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Abstract

During the Olympic Games in 2008, a driving restriction based on vehicle license plate numbers was

implemented in Beijing to mitigate air pollution and tra�c congestion. Following the Games, the restric-

tion was modi�ed several times. This paper investigates the e�ects of two policy changes: a weakening

policy change due to a shorter restricted time period, and a strengthening policy change due to a higher

penalty for violators and the complementary car purchasing restriction. By employing a regression dis-

continuity design, I �nd that the weakening policy change led to more pollution in restricted areas only,

while the strengthening policy change improved air quality in both restricted and non-restricted areas.

One possible explanation for the second result is that driving in restricted areas and non-restricted areas

are complements. Several robustness checks also con�rm the results. I also provide suggestive evidence

that driving restrictions increased the use of public transportation and alleviated tra�c congestion.
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1 Introduction

As the capital city of one of the oldest countries around the world, Beijing attracts the eyes of the world for

its long history and splendid culture, its centuries-old parks and palaces, and its rapid economic development

in recent decades. However, its severe air pollution also draws a lot of attention. Beijing is jokingly called

"Greyjing" for its grey sky caused by air pollution. According to the Economist Intelligence Unit (EIU)'s

global liveability survey in 2012, Beijing was ranked 32 among the best cities to live in. However, its score

for pollution was the worst among the cities ranked in the top 50, which was 4.5 out of 5 (1=best, 5=worst).

Air pollution has long been considered an important issue around the world, since it a�ects human health

and even leads to deaths. Epidemiological studies have shown that air pollution could cause respiratory

infections, heart diseases, and lung cancer, etc.1 According to the World Health Organization (WHO),

urban outdoor air pollution is estimated to cause 1.3 million deaths worldwide per year, and those living in

middle-income countries disproportionately experience this burden.2 Some recent studies also show that air

pollution results in an increase in the mortality rate, especially in developing countries (e.g. Greenstone and

Hanna, 2011; Tanaka, 2010).

The main sources of air pollution come from industrial plants, power plants, vehicles, and natural pro-

cesses such as wild�res and volcanic eruptions. Since most of the factories have been moved out of Beijing,

and wild�res and volcanic eruptions do not happen frequently in Beijing, most of Beijing's air pollution

could be attributed to vehicle emissions. Chai Fahe, deputy head of the Chinese Research Academy of

Environmental Sciences, said that more than 5 million vehicles are currently registered in Beijing, and the

number keeps climbing.3 In the meantime, tra�c congestion itself is also a severe problem in Beijing. As an

easy-to-implement regulation, driving restrictions based on license plate numbers have been used in many

cities to alleviate air pollution and tra�c congestion, such as Mexico City, Sao Paulo and Bogota. To reduce

air pollution and tra�c congestion in advance of the Olympic Games in 2008, a series of driving restrictions

was implemented in Beijing to mitigate air pollution and tra�c congestion. During the Olympic and Para-

lympic Games, cars with license plate numbers ending with odd and even digits could not drive on the road

on alternate days. Following the Games, the policy was modi�ed several times, including a window with no

restrictions, change in restriction areas and time periods, change in penalty, and the implementation of a

1For a review of epidemiological studies on the respiratory e�ects of air pollution, please refer to Lebowitz (1996). For
a review of epidemiological studies on the relationship between particulate matter and heart disease, please refer to Annette
Peters (2005). For a review of epidemiological studies on the relationship between air pollution and lung cancer, please refer to
Cohen and Pope (1997).

2From WHO website: http://www.who.int/mediacentre/factsheets/fs313/en/
3From China Daily, Jun.11, 2012. http://www.chinadaily.com.cn/regional/2012-06/11/content_16133037.htm.
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complementary policy to restrict vehicle purchase.

Previous studies of a similar policy in Mexico City do not show a signi�cant e�ect of driving restriction.

Gasoline demand in Mexico City increased because of the policy, since people tended to respond by purchasing

another car, using older cars, and increasing their driving on weekends and nonpeak weekdays (Eskeland

and Feyzioglu, 1997). Households adjusted their stock of vehicles rapidly, within a year (Gallego et al.,

2012). The restriction has engendered a relative increase in air pollution during weekends and nonpeak

weekdays, but there is no evidence of an absolute improvement in air quality during peak weekdays (Davis,

2008). Studies on a series of other cities like Sao Paulo and Bogota also show mild or trivial alleviation of

air quality (Lin et al., 2011).

Some studies have also focused on the restrictions in Beijing. Chen et al. (2011) �nd a signi�cant but

temporary reduction in air pollution that was associated with the restriction during the Olympic Games.

Their analysis on satellite based AOD data also con�rms that the air quality improvement in Beijing existed

but was temporary. But Chen et al. (2011) only focus on the restriction during the Olympic Games, when

there were many confounding factors, such as blockage of the roads, limitation of traveling, etc. They do not

take all of these factors into account, which could severely bias their results. Viard and Fu (2011) also �nd

a signi�cant pollution reduction that was coincided with Beijing's driving restrictions. The e�ects were also

related to the distance between the air quality monitoring stations and the main roads. They also consider

the e�ect of the driving restrictions on labor supply by measuring substitution to TV viewership and �nd

that workers with discretion over their work time increased their viewership during restricted hours. Similar

to Chen et al. (2011), Viard and Fu (2011) do not consider the confounding factors during the Olympic

Games. Moreover, their study on policies in other periods is also problematic. They compare all the policies

with baseline periods without restrictions. Many things changed during the time periods that they study

on, but they do not control for such factors as population, oil prices, etc, all of which could have impacts

on air quality. Therefore, previous studies using OLS without controlling for all of these factors should be

taken with caution.

Distinguishing from previous studies on driving restrictions in Beijing, this paper investigates the e�ects

of two policy changes: a weakening policy change due to a shorter restricted time period, and a strengthening

policy change due to a higher penalty for violators and the complementary restriction on purchasing a second

car. By employing a regression discontinuity design, the confounding factors mentioned above have been

taken into account and the results would no long be biased. The primary air quality data used in this

paper is the daily station-level API panel data from the Beijing Municipal Environmental Protection Bureau
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(BMEPB) for Jan.1, 2008-Oct.10, 2012. Among the 27 monitoring stations, eight of them are located

within the 5th ring (restricted areas) and nineteen lie outside the 5th ring (non-restricted areas).4 To

evaluate possible spillover e�ects, I compare the results from restricted areas and those from non-restricted

areas. The results show that the weakening policy change led to more pollution in only restricted areas,

while the strengthening policy change improved air quality in both restricted and non-restricted areas. It

seems to be surprising that both restricted and non-restricted areas were in�uenced by a strengthening

policy change. One possible explanation is that driving in restricted areas and non-restricted areas are

complements. Robustness checks including weather covariates, month dummies, station �xed e�ects, and

employing di�erent time windows con�rm the main results. To investigate into the mechanisms underlying

the e�ects, I also try to analyze the possible substitution e�ect between private car and public transportation

caused by the driving restrictions. The results show some evidence that the restrictions were coincided with

an increase in the use of public transportation and a reduction in tra�c congestion, but the results should

be taken with caution because of data limitations and weak identi�cation problem under OLS regression.

This paper contributes to the existing literature in three ways. First, by employing a RD design, I �x the

potential problems existing in previous Beijing studies as mentioned above, so that I could get more reliable

results. Second, I investigate the e�ects of two di�erent policy changes, which gives some implications on

how changes in policy making could a�ect air pollution. This provides a useful reference for policy makers, as

no one has ever studied these changes before. Finally, no previous research has studied the e�ects of driving

restriction on transportation and congestion in Beijing. Although this paper could not investigate this

question deeply due to data restrictions and weak identi�cation problem, it �lls in the gap in the literature.

The rest of the paper is organized as follows. Section 2 reviews previous literature. Section 3 introduces

more detailed background on the policies and describes the data. Section 4 investigates the empirical

strategy used in this paper. Section 5 and 6 report main results and robustness checks, respectively. Section

7 concludes.

2 Literature Review

Driving restrictions have been used in many cities around the world to alleviate air pollution and tra�c

congestion, such as Mexico City, Sao Paulo, Bogota, and some cities in China including the capital Beijing.

In November 1989, a policy restricting drivers from using their vehicles one weekday per week was imposed in

4Ring roads in Beijing are the main roads that surround the center of the city. The �fth ring is regarded as the threshold
between the main city and suburbs, within which is the main city, while outside are suburbs.
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Mexico City. In the winter 1995, a driving restriction which restricted the use of 20% of the car �eet between

7:00 a.m. and 8:00 p.m. on each weekday was introduced in Sao Paulo and lasted for three years. In 1997, a

new driving restriction in a 152 km2 area in Sao Paulo was adopted, which limited the circulation of 20% of

the vehicles in peak hours, between 7:00�10:00 a.m. and 5:00�8:00 p.m. on weekdays. Vehicular restrictions

were �rst implemented in Bogota in August 1998. Each vehicle was restricted from circulation during peak

hours on 2 days per week between 7:00 and 9:00 a.m. and between 5:30 and 7:30 pm, i.e. 40% of private

vehicles were restricted from operating in the city during weekdays. During the Olympic and Paralympic

Games, driving restriction was implemented in Beijing and its neighbor Tianjin, which restricted half of the

car use. After the Games, a modi�ed restriction similar to the one in Mexico city was expanded in some

other cities in China.

