Post-Galilean Scientists Who Came to Prominence in the Years Between Descartes' and Newton's Principias

In England

Wallis	$(1616-1703)$
Ward	$(1617-1689)$
Horrocks	$(1618-1641)$
Wing	$(1619-1689)$
Mercator	$(1619-1687)$
Streete	$(1622-1689)$
Boyle	$(1627-1691)$
Wren	$(1632-1723)$
Hooke	$(1635-1702)$
J. Gregory	$(1638-1675)$
Newton	$(1642-1727)$
Flamsteed	$(1646-1719)$
Halley	$(1656-1743)$

On the Continent

Borelli	$\mathbf{(1 6 0 8 - 1 6 7 9)}$
Hevelius	$(\mathbf{1 6 1 1 - 1 6 8 7)}$
Picard	$\mathbf{(1 6 2 0 - 1 6 8 3)}$
Mariotte	$\mathbf{(1 6 2 0 - 1 6 8 4)}$
Rohault	$\mathbf{(1 6 2 0 - 1 6 7 2)}$
Auzout	$\mathbf{(1 6 2 2 - 1 6 9 1)}$

Pascal (1623-1662)
Cassini (1625-1712)

Huygens (1629-1695)
Richer (1630-1696)
Campani (1635-1715)
de la Hire (1640-1718)

Rømer (1644-1710)
Leibniz
(1646-1716)

Boulliav's Cone- 1645

Boulliau's 1657 Mcthed for Obtaining

ISMAELIS
 BVLLIALDI ASTRONOMI无

 PHILOLAIC厌 FVNDAMENTA clarius explicata , \& afferta.ADVERSVS
clariffimi Viri Sethi Wardi Oxonienfis Profefforis impugnationem.

PARISIIS,
Apud Sebastianvm Cramorsy, Regis \& Reginae Architypographi,

ET
Gabrielem Cramoisy, viâ Iacobxâ, fub Ciconuiis:
M. DC. LVII.

GVM PRIVILEGIO R'EGIS.
 HARMONICON COELESTE: OR,
The Coeleftiall Harmony of the

VISIBI, E WORLD:

 conteining,An abfolute and entire Piece of

ASTRONOMIE.

WHEREIN.
Is fuccincly handled the Trigonometricall Part,

Efpecially refpecting, and truly fublervient to the main Dootrine of the Second Motions of the Lummisaris and the other Plantes: Together wish thici Aftetions
as ECLIPSES, \&c.

Grounded upon the mot Rationall Hypotbefis yet Conflituted, and compared widh clis beft obfervations that are
 moic Modem obs EkV AT ORS:
Fiteded to thc Merridisn of the mon Filmous and Ancient Aeteropolis Lo NDO N , and priaicipally incrented for oor Englih Nation, and commended as ufefull to all Schelerr, $-\int f$ rowomstrs, e-flfrologers,
 and rpocts, ér.

> By Vincent Wing. Pbilomatbemat.

LONDON:

Printed by Robert Leybourn, for the Company of $S_{\text {TATIONERS, }}^{8}$ i65i.

Harmonioon Coeleste:

riff Figure of Mars.

In this Diagram I number the Anomalie of of from P to H ga $7^{\prime} 40^{\prime \prime}$, whofe Com-
 and the side D Xi ivio5, the angle D HX will be $34^{\prime} 3^{\prime \prime}$.

Side DX 14ros,
Sine of the angle $\mathrm{H}_{34^{\prime}}{ }^{\prime \prime}$:
$\begin{aligned} & 5,383958 \\ & 9,02835=\end{aligned}$
4, 149373
$\begin{aligned} & 4,49373 \\ & 7,995767\end{aligned}$
$7^{\prime} \quad 40$.
$\begin{array}{rr}34 & 3 \\ 33 & 37\end{array}$
$\begin{array}{rrr}5 & 35 & 37 \\ 14 & -7 & 44\end{array}$

Simple Anomalie P XH,
6
Angle D A H X Subftr.
A nomalie xquared PD H. In the Triangle DHN .
$\begin{array}{ll}\text { Summe of D H and D N } 152500 \text { : } \\ \text { Difference } 151580 ;\end{array} \quad \therefore 5,183270$
Tangent of $5^{\mathrm{d}} 33^{\prime} 37^{\prime \prime}$,
8,988343
Tangent of 5 3I 37:. 8,9857 5
Aggregate 115 14. vix. Angle HND;
Difference 20 vix. Angle HDN,
Sine of the angle HND $11^{d} 5^{\prime} 14^{\prime \prime}$,
side D H 1 s2040;
Side DN 152492:

In the former Diagram σ^{σ} is Supra-Diacentron, therefore Inumber the motion of the Epicycle $11^{d} 7^{\prime} 14^{\prime \prime}$ in the nether part of the Equant from X to O, then I fay,

10.6. Vincent Wing's procedure, in his Harmonicon coeleste of 1651 , for deriving true anomaly (v_{W}) from mean anomaly (M).
newly devised by the Authour, wherein is plainly and succinctly delivered. . . how to calculate the Motions of all the Planets Trigonometrically, wherein I much dissent from all other Authours that have treated hereof in other Languages, and have delivered the same more methodically for practice, than any hath done before me

Wing's new procedure is in fact a modification of Boulliau's. In Figure 10.6 the ellipse is produced by an epicycle of radius $\frac{1}{4} e^{2}$ moving on a circle of radius $1-\frac{1}{4} e^{2} ; M$ is the mean anomaly, and E the "equated anomaly", determined by the relation $\sin (M-E)=e \sin M /\left(1-\frac{1}{4} e^{2}\right)$. The angle ZSN of epicyclic motion is $2 E$. The eccentricity $D X=A D=e$ is varied by subtracting a sinusoidal term $X O=\frac{1}{4} e^{2} \sin 2 E$, and the total equation of centre is given by $\angle O N D+\angle D N A$. The resulting true anomaly v_{w} can be shown to differ from the Keplerian value by

10.7. Wing's improved procedure, in his Astronomia instaurata of 1656 and his Astronomia Britannica of 1669 , for deriving true anomaly (v_{W}) from mean anomaly (M).

$$
\begin{gathered}
v_{\mathrm{K}}-v_{W}=\frac{1}{4} e^{2} \sin 2 M-\frac{1}{4} e^{2} \sin M \sin 2 M \\
-2 e^{3} \sin M+\frac{8}{3} e^{3} \sin ^{3} M-\frac{1}{2} e^{3} \sin ^{4} M .
\end{gathered}
$$

In the case of Mars, this error rises to 5^{\prime} in the second quadrant of anomaly.

By the time Wing published his Astronomia instaurata in 1656, he had detected the error in this theory by comparing it with acronychal observations of Mars. Moreover, he had found a way of eliminating most of this error; it consisted in adding to the angle E a correction term equal to $k \sin 2 E$, where k was to be determined empirically. The value of k should be about $\frac{1}{2} e^{2}$; in the case of Mars, Wing in his calculation takes it to be 14^{\prime} $55^{\prime \prime} \approx \frac{1}{2} e^{2}+\frac{2}{3} e^{4}$. The new theory, which is also that of the Astronomia Britannica of 1669, is represented in Figure 10.7. Once again the radius $D S$ of the deferent is $\left.\frac{1}{2}\left(1+\sqrt{\left(1-e^{2}\right.}\right)\right) \approx 1-\frac{1}{4} e^{2}-\frac{1}{16} e^{4}$, so that the radius $S N$ of the epicycle is $\frac{1}{4} e^{2}+\frac{1}{16} e^{4}$, while, with $\angle P D H=E, \angle H D S=\left(\frac{1}{2} e^{2}+\frac{2}{3} e^{4}\right) \sin 2 E$; and the

ASTR.ONOMIA BRITANNICA:

IN QUA

Per Novam, Concinnioremq; Methodum, hi quing; Tractatus traduntur.
I. LOGISTICA ASTRONOMICA, quar continet Dosirinam Frationum Aftronomicarum integranı, tùm in Numeris Naturalibus, tùm Artificialibus.
II. TRIGONOMETRIA, feu Doctrina Triangulorum,(Andlytica \& Practica) quæ comprehendic Dimenfionem omnium Trigonorum, tàm Planorum, quàm Spharicorum, cujus ope, Dimenfiones Cocli, Terrex, univerliq; Mundi Orbis (modo mirabiii) dignofcanrur.
III. DOCTRINA SPHERICA, qux exhibet Longirudiues, Latitudines, Declinationes, Afcenfiones, Ortus, Occalus, Intercapedines, Parallaxefq; fingulorum Planetarum ad cujufliber Sphæræ pofitum, \& quo pacto Figura Coeleltes erigi poffint.
IV. THEORIA PLANETARUM, qux Novâ, accuratâq; Methodo fuper Hypotheficopernicanâ, veros Motus \& Configurariones omnium Planetarum computare docet.
V. TABULI NOVA ASTRONOMICE, ex quibus Singulorum Planctarum Motus, \& Luminarium Eclipfes, mirà promptitudine colligantur.

