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Figure 34: Use error rate and children’s working memory score 

There was a negative partial correlation between working memory score 

and use error rate while controlling for age, which was statistically significant, r = 

-.279, p = .026. The negative relationship indicates that children who were 

capable of recalling and sequencing more pieces of information were less likely 

to commit use errors. Importantly, age had little influence in controlling the 

relationship between working memory and use error rate. This prompted further 

analysis to ascertain the minimum working memory score children who 

performed with minimal error obtained.  

The results indicate that approximately 40% of children who scored a 15 

or higher on the working memory test committed the minimum number of 

errors while performing the medical device tasks. However, the working memory 

scores are rather arbitrary. Therefore, the researcher rescored the assessment to 
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produce scores that represent the number of information elements  (e.g., 

animals, foods) children were able to recall and sequence correctly. The score 

takes the average of the number of items children recited correctly on both tasks. 

The scatter plot in Figure 35 shows the relationship between the two scoring 

methods.  

 
Figure 35: Raw vs. modified working memory score 
 

The results of a Pearson correlation denoted a strong correlation between 

the raw and modified working memory scores, r = .976, p < .001. Ultimately, the 

modified score afforded a more practical interpretation of receiving a raw score 

of 15 on the working memory test. A score of 15 or higher equates to reciting 

four to five pieces of information correctly with the one- and two-category list, 

respectively.  
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Furthermore, the researcher hypothesized that there would be a negative 

relationship between children’s reading ability and use error rate. Increases in 

reading ability are known to influence children’s capacity to process and 

understand information. Therefore, reading at a higher level might increase the 

likelihood of performing medical device tasks successfully. The researcher sought 

to evaluate the relationship between children’s reading ability and use error rate. 

The scatter plot in Figure 36 illustrates the relationship between the variables. 

The reading ability assessment produced scores that indicated the grade level for 

which children read. The values on the x-axis denote the extent of children’s 

reading level by grade level. 

 
Figure 36: Use error rate and children’s reading ability 
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controlling for age. The partial correlation yielded a statistically significant 

results, r = -.291, p = .020. Therefore, children who possessed a greater capacity 

to read words out of context committed few use errors. Importantly, 40% of 

children who performed the medical device tasks with minimal error read at a 

fifth-grade level or higher. A substantially higher percentage of children, roughly 

60%, performed at an effective level when they read at a seventh-grade level or 

higher.  

The final developmental variable the researcher tested for was children’s 

understanding of numerosity. The assessment evaluated participants’ ability to 

read and sequence numerical values spanning from one to three digits. 

Furthermore, the test evaluated the extent to which participants understood 

decimal notation. Many home health care devices require such skills to perform 

tasks effectively. In the primary study, the blood glucose meters required the 

ability to perform numeric operations with three digit numbers  to interpret the 

results correctly. Moreover, the nebulizers required measurement skills for 

calculating medication doses. Thus, the researcher hypothesized that children 

who received relatively high scores on the functional numerosity test would 

commit fewer use errors (Figure 37).  
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Figure 37: Use error rate and children’s functional numerosity score 

The researcher ran a partial correlation to determine the extent to which 

children’s understanding of numerosity is related to use error rate when 

removing the effects of age. The results showed a non-significant correlation, r = 

-.231, p = .057. Functional numerosity scores fell just short of significance. 

Notably, the correlation evaluated the extent to which the variable was 

associated with committing use errors with all four medical devices. While 

numerosity was not statistically significantly related to the overall rate of use 

errors, the near-significant p-value suggests a correlation between children’s 

understanding of numerosity and committing individual types of use errors. 

Therefore, the researcher ran a point-biserial partial correlation to assess the 

relationship between children’s functional numerosity scores and committing 

discrete use error types, while controlling for age.  
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Figure 38: Children's functional numerosity score and reading blood test result 

The analysis yielded a statistically significant result for the use error 

pertaining to reading the blood test result, r = -.293, p = .044. Children who were 

incapable of demonstrating a comprehensive understanding of numerosity 

tended to read the blood test result incorrectly. Although numerosity might not 

have a strong influence on children’s overall task performance, the results 

indicated that relatively low numerosity scores were related to committing a 

critical error, and ultimately created a barrier to essential performance for those 

children.  
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6.3.3. Exploratory Variables and Use Error Rate 

The survey elicited data on several exploratory variables that might 

impact use error rate, including:  

 Gender 

 Handedness 

 Parent education level 

 Medical device familiarity 

The researcher conducted a correlation analysis to assess the extent to 

which each exploratory variable was related to use error rate. Table 6 

summarizes the correlation results. 

Table 6: Correlation between exploratory variables and use error rate 

Cognitive variable Correlation coefficient 

Gender -.021 

Handedness -.076 

Parent education level -.125 

Medical device familiarity -.043 

There were 26 male and 25 female child participants in the primary study. 