Some studies have focused on the e�ectiveness of the driving restriction in Mexico City. Eskeland and

Feyzioglu (1997) are the �rst to study the e�ect of the driving restriction based on car plate numbers.

They estimate a gasoline demand function based on aggregate time-series data during 1983-1992 to analyze

the e�ect of the driving ban in Mexico City. They �nd that demand for gasoline was larger because of the

driving restriction compared to the simulation case without driving restrictions. They also establish a vehicle

ownership model to investigate how the driving restriction could increase gasoline consumption. They �nd

that households increased their vehicle ownership, especially through purchasing old cars, and increased

their driving due to more available vehicles. Therefore, the total car use in Mexico increased rather than

decrease because of the regulation. They conclude that the driving restriction in Mexico City imposed higher

compliance costs than those of alternative market-based policies such as gasoline taxes. As the pioneers,

Eskeland and Feyzioglu (1997) lay a solid foundation for subsequent studies on driving restrictions in Mexico

City and other cities.

Unlike Eskeland and Feyzioglu (1997), Davis (2008) examines whether the driving restriction in Mexico

City improved air quality. He uses hourly air pollution data during 1986-1993, an 8-year symmetric window

around the implementation of the driving restriction. He takes advantage of a regression discontinuity (RD)

design to address possible confounding factors, by adding a highly �exible polynomial time trend (seventh,

eighth, ninth-order polynomial time trends). Davis (2008) also compares di�erent subsamples by time of the

day and day of the week, since the driving restriction was only in place on weekdays between 5am and 10pm.

The results indicate that the policy has engendered a relative increase in air pollution during weekends and

nonpeak weekdays, and there is no evidence of an absolute improvement in air quality in peak weekdays.5

5Peak weekdays were de�ned as 5am-10pm in weekdays, and non-peak weekdays were de�ned as 10pm-5am in weekdays.
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Other speci�cations, such as the e�ects of the driving restriction on maximum pollution levels (maximum

daily air pollution, and days when pollution levels exceed WHO standards), are consistent with the basic

speci�cation, indicating no improvement of air quality. He also �nds more gasoline consumption, more car

registrations, more new car sales, and less public transportation ridership during the driving restriction,

which suggests that people tended to buy more cars and turn to used high-emissions vehicles instead of

substituting to low-emissions public transportation. The social costs of the driving restriction are large,

likely in excess of $300 million annually. The results coincide with Eskeland and Feyzioglu (1997), which

suggests that the driving restriction policy is socially costly in Mexico City.

Gallego et al. (2012) complements the literature by introducing an adaptation model to investigate

how households reacted to the driving restriction in Mexico City. They contribute both theoretically and

empirically. They use hourly measures of CO as a proxy for vehicle use. The data set they use is from 15 of

the network stations in Mexico City, which were operating during the entire period of their analysis which

is a four-year window symmetrically spaced around the time of policy implementation (Nov.1987-Nov.1991

for the driving restriction). They �nd that the driving restriction decreased CO concentration at peak hours

by about 7 percent within the �rst month of implementation, but in long run the driving restriction has

increased CO by about 13 percent. The adaption period was about 12.5 months. They �nd slightly smaller

e�ects for o�-peak hours and Sundays. In all, after a period of adaption between 8 to 12 months, the driving

restriction had long-lasting positive impacts on CO, and hence on car use. They also �nd that the driving

restriction had its largest impact in middle-income neighborhoods where households were more likely to buy

a second car to bypass the driving restriction. The theoretical model of car ownership they establish to

explain the mechanisms behind the adaption are highly consistent with the empirical results. Results from

analyzing gasoline sales, number of registered cars, sales of new cars, trade of used cars, tra�c �ows and

taxi medallions are also consistent with the basic results on CO. Again, Gallego et al. (2012) con�rms that

the driving restriction in Mexico City is ine�ective.

Lin et al. (2011) investigate the e�ectiveness of the driving restrictions in Sao Paulo, Bogota, Beijing and

Tianjin respectively. For the driving restriction in Sao Paulo, they use annual averages and maxima of the air

pollution pollutants during 1990-1997, and �nd that carbon monoxide and PM10 reduced at di�erent levels

in most of the speci�cations. For the following restriction in a 152 km2 area in Sao Paulo, they use hourly

air pollution records on the period of 1998-2008 for 15 stations and �nd no signi�cant evidence of an overall

improvement in air quality. For Bogota, they use hourly level pollution records during the period 1997-2009

for 14 stations, using a RD design. They �nd that even though the driving restriction was not e�ective in
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improving the overall air quality, it could be associated with some mild reductions in air pollution levels

during week nights and weekends. The restriction in Bogota also signi�cantly reduced the daily maximum of

several air pollutants. For Beijing, they use the API data for time period Jul.20, 2007-Oct.31, 2009 and focus

their analysis on the concentrations of PM10 derived from API, using both OLS and RD design. They set

two indicator variables for the period of Olympics and after Oct.11 respectively, and they �nd 38% reduction

in PM10 concentrations during Olympics but no evidence afterwards. For Tianjin, they use the same method

to construct the PM10 sample of Tianjin for the time period of Aug.6, 2007-Oct.31, 2009, and �nd that the

restriction could only be associated with mild but not signi�cant reductions in PM10. Lin et al. (2011)

study comprehensively across di�erent cities for similar driving restrictions, and provide a comparison for

the e�ects of driving restrictions in di�erent places.

A few studies have also focused on the e�ect of driving restrictions in Beijing. Wang, W. et al. (2009) and

Wang, X. et al. (2009) both use data collected themselves. Wang, W. et al. (2009) use the PM data sampled

on the roof of the 7-story Geology Building on the Peking University campus during Jul.28, 2008-Sep.3,

2008 and Sep.13, 2008-Oct.7, 2008. They compare PKU data and API data, Olympic and Non-Olympic

periods, and source control and non-source control group periods. They �nd that the source control e�orts,

which include the tra�c restriction and some other controls on factories and construction activities, have

resulted in lower PM10 concentrations. Wang, X. et al. (2009) use the black carbon (BC) data sampled on

the PKU Health Science Center campus. Two aethalometers were installed at two di�erent elevations. One

was 6m above the ground and recorded data from Jul.25 to Oct.2. The other was 20m above the ground

and recorded data from Jul.26 to Sep.5. They �nd that there is a consistent decrease in BC concentrations

as the height increases from the ground level. Besides, they �nd signi�cant increase of both BC median and

maximum concentrations in non-tra�c-control (NTC) days, which indicates the positive impact of tra�c

control regulations. They also �nd that diesel trucks are a major contributor to the summertime BC levels

by observing a sharp rise of BC after midnight in NTC days when non-local trucks were banned in TC days.

Both Wang, W. et al. (2009) and Wang, X. et al. (2009) �nd signi�cant e�ects of driving restriction in

Beijing.

Unlike Wang, W. et al. (2009) and Wang, X. et al. (2009), Chen et al. (2011) use the API data during

Jun.5, 2000-Oct.31, 2009, and the aerosol optical depth (AOD) data during Feb.26, 2000-Dec.31, 2009. They

set up four time windows: the benchmark period (Jun.5, 2000-Dec.12, 2001), seven-year preparation period

(Dec.13, 2001-Aug.7, 2008), one month during Olympic and Paralympic Games (Aug.8, 2008-Sep.17, 2008),

13 months after the Games (Sep.18, 2000-Oct.31, 2009). They also compare API in Beijing with 36 other
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cities by adding city �xed e�ects. They �nd that the environmental actions, especially plant closure and

tra�c control, e�ectively reduced the API by 29.65 percent, but 60 percent of the improvement dissipated one

year after the Games. Their analysis on satellite based AOD data also con�rms that air quality improvement

in Beijing existed but was temporary. But their study only focuses on the restriction and control during

the Olympic Games when there were many confounding factors, such as blockage of the roads, limitation of

traveling, etc. They do not take all of these factors into account, which could severely bias their results.

