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Abstract

Traditional dimensionality reduction approaches often struggle to create simultane-

ous low-dimensional embeddings for data with multiple heterogeneous blocks, which

poses problems in �elds that combine di�erent types of data. Multi-block methods

remedy this by highlighting linear relationships across datasets while also illustrating

structures on the per-dataset level. We focus on creating an integrated analytical

and computational representation for one such multi-block method called Multiple

Co-Inertia Analysis (MCIA). We illustrate how MCIA can be computed using a

modi�cation to the Nonlinear Iterative Partial Least Squares (NIPALS) method,

and benchmark the clustering performance of di�erent data pre-processing choices

for MCIA using synthetic datasets. Finally, we propose a pathway to extend MCIA

to apply to data tensors.
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Chapter 1

Principal Component Analysis

To introduce dimensionality reduction as a topic, we may begin with arguably the

most popular dimensionality-reduction method. Interpreting high-dimensional data

has been an area of active research for at least the last century, and has become more

important as datasets have grown ever larger. While it is relatively easy to visualize

data in two or three-dimensional space, it is much harder to visualize data in four

or higher dimensional spaces. This is a particular issue in exploratory data analysis,

where visualizing data is useful to understand particular trends and spot outliers.

Beyond visualization, many of our analytical tools tend to break down if we apply

them in higher dimensional spaces. For instance, the famous `curse of dimensionality'

renders distance-based data clustering increasingly useless as the dimension of the

space increases [9]. One class of methods to solve this problem focus on transforming

the data into a lower-dimensional space, allowing for more traditional data analysis

techniques to work.

Fundamentally, a dataset consists of a set of samples (or observations) of a set of

variables (or features). For example, a dataset tracking the weather around Boston

might have temperature, humidity, and pressure as variables, sampled across vari-

ous locations around the city. Another example could be a genomics dataset, with

variables being the speci�c genes that are measured and samples referring to the

patients from which these measurements were taken. We can format a dataset of n

observations of p variables as a matrix X ∈ Rn×p, where

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

r⃗T1

⋮

r⃗Tn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∣ ∣

x⃗1 ⋯ x⃗p

∣ ∣

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (1.1)

Note that each row vector r⃗Ti ∈ Rp represents the measurements of all variables for
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a single sample, while each column x⃗j ∈ Rn represents the measurements of one

variable across all samples. The dimension of the dataset is p, which is the number

of variables measured for each sample. Thus, dimensionality-reduction methods are

usually concerned when the number of variables exceeds the number of samples - i.e.

when X is a very wide matrix.

1.1 Theory of Principal Component Analysis

There are a variety of approaches to dimensionality-reduction, but one of the most

fundamental is called Principal Component Analysis (PCA). In brief, PCA creates

a set of `optimal axes' based on the data, then projects the data onto these axes to

create a lower-dimensional representation. Given a data matrix X ∈ Rn×p as above,

the `optimal axes' are linear combinations of the variable vectors (x⃗i) in Rn with

maximal variance [8]. In other words, PCA seeks constants a1, ..., ap satisfying

argmax
a1,...,ap

var(
p

∑
i=1

aix⃗i) subject to
p

∑
i=1
(ai)

2
= 1 (1.2)

where var is the variance function for a vector of observations y⃗T = (y1, ⋯ , yp) ∈

Rp de�ned by

var(y⃗) =
1

p

p

∑
i=1
(yi − µy⃗)

2 where µy⃗ =
1

p

p

∑
i=1
(yi). (1.3)

We can use matrices and vectors to express (1.2) equivalently as

argmax
a∈Rp

var (Xa) subject to aTa = 1 (1.4)

where aT = (a1 ⋯ ap) ∈ R
p is the vector of coe�cients in the linear combination.

Note that the restriction aTa = 1 on the length of a is necessary for the problem to

be well-de�ned, as otherwise var(Xa) can be scaled arbitrarily high. However, the

exact sign and magnitude of a is not important in the results of PCA.

The solution to (1.4) can be thought of as de�ning the direction in Rp along which
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the data has most variance. The vector a is called the �rst Principal Component

(PC) loading. Recalling that each row of X corresponds to a sample in the dataset,

the corresponding linear combination vector f = Xa is a vector of coe�cients from

projecting each sample in Rp onto vector a. Thus, f is a representation in a 1-

dimensional coordinate system de�ned by the unit vector a, and is called the �rst

principal component of X or the �rst PC score.