Male use error rate (M = 5.53, SD = 1.79) was slightly higher than female use 

error rate (M = 5.45, SD = 2.09). Figure 39 summarizes the relationship between 

gender and the average number of use errors children committed with all four 

devices.  
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Figure 39: Use error rate and children's gender 

To determine the strength of the relationship between children’s gender 

and use error rate, the researcher ran a point-biserial correlation. The results 

indicated that there was not a statistically significant correlation between gender 

and use error rate, r = -.021, p = .885. Therefore, the researcher cannot conclude 

that gender influenced the number of use errors children committed. 

Forty-six child participants were right-handed and five were left-handed. 

Left-handed participants (M = 5.05, SD = .99) committed slightly fewer use errors 

than right-handed participants (M = 5.54, SD = 2.00) on average with all four 

medical devices (Figure 40).  
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Figure 40: Use error rate and children's handedness 

The results of a point-biserial correlation indicated that the relationship 

between use error rate and children’s handedness was non-significant, r = -.021, 

p = .595. Differences in handedness did not appear to correlate with the number 

of use errors children committed. 

The survey asked parents to indicate the highest level of education they 

completed. A majority of parents had received a bachelor or master’s degree. 

Several parents reportedly had a doctorate, and three parents had solely a high 

school degree. 
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Figure 41: Use error rate and parent education level 

The researcher ran a Pearson correlation to evaluate the relationship 

between the highest level of education participants’ parents completed and the 

average number of errors children committed. The results indicated that the 

variables were not significantly related, r = -.125, p = .383. 

Several children had seen their family members use medical devices in 

the past. Parents of participants reported a wide range of devices types, 

including nebulizers, blood glucose meters, inhalers, auto-injectors, and blood 

pressure gauges. The researcher conducted a Pearson correlation to determine 

whether children’s familiarity with medical devices was related to committing 

use error (Figure 42). 
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Figure 42: Use error rate and children's familiarity with medical devices 

The results indicated that children’s level of exposure to medical devices 

was not significantly associated with use error rate, r = -.043, p = .766. As shown 

in Table 6, none of the exploratory variables were significantly related to use 

error rate. 

6.3.4. Summary of Correlation Results 

All six developmental variables were statistically significantly correlated 

with the average number of use errors children committed with all devices (Table 

7). However, the variables were strongly correlated with age (Table 5). Thus, the 

researcher reran the correlation matrix while controlling for the influence of age. 

Subsequently, six variables were no longer significant, including children’s hand 

size, dominant and non-dominant grip strength, dominant and non-dominant 

dexterity, and functional numerosity score. Two variables remained significant 
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when controlling for age, including children’s working memory scores and 

reading level. Furthermore, use error rate was not significantly correlated with 

children’s gender or handedness, parent education level, or having seen a family 

member use a medical device. 

Table 7: Correlation between developmental variables and use error rate 

Developmental variables Correlation coefficient Correlation coefficient 

Control None Age 

Hand length -.696*** .023 

Dominant grip strength -.737*** -.054 

Non-dominant grip strength -.712*** -.070 

Dominant dexterity -.411** -.079 

Non-dominant dexterity -.596*** -.075 

Working memory capacity -.685*** -.279* 

Reading ability -.751*** -.291* 

Understanding of numerosity -.793*** -.231 

Note. * p < .05; ** p < .01; *** p < .001  

The correlation results provided an estimation of the extent to which 

each variable was related to committing use errors. However, a correlation 

coefficient does not indicate whether variables are substantial predictors of the 

outcome variable. Therefore, the researcher conducted a multiple regression to 

determine whether age and the aforementioned variables predicted use error 

rate. 
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6.3.5. Multiple Regression Analysis 

The researcher ran a multiple regression to understand whether use error 

rate can be predicted based on children’s age and developmental capabilities 

tested for during the primary study. The method was appropriate because 

several predictor variables were not independent of each another. When 

assessing whether one variable significantly predicts another, a multiple 

regression advantageously removes the influence of the subsequent 

independent variables. The procedure enabled the researcher to assess the 

unique contribution of each predictor variable. Notably, the researcher 

transformed age logarithmically. 

The stepwise regression approach scanned for the predictor variable with 

the highest R2 value, and then repeated the process until all remaining variables 

were non-significant. There were two observations with Cook’s distance greater 

than one, adding undue effects on the model. Therefore, the researcher excluded 

those cases from the analysis. The multiple regression model statistically 

significantly predicted use error rate from children’s age and working memory 

scores, F(2,44) = 68.484, p < .001. The R2 for the overall model was 75.7% with an 

adjusted R2 of 74.6%, a large size effect. Regression coefficients and standard 

errors can be found in Table 8. 
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Table 8: Summary of multiple regression analysis 

Variable B SEB  

Intercept 21.836 1.570 - 

Age -14.555 2.114 -.700* 

Working Memory -.134 .060 -.227* 

Note. * p < .05; B = unstandardized regression coefficient; SEB = Standard error of the 

coefficient;  = standard coefficient 

6.3.6. Discussion of User Characteristic-Related Use Errors 

The researcher’s initial prediction stated that children who were ten years 

of age and older would demonstrate task mastery with home health care 

devices. The findings suggest that children younger than ten were capable of 

performing medical device tasks safely and effectively. Nearly half of children 

who were nine years of age performed at a comparable level to adults. 

