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As we enter an age of increasingly larger and noisier data, the dynamic inter-

play between human and machine analysis grows ever more important. At present,

balancing the cost of building and deploying a collaborative system with the benefits

a↵orded by its use is precarious at best. We rely heavily on researcher intuition and

current field-wide trends to decide which problems to approach using collaborative

techniques. While this has led to many successes, it may also lead to the investment

of significant time and energy into collaborative solutions for problems that might

better have been (or have already been) solved by human or machine alone. In

the absence of a secret formula to prescribe this interplay, how do we balance the

expected contributions of human and machine during the design process? Can we

describe the high-level complexity of these systems with the same robust language

as we use to describe the complexity of an algorithmic system? In this work, we

investigate the complementary nature of human and machine computation as used

in visual analytics and human computation systems, and present a theoretical model

to quantify and compare the algorithms that leverage this interaction.
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Chapter 1

Introduction

As we enter an age of increasingly larger and noisier data, the dynamic interplay

between human and machine analysis grows ever more important. Researchers

and toolbuilders work to better understand and support these analytical processes

through systems that couple interactive interfaces with robust computational sup-

port. These systems leverage the acuity of the human visual system as well as our

capacity to understand and reason about complex data, nuanced relationships, and

changing situations. By pairing the human analyst with a machine collaborator for

computational support, we hope to overcome some of the limitations imposed by the

human brain such as limited working memory, bias, and fatigue. Similarly, we rely

on the intuition that the lived experience, perceptual advantage, and adaptability of

the human analyst may prove crucial in areas where purely computational analyses

fail.

This strategy has lead to incredible advances in the development of novel

tools for use in many historically challenging domains. In just the past five years,

we have seen interactive data-driven systems shift financial fraud detection from a

black art to a science [CLG+08], and witnessed the discovery of new protein struc-

tures predicted with help from the crowd [CKT+10]. We have also made dramatic

improvement in the tools available for modeling and predicting complex social be-

havior, such as those we designed for the analysis of political systems [CKJC12]

which will be discussed at length in Chapter 3. With so many promising examples
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of human-machine collaboration in the literature and everyday life, how do we tell

if a new problem would benefit from similar strategies – and if so, how should we

allocate computational tasks?

At present, balancing the cost of building and deploying a collaborative sys-

tem with the benefits a↵orded by its use is precarious at best. We rely heavily

on researcher instinct and current field-wide trends to decide which problems to

approach using collaborative techniques. While this has led to many successes, it

may also lead to the investment of significant time and energy into collaborative

solutions for problems that might better have been (or have already been) solved

by human or machine alone.

In addition to the challenges raised in determining when human-computer

collaboration is appropriate, we presently lack appropriate mechanisms for evalu-

ating systems once we’ve built them. While in-house experimentation and in situ

studies help us determine whether or not our systems are useful, they fall short

of explaining why we see the results we do. In truth, we critique [KDHL08] these

systems, rather than scientifically validate their performance. This often results in

the rote and incremental recycling of known techniques, as we are left to speculate

about the reasons underlying observed (in)e↵ectiveness. In order to advance the

science of human-computer collaborative systems, it is important that we develop

theoretical models of the complementary roles played by both human and machine

to better inform our reasoning about their performance. One such model will be

proposed in Chapter 4.

A system’s e↵ectiveness is determined by how well it leverages its resources

while minimizing waste. While we have come a long way from listing tasks best as-

signed to human or machine [Fit51], appropriate function allocation in collaborative

systems is still far from a perfect science [She00]. In the absence of a secret formula

to prescribe this interplay, how do we balance the expected contributions of human

and machine during the design process? Is it possible to describe the high-level com-

plexity of human-computer collaborative systems with the same robust language as

we use to describe the complexity of an algorithmic system?
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1.1 Purpose and Outline of this Work

The purpose of this dissertation is to investigate the complementary nature of human

and machine computation as used in visual analytics and human computation sys-

tems, as well as to develop theoretical models to quantify the algorithms and systems

that leverage their interaction. While characterizing human processing through cog-

nitive modeling and other means is of critical import to the development of a holistic

understanding of the cost and benefits of human-computer symbiosis, the topic of

modeling the human brain in general is beyond the scope of this thesis. The aim of

this work is to characterize and quantify the use of human processing power as part

of an algorithmic process, rather than to model and measure the cost of the human’s

computational processes themselves. By separating questions of per-operation cost

from questions of resource utilization, we posit that the models presented in this

work will be robust even as more nuanced and complete models of the human brain

come to light. It is through this focus on the use of human processing as a compu-

tational resource and its impact on computability that this dissertation contributes

to the field of human computing and human-computer interaction.

Toward that end, this dissertation is organized as follows. We begin with

an overview of related work (Chapter 2). We then describe the development of two

visual analytics systems for use in the analysis and prediction of the behavior of

political systems in southeast Asia, and report the results of an expert comparison

of these systems against traditional analytic practices in this area (Chapter 3).

This vignette demonstrates the utility of a human-computer collaborative approach

in a complex real-world application domain. We will then go on to consider the

relative strengths of human and machine collaborators, and provide a framework for

cataloguing this and other existing work in human-computer collaborative systems

according to these a↵ordances (Chapter 4).

From there, we discuss the open problem of complexity measures for algo-

rithms involving human computation, and present the Human Oracle Model as a

high-level tool for characterizing and comparing these algorithms (Chapter 5). We

3



demonstrate the utility of this model for comparing and analyzing several well-known

human computation systems for image labeling (Chapter 6), and subsequently dis-

cuss how this model can be used to characterize the space of human computation

(Chapter 7). Finally, we will discuss the model’s limitations as well as its potential

for broader impact (Chapter 8), and provide a summary of the key contributions

of this dissertation (Chapter 9). We hope that this work will leave the reader with

an improved understanding of the complementary strengths of human and machine,

how human and machine computation can be interleaved as part of an algorithmic

process, as well as actionable information about best practices for real world design.

4



Chapter 2

Related Work

The earliest known reference to the word computer dates back to the early 17th

century, at which time it referred to humans tasked with performing manual calcu-

lations. This definition would survive for the better part of two and a half centuries,

before gradually being reappropriated to refer to machines performing similar cal-

culations. In more recent history, the capacity of the human brain to contribute to

computational processes has come back into the spotlight. In this chapter, we will

provide a brief overview of relevant literature on the use of human processing power

in computation.

2.1 Leveraging Human Expertise in Computation

Lived experience and the associated knowledge developed over significant periods of

time can prove di�cult, if not impossible, to encode into a mechanical computation

system. At the same time, this supplemental information about the larger domain

is often of critical importance to solving real-world problems. Because of this, it is

in some cases more advantageous to leverage the human analyst’s expertise directly

rather than invest significant resources in approximating it. In machine learning,

this expertise is used to generate labeled training datasets. These methods have

proven highly e↵ective in handwriting recognition [XKS92], classifying text docu-

ments [Seb02], learning realistic human motion from video [LMSR08], and other

5



areas where predetermining a clear set of classification rules is intractable. Simi-

larly, visual analytics systems rely on human expertise and the “human capacity

to perceive, understand, and reason about complex and dynamic data and situa-

tions” [TC05] to identify patterns in data that are di�cult or impossible to detect

using purely mechanical means. Systems leveraging expert input have demonstrated

success in analyzing trends in medical image datasets [BJVH11], detecting fraud-

ulent financial transactions [CLG+08], diagnosing network faults [LLKM10], and

many other applications. In Chapter 3, we will discuss the design and evaluation

of two systems for analyzing and predicting patterns in political systems. For a

survey of other visual analytics systems, see Keim et al. [KKEM10]. In both ma-

chine learning and visual analytics there is an implicit understanding that human

time and e↵ort is expensive, and that this resource should therefore be utilized as

e�ciently as possible.

2.2 Relative Strengths of Human and Machine

In 1951, Fitts made the first published attempt to categorize tasks better allocated

to humans or machines [Fit51], often abbreviated in the literature as HABA-MABA

(“humans-are-better-at / machines-are-better-at”). While for many years this list

was viewed as mantra for the division of labor, frequent and consistent technological

advances in computation, automation and robotics make function allocation and the

HABA-MABA list a moving target. The distinction between human and machine is

now less clear. For example, while in the 1950s humans were indeed better at storing

large amounts of information, today’s machines far exceed the storage capacity

previously imagined, and the advent of distributed storage is rapidly enabling the

outpacing of human memory by machines.

While the goal of Fitts’ lists was simply to compare humans and machines for

basic labor division, for many years it was mistakenly interpreted as gospel for func-

tion allocation for human-machine collaborative systems. Jordan [Jor63] criticized

this approach, stating that humans and machines are complementary rather than

6



antithetical. Price [Pri85] also supported this view, arguing that function allocation

could be better conceptualized as an interactive process rather than a divisive listing

and that there may exist several optimal solutions for a given problem. Nonetheless,

Fitts’ list laid the foundation for thinking about the respective strengths of humans

and machines.

In recent years, researchers have argued that the original understanding

of function allocation and Fitts’ list no longer makes sense [She00]. Dekker and

Woods [DW02] also provided counterarguments to the validity of Fitts’ list by ar-

guing that human-machine interaction transforms human practice, causing analysts

to adapt their skills and analytic processes. They advocated for a shift in atten-

tion, moving away from allocation of tasks to a focus centered on how to design

for harmonious human-machine cooperation. That is, how do we get humans and

machines to play nicely, and work e↵ectively?

2.3 Human Computation: a Brief Introduction

In this section, we will describe some important concepts and terminology that

will be utilized extensively throughout this manuscript. We begin with a short

introduction to human-computer collaboration and human computation.

2.3.1 Human-Computer Collaboration

In a 1993 symposium at AAAI, researchers from a variety of backgrounds came

together to discuss challenges and benefits in the emerging field of human-computer

collaboration. They defined collaboration as a process in which two or more agents

work together to achieve shared goals, and human-computer collaboration as col-

laboration involving at least one human and at least one computational agent [Ter95].

This collaboration has also been called mixed-initiative systems [Hor99], in which

either the system or the user can initiate action, access information and suggest or

enact responses [TC05]. Mixed-initiative systems have been explored in diverse ar-

eas including knowledge discovery [VP99], problem-solving in AI [FA98], procedural
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training in virtual reality [RJ99] and much more.

2.3.2 Terminology

In his 2005 doctoral thesis [VA05], Luis von Ahn introduced the term human com-

putation; that is, harnessing human time and energy for solving problems that

have to date proven computationally intractable. This is accomplished by treating

human brains as processors in a distributed system. It is important to note that

the term human computation is not synonymous with collective intelligence, crowd-

sourcing, or social computing, although they are related. Before we continue, we will

first define these terms in the interest of developing a context for defining human

computation.

Definition Crowdsourcing is the practice of obtaining services, ideas, or content

by soliciting contributions from a large group of people.

Definition Collective intelligence is the notion that groups of individuals working

together can display intelligent behavior that transcends individual contributions.

Definition Social computing is the intersection between people’s social behaviors

and their interactions with technology.

In many cases, a single system could be classified under more than one of these

headings. At the same time, none of them fully captures the notion of human

computation. As such, there are many working definitions of human computation

in the literature:

. . . using human e↵ort to perform tasks that computers cannot yet per-

form [LVA09]. . .

. . . a technique that makes use of human abilities for computation to

solve problems [CKY09]. . .

A computational process that involves humans in certain steps [YZG+08]. . .
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. . . systems of computers and large numbers of humans that work to-

gether in order to solve problems that could not be solved by either

computers or humans alone [QB09]. . .

Working from these definitions, we can begin to come to consensus regarding

what constitutes human computation. First, the problem must involve some form

of information processing. This may occur as part of an algorithmic process, or

may emerge through the observation and analysis of technology-mediated human

behavior. Second, human participation must be integral to the computational system

or process. In this work, we will consider systems with only superficial human

involvement to fall outside the scope of human computation.

2.3.3 Human Computation in Practice

With the advent of online marketplaces providing an on-demand workforce for mi-

crotasks, we have seen an explosion of work utilizing human processing power to ap-

proach problems that have previously proven intractable. Examples include image

labeling [DSG07, HCL+09, VAD04, VAGK+06, WY12, SDFF12], optical charac-

ter recognition [VAMM+08, NGR+11, CS11], annotating audio clips [LVADC07,

ME08, BOTL09], evacuation planning [SRSJ11] and protein folding [CKT+10].

Human computation has also been used to develop logical models of mutual ex-

clusion [CCH11], as well as find cases where a predictive model is confident but

incorrect [AIP11]. Intuitively, human computation has shown great promise in

helping refine models of human behavior [BKAA11, LALUR12] and natural lan-

guage [KJB12, WY10, SCVAT10, CPK09], and has even been used to recursively

define subtasks for future human computation [KCH11]. For detailed surveys of

research in the area of human computation, please see [QB11, YCK09].

While research in this area has demonstrated much success in harnessing

humans’ computational power, there is a temptation to use human workers as an

easy out. In his article entitled “Why I Hate Mechanical Turk Research (and Work-

shops)” [Ada11], Eytan Adar argues:
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We should not fool ourselves into believing that all hard problems [war-

rant human computation] or completely distract ourselves from advanc-

ing other, computational means of solving these problems. More im-

portantly, we should not fool ourselves into believing that we have done

something new by using human labor. . . Showing that humans can do

human work is not a contribution.

This sentiment has prompted fascinating debate about when and how to leverage

human intelligence in computation.

2.4 Balancing Human and Machine Contributions

Under our working definition of human computation, we see that crowdsourcing is

just the tip of the iceberg. We can think of human computation as a kind of human-

computer collaboration, dividing the computational workload between both human

and machine processors. Along a continuum between human-heavy and machine-

heavy collaboration [BL10], crowdsourcing falls at one extreme (see Fig. 2.1).

Figure 2.1: Examples of human computation along a continuum from human-heavy
to machine-heavy collaboration.

With few exceptions, the computational burden falls almost entirely on the

human collaborators in typical crowdsourced computation applications such as im-

age labeling and text translation. Human-based genetic algorithms also fall on the

human-heavy end of the continuum, as the human agents determine both popula-

tion fitness and genetic variation. In these systems, the primary role of the machine

collaborator is to distribute tasks and collect results, a role with relatively trivial

computational requirements. On the other extreme, algorithms for unsupervised
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learning functions with near autonomy from the human collaborator. Here, the hu-

man’s role is to set the parameters of the algorithms and to verify the results. In the

center, we see a number of algorithmic approaches that attempt to maximize the

contributions from both collaborators in a joint e↵ort to solve complex problems.

Without question, the term human computation spans a wide range of pos-

sible applications and computational distributions. Among all these, many of the

most interesting and successful human computation systems not only balance the

contribution of human and machine, but also leverage the complementary computa-

tional strengths of both parties. In Chapter 4, we will explore some of these strengths

and how they can impact the distribution of labor in a human computation system.

2.5 Challenges in Using Human Computation

While it is may be tempting to view human processing as panacea to many chal-

lenging computational problems, it is important to recognize some fundamental

challenges to using human computation as a computational resource.

2.5.1 Quality Control

As with any biologically-generated signal, the results of human computation are

inherently noisy. While processes leveraging expert computation often assume that

expertise implies accuracy, general human computation requires the integration

of quality control measures in order to ensure quality [Gri11, Lea11]. In many

cases, intelligently combining individual responses can produce higher quality than

any individual contribution [GVGH12]. In Games with a Purpose, implicit vali-

dation methods such as output-agreement [VAD04], input-agreement [LVA09], or

complementarity-agreement [LA11] are woven into the game mechanics. For appli-

cations with a larger number of contributors, simple majority vote from a collection

of users is su�cient to validate a proposed solution [BLM+10]. More advanced

voting rules can provide improved guarantees on accuracy over basic majority vot-

ing under some noise models [JL11, MPC12], and the level of redundancy can be
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adjusted on the fly to ensure a confidence threshold is met [BKW+11].

Tournament selection can also improve quality over independent agreement

in complex tasks [SRL11], leveraging humans’ ability to recognize correct answers

even when they have a limited ability to generate them. In addition, new active

learning paradigms that balance traditional close-to-boundary sampling with global

distribution of unlabeled data have shown promising results with noisy, unreliable

oracles [ZSS11], as have matrix factorization methods for counteracting sparse, im-

balanced samples [JL12]. For open problems, where answers are being sampled from

a countably infinite rather than finite set, decision-theoretic models can be useful

for quality control [LW+12].

In addition to controlling for the quality of individual answers, human compu-

tation systems are also concerned with the overall quality of individual contributors.

Some systems interject questions with known correct answers to directly estimate

a contributor’s quality [OSL+11]. Others have proposed using support vector ma-

chines [HB12] or Z-score outlier detection [JL11] to identify those whose responses

are excessively noisy, as well as using confusion matrices to separate contributors

exhibiting occasional bias from true substandard contributors [IPW10]. These meth-

ods are intended to filter out workers of unacceptable quality from the resource pool.

Though some can be performed on the fly, throughout the remainder of this disser-

tation we will assume that this filtering has occurred during a preprocessing step,

rather than during the execution of the human computation system itself.

2.5.2 User Modeling for Human Computation

In addition to introducing noise, human contributors operate within a complex sys-

tem of social, behavioral, and economic factors. To better understand the role

these factors play in the design of e↵ective human computation systems, researchers

have developed and analyzed models of the interaction between tasks, environments,

and contributors. Several studies have contributed semi-ethnographic character-

izations of workers on Amazon’s Mechanical Turk [SRIT10, SGM11], as well as

models for how workers enter and exit the market and the factors that influence
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how they select tasks [FHI11]. These models can help inform optimal incentive

structures [HZVvdS12] and workflows [Dai11], as well as contribute to quality con-

trol [WBPB10].

While these models can be helpful in designing more e�cient systems, the hu-

man’s underlying computational processes remain largely a mystery. Sadly, our abil-

ity to model how the human brain computes is hindered by a limited understanding

of the biological mechanisms that enable that computation. Cognitive modeling has

demonstrated success in simulating processes such as visual word recognition [Dav10]

and memory recognition [NO03], but it is unclear how to compare between these

models or to determine whether a given model is minimal and complete. Until our

understanding of the cognitive processes involved in computation is more fully de-

veloped, it seems likely that the human will generally remain a (somewhat finicky)

black box. In the interim, we can begin to develop a higher-level notion of the

complexity of systems involving human computation.