To increase the number of dimensions in the low-dimensional representation of

X, PCA repeats the optimization process of (1.4) requiring each successive solution

vector to be orthogonal to all previous solutions. Thus, if a J-dimensional represen-

tation of X is required (for J < p), PCA �nds vectors a(1), ...,a(J) in Rp satisfying

argmax
a(j)∈Rp

var (Xa(j)) subject to (a(j))
T
a(i) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 i = j

0 i ≠ j

(1.5)

for j = 1, ..., J , i = 1, ..., j. The PC scores corresponding to this set of loadings are

de�ned as before,

f (j) =Xa(j) j = 1, ..., J. (1.6)

The orthogonality condition in (1.5) de�nes a natural ordering of the PC loadings

and scores: a(1) is the vector in Rp such that f (1) = Xa(1) has maximal variance,

while f (2) = Xa(2) is the `second best' maximal variance solution in the sense of re-

specting the orthogonality condition (and so on). Thus, we call a(1),a(2),a(3)... and

f (1), f (2), f (3)... the �rst, second, third (etc.) PC loadings and scores respectively.

Given that {a(1), ...,a(J)} is an orthogonal set, their span de�nes a J-dimensional

subspace of Rp where the score vectors f (1), ..., f (J) represent the projection coe�-

cients of each row in X onto the basis vectors of this subspace [8]. Thus, PCA yields

a J-dimensional representation of the data in X.

Figure 1.1 presents a very simpli�ed visualization of PCA on a synthetic dataset

of 200 observations of two variables. Fig. 1.1a illustrates the geometric signi�cance

of the �rst PC loadings vector a(1) as pointing in the direction where the variance of
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(a) (b)

Figure 1.1: 1.1a Plot of a synthetic dataset of 200 observations of two correlated
variables with Gaussian distributions, together with vectors representing the �rst
and second PC loadings in R2. 1.1b Plot of the �rst two PC scores of the same
dataset, together with the PC loadings represented as vectors illustrating how the
data has been projected. Note that the PC loadings vectors have been lengthened
for visibility.

the data is largest. Fig. 1.1b) illustrates a plot in the two-dimensional space spanned

by a(1) and a(2), using the score vectors f (1) and f (2) as lists of horizontal and vertical

coordinates respectively. Note that since the data is in R2 and is projected onto the

span of two vectors, there is no dimensionality reduction in this example.

1.2 Computing PCA

The optimization criterion in (1.5) is the de�ning feature of PCA. However, it is

not immediately obvious how to actually compute its solutions. Given a dataset

X ∈ Rn×p as above, we �rst de�ne a matrix S called the `sample covariance matrix'

of X by

S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cov(x⃗1, x⃗1) cov(x⃗1, x⃗2) ⋯ cov(x⃗1, x⃗p)

cov(x⃗2, x⃗1) ⋮

⋮ ⋮

cov(x⃗p, x⃗1) ⋯ ⋯ cov(x⃗p, x⃗p)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(1.7)
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where x⃗i represents the ith column of X and cov is the sample covariance function

between two vectors y⃗, z⃗ ∈ Rn:

cov(y⃗, z⃗) =
1

n − 1

p

∑
i=1
(yi − µy⃗)(zi − µz⃗). (1.8)

It can be shown [8] that we can write the variance of any linear combination Xa as

var(Xa) = aTSa. (1.9)

Thus (1.5) reduces to maximizing this quadratic form with the constraint that aTa =

1. Using Lagrange multipliers (see [8]) it can also be shown that solutions maximizing

(1.9) must satisfy the eigenvalue equation Sa = λa. Combining this with (1.9), we

can also see that

var(Xa) = aTSa = aT (λa) = λ (1.10)

for any unit-length eigenvector a of matrix S. Furthermore, the construction of S

shows it is a real symmetric matrix in Rp×p. Hence, by the spectral theorem for

Hermitian matrices, the eigenvectors a(1), ...,a(p) of S form an orthogonal basis for

Rp. Since the variance of each linear combination Xa(i) is simply the associated

eigenvalue λi, �nding the �rst J PC loadings of X is equivalent to �nding the J

unit-length eigenvectors of S with the largest-magnitude eigenvalues.

1.2.1 Signi�cance Measure of Principal Components

In addition to simply providing a way to compute the PC loadings, the relation in

(1.10) gives insight into how important each PC loading/score is. The total variance

of associated with dataset X is de�ned as the sum of variances of each variable, i.e.

var(X) =
p

∑
i=1

var(x⃗i) = Tr(S). (1.11)
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Given that the trace of a matrix is equal to the sum of its eigenvalues, this becomes

var(X) = Tr(S) =
p

∑
i=1

λi, (1.12)

where λ1, ..., λp are the eigenvalues of S. Thus, the proportion of the total dataset

variance captured by projection onto the PC loading a(i) is

πi =
λi

Tr(S)
=

λi

∑
p
j=1 λj

. (1.13)

This is a standard measure for judging the importance of a given PC loading [8] ,

and is used to pick the number of PC loadings needed to capture a given percentage

of the total dataset variance.