Importantly, children who were younger than nine did not demonstrate the 

ability to perform tasks with minimal error. The deviation from misuse at nine 

years of age has implications for (1) clinicians and parents assessing children’s 

readiness to manage aspects of their own care and (2) medical device 

manufacturers who want to design their devices to meet children’s needs 

effectively.  

6.3.6.1. Implications for Parents and Clinicians 

Children who were nine years of age and older had a greater opportunity 

for success. As such, parents and clinicians working with a child who is at least 

nine years of age can begin to assess the child’s readiness to assume health-
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related responsibilities. The aspects of biological and cognitive development that 

were significantly related to committing relatively few use errors included hand 

length, dexterity, grip strength, working memory capacity, reading ability, and 

understanding of numerosity. Importantly, two variables remained significant 

when controlling for the effect of age. The first variable pertained to children’s 

working memory capacity. Scores on the working memory test were significantly 

negatively correlated with use error rate. Children who scored higher were less 

likely to commit use errors. Moreover, nearly half of children who performed the 

medical device tasks with minimal error were capable of recalling and 

sequencing at least four to five items, depending on the number of item 

categories. 

 Children’s reading ability was the second factor that was significantly 

related to use error rate. Children who read at a higher grade level were less 

likely to commit use errors. Almost half of children who completed the medical 

device tasks with minimal error read above a fourth-grade level. However, the 

multiple regression results revealed that children’s reading ability was not a 

significant predictor of use error rate.  

Age and working memory accounted for a significant amount of the 

variance in use error rate. Therefore, parents and clinicians can optimize their 

ability to gauge readiness and provide more developmentally appropriate care by 

bearing in mind the child’s age and working memory capacity. To determine with 

reasonable certainty whether children are fit to manage aspects of their own 
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care, parents and clinicians should ensure the child is at least nine years of age 

and capable of storing, processing, and manipulating at least four pieces of 

information. Parents and clinicians can assess children’s working memory 

capacity rather quickly by showing images/reading the names of four items (e.g., 

foods, animals, appliances, clothing) consecutively, and then instructing the child 

to recite the objects verbally in some predetermined order (e.g., size order, 

alphabetical order).  

Notably, parents and clinicians should take caution when generalizing 

these results to specific device types. Although the study results indicated that 

children’s age and working memory capacity accounted for the greatest amount 

of variance in overall use error rate, there are additional factors to consider. To 

definitively determine whether a child is capable of self-administering treatment 

with a particular device, parents and clinicians need to have a comprehensive 

understanding of the device-specific biological and cognitive demands. 

Accordingly, a diabetes nurse educator or respiratory therapist could develop 

checklists to support clinical decision-making when determining whether a child 

is capable of using certain devices. An example of a checklist item for a blood 

glucose meter might include verifying that the child can solve problems involving 

subtraction with three-digit numbers before considering whether to allow him or 

her to interpret his or her own glucose test results.  
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6.3.6.2. Implications for Medical Device Manufacturers 

The correlation and regression findings provided insight into the 

noticeable deviation in performance around nine years of age. Medical device 

manufacturers should consider drawing on the study results to inform the 

development of home health care device user interfaces and associated 

instructions and training. This section offers several design recommendations to 

mitigate risk associated with devices intended for use by children. 

Recommendation 1. Ensure device user interfaces, IFUs, and training 

materials do not impose excessive demand on children’s working memory. The 

device should not require children to process greater than four information 

elements simultaneously. For example, limit the number of menu options 

available on a software interface screen or modify scaffolding strategies during 

training such that the trainer models four task steps, and then provides the child 

with an opportunity to demonstrate comprehension and ask questions before 

proceeding. 

Recommendation 2. Consult grade-level mathematic standards (e.g., the 

Common Core State Standards) to identify whether a typical nine-year-old child 

possesses the knowledge to demonstrate essential performance with the 

medical device in development. If not, consider implementing some form of risk 

mitigation. For example, physicians commonly prescribe nebulizer albuterol 

dosages between 2.5 and 5 ml to children diagnosed with asthma. However, a 

nine-year-old who lives in a state that has adopted the Common Core Standards 
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has not been introduced to the concept of decimal notation. Therefore, a device 

manufacturer developing a nebulizer intended for use by children could increase 

the likelihood that children measure medication doses accurately by color-coding 

the medicine cup’s graduation lines. Then, task success does not rely on the 

child’s understanding of numerosity. 

Recommendation 3. The 5th-percentile nine-year-old is capable of 

producing approximately 18 pounds of force with his or her hands (Reuben et al., 

2013). Therefore, consider designing devices such that the devices ’ components 

require a maximum force of approximately 18 pounds. Doing so will ensure 95% 

of nine-year-old children who desire to participate in their own care can perform 

task steps that require grasping and applying force to an object, such as removing 

a cap or pressing tabs to release a device component.  

Recommendation 4. Ensure all device labeling is written at a third-grade 

reading level or lower to increase the likelihood that an average nine-year-old 

can read and comprehend the text. Device manufacturers might not find this 

recommendation ideal when the medical device is intended for use by both the 

pediatric and adult population. As such, a manufacturer could design the device 

as intended for adults and then implement supplementary, “child-friendly” 

design elements. For instance, include an additional IFU that is written at an 

appropriate level for children. Device with software user interfaces could include 

a child-driven design setting that simplifies the on-screen text and provides 
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additional learning aids, such as an animated graphic depicting a person inserting 

the test strip into the meter in the correct orientation. 

