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Huygens on Descartes, 1693

M. des Cartes had found the way to make his conjectures
and fictions pass for truths. And those who read his
Principles of Philosophy experienced somewhat the same
as do the readers of Romances, which give pleasure and
make the same impression as veritable histories.... It
seemed to me when I first read this book of the Principles
that everything in it was as good as could be [que fout
alloit le mieux du monde], and 1 believed, when I found
some difficulty there, that it was my fault for not cor-
rectly understanding his thought. I was only 15 or 16
years old. But having since discovered there from time
to time things visibly false, and others highly improbable,
I have retreated far from the predilection I then had, and
at the present hour I find almost nothing that I can
approve as true in all his physics, or metaphysics, or
meteors. [tr. Howard Stein]
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HUYGENS’ METHODS -OF MEASURE

Thecretically derived law of the conical

pendulum:

P = m2h/d, = 2m/h/g

Theoretically derived law of the cycloidal

pendulun:

T = mfe2d, = = [l I >

Therefore, by measuring P and h, or T and £, to high accuracy, can
obtain a theory-mediated accurate measure of d,, the distance of

vertical fall in the first second in the absence of air resistance.



MEASURING THE STRENGTH OF GRAVITY

VERTICAL FALL EQUIVALENT
DATES METHQOD IN FIRST SECOND g in cm/sec2
MERSENNE mid-1640s DIRECT 12 Paris ft 788.8
RICCIOLT late 1640s DIRECT 15 Roman ft 935.0
HUYGENS 1659 CONICAL 15.6 Rhen ft 979.4"
PENDULUM
1659 CYCLOIDAL 15 Rhen ft 980.9
PENDULUM 7 1/2 in
1660s SECONDS- 15 Paris ft 980.7
& 70s PENDULUM 1.1 in
{NEWTON late 1660s CONICAL 195 London in 989 .4} **
PENDULUM

* Without rounding, 15.625 Rhen ft and 980.9 cm/sec?
** Apparently just to check Huygens’s wvalue

NB Modern measured g at Paris = 980.970 cm/sec2



HUYGENS

RICHER

V2ARIN et al

PICARD

MOUTON

MEASURED LENGTHS OF THE SECONDS-PENDULUM

LOCATION

Paris

Paris

Cayenne

Paris
Goree

Guadaloupe

Paris

Uraniborg

Cape Cete

Lyons

48°50'

48°507

4°557

48°50/

14°40°

15°00/

48°50"

55°54/

43°247

45°47/

Modern measured g at Paris =

Modern average g at Equator

LENGTH

LATITUDE (Paris units)

3ft 81/21lines

3ft 83/5 lines

A2=11/41ines

3ft 85/9 lines
Al =21lines

Af=21/18 lines

3ft 81/2lines
AL =0 lines

AL =0 lines

3ft 63/101lines

980.970 cm/sec?

978.032 cm/sec?

IMPLIED g
(cm/sec?)

(980.7)"

(980.9)"

(978.1)

(980.7)"
(976.4)

(976.3)

(980.7)"
(980.7)

(980.7)

(975.8)

NB Latitudes vary slightly from individual to individual



Christiaan Huygens to Thomas Helder.!
1686.

Observation concerning the Length of a simple Pendulum.

C XXXVI. While ashore at the Cape of Good Hope
as well as especially in Batavia? if the voyage goes so far, or while the ship is lying very
still, one will observe by using the clock how long a single pendulum must be to do each
beat in a second, that is [the length] from the top end of the thread until the center of the
sphere; for, here I call a single pendulum a copper or leaden little sphere of about a
thumb? in diameter that is hanging on a thin thread.# With regard to the motion of the
clock much depends on this experience. For, a certain Frenchman claims to have found
at a location about 5 degrees north of the Equator that such a pendulum was a bit shorter
there than in Paris, England, and Holland. In order then to observe this perfectly one
should hang the pendulum as in the figure, in which EF is the side of a high table or
windowsill; DH [is] a flat piece of wood nailed down on it and which overhangs by only
1/2 thumb; AB [is] the thread, wedged in an incision in that wood, and having a length
down to the sphere C of about 3 Rhenish feet 1 1/2 thumb.

1 jtem 2520 in OCCH, Vol. 9, pp. 292-293. Even though this document was found separately in the
Huygens Archives, in the University Library of Leiden, the paragraph number at the beginning of it
(XXXVI), makes it almost certain that it was to supplement the instructions Huygens had given Helder on
the use of the clocks during the voyage (Item 2423 in OCCH, Vol. 9, pp. 55-76).

2 Now Jakarta in Indonesia.

3 A thumb is a Rhenish inch, i.e. 1/12 of a Rhenish foot, roughly 0.965 of a Paris inch, or 2.6 cm.

4 Although we have been unable to determine what it was, the material used for the thread is of some
interest. A 40 deg. F (22 deg. C) change in temperature would cause a copper or bronze thread of the
length of a seconds-pendulum to increase in length by roughly 0.16 Paris lines, or 0.037 percent. The
thermal expansion of a non-metallic thread could well have been as little as 1/4 of this, depending on what
material was used. Huygens's drawing suggests a non-metallic thread. Cat-gut (in truth, sheep's gut),
which was used for stringing musical instruments, is a good candidate. There is some evidence for silk. In
his instructions to Helder, Huygens mentions that the triangular pendulum is hanging from silk threads.
See item 2488, OCCH, Vol. 9, pp. 222-223.



