
Block-Structured Algorithms for Domain-Wall Fermions

Michael Perlmutter

May 14, 2010

Contents

0.1 Quantum Chromodynamics . 1
0.2 Finite Differences . 3
0.3 Singular Value Decomposition . 13
0.4 MultiGrid Methods . 20
0.5 Results . 35

i

0.1 Quantum Chromodynamics

The Standard Model of particle physics is the currently accepted theory for explaining three of the
four fundamental forces of nature, the Strong Force, the Weak Force, and the Electro-Magnetic
Force. Unifying the Standard Model with quantum models of Gravitation is among the most
important areas of research in modern Physics. The Standard Model divides all elementary particles
into two categories, fermions and bosons. Fermions that carry color charge are called quarks, and
fermions, such as electrons, that do not carry color charge are called leptons. Bosons are the
particles which mediate the action of forces. The bosons responsible for electromagnetism are
called photons, the bosons which mediate the Strong Force are known as gluons, and the Weak
Force is mediated by two sets of bosons known as z0 and w± [3].

Quantum chromodynamics (QCD) is the part of the Standard Model of particle physics which
models the Strong Force, which is responsible for binding together protons and neutrons, forming
the nucleus of an atom. Moreover, the Strong Force also binds together quarks to form hadrons
such as protons and neutrons. A particularly surprising property of QCD is confinement. For the
other three forces, the interaction between two particles decreases by the inverse square law as the
distance between the particles increases. The Strong Force, however, increases in magnitude as
particles move farther apart.

QCD is generally believed to be true and is consistent with the results of all experiments so far
conducted in particle physics. However, we still aim to use QCD to predict the results of future
experiments for verification. Experiments to determine the mass and other physical properties of
a large number of subatomic particles are currently underway. Carrying out these experiments
requires particle accelerators, which are extremely expensive to build, run, and maintain. The
Fermilab Tetravon cost $120 million to build in 1983. More recently, in 2007, the Large Hadron
Collider cost 3 billion Euro to construct. A proposed International Linear Collider is expected to
cost roughly $25 billion. For computational verification, a number of super computers are used
such as APEnext and QCDOC. These computers are capable of carrying out roughly 10 trillion
floating point operations per second (flops).

The aim of computational QCD is to predict the expected value of some observable quantity,
O, such as a mass or a velocity of some particle based off of the established laws of theoretical
QCD. This computation is then to be compared to the experimental results as a means of testing
the theory. Thus, our goal is to compute

〈O(A,ψ, ψ)〉 =
1

Z

∫
O(A,ψ, ψ)e−Spg−SF dψdψdA,

where 〈O〉 is the expected value of O, A = Aµ(~x) ∈ C3×3 is the gauge potential, ψ(~x) and ψ(~x)
are Grassmann-valued fermion fields, Z =

∫
e−Spg−SF dψdψdA, Spg = Spg(A) is the “pure gauge”

action, and SF =
∫
~x,~y ψ(~x)Mρ(A)ψ(~y) is the Fermionic action.

The most efficient Monte-Carlo techniques for computing the integral above require inverting
Mρ(A), the Dirac Operator. We write the Dirac operator as a first-order system of 12 coupled PDEs
posed on a four-dimensional space. The twelve variables (scalar-functional degrees of freedom),
however, appear as a tensor-product of a four-dimensional space (associated with the quantum
dynamical spin) with a three-dimensional space (associated with the quantum dynamical color).

The Dirac operator may be written as

Mρ(A) =
4∑

µ=1

(γµ ⊗ (I3∂µ − ıAµ))− ρI12,

1

where µ = 1, . . . , 4 denote the four canonical space-time directions, {γµ}4µ=1 are four fixed unitary
matrices with all entries 0,±1, and ±ı, ∂µ is the standard partial derivative in the µ-direction,
I3 and I12 are the 3 × 3 and 12 × 12 identity matrices, respectively, the constant, ρ, is a mass
parameter, and ⊗ denotes a standard tensor product of operators[7]. The field of complex 3 × 3
matrices, Aµ(~x), is known as the gauge potential and is chosen through a Monte-Carlo process in
the numerical simulation of QCD.

We will be working with a simplified version of this equation, the Schwinger model, in which
we take space to be two-dimensional and take the potential, a(~x, µ), to be a scalar giving us

Mρ(a) =
2∑

µ=1

(σµ ⊗ (∂µ − ıa(~x, µ))− ρI2,

where σµ are Pauli matrices;

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −ı
ı 0

)
,

and I2 is the 2 × 2 identity matrix. Writing this in terms of the covariant partial derivative,
Dµ = ∂µ − ıa(~x, µ), we can rewrite Mρ(a) as

Mρ(a) =

(
−ρ D1 − ıD2

D1 + ıD2 −ρ

)
.

We will show later that the covariant partial derivative has a discrete approximation

Dµu(~x) ≈ 1

2h

(
eıα(~xi,~xi+1)u(~xi+1)− e−ıα(~xi−1,~xi)u(~xi−1)

)
.

Moreover, we may approximate the second covariant partial derivative, D2
µ = ∂

∂µDµ, by

D2
µu(~xi) ≈ −

1

h2

(
−e−ıα(~xi−1,~xi)u(~xi−1) + 2u(~xi)− eıα(~xi,~xi+1)u(~xi+1)

)
.

Unfortunately, this discrete representation of the Schwinger (and Dirac) operator is unstable.
Moreover, the Nielsen-Ninomiya “No Go” theorem shows that we cannot have sparse, stable dis-
cretization of the Dirac Operator which satisfies the correct physics. One way of resolving this is
overlap, a method which accepts that our discretization will not be sparse. An alternative way
to resolve the instability, is to add a scaled second covariant partial derivative to the diagonal of
each matrix to get the Dirac-Wilson and Schwinger-Wilson models. The Schwinger-Wilson model
is represented by

Mρ(a) =

(
−h

2 (D2
1 +D2

2)− ρ D1 − ıD2

D1 + ıD2 −h
2 (D2

1 +D2
2)− ρ

)
,

and the Dirac-Wilson model is represented by the analogous matrix in 4 dimensions. The scaling
factor of h

2 is put in so that the first order and second-order covariant partial derivatives have the
same scale and so that second-order terms go to zero as h goes to zero.

It is worth noting that the Schwinger model is by itself relevant to other areas of quantum
dynamics such as quantum electrodynamics and graphene; however, we will be considering it as
the simplification of the Dirac Model for the purposes of QCD. Unfortunately, the discretization of
the the Dirac-Wilson operator still distorts certain physical properties of the system. To recreate
these properties, we embed either the Dirac-Wilson matrix, or the Schwinger-Wilson matrix, into
the domain-wall system,

2

W (m, ρ) =


Mρ −P− +mP+

−P+ Mρ −P−
−P+ Mρ −P−

. . .
. . .

. . .

+mP− −P+ Mρ

 ,
where

P+ =

[
I 0
0 0

]
, P− =

[
0 0
0 I

]
, m� 1.

Solving the domain wall system will yield the same results as solving the system resulting from
overlap.

0.2 Finite Differences

We now consider the finite differences method, an important technique for numerically approxi-
mating the solution of a differential equation [9]. Consider an ordinary differential equation where
a differential operator, L, acts on a real-valued function, u(x), and produces another real-valued
function, f(x), L(u(x)) = f(x). For our purposes, we will assume that u(x) is periodic with period
1. However, differential equations with non-periodic solutions can be examined in a similar manner.

Our aim is to approximate this differential equation, Lu = f , with a system of linear equations
of the form Av = b, where A is a square matrix and v and b are vectors. Defining a vector to
approximate a function is rather straight forward. Choose an integer n and take v and b to be
vectors representing u and f , respectively, defined by:

vi = u

(
i

n

)
bi = f

(
i

n

)
for 1 ≤ i ≤ n.

Figure 1 provides an example where sin(x) is discretized on a grid with 16 points.

Figure 1: The discretization of sin(2πx), n = 16

We define x to be a node point if x = i
n for some i and take h to be defined as 1/n. It should

be clear that v and b become increasingly good approximations as n becomes large. Note that all
vi arise from the value of u at a point in (0, 1]; however, this is okay since u is periodic. Thus, for
any x ∈ R, u(x) = u(y) for some y ∈ (0, 1].

We now have the more challenging task of approximating the differential operator L with a
matrix A. The method for doing this will be illustrated by a series of examples starting with
−d2u
dx2

(x) = f(x). It is worth noting that this is the one- dimensional version of Poisson’s Equation,
−∇2u = f , since the two-dimensional version of this equation, (−∂xx − ∂yy)u(x, y) = f(x, y), will
be explored later.

For a function, u(x), with continuous derivatives, Taylor’s theorem allows us to compute the
values of u at a point near x using the value of u and its derivatives at x. We will assume that all

3

terms with powers of h, 4 or higher, are negligible since large values of n will cause h to be very
small and powers of h to be even smaller. Immediate consequences of Taylor’s Theorem are

u(x+ h) = u(x) + h
du

dx
(x) +

h2

2

d2u

dx2
(x) +

h3

3!

d3u

dx3
(x) +

h4

4!

d4u

dx4
(x) + . . . ,

and

u(x− h) = u(x)− hdu
dx

(x) +
h2

2

∂2u

dx2
(x)− h3

3!

d3u

dx3
(x) +

h4

4!

d4u

dx4
(x)− . . .

Adding these two equations gives us

u(x+ h) + u(x− h) = 2u(x) + h2d
2u

dx2
(x) +O(h4),

⇒ f(x) = −d
2u

dx2
(x) =

1

h2
[−u(x+ h) + 2u(x)− u(x− h)] +O(h2),

where O(hk) refers to an error the order of hk. If x is a node point, and we treat the error as
negligible, this equation becomes

bi = n2[−vi−1 + 2vi − vi+1].

We are trying to construct a matrix, A, such that Av = b. This implies that A(i, :) · v = bi
for all i, where A(i, :) refers to the ith row of A. Evaluating the dot product and plugging in for bi
gives us

n∑
j=1

Ai,jvj = n2[−vi−1 + 2vi − vi+1].

This, of course, will happen when Ai,i = 2n2, Ai,i±1 = −n2, and Ai,j = 0 otherwise. Thus, A will
be a tri-diagonal matrix with 2n2 on the diagonal and −n2 on the subdiagonal and superdiagonal.
There are, however, two exceptions to this rule, which occur in the 1st and nth rows. When
j = 1, vj−1 = v0 is undefined. However, the periodicity of u allows use vn in place of v0 since
vn = u(1) = u(0), which would be the definition of v0 if we were to extend the definition of v to
allow i = 0. Thus, we set A1,n = −n2. Similarly, in row n, we set An,1 = −n2. When n = 16, this
gives us:

A = n2



2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2 −1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 2



.

4

Solving the system Av = b for v will give us a vector which approximates u(x). Later, we will
discuss efficient techniques for solving this system of equations.

Now let us consider the two dimensional version of Poisson’s equation, (−∂xx − ∂yy)u(x, y) =
f(x, y). Our aim is again to represent the differential equation with a system of linear equations of
the form Av = b. For the one dimensional problems, we let vi = u(in). The natural way to adapt

this for a two-dimensional problem would be to create a matrix, v, defined by the rule vi,j = u(in ,
j
n).

However, we need v to be a vector, not a square matrix. We resolve this by reshaping v into an n2

by 1 vector using lexicographic ordering. For clarity, we will refer to the n by n matrix representing
u(x, y) as vsq and the n2 by 1 vector representing u will simply be referred to as v. Later, if v has
superscripts as well, it will be assumed that v is a matrix if it has two subscripts and v is a vector
if it has one subscript. The idea behind the reshaping is to have the first n entries of v be from the
first column of vsq, the next n entries from the second column of vsq and so forth. More formally,
this implies that vi = vsqj,k where i = j + (k − 1)n.

We also need a way to represent the differential equation (−∂xx − ∂yy)u(x, y) = f(x, y) with a
matrix. Since v and b will be n2 by 1, we know that A must be n2 by n2. To define A in the same
manner as in the one dimensional case, we need a higher dimensional analog of Taylor’s theorem.
If u : R2 → R is a continuous periodic function with continuous partial derivatives and period 1,
then for any particular y ∈ R, the function u(y)(x) : R → R defined by u(y)(x) = u(x, y) will be a
continuous function with continuous derivatives. Applying Taylor’s theorem to u(y) gives us

u(y)(x+ h) = u(y)(x) + h
du(y)

dx
(x) +

h2

2

d2u(y)

dx2
(x) +

h3

3!