Accounting for children’s biological and cognitive development during the 

design process can potentially reduce the barriers to proper chronic disease 

management for children. 

6.3.7. Device Complexity and Use Error Rate 

The primary study’s second objective pertained to relating device 

complexity to the prevalence of use errors. The researcher hypothesized that 

there would be a positive relationship between device complexity and use error 

rate. The researcher quantified device complexity using the Device-User 

Complexity scoring procedure. 

To assess the relationship between DUC score and use errors frequency, 

the researcher ran a linear mixed-effects model (LMM) with repeated measures. 

A correlation was not the appropriate statistical analysis because the primary 

study’s design had both within- and between-subject elements. Each child 

(between-subjects) performed one task with each device (within-subjects). The 

same 51 participants committed use errors with a device at each complexity 

level. Unlike correlation analyses, which assume that all data points are 

independent, LMM enabled the researcher to account for the variance in 

intercepts across participants.  

The relationship between device complexity (DUC score) and use error 

rate showed significant variance in intercepts across participants Var(µ0j) = 3.238, 
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x2 = .734, p < .001. Overall, DUC score statistically significantly predicted use 

error rate, F(1, 80.223) = 155.679, p < .001. As hypothesized, there was a positive 

relationship between the variables. Children’s use error rate increased by .052 

use errors for each one-unit increase in DUC score. However, a visual inspection 

of the scatter plot in Figure 43 alluded to a curvilinear relationship between the 

variables. Subsequently, the researcher transformed DUC scores logarithmically 

and performed an additional LMM analysis. 

 
Figure 43: DUC score and average use error rate for child participants. Error bars represent 
the 95% CI for mean use error rate. 
 

To determine whether use error rate and device complexity had a 

curvilinear relationship, the researcher ran a second LMM analysis and compared 

the models. The results indicated a decrease in log-likelihood (-2LL), confirming 

that a curvilinear model is was a better fit than the initial linear model, 𝑥𝑐ℎ𝑎𝑛𝑔𝑒 
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11.531, and yielded statistically significant results, F(1, 76.913) = 200.510, p 

< .001. Children’s predicted use error rate is equal to −8.397 + 7.697(log 𝐷𝑈𝐶).  

6.3.8. Discussion of Device Complexity-Related Use Errors 

The results indicated that children committed significantly fewer use 

errors with devices that were relatively less complex, regardless of device type 

(i.e., blood glucose meters vs. nebulizers). Therefore, medical device 

manufacturers could use the DUC model to determine the extent to which the  

device will lead to use errors by children. A device with a relatively high DUC 

score delivers more comprehensive functionality and as such, likely requires a 

more exhaustive risk management process. Additionally, the metric affords 

comparisons among alternative functional designs. Adding a device function that 

significantly increases use error rate likely results in a greater quantity of hazards 

the manufacturer needs to address.  

Lastly, the manufacturers can use the metric to facilitate decision-making 

when planning usability tests. Medical device manufacturers developing a 

product will conduct validation usability tests to provide the FDA with concrete 

evidence that the product presents minimal risk to its intended users in the 

representative use environment. As mentioned previously, the primary study 

results suggested that devices with high DUC scores increase the opportunity for 

error. Therefore, a medical device manufacturer should consider recruiting a 

larger sample of children when the DUC score is relatively high to increase the 
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likelihood of exposing the wide range of use errors that could occur when the 

device is placed in the real-world. 

The following section discusses the model that explained the most 

variance in use error rate when accounting for both the device- and user-specific 

variables assessed during the primary study. 

6.3.9. Final Regression Model 

The researcher ran two additional LMM analyses to identify the model 

that accounted for the most variance in use error rate. The first model included 

the DUC score and children’s age. The previous analyses identified both variables 

as significant predictors of use error rate. When entered into the same model, 

DUC score, F(1, 73.879) = 13.951, p < .001, and age, F(1,49.860) = 95.440, p 

< .001, remained significant predictors of use error rate. The -2LL value indicated 

that the model was a better fit than DUC score, 𝑥𝑐ℎ𝑎𝑛𝑔𝑒 
2 = 53.374, or age, 

𝑥𝑐ℎ𝑎𝑛𝑔𝑒 
2 = 124.653, alone. 

The stepwise multiple regression had identified working memory as a 

significant predictor of use error rate. Therefore, the second LMM the researcher 

conducted included DUC score, age, and working memory score as predictors. 

The model statistically significantly predicted use error rate and with higher 

accuracy than the model that omitted working memory score, 𝑥𝑐ℎ𝑎𝑛𝑔𝑒 
2 = 21.565. 