One will make this pendulum’ move very slowly, roughly just 2 or 3 thumb-widths- being
very careful that the sphere no longer rotates, as always occurs from the start, for, through
this the thread unwinds itself and becomes longer. One can impregnate it with wax,
except at the top near A. Furthermore, one will observe the movements of this pendulum
against one of the clocks, ensuring that one movement accords with two movements of
the pendulum of the clock, and that for about a half an hour.” One can thus shorten or
lengthen the pendulum AB, until the beats, as was said, accord perfectly. Once then this
has been done, one shall measure off neatly with a straight stick, having been shortened
to this measure, the true length AB from the top end of the thread until the top of the
sphere, so that it just fits between the piece of wood, DH, and the sphere C, After that
one can take the length of this little stick as a correct foot-measure. Adding to it half the
diameter of the sphere, this yields the total length of a pendulum beating seconds, if the
clock has been properly calibrated to the proper mean of the days.?

But as the clock usually goes several seconds too quickly or too slowly in 24
hours, so the movement of this single-pendulum will be a bit shorter or a bit longer than a
second; let us suppose that a clock goes 1 minute too slow in 24 hours; then turn 24 hours
into minutes, resulting in 1440, from which the previous mentioned 1 minute [should be]
subtracted, resulting in 1439. Now just as the square of 1439 [is] to the square of 1440,
[is] the length found for the pendulum to the correct length of a pendulum that beats in a
second. For example, if the length of this little stick, including half the diameter of the
sphere, is found to be 37 thumbs, 11231lines, then saying the square of 1439 [is] to the
square of 1440, just as 37 thumbs 112/3 [lines] is to another length, the latter being very
near 38 thumbs and 1/3 of a line. This is the length of a pendulum for seconds here in

5 In Dutch the word here is slinger, not pendulum.

6 Huygens knew that a circular arc pendulum is isochronous over only infinitesimal arcs, where it truly
approximates a cycloidal pendulum. He had no way, however, of calculating the departure from
isochronism as a function of arc length, for the solution for the (large arc) circular pendulum had to await
Euler's elliptical integrals three-quarters of a century later. The only way Huygens therefore had for
determining a limit on the arc length of a simple seconds-pendulum was through trial-and-error compatison
with a cycloidal pendulum. In his Horologium Oscillatorium he says, "...the pendulum should be set in
motion with a small push because small oscillations, for example 5 or 6 degrees, are sufficient to give equal
times, but not a large number of degrees," (OCCH, Vol. 18, p. 351; in the translations by Blackwell, p.
168). The instruction here calls for a slightly smaller arc: 2 thumbs corresponds to an arc of about 3
degrees, and 3 thumbs to one of 4.5 degrees.

The incremental error in the period of 2 4.5 degree arc circular pendulum is 0.009 percent. This
would require the length of a seconds-pendulum of this arc to be 0.085 Paris lines shorter than a one-
second cycloidal pendulum. By contrast, the incremental error in the period of a 6 degree arc circular
pendulum is 0.017 percent, which would amount to a difference in length between a circular-arc and a
cycloidal seconds-pendulum of 0.151 lines. The smaller arc length that Huygens is here recommending to
Helder is accordingly of some merit. (A still smaller 2 degree arc length would reduce the difference in
length from 0.085 to 0.038 lines.)

7 Qver the course of 30 minutes, a 0.00555 percent discrepancy between the two periods will produce a 10
percent asynchrony between their motions, which would have been quite apparent to the naked eye.

8 Huygens here ignores the correction for the center of oscillation that he so carefully takes into account in
Part Four of his Horologium Oscillatorium. He can safely ignore it here insofar as he is only comparing
Iengths, and not determining the absolute magnitude of the effective acceleration of gravity. With a 1 Paris
inch diameter sphere forming the seconds-pendulum, the center of oscillation is only 0.032 lines beyond
the center of the sphere.



Holland as well as in France and England. But the mentioned French observer says to
have found this length 5/4 of a line less in Cayenne. When there is great calmness, it will
be good to observe this on board the ship, not only at the Equator but also at several other
latitudes, and to note the measures found.? 10

9 Suppose the accuracy of the pendulum clock could be determined sidereally to within at least 4 sec. per
day (i.e. 1 part in 21,600); and the seconds-pendulum could be determined to be no more than 1/10 of arc
out of synchrony with the pendulum clock after 30 minutes (1 part in 18,00000); and the length of the
seconds-pendulum could be determined to within 0.1 Paris lines (1 part in 4405). Following the
instructions Huygens gives Helder, the error in the absolute magnitude of the acceleration of gravity as
determined by a seconds-pendulum would then have been less then 1 part in 2320, or 0.42 cm/sec?,
Doubling the error of the length in the pendulum to 0.2 Paris lines, to allow for thermal effects, would
increase the upper bound on the error to 1 part in 1520 - still only 0.65 cm/sec2. Richer was claiming a
difference between Paris and Cayenne amounting to 1 part in 352, or 2.78 cm/sec?.