Viard and Fu (2012) also use the API data for time period Jan.1, 2007-Dec.31, 2009 and focus on

the concentrations of PM10 derived from API. To study the e�ects of driving restrictions on aggregate

pollution levels, they set three indicator variables for the period of odd-even restriction, one-day restriction

from 6am-9pm, and one-day restriction from 7am-8pm respectively. They also add indicators for weekends,

holidays and month-�xed e�ects, and �nd that compared with non-restricted periods, the pollution levels

were 19.3 percent lower during the odd-even restriction period and 7.9 percent lower during the one-day

restriction period with a 9.7 percent increase in weekends (i.e. there seems to be a substitution between

weekdays and weekends). To study the e�ect on station-level pollution, they add station-level �xed e�ects

and a polynomial function of distance between each station and the nearest major road interacted with the

policy variables, and �nd that during the odd-even (one-day) restriction policy pollution dropped by 20.6%

(8.8%) at the ring roads but the e�ects dissipated by 9.1% (5.8%) with each kilometer from the roads. They

also study the e�ects of driving restrictions on TV viewership, and �nd that workers with discretionary

work time increased their TV viewership during the restricted hours, while workers with �xed work time

did not change much. Viard and Fu (2011) complement Chen et al. (2011) by considering a wider range of

restrictions, geographic e�ects and the e�ects on labor market. It is so far the most comprehensive study

on driving restrictions in Beijing. Similar to Chen et al. (2011), Viard and Fu (2011) do not consider the

confounding factors during Olympic Games. Moreover, their study on policies in other periods are also

problematic. They compare all the policies with baseline periods without restrictions. Many things changed

during the time periods that they study on, but they do not control for such factors as population, oil prices,

etc, all of which could have impacts on air quality. Above all, previous studies using OLS without controlling

for all of these factors should be taken with caution.
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3 Beijing's Air Pollution Policies

3.1 Introduction to Tra�c Policies

China had long been infamous for its poor air quality before the Olympic Games. In order to establish a

positive image in front of the world during the Olympic Games in 2008, a series of tra�c policies including

driving restrictions was implemented in Beijing to mitigate air pollution and tra�c congestion. Figure 1

shows a timeline of tra�c policies in Beijing since 2007.

Bus and subway fares were reduced by introducing bus and subway passes in January and October 2007

respectively. Bus fare was reduced from 1 RMB per trip to 0.4 RMB for regular bus pass holders and 0.2

RMB for student pass holders. Subway fares was reduced from 2 RMB per transfer to 2 RMB per trip

regardless of number of transfers. Besides, several new subway lines were open and put into use as shown

in Figure 1. These changes reduced the cost of taking public transportation and encouraged citizens to use

public transportation instead of private cars.

To further alleviate air pollution and tra�c congestion, the Beijing Municipal Government (BMG) an-

nounced a document on Jun.19, 2008 through its o�cial website about a temporary tra�c policy during

Jul, 1 to Sep.20, 2008 (TP0 and TP1 in Figure 1). Speci�cally, cars with license plate numbers ending with

odd and even digits could not be driven on alternate days during Jul.20 to Sep.20, 2008. During Jul.20 to

Aug.27, the restriction was e�ective in the whole administrative area of Beijing; During Aug.28 to Sep.20, it

was only e�ective within (and including) the 5th ring road. People could learn the details about the policy

through BMG's website and TV news.

After a short break, another document was announced on Sep.28, 2008 by BMG on a modi�ed version of

the restriction during Oct.1, 2008 to Apr.10, 2009 (TP2 in Figure 1). Speci�cally, cars should be taken o�

the road one day per week according to the last number of their license plate between 6am and 9pm within

(and including) the 5th ring road of Beijing during Oct.11, 2008 to Apr.10, 2009, without restrictions on

weekends and holidays. The sequence of numbers to be restricted changed every month. For example, if

this month cars with license plate numbers ending with digits 1 or 6 cannot drive on Mondays, 2 or 7 on

Tuesdays, 3 or 8 on Wednesdays, and so on, then next month, 2 or 7 are restricted on Mondays, 3 or 8 on

Tuesdays, and so on.

Another modi�cation of the restriction was announced on Apr.3, 2009 (TP3 in Figure 1). The restriction

time was narrowed to 7am-8pm, and the area was also narrowed to within (but excluding) the 5th ring road

during Apr.11, 2009 to Apr.10, 2010. The sequence of numbers to be restricted changed every 13 weeks
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instead of every month. Since then, the restriction remains similar. Citizens can check online which numbers

are restricted.

To ensure the implementation of the restrictions, people who were caught violating the restrictions had

to pay 100RMB as a punishment, which is a relatively a small amount.6 Before Jan.4, 2011, violators were

only required to pay once in a day regardless of the times and length of the violation in the day, since the

tra�c cameras could only keep one record of a certain car in a day. Since Jan.4, 2011, the tra�c camera

system has been improved so that violators could be charged whenever he/she violates the restrictions, which

means the implementation becomes stricter. In the following analysis, I split TP3 into two parts, and de�ne

TP3-1 as the less strictly implemented policy and TP3-2 as the stricter one.

Another complementary policy was passed on Dec.23, 2010. Citizens who intend to purchase cars in

Beijing have to participate in a lottery to win the permits beginning in January 2011. This policy is aimed

at reducing current car ownership, thus relieving air pollution and tra�c jams. The lottery takes place every

month to render permits to individuals and institutions that intend to purchase cars. Permits cannot be

transferred and would expire in 6 months. Expired permits will be put back to the pool again and increase

the number of winners in the month when the old permits expire.

In this paper, I focus on two of these policy changes: the one between TP2 and TP3, and the one between

TP3-1 and TP3-2. The former was a weakening policy change, while the later was a strengthening policy

change. I discuss in Section 4 why I do not focus on other policies or policy changes and how I analyze the

two policy changes in detail.

3.2 Data

3.2.1 Air pollution data

The primary air quality data set used in this paper is the daily station-level API panel data from the Beijing

Municipal Environmental Protection Bureau (BMEPB) during Jan.1, 2008 to Oct.10, 2012. There are 27

monitoring stations (Figure 2 shows the distribution of the stations), of which 8 stations lie within 5th ring

areas and 19 stations are outside 5th ring areas. A total of 47,090 observations are included in the data set.

The ideal data set to study this problem is daily or hourly concentration data of every relevant pollutant

(CO, SO2, NOx, PM2.5, PM10, etc). But historical daily (or hourly) concentration data for individual

6The 2011 monthly average income in Beijing was RMB 4,672, and those who have cars would have much higher incomes.
The average cost to maintain a car is RMB 20-25 thousand per year in Beijing, and the cost varies a lot by di�erent types of
cars.
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pollutants is not publicly available in China. The daily air pollution index (API), an index ranging from 0

to 500, is the best substitute publicly available in China. It is calculated from concentrations of SO2, NO2

and PM10. Speci�cally, concentrations of SO2, NO2 and PM10 are translated into pollutant-speci�c APIs

according to Table 1 and API only reports the highest pollutant-speci�c API of the three. If the maximum

pollutant-speci�c API exceeds 500, it is capped at 500. In most days, the maximum pollutant-speci�c API is

the one for PM10, because particulate matter is the most severe pollutant in Beijing (3722 out of 3967days

for Jun.5, 2000-Aug.14, 2012 when the maximum pollutant was available).7 A day with API below or equal

to 100 is de�ned as a "blue sky" day. More speci�cally, air quality is divided into �ve levels according to the

API: 0-50 is "excellent", 50-100 is "good", 100-200 is "slightly polluted", 200-300 is "moderately polluted",

and 300-500 is "heavily polluted".

The daily aggregate API data is available from the Ministry of Environmental Protection of the People's

Republic of China (MEP) since Jun.5, 2000, and the daily station-level API data is available from the Beijing

Municipal Environmental Protection Bureau (BMEPB) since Jan.1, 2008. The data set used in this paper is

the daily station-level API panel data from BMEPB for Jan.1, 2008-Oct.10, 2012. I do not use the aggregate

API data from MEP for two reasons. First, most of the polices I study on are only e�ective within the 5th

ring areas, so using the aggregate data covering both stations within and outside the 5th ring areas may

misstate the e�ects of the policies. Second, the station-level API data is less possibly being manipulated

compared to the aggregate one, since no one cares about the "blue sky days" in a particular station, so it is

not necessary to manipulate it. In addition, there are so many stations, so it is more di�cult to manipulate

it. When I aggregate the station-level API, it is not exactly the same as the reported aggregate API.8 Figure

3 shows the density distribution of the aggregate API data from MEP directly (Panel A) and the aggregate

API data calculated from station-level API from BMEPB (Panel B). We can see that the density just below

100 is higher in Panel A while the density just above 100 is lower in Panel A, which suggests that there

are some manipulations from just above 100 to just below 100 (100 is the cuto� for the blue sky days as

discussed above) in the aggregate API data from MEP directly. So I use the aggregate API data calculated

using the stations within the 5th ring areas only to study the overall e�ects of the policies. In this paper,

the main analysis is based on the station-level data, but it is also useful to consider the aggregate analysis

7The maximum pollutant is not reported when API is below 50, i.e. when the day is "excellent".
8For the data used in the following analysis, the aggregate API data are calculated from station-level API data by the

formula: APIt = 1
8

∑8

s=1
APIst, where s=1-8 if station s is within the 5th ring areas, s=9-27 if station s is outside the 5th

ring areas. For the data used to compare with the aggregate API data directly from MEP in this section, the aggregate API

data are calculated from station-level API data by the formula: APIt =
1
27

∑27

s=1
APIst, since the aggregate API data directly

from MEP includes data from all stations.

12



as a reference and comparison.