Congruentes cum Obfervationibus accuratifinis Nobilis TYCHONIS BRAHEI.

Cui acceffit Oblervationum Aftronomicarum Synopfis Compendiaria, ex quâ Afronomice Britannice certitudo affatim elucefcit.
Opus exoptatum, non modò Aftronomis, Aftrolngis, Ied \& Theologis, Hilloriographis, Nautis, Medicis \& Poetis, perutile \& jucundum.

Cuif addiarir Poflcriptum de Refracizone.
Authore VINC ENTIO WING, Mathem.

> LONDINI,

Typis Johannis Macock, Impenfis Georgii Sambridge, proftantq; venales apud locum vulgò ©lerten
[Fig. 1: I, II, III, IV]

[Fig. 5]

ment the clock maintains a perpendicular position no matter what the inclination of the ship is. Also the axis C , together with the one opposite it, are so located that they correspond in a straight line to the points of suspension of the pendulum just described. From this it follows that the oscilla-
[Fig. 6]

Fig. 25-Huygens' aerial telescope
(Science .Vuseumt. London. British Crotz copurght)

Fig. 26-Huygens' eyepiece

[^0](i) and (i) When Saturn again appeared edgewise. in the mid-1650s. astronomers were formulating fully-fledged theories to explain the planet's strange appearances. Christopher Wren (i, right) in 1657 supposed that an infinitely thin elliptical 'corona' was attached to the plaret, while the entire formation rotated or librated around its long axis. In 1656 Christiaan Huygens (j, below) supposed that the planet "is surrounded by a thin flat ring which does not touch him anywhere and is inclined to the ecliptic". The thickness of Huygens's ring was not negligible.
(i)

(k)

(l)

(k) Between 1660 and 1675 the ring theory (as well as better telescopes) led to the discoveries of shadow effects that in turn confirmed the theory, as is shown here in the 1664 observation by Giuseppe Campani.

FIG. 3.3. Method of determining north-south line by the sun.

FIG. 3.4. Floor plan of San Petronio showing the meridiana just clearing the pillars. From Cassini, Meridiana (1695).

From teilhnant in shea xienze a (1992). 349.

The old supposition of solid orbs to support and carry the planets, I count scarce worth the mentioning; the Earth we see hath no such orb, and nature itself with all observations of the true motions of secondary planets and of comets plainly demonstrating the impossibility of any such thing.

Nor shall I here mention any of those many and gross absurdities, which will necessarily follow in all such systems, as attribute to the Sun or fixed stars any of the Earth's natural motions.

But farther to clear the truth from all seeming contradictions; whereas we see that all corporeal substances appertaining to this our earthly globe do (proportionably to their quantities) tend downward towards the Earth's center; let us observe that this comes to pass by the natural magnetic power of the Earth, attracting its parts, a property common to every one of the planets, whereby (according to the Creator's will) they become compact bodies, and do retain their constant form; the Sun also and fixed stars (though of a different principle) having the like retentive faculty:

And that the air, the clouds, a bird flying, a stone falling from any height, an arrow or bullet shot or driven any way, and all things else within the sphere of the Earth's activity (whether otherwise moved or not) do naturally and exactly follow her annual diurnal motion, for that we the Earth's inhabitants cannot possibly perceive or be made sensible thereof, any other way then by such real demonstrations as are here given; we shall exemplify this in the planets Jupiter and Saturn, whole attendants (at a far larger distance) do not only keep their constant revolutions about them, but together with them about the Sun; the like doth our Moon about the Earth, and both about the Sun. So that by the impulse and universal consent of nature (whether accidental motions be annexed or not) all things so near the Earth do precisely keep the same motion with it.

Streete, Astronomia Carolina, p. 11

Table 10.1 Orbital elements of the planets adopted by seventeenth-century authors, compared with Newcomb's values for 1600

	Eccentricity	Aphelion		Mean distance
Mercury				
Newcomb (for 1600)	0.20555	251*14'9"		0.38710
$\overline{K e p l e r ~(K-N) ~}$	+0.00450	+	$1^{\circ} 35^{\prime} 49^{\prime \prime}$	+0.00098
Boulliau ($\mathrm{B}-\mathrm{N}$)	+0.004 52	+	23'38"	-0.001 25
Wing $1651(\mathrm{~W}-\mathrm{N})$	+0.00485	+	$1^{\circ} 34^{\prime} 6^{\prime \prime}$	-0.000 70
Wing $1669(\mathrm{~W}-\mathrm{N})$	+0.00484	-	7'54"	-0.001 10
Streete (S-N)	+0.00034	-	31"	0
Venus				
Newcomb (for 1600)	0.00697		5'55'51"	0.72333
Kepler ($\mathrm{K}-\mathrm{N}$)	-0.00005	-	4'41'29"	+0.000 80
Boulliau ($\mathrm{B}-\mathrm{N}$)	+0.000 87	-	$32^{\prime} 46^{\prime \prime}$	+0.00065
Wing $1651(\mathrm{~W}-\mathrm{N})$	-0.000 05	+	$32^{\prime} 41^{\prime \prime}$	-0.000 26
Wing $1669(\mathrm{~W}-\mathrm{N})$	+0.000 36	-	$6^{\prime} 55^{\prime} 41^{\prime \prime}$	+0.000 74
Streete ($\mathrm{S}-\mathrm{N}$)	+0.000 18		$3^{\circ} 22^{\prime} 50^{\prime \prime}$	0
Earth				
Newcomb (for 1600)	0.01688		$6^{\circ} 4^{\prime} 2^{\prime \prime}$	1.00000
Kepler ($\mathrm{K}-\mathrm{N}$)	+0.00112	-	19'54"	0
Boulliau ($\mathbf{B}-\mathrm{N}$)	+0.00096	-	28'38'	0
Wing $1651(\mathrm{~W}-\mathrm{N})$	+0.00099	-	$20^{\prime} 34^{\prime \prime}$	0
Wing $1669(\mathrm{~W}-\mathrm{N})$	+0.00100	-	$20^{\prime} 34^{\prime \prime}$	0
Streete ($\mathrm{S}-\mathrm{N}$)	+0.000 44	+	21'26"	0
Mars				
Newcomb (for 1600)	0.09304		$8^{\circ} 41^{\prime \prime} 58^{\prime \prime}$	1.52369
Kepler ($\mathrm{K}-\mathrm{N}$)	-0.00039	+	$17^{\prime} 56^{\prime \prime}$	-0.000 19
Boulliau. (B-N)	-0.000 65	+	$17^{\prime} 54^{\prime \prime}$	-0.000 19
Wing $1651(W-N)$	-0.000 55	+	18' ${ }^{\prime \prime}$	+0.00131
Wing $1669(\mathrm{~W}-\mathrm{N})$	-0.000 39	+	$15^{\prime} 4^{\prime \prime}$	-0.000 02
Streete ($\mathrm{S}-\mathrm{N}$)	-0.000 50	+	$6^{\prime} 24^{\prime \prime}$	0
Jupiter				
Newcomb (for 1600)	0.04784		$7^{\circ} 53^{\prime} 27^{\prime \prime}$	5.2027
Kepler ($\mathrm{K}-\mathrm{N}$)	+0.000 38	-	$1^{\prime \prime} 1^{\prime} 26^{\prime \prime}$	-0.0027
Boulliau ($\mathrm{B}-\mathrm{N}$)	+0.000 72	+	7'55'	+0.010 5
Wing 1651 ($\mathrm{W}-\mathrm{N}$)	+0.000 46	+	53"	+0.020 5
Wing $1669(\mathrm{~W}-\mathrm{N})$	+0.00001	-	$8^{\prime} 20^{\prime \prime}$	+0.013 3
Streete ($\mathrm{S}-\mathrm{N}$)	+0.000 32	-	27'25"	-0.0016
Saturn				
Newcomb (for 1600)	0.05693		$5^{\circ} 13^{\prime} 24^{\prime \prime}$	9.546
Kepler ($\mathrm{K}-\mathrm{N}$)	0	-	15'48"	-0.036
Boulliau ($\mathbf{B - N}$)	+0.00081	+	$46^{\prime} 22^{\prime \prime}$	-0.004
Wing 1651 (W-N)	+0.000 56	+	$46^{\prime} 36^{\prime \prime}$	-0.013
Wing 1669 (W-N)	+0.000 56	+	$56^{\prime} 36^{\prime \prime}$	-0.013
Streete ($\mathrm{S}-\mathrm{N}$)	+0.000 42	+	$53^{\prime} 49^{\prime \prime}$	-0.008