10 Translation by Eric Schliesser; notes by Eric Schliesiser and George E. Smith



HUYGENS’S PENDULUM MEASUREMENT OF
DISTANCE OF FALL IN 15T SECOND

£

Distance of fall in 15t second
= n2-length of pendulum/2 7?2

Length of 1 sec pendulum:
3 Paris feet 8.5 lines
1.e. 440.5 lines

1. Adjust length until in synchrony
with pendulum clock for 30 min.

2. Measure length to bob center and
correct for center of oscillation

15 Paris feet 1.1 inches 3. Correct length for any inaccuracy

_ in clock: (86156/no0. sec in day)?
.€. 980.7 cm/sec/
(ie cm/sec/sec) 4. Infer distance of fall in 1%¢ sec

Distance of fall in 15t sec:

10



MEASURING GRAVITY WITH A SECONDS-PENDULUM

A MODERN ASSESSMENT OF ACCURACY

Suppose the accuracy of the pendulum clock could be determined

to within 4 seconds per day : 1 part in 21600

Suppose seconds-pendulum could be determined still to be within

1/10 of an arc in synchrony after 30 min : 1 part in 18000

Suppose the length of the seconds-pendulum could be determined

to within 0.2 Paris lines : 2 parts in 4405

Then error in strength of gravity = < 1 part in 1520

If instead, the length of the seconds-pendulum could be

determined within 0.1 Paris lines : 1 part in 4405

Then error in strength of gravity : < 1 part in 2320

For a 2 inch diameter bob, the correction for the length of a

seconds-pendulum is slightly more than 0.1 lines.



The solution for head-on collision of “hard” spheres (recast in symbolic form):

Ba—Bb 4 ZBb

v, = -2 by .+ by
@ 'B+B, ® B,+Bp

Four consequences of this solution:

1. The quantity of motion which two hard bodies have may be increased or
diminished by their collision, but when the quantity of motion in the opposite
direction has been subtracted there remains always the same quantity of motion
in the same direction.

2. The sum of the products made by multiplying the bulk of each hard body into the
square of its velocity is always the same before and after collision.

3. A hard body at rest will receive more motion Jfrom another larger or smaller
body if a third intermediately sized body is interposed than it would if struck
directly, and most of all if this [third] is their mean proportional [i.e. their
geometric mean].

In all this I am thinking of bodies of the same material, or else I mean that their bulk
can be assessed from their weight.

4. A wonderful law of nature (which I can verify for spherical bodies, and which
seems to be general for all whether the collision be direct or oblique and
whether the bodies be hard or soft) is that the common center of gravity of two,
three or more bodies always moves uniformly in the same direction in the same
straight line, before and after their collision. [tr. A. R. Hall, modified by GES]

Huygens, Philosophical Transactions of the Royal Society, 46, 12 April 1669, pp. 925-928.



NEWTON ON IMPACT OF SPHERES (ca. late 1670s)

Prosrem XIIL

Having given the Magnitudes and Motions ¢f Stherical Bodies
perfeltly elaftick, moving in the [ame right Line, and
Priking againfs cne anorher, to determine their Motions
after Reflexion.

The Refolution of this Queflion depends on thefe Condi-
tions, that each Body will fuffer as much by Re-aétion as the
Agion of each is upon the other, and that they muft recede
from each other atter Reflexion with the farme Velocity or
Swiftnefs as they met before it. Thefe Things being {uppofed,
let the Velocity of the Bodies A and B, be 4 and & refpective-
ly ; and their Motions (as being compofed of their Bulk and
Velocity together) will be 4 A and E B. And if the Bodies
tend the fame Way, and A moving more fWwiftly, follows B,
make x the Decrement of the Motion « A, and the Increment
of the Motion # B arifing by the Percuffion ; and the Moti-
ons after Reflexion will be ¢A—x and /B-x; and the

A— bB-4
T2 and : -x; whofe Difference is —a—&
A - B

the Difference of the Celerities before Reflexion: Therefore
/ — .
there arifes this Equation B;r- Y - L i == a—b;and

—25AB
thence by Reduétion # becomes = g A-f T ;3 =, which
aA—x & B+«
being fubflituted for x in the Celerities —a and ;_ N

sA—aBt2bB

Celerities

there comes out AT B for the Celerity of A,
and %+b B for the Celerity of B dfter R eflexion,

But if the Bodies move towards one another, then ehanging
every where the Sign of 4, the Velocities ‘after Reflexion

. aA—aB—24B aaA+bA—bB
will be A+B and ATE
of which, if they come out, by Chance, Negative, it argues
that Motion, after Reflexion, to tend a contrary Way to that
which A tended to before Reflexion. Which is alfo to be
underftood of A's Motion in the former Cafe.