Before proceeding, I �rst discuss the quality of the API data I use in this paper. Andrew (2008) �nds

inconsistency between "blue sky days" and the API data in Beijing and that there exists some manipulations

in the aggregate API data from MEP in the following three channels: First, the government lowered the

air quality standard since 2000. Second, the government changed stations from dirty places to clean places

in 2006. Finally, the government manipulated the data near the threshold of 100 in order to report more

blue sky days.9 One reason I do not use the aggregate API data as mentioned above is that the aggregate

API data is more possibly being manipulated compared to the station-level data. Even though less likely,

station-level API data still could be manipulated by the channels mentioned above. From my perspective,

the standard change does not a�ect my study at all since all data sets I use are after 2000, so the standard

change makes no di�erence. The station change from dirty places to clean places does have some in�uence

since the station distribution may result in bias if the stations are not selected randomly. But for comparison

purposes, if I use the data after 2008 and focus on the stations that are being used during the whole study

period, it does not make much di�erence, especially after adding station �xed e�ects. Even if there are

manipulations as shown by Andrew (2008), it seems that the government could always manipulate data, so

it is independent of the policy implementation. It might underestimate the e�ects of the policy, but it is

reasonable for us to get a conservative estimate. Above all, the station-level API data is less possibly being

manipulated and even if being manipulated, it does not have much e�ect and is still good enough to study

on the e�ects of the policies.

3.2.2 Ridership and congestion data

The public transportation data set used is the monthly subway ridership, bus ridership and congestion index

data during Jan 2007 to Jun 2011 from the Beijing Transportation Research Center (BTRC). Ideally, daily or

even hourly data of subway and bus ridership for every transportation line in Beijing would be better to study

this problem. But it is not available. The data set used in this paper is the monthly subway ridership, bus

ridership and congestion index data during Jan 2007 to Jun 2011 from the Beijing Transportation Research

Center (BTRC). The monthly subway ridership and bus ridership data are aggregated from all the subway

and bus lines in Beijing respectively. They are calculated as the average ridership per day during a month

for all roads in Beijing, and the unit of measurement is ten thousand passengers per day. The congestion

index is a 0-10 scale index indicating the level of congestion in Beijing. Congestion is divided into �ve levels:

9For more details, please refer to Andrew (2008).
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0-2 is "very smooth", 2-4 is "smooth", 4-6 is "slightly congested", 6-8 is "moderately congested", and 8-10

is "severely congested". The monthly congestion index is also the average index during a month.

3.2.3 Weather data

The weather data used in this paper is the daily weather data from the China Meteorological Data Sharing

Service System (CMDSSS) during Jan.1, 2008 to Oct.10, 2012, including windspeed, wind direction, dry-bulb

temperature (DBT), dew-point temperature (DPT), precipitation, hours of sunshine, atmospheric pressure,

etc. There are data from two stations, one is in Haidian District, and the other is in Miyun District. Higher

wind speeds can remove particulates but also import them from neighboring areas. Beijing's air quality

is also greatly a�ected by wind direction. Temperature has an indeterminate e�ect on particulate matter

depending on whether a temperature inversion is created. Humidity (dew-point temperature is a measure

of humidity) can interact with pollutants to create secondary ones. Precipitation has opposing e�ects. Rain

can interact with existing pollutants to create secondary ones, but can also wash particles from the air and

minimize their formation. I also include the daily hours of sunshine to control for the amount of atmospheric

solar radiation, which creates ozone and more particulate matter. One limitation of the weather data is

that it is the average data across di�erent stations, so when merged with station-level API data, there is

one weather data for 27 stations, which ignores the e�ects of di�erent weather conditions across stations.

But Beijing is not large, the weather conditions should be similar across the whole municipal areas, so it

does not have much e�ect. Another concern is that weather could also be in�uenced by pollution level (e.g.

more particulate matters in the air could result in fog and haze), so the weather data are only used to check

robustness and serve as additional reference for the main results.

4 Empirical Strategy

Ideally, if there were no other confounding factors during the Olympic Games such as blockage of the roads,

limitation of traveling, and more visitors from all over the world, I would study the e�ects of each restriction

compared with non-restriction periods by the following model.

log(APIst) = α0 +
∑3

i=1 αiTPit + θ′Xst + εst

where log(APIst) is the natural logarithm of API at station s on day t, TPit are the indicators for tra�c

policy i (as shown in Figure 1) on day t, Xt is a vector of covariates, εt is the error term. αi's are the
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coe�cients of interest, which can be interpreted as the approximate percent change of API due to policy i.

Viard and Fu (2011) have done a similar analysis, except that they also include the lag term of the dependent

variable. I explain below why I do not include the lag term.

However, there were many confounding factors during the Olympic Games as mentioned above. Without

taking these factors into account, the results would be severely biased. Not considering other tra�c policies,

the results could be overestimated since other policies could also help alleviate air pollution and congestion;

Not considering the increasing visitors during the Olympic Games could underestimate the results, since there

would be more pollution if restrictions were not implemented. For the driving restrictions after the Olympic

Games, there were still many confounding factors that changed with time., such as people's thoughts about

driving, population growth, household income, oil prices, etc. Comparing di�erent policies with baseline

periods without restrictions is not appropriate without controlling for all of these factors. However, it is

impossible to control for all confounding factors, so previous OLS estimates may result in omitted variable

bias and should be taken with caution. RD design could overcome this problem by comparing air quality

just before the policy change (i.e. discontinuity) and just after the policy change. In this way, the change

of confounding factors could be ignored since the time was so close that all things that were changing

continuously could be seen as unchanged. Therefore, the policy changes were the only changes that happened

so that the changes of air quality could be attributed to the policy changes.

In this paper, I focused my study on two of the changes in the driving restrictions in Beijing: the

one between TP2 and TP3, and the one between TP3-1 and TP3-2. The former was a weakening policy

change, while the later was a strengthening policy change. I do not focus on the policies during Olympic

Games, because some other policy changes happened during the same time period that were not changing

continuously either. So It was di�cult to distinguish between the e�ects of the driving restriction and those

of other policies even when applying a RD design.

Classically, by narrowing the window around the threshold (the critical value where the discontinuity

happens), RD design rules out the e�ects of confounding factors. As modern econometrics develops, it has

been shown that by adding a high order polynomial or local polynomial smoothing of the assignment variable,

we can also control for the confounding factors.10 In the Mexico City case, Davis (2008) took advantage

of RD design studying on a four-year symmetric time window by adding seventh, eighth, and ninth order

polynomial time trends. I do not use high order polynomials because there is not a standard method to choose

the order of polynomials that has been proven to be most appropriate. The results might be vulnerable to

10For more details, please refer to Lee and Lemieux, 2010.
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di�erent orders of polynomials. Moreover, when the time window is short, high order polynomials tend to

over�t the trend. In this paper, I employed a sharp RD design by adding local polynomial plots based on

triangle kernel which has been proved to be an appropriate kernel for RD context.11

Before implementing a RD design, one should check the validity of other relevant variables, i.e. to make

sure that there is no di�erence in other relevant variables before and after the policy change. In this case,

I have weather variables that are related to air pollution level. Table 2 reports the comparison of weather

variables one year before and after the two policy changes, which indicates no signi�cant di�erence before

and after the policy changes. So it is appropriate to apply RD design in this scenario.

The RD model I applied for both station-level data and aggregate data in this paper can be expressed

as follows.

log(APIt) = α0 + αiTPit + k(Dt) + θ′Xt + εt

where log(APIt) is the natural logarithm of API on day t, TPit is the indicator variable of policy i on day t,

k(Dt) is the local polynomial functions of Dt, Dt is normalized time where Dt=0 at the cuto� value of policy

changes, and Xt is a vector of covariates, εt is the error term. αi is the coe�cient of interest, which can be

interpreted as the percent change in API due to the policy change. I use the log form of API as dependent

variable so that αi can be interpreted as the approximate percent change in API due to the policy change.12

Moreover, the distribution of the log form of the dependent variable is close to a normal distribution, so

that the inference statistics including p-values are valid. However, direct transformation to log form results

in 143 missing values for the original zero values in API. To include the missing values, I replace all zero

values in API by 1 and then transform them to the log form. By doing this, all observations would be

included and the results would not be a�ected as the di�erence between 0 and 1 in API is tiny especially

after transforming to the log form. Empirically, the results are exactly the same regardless of including or

not including the missing values. Lag terms of the dependent variable do not appear in this equation because

PM10 usually stays in the air no longer than a day (As mentioned above, PM10 is the main determinant

11The sharp RD design is a concept relative to a fuzzy RD design, which requires that the identi�cation of causal e�ects
hinges on the crucial assumption that there is indeed a sharp cut-o�, around which there is a discontinuity in the probability of
assignment from 0 to 1. In contrast to the sharp RD design, a fuzzy RD does not require a sharp discontinuity in the probability
of assignment but is applicable as long as the probability of assignment is di�erent. See Cheng, Jianqing, and Marron (1997)
for more detials.