1.2.2 Linking PCA with the Singular Value Decomposition

While it is possible to compute the PC loadings through the covariance matrix S as

above, the links between PCA and the Singular Value Decomposition (SVD) become

apparent if we �rst transform the data so that each variable has mean zero (i.e. the

data is centered). For any entry xij of X, we de�ne the centered dataset X∗ = [x∗ij]

where

x∗ij = xij − µx⃗j . (1.14)

It can then be shown using the de�nition of covariance ((1.8)) that the covariance

matrix of the centered dataset X∗ is

SX∗ =
1

n − 1
(X∗)TX∗ (1.15)

where n is the number of rows of X ∈ Rn×p. If rank(X∗) = r, we can compute the

compact SVD of X∗ to �nd

X∗ =UΣVT , (1.16)
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where U ∈ Rn×r and V ∈ Rp×r are orthonormal matrices and where Σ ∈ Rr×r is a

diagonal matrix of the singular values of X∗. Combining this with (1.15), we �nd

(n − 1)SX∗ = (X
∗
)
TX∗ = (UΣVT

)
T
(UΣVT

) =VΣ2VT . (1.17)

Since the PC loadings of the centered dataset X∗ are the eigenvectors of (n−1)SX∗ ,

they are also simply the right singular vectors of X∗ with eigenvalues corresponding

to the squared singular values of X∗. Thus, computing the PC loadings for a cen-

tered data matrix is equivalent to computing the SVD, and the numerical methods

developed to compute the latter can also be used for PCA.

1.3 Data Pre-processing and Standardization

As presented above, PCA is mathematically valid for any dataset. However, the

dependence on covariance � a quantity that depends explicitly on the units each

variable is expressed in � can pose a problem when a dataset contains variables with

di�erent length scales. Given dataset X = [xij] ∈ Rn×p, this is recti�ed by performing

PCA on the standardized dataset Z = [zij] such that

zij =
xij − µx⃗j
√
var(x⃗j)

(1.18)

where x⃗j are the columns of X (corresponding to variables). PCA can then be

performed on the standardized matrix Z, in what is commonly called `correlation

matrix PCA' [8]. Note that since the variables zij are centered, the SVD approach

always works for correlation matrix PCA. It is important to note that correlation

matrix PCA de�nes its score vectors f (i) as linear combinations of the standardized

variables z⃗j , and thus the guarantees of variance explained in (1.13) are with respect

only to the variance of the standardized variables.
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1.4 Limitations of PCA - Towards Multi-Block Methods

An issue that is somewhat apparent in Section 1.3 is that PCA is not particularly

suited to datasets incorporating multiple di�erent variable types. While the stan-

dardization in (1.18) ensures each variable contributes equally to the total variance

of the dataset, it doesn't adjust for di�ering numbers of variables of each type. This

becomes an issue with datasets where there are large discrepancies in the types of

each data collected. For instance, the �eld of `multi-omics' in biology involves ana-

lyzing large biological datasets incorporating many di�erent types of data, such as

genomics, proteomics, transcriptomics (etc.) � each corresponding to a di�erent

`omics'-type. There is often huge variation in the number of variables measured for

each `omics' type. Datasets may measure tens of thousands of genes, but only a few

hundred micro-RNA expression levels (e.g. [10]). Even if variables are standardized

as in Section 1.3, the micro-RNA variables will contribute little to the total variance

of the dataset purely because there are many more variables related to genetics.

A related issue is the fact that, after applying PCA to a dataset, there is no

clear way to check which types of data as a whole are most signi�cant in generating

the resulting low-dimensional representation. This is useful especially for exploratory

data analysis where it is not known which variables are most useful or which variables

follow the same low-dimensional structure. This capability is also useful to detect

batch e�ects that might occur in measuring certain types of data [12].

1.4.1 Worked Example of PCA on Multi-Block Data

These concerns can be illustrated more concretely by applying PCA to a relevant

dataset. Following the multi-omics example, we consider a dataset consisting of

measurements of messenger RNA (mRNA) and microRNA (miRNA) on 21 cell lines

from the NCI-60 cancer cell line database (adapted from the `omicade4' R package

[11]). The key feature of this dataset is a large discrepancy in number of variables

� there are roughly 13,000 mRNA variables but only 537 miRNA variables. Thus,
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we can represent the data as a matrix X as a concatenation of two matrices

X = [XmRNA∣XmiRNA] (1.19)

where XmRNA ∈ R21×12,985 is the matrix composed of columns corresponding to

the mRNA variables and XmiRNA ∈ R21×537 is the matrix composed of columns

corresponding to the miRNA variables. Each of these sub-matrices is called a `block',

and thus X is called a `multi-block dataset'.

After centering and normalizing each column as in (1.18), we can perform PCA

on this dataset as before. Figure 1.2 shows the results of this analysis � namely

with plots of projections onto the �rst two PC loadings (top) and graphs of the

proportion of variance explained by the �rst 10 PCs (bottom). The leftmost graph

corresponds to performing PCA on the whole dataset X, whereas the middle and

rightmost graphs represent the results of PCA on just the blocksXmRNA andXmiRNA

respectively.