; either

ExaAMPLE, If the homogeneous Bodies [or Bod‘ies of
the {ame Sort] A of 3 Pounds with 8 Degrees of Veivc.ty,
and B a Body of 9 Pounds with 2 Degrees of Velocity,
tend the fame Way ; then for A, 4; B and &, write 3, 8, 9

6A—aB 4B .
and 25 and ( Aa _i_-—g— z ) beomes — 1, and

(% A;_b}_AB—I— b B becomes 5. Therefore A will re-
¢urn back with one Degree of Velocity after Reflexion, and
B will go on with 5 Degrecs.
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GALILEAN-HUYGENSIAN RELATIVITY

“The motion of bodies and their equal and unequal speeds
are to be understood, respectively, in relation to other
bodies which are considered as at rest, even though perhaps
both the former and the latter are involved in a common
motion. And accordingly when two bodies collide with one
another, even if both together are further subject to another
uniform motion, they will move each other with respect to a
body that is carried by the same common motion no
differently than if this motion coming from outside were
absent to all.”

[Huygens, manuscript at Royal Society, 1669]



Huygens, 1669 Manuscript

“Thus, if someone conveyed on a boat that is moving with a uniform
motion were to cause equal balls to strike one another at equal speeds
with respect to himself and the parts of the boat, we say that both
should rebound also at equal speeds with respect to the same passenger,
just as would clearly happen if he were to cause the same balls to collide
at equal speeds in a boat at rest or while standing on the ground.”



Theory of Impact: Initial Fragment

Hyp. 1. Any body once moved continues to move, if nothing
prevents it, at the same constant speed and along a
straight line.

Hyp. 2. Whatever be the cause of the rebound of hard
bodies from mutual contact when they collide with one
another, we posit that when two equal bodies with equal
speed collide directly with one another from opposite
directions each rebounds with the same speed with
which it approached.

Hyp. 3. When two bodies collide with one another, even if
both together are further subject to another uniform
motion, they will move each other with respect to a body
that is carried by the same common motion no differ-
ently than if this motion extraneous to all were absent.

Props I and II (contrary to Descartes’ Rules 6 and 3)

Hyp. 4. If a larger body meets a smaller one at rest, it will
give it some of its motion and hence lose something of its

own.

Prop. I1I. A body however large is moved by impact by a
body however small and moving at any speed.

Hyp. 5. When two hard bodies meet each other, if, after
impulse, one of them happens to conserve all the motion
that it had, then likewise nothing will be taken from or
added to the motion of the other.

Prop. IV. Whenever two bodies collide with one another,
the speed of separation is the same, with respect to each
other, as that of approach.



The Theory Completed

Prop. V. If two bodies each collide again at the speed at

which they rebounded from impulse, after the second
impulse each will acquire the same speed at which it was
moved toward the first collision.

Prop. VI. When two bodies collide with one another, the

same quantity of motion in both taken together does not
always remain after impulse what it was before, but can
be either increased or decreased.

Stipulation (Huygens’s version of Torricelli’s Principle): For

in mechanics it is a most certain axiom that the common
center of gravity of bodies cannot be raised by a motion
that arises from their weight.

Prop. VIIL If two bodies, the speeds of which correspond

inversely to the magnitudes, collide with each other
from opposite directions, each will rebound at the same
speed at which it approached.

Proof: Via reductio, contradicting the stipulation in
separate cases with speeds determined in accord with
Galileo’s sublimity principle, v’ « height

[Fig. 23.]
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“not alien to reason and agrees above all with experiments”
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HUYGENS ON “CENTRIFUGAL FORCE”

The tension in the string that
retains a body in uniform
circular motion varies as

EG/8f2 « (GCZ/AM'_;);/&‘2
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times the weight of the body



kucnd's plements, BOok 111, Froposition 30 rage 1 ors

Euclid’s Elements
BooK 111
Proposition 36

If a point is taken outside a circle and two straight lines fall from it on the circle, and if
one of them cuts the circle and the other touches it, then the rectangle contained by the
whole of the straight line which cuts the circle and the straight line intercepted on it
outside between the point and the convex circumference equals the square on the
tangent.

Let a point D be taken outside the circle ABC, and from D let the two straight lines DCA and
DB fall on the circle ABC. Let DCA cut the circle ABC, and let BD touch it,

I say that the rectangle AD by DC equals the square on DB.
Then DCA is either through the center or not through the center.
First let it be through the center, and let F be the center

of the circle ABC. Join FB. Therefore the angle FBD is 1IL18
right.

And, since AC has been bisected at F, and CD is added
, to it, the rectangle AD by DC plus the square on FC IL6
i equals the square on FD.

: But FC equals FB, therefore the rectangle AD by DC
- plus the square on FB equals the square on FD.

And the sum of the squares on B and BD equals the square on FD, therefore the rectangle 147
AD by DC plus the square on FB equals the sum of the squares on B and BD, B

Subtract the square on FB from each. Therefore the remaining rectangle AD by DC equals
the square on the tangent DB.

Again, let DCA not be through the center of the circle
ABC. Take the center E, and draw EF from E IIL.1
perpendicular to AC. Join EB, EC, and ED.

k Then the angle EBD is right. 18
T
D

‘ And, since a straight line EF through the center cuts a
B straight line AC not through the center at right angles, it II1.3
also bisects it, therefore AF equals FC.