12The accurate percent change of API change because of policy change i is given by the formula: 100(eαi − 1)%. Since

αi = log(APITPi=1)− log(APITPi=0) = log(
APITPi=1

APITPi=0
), we can get

APITPi=1

APITPi=0
= eαi by taking exponential on each side. By

further transformation,
APITPi=1−APITPi=0

APITPi=0
= eαi − 1. The left side is the exact percent change of API due to policy change

i.
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factor of API).13 Besides, the restrictions were continuous in most of the case, so the auto correlation of log

(API) might be also due to the e�ectiveness of the restrictions. It is di�cult to tell how much is due to the

pollutants persistency. Davis (2008) also showed that the pollutants were not persistent in Mexico City. To

allow correlations of error terms within a station, standard errors are clustered by stations. It is reasonable

because there could be some common unobservable variables for individual stations, such as measurement

errors due to monitoring machines in the stations. To estimate the coe�cients αi, we can either use a wide

or narrow time window. The main results shown in next section report windows of 2 months, 4months, and

6 months on each side of the �rst policy change, and 2 months, 11 months, and 20 months on each side

of the second policy change.14 The time window shown in the main results re�ect results for a reasonably

small window, the largest available symmetric window and a median window. In section 6, robust checks

including adding month dummies, weather covariates, �xed e�ects, and using di�erent time windows are

also reported.

5 Main Results

As described in Section 4, I employ a sharp RD design to estimate the e�ects of the two policy changes

(one is a weakening change, and the other is a strengthening change). In this section, the main results are

reported. The time window shown in the main results re�ect results for a reasonably small window, the

largest available symmetric window and a median window. Figure 4 and Figure 5 show the local polynomial

plots of the weakening policy change for the three chosen windows (2 months, 4months, and 6 months on

each side).15 Figure 4 shows the graph for data within the �fth ring. We can see that a sudden increase of

API happens at the point of the �rst policy change for all three windows, which indicates that the weakening

policy change increases air pollution even after partialling out a continuous time trend for restricted areas.

Figure 5 shows the graph for data outside �fth ring. Contrary to the graph for data within �fth ring, there

is no such a sharp discontinuity for all three windows, which suggests that for non-restricted areas, the

weakening policy change does not have signi�cant e�ects on air pollution level.

Figure 6 and Figure 7 show the local polynomial plots of the strengthening policy change for the three

13For particulate matters, the smaller the particle, the longer it can remain suspended in the air before settling. PM2.5 can
stay in the air from hours to weeks and travel very long distances because it is smaller and lighter. PM10 can stay in the air
for minutes to hours and can travel shorter distances from hundreds of yards to many mile because it is larger and heavier.

146 months is the largest window available for the �rst policy change, while 20 months is the largest symmetric window
available for the second policy change.

15Figures in this section use station-level API data, as there are more observations. But aggregate API data gives similar
shapes.
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chosen time windows (2 months, 11 months, and 20 months). Figure 6 is shows the graph for data within

the �fth ring, while Figure 7 shows the graph for data outside the �fth ring. Unlike the weakening policy

change, the �gures indicate a sharp discontinuity (decrease) of API at the point of the strengthening policy

change for all three windows both within the �fth ring and outside the �fth ring, which suggests that both

restricted areas and non-restricted areas have air quality improvement because of the strengthening policy

change.

Table 3 shows the e�ects of the two policy changes for station-level API data. The benchmark results

include no covariates and use a triangle kernel as mentioned and explained in Section 4. The bandwidth

is chosen to minimize MSE (mean squared error). Imbens and Kalyanaraman (2009) show that bandwidth

chosen to minimize MSE is the most accurate choice for a sharp RD context. The bandwidth chosen in this

analysis is about 8 days, which may change up and down a little bit according to di�erent speci�cations. Panel

A shows the results for the weakening policy change, while Panel B shows the results for the strengthening

policy change. For each policy change, I show 3 windows (from a narrow to a wide one) for both within

�fth ring areas and outside �fth ring areas. Robust standard errors which are clustered by monitoring

stations are reported in parentheses. The results coincide with the �gures above. There was a 17.7%-18.7%

increase in API due to a weakening policy change (shorter restricted time period) in restricted areas. The

e�ects in non-restricted areas are about 4 percent, which is statistically insigni�cant and small. There was a

31.6%-34.7% decrease in API due to a strengthening policy change (more penalty to violators and restriction

on purchasing a second car) in both restricted areas. 16

It seems to be surprising that both restricted areas and non-restricted areas have an air pollution level

decrease because of the strengthening policy change. There are four possible reasons to explain why both

restricted areas and non-restricted areas show a decrease in API. First, the average API is higher in restricted

areas than non-restricted areas, so a higher percent change does not necessarily mean a higher change in

absolute value. Second, the restriction on purchasing a second car is in e�ect for both areas, so maybe it is

an indicator that the restriction on purchasing a second car plays an important role. But as I discuss in the

last section, even if the restriction on purchasing a second car plays an important role, it is not possible to be

completely captured by the RD analysis. So the results mainly re�ect the e�ects of a greater penalty. Third,

driving within �fth ring areas and outside �fth ring areas are complements. For example, people who want

to drive across the two areas would not drive even on the non-restricted areas if his/her car is restricted. But

further study is needed to determine which factor is most important and plays a dominant role. Finally, as

16The percent changes above and below are calculated from the formula in footnote 12.
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shown in the next section, weather variables have some in�uence on air pollution levels, which o�sets some

of the policy change e�ects, especially in non-restricted areas. But the results controlling for weather should

be also taken with caution, with details shown in Section 6.

I do not add station �xed e�ects for the station-level estimates, because it is also not necessary to add �xed

e�ects in this scenario.17 Theoretically, in order for pooled panel data to produce consistent estimates, the

unobserved e�ect (�xed e�ect) should be uncorrelated with the explanatory variables (the policy changes).

The policy changes in this analysis are all exogenously determined by the government, which are at least

uncorrelated with any station factor. So the pooled data could provide consistent estimates even without

considering station �xed e�ects. However, there is no harm to check it with the data. As robustness checks,

the results of manually adding �xed e�ects are shown in next section, which is also consistent with this

argument.

Table 4 presents the e�ects of policy changes for the aggregate API data. Note that the data are averaged

only across stations within the �fth ring. There was an about 10 percent increase in API due to the weakening

policy change, while there was a 8.4%-17.5% decrease in API due to the strengthening policy change. The

signs are all as expected, but the e�ects are smaller than those using station-level data. It makes sense

because the aggregate data tends to average everything and gets rid of some important variations. The

results are all not signi�cant, because the standard errors tend to be larger due to fewer observations. But

it still con�rms that there are positive e�ects on air quality under a stronger restriction and negative e�ects

under a weaker restriction.

In addition to the analysis above, it is necessary to check whether these results are robust to all reasonable

empirical speci�cations, which are shown in the next section.

6 Robustness Checks and Extensions

In this section, I �rst show some robustness analysis to check the stability of estimates to all reasonable

speci�cations. The local linear plots used in the main analysis can catch the time trend and some �uctuations

in API, but it is possible that there are still some certain modes associated with seasons.18 So it is reasonable

17Another reason that I do not add �xed e�ects is that the �rd� command used in this paper does not provide such an option,
and manually adding �xed e�ects would make the standard errors incorrect. To manually add �xed e�ects, I use two methods.
The �rst is to regress the dependent variable on station dummies and save the residuals, and then regress the residuals using
the �rd� command. The second is to demean the dependent variable by stations, and regress the demeaned dependent variable
using the �rd� command. Both methods give the same results.

18I use month dummies instead of season dummies because they could better describe the data. There are enough observations
for the station-level data, so adding a few more independent variables would not lose much degree of freedom.
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to check whether adding month dummies would signi�cantly a�ect the results. Weather covariates, as

described in Section 3, could in�uence air pollution levels in multiple ways, so it is also necessary to see

whether adding these variables would change the results or not. Although I explain that adding �xed e�ects

are not necessary theoretically in Section 5, there is no harm to check directly from the data that there

would be no di�erence. So the �rst subsection shows robustness checks including adding month dummies,

weather covariates, �xed e�ects (by demeaning within stations and adding station dummies).

Public transportation are substitutes to private vehicles in theory, so it is possible that the driving

restriction could increase public transportation use, especially in the case that Beijing's public transportation

is really cheap as shown in Section 3. In addition, another important goal of the driving restriction is to

mitigate congestion. So the second subsection analyzes the e�ects of the driving restrictions on public

transportation use and congestion.

6.1 Robustness Checks

In this subsection, robustness checks including adding month dummies, weather covariates, station �xed

e�ects (by demeaning within stations and adding station dummies) are reported. To partial out the in�uence

of month dummies, weather covariates, and station �xed e�ects, I �rst regress API on those variables for

the whole data set, and get the residuals, which is the API after controlling for those variables. Then I use

the �rd� command to analyze the e�ects of the policy changes on the chosen time windows.

Table 5 shows the results. Panel A shows the results for the weakening policy change, while Panel B shows

the results for the strengthening policy change. For each policy change, I show 3 windows (same windows

as Section 5) for both within �fth ring areas and outside �fth ring areas. Column (1)-(3) include data from

stations within the �fth ring, while column (4)-(6) include data from stations outside the �fth ring. The

�rst row includes month dummies, the second row includes weather data, the third row reports estimates

based on demeaned log(API) by stations, the fourth row includes station dummies. The last two rows

actually consider the same thing, i.e. the station �xed e�ects. Robust standard errors which are clustered

by monitoring stations are reported in parentheses. The results suggest that there was a 11%-18% increase

in API due to the weakening policy change in restricted areas for all speci�cations, which are consistent

with the main results in Section 5. The e�ects in non-restricted areas �uctuate a little bit for di�erent

speci�cations, but all the results are statistically insigni�cant and small. So it indicates there is no e�ect in

non-restricted areas because of the weakening policy change, which is also consistent with the main results.