∂3u(y)

∂x3
(x) +

h4

4!

∂4u(y)

∂x4
(x) + . . .

and u(y)(x− h) = u(y)(x)− hdu
(y)

dx
(x) +

h2

2

d2u(y)

dx2
(x)− h3

3!

∂3u(y)

∂x3
(x) +

h4

4!

∂4u(y)

∂x4
(x)− . . .

Solving for d2u(y)

dx2
gives us

d2u(y)

dx2
(x) =

1

h2
[−u(y)(x+ h) + 2u(y)(x)− u(y)(x− h)] +O(h2).

By our construction of u(y)(x), the derivatives of u(y)(x) are the partial derivatives of u(x, y)
with respect to x. Thus,

uxx ∼=
1

h2
[u(x− h, y)− 2u(x, y) + u(x+ h, y)].

Similarly, uyy ∼=
1

h2
[u(x, y − h)− 2u(x, y) + u(x, y + h)].

Adding these equations, and multiplying by −1 gives us

f(x, y) = −(uxx + uyy) =
−1

h2
[u(x− h, y) + u(x, y − h)− 4u(x, y) + u(x+ h, y) + u(x, y + h)].

Assume that (x, y) is a node point, i.e. (x, y) = (jn ,
k
n) for some integers j and k. Let i =

j + (k − 1)n, then for most points,

vi = u(x, y), vi+1 = u(x+ h, y), vi−1 = u(x− h, y),

vi+n = u(x, y + h), vi−n = u(x, y − h), bi = f(x, y).

5

It is important to recognize that moving one column to the right in the matrix vsq corresponds
to moving n rows down the vector v. For example, vsq1,2 = vn+1. As in the one dimensional case, we

want a matrix, A, such that A(i, :) · v = bi for 1 ≤ i ≤ n2. This will occur if

n2∑
j=1

Ai,jvj = n2[−vi−1 − vi−n + 4vi − vi+1 − vi+n].

Thus, in most rows,

Ai,i = 4 Ai,i±1 = Ai,i±n = −1, Ai,j = 0 otherwise.

However, as in the one dimensional case, we must make modifications to account for boundary
points. If i ≤ n, then vi−n is not defined. However, we still need an entry of v which represents
u(x, y − h). Since u is periodic,

u(x, y − h) = u(x, 1 + y − h) = vn2+i−n ∀i ≤ n.

Thus, when i ≤ n, we set Ai,n2−n+i = −1. Similarly, if i+ n > n2, we set Ai,i+n−n2 = −1.
Less obviously, we must also make modifications if i is divisible by n. Consider vi, some entry

of v. vi = u(x, y) for some x, y ∈ (0, 1]2. If i is divisible by n, then vi corresponds to vsqn,k for some

k ∈ Z. vi+1 = vsq1,k+1 6= u(x+ h, y). However, vi = vsqn,k implies that x = 1 by the way in which we
constructed v and vsq. Thus,

u(x+ h, y) = u(1 + h, y) = u(h, y) = vsq1,k = vi−n+1.

Thus if i ≡ 0 mod n, A(i, ;) is defined by the rule that

Ai,i = 4 Ai,i−1 = Ai,i−n+1 = Ai,i±n = −1.

Similarly, if i ≡ 1 mod n, A(i, ;) is defined by

Ai,i = 4 Ai,i+1 = Ai,i+n−1 = Ai,i±n = −1.

In the case where n2 = 16, this gives us:

A = n2



4 −1 0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0
−1 4 −1 0 0 −1 0 0 0 0 0 0 0 −1 0 0
0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 −1 0
−1 0 −1 4 0 0 0 −1 0 0 0 0 0 0 0 −1

−1 0 0 0 4 −1 0 −1 −1 0 0 0 0 0 0 0
0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0
0 0 0 −1 −1 0 −1 4 0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0 4 −1 0 −1 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0
0 0 0 0 0 0 0 −1 −1 0 −1 4 0 0 0 −1

−1 0 0 0 0 0 0 0 −1 0 0 0 4 −1 0 −1
0 −1 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0
0 0 −1 0 0 0 0 0 0 0 −1 0 0 −1 4 −1
0 0 0 −1 0 0 0 0 0 0 0 −1 −1 0 −1 4



.

6

It is worth noting that A is singular, since all rows sum to zero, which implies that any constant
vector in R16 is in the nullspace of A. Also, note that A has block representation,

A = n2


P ′1,4 −I4 0 −I4

−I4 P ′1,4 −I4 0

0 −I4 P ′1,4 −I4

−I4 0 −I4 P ′1,4

 ,
where P ′1,4 is the matrix representing the one dimensional Poisson operator for n = 4, with the

n2 factored out and 4 replacing 2 on the diagonal, and I4 is the 4 by 4 indentity matrix.
The Kronecker product is an operation which takes an m by n matrix, A, and a p by q matrix,

B, and produces a mp by nq matrix, A⊗B, by the rule that

A⊗B =


a1,1B a1,2B . . . a1,nB
a2,1B a2,nB

...
...

am,1B am,nB

 ,
where the ai,j refer the entries of A.

Using the Kronecker product, we may write A as

A = P1,4 ⊗ I4 + I4 ⊗ P1,4,

where P1,4 is the actual matrix representation of the one dimensional Poisson Operator (not to be
confused with P ′1,4 above).

Poisson’s equation, −∇2u(x, y) = f(x, y), is a special case of the Helmholtz equation, (−∇2 +
k)u(x, y) = f(x, y), k ∈ R, with k = 0. Since differential operators are linear, if A is a matrix
which represents the Poisson operator, −∇2, and B is a matrix which represents the “differential”
operator, kI, then A+B will be matrix representing the Helmholtz operator, −∇2 + kI. It is clear
that kIn2 is the matrix which represents the differential operator kI since

(kIn2)v = k(In2v) = kv ∀v ∈ Rn
2
,

Thus, the matrix, A = Apoisson+kIn2 (where Apoisson is the matrix which represents the Poisson
operator and In2 is the n2 by n2 identity matrix) represents the Helmholtz operator. When n2 = 16,

A = n2



4 + k −1 0 −1 −1 0 0 0 . . .

−1 4 + k −1 0 0 −1 0 0
. . .

0 −1 4 + k −1 0 0 −1 0
. . .

−1 0 −1 4 + k 0 0 0 −1
. . .

−1 0 0 0 4 + k −1 0 −1
. . .

0 −1 0 0 −1 4 + k −1 0
. . .

0 0 −1 0 0 −1 4 + k −1
. . .

0 0 0 −1 −1 0 −1 4 + k
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



.

7

In block form this becomes,
P ′1,4 + kI4 −I4 0 −I4

−I4 P ′1,4 + kI4 −I4 0

0 −I4 P ′1,4 + kI4 −I4

−I4 0 −I4 P ′1,4 + kI4

 .
Nowhere did we use the fact that k was real valued, thus the same matrix will hold for a

Helmholtz equation with a complex value of k.
Similar analysis allows us to represent ∂x with a matrix. Two equivalent definitions of ∂xu(x, y)

for a differentiable function, u(x, y), are

∂u

∂x
(x, y) = lim

h→0

u(x+ h, y)− u(x, y)

h
,

and
∂u

∂x
(x, y) = lim

h→0

u(x, y)− u(x− h, y)

h
.

Taking the average of these two definitions gives us

∂u

∂x
(x, y) = lim

h→0

u(x+ h, y)− u(x− h, y)

2h
.

If (x, y) is a node point, this equation becomes

bi =

(
1

2h

)
(vi+1 − vi−1),

which implies Ai,i±1 =
(
± 1

2h

)
and Ai,j = 0 otherwise. As with ∂xx, we must modify this to account

for the boundary when either x ≡ 0 mod n or x ≡ 1 mod n. If x ≡ 0 mod n, we replace Ai,i+1

with Ai,i−n+1 and if x ≡ 1, we replace Ai,i−1 with Ai,i+n−1. For n = 4, this gives us

A =
1

2h



0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0



.

Now let us consider how to adapt this method for a system of Partial Differential Equations
(PDEs). We use as an example the system

8

[
−(∂xx + ∂yy) −∂x

∂x −(∂xx + ∂yy)

] [
u1(x, y)
u2(x, y)

]
=

[
f1(x, y)
f2(x, y)

]
,

where u1, u2, f1, and f2 are functions from R2 to R, and u1 and u2 have continuous partial deriva-
tives and are periodic with period 1 in both the x and y directions. Let A and B be matrices rep-
resenting −∂xx− ∂yy and ∂x respectively, and let v1, v2, b1, and b2 be vectors representing u1, u2, f1

and f2. We want to approximate the system of PDEs with a linear system of form Sv = b, where
S is a matrix representing the system of differential operators, v is a vector representing u1 and u2,
and b is is a vector representing f1 and f2. When we multiply out the differential system we get[

−(∂xx + ∂yy)u1(x, y)− ∂xu2(x, y) = f1(x, y)
∂xu1(x, y)− (∂xx − ∂yy)u2(x, y) = f2(x, y)

]
.

If we substitute in A,B, v1, v2, b1 and b2 we get

Av1 +Bv2 = v1

−Bv1 +Av2 = v2.

Thus, we let

S =

[
A B
−B A

]
, v =

[
v1

v2

]
, b =

[
b1
b2

]
.

Then Sv = b implies. [
A B
−B A

] [
v1

v2

]
=

[
b1
b2

]
,

which is precisely the condition we want.
Now let us consider discretizing the covariant dartial derivative operator, Dx = ∂x − ıAx(x, y),

where ∂x is the standard partial derivative operator, Ax(x, y) is the partial derivative with respect
to x of a function, A, from R2 to R with continuous partial derivatives, and ı is the imaginary unit.
Let u(x, y) be a periodic function from R2 to R with continuous derivatives. For 1 ≤ j, k ≤ n,

let (xj , yk) =
(
j
n ,

k
n

)
, and let h = 1/n. If (xj , y) is some node point, the Fundamental Theorem

of Calculus implies that the average value of ∂xu(x, y) on the line between (xj , y) and (xj+1, y) is
given by (

1

h

)∫ (xj+1,y)

(xj ,y)
∂xu(x, y)dx =

(
1

h

)
(u(xj+1, y)− u(xj , y)).

By the product rule,

∂x(e−ıA(x,y)u(x, y)) = ∂x(u(x, y))e−ıA(x,y) − iAx(x, y)e−ıA(x,y)u(x, y)

eıA(x,y)∂x(e−ıA(x,y)u(x, y)) = ∂x(u(x, y))− ıAx(x, y)u = Dxu(x, y).

Thus, the average value of Dxu(x, y) on the line between (xj , y) and (xj+1, y) is given by

9

(
1

h

)∫ (xj+1,y)

(xj ,y)
(Dxu(x, y))dx =

(
1

h

)∫ (xj+1,y)

(xj ,y)
eıA(x,y)∂x(e−ıA(x,y)u)dx

≈
(

1

h

)
eıA(x′,y)

∫ (xj+1,y)

(xj ,y)
∂x(e−ıA(x,y)u)dx

=

(
1

h

)
eıA(x′,y)

[
e−ıA(xj+1,y)u(xj+1, y)− e−ıA(xj ,y)u(xj , y)

]
,

where (x′, y) is any point on the line between (xj , y) and (xj+1, y). The approximation is justified
because eıA(x,y) is the composition of continuous functions and is, therefore, itself continuous. Thus,
on a sufficiently small interval, eıA(x,y) is approximately constant. If we choose n to be very large,
the distance between (xj+1, y) and (xj , y) will be very small since ||(xj+1, y)− (xj , y)|| = h = 1/n.
Thus, we may factor our the “constant” to get our approximation. In fact, by the Mean Value
Theorem for Integrals, the equality holds exactly for some x′ in [xj , xj + 1].