The projections and variance graphs of Fig. 1.2 both illustrate that the mRNA

and miRNA data possess di�erent low-dimensional embeddings. Since PCA only

considers the variance of the entire dataset, the larger number of mRNA variables

e�ectively drowns out the miRNA variables in the combined PCA. This is evidenced

by the similarity of PCA results on the combined dataset X and the mRNA-only

datasetXmRNA. This motivates the need for an analysis method that can incorporate

datasets that have multiple blocks of di�erent sizes.
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Figure 1.2: Plot of the �rst two PC scores (top) and proportion of variance explained
by each of the �rst 10 PCs (bottom) as a result of performing PCA on a multi-
omics dataset containing 12,985 mRNA variables and 537 miRNA variables. The
graphs correspond to performing PCA on the entire dataset (left), only the mRNA
variables (middle), and only the miRNA variables (right). The miRNA-only data
has a very di�erent low-dimensional structure compared to the mRNA and combined
data, which illustrates how performing PCA on multi-block data drowns out data
blocks with smaller numbers of variables.
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Chapter 2

Multiple Co-Inertial Analysis

Multiple Co-Inertia Analysis (MCIA) is a dimensionality-reduction method designed

for datasets with multiple blocks of di�erent variables. It o�ers two key improvements

over principal component analysis on these datasets. Firstly, through normalizing

data on a block level, MCIA ensures each data block accounts for the same proportion

of the total variance. This avoids the issue where smaller blocks of variables are

drowned out by larger blocks in the low-dimensional representation (see Section

1.4.1).

The second improvement is, unlike PCA, MCIA generates two di�erent types of

score and loadings vectors. The �rst is a set of `global' scores and loadings that

describe patterns across the whole dataset, while the second are a set of `local' or

`block' scores and loadings that describe patterns within each block of variables.

Thus, MCIA is useful in illustrating block-level patterns and simultaneously analyz-

ing multiple di�erent types of data. It has been successfully applied in areas such as

bioinformatics, particularly in analyzing multi-omics data [12].

2.1 Multi-Block Data

As with PCA, we need a more rigorous de�nition of `multi-block data'. Let X ∈ Rn×p

be a dataset matrix of n observations of p variables. Furthermore, suppose the p

variables of X can be grouped into N di�erent blocks, so that X can be written as

a concatenation of N matrices of dimension n × pk each,

X = [X1∣X2∣...∣XN].
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Each matrix Xk is called a `block' matrix in the multi-block structure of the `super-

matrix' X. One example of such a structure can be seen in `multi-omics' stud-

ies, where each block corresponds to variables of a di�erent biological category

(e.g. genes, proteins, RNA methylation). Another example could be a wine tasting

dataset, where variables can be grouped according to whether they involve the taste,

smell, or visuals of a given sample of wine (see Section 6 in [16], or [13]).

2.2 Data Normalization

Data pre-processing is essential in MCIA to ensure comparability among blocks, both

due to di�erent units across the variables as well as di�ering block sizes. Unlike for

standard PCA, the normalization process for MCIA has two steps � variable-level

normalization that is computed for each entry in the data matrix and block-level

weights that are applied to each data block as a whole. As with other methods,

there are many potential pre-processing choices to make.

2.2.1 Variable-Level Normalization

Variable-level normalization is applied to make sure each variable contributes equally

to the low-dimensional representation in MCIA. It is therefore usual to divide each

column by the square root of its variance in order to remove the e�ect of units

of measurement. Much of the theory surrounding MCIA also relies on expressing

the covariance matrix as XTX. Given the discussion in Section 1.2, it is therefore

necessary for the columns of the data matrix X to be centered.

Thus, one form of variable-level pre-processing is simply performing the column

centering and scaling in (1.18), i.e.

xij z→
xij − µx∶,j
√
var(µx∶,j)

(2.1)

where xij is the (i, j)
th entry of Xk and x∶,j is the jth column of Xk. This ensures
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that each column is centered with unit variance.

Another variation that occurs in literature and in popular implementations of

MCIA (e.g. [11]) is to transform each block Xk = [xij] into a `centered column

pro�le' matrix. This is done by �rst o�setting the data so it is non-negative, then

dividing any entry by the sum of its corresponding column before subtracting the

row contribution to the total sum of the matrix, i.e.

xij z→
xij

∑x∶,j
−
∑xi,∶
∑x∶,∶

, (2.2)

where ∑x∶,j is the sum of the jth column of Xk, ∑xi,∶ is the sum of the ith row of

Xk, and ∑x∶,∶ is the sum of all entries in Xk. Each column is then further scaled by

multiplying each block Xk ∈ Rn×pk by a matrix Qk ∈ Rpk×pk , i.e.