NICOLAI MERCATORIS Holfati, è Soc. Reg.
INSTITUTIONUM ASTRONOMICARUM LIBRI DUO, de motu
ASTRORUM COMMUNI \& PROPRIO, Secundum Hypotheses Veterum \& Recentiorum pracipuas;
DERUE

Hypothefeon ex obervatis conftruetione: ctim
TABULIS TYCHONIANIS Solaribus, Lunaribus, Lunx-Solaribus,
Et rudolphinis Solis, Fixarum; Et Quinque Errantium;
Earumque Ufu Preceptis \& Exemplis commonftrato. RUIbvs acoedit
A P P E N D I X
De iis, qux Novifimis temporibus Ccelitus innotuerunt.

$$
\angle O N D I N I
$$

Typis Gulielmi Godbid, fiumtibus Samuelis Simpfon Bibliopolz Cantabrigienfis. 1676.

```
UASTRONOMIA
Lib. II.
```


 HYPOTHESIS

ASTRONOMICA NOVA,

Et Confenfus ejus cum Obfervationibus.

ARGUMENTUMLIBRI:

Capita hujus Libri funt tria;
Carur I. Exponit Hypothefin Novam.
II. Doset celculum fecundum cam infititwer.
III. Confers calculum cum obfervationibus.

CAPUTI

Exponens Hyporhefin Novam.

$\underbrace{0}$Uppono, Terre motum circa azem fuum effe zquabilem, h. e. revolutionem eujulque meridiani ad quamlibet fixam aqualibus femper remporum intervallis abfolvi, quocunque tandem in loco O bite fire Tellus verfetur, Que Suppofitio licet nova non fif, attamen, cùm aliter eenfueris non nemo, \& nihilo\therefore.. minus
sect. e.
 minus revolutio diurna unà cum differentia morûs annai veri \& medii conftituat elementum unum zquationis tem. poris (nam alcerum eft diferentia longiudinis \& Afcenfio nis recte, Terra:) indicianducu fuir, guid narí hoc loco retandum doxerim.
2. Praxeffionem Equinoctiorum non aliami ufurpabo nüne quidem quàm K_{t} plerus, nimirum $\varsigma^{10} \mathrm{i}^{\text {in }}$ in annos fingua los, ut obfervationes ab illo in Commentario de Seclla Martis rraditas, \& praceefione aquinoctiorumi, quanta tiximus, affectas quamproximè exhibearn abıqué molefta reductione; non ignarus interim, fieri poffe, wo morus Fquinoctiorum pauloaliter fe habeas.
3. Aphelia \& Nödos Planetarum cundem̈̈ pérpetuò fab fixis locum obrinere; vel quod idem valer, non alo quàm Praceffionis aquinoetiorum motu cieri puremus.
4. In adjecto Schemate LXII. Git S Sol, f Focus fuperior;

264 - LASTRONOMTA. Lib. In.

- centrum ellipfeos; in punetum fectionis divina, quo (cil, diftantia focorum if fecundum extremara \&e mediam ratio nem fecaras: Siique idem centrum circali defcripti radio ind requali ca vel ep femidiametro maxime Ellipfeos. a aphelium, p perihelium, ifd anomalia media, as id ano malia coarquata, $f d s$ prothapharelis, e erro five Planera, so diftantia Planerxà Sule.

5. Determinatio linearum :

	In Sole	In Marte
$c a v e l m d$	10000000	15236920
df	344477	2835800
sm	212898	1752621
$m f$	131578	1083179