Since they are the only two node points on the interval, xj and xj+1 are the two natural choices
of x′. We refer to the equation resulting from taking x′ = xj as the left-hand approximation,
(L), and to the equation resulting form taking x′ = xj+1 as the right-hand approximation, (R). If
x′ = xj , we get (

1

h

)
[eı(A(xj ,y)−A(xj+1,y))u(xj+1, y)− u(xj , y)], (L)

and if x′ = xj+1, (
1

h

)
[u(xj+1, y)− eı(A(xj+1,y)−A(xj ,y))u(xj , y)]. (R)

If we take the right hand guess on the interval [xj−1, xj] we get(
1

h

)
[u(xj , y)− eı(A(xj ,y)−A(xj−1,y))u(xj−1, y)]. (R’)

L and R are approximations of the average value of Dxu(x, y) on the interval [xj , xj+1]; R′

is the analogous approximation of it’s average value on [xj−1, xj]. If we average L and R′ we
get an approximation of the average value of Dxu(x, y) on the interval [xj−1, xj+1], which should
approximately equal Dxu(xj , y). We choose L rather than R because both L and R′ assume that
x′ = xj . We refer to the average of L and R as the central approximation.(

1

2h

)
[eı(A(xj ,y)−A(xj+1,y))u(xj+1, y)− eı(A(xj ,y)−A(xj−1,y))u(xj−1, y)] (C)

Note that if A is constant with respect to x this reduces to our approximation of the standard
partial derivative ∂xu =

(
1

2h

)
(u(xj+1) − u(xj−1)). This is to be expected, since if A is constant

with respect to x,
Dx = ∂x + ıAx(x, y) = ∂x.

The matrix approximating the covariant partial derivative will be similar to the matrix repre-
senting the standard partial derivative, except eı(A(xj ,y)−A(xj+1,y)) replaces −1 on the superdiagonal
and −eı(A(xj ,y)−A(xj−1,y)) replaces −1 on the subdiagonal. Thus, if we let αj = A(xj+1, y)−A(xj , y),
the matrix representing Dx is given by

10

Bx =
1

2h



0 e−ıα1 0 −eıα4 0 0 0 0 . . .

−eıα1 0 e−ıα2 0 0 0 0 0
. . .

0 −eıα2 0 e−ıα3 0 0 0 0
. . .

e−ıα4 0 −eıα3 0 0 0 0 0
. . .

0 0 0 0 0 e−ıα5 0 −eıα8
. . .

0 0 0 0 −eıα5 0 e−ıα6 0
. . .

0 0 0 0 0 −eıα6 0 e−ıα7
. . .

0 0 0 0 e−ıα8 0 −eıα7 0
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



.

Similarly, if Dyu(x, y) = ∂y − ıAy(x, y), and (x, yj) is some node point, we can approximate
Dyu(x, yj) by (

1

2h

)
[eı(A(x,yj)−A(x,yj+1))u(x, yj+1)− eı(A(x,yj)−A(x,yj−1))u(x, yj−1)]

and represent Dy by By =

1

2h



0 0 0 0 e−ıβ1 0 0 0 0 0 0 0 . . .

0 0 0 0 0 e−ıβ2 0 0 0 0 0 0
. . .

0 0 0 0 0 0 e−ıβ3 0 0 0 0 0
. . .

0 0 0 0 0 0 0 e−ıβ4 0 0 0 0
. . .

−eıβ1 0 0 0 0 0 0 0 e−ıβ5 0 0 0
. . .

0 −eıβ2 0 0 0 0 0 0 0 e−ıβ6 0 0
. . .

0 0 −eıβ3 0 0 0 0 0 0 0 e−ıβ7 0
. . .

0 0 0 −eıβ4 0 0 0 0 0 0 0 e−ıβ8
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



,

where βj = A(x, yj+1)−A(x, yj).
We define the second covariant partial derivative to be

D2
x =

∂Dxu(x, y)

∂x
= lim

h→0

Dxu(x+ .5h, y)−Dxu(x− .5h, y)

h
.

L gives an estimate of of Dxu(x+ .5h, y) and R′ gives an estimate of Dxu(x− .5h, y). Thus, L−R′
h

gives us the following estimate:

D2
x '

eı(A(xj ,y)−A(xj+1,y))u(xj+1, y)− 2u(xj , y) + eı(A(xj ,y)−A(xj−1,y))u(xj−1, y)

h2

=
e−ıαju(x, yj+1)− 2u(x, yj) + eıαj−1u(x, yj−1)

h2
.

11

Similarly,

D2
y '

eı(A(x,yj)−A(x,yj+1))u(x, yj+1)− 2u(x, yj) + eı(A(x,yj)−A(x,yj−1))u(x, yj−1)

h2

=
e−ıβju(x, yj+1)− 2u(x, yj) + eıβj−1u(x, yj−1)

h2
.

As with the first covariant partial derivative, note that in the case that A is constant, these re-
duce to approximations of the standard second partial derivatives. Also, the matrices representing
D2
x and D2

y will be similar to those representing ∂xx and ∂yy, respectively, with the off-diagonal

entries replaced with the appropriate values of eıα or eıβ. For example, a 1 in the matrix represen-
tation of ∂xx corresponding to u(xj+1, y) is replaced by e−ıαj .

We define the covariant Helmholtz operator to as H = −(D2
x+D2

y)−k2(b1+ıb2) for k, b1, b2 ∈ R,
b1 ≥ 0. Because both matrices and linear differential operators are linear, if Ax and Ay are
the matrices representing D2

x and D2
y, then the covariant Helmholtz operator is represented by

AH = −(Ax + Ay − k2(b1 + ıb2)In2). Similar to the ordinary Helmholtz matrix, this has block
representation

1

h2


P1 + σI4 D

(u)
1 0 D

(l)
4

D
(l)
1 P2 + σI4 D

(u)
2 0

0 D
(l)
2 P3 + σI4 D

(u)
3

D
(u)
4 0 D

(l)
3 P4 + σI4

 ,
where

Pj =


4 −e−ıαcj+1 0 −eıαcj+1

−eıαcj+1 4 −e−ıαcj+2 0

0 −eıαcj+1 4 −e−ıαcj+3

−e−ıαcj+4 0 −eıαcj+1 4

 ,

D
(u)
j =


−e−ıβcj+1 0 0 0

0 −e−ıβcj+2 0 0

0 0 −e−ıβcj+3 0

0 0 0 −e−ıβcj+4

 ,

D
(l)
j =


−e−ıβcj 0 0 0

0 −e−ıβcj+1 0 0

0 0 −e−ıβcj+2 0

0 0 0 −e−ıβcj+3

 ,
with cj = (j − 1)n and σ = −k2(b1 + ıb2).

We let AP be the matrix representing the covariant Poisson operator (the special case of AH
with k = 0) and let SA = h

2AP . The operator Dx + ıDy is approximated by SB = Bx − ıBy. We
define the Schwinger matrix to be

S =

[
SA SB
−SB SA

]
,

where SB = Bx − ıBy.

12

The Schwinger matrix is a discrete representative of an important system of partial differen-
tial equations in quantum chromodynamics. However, our discretization of the covariant partial
derivatives distorts certain physical properties of the model. To recreate these physical properties,
we embed the Schwinger matrix in the 2ln2 by 2ln2 domain wall operator

W (m, ρ) =


Mρ −P− +mP+

−P+ Mρ −P−
−P+ Mρ −P−

. . .
. . .

. . .

+mP− −P+ Mρ

 ,
where

Mρ = S + ρI2n2 , P+ =

[
In2 0
0 0

]
, P+ =

[
0 0
0 In2

]
, m� 1.

0.3 Singular Value Decomposition

Now let us discuss the Singular Value Decomposition (SVD), an important technique of matrix
factorization. SVD works for any m by n matrix, but, since we aim to apply it to the Domain
Wall System, we will consider it for square n by n matrices with full rank. First, we recall some
linear algebra. If, for an n by n matrix, A, and a scalar λ, there exists a non-zero vector v such
that Av = λv, then λ is an eigenvalue of A and v is an eigenvector of A corresponding to λ. For
each λ, the associated eigenspace is the minimal vector space which contains all of the eigenvectors
of A associated with λ. We say that V is an eigenvector matrix of A if the columns of V are
linearly independent, each of the columns of V is an eigenvector of A, and for each eigenvalue, λ,
the eigenspace associated with λ is contained in the span of the columns of V . If V is an eigenvector
matrix, and the norm of each column of V is 1, then we say that V is a normalized eigenvector
matrix. If A is Hermitian-symmetric, the columns of V are orthonormal, so V is unitary, i.e.,
V −1 = V T . The rank of A refers the dimension of the span of the columns of A. If the rank of A
is equal to n, we say that A has full rank. In the case that A has full rank, any eigenvector matrix
of A will be the same size as A. For further review, see the text by Strang [8].

Let A be a square n by n matrix with full rank. We can factor A as

A = UΣV T ,

where U is a normalized eigenvector matrix of AAT , V is a normalized eigenvector matrix of
ATA, and Σ is a diagonal matrix, whose non-zero entries, σ1, σ2, . . . σn, are the square roots of
the eigenvalues of both AAT and ATA. We make Σ uniquely defined with the convention that
σ1 ≥ σ2 . . . ≥ σn.

Note that any factorization of A into UΣV T , with Σ diagonal and the same size as A, must be
of this form since

AAT = (UΣV T)(V ΣTUT) = UΣ2UT and ATA = (V ΣTUT)(UΣV T) = V Σ2V T

⇒ AATU = UΣ2 and ATAV = V Σ2,

which implies that the columns of U and V are eigenvectors of AAT and ATA respectively. More-
over, if V is any eigenvector matrix of ATA, then there will exist a U , such that U is an eigenvector

13

matrix of AAT and A = UΣV T , since for any column of V , V (k)

ATAv(k) = σ2
kv

(k) ⇒ AATAv(k) = Aσ2
kv

(k) = σ2
kAv

(k).

Thus, Av(k) is an eigenvector of AAT , if we let u(k) = Av(k) and U =
(
u(1)u(2) . . . u(n)

)
, then

AV = UΣ, which implies that A = UΣV T .
Now let us consider a simple example.

Let A =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

⇒ D = ATA =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 ,
λ will be an eigenvalue of ATA if and only if there exists a non-zero vector, v, such that Av = λv =
λIv ⇔ (A − λIv) = 0 which will occur if and only if λ is a root of the characteristic polynomial,
|A− xI|. For this example, the characteristic polynomial is given by:

|ATA− λI| =

∣∣∣∣∣∣∣∣
2− λ −1 0 0
−1 2− λ −1 0
0 −1 2− λ −1
0 0 −1 1− λ

∣∣∣∣∣∣∣∣ = λ4 − 7λ3 + 15λ2 − 10λ+ 1

and has approximate roots, λ1 = 3.53209, λ2 = 2.473, λ3 = 1, and λ4 = 0.120615.
The singular values, σ1, σ2, σ3, and σ4, are computed by taking the square roots of each λ,

giving us σ1 ≈ 1.8794, σ2 ≈ 1.5321, σ3 = 1, and σ4 ≈ 0.3473.
For each λj , we solve ATA − λjI = 0 to find the associated eigenvector. Note that since the

number of eigenvalues is equal to the number of columns in ATA, the eigenspace of each eigenvalue
must be one dimensional. Plugging in each λj and solving directly, we find that the eigenvectors
of of ATA are given by,

v1 ≈


−0.4285
0.6565
−0.5774
0.2280

 v2 ≈


0.6565
−0.2280
−0.5574
0.4285

 v3 ≈


0.5774
0.5774

0
0.5774

 v4 ≈


−.2280
−.4285
−.5774
−.6565

 ,

where vj is the normalized eigenvector associated with λj .
We set V = (v1, v2, v3, v4), and compute U = AV Σ−1,

U = AV Σ−1 =


−.2280 .42850 .5574 −.6565
.5773 −.5773 0 −.5773
−.6565 −.2280 −.5574 −.4285
.4285 .6565 −.5774 −.2280

 .
Now let us consider how to apply this to the domain wall matrix,

14

W (m, ρ) =


Mρ −P− +mP+

−P+ Mρ −P−
−P+ Mρ −P−

. . .
. . .

. . .

+mP− −P+ Mρ



≈


Mρ −P−
−P+ Mρ −P−

−P+ Mρ −P−
. . .

. . .
. . .

−P+ Mρ



=


Mρ−1

Mρ−1

Mρ−1

. . .

Mρ−1

+



I 0 0 0
0 I 0 −I
−I 0 I 0 0 0
0 0 0 I 0 −I

−I 0 I 0

0 0 0 I
. . .