2.6 Measuring the Complexity of Human+Machine

Existing complexity models classify computational problems by evaluating the time

and space required to solve the problem using a computer. Under these models,

many interesting real-world problems are known to be computationally infeasible,

even if the path to finding the solution is clear. For example, we know how to solve

the Traveling Salesman problem, but computing the solution is intractable for all

but a handful of special cases. Other problems, like general image recognition, have

no known solution and are believed to be unsolvable by even the most powerful

machines.

In contrast, many of these problems appear relatively easy for humans. Some

of this disparity can be attributed to the advantages of robust biological perceptual

systems which have been honed through millennia of evolutionary refinement. While

our understanding of the biological mechanisms that enable computation in the

human brain is still limited, we have evidence to support the intuition that human
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computational processes are di↵erent from, and in may cases complementary to,

mechanical computation.

Emerging research in Artificial Intelligence extends theoretical models of

complexity to include computation performed by human-level intelligence [?, DSC10,

Yam11, Yam12, Yam13]. One major contribution of this extension is that it pro-

vides a mechanism to verify the existence of a human-level intelligence by outlining

classes of problems which only such an intelligence could solve. If a solution to any

such problem could be yielded purely through mechanical computation, that would

be su�cient to prove that the machine performing the computation was exhibiting

human-level intelligence.

Research in the field of Artificial Intelligence seeks to model and emulate

human intelligence using a machine. Research in human computation leverages

actual human intelligence to perform computationally-di�cult tasks. Both fields

hinge on the long-held belief that there exist problems that require human-level

intelligence and reasoning to solve. Because of this relationship, we believe that

theoretical models from the Artificial Intelligence community may be a useful start-

ing point for understanding and comparing human computation problems and their

solutions. Beginning in Chapter 5, we will expand upon one such model and adapt

it for use in measuring the complexity of human computation systems. This dis-

sertation provides a critical first step in quantifying the use of human input as a

computational resource, and helps us to better understand the intricate relation-

ships between di↵erent problems and problem families when viewed through the

lens of human computation.
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Chapter 3

Two Visual Analytics Systems

for Political Science

This chapter is based on the paper:

• Crouser, R., Kee, D. E., Jeong, D. H., & Chang, R. Two visualization tools

for analyzing agent-based simulations in political science. IEEE Computer

Graphics and Applications, 32(1), 67-77, 2012.

3.1 Introduction

In this chapter, we present two human-computer collaborative systems designed to

support inquiry and inference by social scientists using agent-based simulations to

model political phenomena. In collaboration with domain experts, we designed these

systems to provide interactive exploration and domain-specific data analysis tools.

Through in situ analysis by expert users, we validated that these systems provide

an e�cient mechanism for exploring individual trajectories and the relationships be-

tween variables. In addition, we demonstrated that these systems more e↵ectively

support hypothesis generation when compared with existing best practices by en-

abling analysts to group simulations according to multidimensional similarity and

drill down to investigate further.
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3.2 Domain Characterization

Behavioral simulation analysis is an important component of social and political sci-

ence research. In studying these models, scientists seek to uncover the sociopolitical

and socioeconomic forces at work in controlling and influencing group behaviors,

as well as to make predictions about behavioral patterns using data collected in

the real world. Better understanding of how these forces influence group behavior

and the ability to make more accurate predictions can greatly influence how we

view real-world behavioral systems and better inform decisions regarding domestic

stability, foreign policy and more.

The first step in this process is constructing an accurate model. Research in

these areas often utilizes a technique called agent-based modeling (ABM). In ABM, a

behavioral system is modeled as a collection of autonomous entities or agents. Each

agent interacts with other agents according to a set of rules and goals, and over time

it may influence and be influenced by the agents around it. ABM has been used

to model complex behaviors such as collaboration [Axe97], conflict [SPRK03], vio-

lence [BB00], and population change [AED+02]. Agent-based models have also been

used to identify a country’s political patterns, which might indicate the imminence

of civil unrest and help predict catastrophic events [LAGR10].

After building an agent-based model from existing political theories based on

observed behaviors and interactions, the model is then seeded with data collected in

the field about political party a�liation, level of violence, protest, regional and local

conflict, and more [AHG11]. Using this information, the agent-based model produces

a large amount of data representing a distribution of possible behavioral patterns

over a fixed period of time. Analysts then use this data to construct a cohesive

narrative explaining the relevant interactions as well as to identify interesting or

highly likely future outcomes.

As computing power becomes more widely available, scientists are able to

simulate increasingly complex systems. This in turn generates increasingly large

datasets, which must then be analyzed and interpreted. Correctly interpreting these

16



simulation results can help social and political scientists to better understand the

forces at work in complicated social behaviors, such as those leading to patterns

of violence and socioeconomic repression, political unrest and instability, and even

help identify factors that might lead to catastrophic events. Conversely, incorrectly

interpreting the results of these simulations can result in suboptimal decision-making

and misallocation of resources in high impact, real-world situations.

Unfortunately, the existing methods and tools available to social scientists

for analyzing simulation results are not able to support datasets of this magnitude,

making it di�cult for scientists to e↵ectively interpret and analyze the results of

these simulations [Lus02]. While statistical analysis of the resulting data can be

performed, it often proves insu�cient. Due to the complex nature of these simula-

tions, expert analysis of the resulting datasets is required to interpret the results as

valid behavioral patterns and fully understand the forces controlling the interactions

observed in the simulation. The size of the data is so large that it would require

countless hours to examine by hand, and so the data must often be simplified and

some detail sacrificed in the interest of conserving analyst time and energy.

Data size and dimensionality are not the only challenges facing social scien-

tists when using large-scale agent-based simulations to model complex behaviors.

ABM is a stochastic simulation technique, utilizing small random perturbations to

the interaction rules and running each simulation hundreds or even thousands of

times times to avoid local minima and to generate a distribution of sample behav-

ioral patterns. Because of this, it is critical for analysts to be able to compare

simulated behaviors between and across distinct runs, and to be able to piece to-

gether many simulation runs into a single, cohesive overview.

For these reasons, computational support and e↵ective, domain-specific visu-

alization tools are critical for e↵ective analysis of these simulations. By understand-

ing the patterns being modeled by the simulation, scientists can better understand

the sociopolitical forces at work in real-world social and political systems, which

can in turn enable them to better inform decision-makers and international policy.

To begin to address this need, we formed a collaborative partnership with domain
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experts to investigate novel approaches for supporting this analysis process.

3.3 Design Considerations

Through informal brainstorming sessions with a group of domain experts, we identi-

fied three areas of critical need that are insu�ciently addressed by existing analytical

systems for use in exploring agent-based simulation data:

• Support for exploring the dataset as a whole to generate initial hypotheses

• E�cient mechanisms for the comparison of individual simulation runs

• Incorporation of domain expertise into the data analysis tool

Using these three design considerations as a foundation, we developed in-

teractive exploratory visual analytics systems to support analysis of agent-based

models in political science. Each of these systems utilizes a coordinated multiple

views architecture, allowing the analyst to customize the views to suit her analytical

process. The systems are developed using C++, OpenGL, and wxWidgets, and as

such are deployable to any machine regardless of its operating system.

To evaluate these systems, we performed an expert analysis with a group of

analysts working with data from an agent-based simulation of political violence and

unrest in Thailand. From this analysis, we found that most analysts considered our

systems to be invaluable in supporting and streamlining their analytical processes.

In collaboration with these experts, we also identified areas for further refinement

of these systems.

3.4 Macroanalysis using MDSViz

To address the first area of critical need, we present MDSViz, a visual analytics

system designed to enable to analyst to examine the aggregated data, determine

the similarities and di↵erences between high-dimensional simulation runs, and iden-

tify trends and outliers for further exploration. Through our informal interviews,
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analysts reported that their existing best practices involved using line graphs and

statistical plots of each dimension in order to make comparisons, and manually com-

paring the values of individual variables to drill down into a single run. This process

is laborious, highly error-prone, and fails to provide a real overall sense of how the

dimensions interact with one another.

3.4.1 System Design

To support global analysis across all simulation runs, the data from all simulations

are centrally managed and projected to highlight similarities. Because the simula-

tions have high dimensionality (1,000 simulations ⇥ 60 timesteps ⇥ 351 attributes),

a distance function is necessary to describe the similarity of two given states (see

Section 3.6 for a detailed discussion on selecting a distance function). With an ap-

propriate distance function, multidimensional scaling (MDS) is applied to reduce

the dimensionality of the data. Since the dimensionality is high in our input data

(a distance matrix of 60,000 ⇥ 60,000 is possible), the system computes the mean

variance of each simulation by referencing all 60 timesteps. Each simulation is rep-

resented as mean values of 351 variables, and so the size of the distance matrix

can be reduced to 1,000 ⇥ 1,000. Based on this generated distance matrix, MDS is

performed to reduce the dimensionality of the simulations further.

To support analysis on complex political simulations, the MDSViz system is

designed using a coordinated multiple view (CMV) architecture. Within the CMV

framework, any interaction with one view is immediately reflected to all the other

views. To e↵ectively coordinate each view, we implemented an interaction man-

ager which handles all keyboard and mouse interactions. In addition, the selection

operation in all views and the zooming mechanism in the Projection and Cluster

views helps users focus their attention on interesting simulations or timesteps. A

detailed explanation of supported interactions in each system is included in following

sections.
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(a) (b) (c)

Figure 3.1: The MDSViz system, utilizing a coordinated multiple views (CMV)
architecture: (a) a Global view using MDS Projection (top) and parallel coordinates
(bottom), (b) Simulation view, and (c) control panels

Projection View

All simulations are represented by applying a distance function and multi-dimensional

scaling (MDS) in the Projection view. Because there are limitations on applying

MDS directly to large-scale input data, a statistical variance analysis is performed

in advance. Mean variance is computed to determine the center of the variable

distribution for each simulation, and a distance function is then applied. Although

finding a semantically meaningful distance function is important, identifying the ap-

propriate contribution of all variables requires significant computational time. We

use a simple Euclidean distance function and allow the user to manually control the

weighted contribution of each dimension. MDS is then applied to reduce dimension-

ality of the simulations. By default, we run MDS for 1,000 iterations, though this

parameter can be tuned.

Figure 3.1(a)-top shows all 1,000 political simulations in the Projection View.

Each simulation is represented as a pixel-oriented glyph by arranging each timestep

following an 8th order Hilbert curve. This technique has the advantage of providing

continuous curves while maintaining good locality of information. For mapping

each timestep, we set the Hilbert curve order to 8 which covers up to 8 ⇥ 8 sizes.

Color coding is then used to represent the selected variable at each timestep. This
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(a) (b)

Figure 3.2: Glyph representation can be toggled while navigating the projection
space: (a) Pixel-oriented glyphs display all 60 timesteps of each simulation following
the Hilbert curve ordering method and (b) Line graphs represents the temporal
changes through time on a selected variable.

parameter can be selected by the user in the the control panel (see Fig. 3.1(c)-top).

Alternatively, the user can switch from the pixel-oriented glyph to a line graph

representation (see Fig. 3.2).

Data View

Each simulation is controlled by 351 variables. To represent the variables, we utilize

a well-known visualization technique called parallel coordinates. Although visualiz-

ing 1,000 simulations with 351 variables through a parallel coordinates visualization

can prove di�cult because of a cluttering problem, this visualization technique is

useful when the data exhibit patterns or underlying structure. Within the parallel

coordinates visualization, a color attribute is selected by referencing the political

structure of each simulation. Since most variables are mapped by the Dynamic

Political Hierarchy (DPH), which characterizes the political structure of a country

based on the relationships and strengths of individual political, racial, ideological,

and religious groups, the frequency analysis counts the political structure in order

to determine the most dominant political identity present in each simulation. The

corresponding color attribute is then used to represent the simulation as a line graph.

In the Data view, each line denotes one of the simulations. When the user

highlights or selects simulations in the Projection view, the highlighted or selected

simulations are emphasized by hiding all other simulations in the parallel coordi-
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nates visualization. In addition, the mean variance of the highlighted simulation is

displayed with a gradient color mapping method (see Fig. 3.1(a)-bottom). With this

feature, the user can intuitively identify the variance over the course of 60 timesteps

in each simulation.

Cluster View

Once the analyst has identified and selected interesting simulations in the Projection

view, all timesteps in the selected simulations are represented in the Cluster view.

Each simulation spans 60 timesteps, and each timestep is mapped to a unique circle

in this view (see Fig. 3.1(b)-top). Similar to the Projection view, we apply MDS to

reduce dimensionality across all timesteps in the selected simulations. Since each

timestep is an individual data element in the Cluster view, similarities among 120

data elements will be computed when two simulations are selected. When multiple

simulations are selected, representing all corresponding timesteps in this Projection

view makes it di�cult for the the user determine which simulation produced each

timestep. To avoid this ambiguity, the convex hull is computed to form a boundary

around each simulation as shown in Figure 3.1(b)-top. If the user highlights an

item (i.e. timestep) by hovering over the item, the convex hull of the corresponding

simulation will also be highlighted.

Temporal View

In the Temporal view, all attributes related to each timestep are displayed in a par-

allel coordinates visualization. As shown in Figure 3.1(b)-bottom, the layout has

two components: a variable selector and a parallel coordinates visualization. The

variable selector is positioned above the parallel coordinates visualization. Since

each small subregion of the parallel coordinates view is mapped directly to a vari-

able, the user can interactively select a variable by simply choosing a subregion.

Alternatively, the user can select a variable from the control panel. Based on the

selection, the corresponding information is displayed in the parallel coordinates vi-

sualization. In this visualization, timesteps are indicated intuitively along x-axis.
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As shown in Figure 3.1(b), the color attributes from the Cluster view are used when

rendering lines in the parallel coordinates. From this, the user is able to identify

what factors influence DPH structures.

Control Panels

Two control panels are designed to allow the user to manage input parameters to

the visualization. The first is used to modify the attributes of the visualization. In

this panel, the user is able to change variables and modify the color mapping. Since

the color mapping is created by referencing the selected variable, whenever the user

selects a di↵erent variable in the control panel, the corresponding information will be

represented to the visualization. The other panel is used for controlling the amount

of contribution of a variable in the MDS calculation. Changing the contribution

from 100% to 50% indicates that the weight of the selected variable is set to 0.5.

When the contribution is diminished to 0%, the selected variable will not be used

in computing similarity.

3.4.2 Case Studies

In the following section, we demonstrate the e�cacy of MDSViz when deployed

for real-world analytical tasks in modeling political systems through case studies

developed in collaboration with expert analysts in political science. In both case

studies, the MDSViz system was initialized with the VirThai [AHG11] simulation

dataset created by our expert analysts.

Identifying Trends in Potential Outcomes

The analysts began by representing the data with pixel-oriented glyphs of the Dom-

inant Identity attribute in the Projection view (see Fig. 3.3) to explore how the

simulation runs are clustered and how the clustering correlates to the Dominant

Identity attribute. Because the Dominant Identity attribute has a small contribu-

tion to the distance function, it can be utilized as a label for each simulation in this

context.

23



Figure 3.3: A representation of the data with pixel-oriented glyphs of the Dominant
Identity attribute in the Projection view.

In Figure 3.3, analysts observed that runs that more prominently feature

Buddhist (red) or Thai Ethnic groups (light purple) as the Dominant Identity are

clustered on the right side, whereas runs that more prominently feature the Red

Shirts (dark purple) or Yellow Shirts (pink) are clustered on the left. Because the

Buddhist/Thai Ethnic clustering is roughly the same size as the Red Shirts/Yellow

Shirts clustering, the probability of Thailand’s future resembling either of the two

outcomes is similar.

The analysts then selected one run from each of the Dominant Identities

present in the two clusters to see how the attributes of each run di↵er. They looked

specifically at the Lobby (Fig. 3.4(a)), Protest (Fig. 3.4(b)), and Attack (Fig. 3.4(c))

attributes. As indicated by the graphs shown in Figure 3.4, there are significant

di↵erences between the two clusters for the Lobby and Protest attributes, but not

the Attack attribute.
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(a)

(b)

(c)

Figure 3.4: MDSViz Parallel Coordinates view of individual simulation runs across
two clusters for various attributes: (a) Lobby, (b) Protest, and (c) Attack.
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While the analysts could not make strong predictions about Thailand’s future

from this analysis, they hypothesized that one important distinction between the

two clusters is that runs in the Buddhist/Thai Ethnic clustering exhibit high levels of

legal lobbying and low levels of protest, whereas runs in the Red Shirts/Yellow Shirts

clustering exhibit the opposite. To confirm their hypothesis, our collaborators then

selected ten runs from each cluster and observed similar patterns for each attribute

(see Fig. 3.5)

Identifying Unlikely Yet High Impact Outcomes

To analyze unlikely, yet potentially high impact outcomes, the analysts returned to

the Projection view (Fig. 3.3) and focused their attention on outliers. Adding two

of these outliers to the subset of runs selected in the previous scenario, analysts

turned to the Temporal view of the Attack attribute shown in Figure 3.6. In the

four runs from the “Identifying Potential Outcomes” usage scenario, there was little

noticeable di↵erence between the level of the Attack attribute for these runs, but

the additional outlier runs show several spikes of very high levels of Attack relative

to the runs from within the clusters.

3.4.3 Qualitative Analysis

Expert analysis revealed that MDSViz was overwhelmingly useful for comparing

runs according to their similarity across multiple data dimensions. One analyst re-

ported that “[t]his is the first time we’ve really been able to group runs according to

multidimensional similarity. Until this point we didn’t even really have a rudimen-

tary strategy... and even univariate similarity comparisons relied on comparing [a]

large number of time series or comparing means.” MDSViz has broadened the range

of possibilities for analysis by providing a straightforward mechanism for performing

multivariate clustering on complex data, as well as greatly reducing the computation

time for performing traditional comparisons.