DUC score, F(1, 72.012) = 194.220, p < .001, age, F(1, 50.382) = 27.394, p < .001, 

and working memory, F(1, 50.477) = 6.114, p = .017, all significantly predicted the 
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number of use errors children committed with each medical device. Therefore, 

children’s predicted use error rate is equal to 5.774 + 7.591(log 𝐷𝑈𝐶) −

11.833(log 𝐴𝑔𝑒) − .157(𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑀𝑒𝑚𝑜𝑟𝑦). Table 9 specifies the final 

regression model parameters. 

Table 9: Final regression model parameters 

Variable b SEb 95% CI 

Intercept 5.773 1.911 1.974, 9.573 

Log(DUC) 7.591 .545 6.505, 8.677 

Log(Age) -11.833 2.261 -16.373, -7.293 

Working Memory -.157 .064 -.285, -.030 

Note. b = Estimate; SEb = Standard error of the estimate 

6.3.10. Discussion of Final Regression Model 

The final regression model generated a fairly accurate prediction of use 

error rate based on children’s age and working memory score and DUC score. 

The tool provides an independent metric for determining the rate of potential for 

use errors by children when using home health care devices.  

If parents and clinicians are going to relinquish health-related 

responsibilities to children, they need to feel confident that the child is capable 

of performing with minimal error. This metric has the capability to estimate the 

extent to which a medical device presents a safety risk to children regarding the 

administration of their own care. As such, medical device manufacturers could 

employ the DUC model to determine a device’s complexity level, and then utilize 
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the final regression model to rate the potential for use errors by children, 

thereby simplifying and streamlining any subsequent safety testing. 

6.4. Study Limitations 

The primary study had some limitations. The study included a relatively 

small sample size of adult participant. Recruiting a larger sample of adults would 

have afforded a more accurate estimation of the maximum number of use errors 

the adult population is likely to commit when using nebulizers and blood glucose 

meters. This would have increased the likelihood of correctly identifying the 

children who performed at a comparable level to adults  and were likely capable 

of performing tasks with home health care devices with minimal error.  

In addition, the participants the researcher recruited had not been 

diagnosed with diabetes and most had not received an asthma diagnosis. As 

such, the results do not account for the prevalence of developmental deficits in 

children who have these conditions. For example, children diagnosed with type 1 

diabetes are prone to reduced cognitive functioning, potentially increasing use 

error risk. Moreover, the results to do take into account that children diagnosed 

with diabetes or asthma tend to experience symptoms that might impact their 

ability to perform device task effectively. For instance, a diabetic child 

experiencing symptoms of hyper or hypoglycemia is likely to be in a very 

emotional state, which might influence decision-making. Therefore, parents, 

clinicians, and medical device manufacturers should bear in mind the 
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developmental factors and symptoms associated with given chronic diseases, and 

their potential effect on performance before utilizing the primary study data. 

6.5. Future Research  

There are several opportunities for future research. The researcher 

provided recommendations for developing device user interfaces and associated 

materials to decrease use error rate among children. Supplemental research 

might involve developing several prototypes that implement the design 

suggestions, and then conducting a usability study to determine the extent to 

which the modifications mitigate the risks. 

In addition, the primary study tested for several aspects of child 

development. However, there were domains that were not included in the study, 

which might influence use error rate, such as children’s emotional and episodic 

memory development. As children grow, their emotional reactions to 

environmental changes evolve. They develop the emotional competence to 

manage feelings of stress, frustration, fear, and sadness  effectively. Performing a 

complex cognitive task such as working with a home health care device might 

induce negative emotions. Thus, a valuable follow up study might involve 

administering functional assessments to measure children’s capacity to regulate 

their emotions and examine the magnitude of its relation to use error frequency 

and distinct use error types. 
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Episodic memory involves recalling details of personal experiences and 

events that occurred at a particular time and place in the past, as well as the 

associated emotions. As such, the extent of children’s episodic memory 

development might influence their ability to learn from their mistakes. A future 

study might involve modifying the aforementioned primary study such that each 

child performs the medical device tasks and then, after a decay period, returns 

for a second session to repeat the tasks. The study could include a metric to 

assess children’s episodic memories (e.g., NIH Toolbox Picture Sequence Memory 

Test (Tulsky et al., 2013)) to determine the age when children become capable of 

modifying their behavior based on incident that occurred (e.g., learn to perform 

the task correctly), and potentially predict this deviation based on the child’s 

episodic memory test score. 
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7. Conclusion 

There is a scarcity of literature indicating the age that children become 

capable of using home health care devices safely and effectively and the 

developmental variables associated with success. Nine years of age marked a 

substantial rise in the number of children who performed nebulizer and blood 

glucose meter tasks with minimal error. Furthermore, children’s age and working 

memory capacity accounted for a significant proportion of the variance in use 

error rate. Child participants who were younger than nine or had a cognitive 

capacity of fewer than four items appeared to commit an excessive number of 

use errors relative to adult participants.  