. . .
. . .


= Il ⊗Mρ−1 +D ⊗ In2 ,

where D is the 2l by 2l matrix given by

D =



1 0 0 0
0 1 0 −1

−1 0 1 0 0 0
0 0 0 1 0 −1

−1 0 1 0

0 0 0 1
. . .

. . .
. . .


.

The Mixed-Product Property of Kronecker Product states that for any matrices, A,B,C, and
D, AC ⊗BD = (A⊗B)(C ⊗D). In particular, AB ⊗ I = AB ⊗ II = (A⊗ I)(B ⊗ I). Therefore,
if UΣV T is a Singular Value Decomposition of D, then Ũ Σ̃Ṽ T is a Singular Value Decomposition
of D ⊗ In2 , where Ũ = U ⊗ In2 , Σ̃ = Σ⊗ In2 , and Ṽ = V ⊗ In2 .

We initially examine the Singular Value Decomposition of D, with the hopes that it will lead us
to a useful factorization of the entire domain wall system. Let R = Il⊗Mρ−1, and suppose D⊗ In2

has singular value decomposition Ũ Σ̃Ṽ T . If ŨTRṼ has a block diagonal structure similar to R,
such as if ŨTRṼ is block diagonal, then so will be ŨTRṼ + Σ̃, which, would allow us to decouple
the domain wall system in the following manner,

Wρx = b⇒ (R+ Ũ Σ̃Ṽ T)x = b⇒ (ŨTR+ ŨT Ũ Σ̃Ṽ T)x = ŨTb⇒ (ŨTRṼ Ṽ T + Σ̃Ṽ T)x = ŨTb

⇒ (ŨTRṼ + Σ̃)(Ṽ Tx) = ŨTb⇒ (ŨTRṼ + Σ̃)y = c,

where y = Ṽ Tx and c = ŨTb.

15

As in the example, the key to finding the Singular Value Decomposition of D is in finding the
eigenvectors of DTD. Direct computation shows that

DTD =



2 0 −1
0 1 0 −1
−1 0 2 0 −1

−1 0 2 0 −1
. . .

. . .
. . .

. . .
. . .

−1 0 2 0 −1
−1 0 2 0 −1

−1 0 1 0
−1 0 2


.

Notice that every non-zero entry is an even number of columns off of the diagonal. Therefore, if
we were to multiply any vector, v, by DTD the even entries of (D′D)v would be determined only
by the even rows and columns of DTD, and the odd entries of (DTD)v would be determined only
by the odd rows of DTD and columns. Thus we may decouple DTD into two l by l matrices,

(DTD)o =



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1


and (DTD)e =



1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2


.

For any vector v with n entries, define ṽ by the rule that ṽi = vn+1−i. That is if v =
(v1, v2, . . . , vn)T , then ṽ = (vn, vn−1, . . . , v1)T . Note that if v is an eigenvector of (DTD)e with

eigenvalue λ, then ṽ is eigenvector of (DTD)o with eigenvalue λ. Moreover, v ⊗
(

0
1

)
and ṽ ⊗

(
1
0

)
are eigenvectors of DTD with eigenvalue λ. Therefore, if we know the eigenvalues and eigenvectors
of (DTD)e, we will know the eigenvectors and eigenvalues of DTD.

Theorem: For all 1 ≤ k ≤ l, v(k) defined by v
(k)
j = sin(jθ(k))−sin((j−1)θ(k))

sin θ(k)
is an eigenvector of

DTDe with eigenvalue λ(k) = 2− 2 cos θ(k), where θ(k) = (2k−1)π
2l+1 .

Proof: We need to show that for all 1 ≤ k ≤ l, for all 1 ≤ j ≤ l, (DTD)e(j, :) · v(k) = λ(k)v
(k)
j .

(Where (DTD)e(j, :) refers to the jth row of (DTD)e.) This condition is satisfied exactly if the
following three conditions are satisfied

v1 − v2 = (2− 2 cos θ(k))v1 (1)

−vj−1 + 2vj − vj+1 = (2− 2 cos θ(k))vj for 2 ≤ j ≤ l − 1 (2)

−vl−1 + 2vl = (2− 2 cos θ(k))vl (3)

(2): We will first prove the more general case of (2) in which θ(k) is any angle such that sin θ 6= 0,
and j is any integer. Thus, for the our proof of (2), (and our proof of (1)), we will omit the
superscript (k) since the proof holds for any angle with sin θ 6= 0. The proof of (3) relies on the
definition of θ(k), so we will reintroduce the superscript then.

16

Let j be an integer and θ an angle such that sin θ 6= 0. We need that

− vj−1 + 2vj − vj+1 = (2− 2 cos θ)vj = 2vj − 2 cos θvj

⇔vj−1 + vj+1 = 2 cos θvj

⇔sin((j − 1)θ)− sin((j − 2)θ) + sin((j + 1)θ)− sin(jθ)

sin θ
=

2 cos θ(sin(jθ)− sin((j − 1)θ))

sin θ
⇔ sin((j − 1)θ)− sin((j − 2)θ) + sin((j + 1)θ)− sin(jθ) = 2 cos θ(sin(jθ)− sin((j − 1)θ)).

Using the trigonometric identities,

sin(α+ β) = sinα cosβ + cosα sinβ cos(α+ β) = cosα cosβ − sinα sinβ

sin(2α) = 2 sinα cosα cos(2α) = 1− 2 sin2 α,

this becomes

sin(jθ) cos θ − sin(jθ) + sin2 θ sin(jθ) + cos(jθ) sin θ cos θ

= sin(jθ) cos θ − sin(jθ) cos2 θ + cos(jθ) sin θ cos θ

⇔ (sin2 θ + cos2 θ) sin(jθ) = sin(jθ)

⇔ sin(jθ) = sin(jθ)

⇔ 1 = 1.

(1): As with (2), this holds for any angle, θ, such that sin θ 6= 0. Thus we will omit the superscripts.

v1 =
sin θ − sin 0

sin θ
= 1

v2 =
sin(2θ)− sin(θ)

sin θ
=

2 sin θ cos θ − sin(θ)

sin θ
= 2 cos θ − 1.

Thus, v1 − v2 = 1− (2 cos θ − 1)) = 2− 2 cos θ = (2− 2 cos θ)v1.

(3): Here, the particular definition of θ(k) is important, so we will include the superscripts. First,
however, we prove two quick trigonometric identities.

sin(π − α) = sinπ cos(α)− cosπ sinα = 0− (−1) sinα = sinα

sin((2k − 1)π − α) = sin((2k − 1)π − α+ 2kπ) = sin(π − α) = sinα ∀k ∈ Z.

We need to show that −v(k)
l−1 + 2v

(k)
l = λ(k)v

(k)
l . If we extend the definition of v(k) to include

v
(k)
l+1, then we know from our proof of (2) that

−v(k)
l−1 + 2v

(k)
l − v

(k)
l+1 = λ(k)v

(k)
l .

Thus, it suffices to prove that v
(k)
l+1 = 0.

v
(k)
l+1 =

sin((l + 1)θ(k))− sin(lθ(k))

sin θ(k)
) = 0 ⇐⇒ sin((l + 1))θ(k) = sin(lθ(k))

(l + 1)θ(k) + lθ(k) = (2l + 1)θ(k) = (2l + 1)
(2k − 1)π

2l + 1
= (2k − 1)π

⇒ (l + 1)θ(k) = (2k − 1)π − lθ(k) ⇒ sin((l + 1)θ(k)) = sin(lθ(k))⇒ v
(k)
l+1 = 0

⇒ −v(k)
l−1 + 2v

(k)
l = λ(k)v

(k)
l .

17

Therefore, each v(k) is an eigenvector of DTDe with eigenvalue λ(k).
We now have everything we need to get a Singular Value Decomposition of D. As we noted

earlier, Φ̃
(k)
1 = v(k) ⊗

(
1
0

)
and Φ̃

(k)
2 = ṽ(k) ⊗

(
0
1

)
are eigenvectors of DTD for 1 ≤ k ≤ l.

Therefore, Φ
(k)
1 =

Φ̃
(k)
1

||Φ̃(k)
1 ||

and Φ
(k)
2 =

Φ̃
(k)
2

||Φ̃(k)
2 ||

are normalized eigenvectors of DTD. Thus, a singular

value decomposition of D is given by D = UΣV T , where V = (Φ
(1)
1 Φ

(1)
2 Φ

(2)
1 . . .Φ

(l)
2),

Σ =



σ1

σ1

σ2

σ2

. . .

σl
σl


,

and U = DV Σ−1.
We now try to apply this result to the 2ln2 by 2ln2 Domain Wall matrix, R + D ⊗ In2 , with

R = I ⊗Mρ−1. As mentioned earlier, we know that a Singular Value Decomposition of D ⊗ In2 is
given by ŨΣṼ T , with Ũ = U ⊗ In2 , Σ̃ = Σ ⊗ In2 , and Ṽ = V ⊗ In2 . We will be able to decouple
the Domain Wall system if ŨTRṼ is block diagonal.

For this result to hold in general, it must hold in the particular case that n = 1, l = 4, ρ = 1.
In that case, SA and SB become numbers, a and b, and Mρ−1 becomes a 2 by 2 matrix,[

a b
−b̄ a

]
.

So R becomes 

a b 0 0 0 0 0 0
−b̄ a 0 0 0 0 0 0

0 0 a b 0 0 0 0
0 0 −b̄ a 0 0 0 0

0 0 0 0 a b 0 0
0 0 0 0 −b̄ a 0 0

0 0 0 0 0 0 a b
0 0 0 0 0 0 −b̄ a


.

In the case that α = β = 0, a = −2 and b = −.5 +−.5ı, carrying out the matrix multiplication,
we get

ŨTRṼ ≈



−1.91 −.5 + .5i −.56 0 −.10 0 −.20 0
.5 + .5i −1.91 0 −.56 0 −.09 0 −.1954
.5627 0 −1.65 .5− .5i −.93 0 −.2994 0

0 .56 −.5− .5i −1.65 0 −.93 0 −.30
−.09 0 .93 0 −1.33 −.5 + .5i −1.15 0

0 −.09 0 .93 .5 + .5i −1.33 0 −1.1615
.20 0 −.30 0 1.16 0 −1.59 .5− .5i
0 .20 0 −.30 0 1.16 −.5− .5i −1.59


.

Unfortunately, this matrix is not diagonal, nor is it sparse. Therefore, this particular Singular
Value Decomposition does not allow us to decouple the domain wall system. However, the Singular

18

Value Decomposition of this matrix is not uniquely defined since each singular value has multiplicity
2. Therefore, it is still possible that another Singular Value Decomposition could allow us to
decouple the system.

Let us consider the possible Singular Value Decompositions of D into UΣV T . Σ is uniquely
defined since it is the diagonal matrix, with the singular values of D (in descending order) as
its non-zero entries. For a given V , U is required to be DΣ−1V , thus our choice of V uniquely
determines the entire Singular Value Decomposition. If σ = Σk,k, then the kth column of V , v(k),
is an eigenvector of DTD, with eigenvalue σ2. For this problem, each eigenvector of DTD has a
two dimension eigenspace. Thus, for 1 ≤ k ≤ l, v(2k−1) and v(2k) must form an orthonormal basis
for the eigenspace associated with σk/2.

Earlier, we determined that Φ
(k)
1 and Φ

(k)
2 formed an orthonormal basis of the eigenspace as-

sociated with each singular value, σk. We may generalize this by noting for any angle, ω(k),

Ψ
(k)
1 = cosω(k)Φ

(k)
1 + sinω(k)Φ

(k)
2 and Ψ

(k)
2 = − sinω(k)Φ

(k)
1 + cosω(k)Φ

(k)
2 also form an orthonormal

basis for the eigenspace associated with σk. We will try to find an SVD which allows us to decouple
the domain wall system for the very small case in which L = 2 and n = 1. It is our hope that
we will be able to find a relation between the necessary ω’s that will allow us to generalize this to
greater values of L and n. Alternatively, if we cannot decouple this very small case of the domain
wall system, that will suggest that SVD is not a good approach for this problem.