Xk z→XkQk where [Qk]j,j =

¿
Á
ÁÀ∑x∶,j
∑x∶,∶

, j = 1, ..., pk. (2.3)

Note that Qk is a diagonal matrix, hence the operation XkQk simply weights each

column by the square root of its contribution to the total sum of Xk. It can be

veri�ed computationally that this initialization leads to a column-centered matrix

as with the `standard' initialization'.

2.2.2 Block-Level Normalization

We now assume that we are given a dataset with multi-block structureX = [X1∣...∣XN ],

where X ∈ Rn×p and Xk ∈ Rn×pk for k = 1, ...,N . Block-level normalization is used

to ensure each block contributes equally to the results of MCIA. As in section 1.4.1,

variance-based criteria tend to favor data blocks with larger numbers of variables in

a multi-block setting. Thus, most block-level pre-processing steps ensure that the

total variance of each block is equal.

Given variable-level standardized as in (2.1), one strategy is to divide each block

by the square root of its variance (e.g. in [16]). If Xk ∈ Rn×pk is any block in the
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multi-block structure, then

var(
1
√
pk

Xk) =
1

pk
var(Xk)

=
1

pk

⎛

⎝

pk

∑
j=1

var(x⃗j)
⎞

⎠
=

1

pk
⋅ pk = 1

(2.4)

where x⃗j is the jth column of Xk and where the last line follows from the fact that

var(x⃗j) = 1 for any variable normalized according to (2.1).

If each variable does not have unit variance (such as with (2.2)), we may instead

simply divide by the square root of its total variance, since clearly

var
⎛

⎝

1
√
var(Xk)

Xk

⎞

⎠
=

1

var(Xk)
var(Xk) = 1. (2.5)

The total variance of Xk can be computed from direct computation as above, or by

the sum of the squared singular values of Xk as in (1.17).

Note that in either case, each block contributes one unit of variance to the total

dataset. These block-level normalization factors are sometimes called `block weight-

ings', and are integrated into the global data matrix as

X = [ω
1/2
1 X1∣...∣ω

1/2
N XN ] (2.6)

where ωi is the ith block weighting.

2.3 Mathematical Background

The mathematical foundation for MCIA was originally developed using an object

called a `statistical triplet' [3]. This object is a 3-tuple of matrices

(Xk,Qk,D) Xk ∈ Rn×pk ,Qk ∈ Rpk×pk ,D ∈ Rn×n k = 1, ...,N

where Xk is a data block matrix (post-normalization), Qk is a positive symmetric

matrix that de�nes weights in variable space (Rpk), and D is a positive symmetric
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matrix that de�nes weightings in sample space (Rn). The choice of Qk and D allow

for di�ering de�nitions of distance between points in variable space and individu-

al/sample space respectively.

While this de�nition of MCIA is more �exible, it makes the parallels with PCA

more cloudy. In most implementations of MCIA, it is typical to assume D is the

n × n identity indicating equal weights across all samples. We have already seen a

possible choice for Qk in (2.3), which weights columns with higher variation more

heavily. However, as the �gures in the following sections will show, it is possible

to replicate the results of MCIA while only using the matrices Qk for data pre-

processing. Thus, this illustration of MCIA will assume D and Qk are identity

matrices for all k = 1, ...,N , under the assumption that the choice for Qk has already

been applied during pre-processing. See [11] or [2] (in French) for a treatment of

MCIA with statistical triplets.

2.3.1 De�ning Block and Global Scores

As with PCA, given multi-block dataset X = [X1∣...∣XN ], where X ∈ Rn×p and Xk ∈

Rn×pk for k = 1, ...,N , MCIA requires a target dimension J ≪ p for dimensionality-

reduction. It then generates two sets of vectors analogous to the PC loadings and

PC scores discussed previously. The �rst is a set of `global' loadings and scores that

describe trends across the whole dataset, represented by a set of vectors

f (j) =Xa(j) j = 1,2, ..., J. (2.7)

The vectors a(j) ∈ Rp represent a set of vectors in variable space, thus are similar to

the PC loadings. The vectors f (j) contain the projection coe�cient of each row of

X (i.e. each individual) onto the corresponding vector a(j), and thus are the analog

of the PC scores.

The second set of vectors are `local' or `block' scores and loadings speci�c to each
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data block Xk. These are represented by

f
(j)
k =Xka

(j)
k j = 1,2, ..., J k = 1,2, ...,N. (2.8)

Again, the vectors a
(j)
k de�ne a set of optimal axes in the variable space of each

block (Rpk). The scores f
(j)
k again denote the projections of each individual onto

the corresponding optimal axis as with the global scores.