The analysts also reported that the barrier to entry to their analytical process

would be greatly reduced by using MDSViz. They report that while identifying and
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(a)

(b)

(c)

Figure 3.5: MDSViz Parallel Coordinates view of 10 sample simulation runs across
two clusters for various attributes: (a) Lobby, (b) Protest, and (c) Attack.
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Figure 3.6: A comparison between two outlier runs to more characteristic runs using
the Temporal view to explore the Attack attribute.

grouping similar runs and then drilling down into the data to determine what makes

those runs unique was possible “based on a high level of familiarity with the model...

the process was often opaque.” By using MDSViz to identify groups of similar runs

and then utilizing the Parallel Coordinates and Time Series views to examine the

details of the simulation runs, “a new user is able to explore a data set and find

interesting relationships or an experienced user can more quickly understand a new

data set.”

During the evaluation, the experts also identified a few shortcomings of the

existing system. In particular, they noted that while MDSViz is a powerful tool

for analysis, it is not particularly well-suited for presentation due to the challenges

in comparing across multivariate space. They also noted that while they found it

useful to be able to alter their distance function by using the control panel to modify

the variable weights, computation speed can be problematic. One final drawback
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of the multidimensional component of MDSViz that the analysts identified is that

patterns across many dimensions can tend to cancel each other out. They suggested

that in some cases, patterns among fewer variables might be more intuitive and

show stronger relationships. In a data set where relationships are generally weak,

this technique might help illuminate less obvious patterns.

3.5 Single Run Analysis with SocialViz

In addition to developing intuitions about the dataset as a whole, there are many

instances where it is useful to be able to compare individual simulations runs. For

example, analysts might want to explore outliers to determine whether or not they

represent legitimate but unlikely outcomes, or whether they are simply noise. To

compare simulation runs, the values of each variable must be compared indepen-

dently, leaving the analyst without a holistic overview of the similarities and dif-

ferences between the compared runs. To tackle this problem, we present SocialViz,

an organized mechanism for drilling down into a single run, enabling analysts to

explore the behaviors of a single set of conditions, as well as providing a useful tool

for debugging the simulation.

3.5.1 System Design

SocialViz enables analysts to perform analyses on the detailed, lower-level informa-

tion of an individual simulation. In SocialViz, the analyst has access to information

about the variables controlling each individual agent at every timestep of the simu-

lation. As shown in Figure 3.7, the four views (Bubble Chart, Temporal, Geograph-

ical, and DPH) are designed to support the analysis of correlation, temporal trends,

geographical trends, and changes to the Dynamic Political Hierarchy, respectively.

All views are coordinated to support a user’s interactions between di↵erent views.
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(a) (b) (c)

Figure 3.7: The four views of the SocialViz system. (a) A Bubble Chart view (top)
and a Temporal view (bottom) are designed to support correlation and temporal
analysis. (b) A Geospatial view of the overall system including all the agents. (c)
The Dynamic Political Hierarchy (DPH) view.

Bubble Chart View

The Bubble Chart view displays the correlation between two intersecting variables.

If the two variables maintain a positive correlation, the slope of the pattern of dots

will be from lower left to upper right. With this approach, the user is able to

examine the actions and interactions of each agent or political group by comparing

the correlation between its controlling variables. The analyst can select variables to

compare through a control panel. The color attribute is determined by referencing

the activated identity within each group, utilizing the same encoding metaphor used

in MDSViz.

Temporal View

In the Temporal view, the activities of each agent or political group over time can

be represented as line, with the color of the line matched with the color of each

group. The line indicates the activities of each group over time. By highlighting the

line or time dimension, the corresponding information will be reflected in all other

views.
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Geospatial View

Location information corresponding to each agent is represented in the Geospatial

view. Because the political simulation run in this case was performed on data

gathered in Thailand, a geographical map of Thailand is used. Here, each agent

is mapped to a region whose color corresponds to the activated identity with each

group.

DPH View

The DPH view shows the groups of agents and how their relationships impact the

structure and stability of a system. The configuration of the Dynamic Political

Hierarchy (DPH) characterizes the political structure of a country based on the

relationships and strengths of individual political, racial, ideological, and religious

groups [LAGR10]. In this model, each identity is assigned a level in the hierarchy:

dominant, incumbent, regime, system, and anti-system. The line between groups

represents their relationship, and the thickness of the line indicates how strongly

the two groups are connected. By default, all linkages among groups are displayed.

Since the DPH View uses a graph drawing approach, commonly known limitations

(i.e. cluttering and line crossing) in graph drawing approaches are also present in

the DPH View. To minimize these limitations, a B-spline approach is used to create

a curved line. In addition, only highlighted linkages are emphasized when the user

interacts with group(s).

Each agent may subscribe to any number of identity groups. At each timestep,

an agent will be considered active under only one of its subscribed identities. In the

DPH View, each identity group is represented as a piechart depicting the number

of activated agents and total number of subscribed agents. The darker region in the

piechart indicates the proportional percentage to the number of activated agents.
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3.5.2 Case Studies

To demonstrate the complementarity of SocialViz to MDSViz, we return to where

the previous case study left o↵. To further explore why outliers display such a high

level of Attack, the analysts switch to using SocialViz to explore an individual history

at an in-depth level. They begin their analysis by using the Temporal and Bubble

Chart views to confirm the spikes in Attack that they observed using MDSViz.

To understand why these spikes occur, they then examine the DPH view of the

timesteps immediately preceding the increase in attacks. In this view, they observe

a pattern: in the two timesteps immediately preceding the attacks, there is a shift

in the DPH level of the Thai Ethnic identity from the Regime level (Fig. 3.8(a))

to the System level (Fig. 3.8(b)). Additionally, there is also a shift in the Isan

group, bringing them from the System level (Fig. 3.8(a)) up to the Incumbent level

(Fig. 3.8(b)). Both of these patterns occur immediately before nearly all of the spikes

in Attack. From this, the analysts leverage their domain expertise to conclude that,

for this run, the high levels of violent attacks probably result from the alienation of

the Thai Ethnic group whenever the Red Shirts align themselves closely with the

minority Isan ethnicity.

3.5.3 Qualitative Analysis

Analysts agreed that SocialViz provided them with a much more e�cient framework

for exploring individual trajectories and di↵erent variables. One expert stated that

to accomplish this task previously they would “have to open the model in PS-I

and watch the particular trajectory run or use o↵-the-shelf software (e.g. Excel,

STATA).” The SocialViz system enabled analysts to straightforwardly access and

visualize many of the variables at work in their model.

Another analyst noted that “one of the great advantages of SocialViz is its

speed, which allows a user to analyze the configuration of a landscape over an entire

run very quickly without having to flip back and forth between a series of images.

Some of the views, like the sequential DPH visualization, were not available to us
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(a)

(b)

Figure 3.8: DPH view of the timesteps immediately preceding an increase in Attacks
in a sample outlier run.

at all; [before SocialViz] we only had the ability to generate the visualization from

individual timesteps, which is a very time-intensive process.” The only drawbacks

to the SocialViz system that were noted by the analysts were that not all variables

and attributes within the model were available to be viewed, such as the rules and

functions operating within the model.

Overall, the analysts reported that MDSViz and SocialViz are invaluable

tools that met all of the design considerations that we had collectively identified at

the onset of our partnership. They indicated that in many cases, both MDSViz and

SocialViz would significantly streamline their analytical processes, support them in

identifying interesting patterns, and help them explore how di↵erent factors influ-

ence political systems.
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3.6 Discussion and Future Work

In this section, we discuss the current limitations of our system and identify areas

for future research.

Identifying Appropriate Distance Functions

In our current implementation, we use Euclidean distance as a proof-of-concept dis-

tance function. However, in this distance measure the attributes are not normalized

and thus have uneven weighting depending on the range of values for each individual

attribute. While it is possible to compensate for this by adjusting the contribution

for an over- or under-represented attribute in the MDSView control panel, it would

be much more intuitive if equal contribution values in the control panel equated to

equal contribution of attributes in the distance function. Along with this normaliza-

tion, we would like to explore the utility of o↵ering the user several initial predefined

options depending on the data being examined in order to minimize the amount of

time and e↵ort required to properly tune the distance function.

Another issue with using Euclidean distance for comparing time series is that

it tends to perform poorly when similar features are shifted slightly in time. This

weakness is exploited especially by the agent-based simulation data used in this

paper, where attributes can vary greatly between consecutive timesteps. Intuitively,

the distance between two runs that are identical with the exception of a slight shift in

time should be almost nonexistant. However, Euclidean distance has no mechanism

to recognize this.

Because of this, we have considered several other distance measures. The first

alternative is dynamic time warping (DTW) [BC94], which can be very e↵ective at

handling temporal shifting, but is unfortunately computationally intensive. Another

alternative is symbolic aggregate approximation (SAX) [LKWL07], which can be

used to determine a lower bound on Euclidean distance between two time series in

a fraction of the time, and so could be applied to subsequences of the time series to

quickly find similar features that are shifted in time.
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In our future work, we would like to continue to explore di↵erent distance

measures to a↵ord analysts better performance and increased control when using

these tools. One area of particular interest is the automatic generation of distance

functions. One method currently being evaluated in our lab is the e↵ectiveness of

using a computational “best guess” approach coupled with an iterative refinement

process in partnership with the user to assist the analyst in externalizing their

intuitions about the data and thereby computing an appropriate, custom distance

function.

Improve MDS Performance

Another area for future improvement is modifying the multidimensional scaling com-

ponent to enable real-time user interaction with attribute weighting. In particular,

we are interested in leveraging the work of Ingram et al. [IMO08] on utilizing the

GPU for MDS computation. This research reported speedup factors of 10 to 15

times when using the GPU for their MDS algorithm. As noted in the expert anal-

ysis of these systems, the ability to perform multidimensional comparisons between

simulations runs provides a previously unexplored opportunity for examining agent-

based simulation data in close detail. However, due to the lengthy computation time,

analysts are unable to iteratively refine their comparison by modifying the weight

distribution across several variables and recomputing the distances between simu-

lations. By refining and speeding up these calculations, we would enable analysts

to better explore a range of hypotheses about the factors influencing sociopolitical

interactions observed in their simulations.

Integrating MDSViz and SocialViz

Although both systems were very well-received, there has been some discussion

about whether the functionality of both MDSViz and SocialViz should be com-

bined into a single system. Because of the memory management issues that arise

when working with such large datasets, having both systems combined into a single

tool would require the system to dynamically load data, potentially resulting in di-
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minished performance. However, the benefits to a combined system that does not

require context-switching on the part of the analyst warrant further investigation

into its development. This is especially true when combined with the potential for

a dramatic performance increase that could be gained by leveraging the GPU for

MDS computation, which would o↵set some of the dynamic loading bottleneck.

3.7 Summary

Analyzing and interpreting the results of agent-based models is a critical component

of current research in social and political science. These simulations can help scien-

tists to better understand the forces at work in social and political systems, which

can in turn enable them to better inform decision-makers and international policy.

Although there exist robust systems for developing and running these simulations,

it is di�cult for social scientists to interpret the results of their increasingly complex

simulations without appropriate tools.

We have presented two systems specifically designed to support inquiry and

inference by social scientists using agent-based simulations to model political phe-

nomena. We designed these systems in collaboration with domain experts to provide

interactive exploration and domain-specific data analysis tools. Through evaluation

by domain experts, we validated that these systems provide an e�cient framework

to explore simulation data and confirmed both their novelty and utility. In the fol-

lowing chapter, we will examine some of the characteristics of these systems as well

as their contemporaries in analytical and other domains to develop a framework for

understanding their strengths and shortcomings.
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Chapter 4

A↵ordances in

Human-Computer Collaborative

Systems

This chapter is based on the paper:

• Crouser, R. & Chang, R. An a↵ordance-based framework for human computa-

tion and human-computer collaboration, IEEE Transactions on Visualization

and Computer Graphics, 18(12), 2859-2868, 2012.

4.1 Introduction

Thomas and Cook define the field of Visual Analytics as “the science of analytical

reasoning facilitated by visual interactive interfaces” [TC05]. By leveraging increas-

ing computational power and the significant bandwidth of human visual processing

channels, it strives to facilitate the analytical reasoning process and support the

“human capacity to perceive, understand, and reason about complex and dynamic

data and situations” [TC05]. As the field matures, it is increasingly imperative

to provide mechanisms for approaching analytic tasks whose size and complexity

render them intractable without the close coupling and dynamic interplay of both
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human and machine analysis. Primary goals of this field are to develop tools and

methodologies that facilitate human-machine collaborative problem solving, and to

understand and maximize the benefits of such a partnership.

Researchers have explored this coupling in many venues: IEEE Conference

on Visual Analytics Science and Technology (VAST), IEEE Visualization Confer-

ence (Vis), IEEE Information Visualization Conference (InfoVis), ACM Conference

on Human Factors in Computing Systems (CHI), ACM Conference on Knowledge

Discovery and Data Mining (KDD), ACM Conference in Intelligent User Inter-

faces (IUI), and more. The study of general human-computer collaboration o↵ers a

plethora of examples of successful human/machine teams [CBY10, DWCR11, IV11,

KCD+09, KBGE09, LSD+10, MvGW11, SGL09, SSJKF09, TAE+09, ZAM11]. De-

velopments in supervised machine learning in the visualization community present

several vetted techniques for human intervention into computationally complex

tasks [AWD11, AAR+09, BJVH11, CLKP10, FWG09, GRM10, IMI+10, LLKM10,

MW10b, RBBV11]. The emerging field of human computation inverts the tradi-

tional paradigm of machines providing computational support for problems that hu-

mans find challenging, and demonstrates success using aggregated human processing

power facilitated by machines to perform di�cult computational tasks such as image

labeling [DSG07, HCL+09, VAD04, VAGK+06], annotating audio clips [LVADC07,

ME08], and even folding proteins [CKT+10].

While there have been a multitude of promising examples of human-computer

collaboration, there exists no common language for describing such partnerships.

This begs several questions:

Problem selection

How do we tell if a problem would benefit from a collaborative technique? Bal-

ancing the cost of building and deploying a collaborative system with the benefits

a↵orded by its use is currently precarious at best. Recent research proposed game-

theoretic arguments regarding the kinds of problems that might be e↵ectively crowd-

sourced [RV12], but these may be di�cult to extend to broader human-computer

38



collaborative e↵orts. Without a framework in which to situate the development of

new systems, we rely heavily on researcher intuition and current fieldwide trends to

decide which problems to approach using these techniques. This is akin to looking

for the sharpest needle in a haystack of needles, and while it has led to many novel

approaches to hard problems, it has also led to the investment of significant time

and energy into ine�cient collaborative solutions for problems that might better

have been (or have already been) solved by human or machine techniques alone.

Function allocation

How do we decide which tasks to delegate to which party, and when? It has long

been stated (even by the author himself) that Fitts’ HABA-MABA lists [Fit51] are

insu�cient and out-of-date. Sheridan notes that function allocation in collaborative

systems is far from a perfect science [She00]. Dekker argues that static function

allocation consistently misses the mark because humans adapt to their surroundings,

including systems with which they work [DW02]. However, the e↵ectiveness of any

collaborative system is deeply rooted in its ability to leverage the best that both

humans and machine have to o↵er. Without a language for describing the skills

and capacity of the collaborating team, it is di�cult to characterize the resources

available to the computational process.

Comparative analysis

Finally, how does one system compare to others trying to solve the same problem?

With no common language or measures by which to describe new systems, we must

rely on observed performance alone. This information is often situation dependent.

This makes it challenging to reproduce results and to build on previous discoveries,

leading to the development of many one-o↵ solutions rather than a cohesive, directed

line of research.

To address these questions, we begin by examining the set of attributes that

define and distinguish existing techniques in human-computer collaboration. In work
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presented in IEEE Transactions on Visualization and Computer Graphics [CC12], we

surveyed 1,271 papers from many of the top-ranking conferences in Visual Analyt-

ics, Human-Computer Interaction, and related areas. From this corpus, we distilled

49 examples that are representative of the study of human-computer collaborative

problem-solving, and provide a thorough overview of the current state-of-the-art.

This analysis revealed patterns of design hinging on human- and machine-intelligence

a↵ordances: properties of the human and machine collaborators that o↵er oppor-

tunities for collaborative action. The results of this analysis provide a common

framework for understanding human-computer collaborative systems and indicate

unexplored avenues in the study of this area.

4.2 Previous Frameworks

A few of the existing papers surveying work in Human-Computer Collaboration and

Human Computation also include discussions of the design dimensions that organize

and contextualize their work. In these surveys, the authors provide mechanisms to

compare and contrast the systems they review to others along salient dimensions.

Bertini and Lalanne [BL10] survey the intersection of machine learning and

visualization, identifying three categories of design hinging on the distribution of

labor between human and machine. In enhanced visualization, human use of the

visualization is the primary data analysis mechanism and automatic computation

provides additional support in the form of projection, intelligent data reduction, and

pattern disclosure. In enhanced mining, data analysis is primarily accomplished by

the machine through data mining and visualization provides an advanced interactive

interface to help interpret the results through model presentation as well as patterns

exploration and filtering. In integrated visualization and mining, work is distributed

equally between the human and machine collaborators at di↵erent stages: white-box

integration, where the human and machine cooperate during model-building, and

black-box integration, where the human is permitted to modify parameters of the

algorithm and immediately visualize the results.
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In the area of human computation, Yuen et al. [YCK09] identify three broad

categories based on the relative maturity of the system. Initiatory systems are

the earliest examples of human computation and were generally used to collect

commonsense knowledge. Distributed systems were the next generation of human

computation, aggregating the contributions of Internet users but with limited scal-

ability and without any mechanism to guarantee the accuracy of the information

collected. Finally, the authors describe social game-based systems, the most recent

incarnation of human computation involving enjoyable, scalable and reliable systems

for approaching hard AI problems. In a later survey, Quinn and Bederson [QB11]

identify six dimensions along which they characterize human computation systems.

Motivation describes the mechanism for encouraging human participation. Quality

control indicates whether and how a quality standard is enforced upon the human

workers. Aggregation refers to the means by which human contributions are col-

lected and used to solve the problem at hand. The remaining dimensions of human

skill, process order, and task-request cardinality are self-explanatory.