Furthermore, this is the first study known to relate device complexity to 

the prevalence of use errors. Children were significantly less likely to commit use 

errors when device complexity was relatively low. Subsequently, accounting for 

DUC score and children’s age and working memory capacity showed to explain 

the most variance in use error rate. The model significantly predicted the rate of 

potential for use errors by children when using home health care devices, 

thereby providing a method for medical device manufacturers to systematically 

determine the extent to which their product will lead to use errors. Moreover, 

this tool can increase the confidence in decision-making by parents, teachers, 

school nurses, pediatric educators who decide the type of device to recommend 

to a child, among others.  
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9. Appendices 

Appendix A.  Preliminary Study DUC Functional Trees 

Kitchen Thermometer 1: DUC 8 

 

Wrist Watch 1: DUC 14 
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Coffee Maker 1: DUC 29 
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Kitchen Thermometer 2: DUC 44 
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Watch 2: DUC 66 
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Coffee Maker 2: DUC 112 
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Appendix B.  Preliminary Study SPSS Output 

Interrater Reliability 

Intraclass Correlation Coefficient 

 

Intraclass 

Correlationb 

95% Confidence Interval  F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single Measures .926a .814 .987 125.413 5 55 .000 

Average 

Measures 
.993 .981 .999 125.413 5 55 .000 

 

Curve Estimation Regression Analysis 

Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

.991 .983 .979 1.628 
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Appendix C.  Primary Study DUC Functional Trees 

Nebulizer 1: DUC 36 
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Blood Glucose Meter 1: DUC 60 
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Nebulizer 2: DUC 73 

 

 



 

 119 

Blood Glucose Meter 2: DUC 99 
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Appendix D.  Primary Study SPSS Output 

Curve Estimation Regression – Age and Use Error Rate 

R R Square Adjusted R Square Std. Error of the Estimate 

.835 .697 .691 1.070 

The independent variable is Age. 

 

Pearson Correlation – Age and Use Error Rate 

 

 

 

 

 

 

Partial Correlation – Biological Variables and Use Error Rate Controlling for Age 

Control Variables 
Average Use Errors  

- All  Devices Age 

-none-a Average Use Errors –  

All  Devices 

Correlation 1.000 -.829 

Significance (1-tailed) . .000 

df 0 49 

Hand Length Correlation -.696 .848 

Significance (1-tailed) .000 .000 

df 49 49 

Dominant 
Dexterity (Seconds) 

Correlation .411 -.541 

Significance (1-tailed) .001 .000 

df 49 49 

Non-Dominant  
Dexterity (Seconds) 

Correlation .596 -.682 

Significance (1-tailed) .000 .000 

df 49 49 

Dominant 
Grip Strength (Pounds) 

Correlation -.737 .871 

Significance (1-tailed) .000 .000 

df 48 48 

Non-Dominant  

Grip Strength (Pounds) 

Correlation -.712 .832 

Significance (1-tailed) .000 .000 

df 48 48 

 
Average Use Errors 

- All  Devices Age 

Average Use Errors  

- All  Devices 

Pearson Correlation 1 -.835** 

Sig. (2-tailed)  .000 

N 51 51 

Age Pearson Correlation -.835** 1 

Sig. (2-tailed) .000  

N 51 51 
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Age Correlation -.829 1.000 

Significance (1-tailed) .000 . 

df 49 0 

Age Average Use Errors –  
All  Devices 

Correlation 1.000  

Significance (1-tailed) .  

df 0  

Hand Length Correlation .023  

Significance (1-tailed) .436  

df 48  

Dominant 
Dexterity (Seconds) 

Correlation -.079  

Significance (1-tailed) .292  

df 48  

Non-Dominant  
Dexterity (Seconds) 

Correlation .075  

Significance (1-tailed) .303  

df 48  

Dominant 

Grip Strength (Pounds) 

Correlation -.054  

Significance (1-tailed) .356  

df 47  

Non-Dominant  

Grip Strength (Pounds) 

Correlation -.070  

Significance (1-tailed) .316  

df 47  

 

Partial Correlation – Cognitive Variables and Use Error Rate Controlling for Age 

Control Variables 
Average Use Errors  

- All  Devices Age 

-none-a Average Use Errors 
- All  Devices 

Correlation 1.000 -.829 

Significance (1-tailed) . .000 

df 0 49 

Working Memory 
- No. Correct 

Correlation -.685 .690 

Significance (1-tailed) .000 .000 

df 48 48 

Reading Ability 
- Grade Level 

Correlation -.751 .785 

Significance (1-tailed) .000 .000 

df 49 49 

Numerosity 
- No. Correct 

Correlation -.793 .884 

Significance (1-tailed) .000 .000 

df 47 47 

Age Correlation -.829 1.000 

Significance (1-tailed) .000 . 

df 49 0 

Age Average Use Errors  
- All  Devices 

Correlation 1.000  

Significance (1-tailed) .  

df 0  
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Working Memory 
- No. Correct 

Correlation -.279  

Significance (1-tailed) .026  

df 47  

Reading Ability 
- Grade Level 

Correlation -.291  

Significance (1-tailed) .020  

df 48  

Numerosity 
- No. Correct 

Correlation -.231  

Significance (1-tailed) .057  

df 46  

 

 
Average Use Errors  

- All  Devices 

Spearman's rho Average Use Errors 
- All  Devices 

Correlation Coefficient 1.000 

Sig. (1-tailed) . 