Mercator, 1676

KEPLER -- 1609

Tempus	Locus 0	$\begin{gathered} \text { Solis a } \\ \text { Terra } \\ \text { distantia } \end{gathered}$	$\begin{array}{c\|} \hline \text { Martis a } \\ \text { Sole } \\ \text { distantia } \\ \hline \end{array}$	Martis eccentricus in ecliptica	Locus computatus	Locus observatus	Differentia	Laci-
$\begin{array}{rlll} \text { 158. } & 23 & \text { Nove. H. } & 16 . \\ 26 & \text { Dece. } & \text { H. } & 8 . \\ 30 \\ 30 & \text { Dece. } & \text { H. } & 8 . \\ 10 \\ 1583 . & 26 & \text { Janua. } & \text { H. } \\ \text { 6. } & 15 \\ \hline \end{array}$	$\begin{aligned} & 11^{\circ} \cdot 4^{\prime} x^{\prime \prime} \\ & 15 . \quad 47 \\ & 19 . \quad 97 \\ & 16.33= \end{aligned}$	$\begin{aligned} & 98345 \\ & 98226 \\ & 98252 \\ & 98624 \end{aligned}$	$\begin{aligned} & 158852 \\ & 162104 \\ & 162443 \\ & 164421 \end{aligned}$	$\begin{array}{ccc} 0^{\circ} \cdot 42^{\prime} \cdot 11^{\prime \prime} & 69 \\ 16 . & 7 \cdot & 18 \\ 17 . & 6 \\ 16 . & 32 & 6 \\ 0 . & 6 . & 24 \\ 8 \end{array}$	26. 40. 069 17. 44. 19 6 16. 6. 206 8. 17.579	$\begin{aligned} & \text { 26. 38. } 306 \\ & \text { 17. } 40.306 \\ & \text { 16. } 0.306 \\ & \text { B. 20. } 306 \end{aligned}$	$\left\|\begin{array}{lll} 1^{\prime} \cdot & 30^{\prime \prime}+ \\ 3 \cdot & 49+ \\ 5 \cdot & 50+ \\ 2 . & 33-1 \end{array}\right\|$	Bor. 2. 49 4. 7 4. 8 2. 52
$\begin{array}{rlrr} \hline 1584 . & 21 & \text { Dece. } & \text { H. } 14 . \\ \text { 1585. } 24 & \text { Janua. } & \text { H. } & 9 . \\ 4 \text { Febr. } & \text { H. } 6 . & 40 \\ 12 & \text { Mart. } & \text { H. 10. } & 30 \end{array}$	10. 167 14. $53=$ 26. 10 m 2. $16 r$	$\begin{aligned} & 98207 \\ & 98595 \\ & 98830 \\ & 99858 \end{aligned}$	164907 166210 166400 166170	$\begin{array}{cccc} \text { 3. } & 51 . & 45 & \Omega \\ \text { 18. } & 47 . & 8 & \Omega \\ \text { 23. } & 33 . & 44 & \Omega \\ \text { 9. } & 23 . & 14 & \mathrm{mp} \end{array}$	$\begin{array}{ccc} 1 . & 14 \cdot & 34 \mathrm{~m} \\ 24 \cdot & 3 \cdot & 58 \Omega \\ 19 \cdot & 43 \cdot & 52 \Omega \\ \text { 11. } & 43 \cdot & 31 \Omega \end{array}$	$\begin{array}{lc} \text { 1. } & 13 . \\ \text { 24. } & 3011 \\ 19 . & 77 . \\ \text { 190 } & 0 \Omega \\ 11 . & 46 . \end{array} 0 \Omega$	1. $4+$ 3. 32 - 3. 8 - 2. 29 -	$\begin{aligned} & 3 \cdot 31 \\ & 4 \cdot 31 \\ & 4.28 \\ & 3.22 \end{aligned}$
$\begin{array}{rlrr} \hline 1587 . & 25 & \text { Jarua. } & \text { H. } 17 . \\ 4 \text { Mart. } & \text { H. } 13 . & 24 \\ 10 \text { Mart. } & \text { H. 11. } & 30 \\ 21 & \text { April. } & \text { H. } & 9 . \\ \hline \end{array}$	16. $1=$ 24. $0 x$ 29. 52 X 10. 4^{8} y	$\begin{array}{r} 98611 \\ 99595 \\ 99780 \\ 101010 \end{array}$	$\begin{aligned} & 166232 \\ & 164737 \\ & 164382 \\ & 161027 \end{aligned}$	$\begin{array}{cccc\|} \text { 8. } & 13 . & 40 & \mathrm{mp} \\ 24 . & 56 . & 50 & \mathrm{np} \\ 27 . & 35 . & 54 & \mathrm{mp} \\ 16 . & 44 . & 51 & = \end{array}$	$\begin{aligned} & \text { 4. 41. } 50 \bumpeq \\ & \text { 26. 24. } 41 \mathrm{mp} \\ & \text { 24. 5. } 15 \mathrm{~m} \\ & \text { 15. } 49.50 \mathrm{mp} \end{aligned}$	$\begin{aligned} & \text { 4. 42. } 0 \hat{\sim} \\ & \text { 26. 25. } 40 \mathrm{Mp} \\ & \text { 24. } 5.15 \mathrm{Mp} \\ & \text { 15. } 48.20 \mathrm{mp} \end{aligned}$	0. 10 - o. 59 - o. 0 1. $30+$	$\begin{aligned} & 3.26 \\ & 3.38 \\ & 3.29 \\ & 1.4^{8} \end{aligned}$
1589. 8 Mart. H, 16. 24 13 April. H. 11, 15 15 April. H. 12. 5 6 Maji. H. 11. 20	$\begin{aligned} \text { 28. } & 36 x \\ \text { 3. } & 388 \\ 5 . & 368 \\ 25 . & 498 \end{aligned}$	$\begin{array}{r} 99736 \\ 100810 \\ 100866 \\ 101366 \end{array}$	$\begin{aligned} & 161000 \\ & 157141 \\ & 156900 \\ & 154326 \end{aligned}$	$\begin{array}{rrrr\|} \text { 16. } & 55 . & 14 & \approx \\ 4 . & 1 . & 50 & \mathrm{~m} \\ 5 . & 1 . & 41 & \mathrm{~m} \\ 15 . & 30 & 36 & \mathrm{~m} \end{array}$	$\begin{aligned} & \text { 12. } \text { 14. } \\ & \text { 4. } 75 \\ & \text { 3. } 0 \mathrm{~m} \\ & \text { 3. } 58 . 57 \mathrm{~m} \\ & 27 . 8 . \\ & \hline \end{aligned}$	12. 16. 50 m 4. 43.20 m 27. 7. $20 \bumpeq$	2. 43 — 1. 40 + o. $37+$ o. $57+$	2. 4 1. 10 1. 4 0. 7
1591.13 Maji. H. 14. 0 6 Junii H. 12. 20 10 Junii H. 11. so 28 Junii H. 10. 24	2. 10 II 24. 59 II 28. 47 II 15. 516	$\begin{aligned} & 101467 \\ & 101769 \\ & 101789 \\ & 101770 \end{aligned}$	$\begin{aligned} & 147891 \\ & 144981 \\ & 144526 \\ & 142608 \end{aligned}$	$\begin{array}{rrrr} \text { 12. } & 7 \cdot & 38 & x^{\prime \prime} \\ \text { 25. } & 38 \cdot & 4^{8} & x^{\prime \prime} \\ \text { 27. } & 56 . & 49 & x^{\prime \prime} \\ \text { 8. } & 29 . & 32 & 7 \end{array}$		$\begin{aligned} & \text { 2. 20. } 07 \\ & \text { 27. 15. } 0 x^{\prime \prime} \\ & \text { 26. 2. } 36 x^{\prime \prime} \\ & \text { 21. 10. } 0 x^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { 4. } 24 \text { - } \\ & \text { 3. } 15 \\ & \text { 4. } 39 \\ & \text { 5. } 39 \end{aligned}$	Aust. 2. 25 3. 55 4. 8 4. 45
1593. 21 Julii H. 14. 0 22 Aug. H. 12. 20 29 Aug. H. 10. 20 3 Octo. H. 8. o	8. 26Ω 9. 11 mp 11. 54 m 20. $15=$	101498 100761 1005 62 99500	$\begin{aligned} & 138376 \\ & 158463 \\ & 138682 \\ & 140697 \end{aligned}$	$\left.\begin{array}{rrrr\|} 20 . & 1 . & 38 & \cdots \\ 10 . & 15 . & 25 & \mathcal{k} \\ 14 . & 37 . & 15 & \chi \\ 6 . & 19 . & 39 & \gamma \end{array} \right\rvert\,$	$\begin{array}{r} \text { 17. } 43.14 x \\ \text { 13. } 9.39 x \\ 11.11 .41 x \\ \text { 7. } 49.54 x \end{array}$	17. 45. 45 X 13. 10. 15 K 11. 14. $0 x$ 7. 50. 10 X	2. 31 - 0. 36 - 2. 19 - 0. 16 \qquad	$\begin{aligned} & 5.46 \\ & 6.7 \\ & 5.52 \\ & 3.17 \end{aligned}$
	4. $18=$ 13. 59 II 21. 2 m 6. 437	99990 98851 98694 98200	$\begin{aligned} & 143222 \\ & 147^{890} \\ & 148773 \\ & 154539 \end{aligned}$	$\left.\begin{array}{llll} \text { 22. } & 49 . & 19 & \gamma \\ 15 . & 35 . & 38 & 8 \\ 19 . & 26 . & 33 & 8 \\ 13 . & 2 . & 29 & I I \end{array} \right\rvert\,$	$\begin{aligned} & \text { 26. } 5.45 \\ & \text { 18. } 50 . \\ & \text { 46 } \\ & \text { 16. 18. } \\ & \text { 18 } \\ & \text { 11. } 39 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 26. 7. } 128 \\ & \text { 18. } 51 . \operatorname{ly} 8 \\ & \text { 16. 18. } 308 \\ & \text { 11. } 40.08 \end{aligned}$	1. 27 - 0. 29 - C. $3+$ 0. 59 -	1.42 0.6 Bor. 0. 17 1. 40

BOULLIAU -- 1657

- A6 ASTRONOMI压 PHILOLAICR

'Loca 28. Martis \& Tychone obferata it Keplero in Commentarys Stella Märtis affompta, bic iuxta Tabulas Pbilolaícas or iuxta b potheform fupra refitutam fecundum longitudinem computata.

STREETE -- 1661

(314)
© Extra litun Acrongcimin, Tytho.