For the strengthening policy change, there is an about 30 percent decrease in API in both restricted and
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non-restricted areas for all speci�cations except the one controlling for weather covariates. By controlling

weather covariates, the e�ects in restricted areas become smaller (about 27 percent decrease in API) but

still statistically signi�cant; While the e�ects in non-restricted areas become small (about 7 percent decrease

in API) and statistically insigni�cant. The results suggest that weather covariates do in�uence air pollution

level to some extent (especially in non-restricted areas). But weather could also be in�uenced by pollution

levels (e.g. more particulate matters in the air could result in fog and haze), so the results may overestimate

the e�ects of weather variables. The real e�ects of the policy change might lie between the main results and

the results after controlling for weather, but it is hard to say without su�cient evidence.

Table 6 shows results from di�erent time windows (from one months on each side of the policy changes

to the largest available time windows). Panel A shows the results for the weakening policy change, while

Panel B shows the results for the strengthening policy change. The results are also highly consistent with the

main results (11%-18% increase in API for the weakening policy change in restricted areas, and 30 percent

decrease in API for the strengthening policy change in both restricted and non-restricted areas), except the

smallest time window (one month on each side) for the weakening policy change. It may be because when

the time window is really narrow, there are not enough observations to capture the trend accurately.

6.2 Public Transportation Ridership and Congestion

The ridership and congestion data is not frequent enough to implement a RD design, so in this part I use

OLS by adding policy dummies. Similar to the air pollution analysis, there are problems using simple OLS,

so the results in this part should be taken with caution. But it is still useful to have some implications about

the e�ects of driving restrictions on public transportation and congestion.

To study the e�ects of driving restrictions on the use of public transportation (subway and bus) and

congestion, I employ the following model.

log(Yt) = α0 +
∑

αiTPit + θ′Xt + εt

where log(Yt) is the natural logarithm of the dependent variables which could be bus ridership, subway

ridership, total public transportation ridership, and congestion index. TPit are policy indicators de�ned as

the fraction of the days that the policy was in e�ect, since the data are monthly but almost none of the

policies started on the �rst day of the month. For example, TP1 started on Jul.20, 2008, the indicator

TP1 in Jul.2008 is de�ned as (31-19)/31, since there are 31 days in July and the policy was not in e�ect

for the �rst 19 days (i.e. the policy was in e�ect in the following 12 days). For Jun.2008, TP1 is just 0
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since it was not e�ective in the whole June, and for Aug.2008, TP2 is just 1 since it was e�ective in the

whole August. Xt is a vector of covariates, including seasonal dummies, for which I de�ne Mar.-May as

spring, Jun.-Aug. as summer, Sep.-Nov. as fall, and Dec.-Feb. as winter. εt is the error term. αi's are

the coe�cients of interest, which can be interpreted as the approximate percent change in the dependent

variables (bus ridership, subway ridership, total public transportation ridership, and congestion index) due

to policy i.

Table 7 shows the e�ects of the policy changes on public transportation (including bus and subway) and

congestion. Column (1)-(2) report the results for bus ridership, column (3)-(4) report the results for subway

ridership, column (5)-(6) report results for total public transportation ridership, i.e. the sum of bus and

subway ridership, and column (7)-(8) report results for congestion index. Column (1)(3) (5)(7) consider

TP3 as whole, while column (2)(4)(6)(8) split TP3 into two parts, i.e. less penalty and more penalty

policies. Standard errors are shown in parentheses. After controlling for seasonal e�ects, the restrictions

were associated with an increase in public transportation use and a decrease in congestion. The policy with

less penalty was correlated with an increase in total public transportation use by 34 percent and a decrease

in congestion by 25 percent compared with non-restriction periods, while the policy with more penalty was

correlated with an increase in total public transportation use by 38 percent and a decrease in congestion by

63 percent. It indicates that more penalty could possibly improve the e�ects of the policy, i.e. to increase

public transportation use and reduce congestion. Note that there may exist substitution between bus and

subway, so the results for the two should be considered together. One concern is that the increase in the use

of public transportation may have resulted from other factors, such as more population, more subway lines

in use, etc. Future work is needed to ensure causality.

7 Discussion and Conclusion

This paper investigates the e�ects of two policy changes: a weakening policy change due to shorter restricted

time period, and a strengthening policy change due to more penalty to violators and the complementary

restriction on purchasing a second car. By employing a regression discontinuity design, I �nd that the

weakening policy change led to more pollution in only restricted areas, while the strengthening policy change

improved air quality in both restricted and non-restricted areas. Several robustness checks con�rm the results.

I also �nd that driving restrictions increased the use of public transportation and alleviated tra�c congestion.

Theoretically, the e�ects of the strengthening policy change include two parts: one is the stricter penalty
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on the violators, the other is the complementary policy to restrict purchasing a second car. Both of the two

changes happened in Jan, 2011, so it is di�cult to distinguish the e�ects from the two changes. But as far as

I am concerned, the e�ects from the RD analysis are mostly the e�ects of the stricter penalty. RD design is

not very appropriate to evaluate the e�ects of the car purchasing restriction, as the car purchasing restriction

has long run e�ects, while the RD analysis mainly captures the immediate e�ects. By the local linear plots,

the RD design has ruled out most of the long run e�ects. The trends of the numbers of applicants and

winners along with the rates of winners since January, 2011 also support the argument, which are shown in

Figure 6. According to Figure 6, the number of applicants increased while the number of winners did not.

So the rate of decreased with time, which indicates that the e�ects would be larger in long run than short

run.19 However, if regarding the results in Table 3 Panel B as the e�ects of stricter penalty, it would still be

overestimated. Further study is needed to distinguish the e�ects of stricter enforcement and car purchase

lottery.

The comparison between the stations within the �fth ring areas and those outside the �fth ring areas

shows that both the restricted areas and non-restricted areas have air quality improvement because of the

stricter penalty and the complementary policy on car purchasing. One possible explanation to the results is

that driving within 5th ring areas and outside 5th ring areas are complements. The complements property

brings some positive externality to non-restricted areas. People tend to substitute some trips to weekends as

shown in Mexico City (Davis, 2008). There might also be some substitute between restricted weekdays and

non-restricted weekdays for a particular car. But since the restricted day of one car is the non-restricted day

for another car, data is not available to check such substitutes. Above all, driving in restricted areas and

non-restricted areas are complements, while driving in restricted days and non-restricted days are substitutes.

The policies are e�ective when the substitute e�ects is not so much, because people just canceled some of the

less important trips instead of moving it to another day, and some other trips are done exactly the restricted

day by public transportation (since some trips cannot be moved, such as important conference). Another

useful and policy relevant implication is that the government should put more e�orts into monitoring and

punishing violators properly as well as making complementary policy to ensure the e�ectiveness of the policy.

Although the evidence in this paper cannot prove directly that driving restrictions are e�ective in Beijing,

policy changes could signi�cantly a�ect air quality, which indicates restrictions especially restrictions with

strict penalty and proper complementary policy could improve air quality. Then a question naturally arises

19The long run e�ects may also be overestimated since many people who participated the lottery would not buy a car urgently
if there was not the lottery. Since the winner rate is quite low, they just want to have an option whether or not to buy a car.
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as to why driving restrictions are e�ective in Beijing but not in Mexico City. There are three possible reasons.

First, the car purchase lottery in Beijing reduces the possibility for people to buy a second car to some extent,

which has an important policy implication that policies that enforce each other can have larger e�ects than

a simple policy. Second, many households in Beijing are struggling to buy houses and cannot a�ord to buy

a second car just to substitute for the previous car on the restricted days. Third, Beijing has very cheap

public transportation, so there would be a large number of people who would turn to low emission public

transportation instead of driving. Finally, Davis (2008) points out that in Mexico City, public transportation

and private cars are kind of complements, because many subway and bus stations are remote and people

should drive private cars to get there. But in Beijing, it is not the case. Public transportation system is

dense and convenient, so it should be substitute of private cars instead of complement as in Mexico City.

However, Beijing's public transportation system also needs further construction, as many of the buses and

subway lines are rather crowded, especially during peak hours.

Driving restrictions seem to be e�ective, but we cannot say it is a good policy. The cost of implementing

the restrictions and the loss of utility by reducing driving should be also considered when measuring a policy

is whether e�ective or not. The cost of implementing the restriction is not high, since could observe the

violators through tra�c cameras, which should be used no matter there is a restriction or not. But as Davis

(2008) indicates, driving restrictions impose high social costs as they prevent people from using a preferred

way of traveling. The utility loss should be taken into account when policy makers evaluate a policy. Davis

(2008) uses total increased vehicle expenditures associated with the driving restriction as a proxy for social

costs. However, social costs are di�cult to evaluate in Beijing as people did not increase car expenditures

because of the restriction. Moreover, the proxy is also inaccurate. It could be overstated and understated

as explained by Davis (2008). So the bene�ts from better air quality resulted from the driving restriction

would be o�set at least partially by the social costs.