Functional  
Numerosity 

Correlation Coefficient -.795** 

Sig. (1-tailed) .000 

 

Pearson Correlation – Raw Working Memory Score and Modified Score 

 
Working Memory 

- Raw Score 
Working Memory 
- Modified Score 

Working Memory  
- Raw Score 

Pearson Correlation 1 .976** 

Sig. (2-tailed)  .000 

N 50 50 

Working Memory  

- Modified Score 

Pearson Correlation .976** 1 

Sig. (2-tailed) .000  

N 50 51 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Partial Correlation – Reading the BG Result Incorrectly and Numerosity Score 

Controlling for Age 

 

Control Variables 

Numerosity 

Score 

Read BG Results 

Incorrectly Age 

-none-
a 

Numerosity 
Score 

Correlation 1.000 -.671 .884 

Significance (2-
tailed) 

. .000 .000 

df 0 47 47 

Read BG Results 
Incorrectly 

Correlation -.671 1.000 -.641 

Significance (2-
tailed) 

.000 . .000 

df 47 0 49 

Age Correlation .884 -.641 1.000 
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Significance (2-
tailed) 

.000 .000 . 

df 47 49 0 

Age Numerosity 

Score 

Correlation 1.000 -.293  

Significance (2-

tailed) 
. .044  

df 0 46  

Read BG results 
incorrectly 

Correlation -.293 1.000  

Significance (2-
tailed) 

.044 .  

df 46 0  

a. Cells contain zero-order (Pearson) correlations. 

 

Pearson Correlation – Exploratory Variables and Use Error Rate 

 Average Use Errors - All  Devices 

Handedness Pearson Correlation -.076 

Sig. (2-tailed) .595 

N 51 

Gender Pearson Correlation -.021 

Sig. (2-tailed) .885 

N 51 

Parent's Highest Level  
of Education  
Completed 

Pearson Correlation -.125 

Sig. (2-tailed) .383 

N 51 

Family Member  
Device Use 

Pearson Correlation -.043 

Sig. (2-tailed) .766 

N 51 

 

Multiple Regression Analysis 

Model Summaryc 

Model R 
R 

Square 
Adjusted 
R Square 

Std. Error 

of the 
Estimate 

Change Statistics  

Durbin-
Watson 

R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 .854a .729 .723 1.0268 .729 121.275 1 45 .000  
2 .870b .757 .746 .9842 .028 4.977 1 44 .031 2.386 

a. Predictors: (Constant), Age 
b. Predictors: (Constant), Age, Working Memory Score 

c. Dependent Variable: Average Use Errors - All  Devices 
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ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 127.855 1 127.855 121.275 .000b 

Residual  47.442 45 1.054   

Total 175.297 46    

2 Regression 132.676 2 66.338 68.484 .000c 

Residual  42.621 44 .969   

Total 175.297 46    

a. Dependent Variable: Average Use Errors - All  Devices 
b. Predictors: (Constant), Age 

c. Predictors: (Constant), Age, Working Memory Score 
 
 

Coefficientsa 

Model 

Unstand- 
ardized 

Coefficients 

Stand-
ardized 

Coefficients 

t Sig. 

95.0% 
Confidence 

Interval for B Correlations 
Collinearity 

Statistics 

B 
Std. 

Error Beta 
Lower 
Bound 

Upper 
Bound 

Zero-
order Partial Part Toler. VIF 

1 (Constant) 22.767 1.579  14.421 .000 19.587 25.947      

Age -
17.769 

1.614 -.854 
-

11.012 
.000 

-
21.019 

-
14.519 

-.854 -.854 -.854 1.000 1.000 

2 (Constant) 21.836 1.570  13.910 .000 18.672 24.999      

Age -
14.555 

2.114 -.700 -6.886 .000 
-

18.815 
-

10.295 
-.854 -.720 -.512 .535 1.868 

Working 
Memory 
Score 

-.134 .060 -.227 -2.231 .031 -.255 -.013 -.703 -.319 -.166 .535 1.868 

a. Dependent Variable: Average Use Errors - All Devices 

 
 

Excluded Variablesa 

Model 
Beta 

In t Sig. 
Partial 

Correlation 

Collinearity Statistics 

Tolerance VIF 
Minimum 
Tolerance 

1 Working Memory 

Score 
-.227b 

-

2.231 
.031 -.319 .535 1.868 .535 

Reading - Grade 

Level 
-.205b 

-

1.642 
.108 -.240 .372 2.686 .372 

Hand Length .027b .194 .847 .029 .309 3.240 .309 

Dominant 
Dexterity  

-.031b -.342 .734 -.052 .750 1.332 .750 

Non-Dominant 
Dexterity 

.040b .356 .724 .054 .496 2.018 .496 

Dominant Grip 
Strength  

-.043b -.292 .772 -.044 .281 3.560 .281 

Non-Dominant 

Grip Strength 
-.088b -.670 .506 -.101 .352 2.841 .352 
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Numerosity 
-.201b 