When L = 2, n = 1,

D =


1 0 0 0
0 1 0 −1
−1 0 1 0
0 0 0 1

 DTD =


2 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 2

 .
And Σ is given by,

Σ =


ϕ 0 0 0
0 ϕ 0 0
0 0 1

ϕ 0

0 0 0 1
ϕ

 ,
where ϕ is the golden mean, 1+

√
5

2 ≈ 1.6180. We let V be the eigenvector matrix of DTD, without

normalized columns resulting from our rule that v
(k)
j = sin(jθ(k))−sin((j−1)θ(k))

sin θ(k)
. We do not normalize

the columns because it is easier to do the computations with the non-normalized columns, and the
“unnormalized SVD” will not distort which entries are non-zero. That is, UΣV T will not be the
same as D, but it will have the same shape. Plugging in the values of V and computing U = DV Σ−1

gives us

V =


0 −ϕ 0 1

ϕ

1 0 1 0
0 1 0 1
−ϕ 0 1

ϕ 0

 U =


0 −1 0 1
ϕ 0 1

ϕ 0

0 ϕ 0 1
ϕ

−1 0 1 0

 .
We now construct general SVD of D, D = TΣMT . For any angles, ω1 and ω2, we define the
columns of T by

T (1) = c1v
(1) + s1v

(2), T (2) = −s1v
(1) + c1v

(2),

T (3) = c2v
(3) + s2v

(4), T (4) = −s2v
(3) + 21v

(4),

19

where, T (i) is the ith column of T , V (i) is the ith column of V , ci = cos(ωi), and si = sin(ωi).
Plugging in and computing M = DTΣ−1 gives,

T =


−s1ϕ −c1ϕ s2

1
ϕ c2

1
ϕ

c1 −s1 c2 −s2

s1 c1 s2 c2

−c1ϕ s1ϕ c2
1
ϕ −s2

1
ϕ

 M =


−s1 −c1 s2 c2

c1ϕ −s1ϕ c2
1
ϕ −s2

1
ϕ

s1ϕ c1ϕ s2
1
ϕ c2

1
ϕ

−c1 s1ϕ c2 −s2

 .
It is now our hope that MTRT is diagonal, where R = Il ⊗M is the block diagonal component of
the domain wall matrix. In the case that n = 1, l = 2, R reduces to the identity, I4. Therefore, we
need to find values of ω1 and ω2 such that MTT is diagonal. Setting A = MTT , direct computation
shows that

A1,1 = A2,2 = 2ϕ, A3,3 = A4,4 =
2

ϕ

A1,2 = A2,1 = A3,4 = A4,3 = 0

A1,3 = A3,1 = −A2,4 = −A4,2 = cos(ω1 − ω2)(
1

ϕ
− ϕ)

A14 = A3,2 = −A4,1 = −A2,3 = sin(ω1 − ω2)(ϕ− 1

ϕ
).

Thus, in order for A to be diagonal, we need sin(ω1 − ω2) = cos(ω1 − ω2) = 0. This is an
obvious contradiction. Therefore, there is no choice of ω1 and ω2 that will allow us to decouple the
domain wall system for n = 1, l = 2. Given that SVD cannot decouple this very small version of
the system, we conclude that we must use another approach to solve the domain wall system.

0.4 MultiGrid Methods

We now shift gears and try to solve the domain wall System using BICGSTAB with a multigrid
preconditioner. For physically realistic values of ρ, the domain wall is indefinite. (It has eigenvalues
with both positive and negative real parts.) BICGSTAB with a Multigrid Preconditioner has been
shown to be effective for a wide range Helmholtz type problems which have been resistant to other
iterative approaches. We will first explore Multigrid Methods and then briefly discuss BICGSTAB
and how Multigrid Methods may be incorporated as preconditioner. We will then discuss a method
by which we can solve the entire domain wall system if we can solve the A block which appears on
the diagonal.

Multigrid methods are a family of iterative methods, initially developed to numerically solve
discretized PDEs, that use a number of successive levels of discretization [1]. We will first discuss
two basic iterative methods. Then, we shall discuss why these techniques tend to stall and how
they can be made more effective by incorporating them into a Multigrid scheme.

An iterative method may be loosely thought of as any technique in which successive guesses are
made as to the solution of a system with the goal that each guess is closer to the solution than the
previous one. We will denote the linear system we are trying to solve as Au = f, and use v to refer
to our guess of the exact solution, u. We define the error, e, by the rule that e = u− v. If || · || is
a norm function, then ||e|| represents the size of the error. It is our goal for ||e|| to decrease after

each iteration since ||e|| = 0 if and only if e =
−→
0 , the vector of all zeros.

We now discuss the Jacobi Method, one of the simplest iterative techniques. To illustrate this
technique, we shall use our discretization of the two-dimensional Poisson Equation, −∇2u(x, y) =

20

f(x, y), as an example. Recall that this system was approximated by Au = f, where u and f are
vector representations of u(x, y) and f(x, y), and A is the matrix representing −∇2, given by

A =
1

h2



4 −1 0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0
−1 4 −1 0 0 −1 0 0 0 0 0 0 0 −1 0 0
0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 −1 0
−1 0 −1 4 0 0 0 −1 0 0 0 0 0 0 0 −1

−1 0 0 0 4 −1 0 −1 −1 0 0 0 0 0 0 0
0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0
0 0 0 −1 −1 0 −1 4 0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0 4 −1 0 −1 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 −1 0
0 0 0 0 0 0 0 −1 −1 0 −1 4 0 0 0 −1

−1 0 0 0 0 0 0 0 −1 0 0 0 4 −1 0 −1
0 −1 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0
0 0 −1 0 0 0 0 0 0 0 −1 0 0 −1 4 −1
0 0 0 −1 0 0 0 0 0 0 0 −1 −1 0 −1 4



.

In order for the equality, Au = f, to hold. We need, except for on rows representing boundary
points, that

1

h2
(−uj−n − uj−1 + 4uj − uj+1 − uj+n) = fj

⇔ uj =
1

4
(uj−n + uj−1 + uj+1 + uj+n + h2fj).

For each vj , we shall use our current guesses of vj±1 and vj±n, to update v. That is, if v(0) is our
current guess of u, we define our updated guess, v(1) by the rule,

v
(1)
j =

1

4

(
v

(0)
j−n + v

(0)
j−1 + v

(0)
j+1 + v

(0)
j+n + h2fj

)
.

We use analogous rules for the rows corresponding to boundary points. To keep notation simple,
for each iteration, we shall refer to the guess at the beginning of the iteration as v(0), and we shall
refer to the guess at the end of that iteration as v(1). It is useful to consider the Jacobi Method
represented by matrices. Note that for any matrix, A, we may write A = D − (L + U), where D
is the matrix containing the diagonal entries of A, and −L and −U are matrices containing the
strictly lower triangular and strictly upper triangular entries of A, respectively. This gives us

Au = f⇔ Du = (L+ U)u + f.

As before, we want to update each vj using the neighboring points. Thus, we associate the u on
the left-hand side of the above equation with v(1), and we associate the u on the right hand side
with v(0), we get

Dv(1) = (L+ U)v(0) + f⇔ v(1) = D−1(L+ U)v(0) +D−1f.

Letting RJ = D−1(L+ U), this equation becomes

v(1) = RJv
(0) +D−1f.

21

The Jacobi method can be generalized into the Weighted Jacobi Method. For this method, we
create the intermediate value v∗ defined by

v∗j =
1

4
(v

(0)
j−n + v

(0)
j−1 + v

(0)
j+1 + v

(0)
j+n + h2fj),

and set v(1) = ωv∗ + (1− ω)v(0),

where ω is some number in (0, 1]. With matrix representation, this becomes

v(1) = Rωv
(0) + ωD−1f,

where Rω = ωRJ + (1− ω)I.

Both the Jacobi method and the weighted Jacobi method are examples of stationary linear
iterations. In this context, the term stationary refers to the fact that the rule for updating our
guess does not change from iteration to iteration. Linear refers to the fact that the rule for updating
our guess is a linear operation. We will now examine the general form of a stationary linear iterative
method.

By construction, u = e + v. Using the fact that Ae = r, we can write u = A−1r + v. For
problems to which we apply iterative techniques, we do not generally know A−1 since otherwise
we would solve the problem directly. However, if we are to able to construct a matrix, B, that
approximates A−1, then it is natural to use the iterative technique,

v(1) = Br + v(0) = B(f−Av(0)) + Iv(0) = (I −BA)v(0) +Bf = Rv(0) + g,

where R = I −BA and g = Bf.

For any stationary linear iteration, we know that v(1) = Rv(0) +g. Intuitively, once an iteration
returns the exact solution, all subsequent iterations must also return the exact solution, that is, if
v(0) = u then v(1) = u. Therefore, u = Ru + g. Subtracting the general equation from this shows
that

u− v(1) = Ru + g − (Rv(0) + g) = R(u− v(0))

⇒ e(1) = Re(0).

It follows by induction that

e(m) = Rme(0) ⇒ ||e(m)|| ≤ ||R||m||e(0)||.

Where ||R|| refers to the 2 norm of R, which is given by ||R||2 =
√
ρ(RTR), where ρ(RTR) is the

spectral radius of RTR (the largest eigenvalue of RTR in absolute value). Thus, if ||R|| < 1, then

lim
n→∞

e(n) =
−→
0 .

To numerically examine the effectiveness of these methods, we shall perform numerical exper-
iments where f =

−→
0 , v is given by a discrete Fourier mode (or a combination of discrete fourier

modes), and A is the n by n matrix representing the one dimensional Poisson operator. It is advan-

tageous to examine the homogeneous case that f =
−→
0 , since the exact solution, u =

−→
0 , is known.

Therefore, e = −v and ||e|| = ||v||. The discrete Fourier modes are vectors of the form

v
(k)
j = sin

(
jkπ

n

)
,

22

which are obtained by discretizing the continuous function sin(πkx). k is a parameter representing
frequency and is equal to the number of half-periods of sin(πkx), which are represented in v(k).
Discrete Fourier modes are attractive guesses since periodic functions can be represented as the
sum of continuous Fourier modes, which suggests that our solution can be expressed as the sum of
discrete Fourier modes. We refer to the modes with larger values of k as oscillatory modes, and we
call the modes with smaller values of k as smooth modes.

Figure 2: Relaxation of Fourier Modes

Figure 2 graphs the relative residual after successive sweeps of Weighted Jacobi Relaxation for
Fourier modes with different wavenumbers. Note that for k = 2, Weighted Jacobi Relaxation is
not very effective, for k = 4 it is pretty effective, and for k = 8 it is very effective. This example
illustrates a trend, which is true in general, that Weighted Jacobi Relaxation is effective if the error
is oscillatory and ineffective if the error is smooth. Therefore, if the error is expressed as the sum of
discrete Fourier modes, Weighted Jacobi Relaxation will rapidly eliminate the portion of the error
that is represented by the oscillatory modes. After a few iterations, the error will be almost entirely
represented by smooth Fourier modes. This is known as the smoothing effect. Once the error is
sufficiently smooth, the reduction of error norms by Jacobi iteration will become very small. At
this point, Jacobi Relaxation is said to have stalled. Similar problems occur for other stationary
linear methods. Multigrid methods were developed, in part, to resolve this problem.

One way to improve the performance of an iterative method is to make a good initial guess. For
a system, A(h)u(h) = f(h), arising from PDEs, the natural way to do this is to solve the analogous
system for a coarser level of discretization, A(2h)u(2h) = f(2h). The superscripts refer to the grid
spacing of the discretization, that is, a superscript of (h) implies that node points are h = 1

n apart.

Thus, u(2h) and f(2h) are the n2

4 by 1 vectors obtained by discretizing u(x, y) and f(x, y) with grid

spacing 2h. For now, let A(2h) be the matrix which arises from applying finite differences, with
grid spacing 2h, to same differential operator from which A(h) arises. Intuitively, if h is small, u(2h)

should give us a good representation of u(h) since u(x, y) is a continuous function.
This raises some natural questions. Given u(2h), how do we define u(h)? Conversely, given u(h),

how do we define u(2h)? These processes are referred to as prolongation and restriction, respectively.
In this context, the grid with 2h spacing is called the coarse grid, and the grid with h spacing shall
be called the fine grid. Later, when we have multiple grids, we shall say that a grid with h spacing
is finer than a grid with 2h spacing, which is in turn finer than a grid with 4h spacing, etc. For
now, we consider vectors which arise from one-dimensional functions.