WING－－ 1669

104	
	［39＇，47 ${ }^{\prime \prime}$ ，AnomaliaSig．10．gr． $218^{\prime} .39^{\prime \prime}$ ．Nodus Bor．Sig．gr． 16 $33^{\prime} 10^{\prime \prime}$ ，unde elicikur locus Martio 幺े Sole ad Eclipticam reductus in ge． 25 Quoniam in Triangulo A Sg，habentur duo latera $A_{\text {g }} 163745$ ．AS 99015，cum angula FAS gr． 77 31＇ $47^{\prime \prime}$ ，（qui eft Complecmentum Ano－ malizo Orbis adge，180）dabiturergò angulus ASg gr． $6817^{\prime} 23^{\text {ir }}, 8$ Martis ex Sole in Ecliptica，addatur hic angulas Parallaxis Orbis annui Ag 5，prodibit longitudo Martis ex Tesrá in gr．O $4^{\prime} 3^{\prime \prime \prime}$ 地，obfervationi proximè conlentiens．
obifervat．T． B． 1586.	8．Eodem anno 1586．die 15 Decembrir，Hor， 18 30＇，Nobilis Tycbe， Quo tempore verus Solis locus erat in pr． $416^{\prime} 39^{\prime \prime} \mathrm{w}^{\prime}, 8$ ditaturia Terrat is Sole 98220 ，Martis medius motus Sig，4－gr． 18 3 $38^{\prime} 32^{\prime \prime}$ ，tho－ malia sig． $11.19 \mathrm{gr}, 58^{\prime} 33^{\prime \prime}$ ，Mars ergò ex Sole apparebat in gr． 2018^{\prime} 11 ${ }^{\prime}$ Anomalia Urbis Sig．4＂gr． $135^{58^{\prime}} 28^{\prime \prime}$ ，cujus Complementum ad 6. 4igna，gr， $46 \mathrm{I}^{\prime} \quad 32^{\prime \prime}$ ，ef angulus $x \lambda \pi$ ． In Triangulo ifitur obliquangulo \rightarrow A II dantur latera A III I65213，A π 98220．cum angulo comprehenfo in $A=\mathrm{gr}_{\mathrm{i}} 4^{6} \mathrm{~s}^{\prime} 3^{2 \prime \prime}$ ，ergd datur Parallaxis O：bis Telluris A $25 \pi \mathrm{gr}, 3547^{\prime} \mathrm{g}^{\prime \prime}$ ．Adde hanc ad locum 3^{3} Heliocentricum，gr． $2018^{\prime} 11^{\prime \prime}$ ol，\＆habebis locum verum ${ }^{\circ}$ ex Terrâ in gr． $266^{\prime \prime} 2^{\prime \prime}$ tre，Calculus isaq；noller cum obfervatione adamulim congruit．
$\begin{aligned} & \text { Obfervat. T. } \\ & \text { i. } 1591 . \end{aligned}$	9．Anno Chrift 159 r ．die 13 Maii，Hor．14．Tycho Braheus obfervavit Martom in gr， $22^{20^{\prime}} \mathrm{VN}$, quo tempore，verus locus Solis fuitin $\mathrm{gr}, 29^{\prime} 16^{\prime \prime}$ π, \＆Diftancia Terra à Sole 101490 ． Medius motus Martis cratSig． 8 gr． $2217^{\prime} 47^{\prime \prime}$ ，Anomalia Sig．3．gr． tis ex Solr oftenditur in Rr， $128^{\prime} 5^{\prime \prime \prime} \mathbf{z a}^{\prime \prime}$ ，in Ecliptica autem in gr． 128^{\prime} ！ $y^{\prime \prime} x$ ，unde Angulus Amomaliz Orbis reperitur gr． $958^{\prime} 53^{\prime \prime}$ ，quo dato， cum lateribus A r s 47874；\＆A．H IoI490，innotelcit Angulus Elonga－ cionis AH r gr． 149 51＇$^{\prime} 36^{\prime \prime}$ ，\＆Angulius Parallaxcai Orbis Telluris $39^{\prime \prime}$ w，obfervationi proximè confentiens．
obfervat．T ， E． 1591.	10．Eodem quog；anno 1591．die 28 funii，Hor，10 24^{\prime} Uranibargiz obfervarus eit Mars ill gr． $2110^{\prime} \bar{I}_{1}$ quo rempore verus locus Solis crat Medius locus Martis tunc tenebat gr． $16 \mathrm{rg}^{\prime} 3$ ¹ $^{\prime \prime}$ w，fed wifus a Sole in Eclipticâ gr． $830^{\prime} 7^{\prime \prime}$ vo，quocirca fi è loco Solis vero fubtrahatur locuis Martis ex Sole veruis，remanet angulus Anomaliz Orbis annui gro 7 11 $^{\prime} 12^{\prime \prime}$ ． In Triangulo AZ L dantur bina lacera AZ 142569，AL 101767， unà cum angulo ab iifdem comprehenfogro $\mathrm{Z} \mathrm{AL} \mathrm{gro}_{0} 7^{2} \mathrm{I}^{\prime} \mathrm{I}_{2}{ }^{\prime \prime}$ ，idcircd juxta Triangulorumanalyfin，inveniuncur anguli A LZ $Z^{\prime} r_{1} 1555^{16 \prime} 36^{\prime \prime}$ ， A Z L gr， $172^{2 \prime} 12^{\prime \prime}$ ，aum latere $Z \mathrm{~L} 43628$ ．Ablato autem angulo A Z L ex loco Martis ex Sole，relinquitur locus d＇Geocentricus in gr． 217^{\prime} $55^{\prime \prime} 7$ ，obfervationi quamproximè conveniens．
obfervat T．B ． 1593．	18．Anno I593 die 21 Juhif，horis à meridie 14．videbatur of Vrani－ burgi in gra．I $45^{\prime} 45^{\prime \prime}$ 重，quo teripore Sol vero fuo motu eratin gr． 8 $26^{\prime \prime} 6^{\prime \prime}$ OR，\＆Difantia Terres a Sole yois 500. Medius motus Martis erat Sig．10．gro 21 33＇ $10^{\prime \prime}$ ，Anomalia Sig．s．gr． 22 4！！ $1 x^{\prime \prime \prime}$ ，binc dabitur Profthapherefis ge， $130^{\prime \prime} 47^{\prime \prime}$ ：auferenda，Jocus igitur

MERCATOR -- 1676

Uraniburgi obfervata o \& Kepleroin onaite relata:

Accuracy of ephemerides during the seventeenth century The graphs of this and the following two pages, prepared by Owen Gingerich and Barbara Welther, plot the errors in a number of planetary ephemerides published during the seventeenth century. The accuracy of the ephemerides depended both on the accuracy of the tables or the theory from which they were derived, and on the accuracy with which the derivation was carried out.

Of the ephemerides whose error-plots are given in Graphs 1 and 2. those of Andreas Argoli (1570-1657) ran from 1621 to the end of the century, and were based on his own Secundorum mobilium tabulae (Padua, 1634), apparently adapted from Kepler's Rudolphine Tables. Those of Lorenz Eichstadt (1596-1660) were a continuation of the ephemerides begun by Kepler; but Eichstadt's calculations from Kepler's tables appear to have been very inaccurate. Francisco Montebruni (fl. mid-seventeenth century) based his ephemerides on the tables of Philippe van Lansberge, published in 1632 . Vincent Wing used his own tables for calculating ephemerides, shifting in the late 1650s from those of the Harmonicon coeleste to the more accurate tables of the Astronomia instaurata.

Graph 1

Graph 2

12.3. Wren's 'theory' of cometary motion, applied to the comet of 1664-65. The semicircle represents the orbit of the Earth, the continuous straight line the path of the comet, and the dotted straight line its projection onto the plane of the ecliptic.

Fellows of the Royal Society of London

The list of fellows given below is only those scientists elected Fellows of the Royal Society whose biographies appear in the MacTutor History of Mathematics Archive, together with some present day mathematicians. The list also gives their date of their election to the Society.
1653-1749

William Brouncker 1663
Robert Boyle 1663
John Wilkins 1663
Isaac Barrow 1663
Robert Hooke 1663
William Neile 1663
John Pell 1663
John Wallis 1663
Christopher Wren 1663
Christiaan Huygens 1663
Nicolaus Mercator 1666 Ismael Boulliau 1667

John Collins 1667
James Gregory 1668
Isaac Newton 1672
Jean D Cassini 1672
Gottfried W von Leibniz 1673
Renatus F Sluze 1674 Jonas Moore 1674
John Flamsteed 1676
Fdmond Halley 1678

Denis Papin 1682
Joseph Raphson 1689
David Gregory 1692
Vincenzo Viviani 1696
Abraham de Moivre 1697
Jacques Cassini 1698
John Keill 1700
Jobn Arbuthnot 1704
Guido Grandi 1709
Giovanni Poleni 1710
John Craig 1711
William Jones 1711
Roger Cotes 1711
Brook Taylor 1712
Johann Bernoulli 1712
Nicolaus (I) Bernoulli 1714
Pierre Varignon 1714
Willem Jakob 'sGravesande 1715
Pierre R de Montmort 1715
John Hadley 1717
Thomas F de Lagny 1718

Colin Maclaurin 1719
Giulio Fagnano 1723
Edmund Stone 1725
James Stirling 1726
Benjamin Robins 1727
Samuel Clarke 1728
Pierre L M de Maupertuis 1728
Joseph Privat de Molières 1729
Louis B Castel 1730
Bernard le B de Fontenelle 1733
Johann G Doppelmayr 1733
Alexis C Clairaut 1737
Johann A Segner 1738
Georges L L Buffon 1740
Thomas Bayes 1742
Giovanni FMS Castillon 1745
Thomas Simpson 1745
Leonard Euler 1747
Charles M de La Condamine
1748
Jean le R d'Alembert 1748
Gabriel Cramer 1749

(1) Numb. .
 PHILOSOPHICAL TRANSACTIONS.