Each of these frameworks provides critical insight into organizing the systems

appearing in the venues they survey. However, because each is specific to a particular

subclass of collaborative systems, it is di�cult to extend them to a broader class

of human-computer collaborative systems. In the following sections, we provide

a detailed survey of the literature across many venues, and argue for examining

these systems through the lens of a↵ordances; that is, what does each collaborator

(machine or human) bring to the table in support of the shared goals of the team?

4.3 Framework: allocation and a↵ordances

We now introduce the foundation upon which we will build our framework for de-

scribing and understanding human-computer collaborative systems.
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4.3.1 Function allocation in human-machine systems

Researchers have sought a systematic approach for the appropriate allocation of

functions to humans and machines for decades. In 1950, Fitts published the first for-

mal attempt to characterize functions performed better by machines than humans,

and vice versa [Fit51]. For years, this list was regarded as the definitive mantra for

function allocation, despite the author’s assertion that to use his list to determine

function allocation was to lose sight of the most basic tenet of a human-machine

collaborative system. As later articulated by Jordan, this underlying foundation

is that humans and machines are complementary, rather than antithetical [Jor63].

Price [Pri85] further expanded on this idea by arguing that function allocation is

perhaps better envisioned as an iterative process rather than a decisive listing, and

that there may be more the one optimal allocation for any given problem. Price also

notes that human operators require support to perform optimally, and emphasizes

the importance of understanding cognitive loading and engagement.

In more recent work, several contemporaries have argued that the notion of

function allocation as it was originally conceived no longer makes sense. Sheridan

discussed several problems with function allocation which include ever-increasing

computing power, complicated problems with optimal allocation di↵ering at each

stage, and ill-defined problem spaces [She00]. Dekker and Woods provided a second

counterargument to the validity of any Fitts-style HABA-MABA listing in [DW02].

They pointed out a relationship that is often leveraged (though seldom explicitly

stated) by the field of Visual Analytics: human-machine collaboration transforms

human practice and forces people to adapt their skills and analytic practices. They

advocated for a shift in attention, moving away from allocation of tasks to a focus

centered on how to design for harmonious human-machine cooperation. That is,

how do we get humans and machines to play nicely, and work e↵ectively?
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4.3.2 A↵ordances

In 1977, American psychologist J.J. Gibson stated his theory that an organism and

its environment complement each other [Gib77], which is much in alignment with

the work by Jordan cited in the previous section. In this work, Gibson coined

the term a↵ordances, defining them as the opportunities for action provided to

an organism by an object or environment. Norman later appropriated this term

as it applies to design and the field of Human-Computer Interaction, redefining it

slightly to refer only to the action possibilities that are readily perceivable by a

human operator [Nor02]. This definition shifts the concept of a↵ordance toward

relational rather than subjective or intrinsic; that is, an a↵ordance exists between

an actor and the object or environment, not existing separate from that relationship.

In the case of human-computer collaboration, we argue that there exist af-

fordances in both directions. Both human and machine bring to the partnership

opportunities for action, and each must be able to perceive and access these oppor-

tunities in order for them to be e↵ectively leveraged. These a↵ordances define the

interaction possibilities of the team, and determine the degree to which each party’s

skills can be utilized during collaborative problem-solving. In the next sections,

we will survey the existing literature through the lens of a↵ordances, providing

a common framework for understanding and comparing research in the areas of

human-computer collaboration, human intervention, and human computation. The

a↵ordances we identify are by no means an exhaustive list; they simply represent

the patterns of design that we have seen in the existing literature of an emerging

area. Please note that while examples will generally be given under the heading

of a single a↵ordance, systems mentioned may utilize multiple a↵ordances (both

human and machine) at the same time. For a complete listing of the a↵ordances

identified in all systems surveyed, please see Table 4.1 in the Appendix of this work.

In Section 4.6, we present case studies of specific systems to discuss the costs and

benefits of leveraging multiple a↵ordances.
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4.4 Human A↵ordances

The human-computation and human-computer collaborative systems we have re-

viewed leverage a variety of skills and abilities a↵orded by the human participants.

In this section, we will o↵er a brief definition of each of the a↵ordances we have

observed in the literature, discuss the utility of these a↵ordances as articulated in

the work reviewed and o↵er an overview of the application of each a↵ordance.

4.4.1 Visual perception

Of the human a↵ordances we will discuss, perhaps the most salient to the study

of Visual Analytics is visual perception1. In [Shn96], Shneiderman comments on

humans’ capacity for visual processing:

[T]he bandwidth of information presentation is potentially higher in the

visual domain than for media reaching any of the other senses. Humans

have remarkable perceptual abilities. . . Users can scan, recognize, and

recall images rapidly, and can detect changes in size, shape, color, move-

ment, or texture. They can point to a single pixel, even in a megapixel

display, and can drag one object to another to perform an action.

Given its direct applicability, it is perhaps unsurprising that we have seen a plethora

of work in Visual Analytics and HCI leveraging human visual processing. For ex-

ample, human visual perceptive abilities are utilized by Peekaboom [VALB06] to

augment image labels on the web (see Fig. 4.1a). For some tasks such as image label-

ing [DSG07, HCL+09, RTMF08, ST08, VAD04, VAGK+06], visual search [BRB+09,

BJJ+10], and query validation [MCQG09, YKG10], the systems presented rely heav-

ily on the users’ visual perceptive abilities, with the machine serving only as a

facilitator between the human and the data. For other tasks such as exploring high-

dimensional datasets [TAE+09, ZAM11], classification [AAR+09, MW10b], and di-

mension reduction [FWG09, IMI+10], machine a↵ordances (which will be discussed
1For more on visual perception, see Gibson [Gib86].

44



(a) Peekaboom [VALB06]

(b) Fold.it [CKT+10]

(c) TagATune [LVADC07]

Figure 4.1: Systems leveraging human a↵ordances: (a) Visual perception, (b) Visu-
ospatial thinking, and (c) Audiolinguistic ability.
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at length in Section 4.5) are combined with human visual processing to achieve

superior results.

4.4.2 Visuospatial thinking

A level deeper than basic visual processing such as image recognition, another skill

a↵orded by human collaborators is visuospatial thinking2, or our ability to visualize

and reason about the spatial relationships of objects in an image. These abilities

are strongly informed by our experiences in the physical world, which shape our

understanding and are intrinsic to our everyday lives. We are able to visualize com-

plex spatial relationships and tune this attention to accomplish specific goals. In an

article on the significance of visuospatial representation in human cognition [SM05],

Tversky notes:

For human cognition, [entities] are located in space with respect to a

reference frame or reference objects that vary with the role of the space in

thought or behavior. Which things, which references, which perspective

depend on the function of those entities in context. . . These mental spaces

do not seem to be simple internalizations of external spaces like images;

rather, they are selective reconstructions, designed for certain ends.

We have seen evidence that progress can be made on computationally intractable

problems through the application of human visuospatial thinking. For example,

the Fold.it project (see Fig. 4.1b) has demonstrated remarkable success at protein

folding [CKT+10], a problem known to be NP-complete [BL98] using purely com-

putational means.

4.4.3 Audiolinguistic ability

Another a↵ordance presented by the human user is audiolinguistic ability ; that is,

our ability to process sound3 and language4. Although separate from the visual
2For more on visuospatial thinking, see Shah and Miyake [SM05].
3For more on psychoacoustics, see Fastl and Zwicker [FZ07].
4For more on language, see Vygotsky [Vyg62].
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a↵ordances generally leveraged in Visual Analytics systems, we suggest that the

interplay between visual and nonvisual human faculties is equally important in sup-

porting analytical reasoning. In [TC05], Thomas and Cook state:

We perceive the repercussions of our actions, which also recalibrates per-

ception, ensuring that vision, hearing, and touch maintain their agree-

ment with each other. If we are to build richly interactive environments

that aid cognitive processing, we must understand not only the levels of

perception and cognition but also the framework that ties them together

in a dynamic loop of enactive, or action-driven, cognition that is the

cognitive architecture of human-information processing.

The literature contains several examples of systems leveraging this a↵ordance. The

well-known reCAPTCHA [VAMM+08] system uses human linguistic ability aug-

ment computer vision in an e↵ort to fully digitize the world’s libraries. In Mono-

Trans2 [HBRK11], it is used to improve automated translation results using mono-

lingual translators. In TagATune [LVADC07], human audio processing ability is

leveraged to generate descriptive tags for music clips (see Fig. 4.1c). We have

also surveyed examples utilizing human audio linguistic ability for audio annota-

tion [BOTL09, LVADC07, ME08], transcription [CLZ11], and even crowdsourced

word processing [BLM+10].

4.4.4 Sociocultural awareness

In addition to physical senses, human collaborators also a↵ord attributes such as so-

ciocultural awareness, which refers to an individual’s understanding of their actions

in relation to others and to the social, cultural, and historical context in which they

are carried out. Researchers in the area of embodied interaction have long advo-

cated for design that acknowledges the importance of this relationship. In [Dou04],

Dourish notes:

[O]ur daily experience is social as well as physical. We interact daily

with other people, and we live in a world that is socially constructed.
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Elements of our daily experience – family, technology, highway, inven-

tion, child, store, politician – gain their meaning from the network of

social interactions in which they figure. So, the social and the physical

are intertwined and inescapable aspects of our everyday experiences.

We argue that this can be viewed as an a↵ordance, not just a complicating factor.

For example, in Mars Escape [COB10], human participants partner with a virtual

robot to complete collaborative tasks to build robust social training datasets for

human-robot interaction research. This a↵ordance is integral to the construction

of commonsense knowledge databases [KLC+09, LST07, VAKB06], and has been

leveraged in domains such as stress relief [CCXC09] and providing social scripts to

support children with autism [BKAA11].

4.4.5 Creativity

Another important a↵ordance of human collaborators is creativity5. As noted by

Fitts [Fit51], Dekker [DW02] and many others, humans are capable of incredible

creativity, generating spontaneous arrhythmic approaches to problems that may be

di�cult or impossible to simulate. In [Run07], American psychologist Mark Runco

posits:

It may be that creativity plays a role in all that is human. This surely

sounds like a grand claim, but consider how frequently we use language

or are faced with a problem. Think also how often problems are subtle

and ill-defined. . . [C]reativity plays a role in each of our lives, and it does

so very frequently.

We have seen human creativity leveraged to great success in both physical and

conceptual design. For example, Yu and Nickerson [YN11] use human creativ-

ity to crowdsource design sketches via a human genetic algorithm, and Tanaka et

al. [TSK11] use sequential application of crowds to produce creative solutions for
5For more on creativity, see Amabile [Ama96].
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social problems. Creativity has also been used to augment automated systems and

find hidden outliers [LLKM10].

4.4.6 Domain knowledge

The final example of human a↵ordance that we have seen in the literature is straight-

forward, but worthy of inclusion nonetheless. This is the a↵ordance of domain

knowledge. In their 2009 article on Knowledge-Assisted Visualization [CEH+09],

Chen et al. argue:

[T]he knowledge of the user is an indispensable part of visualization.

For instance, the user may assign specific colors to di↵erent objects in

visualization according to certain domain knowledge. The user may

choose certain viewing positions because the visualization results can

reveal more meaningful information or a more problematic scenario that

requires further investigation.

Often, this domain knowledge can be di�cult or impossible to embed fully into the

system itself, or it may be too time-consuming to generate a complete model of the

domain. Instead, we can leverage the experience of the human analyst as part of

the collaborative process. For example, we have seen domain expertise leveraged

to help diagnose network faults [LLKM10], classify MRI data [BJVH11], perform

domain-specific data transformations [KPHH11], and infer trends about a specific

geographic region [AAR+09].

4.5 Machine A↵ordances

For over two decades, the HCI community has been engaged in conversation about

a↵ordances in technology [Gav91]. While much of the focus has centered on de-

signing interfaces that are intuitive to the user, we would like to take the liberty

of broadening the definition of a↵ordances to include more than just design ele-

ments. In this section, we survey the literature with an eye toward the conceptual
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a↵ordances of machine collaborators and discuss how they come into play in human-

computer collaboration.

4.5.1 Large-scale data manipulation

As predicted by Moore’s Law [M+98], computational power has steadily doubled

every two years for the past five and a half decades. Because of this incredible

increase in processing ability, machine collaborators a↵ord large-scale data manip-

ulation at speeds and scales Fitts never could have imagined. In Visual Analyt-

ics, this computational ability has been leveraged to help analysts navigate mas-

sive datasets across many domains. For example, RP Explorer uses random pro-

jections to approximate the results of projection pursuit to find class-separating

views in high-dimensional space where traditional projection pursuit can fail to

converge [AWD11]. In ParallelTopics (see Fig. 4.2(a)), computational methods

for manipulating large datasets have been used to help users navigate and make

sense of massive text corpora [DWCR11]. It has also been utilized to refine clas-

sification models and perform dimension reduction [CLKP10, GRM10, MW10b],

interactively cluster data [AAR+09], and automatically extract transfer functions

from user-selected data [RBBV11]. It has been used to suggest informative data

views [ZAM11], and even to help users externalize and understand their own insight

generation process [CBY10, KCD+09, KBGE09, LSD+10, SGL09].

4.5.2 Collecting and storing large amounts of data

In addition to being able to manipulate large amounts of data at incredible speed,

machine collaborators are also able to e�ciently aggregate and store data for later

use. This a↵ordance has been used to support human users in many areas where

the data is being generated in large quantities and from multiple sources simultane-

ously. For example, systems like Verbosity [VAKB06] and others [KLC+09, LST07]

aggregate and store information generated by human users to create commonsense

knowledge repositories. It is also used in the collection of behavioral scripts for

autism treatment [BKAA11] and human-robot interaction [COB10], as well as col-
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lecting tags for music and image annotation [BOTL09, BJVH11, DSG07, ME08,

RTMF08, ST08, VAD04, VAGK+06]. In a world that is growing ever more big

data-centric, storage capacity and e�cient retrieval are critical advantages a↵orded

by machine collaborators.

4.5.3 E�cient data movement

Thanks to developments in data storage, the advent of fast and reliable network-

ing techniques, and the rapid development of an always-connected society, data has

been freed from its historic ties to a geographic location and machine collabora-

tors a↵ord very e�cient data movement. This implies that data can be collabora-

tively accessed and manipulated by entities asynchronous in both time and space,

with machines a↵ording the e�cient transfer of data to the right place at the right

time. For example, VizWiz [BJJ+10] leverages e�cient data movement to connect

visually-impaired users to sighted collaborators to get near real-time answers to

visual search questions. This a↵ordance is critical in facilitating distributed col-

laboration [BLM+10, CAB+11, CCXC09, HCL+09, TSK11, VALB06, YKG10], as

well as access to distributed information [HCL+09, LVADC07, MCQG09, VALB06].

E�cient data movement techniques also facilitate rapid access to data that is too

large to fit in memory. This has been leveraged to augment human visual process-

ing using saliency modulation [IV11] (see Fig. 4.2(b)), as well as facilitate access to

other datasets to numerous to list.

4.5.4 Bias-free analysis

In contrast to the human a↵ordance of sociocultural understanding, machines a↵ord

the opportunity for bias-free analysis. That is, apart from human bias introduced

during the programming of the system, machines are able to operate and report

on numerically or computationally significant information without experiential or

sociocultural influence. In Visual Analytics, we have seen this a↵ordance leveraged

to help analysts direct their attention for natural disaster prediction [SSJKF09]

(see Fig. 4.2(c)) as well as propose candidate visualizations for exploring high-
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(a) ParallelTopics [DWCR11]

(b) Saliency-Assisted Navigation [IV11]

(c) MDX [SSJKF09]

Figure 4.2: Systems leveraging machine a↵ordances: (a) Large-scale data manipu-
lation, (b) E�cient data movement, and (c) Bias-free analysis.
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(a) reCAPTCHA [VAMM+08]

(b) PatViz [KBGE09]

Figure 4.3: Systems leveraging multiple a↵ordances: (a) reCAPTCHA [VAMM+08]
leverages human visual perception and audiolinguistic ability with machine storage
and e�cient data movement to digitize the world’s libraries. (b) PatViz [KBGE09]
leverages human visual perception, visuospatial ability, audiolinguistic ability and
domain knowledge with machine computation, storage and e�cient data movement.

dimensional data [TAE+09]. It has also been used to help analysts see dissimilarity

to existing datapoints [MvGW11], where confirmation or other bias may come into

play.

4.6 Multiple A↵ordances: Case Studies

As stated in the introduction, while we have generally listed examples under a

single main a↵ordance, systems may utilize multiple a↵ordances (both human and

machine) in pursuit of a common goal. In this section, we analyze a few systems

leveraging multiple a↵ordances and discuss the impact of each set of design elements.
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4.6.1 reCAPTCHA

reCAPTCHA, first introduced by Luis von Ahn et al. in [VAMM+08] and later

acquired by Google, is a web security mechanism that harnesses the e↵ort of hu-

mans performing CAPTCHAs along with optical character recognition (OCR) to

collaboratively digitize the world’s text corpora (see Fig. 4.3(a)). In the first year re-

CAPTCHA was made available for public use, over 440 million suspicious words were

correctly deciphered resulting in over 17,600 successfully transcribed books [VAMM+08].

As of this writing, the system is used over 100 million times every day with an over-

all success rate of 96.1%, and is currently being utilized to digitize the New York

Times archive as well as Google Books. Such widespread adoption and remarkable

accuracy mark reCAPTCHA as one of the most widely successful human-computer

collaborative initiatives to date.

We posit that the success of the reCAPTCHA system is due in part to its

e↵ective combination of human and machine a↵ordances. After performing an initial

automated recognition of a document (computation), suspicious or unrecognizable

words are identified and transmitted (e�cient data movement) to a collection of

human collaborators for evaluation (visual perception) and subsequent transcription

(linguistic ability). Through this division of labor, each party receives manageable

tasks to perform according to their skills, and each set of a↵ordances can be leveraged

without overloading the collaborator.

4.6.2 PatViz

PatViz [KBGE09] is a Visual Analytics system for the interactive analysis of patent

information (see Fig. 4.3(b)). PatViz utilizes a flexible coordinated multiple views

(CMV) to support the construction of complex queries and the interactive explo-

ration of patent result sets.