The simplest prolongation procedure is called linear interpolation, defined by

u
(h)
2j = u

(2h)
j u

(h)
2j+1 =

1

2

(
u

(2h)
j + u

(2h)
j+1

)
.

23

For example, interpolation the vector, v(2h) = (1, 2, 1, 0)T would give v(h) = (.5, 1, 1.5, 2, 1.5, 1, 0.5, 0)T .
The figure below compares v(h), the vector we get by discretizing sin(x) with grid spacing h = 1

16 ,

to Pv(2h), the vector we get by discretizing sin(x) with grid spacing 2h and then interpolating.

The most natural process for restriction is injection, which is defined by

u
(2h)
j = u

(h)
2j .

However, the obvious drawback of injection is that only half the points of u(h) are used to define
u(2h). To use all points of u(h) equally, we define full-weighting by

u
(2h)
j =

1

4

(
u

(h)
2j−1 + 2u

(h)
2j + u

(h)
2j+1

)
.

It is useful to think of these operations as a matrix. For linear interpolation, we have the rule
that

u
(h)
j =

 u
(2h)
j/2 if j is even

1
2

(
u

(2h)
(j−1)/2 + u

(2h)
(j+1)/2

)
if j is odd

 .

Therefore, interpolation has matrix representation

P =
1

2



1 1
2
1 1

2
1 1

2
. . .

. . .

1 1
2


.

By similar analysis, we may represent 1-dimensional injection and 1-dimensional full weighting.
We are, however, actually interested in interpolating and restricting the discretization of a two-
dimensional function. While our equation requires our discretization to be a vector, the definitions
of our operators are much more intuitive when considering our discretization as a square matrix.

If i and j are even, then u
(h)
i,j corresponds to the same value of u(x, y) as u

(2h)
i/2,j/2 so we set u

(h)
i,j =

u
(2h)
i/2,j/2. If i is even and j is odd, then u

(h)
i,j corresponds to the value of u(x, y) at the point half way

24

between u
(2h)
i/2,(j−1)/2 and u

(2h)
i/2,(j+1)/2, so we set u

(h)
i,j = 1

2

(
u

(2h)
i/2,(j−1)/2 + u

(2h)
i/2,(j+1)/2

)
. Similarly, if j

is even and i is odd, we set u
(h)
i,j = 1

2

(
u

(2h)
(i−1)/2,j/2 + u

(2h)
(i+1)/2,j/2

)
. If both j and i are odd, then u

(h)
i,j is

evenly spaced between 4 coarse-grid points, so we set u
(h)
i,j = 1

4

(
u

(2h)
(i−1)/2,(j−1)/2 + u

(2h)
(i+1)/2,(j−1)/2 + u

(2h)
(i−1)/2,(j+1)/2 + u

(2h)
(i+1)/2,(j+1)/2

)
.

Representing this operation as a matrix is more complicated than in the one-dimensional case.
Here we must consider u(h) as an n2 by 1 vector, rather than an n by n matrix. Each entry

in the vector, u
(h)
k , corresponds to a point, u

(h)
i,j , in the matrix representation of u(x, y), where

k = i+n(j− 1). In defining the kth row, we must consider the parity of both i and j in terms of k.
For simplicity, we will only use grids with even values of n. It is clear that the parity of i is equal
to the parity of k, since k− i = (j− 1)n ≡ 0 mod 2. A little bit of arithmetic shows that j =

⌈
k
n

⌉
,

which allows us to determine the parity of the corresponding j to a given k.
When constructing P , the n2 by n2

4 interpolation matrix that maps from a coarse grid with
n
2 ×

n
2 points to a fine grid with n× n points, it is easiest to first construct four n2

4 by n2

4 matrices,
A, B, C, and D, with A corresponding to odd values of i and j, B corresponding to even values of i
and odd values of j, C corresponding odd values of i and even values of j, and D corresponding to
even values of both i and j. After constructing these four matrices, we can construct P by taking
each row of P from either A,B,C, or D. In particular, for rows of P corresponding to odd values
of both i and j, we use a row of A, for rows corresponding to an even value of i and an odd value of
j, we use a row of B, for rows corresponding to an odd value of i and an even value of j, we use a
row of C, and for rows corresponding to even values of both i and j, we use a row of D. Thus, the
first n rows of P will alternate between rows of A and rows of B. The next n rows will alternate
between rows of C and rows of D and so on, with each set of n rows corresponding to a column of
the n× n grid. This gives

P =



A(1, :)
B(1, :)
A(2, :)
B(2, :)

...
A(n4 , :)
B(n4 , :)
C(1, :)
D(1, :)

...
C(n4 , :)
D(n4 , :)

A(n4 + 1, :)
B(n4 + 1, :)

...

...

C(n
2

4 , :)

D(n
2

4 , :)



.

We must now consider how to construct these 4 matrices. D is the simplest to construct.
Consider the lth row of D. This will determine the lth point in u(h) that corresponds to even values
of both i and j. A point in u(h) has even values of both i and j if and only if it corresponds to a

25

point on the coarse grid. Thus, we want the lth such point in u(h) to be set equal to the lth point
on the coarse grid. Thus D is the multiplicative identity matrix In2/4.

The lth row of B determines the value of the lth fine-grid point with an even value of i and an odd
value of j. This fine-grid point is the midpoint of the horizontal line segment between two fine-grid
points. Careful inspection shows that these are the lth and (l−n)th coarse-grid points. Thus we set
Bl,l = Bl,l−n

2
= 1

2 , Bl,m = 0, otherwise. To take into account the periodic boundary condition, we

also set B
l,n

2

4
−n

2
+l

= 1
2 , if l ≤ n

2 . Similarly, for most rows of C, we set Cl,l = Cl,l−1 = 1
2 , Cl,m = 0,

otherwise. To account for the periodicity, if l ≡ 1 mod n
2 , we set Cl,l−1 = 0 and Cl,l+n−1 = 1

2 . For
n = 4, this becomes

B =
1

2


I4 I4

I4 I4

I4 I4

I4 I4

 C =


M

M
M

M

 ,
where

M =
1

2


1 1
1 1

1 1
1 1

 .
Similar analysis shows that

A =
1

2


M M
M M

M M
M M

 ,
with M defined as above.

It is worth noting that using the Kronecker product we can write this concisely as

A = M ⊗M B = M ⊗ I C = I ⊗M D = I ⊗ I.

Also note the one-dimensional linear interpolation matrix, P1, permutes to to P ∗1 =

(
I
M

)
. It

follows by direct computation that P ∗1 ⊗ P ∗1 is given by



P ∗1
P ∗1

. . .

P ∗1
1
2P
∗
1

1
2P
∗
1

1
2P
∗
1

1
2P
∗
1

. . .
. . .

1
2P
∗
1

1
2P
∗
1


=



I
M

I
M

. . .
. . .

I
M

1
2I

1
2I

1
2M

1
2M

1
2I

1
2I

1
2M

1
2M

. . .
. . .
1
2I

1
2I

1
2M

1
2M



.

26

It is clear that this matrix permutes to the two-dimensional linear interpolation matrix.
Similar analysis allows us to develop a two-dimensional version of full weighting and to develop

a matrix representation for it. As in the one-dimensional case, each coarse-grid point is defined as
the weighted average of all of its neighbors. In particular, if O is a point on the coarse grid we set

u
(2h)
O =

1

4
u

(h)
O +

1

8

(
u

(h)
N + u

(h)
E + u

(h)
S + u

(h)
W

)
+

1

16

(
u

(h)
NE + u

(h)
SE + u

(h)
SW + u

(h)
NW

)
,

where N,S,W,E,NE, SE, SW, and NW are the neighbors of O on the fine grid as shown in figure
3.

Figure 3: The Neighbors of a Coarse-Grid Point, O

Careful analysis allows us to develop a matrix representation of full-weighting; however, in practice
it suffices to notice that the matrix representation is given by R = 1

4P
T .

We now have the tools we need to begin applying multigrid methods to two-dimensional prob-
lems. Later, we will need a different type of prolongation operator, but for now linear interpolation
will suffice. We first consider the simplest multigrid method, the Two Grid Scheme. As its name
suggests, the Two-Grid Scheme uses two levels of discretization, the first with grid spacing h, the
second with grid spacing 2h. As mentioned earlier, weighted Jacobi relaxation will be more effective
for solving A(h)u(h) = f(h) if we have a good initial guess.

Intuitively, since u(x, y) is a continuous function, u(h) should approximately equal Pu(2h). Sim-
ilarly, e(h) should approximately equal Pe(2h). Since u(h) = v(h) + e(h), finding e(h) is equivalent
to finding u(h). Therefore, if can find e(2h), we can find u(2h) and know how to make a good initial
guess of u(h).

This, of course, raises a new question. How do we find e(2h)? We compute the residual on the
coarse grid by restricting the residual on the fine grid, that is, r(2h) = Rr(h), where R is a matrix
representing restriction. Then, we find the coarse-grid error, by solving A(2h)e(2h) = r(2h). We
then overwrite v(h) ← v(h) +Pe(2h). If Pe(2h) is a good representation of e(h), then this correction
will be highly effective. One way to help ensure that Pe2h is a good representation of e(h) is have
e(h) be smooth. Thus, we begin the Two-Grid Scheme by relaxing Ae(h) = r(h) until the error is

27

smooth. This gives us the two-grid scheme.

1) Start with the fine-grid equation, A(h)u(h) = f(h).

With initial guess v(h), relax the fine-grid equation ν1 times.

2) Compute the fine-grid residual, r(h) = f(h) −A(h)v(h), and

calculate r(2h) = Rr(h).

3) Solve A(2h)e(2h) = r(2h)

4) Set e(h) = Pe(2h) and overwrite v(h) ← v(h) + e(h).

5) Relax A(h)u(h) = f(h) ν2 times with the updated value of v(h) as the initial guess.

This process will return a better guess of the exact solution. Iterating this process will eventually
lead us to a guess which is arbitrarily close to the exact solution. However, we can improve this
process through recursion by creating what is known as the V-Cycle. The slowest part of the two-
grid scheme is step 3, solve A(2h)e(2h) = r(2h), since in the two-grid scheme, we solve this equation
directly. However, in the V-cycle, we solve this equation using the two-grid scheme. That is, we
relax A(2h)e(2h) = r(2h), ν1 times, then restrict r(2h) to define r(4h), and solve A(4h)e(4h) = r(4h),
etc.. Naturally, we again solve this equation using grids with 4h and 8h spacing, etc. We continue
this process until we get to the coarsest grid, which has 2lh spacing. On the coarsest grid, we solve
A(2lh)e(2lh) = r(2lh) directly by Gaussian elimination or a similar method. We are able to do this
efficiently because the problem size is small on the coarsest grid. Therefore, the V-cycle with l
levels of discretization can be defined recursively as

1) Start with the fine-grid equation, A(h)u(h) = f(h).

With initial guess v(h), relax the fine-grid equation ν1 times.

2) Compute the fine-grid residual, r(h) = f(h) −A(h)v(h), and

calculate r(2h) = Rr(h).

3) If the current grid, Ω, is the coarsest grid, solve A(Ω)e(Ω) = r(Ω)directly.

Otherwise, apply V-cycle to, A(Ω)e(Ω) = r(Ω).

4) Overwrite v(h) ← v(h) + Pe(2h).

5) Relax A(h)u(h) = f(h) ν2 times with the updated value of v(h) as the initial guess.

Another multigrid method, the F-Cycle, consists of a sequence of V-cycles, each using more
grids. The V-cycle starts on the grid with h spacing, Ωh, and uses a series of coarser grids with the
coarsest being Ω2lh, for some integer l. We shall write V Ω1 to refer to a V-cycle which uses Ω1 as
its finest grid. The F-Cycle, which uses l grids, is defined as follows.

28

Figure 4: V-Cycle

• Start with A(h)u(h) = f(h). Relax ν1 times. Compute residual.

• Set r(2h) = Rr(h). Relax A(2h)e(2h) = r(2h)ν1 times. Compute residual.

• Set r(4h) = Rr(2h). Relax A(4h)e(4h) = r(4h)ν1 times. Compute residual.

...

• Set r(2lh) = Rr(2l−1h). Solve A(2lh)e(2lh) = r(2lh) ν1 directly. Compute residual.

•Update e(2l−1h) ← e(2l−1h) + Pe(2lh). Update e(2l−1h) with V Ω2l−1h
.