To conclude, there are still several caveats of my analysis in this paper and need some future work. First,

the e�ects of the strengthening policy change include two parts: one is the stricter penalty on the violators,

the other is the complementary policy to restrict purchasing a second car. Although I have argued above that

the e�ects from the RD analysis are mostly the e�ects of the stricter penalty, further study is still needed

to distinguish precisely the e�ects of stricter enforcement and car purchase lottery. One way to do so is to

assess the e�ects of the car purchase lottery on people's behaviors (including car purchase, car use, and how

many times they participate the lottery, etc) using household level data. However, the data is not currently

available. Second, the ridership analysis is less reliable due to data limitation. Besides, subway open-ups
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have not been considered, which could also a�ect transportation ridership in both short run and long run

(not just subway, since bus and subway are substitutes and also complements in some sense). Finally, more

work is needed to study on people's behaviors to con�rm the underlying mechanisms, such as whether there

are substitutes or complements between driving in di�erent areas and at di�erent time periods.
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Figure 1: Policy Timeline
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Figure 2: Distribution of Beijing Air Quality Auto Monitoring Stations
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(a) Density of the aggregate API data from MEP directly

(b) Density of the API data calculated from station-level API from BMEPB

Figure 3: Comparison of Density Distributions of Two Sources of Aggregate API Data
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(a) Two months on each side (Left for within �fth ring areas, right for outside �fth ring areas)

(b) Four months on each side (Left for within �fth ring areas, right for outside �fth ring areas)

(c) Six months on each side (Left for within �fth ring areas, right for outside �fth ring areas)

Figure 4: First Discontinuity (Weakening Policy)
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(a) Two months on each side (Left for within �fth ring areas, right for outside �fth ring areas)

(b) Eleven months on each side (Left for within �fth ring areas, right for outside �fth ring areas)

(c) Twenty months on each side (Left for within �fth ring areas, right for outside �fth ring areas)

Figure 5: Second Discontinuity (Strengthening Policy)
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Figure 6: Numbers of Applicants and Winners of Car Purchasing Lottery
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Table 1: Transformation from Pollutant Concentration to API1 

 
API PM10 (µg/m3) NO2 (µg/m3) SO2 (µg/m3) 
0-50 0-50 0-80 0-50 

50-100 50-150 80-120 50-150 
100-200 150-350 120-280 150-800 
200-300 350-420 280-565 800-1600 
300-400 420-500 565-750 1600-2100 
400-500 500-600 750-940 2100-2620 

 
  

                                                             
1 Table 1 is from Andrew (2008). Andrew pointed out that there was a standard change since Jun. 2000. This is the one after Jun. 
2000. 
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Table 2: Validity Check of Weather Variables 

 
 
Dependent 
Variable 

Weakening Policy Change  Strengthening Policy Change 
Before After Difference Before After Difference 

(1) (2) (3) (4) (5) (6) 
        
Wind 
 speed 

2.051*** 2.087*** 0.0346  2.114*** 2.040*** -0.0736 
(0.0365) (0.0376) (0.0515)  (0.0392) (0.0363) (0.0553) 

        
Wind 
 direction 

147.7*** 148.0*** 0.201  158.5*** 160.2*** 1.782 
(2.567) (2.531) (3.628)  (2.629) (2.473) (3.713) 

        
Dry-bulb 

temperature 
124.6*** 116.7*** -7.812  117.5*** 125.6*** 7.598 
(6.170) (6.491) (8.719)  (6.216) (6.016) (8.779) 

        
Dew-point 

temperature 
26.40*** 15.79** -10.34  16.71** 16.60** -0.637 
(7.350) (7.321) (10.39)  (7.572) (7.487) (10.69) 

        
Precipitation 4.446*** 3.654*** -0.798  3.630*** 4.485*** 0.843 

(0.729) (0.698) (1.030)  (0.968) (1.165) (1.367) 
        
Hours of 

sunshine 
49.62*** 51.31*** 1.789  53.47*** 51.88*** -1.621 
(1.706) (1.733) (2.410)  (1.735) (1.749) (2.450) 

        
Atmospheric 

pressure 
10,164*** 10,167*** 3.232  10,168*** 10,177*** 8.894 

(5.369) (5.543) (7.588)  (5.520) (5.882) (7.795) 
        
Observations 365 364 729  364 364 728 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows validity checks of weather variables. Column (1)-(3) report the comparison before and after 
the weakening policy change, while column (4)-(6) report the comparison before and after the strengthening policy 
change. The time window used is one year on each side of the policy changes. Standard errors are reported in 
parentheses. 
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Table 3: Effects of Policy Changes (Station-level API) 

 
(a) Effects of The Weakening Policy Change 

 
Dependent Variable: log(API) 

 
Time  
 window 

Within 5th ring areas  Outside 5th ring areas 
4 months 8 months 12 months 4 months 8 months 12 months 

(1) (2) (3) (4) (5) (6) 
        
Weakening 

policy 
0.163*** 0.171*** 0.172***  0.0447 0.0392 0.0403 

change (0.0337) (0.0340) (0.0340)  (0.0350) (0.0353) (0.0352) 
        
Observations 952 1,912 2,872  2,261 4,534 6,808 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from six separate regressions. Column (1)-(3) include data from stations 
within fifth ring, while column (4)-(6) include data from stations outside fifth ring. Time windows for 
column (1)&(4), (2)&(5), (3)&(6) are 2 months, 4 months, and 6 months on each side of the policy change 
respectively. 6 months on each side is the largest window available for the first policy change. Robust 
standard errors are reported in parentheses, which are clustered by stations. 

 
 

(b) Effects of The Strengthening Policy Change 
 

Dependent Variable: log(API) 
 
Time  
 window 

Within 5th ring areas  Outside 5th ring areas 
4 months 22 months 40 months 4 months 22 months 40 months 

(1) (2) (3) (4) (5) (6) 
        
Strengthening 

policy 
-0.298*** -0.275*** -0.275***  -0.303*** -0.306*** -0.306*** 

change (0.0403) (0.0417) (0.0417)  (0.0535) (0.0542) (0.0543) 
        
Observations 951 5,265 9,577  2,243 12,444 22,662 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from six separate regressions. Column (1)-(3) include data from stations within 
fifth ring, while column (4)-(6) include data from stations outside fifth ring. Time windows for column (1)&(4), 
(2)&(5), (3)&(6) are 2 months, 11 months, and 20 months on each side of the policy change respectively. 20 months 
on each side is the largest window available for the second policy change. Robust standard errors are reported in 
parentheses, which are clustered by stations. 
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Table 4: Effects of Policy Changes (Aggregate API) 
 

Dependent Variable: log(API) 
 
Time  
 window 

Weakening change  Strengthening change 
4 months 8 months 12 months 4 months 22 months 40 months 

(1) (2) (3) (4) (5) (6) 
        
Effects of 
policy 

0.0997 0.100 0.104  -0.162 -0.0813 -0.106 

changes (0.150) (0.150) (0.148)  (0.366) (0.404) (0.392) 
        
Observations 119 239 359  119 659 1,199 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from six separate regressions. Column (1)-(3) include aggregate API data 
around the first policy change, while column (4)-(6) include aggregate API data around the second policy 
change. Time windows for column (1)-(3) are 2 months, 4 months, and 6 months on each side of the first 
policy change respectively. 6 months on each side is the largest window available for the first policy change. 
Time windows for column (4)-(6) are 2 months, 11 months, and 20 months on each side of the second 
policy change respectively. 20 months on each side is the largest window available for the second policy 
change. Standard errors are reported in parentheses. 
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Table 5: Effects of Policy Changes (Robustness Checks) 
 

(a) Effects of The Weakening Policy Change 
 

Dependent Variable: log(API) 
 
Time  
 window 

Within 5th ring areas  Outside 5th ring areas 
4 months 8 months 12 months 4 months 8 months 12 months 

(1) (2) (3) (4) (5) (6) 
        
Include month dummies: 
 
Weakening 0.163*** 0.171*** 0.172***  0.0445 0.0390 0.0403 

policy (0.0337) (0.0340) (0.0340)  (0.0351) (0.0353) (0.0352) 
change        

Observations 952 1,912 2,872  2,261 4,534 6,808 
 
Include weather covariates: 
        
Weakening 0.0153 0.105*** 0.104***  --- -0.0744 -0.00995 

policy (0.0238) (0.0326) (0.0326)  --- (0.0461) (0.0222) 
change        

Observations 936 1,816 2,680  2,223 4,308 6,354 
 
Demean log(API) by stations: 
        
Weakening 0.163*** 0.171*** 0.172***  0.0396 -0.0717 -0.0721 

policy (0.0337) (0.0340) (0.0340)  (0.0353) (0.0459) (0.0459) 
change        

Observations 952 1,912 2,872  2,261 4,534 6,808 
 
Include station dummies: 
        