Analysis of patent information is a complex task involving the synthesis of many

data dimensions. Because of this, PatViz leverages a multitude of human and ma-

chine a↵ordances in an e↵ort to provide intuitive views for various data types: visual
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perception for the inspection of image data contained in patent documents, visuospa-

tial ability for analyzing the relationships between various patents, audiolinguistic

ability for evaluating terminology, and domain knowledge for understanding the rel-

evance of the patent to its application, as well as with machine computation for

generating data views on the fly, storage for aggregating the analysts’ activity, and

e�cient data movement to provide the analyst with the appropriate information

on-demand.

However, in the case of leveraging a↵ordances, more is not always better. As

articulated in the discussion of the results [KBGE09]:

One frequently expressed comment indicated that most of the patent

experts never worked with a system providing interlinked and interactive

visual interfaces. While this was also one of the systems properties that

was most appreciated by the users, it became clear that such features

are very di�cult to use without any training.

While the machine collaborator o↵ers many opportunities for the human to utilize

many di↵erent analytical skills, it falls short in e↵ectively leveraging these a↵or-

dances by leaving the decision of when and how to select views wholly at the dis-

cretion of the human. Because so many di↵erent a↵ordances are being leveraged,

it is di�cult for the human collaborators to organize their strategy in approaching

the analysis, resulting in an interface that “is di�cult to comprehend. . . without

previous instruction” [KBGE09].

4.7 Suggested extensions

The scope of this framework is limited to the a↵ordances we have identified in the

existing literature on human-computer collaboration and human computation; it is

far from an exhaustive list of the possible a↵ordances that exist between human and

machine. We would like posit a few un- or under-explored a↵ordances and suggest

scenarios in which these a↵ordances might prove useful.
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Human Adaptability: One of the most important components of the hu-

man analytic process is the ability to take multiple perspectives on a problem,

and adapt hypotheses and mental models in the wake of new information. This

adaptability is critical to the successful generation of insight about large datasets.

However, most work in this area has centered around supporting the adapting user,

rather than explicitly leveraging this.

Consider the hypothetical collaborative system leveraging human adaptabil-

ity suggested by Thomas and Cook [TC05]: as human collaborators are exploring

a dataset, the system observes patterns in provenance to try to detect when an

analyst has gotten “stuck” in a redundant or potentially fruitless analytical path.

When this happens, the system suggests an alternative perspective or avenue for

exploration. This encourages the analyst to form new hypotheses or adopt new

methods of inquiry, ensuring that the analysis does not become entrenched in a

local minimum.

Machine Sensing: With new developments in hardware technology rapidly

becoming more readily available, there is the potential for significant advances in

the kinds of sensory information that machines can make available. However, to our

knowledge, this a↵ordance has not yet been considered as part of a collaborative

system.

We see potential for the utility of sensing technology as part of a human-

computer collaborative team in two areas. First, sensing technology could be used

to make the human collaborator aware of extrasensory information about the en-

vironment around them. Second, it could be used to respond to changes in the

human collaborator themselves; for example, adapting to the user’s mental state

using brain sensing technology to improve the working environment.

These represent just a brief brainstorming of potential additions to the list

of a↵ordances we have observed in the literature to date, and we hope that these

ideas will inspire intellectual discourse and encourage further inquiry.
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4.8 Discussion

We close this paper with a discussion of the utility of this framework for addressing

critical need in the area of human-machine collaboration, as well as its shortcomings

and areas for future work.

4.8.1 Utility of an a↵ordance-based framework

We claim that with the development of an a↵ordance-based language for describ-

ing human-computer collaborative systems, we are indeed in a better position than

when we first began. To validate this claim, let us return to the three questions

posed in the introduction of this paper:

How do we tell if a problem would benefit from a collaborative tech-

nique? We argue that the set of problems warranting a collaborative technique is

equivalent to the set problems where there is an opportunity to e↵ectively leverage

a↵ordances on both sides of the partnership in pursuit of the solution. By framing

potential collaboration in terms of the a↵ordances at our disposal, we can then con-

sider which of these a↵ordances could be used to approach a problem and construct

a solution.

How do we decide which tasks to delegate to which party, and when?

In adopting this language, we are deliberately moving away from terminology that

encourages us to speak in terms of deficiencies; that is, we need the human because

computers are bad at X, etc. Instead of deciding who gets (stuck with) which task,

we begin to reason about who can contribute to the collective goal at each stage.

The answer may not be only the human, or only the machine, but could in fact be

both. By designing such that all parties are aware of the a↵ordances made available

to them by their collaborators, we encourage the development of more flexible pro-

cedures for collective problem-solving.
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How does one system compare to others trying to solve the same prob-

lem? Of the contributions made by this framework, we believe that providing a

common language for discussing human-computer collaborative systems is its great-

est strength. We are able to talk about which a↵ordances are being leveraged, and

use these to compare and contrast between systems. We may also be able to make

hypotheses about how these choices of a↵ordances influence the resulting solutions

by comparing performance measures. However, this language does not yet enable a

robust, theoretical comparison. To achieve this, we must first build our understand-

ing of the mechanisms underlying these a↵ordances and their associated costs.

4.8.2 Complexity measures for Visual Analytics

While we believe that this framework provides an important foundation for develop-

ing a common language, it is only the first of many steps toward a rich vocabulary

for describing human-computer collaborative systems. Consider for example the

plethora of human computation systems for image labeling that we have reviewed

in this work: the ESP Game [VAD04], Ka-captcha [DSG07], KissKissBan [HCL+09],

LabelMe [RTMF08] and Phetch [VAGK+06]. Each system leverages the visual per-

ception and linguistic abilities of the human users, and the aggregative capacity

of the machine. Given that these systems are all addressing very similar problems

using a similar approach, how do they compare to one another? We argue that is it

critical to develop a common language not just for describing which a↵ordances are

being leveraged, but how much and how well.

The National Science Foundation CISE directorate has called for the devel-

opment of theoretical measures for systems involving human computation, calling

this one of the five most important questions facing computer science today [Win08].

This need was reiterated at the CHI2011 workshop on Crowdsourcing and Human

Computation [Kul11]. Can we begin to describe the complexity of human-computer

collaborative systems with a robust language parallel to describing the complexity

of an algorithmic system?

Researchers in the field of Artificial Intelligence have begun to imagine the
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concept of complexity measures for systems involving human contribution. Shahaf

and Amir define a Human-Assisted Turing Machine using the human as an ora-

cle with known complexity [?]. In this work, they demonstrate that much of the

standard theoretical language holds true, including algorithmic complexity, problem

complexity, complexity classes and more. However, they also raise several questions

that remain unanswered:

• First, what is the best way to measure human work? In terms of human

time, space, or utility? Should we consider the input size, that is, how much

data does the human need to process? Or to compensate for compression,

should we be measuring information density instead?

• Second, how can we assess this human work in practice? Through em-

pirical evaluation of a sample population’s performance on a given task, we

can begin to understand how the average human performs, but this informa-

tion is task-specific. Perhaps more broadly applicable would be to develop a

set of canonical actions that humans can perform with known complexity, but

compiling this list is nontrivial.

• Finally, how do we account for individual di↵erences in human oper-

ators? Perhaps the problem under consideration utilizes skills or knowledge

not common to every user (such as bilingual translation). In this case, a

general model of humans is insu�cient; instead, we need to understand the

complexity of the individual candidate. This requires the development of al-

gorithmic systems that are to be able to e↵ectively and e�ciently utilize the

a↵ordances provided by the humans available to them, rather than only the

optimal human collaborator under perfect conditions.

These areas provide many rich opportunities for collaboration with our colleagues in

theoretical computer science, as well as in psychology and neuroscience. By engaging

in the interdisciplinary pursuit of answers around human a↵ordances, we hope to

construct a more complete picture of insight generation, the mechanisms of human

understanding, and the the analytic process as a whole.
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While we have concentrated our e↵orts on systems explicitly labeled as

human-computer collaboration, mixed-initiative, or human computation, we posit

that the framework presented here will benefit the study of a broader class of sys-

tems involving both human and machine computation as a whole. While there has

been remarkable progress in the development of novel solutions to support analytic

processes, we have not yet fully realized our potential as a systematic science that

builds and organizes knowledge in the form of testable theories and predictions. In

presenting a preliminary framework for describing and comparing systems involv-

ing human and machine collaborators, we lay the foundation for a more rigorous

analysis of the tools and approaches presented by our field, thereby enabling the con-

struction of an increasingly robust understanding of analytical reasoning and how to

best support insight generation. In the following chapter, we present a theoretical

model for evaluating the complexity of systems involving human computation, and

demonstrate its utility in comparing and assessing human-computer collaborative

systems from the literature.
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Chapter 5

Formalizing Human

Computation with an Oracle

Model

This chapter is based on the following manuscripts:

• Crouser, R. J., Ottley, A., & Chang, R. (2014, to Appear). Balancing human

and machine contributions in human computation systems. In P. Michelucci

(Ed.), Handbook of Human Computation. New York, NY: Springer.

• Crouser, R. J., Hescott, B., Glaser, M., & Chang, R. Theoretical Bounds for

crowdsourced image labeling under a human oracle model. AAAI Conference

on Human Computation & Crowdsourcing. In Submission, 2013.

5.1 Introduction

As previously illustrated, the term human computation spans a wide range of pos-

sible applications and computational distributions. Among all these, many of the

most interesting and successful human computation systems not only balance the

contribution of human and machine, but also leverage the complementary compu-

tational strengths of both parties. As described in Chapter 4, both human and
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machine bring to the partnership varying strengths and opportunities for action,

and during collaboration, each must be able to perceive and access these opportu-

nities in order for them to be e↵ectively leveraged. These a↵ordances define the

interaction possibilities of the team, and determine the degree to which each party’s

skills can be utilized during collaborative problem solving. The set of problems

warranting a collaborative technique is equivalent to the set problems where there

is an opportunity to e↵ectively leverage a↵ordances on both sides of the partnership

in pursuit of the solution.

Instead of deciding who gets (stuck with) which task, we can begin to reason

about which party can best contribute to the collective goal at each stage. The

answer may not be only the human, or only the machine, but could in fact be both.

By framing potential collaboration in terms of the a↵ordances at our disposal, we

can then consider which of these a↵ordances could be used to approach a problem

and construct a solution.

5.2 Leveraging Human and Machine A↵ordances

The success of human-computer collaborative systems hinges on e↵ectively leverag-

ing the skills of both the human and the computer. In order to address the problem

of balancing and allocating workload in a human-computer collaborative system, it

is first necessary to explore the space of problem di�culty relative to human and

machine.

Existing complexity models classify problems by measuring the time and/or

space required to find the solution using a computer. Under these models, many

interesting real-world problems are known to be intractable, even if the path to

finding the solution is clear. Other problems have no known solution at all, and

are believed to be unsolvable by any computer, no matter how powerful. In con-

trast, some of these problems are relatively easy for humans to solve (or at least

approximate), a notion which lies at the heart of human computation. We can

think about the problem space as having two orthogonal dimensions: human di�-
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Figure 5.1: A selection of sample problems arranged according to the relative di�-
culty for human and machine as of this writing. Di�culty increases for the machine
as we move to the right along the x axis, and increases for the human as we move
up along the y axis.
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culty and machine di�culty. Figure 5.1 depicts some well-known sample problems

within in this space. In this diagram, problems appearing in the lower left region are

trivial; that is, they are comparatively easy for both humans and machines. These

problems, such as arithmetic or simple shape rendering, generally do not warrant a

human-computer collaborative solution. As we move to the right along the x axis,

we encounter many of the problems addressed in early human computation systems:

image labeling, character recognition, language processing, etc. These problems are

di�cult for machines, but relatively straightforward for humans. Here, the over-

head cost incurred by involving human processing power is minimal compared with

the resources required to achieve comparable performance using a machine. As the

field of human computation progresses, we are becoming more invested in applying

collaborative techniques to solve problems that are di�cult or impossible for either

humans or machines alone, but which may be solvable through collaboration. In

these problems, we are especially interested in how to best allocate the computa-

tional resources of the human and machine collaborators, allowing each party to

play to its strengths.

The framework presented in Chapter 4 illustrates the complementary nature

of human and machine computation, and attempts to organize existing literature

on human-machine collaborative systems according to which skills, or a↵ordances,

the system leverages. Other taxonomies [BL10, QB11] propose additional classifi-

cation dimensions such as human-machine balance, motivation, aggregation, quality

control, process order, and task-request cardinality. While these frameworks pro-

vide a vocabulary for describing human-computer collaborative systems, they fall

short of enabling us to quantify the computational work being done in the human

computation algorithms underlying the systems.

Consider for example the numerous published human computation systems

in the area of Image Labeling: Ka-captcha [DSG07], Phetch [VAGK+06], KissKiss-

Ban [HCL+09], Peek-a-Boom [VALB06], LabelMe [RTMF08] and the ESP Game[VAD04],

just to name a few. Categorized within the aforementioned frameworks, these sys-

tems have remarkable similarity. Each employs human visual perception and lin-
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guistic ability to process and describe images, and uses the machine to distribute

tasks and aggregate the results. Many use entertainment as a primary motivator,

and redundancy to ensure validity of the resulting data. Given the similarity of the

problem as well as the approach to solving it, how do the underlying algorithms

compare? We argue that is it critical to develop mechanisms for describing not only

what each collaborator is tasked with computing, but how much they are computing.

5.3 Computation using Human Oracles

Theoretical computer science uses abstract models of computational systems, such

as Turing Machines [Tur38], to simulate computational processes and explore the

limits of what can be computed. In some cases, it is useful to allow the Turing

Machine access to an Oracle – a black box which is able to decide specific problems

with perfect accuracy in constant time. Shahaf and Amir proposed an extension to

the standard computational model in which questions may be asked of a Human

Oracle – an Oracle with human-level intelligence [?]. In this model, the Human

Oracle is able to answer questions to which a human would be able to respond, even

if a machine could not.

In this work, they demonstrate that much of the standard theoretical lan-

guage holds true when extended to include Human Oracles. This includes concepts

such as algorithmic complexity, problem complexity, and complexity classes. They

suggest that the complexity of an algorithm executed on such a machine can be

represented as a tuple h�H ,�M i, where �H indicates the number of queries to the

Human Oracle as a function of the input size, and �M is the the complexity of the

computation performed by the machine. Whenever the complexity of the machine’s

computation is the same, the complexity of two algorithms can be compared by

considering which requires more queries to the Human Oracle. The minimal com-

plexity of a problem can then be thought of as the minimization of both human and

machine cost over all algorithms that correctly solve the problem.
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5.3.1 Value of an Oracle Model for Human Computation

Modeling the human contributions to an algorithm as queries to an Oracle captures

the underlying behavior of many existing human computation algorithms. For ex-

ample, in image labeling systems like the ESP Game [VAD04] a human is given

some input (an image) and, like an Oracle, is expected to provide a (relatively) cor-

rect response to exactly one question: What do you see? This interchange, where

an external entity is used to inexpensively perform some challenging subroutine, is

exactly the kind of system that Oracle machines were designed to describe. Because

of this, we adopt the Human Oracle Model as a preliminary mechanism to make

quantitative comparisons between human computation algorithms.

Despite the simplicity of the Human Oracle Model, this level of abstraction

has several benefits. First, it enables a direct quantification of the cost of an algo-

rithm leveraging human-level intelligence, or human computation, in terms of the

number of queries made to the human. This enables a straightforward comparison

between two human computation solutions to a given problem on a given input.

Second, it enables an objective theoretical comparison between algorithms using

humans and existing purely mechanical algorithms, if they exist. Finally, it sepa-

rates implementation-specific details such as error control, motivation, and interface

design from the algorithm itself. This is an important di↵erentiation, and much in

keeping with the spirit of traditional complexity models wherein the performance

of an algorithm is assessed independent of the languages in which it may later be

implemented or the hardware on which it may be run. While questions of recruiting

and incentivizing human contributors is by no means unimportant, we specifically

investigate the complexity of the underlying algorithms independently.

Technically speaking, a human can simulate any process the machine can

execute. After all, we designed the algorithms in the first place. Given an under-

standing of the process, enough paper and a su�cient supply of pencils, a human

operator could write out the contents of each register, perform each bitwise opera-

tion, and record each result by hand. However, the time and resources required to
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compute exactly the same result are exorbitant. In addition, humans are susceptible

to fatigue, and we are arguably limited by the capacity of our working memory and

unreliable recall. In this sense, human operations are expensive, and there are cases

where it is possible to reduce the number of human operations while maintaining

optimal performance.

5.3.2 Example: Classification Strategies Using a Human Oracle

Consider the following example from Shahaf and Amir [?]: Imagine that we are given

n randomly selected samples that we wish to classify. We know that the classifiers

are simple threshold functions:

hw(x) =

8
><

>:

1 : x > w

0 : x  w

with the value of w depending on the input. Assume that we do not know the value

of w in advance, but that a human can easily partition the data into correct classes.

Using the human as an Oracle, there are several ways to approach this problem,

each with benefits and drawbacks:

1. We could ignore the human and use a pure machine computational approach,

first sorting the set of n samples according to their x values and then choosing

a random threshold value that falls between the lowest and highest values.

This requires h0, n log ni time, and guarantees that at least 2 of the samples

will be classified correctly. While relatively speedy, this is not a very promising

bound on accuracy.

2. We could use a pure human computational approach, asking the human to

classify each of the n samples in the dataset. Because as we assumed that the

human can always classify samples correctly, this method guarantees 100%

accuracy. This method requires hc⇤n, 0i time, where c corresponds to the cost

incurred by the human to classify one sample. Under the usual metrics for

evaluating algorithmic complexity, the method is technically “faster”. How-
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ever, the value of the constant c may be enormous. This would mean that for

all reasonably-sized input sets, this approach could be unacceptably slow.

3. Finally, we could try a collaborative solution. First, the machine sorts the set

of samples according to their x values, requiring n log n operations. Next, the

human is asked to classify the sample that falls in the middle of the sorted list.