-
1.210 

.233 -.179 .215 4.652 .215 

2 Reading Ability - 
Grade Level 

-.140c 
-

1.106 
.275 -.166 .343 2.912 .329 

Hand Length -.026c -.191 .849 -.029 .299 3.344 .212 

Dominant 
Dexterity  

-.002c -.023 .982 -.004 .733 1.364 .418 

Non-Dominant 
Dexterity 

.026c .241 .811 .037 .494 2.025 .360 

Dominant 
Grip Strength 

-.090c -.629 .533 -.096 .275 3.635 .203 

Non-Dominant 

Grip Strength 
-.118c -.933 .356 -.141 .348 2.871 .250 

Numerosity 
Score 

-.104c -.614 .542 -.093 .196 5.106 .196 

a. Dependent Variable: Average Use Errors - All  Devices 
b. Predictors in the Model: (Constant), Age 
c. Predictors in the Model: (Constant), Age, Working Memory Score 

 

Linear Mixed-Effects Model – Use Error Rate and DUC Score: Pre-

Logarithmic Transformation 

 
Information Criteriaa 

-2 Log Likelihood 762.936 

Akaike's Information Criterion (AIC) 772.936 
Hurvich and Tsai's Criterion (AICC) 773.250 
Bozdogan's Criterion (CAIC) 794.352 
Schwarz's Bayesian Criterion (BIC) 789.352 

The information criteria are displayed in smaller-is-better form. 

a. Dependent Variable: use errors. 
 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 120.456 26.017 .000 
complexity 1 73.078 174.088 .000 

a. Dependent Variable: use errors. 

 
Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval  

Lower Bound Upper Bound 

Intercept 1.925943 .377589 120.456 5.101 .000 1.178373 2.673514 
complexity .052503 .003979 73.078 13.194 .000 .044572 .060433 

a. Dependent Variable: use errors. 
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Linear Mixed-Effects Model – Use Error Rate and DUC Score: Post 

Logarithmic Transformation 

 

Information Criteriaa 

-2 Log Likelihood 751.405 
Akaike's Information Criterion (AIC) 761.405 
Hurvich and Tsai's Criterion (AICC) 761.719 
Bozdogan's Criterion (CAIC) 782.821 

Schwarz's Bayesian Criterion (BIC) 777.821 

The information criteria are displayed in smaller-is-better form. 
a. Dependent Variable: use errors. 

 

Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 89.342 68.708 .000 

Complexity-log 1 76.913 200.510 .000 

a. Dependent Variable: use errors. 
 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval  

Lower Bound Upper Bound 

Intercept -8.397369 1.013074 89.342 -8.289 .000 -10.410219 -6.384519 
Complexity-log 7.697130 .543577 76.913 14.160 .000 6.614711 8.779550 

a. Dependent Variable: use errors. 
 

 

Linear Mixed-Effects Model – Use Error Rate with DUC Score and 
Age 

Information Criteriaa 

-2 Log Likelihood 698.031 

Akaike's Information Criterion (AIC) 710.031 
Hurvich and Tsai's Criterion (AICC) 710.474 
Bozdogan's Criterion (CAIC) 735.731 

Schwarz's Bayesian Criterion (BIC) 729.731 

The information criteria are displayed in smaller-is-better form. 
a. Dependent Variable: use errors. 

 
Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 88.988 14.553 .000 

Complexity-log 1 73.879 194.643 .000 
Age-log 1 49.860 95.440 .000 

a. Dependent Variable: use errors. 

 

Estimates of Fixed Effectsa 
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Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval  

Lower Bound Upper Bound 

Intercept 7.150112 1.874267 88.988 3.815 .000 3.425976 10.874249 
Complexity -log 7.672291 .549928 73.879 13.951 .000 6.576506 8.768076 
Age-log -16.015309 1.639340 49.860 -9.769 .000 -19.308251 -12.722368 

a. Dependent Variable: use errors. 
 

 

Linear Mixed-Effects Model – Use Error Rate with DUC Score, Age, 

and Working Memory 

 

Information Criteriaa 

-2 Log Likelihood 676.466 

Akaike's Information Criterion (AIC) 690.466 
Hurvich and Tsai's Criterion (AICC) 691.072 
Bozdogan's Criterion (CAIC) 720.305 
Schwarz's Bayesian Criterion (BIC) 713.305 

The information criteria are displayed in smaller-is-better form. 

a. Dependent Variable: use errors. 

 
Type III Tests of Fixed Effectsa 

Source Numerator df Denominator df F Sig. 

Intercept 1 86.337 9.125 .003 
Complexity-log 1 72.012 194.220 .000 
Age-log 1 50.382 27.394 .000 

Working memory 1 50.447 6.114 .017 

a. Dependent Variable: use errors. 
 

Estimates of Fixed Effectsa 

Parameter Estimate Std. Error df t Sig. 

95% Confidence Interval  

Lower 
Bound 

Upper 
Bound 

Intercept 5.773838 1.911333 86.337 3.021 .003 1.974446 9.573230 

Complexity-log 7.591371 .544719 72.012 13.936 .000 6.505496 8.677247 
Age-log -11.833134 2.260869 50.382 -5.234 .000 -16.373371 -7.292898 
Working 
memory 

-.157306 .063617 50.447 -2.473 .017 -.285056 -.029556 

a. Dependent Variable: use errors. 

 
 