Now, since the straight line AC has been bisected at the point F, and CD is added to it, the L6
rectangle AD by DC plus the square on FC equals the square on FD. ==

Add the square on FE to each. Therefore the rectangle AD by DC plus the sum of the squares
on CF and FE equals the sum of the squares on D and FE.

http://aleph0.clarku.edu/~djoyce/java/elements/bookIll/propIII36.html 11/4/02



Euclid's Elements, Book 111, Proposition 36 Page 2 of 2

But the square on EC equals the sum of the squares on CF and FE, for the angle EFC is
right, and the square on ED equals the sum of the squares on DF and FE, therefore the 1.47
rectangle AD by DC plus the square on EC equals the square on ED. '

And EC equals EB, therefore the rectangle AD by DC plus the square on £B equals the
square on £D.

But the sum of the squares on £B8 and BD equals the square on ED, for the angle EBD is
right, therefore the rectangle 4D by DC plus the square on EB equals the sum of the squares 147

on £B and BD.

Subtract the square on EB from each. Therefore the remaining rectangle 4D by DC equals
the square on DB.

Therefore if a point is taken outside a circle and two straight lines fall from it on the circle, and if
one of them cuts the circle and the other touches it, then the rectangle contained by the whole of the
straight line which cuts the circle and the straight line intercepted on it outside between the point
and the convex circumference equals the square on the tangent.

QED.

Guide

This proposition is used in the next one.

Next proposition: IL37  [g5iect from Book I 7]

Previous: I11.35

Select book ¥}
Book III introduction

{Select topic i

D.E.Joyce
Clark University

http://aleph0.clarku.edu/~djoyce/java/elements/bookIll/propIlI36.html 11/4/02



Some Pertinent Principles from Statics

The tension in a vertically suspended
string produced by a body hanging
from it varies as the density and
volume of the body and the strength
of the tendency bodies at the location
in question have to descend.

The tension in a string retaining two
bodies in static equilibrium, one ver-
tically and the other on an inclined
plane, varies as the cosine of the angle
of the plane 0 and the tension in a
vertically suspended string that would
be produced were the body on the
inclined plane hanging from it.

The tension in a string BK required to
maintain a body in equilibrium at an
angle 0 varies as the tangent of that
angle and the tension in string BH
when that body is hanging vertically
at its end.




HUYGENS’S THREE WAYS OF TESTING HIS
THEORY OF CENTRIFUGAL FORCE

Periods of conical
pendulums with
strings of different
lengths vary as the
square root of their
heights AB, AE

[Fig. 18.]

There 1s one rotational
speed of a paraboloid
at which a loose ball
remains in equilibrium
regardless of where on
the surface it is placed.

(Fig. 9.

A 90 deg arc circular
pendulum will ascend
with a taut string and
complete a full circle
if it is intercepted at
DB =2/5AB

[Fig. 24.]




HUYGENS’S CONSTANT-HEIGHT CONICAL
PENDULUM MEASUREMENT OF DISTANCE

OF FALL IN 15T SECOND (1659)

Distance of fall in 15t second
= 2m2-height of pendulum/P?

Height of a three-quarter sec —
constant-height conical-pendu-
lum clock: 5 inches 1.9 lines

Distance of fall in 1% second:
15 Paris feet 1.1 inches

18



HUYGENS’S PARABOLOIDAL CONICAL
PENDULUM CLOCK MEASUREMENT OF
DISTANCE OF FALL IN 15T SECOND (1673)

) ) | Original \%Q
Distance of fall in 1% second ket %
— 2 2
= n*-latus rectum/P \ _\_j

———

Latus rectum of a one-half sec o h %Bg/ :
paraboloidal-conical-pendulum . e

clock: 4 inches 7.1 lines \

Distance of fall in 1% second:
15 Paris feet 1.1 inches

¥~~~ Diagram in
Horologium
Oscllatorium

19



HUYGENS’S THEORY OF THE PENDULUM

From four Galilean principles, using y \ ]
height as proxy for v?, deduced: , \/\ /

1. Cycloid is the isochronal path. — Q //’
2. Cycloidal cheeks make the ) 's
pendulum path same cycloid.

3. Law of cycloidal pendulum: \ ¢ \
T = m\(length/2-fall in 1% sec) / -

4. Same law holds for small-arc . /
circular pendulum. . [

s

5. Bound on small-arc: < 4.5 deg Arc MP = Arc KN



QUESTION-ANSWERING EXPERIMENTS

IF

Galilean principles of pathwise
independence, return to
height, and no effect of weight

THEN

Uniform acceleration
IF AND ONLY IF

The cycloidal and small-arc-
circular pendulum measures
of distance of fall in 15t second

STABLE

~

IF

Force oc weight-(distance of
departure from uniform
straight line motion)/5¢2

THEN

Uniform acceleration
iF AND ONLY IF

The conical and paraboloidal
pendulum measures of distance
of fall in 1%t second

STABLE

/

CONVERGENT

20



HYPOTHESES
I

If there were no gravity, and if the air did not impede the mbtion of
bodies, then any body will continue its given motion with uniform velocity
in a straight line.