The de�ning feature of MCIA is the optimization criterion it uses to create these

sets of vectors. Similarly to PCA, MCIA �nds global scores f and block loadings ak

that satisfy the covariance criterion

argmax
a1,...,ak,f

N

∑
k=1

cov2(Xkak, f) (2.9)

Note that (2.9) is equivalent to �nding axes such that the sum of squared covariances

of the block scores (fk =Xkak) with the global score (f) is maximized.

Given that (2.9) only involves a single set (i.e. �rst order) of global scores and

block loadings, we introduce orthogonality constraints to generate higher orders.

Speci�cally the sth-order scores/loadings satisfy the orthogonality constraints

(f (j))T f (s) = 0 j = 1, ..., s − 1

(a
(j)
k )

Ta
(s)
k = 0 j = 1, ..., s − 1, k = 1, ...,N.

(2.10)

Note that these constraints mean the global scores f (j) are mutually orthogonal,

while for the blocks it is the loadings a
(j)
k that are mutually orthogonal. In addition

to (2.10), the results of MCIA are normalized to prevent arbitrary scaling

var(f) = 1, (ak)
Tak = 1, k = 1, ...,N (2.11)

for any order of global score and block loadings.
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2.3.2 Interpreting the Scores and Loadings

It is clear from the orthogonality criteria that for any given block Xk ∈ Rn×pk , the

set of block loadings a
(1)
k , ...,a

(J)
k form an ortho-normal basis for a J-dimensional

subspace of the block's variable space Rpk . In e�ect, the block scores and loadings

provide a local low-dimensional representation for the data in a block.

Although it is not clear from these condition, it is also true that the global

loadings a(1), ...,a(J) are orthogonal (Table 2 in [6]). Thus the global loadings again

represent coordinates vectors of a J-dimensional subspace of the global variable

space Rp. Hence, we may interpret (2.9) as generating a global low-dimensional

representation along with block-level low-dimensional representations such that the

block-level variation patterns match the corresponding global variation pattern.

2.4 Computing First Order Vectors

In order to satisfy both (2.9) and (2.10), MCIA computes block and global loadings

iteratively. For any �xed vector f = Xa ∈ Rn, it is a standard result from partial

least squares (e.g. in [15]) that unit-normalized solutions to

argmax
a1,...,ak

N

∑
k=1

cov2(Xkak, f) (2.12)

are given by the vectors

ak =
XT

kXa

∣∣XT
kXa∣∣

. (2.13)

Thus, substituting this into the covariance criterion,

N

∑
k=1

cov2(Xkak,Xa) =
1

n − 1

N

∑
k=1
((Xkak)

T
(Xa))

2

=
1

n − 1

N

∑
k=1
(
(aTXTXkX

T
kXa)

∣∣XT
kXa∣∣

)

2

= aT (XTX)2a.

(2.15)



18

This is a quadratic form similar to (1.9) subject to the constraint aTa = 1, and the

same Lagrange multiplier argument as before shows a must satisfy the eigensystem

(XTX)2a = λa. (2.16)

As before, the maximizer of (2.15) is the eigenvector corresponding to the largest

eigenvalue of matrix XTX. Thus, a is exactly the �rst PC loading of global data

matrix X and f =Xa is the corresponding �rst PC score.

Once f is computed, the block loadings can thus be found using the expression

above,

ak =
XT

kXa

∣∣XT
kXa∣∣

, k = 1, ...,N. (2.17)

Note that this de�nition automatically ensures the vectors ak satisfy the length

constraints in (2.11).

2.5 De�ation and Higher Order Solutions

Having computed the �rst order scores and loadings, subsequent steps of MCIA

compute further solutions that also satisfy the orthogonality constraints in (2.10).

This is achieved by removing the components of each data block Xk that are not

orthogonal to the prior block loadings. Thus, to compute the jth order loadings, we

replace Xk with X̃k de�ned by

X̃k =Xk −Xka
(j−1)
k (a

(j−1)
k )

T
k = 1, ..,N. (2.18)

Note that this step subtracts the data in block Xk in the direction of the prior-

order block loading a
(j−1)
k . This process is typically referred to as the `de�ation

step'. We thus form the de�ated global data matrix from the de�ated blocks via

X̃ = [X̃1∣...∣X̃N ], and compute subsequent scores and loadings using the same process

in section 2.4.
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2.6 Interpreting the Results of MCIA

2.6.1 MCIA in Clustering

One of the primary uses of the results of MCIA is clustering on the low-dimensional

representations it generates. Returning to the data matrix X = [X1∣X2∣...∣XN ] ∈

Rn×p , recall that each row vector in Rp corresponds to an individual/sample in the

dataset:

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r⃗T1

r⃗T2

⋮

r⃗Tn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn×p. (2.19)

Thus, we can project each individual onto the coordinate system de�ned by the

global axes a(j) to �nd a low-dimensional representation of the data. Given (2.7),

these projections are exactly the entries of the corresponding global scores, i.e.

f (j) =Xa(j) ←→ f (j) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r⃗T1 a
(j)

r⃗T2 a
(j)

⋮

r⃗Tna
(j)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

j = 1,2, ..., J << p (2.20)

where j is the order of the axis projected onto. Thus, the ith entries of f (1), f (2), ..., f (J)

de�nes a J dimensional representation of the ith individual.