•Update e(2l−2h) ← e(2l−2h) + Pe(2l−1h). Update e(2l−2h) with V Ω2l−2h
.

...

•Update e(2h) ← e(2h) + Pe(4h). Update e(2h) with V Ω2h
.

•Update e(h) ← e(h) + Pe(2h). Relax A(h)e(h) = r(h) ν2 times.

Figure 5: F-Cycle

Now let us consider A(2h). Earlier, we said if A(h) was the discretization of a differential operator
on the grid with h spacing, Ω(h), then A(2h) was the discretization of the same differential operator
on the grid with 2h spacing, ω(2h). This definition is a good way to initially understand multigrid
methods; however, it is not always used in practice. One obvious disadvantage of this definition

29

is that it is only defined for systems resulting from a PDE. This motivates us to determine a new
method of defining A(2h), variational coarsening.

Suppose we start with the equation A(h)u(h) = f (h). If P is a prolongation operator, then we can
naturally substitute Pu(2h) for u(h) to get A(h)Pu(2h) = f (h). Left multiplying both sides by R and
using the associativity of matrix multiplication, this gives us (RA(h)P)u(2h) = Rf (h). Substituting
f (2h) for Rf (h) gives us (RA(h)P)u(2h) = f (2h), which implies A(2h) = RA(h)P .

For the domain wall problem, we will use a different type of prolongation operator, known as
de Zeeuw Prolongation [10], which has proven effective for many Helmholtz type problems [2]. For

standard linear interpolation, we take a fine-grid point which also lies on the coarse grid, v
(h)
2i,2j , to

be equal to v
(2h)
i,j . For a fine-grid point that lies directly between two coarse-grid points, the value

at the fine-grid point is computed by averaging the value at the two coarse-grid points. Similarly,
for points on the fine grid which are equally spaced between four coarse-grid points, the value of
vh at the fine-grid point is taken to be the average of the four neighboring coarse-grid points.

In the notation of figure 0.4, this can be written

v
(h)
A = v

(2h)
A , v(h)

p =
1

2
(v

(2h)
A +v

(2h)
B), v(h)

q =
1

2
(v

(2h)
A +v

(2h)
C), v(h)

r =
1

4
(v

(2h)
A +v

(2h)
B +v

(2h)
C +v

(2h)
D).

This can be naturally generalized into the class of weighted interpolation operators, in which
fine-grid points are defined by a weighted averaging of their neighbors on the coarse grid. In general,
these operators can be written as

v
(h)
A = v

(2h)
A , v(h)

p =
wAv

(2h)
A + wBv

(2h)
B

wA + wB
, v(h)

q =
wAv

(2h)
A + wCv

(2h)
C

wA + wC
,

v(h)
r =

wAv
(2h)
A + wBv

(2h)
B + wCv

(2h)
C + wDv

(2h)
D

wA + wB + wC + wD
.

Note that the matrix representation of any prolongation operator of this type will have the same
locations of non-zero entries as the matrix representing linear interpolation. De Zeeuw Prolonga-
tion is a type of operator-dependent prolongation that is closely related to this class. Operator-
dependent refers to the fact that the weights are computed based off of the values of the entries of
the matrix, A, which represents the linear system we are trying to solve. The weights in the ith

row of the de Zeeuw prolongation matrix, P , will be based off of the ith row of A. In particular, if
A is n2 by n2, and v is a n2 by 1 vector resulting from discretizing a two-dimensional function on
a grid with spacing h = 1

n , we are interested in the entries of this row which act on the vi and its
neighbors, when v is left-multiplied by A.

30

One goal of de Zeeuw prolongation is that if vi is a point on the fine-grid such that none of its
cardinal neighbors, N,E, S, or W , are coarse-grid points, then we want

(
A(h)Pv(2h)

)
i

= 0. This
condition is intuitively desirable since such points are the “farthest” from the coarse grid. Thus,
they are the points most likely to be misrepresented by prolongation. However, this condition
controls what happens at these points which increases the overall efficiency of our algorithm.

To gain intuition, we first consider this condition in one dimension. In one dimension, the

desired condition becomes that if v
(h)
i is not a coarse-grid point, we want (APv(2h))i = 0. Since we

are interested in discretized differential operators, we will assume that A is tridiagonal. Thus the
necessary condition is given by

A
(h)
i,i−1v

(h)
i−1 +A

(h)
i,i v

(h)
i +A

(h)
i,i+1v

(h)
i+1 = 0

⇔ v
(h)
i = −

A
(h)
i,i−1v

(h)
i−1 +A

(h)
i,i+1v

(h)
i+1

A
(h)
i,i

.

Moreover, v
(h)
i−1 and v

(h)
i+1 are coarse-grid points, so we can already know their value. Thus we

may determine the value of v
(h)
i by setting

v
(h)
i = wi−1v

(h)
i−1 + wi+1v

(h)
i+1,

where wi−1 = −
A

(h)
i,i−1

A
(h)
i,i

wi+1 = −
A

(h)
i,i+1

A
(h)
i,i

.

For the two-dimensional case, we will again want to determine the Prolongation weights based
off of A so that points where A is larger in absolute value are given larger weight. It is useful to
think of the neighbors of vi in terms of the cardinal and ordinal directions similar to the way they
are displayed in figure 3. Note that O is a fine-grid point which is also a coarse-grid point, the
cardinal directions are located directly between 2 coarse-grid points, and that the ordinal directions
are located between 4 coarse-grid points. We will refer to the entry of A, which acts on a neighbor
of a point, x, with the syntax adx, where d is some direction. For example, if p = vi, then aOp , refers
to the entry of A which acts of p itself, Ai,i.

For a point, p, whose West and East neighbors, A, and B, are coarse-grid points, we define

dw = max(|aswp + awp + anwp |, |aswp |, |anwp |)
de = max(|asep + aep + anep |, |asep |, |anep |)

ww =
dw

dw + de
we =

de
dw + de

,

and set vhp = wwv
(2h)
A + wev

(2h)
B . The intermediate weights de and dw measure how big neighbors

of aOp are in magnitude. The finalized weights ww and we are introduced so that they sum to one.
For a point q, whose South and North neighbors, A and C, are coarse-grid points, we use similar

reasoning to set vhq = wsv
(2h)
A + wnv

(2h)
C , where

ds = max(|aswp + asp + asep |, |aswp |, |asep |)
dn = max(|anep + anp + anwp |, |anep |, |anwp |)

ws =
ds

ds + dn
wn =

dn
ds + dn

.

31

The remaining class of points is those which are not coarse-grid points and do not lie directly
between two coarse-grid points. For such a point, r, we want to construct that P so that the entry

of A(h)v(h) corresponding to r is equal to 0. That is, if r is v
(h)
i and u = A(h)v(h), we want ui = 0.

Therefore, we need that A(i, :) · v(h) = 0, where A(i, :) is the ith row of A. Since v(h) = Pv(2h), we
get

0 =
n2∑
j=1

Ai,jv
(h)
j =

n2∑
j=1

Ai,j(Pv
(2h))j =

n2∑
j=1

Ai,j n2/4∑
k=1

Pj,kv
(2h)
k


=

n2∑
j=1

n2/4∑
k=1

Ai,jPj,kv
(2h)
k =

n2/4∑
k=1

 n2∑
j=1

Ai,jPj,k

 v
(2h)
k .

A sufficient criterion for this to hold is

0 =
n2∑
j=1

Ai,jPj,k for all k.

Since A results from discretizing a PDE, Ai,j = 0 except at i, j such that v
(h)
j is a neighbor of

v
(h)
i . Moreover, if v

(h)
i is a point that does not lie on the coarse grid or directly in between two

coarse-grid points, then we have already defined P in all of the rows corresponding to a neighbor of

vi. For each index i and direction d, we will let id be the index of v
(h)
i ’s neighbor in the d direction.

For example, Ai,iw is equivalent to Ai,i−n in most rows. Also, note that iO is equivalent to i, since
vi’s neighbor in the O direction is just vi. Plugging in the zeroes in A, our condition becomes

0 =
∑

Ai,idPid,k ⇒ Pi,k = PiO,k = − 1

Ai,i

∑
d6=O

Ai,idPid,k for all k.

Thus, we have completely defined the de Zeeuw Prolongation matrix, P, which we will be using in
our F-cycle scheme. However, we will not be using an F-cycle directly in our attempts to solve the
domain wall system. Instead we will be using our F-cycle as a preconditioner for a BICGSTAB
algorithm.

BICGSTAB is one of a family of iterative methods known as polynomial methods. In such a
method, we pick an initial guess, x0, to approximate the actual solution, x, of a linear system,
Ax = b. Setting r0 = b−Ax0, we seek to find c0, c1, c2 . . . such that

x = x0 + c0r0 + c1Ar0 + c2A
2r0 + . . .

We will be able to do this if (x − x0) ∈ span{r0, Ar0, A
2r0, . . .}. This motivates us to define the

m-dimensional Krylov Space as,

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}.

While it is clear that {r0, Ar0, A
2r0, . . . , A

m−1r0} is basis for Km(A, r0), unfortunately, it is not
an orthogonal basis. The Lanczos Algorithm provides an efficient way of producing an orthogonal
basis of Km(A, r0), in the special case that A is Hermitian. For the more general case, we need
to use the Lanczos method for Bi-orthoganalization, which generates bases, {v1,v2, . . .vm} and
{w1,w2, . . .wm} for Km(A, r0) and Km(A∗,w0), respectively, such that vi ·wi = 1 and vi ·wj = 0,

32

if i 6= j, where w0 is some vector, and A∗ denotes the Hermitian transpose of A. Letting, Vm =
(v1v2 . . . vm) and Wm = (w1w2 . . .wm), it follows that W ∗mVm = Im.

The BICG algorithm picks v1 = r0
β , for some scalar β, and searches for a solution of the form

x = x0 + Vmym. Plugging this in implies

A (x0 + Vmym) = b

⇔AVmym = b−Ax0 = r0 = βv1

⇒W ∗AVmym = βW ∗mv1.

It turns out that W ∗AVm is tridiagonal, which should allow us to solve the system efficiently.
However, this method is somewhat computationally expensive and tends to have unstable conver-
gence. The Conjugate Gradient Squared (CGS) algorithm chooses w0 = r0. This reduces the
computational cost of the algorithm since the entries of A∗w0 are simply the conjugates of the en-
tries of Ar0. Unfortunately, the CGS method also tends to suffer from unstable convergence. The
BICGSTAB algorithm is created by choosing bases such that the norm of the residual is minimized
after each iteration. For a system Ax = b, we start with initial guess, x0, and

• Set r0 = b−Ax0

• Choose an arbitrary vector r∗ such that (r0, r
∗) 6= 0

• ρ0 = a = ω0 = 1

• v0 = p0 =
−→
0

• For i = 1, 2, 3, . . .

• ρi = (r∗, ri−1)

• β = (ρi/ρi−1)(a/ωi−1)

• pi = ri−1 + β(pi−1 − ωi−1vi−1)

• vi = Api

• a = ρi/(r
∗,vi)

• s = ri−1 − avi
• If ||s|| is small enough, quit

• t = As

• ωi = (t, s)/(t, t)

• xi = xi−1 + api + ωis

• ri = s− ωit,
• If xi is accurate enough, quit

where (v,w) = v ·w =
∑

viwi.
In practice, we often use BICGSTAB with a preconditioner. If M is some invertible matrix, then

MAx = Mb has the same solutions as Ax = b. Thus, we may apply BICGSTAB to whichever
of those systems is easier to solve. This raises a natural question. How do we pick M so that
MAx = Mb is easier to solve than Ax = b?

For any Krylov method, at the mth stage of iteration, our current guess xm is given

xm = x0 + pm−1(A)r0,

33

where pm−1(x) is some polynomial of degree m−1. Subtracting both sides from the correct solution,
x, and using the identity Ae0 = r0 we see

x− xm = x− [x0 + pm−1(A)r0]

⇒em = e0 − pm−1(A)Ae0

⇒em = p(1)
m (A)e0,

where p
(1)
m (x) is some mth degree polynomial with p

(1)
m (0) = 1. Since the eigenvectors of A form a

basis for span(A), we may write

e0 =
n∑
j=1

cjv
(j),

where v(j) is an eigenvector of A with eigenvalue λj . Thus,

em = p(1)
m (A)e0 =

n∑
j=1

cjp
(1)
m (A)v(j) =

n∑
j=1

cjp
(1)
m (λj)v

(j).