Weakening 0.163*** 0.171*** 0.172***  0.0396 -0.0717 -0.0721 

policy (0.0337) (0.0340) (0.0340)  (0.0353) (0.0459) (0.0459) 
change        

Observations 952 1,912 2,872  2,261 4,534 6,808 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from 24 separate regressions. Column (1)-(3) include data from stations within fifth 
ring, while column (4)-(6) include data from stations outside fifth ring. Time windows for column (1)&(4), (2)&(5), 
(3)&(6) are 2 months, 4 months, and 6 months on each side of the policy change respectively. 6 months on each side 
is the largest window available for the first policy change. The first row includes month dummies, the second row 
includes weather data, the third row reports estimates based on demeaned log(API) by stations, the fourth row 
includes station dummies. The last two rows actually consider the same thing, i.e. the station fixed effects. Robust 
standard errors are reported in parentheses, which are clustered by stations. 
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 (b) Effects of The Strengthening Policy Change 
 

Dependent Variable: log(API) 
 Within 5th ring areas  Outside 5th ring areas 

4 months 22 months 40 months 4 months 22 months 40 months 
(1) (2) (3) (4) (5) (6) 

 
Include month dummies: 
 
Strengthening -0.343*** -0.312*** -0.314***  -0.297*** -0.300*** -0.301*** 

policy (0.0395) (0.0406) (0.0405)  (0.0523) (0.0527) (0.0528) 
change        

Observations 951 5,265 9,577  2,243 12,444 22,662 
 
Include weather covariates: 
 
Strengthening -0.237** -0.237** -0.237**  -0.0709 -0.0709 -0.0709 

policy (0.0933) (0.0933) (0.0933)  (0.0684) (0.0684) (0.0684) 
change        

Observations 831 5,031 9,024  1,959 11,894 21,359 
 
Demean log(API) by stations: 
 
Strengthening -0.298*** -0.275*** -0.275***  -0.301*** -0.305*** -0.305*** 

policy (0.0403) (0.0416) (0.0417)  (0.0530) (0.0539) (0.0541) 
change        

Observations 951 5,265 9,577  2,243 12,444 22,662 
 
Include station dummies: 
 
Strengthening -0.298*** -0.275*** -0.275***  -0.301*** -0.305*** -0.305*** 

policy (0.0403) (0.0416) (0.0417)  (0.0530) (0.0539) (0.0541) 
change        

Observations 951 5,265 9,577  2,243 12,444 22,662 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from 24 separate regressions. Column (1)-(3) include data from stations 
within fifth ring, while column (4)-(6) include data from stations outside fifth ring. Time windows for 
column (1)&(4), (2)&(5), (3)&(6) are 2 months, 11 months, and 20 months on each side of the policy 
change respectively. 20 months on each side is the largest window available for the second policy change. 
The first row includes month dummies, the second row includes weather data, the third row reports 
estimates based on demeaned log(API) by stations, the fourth row includes station dummies. The last two 
rows actually consider the same thing, i.e. the station fixed effects. Robust standard errors are reported in 
parentheses, which are clustered by stations. 
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Table 6: Effects of Policy Changes (Different time windows) 

 
(a) Effects of The Weakening Policy Change 

 
Dependent Variable: log(API)  

Time windows 
Within 5th  
ring areas 

 
N 

Outside 5th  
ring areas 

 
N 

1 month on each side -0.00858  -0.0685  
 (0.0238) 472 (0.0462) 1,121 
2 months on each side 0.163***  0.0447  
 (0.0337) 952 (0.0350) 2,261 
3 months on each side 0.158***  0.0426  
 (0.0335) 1,432 (0.0351) 3,395 
4 months on each side 0.171***  0.0392  
 (0.0340) 1,912 (0.0353) 4,534 
5 months on each side 0.168***  0.0417  
 (0.0339) 2,392 (0.0352) 5,671 
6 months on each side 0.172***  0.0403  
 (0.0340) 2,872 (0.0352) 6,808 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from 12 separate regressions using different time windows for within fifth ring 
areas and outside fifth ring areas respectively. Robust standard errors are reported in parentheses, which are 
clustered by stations. 
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 (b) Effects of The Strengthening Policy Change 

 
Dependent Variable: log(API)  

Time windows 
Within 5th  
ring areas 

 
N 

Outside 5th  
ring areas 

 
N 

1 month on each side -0.375***  -0.302***  
 (0.0402) 472 (0.0532) 1,113 
2 months on each side -0.298***  -0.303***  
 (0.0403) 951 (0.0535) 2,243 
3 months on each side -0.304***  -0.305***  
 (0.0401) 1,431 (0.0539) 3,383 
4 months on each side -0.313***  -0.304***  
 (0.0398) 1,911 (0.0536) 4,519 
5 months on each side -0.298***  -0.303***  
 (0.0403) 2,391 (0.0535) 5,658 
6 months on each side -0.296***  -0.303***  
 (0.0404) 2,871 (0.0535) 6,789 
7 months on each side -0.291***  -0.304***  
 (0.0406) 3,351 (0.0537) 7,916 
8 months on each side -0.275***  -0.303***  
 (0.0417) 3,831 (0.0535) 9,054 
9 months on each side -0.271***  -0.304***  
 (0.0419) 4,311 (0.0537) 10,192 
10 months on each side -0.272***  -0.305***  
 (0.0419) 4,791 (0.0540) 11,325 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from 40 separate regressions using different time windows for within fifth ring 
areas and outside fifth ring areas respectively. Robust standard errors are reported in parentheses, which are 
clustered by stations. 
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(b) Effects of The Strengthening Policy Change (continued) 

 
Dependent Variable: log(API)  

Time windows 
Within 5th  
ring areas 

 
N 

Outside 5th  
ring areas 

 
N 

11 month on each side -0.275***  -0.306***  
 (0.0417) 5,265 (0.0542) 12,444 
12 month on each side -0.275***  -0.306***  
 (0.0416) 5,745 (0.0543) 13,584 
13 month on each side -0.273***  -0.306***  
 (0.0418) 6,225 (0.0543) 14,715 
14 month on each side -0.272***  -0.306***  
 (0.0419) 6,705 (0.0542) 15,840 
15 month on each side -0.274***  -0.306***  
 (0.0417) 7,185 (0.0542) 16,970 
16 month on each side -0.276***  -0.307***  
 (0.0416) 7,665 (0.0544) 18,105 
17 month on each side -0.274***  -0.307***  
 (0.0417) 8,137 (0.0544) 19,245 
18 month on each side -0.273***  -0.307***  
 (0.0418) 8,617 (0.0544) 20,383 
19 month on each side -0.274***  -0.306***  
 (0.0417) 9,097 (0.0543) 21,522 
20 month on each side -0.275***  -0.306***  
 (0.0417) 9,577 (0.0543) 22,662 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from 40 separate regressions using different time windows for within fifth ring 
areas and outside fifth ring areas respectively. Robust standard errors are reported in parentheses, which are 
clustered by stations. 
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Table 7: Effects of Policy Changes on Public Transportation and Congestion 

 
Dependent Variable 

 log(bus)  log(subway)  log(transport)  log(congestion) 
(1) (2) (3) (4) (5) (6) (7) (8) 

            
TP1 0.150** 0.155**  0.745*** 0.722***  0.254*** 0.251***  -1.070*** -1.043*** 
 (0.0632) (0.0630)  (0.205) (0.199)  (0.0724) (0.0730)  (0.120) (0.0993) 
TP2 0.185*** 0.185***  0.526*** 0.528***  0.240*** 0.240***  -0.409*** -0.412*** 
 (0.0360) (0.0359)  (0.117) (0.113)  (0.0413) (0.0415)  (0.0681) (0.0565) 
TP3 0.166***   0.828***   0.297***   -0.288***  
 (0.0219)   (0.0711)   (0.0251)   (0.0414)  
TP3-1  0.176***   0.775***   0.291***   -0.226*** 
  (0.0233)   (0.0736)   (0.0270)   (0.0367) 
TP3-2  0.133***   0.999***   0.319***   -0.487*** 
  (0.0346)   (0.109)   (0.0400)   (0.0545) 
            
N 54 54  54 54  54 54  54 54 
R-squared 0.691 0.701  0.747 0.767  0.785 0.788  0.724 0.814 
*** p<0.01, ** p<0.05, * p<0.1 
Note: The table shows estimates from 8 separate regressions. Column (1)-(2) report the results for bus ridership, column 
(3)-(4) report the results for subway ridership, column (5)-(6) report results for total public transportation ridership, i.e. the 
sum of bus and subway ridership, and column (7)-(8) report results for congestion index. TP1 is referred as the odd-even 
restriction during Olympic Games. TP2 is referred as the one-day restriction between 6am to 9pm. TP3 is referred as the 
one-day restriction between 7am to 8pm. Column (1)(3)(5)(7) consider TP3 as whole, while column (2)(4)(6)(8) split TP3 
into two parts, i.e. restriction with less penalty (TP3-1) and restriction with more penalty (TP3-2). All regressions include 
seasonal dummies. Standard errors are shown in parentheses. 
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