Munday, M1arch 6. 166覀.

The Contents.

An Introdution to this Trag. An. Accompt of the Improvement of Optick Glaffes at Rome. Of the Obfervation made in England, of a Spot in one of the Belts of the Planet Jupiter. Of the motion of the late Comer preditted. The Heads of many Nen Obfervations and Experiments, in order to an Experimental Hiftory of Cold; togetber mith fome Thermometrical Difcour /es and Enperiments. A Relation of a very odd Monfrous Calf. \because Of a peculiar LeadOre in Germany, oery wfeful for Eßays. Of an Hungarian Bolus, of the fame effeet with the Bolus Armenus. Of the Nerv American Whale-fifoung about the Bermadas. A Narative concorning the fuccefs of the Pendulum-watches at Sen for the Longitudes; and the Grant of a Patent thereupon. A Catalogne of the philofophical Bookspubli/3tby Monfieur de Fermar, Counfellour at Tholoufe, lately dead.

The Introduction.

Hereas there is nothing more neceffary for promoting the improvement of Philofophical Matters; than the communicating to fuch, as apply their Studies and Endeavours that way, fuch things as are difcovered or put in practife by others; it is cherefore thought fir to employ the Prefs, as the moft proper way to gratifie thofe, whofe engagement in fuch Studies, and delight in the advancement of Learning and profitable Difcoveries, dothentitle theri to the knowledge of what this Kingdom, or other parts of the World, do, from time to time, afford, as well
(2)
of the progrefs of the Stadies, Labours, and attempts of the Curious and learned in things of this kind, as of their compleat Difcoveries and performances: To the end, that fuch Productions being clearly and truly communicated, defires after folid and ufefull knowledge may be further entertained, ingenious Eudeavours and Undertakings cheribhed, and thofe, addicted to and converfant in fuch matters, may be invited and encouraged to fearch, try, and find out new things, impart their knowledge to one another, and contribute what they can to the Grand defign of improving Natural knowledge, and perfecting all Pbilofopbical Arts, and sciences, All for the Glory of God, the Honour and Adrantage of thele Kingdoms, and the Univerfal Good of Mankind.

An Accompt of the improvement of Optick Glaffes.

There came lately from Payis a Relation, concerning the Improvement of optick Glaffes, not long fince attempted at Rome by Signor Giujeppe Campani, and by him difcourfed of, in a Book, Entituled, Ragguaglio di nuouc Offervationi, lately printed in the faid City, but not yet tranfmitted into thefe parts; wherein thefe following particulars, according to the Intelligence, which was fent hither; are contained.
The Firft regardeth the excellency of the long Telefcoper, made by the faid Campani, who pretends to have found a way to work great optick Glaffes. with a. Turne-tool, withour any Mould: And whereas hitherto it bath been found by Experience, that fmall Glafles are in proportion better to fee wiht, upon the Earth, than the great ones; that Author affirms, that his are equally good for the Earth, and for making Oblervations in the Heavens. Befides, he ufeth three Eye-Glaffes for hisgreat Telefcopes, withour finding any Jris, or fuch Rain-bow colours, as do ulually appear in ordinary Glaffes, and prove an impediment so Obfervations.
The Second, concerns tlie Circle of Saturn, in which he hath obferved nothing, but what confirms Monfieur Cbrifican liaygens de Zulichem.his Syiteme of that Planet, publifhed by that worthy Gentleman in the year, 1659 .

(3)

The Third, re〔pects jupiter, wherein Campani affirms he hatls oblerved by the goodnels of his Glaffes, certain protuberancies and inequalities, much greater than thofe thar have been feen therein hitherto. He addeth, that he is now oblerving, whether thole fallies in the faid Planet do not change their fcituation, which if they fhould be found to do, he judgeth, that fupiter might then be faid to turn upon his $A x e s$ which, in his opinion, would ferve much to confirm the opinion of Copernicus. Befides this, he affirms, he hath remarked in the Belts of fupiter, the fladdows of his fatellites, and followed them, and at length feen them emerge out of his Disk.

A Spot in one of the Belts of Fupiter.

The Ingenious Mr. Hook did, fome moneths fince, intimate to a friend of his, that he had, with an excellent twelve foot Telefcope, obferved, fome days before, he than fooke of it, (zidel. on the ninth of onay, 1664. about 9 of the clock at night) a fmall Spor in the biggett of the 3 oblcurer Belts of Fupiter, and that, obferving it from time to time, he found, that within 2 hours after, the faid Spot had moved from Eaft to Weft, about half the length of the Diameter of 7upiter.

The Motion of the late Comet prediEied.

There was lately fent to one of the Secretaries of the Royal Society a Packet, containing fome Copies of a Printed Paper, Entituled, The Ephemerides of the Comet, made by the fame Perfon, that fent it, called Monfeur Auzout, a French Gencleman of no ordinary Merit and Learuing, who defired, that a couple of them might be recommended to the faid Society., and one to their Prefident, and another to his Highnefs Prince Rupert, and the reft to fome other Perfons, nominated by him in a Letter that accompanied this prefent, and known abroad for their fingular abilities and knowledge in Philofophical Matters. The end of the Communication of this Paper was, That, the motion of the Compt, that hath lately appeared, having been praedited by the faid Monfeur Am-

Vertue for cuttings, lamenefs, 36 . the part affected being anointed therewith. One thing more he related, not to be omitred, which is, that having told, that the time of catching thefe Fifhes was from the beginuing of March, to the end of May, after which time they appeared no more in that part of the Sea : he did, when asked, whither they then retired, give this Anfwer, That it was thought, they went into the Weed-beds of the Gulf of Florida, it having been obferved, that upon their Fins and Tails they have ftore of Clams or Barnacles, upon which, he faid, Rock-weed or Sea-tangle did grow a hand long; many of them having been takèn of them, of the bignefs of great Oym fter-hels, and hung upou the Governour of Bermudas his Pales.

A Narrative concerning the fuccefs of Pendulum-Watcbes at

Sea for the Longitudes.

The Relation lately made by Major Holmes, concerning the fuecefs of the Pendulum-Watches at Sea (two whereof were conrmitted to his Care and Oblervation in his laft voyage to (uiny by fome of our Eminent Virtmof, and Grand Promoters of Navigation) is as followeth;

The faid Major haviag left that Coaft, and being come to the INe of Sc.Thomas under the Line accompanied with fourVeffels, having there adjufted his Watches, put to Sea, and failed Wert. ward, leven or eight hundred. Leagues, without changing his courfe; after which, finding the Wind favourable, he fteered towards the Coaft of Africk, North:North-Eaft. Buthaving failed upon that Line a matter of wo or three hanJred Leagues, the Malters of the other Ships, under bis Conduct, appretending that they.fhould want Water, before they could reach that Coalt, did propofe to him to fteer their Courfe to the Barbadoes, to fupply the mfelves with Water there. Whereupon the faid Major, having called the Matter and Pilots together, and caufed them to produce their Journals and Calculations, it was found, that thofe Pilots diddiffer in their reckonings from that of the Major, one of them eighty Leagues, another about an hiundred, and the third, more ; but the Major judging by his PendulumWatches, that they were only fome thity Leagues diftant from