This low-dimensional representation of the data has similar uses to other dimensionality-

reduction strategies. A key example of this is to aid in clustering individuals. The

central points of each `star' in Fig. 2.1 illustrate an example of plotting individuals

by their components in the �rst two (j = 1,2) global scores, thus highlighting three

di�erent clusters of individuals in the dataset.

MCIA's block scores can also be plotted as coordinates exactly like the global
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Figure 2.1: Plot of the �rst two (j = 1,2) global and block scores obtained fromMCIA
performed on a multi-omics cancer dataset. The central points represent the global
scores, while each shape represents the �rst two block scores for the three blocks
(mRNA, miRNA, and Proteomics) in the dataset. The data are colored according
to the known cancer types associated with each cell line. This plot was computed
using the NIPALS implementation of MCIA in Appendix B to replicate Figure 2A
in [12].
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scores, since

f
(j)
k =Xka

(j)
k ←→ f

(j)
k =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r⃗T1 a
(j)
k

r⃗T2 a
(j)
k

⋮

r⃗Tna
(j)
k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

j = 1, ..., J << p. (2.21)

Hence each entry of f
(j)
k de�nes a jth-order coordinate for each sample in the dataset

unique to data block k. Figure 2.1 illustrates plotting the �rst two (j = 1,2) block

scores as coordinates in individual space along with the global scores. Each of the

three di�erent block scores in this dataset is represented by a di�erent shape (circle,

square, triangle) linked to the central point representing the global score. This anal-

ysis shows how close the projections of each individual block are to the projections

of the entire data matrix X. If a block is projected far from the global coordinate

or other block coordinates, it suggests the low-dimensional structure of that block

doesn't follow the same trend as the rest of the dataset.

2.6.2 MCIA in Variable Selection

Another use for MCIA is in identifying the variables that contribute most to a given

score. For any given block Xk ∈ Rn×pk , the jth-order block loadings a
(j)
k ∈ R

pk de�ne

the corresponding block score f (j) ∈ Rn as a linear combination of variables (columns)

of the block, i.e.

f
(j)
k =Xka

(j)
k <=> f (j) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∣ ∣

x⃗k1 ⋯ x⃗kpk

∣ ∣

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[a
(j)
k ]1

⋮

[a
(j)
k ]pk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.22)

<=> f (j) =
pk

∑
l=1
[a
(j)
k ]l ⋅ [x⃗k]l (2.23)

where x⃗ki are the columns of block Xk and [a
(j)
k ]l represents the l

th entry of column

vector a
(j)
k . Hence, we can interpret the block loadings vectors a

(j)
k as lists of co-

ordinates in variable space, and can thus plot the each variable in low-dimensional
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Figure 2.2: Plot of the �rst two (j = 1,2) block loadings obtained from MCIA
performed on a multi-omics dataset. Points are labeled and colored according to
the block they belong to, in this case referencing the omics type (mRNA, proteins,
miRNA).This plot was computed using the NIPALS implementation of MCIA in
Appendix B to replicate Figure 2B in [12].

space. Figure 2.2 illustrates plotting the coordinates ([a
(1)
k ]i, [a

(2)
k ]i) for each vari-

able indexed by i. Variables that strongly in�uence the �rst or second global scores

are far from the origin on the horizontal and vertical axes respectively.

2.6.3 Importance of Scores and Loadings in MCIA

While the eigenvalues associated with each MCIA global score are not simultaneously

computable like with PCA, the relation suggested by (2.16) gives us a measure of

the variance explained by each component. If we let X(j) be the de�ated global data

matrix at the j(th) order, then (2.16) tells us that the j(th) global score f (j) is the

�rst PC score of X(j). Thus, its associated squared singular value λ(j)2 represents

the variance explained by this global score. Hence, given a set of global scores

f (1), ..., f (J) and their associated singular values λ(1), ..., λ(J), we can plot the decline

of the singular values as a bar chart much like in Fig. 1.2. Even further, if we

compute all available PC scores (up to n if X ∈ Rn×p where n ≪ p), then we can
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Figure 2.3: Plot of the proportion of variance explained by each global score from
performing MCIA on the same cut version of the NCI-60 cancer cell line dataset
used in Figures 2.1 and 2.2.

compute the proportion of variance explained by the score f (k) as

πk =
λ(k)

var(X)
=

λ(k)
n

∑
j=1

λ(j)
. (2.24)