If she answers 1, we can infer that all the samples above should also be labeled

1. Similarly, if she answers 0, we know that all the samples below should also

be labeled 0. From here, the human is recursively questioned about the middle

sample in the remaining half of the list that remains unlabeled. This is simple

binary search. Under this approach, the human will be asked to classify at

most log n samples for a total worst-case cost of hc ⇤ log n, n log ni. Using this

algorithm, we are able to dramatically reduce the workload for the human

operator while maintaining 100% accuracy simply by being clever regarding

which samples to ask her about.

In this example, the third approach is superior to the other two in terms of max-

imizing accuracy and minimizing e↵ort. However, the scale of the constant c has

yet to be addressed. In human computation, we argue that this scale depends on

the a↵ordance being leveraged. This is perhaps most readily apparent in the field of

information visualization. Through visualization, we transform the task of assess-

ing abstract numerical information to evaluating visual information, leveraging the

human visual processing system and thereby decreasing the per-operation cost c.

As designers, it is important to consider the implications of leveraging various com-

binations of a↵ordances between human and machine. The challenges of assigning

numerical value to human processing will be further discussed in Chapter 8.
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Figure 5.2: The Rubin Vase [Rub15], a bi-stable image with two valid labels: faces
and vase.

5.4 Adapting the Human Oracle Model for Human Com-

putation

Throughout the remainder of this dissertation, we will adopt two slight relaxations of

the assumptions about the behavior Human Oracle as di↵erentiated from traditional

set-theoretic definitions of an Oracle.

5.4.1 Variability in Human Oracle Responses

By most standard definitions of an Oracle, any two Oracles to the same problem are

equivalent with respect to the answers they return to a given query. In contrast, we

do not assume that di↵erent Human Oracles to the same problem will necessarily

return identical answers when queried on the same input. Two Human Oracles may

give di↵erent answers to the same question when more than one appropriate answer

exists. This behavior is perhaps best illustrated through an example. Consider the

famous bi-stable image, the Rubin Vase (see Fig. 5.2). In this case, it is di�cult to

argue that vase is a more descriptive label than faces, or vice versa; they are equally

valid. Whenever there is potential for ambiguity in processing stimuli, there may

be more than one valid response for any given input. However, a given individual

may strongly favor one label over the other.
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We characterize this behavior as follows. Under this model, we will assume

that there exist finitely many reasonable responses for any query/input pairing:

RQ(x) = {r1, r2, . . . , rn�1, rn|ri is a reasonable response to query Q on input x}

We then state that any valid Human Oracle always returns one such reasonable

answer, but that we can’t predict which one they may decide to return. We can ex-

press this nondeterminism by defining the Human Oracle H as having a probability

distribution over the collection RQ(x):

DH(Q,x) =

(
hri, PH(ri)i|ri 2 RQ(x), 0 < r1  1,

inX

i=1

PH(ri) = 1

)

where PH(ri) is the probability that Human Oracle H returns response ri when

passed query Q on input x. In the simplest case, n = PH(rn) = 1. That is, if there

is only one reasonable response, the Human Oracle will return that response with

probability 1. When there are multiple reasonable responses, the Human Oracle’s

probability distribution may heavily favor some subset of responses. We suggest

that this nondeterministic behavior helps capture the influence of individual dif-

ferences inherent in any human population. These inconsistencies may be due to

di↵erent lived experiences, internal biases, or preferences. In addition to individual

di↵erences, this distribution may be influenced through incentivization. This may

happen a priori, such as in systems that incentivize the generation of short responses

over more verbose ones, or the distribution may be changed on-the-fly, such as in

gameified systems where the players may be asked to match (or avoid matching) a

partner’s responses.

In practice, individual di↵erences may dictate that a human’s probability for

giving a specific response is in fact zero. For example, a person may never have

encountered a durian before, although if presented with an image of one they may

still be able to recognize it as a kind of fruit. However, in this model, we will as-

sume nonzero values for all PH(ri). That is, we assume that a Human Oracle is
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aware of all possible reasonable responses to any query, although the probability

that they return a specific response may be arbitrarily small. This assumption is

consistent with traditional set-theoretic notions of an Oracle and is useful in charac-

terizing the notion of collective intelligence relied upon in many human computation

applications.

5.4.2 Persistence of Previous Responses

If the same Human Oracle is queried more than once on the same input during

the execution of an algorithm, we may wish to assume that it will be aware of its

previous responses and will only return each answer once. This is akin to assuming

that upon reading the input, the Human Oracle constructs a predefined sequence of

answers by ordering their possible responses in decreasing order of probability:

AH(Q,x) = (a1, a2, . . . , an|P (ai + 1) < P (ai) 8 1  i  n)

The Human Oracle will answer each query about that particular input by simply

reporting the next unused element in the sequence. This reflects human short-term

memory, and can be simulated by recording previous responses in the main algorithm

and passing the entire history back as part of the input to a non-persistent Oracle.

We will discuss the ramifications of whether or not the Human Oracle is able to

compute on these previous responses in Chapter 7.

5.4.3 Additional Assumptions

Additionally, we presume that the Human Oracle can e�ciently generate an answer

to the queries we pose. In traditional computational models, it is assumed that the

Oracle can interpret and respond correctly to the query in constant time. How-

ever, it is also acceptable to consider Oracles with other (bounded) response time

complexities. With Human Oracles, we do not necessarily know how long it takes

a person to solve the problem. For simplicity, we will assume a constant cost for

each query to the Human Oracle, which enables us to consider the complexity of
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two algorithms leveraging the same kind of Human Oracle in terms of the number of

queries required. This assumption will be discussed in further detail in Chapter 8.

Finally, the study of human computation presumes the existence problems

for which humans are faster than any known machine algorithm. To that end,

we only consider problems in which the Human Oracle’s answers are integral to

computing the solution. That is, the algorithm querying the Human Oracle cannot

e�ciently generate answers to its own queries, and must rely on (and potentially

validate) the responses it receives.

We believe that these adaptations result in a model that more closely resem-

bles observed behavior in systems involving human computation, and help capture

some of the ambiguity inherent in many interesting human computation problems.

In the following chapter, we use this model as a lens to explore various problems

that fall under the umbrella of image labeling.
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Chapter 6

Image Labeling under the

Human Oracle Model

This chapter is an extension of the following manuscript:

• Crouser, R. J., Hescott, B., Glaser, M., & Chang, R. Theoretical Bounds for

crowdsourced image labeling under a human oracle model. AAAI Conference

on Human Computation & Crowdsourcing. In Submission, 2013.

6.1 Introduction

In this chapter, we demonstrate the utility of the Human Oracle model for comparing

various Human Computation approaches to Image Labeling. We do not mean to

imply that Image Labeling is necessarily a “canonical” or “complete” problem for

Human Computation, as this concept is yet ill-defined. However, we believe that a

close examination of a well-studied problem through this lens may provide insight

into to the structure of Human Computation algorithms. We hope that this will

serve as an initial benchmark by which other problems may be measured as we

continue to explore the space of Human Computation.
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6.2 Example Image Labeling Games

Using the Human Oracle model, we explore how we can describe the underlying

algorithmic behavior and performance of these systems. In some cases, we have

chosen to model a slight variation of the system in the interest of facilitating a

more interesting comparison. When this is the case, we will clearly document any

modifications and provide justification for the change.

6.2.1 The ESP Game

The ESP Game [VAD04] is a Human Computation system designed to produce

validated labels for Images on the web. Each image is displayed to a randomly-

assigned pair, who are then asked to label the image in a finite amount of time.

We describe the problem that humans are being asked to solve in the ESP Game in

terms of its input and output as:

DESCRIBE(I):

Input: an image I
Output: a label ` describing the image

Natural language analogs to this problem might be “What do you see in this image?”

Because the human players cannot communicate with one another as they

try to “agree” by guessing the same label, the dynamics of the game incentivize

them to try guessing short, intuitive labels. While the ESP Game doesn’t explicitly

limit the length of the users’ responses, this generally limits people’s responses to

single descriptive words.

A label is accepted once some number of pairs have agreed on it, and is then

added to a list of TABOO words for that image. Future pairs are presented with the

TABOO words in addition to the image, and these words are not accepted if guessed.

For the purposes of this analysis, we will assume that one just pair must agree for

a label to be accepted. A Human Oracle Machine that executes the procedure in

Algorithm 1 simulates the ESP Game on one image.

In Algorithm 1, a pair of Human Oracles to the DESCRIBE problem are re-
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Algorithm 1: Oracle-ESP
Input : An image I

A set of unacceptable labels TABOO
Output: A label

Let H1, H2 be Human Oracles to the DESCRIBE problem1

labelsH1 , labelsH2 = {}2

while (labelsH1 \ labelsH2 is empty) do3

new label1 = H1.describe(I)4

if new label1 62 TABOO then5

labelsH1 .add(new label1)6

new label2 = H2.describe(I)7

if new label2 62 TABOO then8

labelsH2 .add(new label2)9

10

valid label = labelsH1 \ labelsH211

return valid label12

peatedly queried for appropriate labels for the same Image. Querying continues

until there is an overlap in their response histories. In the actual implementation

of the ESP Game, the players can see the TABOO list, and will avoid those words in

the interest of maximizing their score. We assume for simplicity that the Human

Oracles ignore the TABOO list; responses that are listed as TABOO words are simply

discarded. The resulting output is a new text description of the Image that has

been validated by both Human Oracles.

Recall that each Human Oracle has a finite list of labels they could use to

describe a given image. In the best case, Algorithm 1 terminates after only 2 queries,

one to each Human Oracle whose first choice labels are a match. In the worst case,

the Human Oracles’ response lists are exactly inverted, and Algorithm 1 requires

n+1 queries before they overlap. In the event that either H1 or H2 cannot return a

new label, we assume that the computation will throw an error. When this occurs,

we can infer that all valid labels for the input image are already listed in the TABOO

list; if this were not the case, then the Human Oracles would have guessed the

missing label.
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6.2.2 KissKissBan

KissKissBan [HCL+09] is another Human Computation system designed to produce

short, validated labels for Images on the web. This system suggests an extension of

the ESP Game intended to generate more creative labels by adding a competitive

element to the game dynamics. Each image is shown to three online players. Two

players are collaborating, as in the ESP Game, to try to guess the same label for the

image. The other player, the Blocker, attempts to block the collaborative pair from

matching by blocking “obvious” labels at the onset of each round. The collaborators

win the game if they successfully match on a non-blocked word before their time

runs out, and are penalized for guessing blocked words. If they fail to match on a

new word, the Blocker wins.

Algorithm 2 simulates KissKissBan on one image. As in the ESP Game, the

human players can be characterized as Human Oracles to the DESCRIBE problem.

However, unlike the ESP Game, KissKissBan can potentially produce more than

one label for the image:

MULTI DESCRIBE(I, k):

Input: an image I
Output: a collection of between 1 and k labels for the image

There are three ways a label can be validated during the game: (1) H1’s label

matches one from HBlocker, (2) H2’s label matches one from HBlocker, or (3) H1 and

H2 match on a label as in the ESP Game. The resulting output is a set of text

descriptions that have each been validated by at least two Human Oracles. Note

that while matching on a blocked word produces a validated label, the game ends

only on a match between the two collaborators. Thus, in the minimal case H1 and

H2 match on their first label and this label is not blocked, requiring a total of k + 2

queries to generate a single label. Unlike with Algorithm 1, the minimal case is not

optimal in terms of minimizing queries-per-label. In the best case, H1 and H2 di↵er

on their first k
2 guesses, each of the resulting k� 1 labels are blocked, and they then

match on their next guesses, thus requiring 2k queries to generate k labels. In the
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worst case, H1 and H2 are exactly inverted on their first (n�k) responses and none

of these are blocked. When this is the case, Algorithm 2 requires k + n�k
2 queries

to generate a single label.

Algorithm 2: Oracle-KissKissBan
Input : An image I

An integer k
Output: A label

Let H1, H2, HBlocker be Human Oracles to the DESCRIBE problem1

valid, labelsH1 , labelsH2 , BANNED = {}2

for i=1 to k-1 do3

BANNED.add(HBlocker.describe(I))4

5

while (labelsH1 \ labelsH2 is empty) do6

new label1 = H1.describe(I)7

if new label1 62 BANNED then8

labelsH1 .add(new label1)9

else10

valid.add(new label1)11

new label2 = H2.describe(I)12

if new label2 62 BANNED then13

labelsH2 .add(new label2)14

else15

valid.add(new label2)16

17

valid.add(labelsH1 \ labelsH2)18

return valid19

Note the similarity between lines 3–11 of Algorithm 1 and lines 6–18 of

Algorithm 2; the only modification is the recording of matches to blocked labels

on lines 10–11 and 16–17 of Algorithm 2. Under this model, KissKissBan appears

to be running the ESP Game as a subroutine between the two collaborators. This

similarity will be discussed in detail in the section on Comparing Image Labeling

Algorithms.

6.2.3 Polarity

Polarity [LA11] is a two-player Human Computation game to validate existing im-

age labels or attributes, as well as reapply them to similar images. These attributes
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can be generated through mechanisms such as the ESP Game [VAD04] or KissKiss-

Ban [HCL+09], through other interactive attribute generation methods [PG11] or

through manual curation (for example [KBBN09]). In this game, two players are

presented with a set of images and an attribute (e.g., “has a blue body”). Each

player is assigned one of two roles – the positive player is asked to select images that

the attribute describes, while the negative player is asked to select images that the

named attribute does not describe.

After each player has selected a subset of the images according to her role,

the resulting partitions are then compared. All images that were selected only by the

positive player are considered matches to the attribute, all images that were selected

only by the negative player are considered matches to the negative of the attribute

(e.g., “does not have a blue body”), and any image that was either selected by both

players or left unselected is considered ambiguous and marked for further review.

In this form of mutual validation (known as “complementarity agreement” [LA11]),

the players are penalized for any overlap in their responses. To discourage trivial

complementarity, where one partner selects all images and the other partner selects

none, players receive a joint score of (|Ihit|⇥|Imiss|)�c·|Ihit\Imiss|, where Ihit is the

set of images selected by the positive player, Imiss is the number of images selected

by the negative player, and c is the penalty for selections that overlap between the

two players.

At the task-per-image level, we can think of the human players as Oracles to

the decision problem analog to the previous DESCRIBE problem:

VALIDATE(I, `):

Input: an image I and a label `
Output: TRUE if ` describes I, FALSE otherwise

The Human Oracles’ responses are then aggregated in order to solve a larger problem

of classifying the images by their relationship to the input label `:
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CLASSIFY(I⇤, `):

Input: a set of images I⇤ and a label `
Output: a partition of the images into those that match `

and those that match ¬`

Algorithm 3 simulates Polarity on a collection of k images using a pair of

Human Oracles to the VALIDATE problem. Each Human Oracle is queried once per

image for a total of 2k queries. Note that for Algorithm 3, the number of queries in

the best and worst cases is the same. In the best case the partition is unambiguous,

and so all k images can be labeled either ` or ¬`. In the worst case all images are

added to both the Hpositive and Hnegative sets, and none of the k images can be

labeled.

Algorithm 3: Oracle-Polarity
Input : A set of images I⇤ = {I1, . . . , Ik}

A label `
Output: A collection of images that match ` and a collection of images

that match ¬`

Let Hpositive, Hnegative be Human Oracles to the VALIDATE problem1

hits, misses = {}2

for i 2 1, . . . , k do3

if (Hpositive.validate(Ii) == TRUE) then4

hits.add(I)5

6

if (Hnegative.validate(Ii) == FALSE) then7

misses.add(I)8

9

positive matches = hits \ (hits \ misses)10

negative matches = misses \ (hits \ misses)11

return {positive matches, negative matches}12

6.2.4 Peekaboom

Peekaboom [VALB06] is a Human Computation system designed to augment image

labels with information about the location of the objects being described. Two

players are partnered at random and are each assigned a role: Peek and Boom.
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Boom is presented with an image and a word, and Peek is presented with a blank

screen. Boom is tasked with revealing enough of the image to Peek that she can

guess the word. As Boom clicks on parts of the image, a small region of the image

under the clicked location is revealed, and the incomplete image is sent to Peek. The

task given to Peek is identical to players of both the ESP Game and KissKissBan:

given an image (in this case, an incomplete image), provide a description. Both

players are incentivized to reveal and guess as e�ciently as possible. The game

infers that if Peek is able to guess the word, then Boom must have revealed the

correct location. Once Peek has successfully matched the original word, a minimal

bounding box is computed from the regions revealed by Boom. Experimental data

suggest that the bounding boxes produced by multiple pairs when averaged tend

toward minimally bounding the region containing the object.

Again, we can consider Peek to be a Human Oracle to the DESCRIBE problem.

The task given to Boom is one we have not yet seen:

LOCATE OBJECT(I, tobj):

Input: an image I
a textual description tobj of an object obj

Output: (x, y) location of part of obj in I

In this problem, we either assume that the textual description has been validated a

priori, or that the computation will throw an error if the object does not appear in

the image. It is relevant to note that the larger problem being solved in Peekaboom

is di↵erent from the either of the problems being solved by the two Human Oracles.

Instead, the goal of Peekaboom is:

BOUND OBJECT(I, tobj):

Input: an image I
a textual description tobj of an object obj

Output: a minimal bounding box h(x1, y1), (x2, y2)i around obj in I

Peekaboom solves BOUND OBJECT using the aggregated result of many queries to

a Human Oracle to LOCATE OBJECT, which is validated using a Human Oracle to

DESCRIBE. Algorithm 4 captures this behavior. In the best case, one reveal from
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Algorithm 4: Oracle-Peekaboom
Input : An image I

A label `obj

Output: A bounding box

Let HPeek be a Human Oracle to the DESCRIBE problem1

Let HBoom be a Human Oracle to the LOCATE OBJECT problem2

labels, points = {}3

I 0 = a blank image the size of I4

while ` 62 labels do5

new point = HBoom.locate(I, `obj)6

points.add(new point)7

// Construct new image I 0 by

// aggregating subimages

I 0 = I 0[ (subimage of I under new point)8

new label = HPeek.describe(I 0)9

labels.add(new label)10

11

Compute a bounding box B around all p 2 points12

return B13

HBoom is su�cient for HPeek to guess correctly on the first try, for a total of 2

queries to validate `. In the worst case, HBoom must reveal all r ⇥ r subregions of

the entire m ⇥ m image before HPeek can identify the correct label, resulting in a

total of 2(m ÷ r)2 = O(m2) queries to validate `. In contrast to the two previous

applications, in which humans are asked perform the same task and their responses

are used to to verify one another, Peekaboom uses implicit validation on humans

performing di↵erent tasks. This hints at an underlying relationship between di↵erent

Image Labeling problems, which will be further discussed in the following section.