(14)

the Ifle of Fuego, which is one of the Ifles of Cape Verde, and that they might reach it next day, and having a great confidence in the faid Watches, refolved to fteer their Gourfe thither, and having given order fo to do, they got the very next day about Noon a fight of the faid Ine of Fuego, finding themfelves to fail directly upon it, and fo arrived at it that Afternoon, as he had faid: Thefe Watches having been firft Invented by the Excellent Monfieur Chrifian Elugens of Zulicbem, and fitted to go at Sea, by the Right Honourable, the Earl of Kincardin, both Fellows of the Royal Society, are now brought by a New addition to a wonderful pertection. The faid Monfieur Hugens, having been informed of the fuccefs of the Experiment, made by Major Holmes, wrought to a friend at Paris a Letter to this effect;

Major Holmes at his return, hath made a relation concerning the ulefulnefs of Pendulums, which furpafferh my expectation:I did not imagine that the Watches of this firf Structure would fucceed fo well, and I had referved my main hopes for the New ones. Eut feeing that thofe have already ferved fo fucceffully, and that the other are yet more juft aud exatt, I have the more reafon to believe, that the Invention of Loxgitudes will come to its perfection. In the mean time Ifhall tell you; that the States did receive my Propofition, whet I defired of them a Fatent for thefe new Waiches, and the recompenfe fet a-part for the invention in cale of fuccefs; and that without any difficulty they have granted my requeft, commanding me to bring one of thefe Watches into their Affembly, to explicate unto them the Invention, and the application thereof to the Longitudes; which I have done to their contentment. I have this week publifhed, that the faid Watches thall be expofed to fale, together with an Information neceflary to ufe them at Sea : and thus I have broken the Ice. The fame Objection, that hath been made in your parts againft the exactuefs of thefe Pendulumi, hath alfo beenmade here; to wit, that though they fhould agree together, they might fail both of them, by reafon that the Air at one time might be thicker, than at another. But I have anfwered, that this difference, if there be any, will not be at all perceived in the Penduls, feeing that the continuall Obfervations, made in Winter fromi day to day, until Summer, have hewed me that
(15)
they have always agreed with the Sun. As to the Printing of the Figure of my New Watch, Ifoll defer that yet a while: but it thall in time appear with all the Demonfrations thereof, together with a Treatifc of Pendulums, written by me fome days fince, which is of a very fubtile Speculation.

The Character, latelypublißed beyond the Seas, of an Eininent Perfon, not long fince dead at Tholoufe, where be was a Councellor of Parliament.

It is the defervedly famous Atonfeur de Fermat, who was, (faith the Author of the Letter) one of the moft Excellent Men of this Age, a Genius fo univerfal, and of fo vaft an extent, that if very knowing and learned Men had not given teftimony of his extraordinary merit, what with truth can be faid of him, would hardly be believed. He entertained a conflant correfpondence with many of the moft llluftrious Mathematicians of Europe, and did excel in all the parts of Mathemarical Science: a Teftimony whereof he hath left behind him in the following ' Books.

A Method for the Quadrature of Paraboli's of all degrecs.
A Book De Maximis of Minimis, which ferveth ner only for the deternination of Problems of Plains and Solids, but alfo for the invention of Tangents and Curve Lines, and of the Centres of Gravity in Solids; and likewife for Numerical Queftions.

An Introduction to the Doctrine of Plains and solids, which is an Ansalytical Treatife; concerning the folution of Plains and Solids, which had been leen (as the Advertifer affitms) before Monfieur Des Cartes had publih'd any thing upon this Subject.

A Treatife Dec.Contactibus spbericis, where he hath demonftrated in solids, what Mr. Wiet, Malter of Requefte, had but demenfrrated in Pluins.

Another Treatife, wherein he eftabliheth and demonftrateth the two Books of Apollonius. Pergats, of Plains.

And a General Method for the dimenfion of Curve Lines, ©́c. Beffides, having a perfect knowledge in Antiquity, he was confulted from all narts upon the difficulizes that did emerge therein: he hath explained abundance of oblcure places, thatare found

By the Council of the Royal Socimy of Loudon for Improving of Natura! Knowledge.

 Minate Sodico, mate by hagnifying Clates, wih Obferwiens and
 Provers te tive find Suatly.

Nosm, 23.
1664.

Brouncker. F.R.S.

MICROGRAPHIA :

OH 30 ME
Pbsfodgical Defriptrions
() F

MINUTE BODIES

AADEHY
MAGNIFYING GI.ASSES.
学1 1 1
Odearvations amd lineuiries sherecupon.
Ey R. HOO KE, Fellow of the Roynt Soctistr

CONDON, Pincod by 70, Marbm, and \%o. Allefty, Printers both:

Auzout - astronomy
Bourdelin - chemistry
Buot - geometry
Duclas - chemistry
Duhamel - anatomy
Frénicle de Bessy - geometry
Gayant - anatomy
Huygens - geometry
La Chambre - physics
Marchant - botanist
Mariotte - physics
Niquet - geometry
Perrault - physics
Picard - astronomy
Richer - astronomy
Roberval -- geometry

A Difouvery of two New Planets abous Saturn, made in the Royal Parifian Obfervatory by Signor Caffini, Fellow of both the Rojal Societys, of England and France; Englifh't ont of French.
I.

A Difcovery of iofmall Fixt Stars, and of one Nem Planet, firf.

A
Bout the end of OEFober 1671. Saturn pafs'd clofe by Fowr fmall Fix't Stars, vifible only by a Telefcope, within the finus of the Water of Aquarive, which Rbeita once took for New Satellits of Jupiter, calling them Vrbam-octavians; but which Hevelius (who called them vladifavians) thew'd to be fome of the common Fix'c Stars, that may every day be feen by a Telefcope any where in the Heavens.

This Paffage of Sarura gave us occafion to difcover in the fame place, within the face of 10 minuts, by a Telefcope of 17 feet, made by Gampani, Eleven other fmaller Stars, one of which, by its particular motion, fhew'd it felf to be a true Ple. net : which we found by comparing it not only to Saturn and his Ordinary Satellit, difcovered 1655 by Mr. Hugens, but alfo t jother Fix't Stars, and particularly to three, marked a, b, d, see Tat. in the Firlt Table, where, to avoid a long explication of our 1. FigII. Firft Obfervations, we havedefribed the way of Saturn, and

Royal Academy Expeditions

Picard to Denmark, 1671

Determine precise longitude and latitude of Hven
Obtain a copy of register of Tycho's observations
\{Discovers anomalous "motion" of northern stars
Brings young Roemer back to Paris Academy

Richer to Cayenne, 1672-73
Determine precise obliquity of the ecliptic
Determine precise times of equinoxes
Determine parallaxes of Mars, Venus, Sun
Record motions and parallaxes of Moon
Record motions of Mercury
Record positions of south-hemisphere stars
Determine precise longitude and latitude of Cayenne
\{Finds clock around 2½ minutes slow per day
Finds one-second pendulum 114 lines shorter, i.e. gravity around 0.35% weaker at Cayenne\}

(3075)
 Numb.80.

 PHILOSOP H ICAL

 PHILOSOP H ICAL
 TRANSACTIONS.

Febrwaty 19. 167프․

A Letter of Mr. Iface Newton, Profeflor of the Mathematicks in the Univerfity of Cambridge; containing his New Theory about Light and Colors: fent by the Author to the Publifher from Cambridge, Febr. 6. $16 \frac{2 \mathrm{x}}{7 \mathrm{z}}$; in order to be communicated to the R. Society.

(4004)

An Accompt of a Nerv Catadioptrical Telefcope invented by Mir. Newton, Fellow of the R.Society, and Profeffor of the Ma: thematiques in the Vniveifity of Cambridge.

THis Excellent Mathematician having given us, in the Tranfactions of Febrmary laft, an account of the caufe, which induced him to think upon Refleating Telefcopes, inftead of Refrating ones, hath thereupon prefented the Cu . rious World with an Efay of what may be performed by fuch Telefcopes; by which it is found, that Telefcopical Tabes may be confiderably Shortned without prejudice to their magnifying effect.

This new inftrument is compoled of two Metallin $\int p e c u-$ lum's, the one Goncave, (inftead of an Object-glafs) the other Plain; and alfo of a fmall plano-convex Eye: Clafs.