II
By the action of gravity, whatever its sources,' it happens that bodies
are moved by a motion composed both of a uniform motion in one direc-
tion or another and of a motion downward due to gravity.

I

These two motions can be considered separately, with neither being
impeded by the other.
Mw)“:‘?\ (7?@,\ LET C be a heavy body which, starting from rest, crosses
& kw the distance CB by the force of gravity in a certain time F
[Fig. 7]. And let the same body be imagined to undergo
another motion by which, assuming that gravity does not exist, it crosses
the straight line CD with a uniform motion in the same time F. When the
force of gravity is added, the body will not move from C to D in the time F

[Fig. 71 xl iz

but rather to some point E vertically below D such that the distance DE
equals the distance CB. And thus the uniform motion and the motion due
to gravity each make a contribution, and neither impedes the other. In what
follows later we will define the line in which the body moves with this
composite motion when the uniform motion is neither straight up or down
but in an oblique direction. But when the uniform motion CD occurs
downward on the perpendicular, it is obvious that the line CD is increased
by the straight line DE when the motion due to gravity is added. Likewise,
when the uniform motion CD is directed upward, CD is decreased by the
straight line DE, so that, for example, after the time F the body will always
"be found at the point E. Thus, if we consider the two motions separately in
each case, as we said, and if we recognize that neither motion is in any way
impeded by the other, then from this we can discover the cause and the laws
of acceleration of heavy falling bodies. And first we will show the following

two things.



[Fig. 8]

PRGPOSITION 1|

In equal times equal amounts of velocity are added to q Jalling body,
and ir. equal times the distances crossed by a body falling from rest are
successively increased by an equal amount. :

Let there be a heavy body at rest at A [Fig. 8]. In the first unit of time
it falls through the distance AB; and when it has arrived at B, it has ac-
quired a velocity by which it next could cross the distance BD with a uni-
form velocity in the second unit of time. But we know that in the second
unit of time it will cross a distance greater than BD because it would travel
the distance BD only if all the action of gravity had ceased at B. Actually it
moves with a motion composed of the uniform motion by which it would
have crossed the distance BD and of a motion characteristic of falling
bodies by which it necessarily falls through a distance equal to AB. Hence
by adding DE, which is equal to AB, to BD, we know that in the second
unit of time the body will arrive at E.

But if we inquire what velocity the body has at E at the end of the
second unit of time, we find that this ought to be double the velocity which
it had at B at the end of the first unit of time. For we said that it is moved
by a motion composed of a uniform motion equal to the velocity acquired
at B and of a motion due to gravity, which clearly is the same in the second
unit of time as in the first. Hence a velocity ought to be added to the falling

body in the second unit of time which is equal to the velocity added in the
first unit of time. Thus, since it conserves the whole velocity acquired at the
end of the first unit of time, it is clear that at the end of the second unit of
time it has twice, or double, the velocity which it acquired at the end of the
first unit of time.

Now if, after having arrived at E, the body were to be moved with a
uniform velocity equal to what it has acquired at E, it is clear that in a third
unit of time equal to each of the first two it would cross the distance EF,
which is double the distance BD. For we said that the latter was crossed
with haif this velocity by a uniform motion in an equal time. But by adding
again the action of gravity, in the third unit of time the body will cross the
distance EF and also the distance FG, which is equal to AB or to DE. And
thus at the end of the third unit of time the body will be found at G. It will
bave here a velocity which is triple that which it had at B at the end of the
first unit of time. For in addition to the velocity acquired at E, which we
said was double that acquired at B, in the third unit of time of the fall a
velocityis added which again is equal to the velocity at the end of the first
unit of time. Hence at the end of the third unit of time both velocities add
up to triple the velocity found at the end of the first unit of time.

In the same way it can be shown that in the fourth unit of time the
body ought to cross both the distance GH, which is triple BD, and the
distance HK, which is equal to AB; and the velocity at K, at the end of the
fourth unit of time, will be quadruple what it was at B at the end of the first

unit of time. Therefore, it is clear that whatever distances we take to be

crossed successively in equal times, these distances will each increase by an
amount equal to BD, and simultancously the velocities will also be in-
creased equally in equal times.



From this it will not be difficult to prove the following proposition
which Galileo asked that we accept as in a sense being self-evident.* For the
demonstration which he tried to give later and which appears in the later
edition of his works does not seem to me to be too strong. The proposition
is the following.

PROPOSITION VI

The velocities acquired by bodies falling through variably inclined
planes are equal if the elevations of the planes are equal.

The elevation of the plane will be called its height on the perpendicular.

Let AB and CB [Fig. 11] be sections of inclined planes extended to the
horizontal plane, and let their heights AE and CD be equal. Then let a body
fall from A through the plane AB, and a body fall from C through the
plane CB. Now I say that in each case the same degree of velocity will be
acquired at the point B.