6.3 Relative Computability using Reductions

In the study of computability and computational complexity, a reduction is a

procedure for transforming one problem into another. Intuitively, a reduction from

one problem A to another problem B demonstrates that access to an algorithm for

solving problem B could also be used as a subroutine to solve problem A. This
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relationship holds regardless of which algorithm for solving B might be chosen,

and even in cases where such an algorithm does not exist (i.e. using an Oracle).

Reductions are often used to describe the relative di�culty of two problems: that is,

a reduction from A to B (written A  B) may be used to demonstrate that solving

A is no more di�cult than solving B or equivalently, B is at least as di�cult as

solving A.

Reductions illustrate that a solution to problem A is computable given an

algorithm to solve problem B, but do not guarantee that this computation is nec-

essarily e�cient. Such reductions may require calling the subroutine to solve B

multiple times. This is sometimes accomplished through nondeterminism; that

is, the procedure may simultaneously follow more than one path to compute a so-

lution. Because nondeterministic machines are no more computationally powerful

than deterministic machines, this convention can be used to describe the relationship

more elegantly. In this section, we demonstrate reductions between the problems

being solved by the ESP Game, KissKissBan, Polarity, and Peekaboom. These re-

ductions enable us to compare the relative complexity of these games under the

Human Oracle Model. Throughout the remainder of this chapter, we will assume

for the sake of discussion that the cost of generating a label for an image, validating

whether or not a label matches an image, and locating an object in an image is the

same, under the precedent set by [MS12]. For further discussion on the challenges

of quantifying cost, see Chapter 8.

6.3.1 Comparing ESP and KissKissBan

Intuitively, the ESP Game and KissKissBan appear very similar both in terms of the

problem they are trying to solve as well as the approach to finding a solution. To ex-

plore this similarity, we compare the ESP Game and KissKissBan both by reduction

between their underlying problems and by analyzing their algorithmic complexity.

Specifically, we demonstrate that their underlying problems are equivalent and that

the ESP Game and KissKissBan have identical performance in both the best and

worst case.
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6.3.1.1 Problem Reduction

We begin by demonstrating that solving MULTI DESCRIBE (solved by KissKissBan)

is no more di�cult than solving DESCRIBE (solved by the ESP Game), and vice

versa.

Lemma 6.3.1 DESCRIBE  MULTI DESCRIBE.

Proof: On any image passed to DESCRIBE, call MULTI DESCRIBE as a subroutine

with n = 1 to give us a single label, and return this label. ⇤

Lemma 6.3.2 MULTI DESCRIBE  DESCRIBE.

Proof: On any image passed to MULTI DESCRIBE, we can call DESCRIBE as a sub-

routine n times to give us a n labels. ⇤

By demonstrating (trivial) reductions in both directions, we verify our intu-

ition that these problems are equivalent:

Theorem 6.3.3 MULTI DESCRIBE and DESCRIBE are equivalent.

6.3.1.2 Algorithmic Comparison

Because their underlying problems are equivalent and their Human Oracles di↵er in

number but not in function, we can directly compare the performance of the ESP

Game and KissKissBan algorithms under the Human Oracle Model. Specifically, we

show that the best and worst case performance of both games is identical (measured

by the ratio of Human Oracle queries to number of labels produced).

Theorem 6.3.4 The worst case performance of the ESP Game requires no more

queries per label than the worst case performance of KissKissBan.

Proof: Recall that in the worst case, KissKissBan returns just a single label with

a large number of queries to the Human Oracles. All k� 1 queries to HBlocker were

wasted because none of the BLOCKED labels were matched, and the collaborators go
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n�(k�1)
2 rounds before finding a match for a total cost of n + 1 queries. In this case,

returning a single label could have been accomplished using one round of the ESP

Game at an identical cost of n + 1 queries. While the two Human Oracles may take

just as long to find a match, there is no added benefit to including a third Human

Oracle in the worst case. Thus, the worst-case number of queries to generate a single

label in KissKissBan is equal to the worst-case cost of the ESP Game. ⇤

Theorem 6.3.5 The best case performance of KissKissBan requires no fewer queries

per label than the best case performance of the ESP Game.

Proof: In the best case, KissKissBan returns k unique labels using only 2k queries

to the Human Oracles: (k�1) to HBlocker to set up the BLOCKED list, (k�1) queries

divided between H1 and H2, each of which matches a unique word on the BLOCKED

list, and 2 final queries, one to each of H1 and H2, on which they match. This match

causes the algorithm to terminate. To produce the same number of labels, we would

require k sequential rounds of the ESP Game (recall that each round produces at

most 1 label). By making TABOO the list of labels generated through previous rounds,

we ensure that all k labels produced by the sequence of ESP Games will be unique.

In the best case, the pair is able to match on their first try in each round, for a

total of 2k queries to the Human Oracles. Thus, the minimum number of queries

per label in the best-case performance of KissKissBan is equal to the best case cost

of k rounds of the ESP Game. ⇤

It is reasonable to argue (as do the authors of [HCL+09]) that KissKissBan may

produce more diverse labels than the ESP game in the short term. In the long term,

there are no labels that KissKissBan would produce that would not also eventually

be discovered in the ESP Game; they may just be validated in a di↵erent order.

This model and the corresponding proofs above demonstrate that this e↵ect is due

more to the incentive structure of the game than to any underlying computational

di↵erences. However, from an algorithmic perspective, KissKissBan demonstrates

no advantage over the ESP Game in terms of the number of queries per label.
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6.3.2 Comparing ESP and Polarity

In this section, we will explore the relationship between the ESP Game, which

generates labels for an image using two Human Oracles to the DESCRIBE problem and

Polarity, which attempts to CLASSIFY a set of images according to an existing labels

using two Human Oracles to VALIDATE, the decision-problem analog to DESCRIBE.

6.3.2.1 Problem Reduction

We will use bounded nondeterminism to demonstrate that:

Lemma 6.3.6 CLASSIFY  DESCRIBE.

Proof: Given a collection of images I⇤ and a description `, nondeterministically

query DESCRIBE for all possible descriptions for each image Ii 2 I⇤. If any of the

returned descriptions for an image Ii matches `, classify Ii as a match. Otherwise,

classify Ii as a non-match. ⇤

The number of possible valid descriptions for any input image is finite due to

the limitations of both image resolution and language. As part of the reduction, we

assume we have access to an e�cient method for solving DESCRIBE that may return

any one of these finitely many descriptions, but won’t return anything else. Thus,

if ` is a valid description for any image in the collection, it will eventually show

up as one of the suggested descriptions returned by DESCRIBE. We are therefore

guaranteed that this nondeteriministic “guess-and-check” method will eventually

identify all images that match `, as well as all images that don’t.

In this case, the reduction only holds in one direction; it is not possible to

reduce from CLASSIFY to DESCRIBE. This is because one of the inputs CLASSIFY is a

validated label. Although a guess-and-check method could be used again, it would

rely on the assumption that the English language is finite. While this assumption

is technically correct, it is not realistic or feasible. We would have to iterate over all

possible labels until one was found that did not cause an error. This validates the

intuition that the two problems are not equivalent, but are nonetheless related.
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6.3.2.2 Algorithmic Comparison

The previous reduction implies that it should be possible to compute the output

of Polarity by using only calls to the ESP Game. Recall that the goal of Polarity

is to return a partition over a collection of images into those that match the input

label ` and those that do not. As indicated above, we can accomplish this same

task by running the ESP Game on each image independently. We can repeatedly

invoke the Oracle-ESP algorithm on each image until either the algorithm returns

a matching label or we exhaust the possible labels for the image without finding

a match. Because (1) there are finitely many valid labels for any image, and (2)

the Oracle-ESP algorithm will eventually return all valid labels, we can be assured

that this process eventually terminates. In this section, we demonstrate that with

respect to the number of images, the maximum number of queries to the human

oracle to solve this problem the ESP Game grows only linearly faster than solving

the problem using Polarity.

Theorem 6.3.7 The ESP Game and Polarity both require O(k) queries to partition

a set of k images.

Proof: The number of queries required by Polarity to label a collection of k images

is always 2k, regardless of the outcome. When solving the classification problem

using the ESP Game, the total number of rounds is determined by k, the number

of images we will need to evaluate. For the ESP Game, the highest cost would be

incurred when none of the images in the collection are matches to `. Each image

would require at n executions the Oracle-ESP algorithm to fully label where n is the

maximal (finite) number of possible reasonable labels for a single image. Adding

each returned label to the TABOO list and thereby removing it from the pool of

potential guesses for subsequent rounds, we could could incur a maximal cost of

n � (k � 1) + 1 on the kth round. The maximum cost per image is therefore given

by the sum:
nX

k=1

(n� (k � 1)) + 1 =
n�1X

k=0

(n� k + 1) =
n2 + 3n

2
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Thus, the maximum cost incurred to partition a collection of k images with at most

n potential labels per image using only the ESP Game is k ⇤ n2+3n
2 = O(k). ⇤

This analysis comes with a caveat: while this model enables us to demon-

strate the two algorithms are similar under a standard measure for algorithmic

complexity, the role of the constant factor does not go unnoticed. Using the ESP

game as indicated above would require significantly more queries to its Human Ora-

cles because unlike in Polarity, we haven’t pruned the initial search space by telling

the Human Oracles where to focus their attention. Because of this, they may have

to exhaustively explore all of the (finitely many) possible labels before they can give

us the answer we seek. In practice, the number of valid labels for most images is

relatively small. Results from the original publication on the ESP Game indicate

that after 4 months of near constant play with over 13,600 players, only 0.3% of

the images in their dataset had more than 5 validated labels [VAD04]. KissKissBan

reports a higher average of about 14 labels per image with 78.8% recall [HCL+09],

indicating that some of these labels may be noise. Because the size of n is rea-

sonably small for most images, demonstrating this similarity in asymptotic growth

illustrates that knowing the label we’re trying to match in advance yields only a

modest advantage in solving this problem. In the following section, we will explore

the relationship between two algorithms whose complexity with respect to the input

size di↵er on a much deeper level.

6.3.3 Comparing ESP and Peekaboom

On the surface, the ESP Game and Peekaboom appear similar in many ways. Both

compute on a single image, and both leverage a Human Oracle to the DESCRIBE

problem to perform some part of their computation. In this section, we illumi-

nate some fundamental di↵erences between these algorithms and their underlying

problems.
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6.3.3.1 Problem Reduction

To demonstrate that:

BOUND OBJECT  DESCRIBE

we will add a second layer of nondeterminism to the argument from the previous

reduction showing that CLASSIFY  DESCRIBE.

Proof: Given an image I and a description `obj of an object to bound, nondeter-

ministically select one of a subimage I 0. On I 0, nondeterministically query DESCRIBE

for all possible descriptions. If any of the returned descriptions matches `obj , return

the boundary of the subimage as the bounding box. ⇤

The number of possible subimages is limited by the size of the image. As

before, the number of possible valid descriptions for any input image is also finite due

to the limitations of both image resolution and language. As part of the reduction,

we assume we have access to an e�cient method for solving DESCRIBE that may

return any one of these finitely many descriptions, but won’t return anything else.

Thus, if `obj is a valid description for the subimage, it will eventually show up as one

of the suggested descriptions returned by DESCRIBE. We are therefore guaranteed

that this nondeteriministic “guess-and-check” method will eventually yield a correct

bounding box.

As in the previous section, this reduction only holds in one direction; it is

not possible to reduce from DESCRIBE to BOUND OBJECT without iterating over all

possible words in the English language. This confirms that the two problems are

not equivalent, but are nonetheless related.

6.3.3.2 Algorithmic Comparison

The previous reduction implies that it should be possible to compute the output of

Peekaboom by using only calls to the ESP Game. In this section, we demonstrate

that the maximum number of queries to the Human Oracle using either Peekaboom
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or the ESP Game required are both polynomially bounded in the size of the image,

these polynomial bounds are not equivalent.

Proof: Recall that the goal of Peekaboom is to return a minimal w ⇥ h bounding

box surrounding the described object in the image, and that this is accomplished

by having Boom sequentially reveal parts of the image to Peek. Assume without

loss of generality that the size of the image is m ⇥ m, and that the size of each

revealed region is r ⇥ r, where 0 < r < m. The smallest possible bounding box,

where w = h = r, would be returned in the case that Peek was able to guess the

word after a single reveal. In the worst case w = h = m, because Peek may not be

able to guess the word before seeing the entire image, which could require at most

2 ⇤ (m ÷ r)2 = O(m2) queries to the Human Oracles.

As indicated above, we can repeatedly invoke the Oracle-ESP algorithm on

each subimage in ascending order of size until either the algorithm returns a match-

ing label or we exhaust the possible labels for the subimage without finding a match,

and move on to the next one. Because (1) the label given as input to Peekaboom

was validated a priori, (2) there are finitely many valid labels for any image, and (3)

the Oracle-ESP algorithm will eventually return all valid labels, we can be assured

that this process eventually terminates. Because we evaluate subimages in increas-

ing order of size, this process guarantees that the first subimage on which we find a

match is minimal.

The total number of times we must execute the Oracle-ESP algorithm is

determined by the number of subimages that must be evaluated. The smallest

bounding box that could be returned by Peekaboom is the size of one revealed

region, and so we need only evaluate subimages that are at least r⇥ r, and that are

at most the entire image. The number of possible subimages ranging from size r⇥ r

to m⇥m is:
mX

w=r

mX

h=r

(m� w + 1)(m� h + 1) = O(m4)

thus requiring on the order of O(m4) queries to the Human Oracles across all exe-
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cutions of the algorithm. Thus, the worst-case number of queries needed to bound

an object using only the ESP Game grows asymptotically faster than the number

of queries needed using Peekaboom. ⇤

In the proofs above, we used brute force to illustrate the relationship between the

ESP Game and Polarity, as well as between the ESP Game and Peekaboom. This

demonstrates the relationship between labeling an image, classifying an image and

locating an object in an image in an intuitive manner, but we reiterate that this is

not intended as a prescription for future design. In practice, because this method

requires an exhaustive search, this approach would not be an e↵ective use of Human

Computation resources. The average case performance could likely be significantly

improved by making more intelligent decisions about which subimages to send to

the subroutine for validation. We could, for example, start with a well-distributed

subset of subimages of each size. This has the potential to greatly reduce the

number of calls to the subroutine because it could de-prioritize redundant rounds

on uninteresting regions of the image without sacrificing accuracy. We could also

select regions according to content by preprocessing using an image segmentation

algorithm. This would increase the amount of machine computation, in exchange

for a reduction in the number of queries to the Human Oracles. However, these

heuristics would not alter the underlying di↵erences between these algorithms.

6.4 Probabilistic Performance

The Human Oracle Model enables us to bound the best and worst case performance

in terms of the number of queries to the oracle. Under this model, we can also

describe the average cost of Human Computation algorithms in terms of the number

of queries needed to solve the problem most of the time. For example, consider

running the Oracle-ESP algorithm with randomized Human Oracles: both Human

Oracles have identical predefined sets of n labels for the input image, but they appear

in a random order in their response lists. In other words, both Human Oracles know
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all n possible labels for the image, but they may have drastically di↵erent ideas of

which ones are the most important. In the worst case, their lists are in exactly the

opposite order. When this is the case, the while loop in line 3 of the Oracle-ESP

algorithm will iterate n
2 times without making a match, making a total of n + 2

queries before a match is guaranteed.

However, this case is highly unlikely due to the conditional probability of each

selection. Assume that we have executed k iterations of the while loop without a

match. This means that in 2k queries to the Human Oracles, 2k of the possible labels

have been guessed so far; half by H1 and the other half by H2. The (conditional)

probability that the (k + 1)st iteration results in a match is:

(n� 2k)(n� 2k � 1)
(n� k)2

Trivially, the (conditional) probability that the (k + 1)st iteration does not result

in a match is:

1� (n� 2k)(n� 2k � 1)
(n� k)2

Conditional probabilities can be multiplied to find the probability that related events

occur in sequence. In this case, the probability that a game of ESP goes m iterations

without a match is:
mY

k=0

1� (n� 2k)(n� 2k � 1)
(n� k)2

On an image with 10 acceptable labels (n = 10), this indicates that the game

terminates with 3 or fewer iterations 71% of time time, and in 4 or fewer iterations

93% of the time.

In many cases, probabilistic performance is more telling than worst-case anal-

ysis, as it provides a clearer picture of the how the algorithm can be expected to

perform over the long-term. Information about the long-term expected performance

of an algorithm could be used to help refine the practice of tuning parameters such as

timeout, which could improve e�ciency over static settings under certain conditions.

We believe that establishing bounds (best, worst, and average-case) on algorithmic
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processes involving human computation and deepening our understanding of the re-

lationships between the problems were trying to solve, as well as identifying areas of

redundancy, will enable us to design more e�cient algorithms in the future. In ad-

dition, reporting bounds on the complexity of human computation algorithms along

with the observed performance of the system would improve study reproducibility.
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Chapter 7

Classification Dimensions and

Induced Complexity Classes

7.1 Introduction

As demonstrated in the previous chapter, the number of required operations is one

intuitive metric by which we may order a collection of algorithms for solving a

problem. Indeed, this is analogous to traditional notions of computational work.