FACSIMILE XX

(893)

A Demonfrastion conrerning the Motion of Light, commumicaiced
from Paris, in the Journal des Scavans, and hure mede Engligb.

PHilofophers have been labouring for many years to decide by fome Experience, whether the action of Light be conveyed in an inflance co diflant places, or whether it requireth time. M. Romer of the R. Aosdemy of the Sciences hath devifed a way, taken from the Obfervations of the firft Satellit of Fupiter, by which he demonfrates, thar for the dinance of 2 bout 3000 leagues, fuch as is very near ibe bignefs of the Diameter of the Earth, Light needs not one fecond of time.

Let (in Fig.i I.) A be the Sun, B 7 fupiser, C the furf Satellit of Jupiter, which enters ibro the fhadow of Jupiter, to come out of it at D ; and let EFGHKL be the Earth placed at divers diftances from fupiter.

Now, fuppofe the Earth, being in L towards the fecond Qnadrarure of Gupiter, hath feen the frit Satellit at the time of its emerfion or ifluing our of the ghadow in D ; and that about 42:- hours after, (wid. after one revolution of this Satellit,) the Earth being in $\mathrm{K}_{\text {, }}$ do fee it returned in D ; it is manifeff, that if the Light require time to traverfe the interval LK_{2} the Sareilit will be feen returned later in D, than it would have been if the Earth had remained in L , fo thas the revolution of this Satellit being thus obferved by the Emerfions, will beretarded by fo much time, as the Lighe thall have taken in paffing from L to K, and that, on the concrary, in the other Quadrature FG, where the Earth by a pprosching goes to mees the Ligbt, the revolutions of the Jmaerions will appear to be fhortned by fo inuch, as thofe of the Emerfions had appeared to be lengthned. And becaufe in 42 thours, which this Satellit very near takes to make one revolution, the diftance between the Earth and fupiter in both the Quadratures varies at leaft 210 Diameters of the Earth, it follows, that if for the account of every Diameter of the Eartb there were required a fecond of time, the Light would take $3 \frac{1}{2}$ minutes for each of the intervals GF, KL; which would caufe near half a quarter of an hour beeween two revolutions of the firf Satellit, one obferved in FG, and the orther in KL, whereas there is not obferved any fenfible difference.

(894)

Yet doth it not follow hence, that Light demands no time; For, atter M. Romer had examand the thing more perty, be found, that what was not fenfible in two revolintions, became very confiderable in many being taken togecher, and that, for example, forty revolutions obferved on the fide F, mught be fenfibly fhorter, than forty others obferved in any place of the Zodiack where Jupiter may be mer with; and itbat in profortion of twenty two for the who e interval of $H E$, which is the double of the interval that is from heace to the Sun.
The neceflity of this new Equation of the retardment of Light, is eftablifhed bvall ithe observations that have been made in the R. Ateademy, and in the Obfervatory, for the lpace of eight years, and it hath been lately confrined by the Emerfion of the firt Sarellit obferved at Parix the gat of November lant at s a Clock, $35^{\circ} 45^{\prime \prime} \%$ at Night, 10 minutes.later thin it was to be expeded, by deducing ir from thofe that. had been obferved ini
 ter : Which M. Romier had predided to the faid Acadcuny from the beginning of Sepsember.
But to remove all doubt, that this inequality is caufed by the retardment of the Light, he denionfrates, that it cannot come from any excentricity, or any other caufe of thofe chat are commonly alledged to explicate the irregularities of the Moon and the other Planets; though he be well aware, that the firf Satellit of fupiter was excentrick, and ihar, befides, his revolutions were advanced or retarded according as fagiter did approach to or recede from the Sua, as alfo that the revolutions of the primum mobile were unequal; yet faith be, thefe three laft coufes of inequality do not hinder the firft from being manireft.

Greenwich Observatory

Graph 3

Graph 4

In Graph 3, which shows errors in ephemerides of Venus, it is noteworthy that Durret's positions match those of Eichstadt and Wing very closely; they have apparently been determined from almost the same elements and theory. The errors in the Venusian ephemerides of Argoli and Montebruni are three to four times larger, and so have been plotted separately.

In Graph 4 Streete's almanacs of 1682-85 are compared, for the superior planets, with the Connaissance des temps, begun in 1679 by the Paris Academy of Sciences. The errors in both are considerable, even for Mars which, unlike Jupiter and Saturn, is not subject to sizeable long-term perturbations.

Graph 5 compares the Venusian ephemerides of Streete, the Connaissance des temps, and Flaminio Mezzavacca (d. 1704), who appears to have copied at least some of his positions from the ephemerides of Argoli. Streete's superior accuracy is evident: it is due in part to the superior solar theory he inherited from Horrocks, and in part to his employing Kepler's third law to determine the mean solar distance of Venus - a practice that derives from Horrocks.

	ORBITAL TRAJECTORY	LOCATION VS. TIME	MEAN DIST. FROM SUN
KEPLER	ellipse	area rule	from observations
BOULLIAU	ellipse	a geometric construction	from observations
HORROCKS	ellipse	area rule	via 3/2 power rule
STREETE	ellipse	Boulliau's construction	via 3/2 power rule
WING	ellipse	oscillating equant	from observations
MERCATOR	ellipse	a geometric construction construction	from observations

Table 1. Seven Comparably Accurate Ways of Calculating Planetary Orbits as of 1680 - All Known to Newton

Open Questions in Astronomy, 1679

1. Which of the several more or less comparably accurate yet still discrepant orbital calculation procedures is to be preferred?
2. Does Kepler's or any other of these procedures amount to anything more than just a transient approximation to the true motions, as Descartes would have them?
3. What is the nature and source of the comparatively large discrepancies exhibited by Jupiter and Saturn?
4. What are the proper corrections to observations for parallax and atmospheric refraction?
5. Is the speed of light really finite and, if so, what corrections to observations are needed to adjust for it?
6. What is the motion of the Moon and why is it so much more complicated than e.g. those of Jupiter's satellites?
7. What are comets and what trajectories do they describe as they pass through the planetary system?
8. Does the strength of surface gravity really vary from one place to another and, if so, according to what rule?
9. Are the planets being carried around by vortices and, if not, then what retains them in orbits that are at least roughly elliptical?
10. What, if anything, should be made of the seeming fact that the centrifugal conatus of the planets varies in an inverse-square ratio with mean distance from the Sun?

In 1674 Hooke had put forward three hypotheses at the end of his An Attempt to Prove the Motion of the Earth:

- "That all celestial bodies whatsoever have an attraction or gravitating power towards their own centers, whereby they attract not only their own parts, and keep them from flying from them, as we observe the Earth to do, but that they do also attract all the other celestial bodies that are within the sphere of their activity; and consequently that not only the Sun and Moon have an influence upon the body and motion of the Earth, and the Earth upon them, but that Mercury, also Venus, Mars, Saturn, and Jupiter by their attractive powers, have a considerable influence upon its motion as in the same manner the corresponding attractive power of the Earth hath a considerable influence upon every one of their motions also."
- "That all bodies whatsoever that are put into a direct and simple motion, will so continue to move forward in a straight line, till they are by some other effectual powers deflected and bent into a motion, describing a circle, ellipse, or some other more compounded curved line."
- "That these attractive powers are so much the more powerful in operating, by how much the nearer the body wrought is to their own centers."
"Now what these several degrees are I have not yet experimentally verified; but it is a notion which, if fully prosecuted as it ought to be, will mightily assist the astronomer to reduce all the celestial motions to a certain rule, which I doubt will never be done true without it. He that understands the nature of the circular pendulum and circular motion, will easily understand the whole ground of this principle, and will know where to find direction in nature for the true stating thereof. This I only hint at at present to such as have ability and opportunity of prosecuting this inquiry, and are not wanting of industry for observing and calculating, wishing heartily such may be found, having myself many other things in hand which I would first complete and therefore cannot so well attend it. But this I durst promise the undertaker, that he will find all the great motions of the world to be influenced by this principle, and that the true understanding thereof will be the true perfection of astronomy." (Gunther, viii, pp.27-28)

[^0]: A Field-lens B Eye-lens
 D Position of single lens giving the same magnification
 $C D$ Focal length of equivalent lens