[Fig. 11]

For if we were to assume that the body falling through CB were to
acquire less velocity than the body falling through AB, it would follow that
the body falling through CB would acquire exactly the same velocity as a
body falling only through FB, where FB is less than AB. But the body
falling through CB acquires a velocity by which it could ascend again
through the whole of BC [Proposition 4]. Therefore, if the body falling

4. Galileo, Discourses Concerning Two New Sciences. Third Day. (Le Opere di Galileo Galilei 8:205 B)
“. .. the Author requires and takes as true one single assumption; that is, [Postulate] I assume that the
degrees of speed acquired by the same moveable over different inclinations of planes are equal whenever the
heights of those planes are equal.” [S. Drake’s transfation, 162.]



PROPOSITION VI

iIf from the saine height a body descends by a continuous motion
through any number of contiguous planes having any inclinations what-
soever, it will always ccquire at the end ihe same velocity; namely, a velocity
equal Lo that which would be acguired by failing perpendicularly from the
same heighi.

Let AB, BC, and CD be contiguous planes [Fig. 13] whose terminus A
has a height above the horizontal line DF, drawn through the lower ter-
minus D, equal to the perpendicular EF. And let a body descend through
these planes from A to D. Now [ say that at D it will have the same velocity
which it would have at F by falling from E.

[Fig. 13]
A G




PROPOSITION IX

If, after fulling, a body converts its motion upwards, it will rise to the
same height from which it came, no matter how many contiguous plane
surfaces it inay have crossed, and no matter what their inciinations are,

Let a body fall fromn the height AB [Fig. I4]. From the point B let the
plangs BC, CD, arnd DE be inclined upwards such that their extremity E has
the same height as the point A. Now I say that if a body, after falling
throtigh AB, converts its motion so that it continues to be moved through
these inclined planes, it will rise up to the point E.

[Fig. 14)




PROPOSITION X

If @ body fulls perpendicularly or through any surface, and if it later
moves upwards by the acquired iimpetus through any other surface, then it
will always have the same velocity at points of equal height in its descent
and ascent.

Let 2 body fall from the height AB {Fig. 15] and then continue its

motion through the surface BCD, in which the point C has the same height
as the point E in AB. Now I say that the same velocity is present in the body

at € as was present in it at B,
Fig, 15
A [Fig. 15] /n
{4




PROPOSITION XXV

On a cycloid whose axis is erected on the perpendicular and whose
vertex is located at the bottom, the times of descent, in which a body arrives
at the lowest point at the vertex after having departed from any point on
the cycloid, are equal to each other; and these times are related to the time
of a perpendicular fall through the whole axis of the cycloid with the same
ratio by which the semicircumference of a circle is related to its diameter.

Let ABC [Fig. 35] be a cycloid whose vertex A is located at the bottom
and whose axis AD is erected on the perpendicular. Select any point on the
cycloid, for example B, and let a body descend by its natural impetus
through the arc BA, or through a surface so curved. Now I say that the
time of this descent is related to the time of a fall through the axis DA as
the semicircumference of a circle is related to its diameter. When this has
been demonstrated, it will also be established that the times of descent
through all arcs of the cycloid terminating at A are equal to each other.

[Fig. 35]

b ¥ K
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PROPOSITION V

If a straight line is tangent to a cycloid at its apex, and if on that line as
a base another cycloid similar and equal to the first is constructed starting
Jfrom the point of the apex just mentioned, then any straight line which is
tangent to the lower cycloid will meet the arc of the higher cycloid at right

angles.

Let the straight line AG be a tangent to the cycloid ABC at the apex A
[Fig. 42]. On AG as a base construct another similar cycloid AEF whose
apex is F. Moreover let the line BK be a tangent to the cycloid ABC at B.
Now I say that the extension of BK will meet the cycloid AEF at right

angles.

[Fig. 42]
M F
A K G N
H B
D C

Let the generative circle AHD be drawn around AD, which is the axis
of the cycloid ABC. Let BH, which is parallel to the base, meet the circle at
H, and draw HA. Since BK is tangent to the cycloid at B, it follows that it is
parallel to HA [Proposition 15, Part II]. Thus AHBK is a parallelogram,
and so AK is equal to HB, i.e., to the arc AH [Proposition 14, Part II].
Next construct the circle KM equal to the generative circle AHD, making it
tangent to the base AG at K, and extend BK to the point E. Now since AH
is parallel to BKE, and since the angle EKA thus equals KAH, it is clear
that the extension of BK cuts an arc from the circle KM equal to the arc
which AH cuts from the circle AHD. Thus the arc KE is equal to the arc
AH, that is, to the line HB and to the line KA. From this it follows,
according to the properties of a cycloid, that since the generative circle
touches the base at K, the point describing the cycloid would be at E. Thus
the line KE meets the cycloid at E at right angles [Proposition 15, Part II].
But KE is the extension of BK. Therefore it is clear that BK when extended
meets the cycloid at right angles. Q.E.D.



WHAT IS THE LENGTH OF A PENDULUM?
Huygens’s Solution for the Center of Oscillation

——— E—— Generalized Galilean Principles:

1. “If any number of weights begin to
move by the force of their own gravity,

s their center of gravity cannot rise higher
than its location at the beginning of the
e motion.”
O
@® 2. “Abstracting from the air and every

other impediment, the center of gravity of
a pendulum crosses through equal arcs in
descending and ascending.”

Length of a one-second pendulum with a
2 inch diameter spherical bob is 0.1 lines

longer than the distance to the center of
the bob.