Therefore, the error after m iterations will be small is p
(1)
m (λj) is small for each λj .

Thus, we may find a Krylov method that converges within m iterations if there is a polynomial,
p(x), with degree m and p(0) = 1 such that p(λj) is sufficiently small at each eigenvalue, λj . Intu-
itively, it is clear that the closer together the eigenvalues are, the lower the order of the polynomial
we will need to meet this criteria. Thus, it is our goal to find M such that the eigenvalues are MA
“bunched” closer together than the eigenvalues of A.

During the BICGSTAB algorithm, there are a number of steps which involve multiplying some
vector by A. If we are using a preconditioner, M , each of those steps becomes instead to multiply the
same vector by MA. Since matrix multiplication is associative, (MA)v = M(Av), for any vector,
v. Computationally though, it requires less floating point operations to perform matrix-vector
multiplication as opposed to matrix-matrix multiplication. Thus, in practice, we never actually
form MA.

Since we never actually form MA, we don’t need M to actually be a matrix, instead it may be
any function which takes in a vector and produces another vector. In particular, the preconditioner
may be a Multi-Grid cycle. It has been shown that Helmholtz problems with high wave numbers
can be solved effectively by preconditioning with an F-cycle applied to the same problem with an
imaginary shift [2]. Inspired by this success, we test whether this same approach can be applied to
the domain wall problem.

Now, let us consider how we may solve the entire domain wall system once we have an effective
technique for solving the gauged Helmholtz problem, i.e. the A block of the domain wall [5]. Recall
the domain wall is written,

W (m, ρ) =


Mρ −P− +mP+

−P+ Mρ −P−
−P+ Mρ −P−

. . .
. . .

. . .

+mP− −P+ Mρ

 .
Expanding this out with l = 4, we get

34

W =



A B 0 0 0 0 mI 0
−B∗ A 0 −I 0 0 0 0

−I 0 A B 0 0 0 0
0 0 −B∗ A 0 −I 0 0

0 0 −I 0 A B 0 0
0 0 0 0 −B∗ A 0 −I
0 0 0 0 −I 0 A B
0 mI 0 0 0 0 −B∗ A


.

We can permute the matrix separating the entries by parity to get

W ′ =



A 0 0 mI B 0 0 0
−I A 0 0 0 B 0 0
0 −I A 0 0 0 B 0
0 0 −I A 0 0 0 B

−B∗ 0 0 0 A −I 0 0
0 −B∗ 0 0 0 A −I 0
0 0 −B∗ 0 0 0 A −I
0 0 0 −B∗ mI 0 0 A


,

where the top left corner is taken from odd columns and odd rows of W , the top right corner is
taken from even columns and odd rows of W , and so forth. Denoting the top left block A and the
top right block B, we may write

W ′ =

[
A B
−B∗ A∗

]
.

Thus, we may rewrite the system Wv = f[
A B
−B∗ A∗

](
vo
ve

)
=

(
fo
fe

)
,

where vo,ve, fo, fe are the vectors containing the odd and even entries of v and f respectively. Thus,
we have

Avo = fo − Bve,
A∗ve = fe + B∗vo.

Assuming we can solve the systems with matrix A efficiently, we will be able to solve A and A∗
efficiently since they are block bidiagonal if we treat the mass term as negligible. Thus, we may
solve the entire system quickly using an Uzawa iteration.

0.5 Results

We will test the effectiveness of our F-Cycle, both as a direct means of solution, and as a precon-
ditioner for a BICGSTAB scheme. First, we shall test the F-cycle directly on the discretization of
the two-dimensional Poisson equation, −∇2u(x, y) = f(x, y). There are 4 parameters in which this
scheme can vary. The most important is, of course, n = 1

h , which represents the level of discretiza-
tion. We must also consider the value of the weight, ω, within the weighted Jacobi Relaxation
Scheme and the number of relaxations on the “way up” and “way down”, ν1 and ν2, within the

35

F-cycle and V-cycle schemes. We will fix ν1 and ν2 to be equal to one. We will allow n to be 32,
64, and 128. The “best” value of ω will be determined on the smallest grid, i.e. n = 32, and we
will use this value when testing fine grids.

We shall start off with a random initial guess and a zero right-hand side and consider our
method to have converged when the residual has been decreased (in norm) by a relative factor of
106. Upon inspection, it appears that unweighted relaxation, i.e. ω = 1, is effective for applying
the F-cycle to this problem.

Table 1: F-Cycle iterations necessary for convergence, Poisson problem, n=32
ω Iterations
1
3 15
2
3 13
7
9 12
8
9 11

1 10

Taking ω = 1 and applying our F-cycle to various size grids, we see that the F-cycle is an
effective means of solving the discrete Poisson problems for levels of discretization corresponding
to n = 32, 64 and 128. In fact, the number of iterations necessary to achieve convergence does not
seem to depend on the grid size.

Table 2: F-Cycle iterations necessary for convergence, Poisson problem, ω = 1
n Iterations

32 10
64 10
128 10

When testing effectiveness of a the F-cycle as a precondition for BICGSTAB in solving the
Poisson problem, we cannot use a zero right-hand side since standard BICGSTAB algorithms are
set to automatically return the correct answer of

−→
0 without running any iterations. Therefore, we

use a right-hand side given by the discretization of cos(2πx) sin(2πy). We choose cos(2πx) sin(2πy)
since we expect f(x, y) to be periodic. ω is again taken to be 1. As shown below, BICGSTAB is
very effective for solving the Poisson problem for all grids. Note that converging on a half-iteration
means that BICGSTAB exited after testing the norm of ||s||.

Table 3: BICGSTAB iterations necessary for convergence, Poisson problem
n Iterations

32 3
64 2.5
128 3

Poisson’s equation is, of course, the special case of Helmholtz’s equation −
(
∇2 − σ

)
u(x, y) =

f(x, y), where σ = 0. We are interested in solving the case where σ = k2(1 + bı), k ∈ R. For any
given n, we can uniquely define k in terms of a = k

n . If we think of σ as a function of a and b, then
we can think of k as the wave number associated with the system.

36

When we apply our F-cycle to the Helmholtz problem, with grid spacing n = 32, we see that
the F-cycle is effective for all values of b when a = .25. However, for a = .625, the F-cycle is not
effective for any value of b. Figure (6) shows the relative residual after the first ten iterations on
a log scale for both a = .25 and a = .625 with b = .5. As you can see, for a = .25, the relative
residual quickly goes to zero; however, when a = .625 the relative residual grows rapidly.

Table 4: F-Cycle iterations necessary for convergence, Helmholtz problem, n=32
a\b .1 .3 .5 .8

0 10 10 10 10

.25 10 10 10 10

.625 * * * *

.

Figure 6: Relative residual, F-Cycle, Helmholtz problem

When we apply preconditioned BICGSTAB to this system with n = 32, we see convergence in
each case except for when a = .625 and b = .1 or .3. Note that when a = 0, the choice of b does
not matter since a = 0 implies that k = 0. It also appears that BICGSTAB is more effective for
smaller values of a and larger values of b. We expect this trend to hold in general.

Table 5: BICGSTAB iterations necessary for convergence, Helmholtz problem, n=32
a\b .1 .3 .5 .8

0 3 3 3 3

.25 3 3 3.5 3.5

.625 * * 19.5 8

.

Applying preconditioned BICGSTAB to the grids with n = 64 and n = 128, we again fail
to have convergence when a = .625 and b is either .1 or .3. Additionally, we do not have have
convergence for these values of b for a = .25. On the n = 64 grid, in the case that a = .25, b = .1 or
.3, it appears that the algorithm may have converged if we were to have increased the maximum
number of iterations since the iterate returned had very small relative residuals. For all of the other
cases, it appears that more iterations would have been helpful since the iterates returned had large
relative residuals. Note that on the grid with n = 128, preconditioned BICGSTAB is more effective
when b = .5 than it is when b = .8.

We then sought to test our F-Cycle on the Gauged Helmholtz Operator, i.e., the A block of the
domain wall problem. As mentioned earlier, if we can find a way to effectively solve this system,
we will be able to solve the entire domain wall problem efficiently. Since the F-cycle was ineffective

37

Table 6: BICGSTAB iterations necessary for convergence, Helmholtz problem, n=64
a\b .1 .3 .5 .8

0 2.5 2.5 2.5 2.5

.25 * * 33 11.5

.625 * * 19.5 8

.

Table 7: BICGSTAB iterations necessary for convergence, Helmholtz problem, n=128
a\b .1 .3 .5 .8

0 3 3 3 3

.25 * * 33 11.5

.625 * * 38.5 49.5

.

at solving the regular Helmholtz Operator directly, we do not bother to test it here. We first apply
BICGSTAB with our F-Cycle preconditioner to the Gauged Helmholtz problem where our Gauge
field is taken to be 99.99% constant and .01% random. That is, each entry in the gauge field, G is
determined by the rule that Gi,j = .9999 + .0001ri,j , where ri,j is a random number between 0 and
1.

Table 8: BICGSTAB iterations necessary for convergence, gauged Helmholtz problem, .01% ran-
dom, n=32

a\b .1 .3 .5 .8

0 * * * *

.25 * * * *

.625 * * 92 26.5

For all grid sizes, we are able to find some b for which we achieve convergence when a = .625.
Moreover, in the cases where we did not achieve convergence, the relative residual of the returned
iterate was often nearly small enough to be considered convergence. However, if we let our gauge
field be 99% constant and 1% random, we are not able to achieve convergence for any value of a
and b on any grid. In the case that BICGSTAB fails to converge, MATLAB’s BICGSTAB program
returns the iterate with the minimum residual. Tables 11 and 12 display the iterate returned and
the relative residual for this case with n = 32.

While we do not achieve convergence, we do notice an interesting trend that our preconditioning
is less effective on the gauged Poisson problem (a = 0) than on the gauged Helmholtz problem with
a = .625. This is of interest because the gauged Poisson problem can be solved effectively using just
an F-Cycle with an adaptive interpolation operator[4][6]. Therefore, we believe that BICGSTAB
will be able to solve the general gauged Helmholtz problem with an F-Cycle preconditioner that
uses adaptive interpolation.

38

Table 9: BICGSTAB iterations necessary for convergence, gauged Helmholtz problem, .01% ran-
dom, n=64

a\b .1 .3 .5 .8

0 * * * *

.25 * * 39 17

.625 * * 73 39.5

Table 10: BICGSTAB iterations necessary for convergence, gauged Helmholtz problem, .01% ran-
dom, n=128

a\b .1 .3 .5 .8

0 * * * *

.25 * * * 28.5

.625 * * 58.5 84.5

Table 11: BICGSTAB iterate returned, gauged Helmholtz problem, 1% random
a\b .1 .3 .5 .8

0 5 5 5 5

.25 79 32 71 29

.625 77 100 73 59

Table 12: Relative residual returned by BICGSTAB, gauged Helmholtz problem, 1% random
a\b .1 .3 .5 .8

0 .32 .32 .32 .32

.25 5.1× 10−4 1.5× 10−4 3.7× 10−5 9.8× 10−5

.625 .58 2.9× 10−4 1.5× 10−5 1.2× 10−6

39

Bibliography

[1] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, Second
Edition, SIAM, 2000.

[2] Y. Erlangga, C. Oosterlee, and C. Vuik, A novel multigrid based preconditioner for
heterogeneous helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492.

[3] P. D. Group.

[4] J.Brannick, A. Frommer, K. Kahl, S. MacLachlan, and L. Zikatanov, Adaptive
reduction-based multigrid for nearly singular and highly disordered physicial systems, Electron.
Trans. Numer. Analysis, (2009). Submitted.

[5] M. Kilmer. Working Note.

[6] S. MacLachlan and C. Oosterlee, Algebraic multigrid solvers for complex-valued matri-
ces, SIAM J. Sci. Comput., 30 (2008), pp. 1548–1571.

[7] S. P. MacLachlan and C. W. Oosterlee.

[8] G. Strang, Linear Algebra and Its Applications, Fourth Edition, Brooks/Cole, 2006.

[9] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM,
2004.

[10] P. D. Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver,
Journal of Computational and Applied Mathematics, (1990), pp. 1–27.

40