Because we lack a mechanism for converting between units of human work and

units of machine work, the h�H ,�M i notation introduced by Shahaf and Amir [?]

can prove useful. Recall for example the two techniques discussed in Chapter 6 for

identifying the location of an object in an m ⇥ m image. Using Peekaboom, the

number of queries to the Human Oracles is bounded by O(m2). The cost to the

machine is a simple comparison between each of Peek’s guesses and the input label,

and so �M = �H = O(m2) as well. In the second approach using the ESP Game

as a subroutine, the number of queries to the Human Oracles could be as high as

O(m4) in the event that all n labels needs to be guessed before we arrive at the

input label. The machine must then compare the value returned by each query to

the collection of previous guesses for that round to determine if there has been a

match. Assuming an e�cient data structure, each lookup or insertion would incur
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a cost on the order of log(n). In addition, each of the n possible returned labels

must be compared against the input label. This results in a total machine cost of

O(m4 ⇤ log(n) + n). Comparing these two tuples, it is clear that Peekaboom is a

more e�cient method for bounding an object in and image than the ESP Game

approximation in terms of both human and machine computation.

Perhaps more interestingly, the examples given in Chapter 6 demonstrate

that an algorithm requiring more information (Peekaboom requires a predefined

label) as well as interactivity (Boom must be able to touch the image) can be

simulated using a polynomial number of calls to an algorithm with limited interac-

tivity and unrestricted search space (ESP). This sheds important light on the value

of this additional information and power, and the scale of the cost incurred if we are

forced to solve the same problem using an intuitively “weaker” machine. This notion

of “stronger” and “weaker” suggests that the way in which human computation is

leveraged as part of an algorithmic process may be used to induce complexity classes

that partition the space of human computation. In the remainder of this chapter,

we will discuss several additional dimensions along which human computation may

be classified and compared.

7.1.1 Problem Instance

To begin, we consider whether or not the Human Oracle can influence the specific

instance of the problem that it is being asked to solve. In many existing human

computation algorithms, the human or collection of humans is asked to perform a

specific computational process as a subroutine to a larger algorithm, such as labeling

a particular image. Under this restriction, the Human Oracle does not have any

power to determine which problem it will solve. Algorithms where the Human Oracle

is not allowed to alter the problem instance are leveraging a relatively restrictive

use of human processing power. We call these fixed instance human computation

algorithms. This is consistent with the standard Oracle Turing Machine model; the

Oracle is simply a set, and can only answer questions about membership in that set.

All of the algorithms under consideration in Chapter 6 and in many other Games
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with a Purpose-style human computation systems are fixed instance algorithms.

Alternatively, the Human Oracle may be given some autonomy in decid-

ing which problems it will solve. We call these variable-instance algorithms.

The Human Oracle may generate and solve its own problems such as in the use of

Visual Analytics systems, or it may select problem instances based on some eco-

nomic model as seen in generalized task markets like Amazon Mechanical Turk.

In computationally challenging problems, the Human Oracle may be able to solve

only specific problem instances, such as in the crowdsourced protein folding game

Fold.it [CKT+10]. General protein folding is known to be NP-Complete [BL98], and

there is good reason to believe that humans cannot e�ciently solve general instances

of NP-Complete problems [Aar12]. However, there is high value in the discovery of

lower-energy foldings for individual proteins, and so an algorithm enabling the Hu-

man Oracle to select and solve specific instances is useful.

7.1.2 Query Order

Next, we can consider whether or not the sequence of queries to the Human Oracle

can be determined in advance. In an algorithm with predetermined query order,

we claim that there exists some function:

f : I ! (q1, . . . , qn)

that takes as input a problem instance I and generates a finite sequence of queries

(q1, . . . , qn) that will be passed in order to the Human Oracle. Because the sequence

can be generated a priori, it follows that the position of any query qi must not depend

on the Human Oracle’s previous answers. In these systems, the Human Oracle

cannot influence the order in which it receives and responds to specific queries. A

general example of a process that uses predetermined queries is semi-supervised

machine learning. In these techniques, the Human Oracle is asked to label a set

of training data which is then used to infer a classification function. While the

resulting classification function is dependent on how the training data is labeled,
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the points to be used as training data are determined in advance.

Relaxing this restriction yields a slightly more powerful querying model: al-

gorithms whose future queries are contingent on the Human Oracle’s answers to

previous queries. In an algorithm with adaptive query order, we claim that there

exists some function:

f : {I, (a1, . . . , an)}! qn+1

that takes as input a problem instance I as well as (a1, . . . , an), the sequence of

responses from the Human Oracle so far, and generates the next query (qn+1). An

excellent example of processes that utilize adaptive querying is active learning. In

active learning algorithms, the Human Oracle is first asked to label some small set

of training data. Based on their responses, the algorithm reclusters the data. It

then selects a new subset of points about which it is least confident and submits

these to the Human Oracle to label. The selection of each subsequent collection of

points is directly related of the labels provided in the previous round. This process

continues iteratively until some confidence threshold is met.

7.1.3 Oracle Responses

Finally, we can consider whether or not the Human Oracle is able to compute on its

previous responses in order to generate a future response. Mirroring the previous

dimension, some systems assume that the Human Oracle’s responses to queries are

independent of one another. An example of a real-world system where this is true

is reCAPTCHA [VAMM+08], a human computation system for optical character

recognition (OCR). If the same human is asked to pass several reCAPTCHA in-

stances, she will not gain any information in the process of solving a single instance

that would change her answers to new instances further down the line. Thus, we

can presume that each of her responses is independent. When this is the case, there

is no discernible di↵erence between asking the same Oracle n questions, or asking

n di↵erent Oracles one question each. Because of this, processes leveraging Human

Oracles whose responses are independent can be parallelized.
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Problem Instance Query Order Oracle Responses
Fixed Variable Predetermined Adaptive Independent Adaptive

reCAPTCHA X X X
Semi-supervised Learning X X X

the ESP Game X X X
Active Learning X X X

HBGA X X X
Fold.it X X X

Visual Analytics X X X

Table 7.1: Three-dimensional classification of various techniques leveraging human
computation.

As mentioned in Chapter 5, it is sometimes useful to endow the Human

Oracle with some amount of persistent memory regarding the query sequence. In

these systems, the Human Oracle may be able to modify its future behavior

based on previous events. In the simplest sense, this could be used to ensure

that the Human Oracle does not return the same answer twice. In other scenarios, we

may wish to enable computation on this sequence in order to model more nuanced

adaptations, such as learning or fatigue. For example, complex systems such as

visual analytics tools require that the Human Oracle be able to learn from a prior

sequence of actions and responses and subsequently modify its future behavior. Note

that while we continue to develop more robust models of human memory and its

limits, we may elect to abstract the specifics of how the Human Oracle remembers

and instead include the cost of accessing this memory in the query cost.

7.2 Describing the Space of Human Computation

In contrast to previous schema for comparing human computation systems which

rely on nominal classification dimensions [QB11], each of the dimensions introduced

here has an implicit notion of magnitude that induces an partial ordering on di↵er-

ent algorithms and problems. For example, allowing the Human Oracle to decide

which instances of a problem to solve enables us to make progress in many more

challenging areas than is possible with Human Oracles that simply follow orders.

In this sense, fixed instance algorithms are comparatively weaker than variable in-

stance algorithms. Equivalently, the problems that can be solved using fixed instance
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algorithms are comparatively simpler than problems that cannot. Similarly, an al-

gorithm that must predetermine its set of queries is weaker than an algorithm that

can choose its next query based on previous responses, and a Human Oracle unable

to use history to its advantage is not as strong as one that can.

Consider the systems and techniques listed in Table 7.1. Categorizing along

these three dimensions, we see that many of our intuitions about the relative strength

of these techniques are captured. For example, we see the the algorithm underly-

ing reCAPTCHA can be computed with a less powerful Human Oracle than the

ESP Game. In reCAPTCHA, the human is simply a visual decoder, and the ma-

chine takes care of compiling and aggregating the results. In the ESP Game, more

responsibility is placed on each individual human to avoid performing redundant

computation in order to generate a selection of unique labels. Similarly, we see

that active learning requires a more powerful use of human computation than semi-

supervised learning. We presume that by enabling more careful selection of user

constraints or labels, the set of datasets that can be classified using active learning

is broader than the set of datasets that could be classified using semi-supervised

learning, given the same amount of supervision.

Because they define a partial ordering between problems, these dimensions

can be used to establish preliminary complexity classes within the space of human

computation (see Fig. 7.1). Note that we believe the class defined by the use of

independent oracle queries to be entirely contained within the class defined by fixed

problem instances. This follows from the intuition that a Human Oracle with no

memory would have no mechanism for evaluating its preference for one instance over

another. However, at present this is only deductive speculation; a rigorous proof is

beyond the scope of this dissertation.

We suggest that these classes are complementary to those in traditional com-

putational complexity. Indeed, we may consider these hierarchies to be orthogonal.

That is, there could exist human-computer collaborative systems with all combina-

tions of h�H ,�M i. For example, the ESP Game lives at the intersection of fixed

problem instance and O(n2) 2 P, while Fold.it exists where predetermined query
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Figure 7.1: Preliminary proposed hierarchy of complexity classes in human compu-
tation.

order meets NP.

In the following chapter, we will discuss some of the limitations of this model,

as well as advocate for the continued pursuit of complexity measures for systems

involving human computation. Developing more nuanced models for the use of

human computation within larger computational systems will enable us to further

refine these classes. Exploring the boundaries and intersections of these spaces, as

well as the e�ciency with which problems can be solved by various combinations of

human and machine computation, is a primary goal of our future work in this area.
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Chapter 8

Discussion

The a↵ordance-based framework presented in this dissertation sheds important light

on the ways in which the human mind can be harnessed as a computational resource.

In addition, the Human Oracle Model provides a critical first step in quantifying the

use of these resources, and helps us to better understand the intricate relationships

between di↵erent problems and problem families when viewed through the lens of

human computation. That said, this dissertation only just scratches the surface of

this potentially rich area for future research. This model ignores some very real

factors present in any system involving the variability of biological computation. In

the following sections, we will discuss some of the limitations of this model, as well

as motivate our continued research in this area.

8.1 Limitations of the Human Oracle Model

8.1.1 Imperfect Oracles

Under this model, there is an explicit assumption the Human Oracle will always be

able to provide the correct answer at a fixed cost. In reality, humans don’t work

this way. Intuition and experience indicate that humans eventually get tired or

bored, and as a consequence their speed and accuracy su↵er. In addition, individual

di↵erences in ability and cost are absent. In the real world, not all humans are

equal in their capacity to answer the questions we ask. Some are more skilled or
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have better training, and their expertise comes (we presume) at a higher cost.

Similar issues have arisen in the area of Active Learning, which has histor-

ically assumed a single tireless, flawless, benevolent oracle was always available to

provide labels for its training data. Proactive learning relaxes these assumptions,

adopting a decision-theoretic approach to match one of a collection of (possibly

imperfect) oracles to each instance [DC08]. More recent work in the area of multi-

ple expert active learning (MEAL) improves upon this model by incorporating load

balancing to ensure that no worker has to shoulder an inequitable share of the bur-

den [WSBT11]. These methods assume there exists some method to model both

how hard any single problem instance is, as well as how costly and e↵ective a given

worker is.

8.1.2 Quantifying the Human Brain

This highlights another problem: as of this writing, there does not exist any reliable

method for quantifying how hard a human has to work in order to accomplish

a given task. Because we don’t fully understand fundamental operations of the

human brain or how they assemble to perform computation, it is not yet possible

to calculate a precise per-operation cost. As such, at present this model cannot

actually tell us how much work the human is doing; it only tells us how many

times the human is working. When the task is comparable, such as when comparing

various image labeling algorithms, this does not pose a significant problem. However,

identical algorithms leveraging di↵erent a↵ordances can have drastically di↵erent

success rates.

Consider the seemingly reasonable assumption that the successful process

employed the ESP Game [VAD04] in image labeling could be directly reapplied to

labeling other stimuli such as audio. This was in fact the very assumption made by

the designers of TagATune [LVADC07]. Despite being identical to the ESP Game

in nearly every way with the exception of the human a↵ordance, this first iteration

failed miserably; people simply couldn’t agree on labels for most of the input. In

a second iteration, the designers found that asking the users to decide whether or
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not they thought they were listening to the same thing was far more successful for

audio labeling than explicit matching [LVA09], although this introduces significantly

more noise into the resulting dataset. This would indicate that though the human

is superficially being asked to perform a similar task, the underlying information

processing is fundamentally di↵erent for images versus audio.

Our lived experience might lead us to speculate that the human might be

sampling their responses from a much larger search space; after all, audio lacks the

same tangible, concrete concepts like chair and grass upon which we often anchor

our labels for images. In addition, one might suggest that the fact that the input

is continuous rather than discrete might play some role. While cognitive modeling

techniques can help us to understand the interplay between stimulus and response,

existing architectures are not designed to determine the “complexity” of the model

itself. Though the number of nodes and interactions in two models may be di↵erent,

we do not have evidence to support (or refute) that this relates to problem hardness.

While unobtrusive brain sensing methods are currently under development and have

shown promise in detecting mental workload [HSG+09] and task di�culty [GSH+09],

the information revealed is not yet refined to a per-operation granularity. Thus, from

a cognitive science perspective, there is presently no mechanism for quantifying the

computation performed by the human brain. In order to form a complete model of

human computation, it is critical that we continue to develop more nuanced models

the human brain and to incorporate these models into the evaluation of algorithmic

complexity and performance in human-machine collaborative systems.

8.2 Why Develop Complexity Measures for Human Com-

putation?

To date, human computation has concerned itself almost entirely with questions of

computability. That is, can using human computation make it possible to solve prob-

lems which are otherwise thought to be unsolvable? Using experiential knowledge

regarding the kinds of processing that we humans are “better” at, such as recogniz-
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ing objects and speaking naturally, we build systems that capitalize on these skills

and o↵er them as constructive proof: tangible evidence that the problems are in

fact solvable using human computation, even when other methods have failed.

In other areas of the computational sciences, theoretical arguments paved

the way for the designs that made provably correct solutions tractable. In human

computation, the development of real-world implementations has far outpaced the

development of theoretical measures. Many of these implementations have demon-

strated unparalleled success at previously intractable problems. However, in the

absence of a rigorous theory in which to ground the development of new algorithms,

researchers must rely on intuition and some deeply-rooted assumptions about the

di↵erences between human and machine computation in order to design new sys-

tems.

There is an implicit assumption that the use of human processing power in

such systems will be judicious. After all, we have observed that there is a point

at which human “processors” will simply refuse to perform any more computation.

Much e↵ort has been put into learning how to best incentivize human processors to

perform computation through financial [MW10a, SM11] and social [CH11] mecha-

nisms. Games with a Purpose try to make participation more entertaining for the

human [VA06], thereby increasing their willingness to contribute. However, to date

there has been little progress toward measures for describing how the computational

tasks are being allocated, and few mechanisms have been developed for comparing

the algorithmic processes underlying human computation systems independent of

the details of their implementation.

Computational complexity theory takes the study of solvable problems to a

deeper level by asking about the resources needed to solve them in terms of time

and memory. It enables us to ask questions that get at the fundamental nature of the

problem and how me might go about solving it more e↵ectively. Does randomization

help? Can the process be sped up using parallelism? Are approximations easier?

By understanding the resources required, we can begin to group algorithms and

problems into complexity classes, with members of the same class requiring similar
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kinds or quantities of resources. It also enables us to investigate the e↵ect limiting

these resources has on the classes of tasks that can still be solved.

At a low level, there is significant interest in establishing concrete lower

bounds on the complexity of computational problems. That is, what is the minimum

amount of work that must be done in order to guarantee the solution is correct?

Most research in areas such as circuit complexity fall this category. At a higher level,

complexity theory also explores the connections between di↵erent computational

problems and processes, such as in NP-completeness. This kind of analysis can yield

fruitful comparisons that deepen our understanding of the nature of a problem space,

even when we are unable to provide absolute statements regarding the individual

problems or notions.

We argue that developing these analytical tools, establishing bounds on our

algorithmic processes and deepening our understanding of the relationships between

the problems we’re trying to solve are of critical importance to the study and design

of systems involving human computation. Drawing parallels at the algorithmic level

rather than at the implementation level will enable us to compare solutions more

e↵ectively than using simple A-B testing. In human computation as with other

branches of computational science, identifying areas where existing algorithms are

redundant or ine�cient will enable us to design more e�cient algorithms in the

future. In addition, reporting bounds on the complexity of human computation

algorithms along with the observed performance of the system would improve study

reproducibility, as well as help isolate the e↵ects of interface design and other im-

plementation details.

8.3 Broader Impact

The importance of understanding human computation as part of a larger computa-

tional complexity system is not limited to improving algorithm design. Augmenting

computational complexity models to incorporate human computation can expand

our understanding of what can be computed, as did the development of probabilis-
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tic and parallel computation. Indeed, this is a forte of the field of computational

complexity:

“The mark of a good scientific field is its ability to adapt to new ideas and

new technologies. Computational complexity reaches this ideal. As we

have developed new ideas. . . the complexity community has not thrown

out the previous research, rather they have modified the existing models

to fit these new ideas and have shown how to connect [their] power. . . to

our already rich theory.” [FH03]

The development of complexity measures for human computation may play a sig-

nificant role in the broader adoption of human computational methods. Robust

models of how humans fit into the grand scheme of computational tools is essential

to promoting wider understanding of human e↵ort as a legitimate and measurable

computational resource.
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Chapter 9

Conclusion

In this dissertation, we have explored the complementary nature of human and ma-

chine computation through three interrelated research thrusts. First, we described

the development of two successful visual analytics systems for exploring complex

behavioral simulations in political science. Through in situ expert analysis, we

demonstrated the utility of these human-computer collaborative analytics systems

and their superior performance relative to preexisting manual practices. Second,

we presented a framework for comparing human-computer collaborative systems

according to relative strengths of human and machine collaborators on which they

rely. Finally, we introduced the Human Oracle Model as a method for characterizing

and quantifying the use of human processing power as part of an algorithmic pro-

cess. We demonstrated the utility of this model for comparing and analyzing several

well-known human computation systems for image labeling and describe how this

model can be used to characterize the space of human computation. In closing, we

discussed the model’s limitations and its potential for broader impact. Through this

research, we hope to form a more holistic picture of the interrelationship between

human and machine computation, and to develop a robust theoretical model for the

analysis of systems involving their collaboration.
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