11



Center of Oscillation

Prop. I11. If any magnitudes all descend or ascend, albeit

through unequal intervals, the heights of descent or
ascent of each, multiplied by the magnitude of itself, yield
a sum of products equal to that which results from the
multiplication of the height of descent or ascent of the
center of gravity of all the magnitudes times all the
magnitudes.

Prop. IV. Assume that a pendulum is composed of many

weights, and beginning from rest, has completed any part
of its whole oscillation. Imagine next that the common
bond between the weights has been broken and that each
weight converts its acquired velocity upwards and rises as
high as it can. Granting all this, the common center of
gravity will return to the same height which it had before
the oscillation.

Solution for the length of a compound pendulum:

’ Zmiﬁi2 Zml.fi2 Iyzdm
= = or =
Zmifi écgzmi » Iydm

Leibniz (1686): Forces are proportional, jointly, to bodies (of

the same specific gravity or solidity) and to the heights
which produce their velocity or from which their veloci-
ties can be acquired. More generally, since no velocities
may actually be produced, the forces are proportional to
the heights which might be produced by these velocities.
They are not generally proportional to their own veloci-
ties.... Many errors have arisen from this latter view....
I believe this error is also the reason why a number of
scholars have recently questioned Huygens’s law for the
center of oscillation of a pendulum, which is completely
true.



Prop. XXTV. It is not possible to determine the center of
oscillation for pendula suspended between cycloids, and
how to overcome the difficulty which this causes.

If one very closely compares what we have demonstrated
above concerning pendula suspended between cycloids with
our discussion of the center of oscillation, he will see that
these oscillations fall short of the perfect equality which we
would prefer. First he will have doubts, in determining the
generating circle of a cycloid, as to whether the length of the
pendulum should be measured from the point of suspension
to the center of gravity of the attached lead weight or to the
center of oscillation.... If we say that that length should be
measured to the center of oscillation, then it will not be clear
how what was proven about the center of oscillation applies
to a pendulum which is continually changing its length, as is
the case for a pendulum which moves between cycloids. For
it would seem that its center of oscillation changes for each
different length....

However, if we wish to escape these problems completely, we
can succeed if we make the sphere or lentil of the pendulum
move around its own horizontal axis. This is done by insert-
ing both ends of that axis into the bottom of the rod of the
pendulum; the rod having been split in half for the purpose.
For in this way the nature of motion is such that the sphere
of the pendulum will maintain perpetually the same position
in respect to the horizontal plane; and any point in it, as well
as its center, will cross the same cycloids. Hence a considera-
tion of the centers of oscillation is no longer relevant. Such a
pendulum will maintain an equality of times which is no less
perfect than if all of its weight were contained in one point.



10.

11.

Questions Answered by Huygens: 1652-1673

What is the distance of vertical fall in the first second in the absence of a
resisting medium -- i.e. the proportionality constant in Galileo’s "law" of
free-fall?

What rules of impact for perfectly "hard" spheres in head-on collision, in
contrast to those proposed by Descartes, agree with experience?

Is Descartes’ quantity of motion conserved in head-on impact of perfectly
"hard" spheres, and, if not, what quantity is (or quantities are) conserved?

What is the strength of the tendency (conatus) to recede from the center in
uniform circular motion?

What is the tension in the string retaining a body moving in uniform circular
motion?

What is the "law" fully characterizing the relationship between the dimen-
sions of conical pendulums and their periods?

Where must a 90-degree circular-arc pendulum be intercepted for its bob to
reach the vertical with its string remaining taut in ascent?

From what principles can Galileo’s claim of pathwise-independence of speed
acquired in the absence of a resisting medium be derived, and does it hold
regardless of the trajectory of descent?

Given that the circular arc is not the answer, what is the isochronous path
in descent, assuming uniform gravity acting along parallel lines?

How can an isochronous pendulum be constructed -- i.e., one that maintains
the same time to complete a full arc regardless of the arc-length of descent?

With gravity as in (9), what is the "law" fully characterizing the relationship
between the dimensions of simple isochronous pendulums and their periods?

. Where is the "center of oscillation" of a circular-arc pendulum with multiple

small bobs or a physically large bob, and how can the solution for this
center be used to tune pendulum clocks?



Beyond Galileo

» The range of topics covered by Huygens under largely
the same basic hypotheses as Galileo (+ Torricelli and
Cartesian inertia) reaches far beyond the theory in
Two New Sciences: the Galilean-Huygensian theory of
motion under uniform (parallel) acceleration.

» Huygens introduced multiple theory-mediated means
for measuring the fundamental quantities — i.e. the
constants of proportionality — of that theory, opening
the way to a new form of evidence for it from agreeing
measurements that presuppose different hypotheses.

> In extending the theory beyond its initial idealizations
Huygens opened the way to another new form of
evidence by showing that the initial theory is a first
approximation that can be extended to cover devia-
tions from it without requiring new basic hypotheses.

Theoretical physics: theoretical solutions to new problems,
proceeding as much as possible from principles — or at least
direct generalizations of them — that yielded empirically
supported solutions to previous problems
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