Figure 2.3 illustrates plotting πk for the global scores of the cut NCI-60 multi-omics

dataset.
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Chapter 3

Computing MCIA Through NIPALS

While we have illustrated the standard eigensystem-based approach to computing

MCIA often found in literature, this is not the only way to compute MCIA. More

modern treatments of MCIA have suggested an alternative method through a mod-

i�ed version of the Nonlinear Iterative PArtial Least Squares (NIPALS) family of

methods (e.g. the supplementary materials of [12]). While some have illustrated

how NIPALS can compute a related dimensionality reduction method (e.g. [5]),

there has yet to be an explicit explanation of how MCIA can be computed with

the method. Thus, this chapter illustrates computing MCIA through the modi�ed

NIPALS method, shows that it does indeed satisfy the objective function of MCIA,

and illustrates some advantages it has over the standard eigensystem approach.

3.1 Iterative Stage of NIPALS

Like the eigensystem approach to MCIA discussed previously the modi�ed NIPALS

approach can also be divided into separate `computation/iteration' and a `de�ation'

stages. The de�ation stage for modi�ed NIPALS is exactly the same as in Section

2.5, but the computation stage is di�erent.

Table 3.1 gives an overview of the iteration stage for MCIA via modi�ed NIPALS.

Given a multi-block data matrix X = [X1∣...∣XN ] ∈ Rn×pand a random starting

vector q ∈ Rn×1, the columns of each block are projected onto q to form vectors of

block coe�cients ak for k = 1, ...,N we may call `block loadings' (step 1). These

coe�cients then de�ne N linear combinations tk, k = 1, ...,N of the columns of each

block matrix called the `block scores' (step 3). After normalization, these N vectors

can be organized into an n × N matrix (step 4). By projecting the block scores

onto q, we obtain a single N × 1 vector of projection coe�cients w called the block

weights (steps 5 and 6). Finally, these block weights de�ne a linear combination of
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the block scores, which we then set as our new starting vector q.

0.) Let q ∈ Rn×1 be an arbitrary starting vector

1.) Compute block loadings ak =
XT

k q

qTq
for each block k = 1, ...,N

2.) Normalize the block loadings to aTk ak = 1 for k = 1, ...,N

3.) Compute block scores tk =Xkak for k = 1, ...,N

4.) Create an n ×N matrix of block scores T = [t1∣...∣tN ]

5.) Compute global weight vectors w = TTq
qTq

6.) Normalize the global weight vectors to wTw = 1 for k = 1, ...,N

7.) Set starting vector to q = Tw and return to step 1.)

Repeat until the global and block scores converge in the chosen convergence metric.

Table 3.1: Steps for the iteration stage of the modi�ed NIPALS approach to MCIA.
Adapted from [5].

Letting t
(s)
k and q(s) denote the vectors tk for k = 1, ...,N and q after s iterations,

it can be shown (Appendix A in [5]) that this process generates a monotonic sequence

N

∑
k=1

cov2
⎛

⎝
t
(s)
k ,

q(s)
√
var(q(s))

⎞

⎠
≤

N

∑
k=1

cov2
⎛

⎝
t
(s+1)
k ,

q(s+1)
√
var(q(s+1))

⎞

⎠
. (3.1)

Thus, at the limit s→∞, this process exactly maximizes the sum of squared covari-

ances

N

∑
k=1

cov2 (tk,q) var(q) = 1 (3.2)

which is identical to the MCIA optimization criterion in (2.9) if we identify tk with

the block scores fk =Xkak and q with the global scores f in the limit. Thus, NIPALS

as presented does indeed compute MCIA.

Furthermore, this insight provides us with an easy stopping criterion for the

NIPALS algorithm. At iteration s, de�ne the number

a(s) =
N

∑
k=1

cov2
⎛

⎝
t
(s)
k ,

q(s)
√
var(q(s))

⎞

⎠
(3.3)

then by (3.1) the sequence a(1), a(2), ... is monotonic and is also bounded since the
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variance of the dataset is �nite. Thus, the sequence converges and a suitably small

tolerance on the Cauchy criterion a(s+1)−a(s) can determine when to halt the NIPALS

process.

3.2 Choice of De�ation Step and Consensus PCA

To replicate MCIA fully, multiple orders of global and block scores must be generated

as in (2.7) and (2.8). For MCIA, the de�ation step is exactly identical to (2.18) after

ak, fk, and f have been computed from the NIPALS iteration. Thus, after removing

all data in the direction of the block loadings, we can apply the NIPALS iteration

to the de�ated data matrix exactly as before.

However, it is notable that this is not the only appropriate choice of de�ation

method for the NIPALS iteration. A related method called `Consensus Principal

Component Analysis' (CPCA, [5]) uses the same NIPALS iteration as above but

de�ates by the global scores instead of the block loadings, i.e.

X̃
(j+1)
k =X

(j)
k −

f (j)(f (j))T

(f (j))T f (j)
X
(j)
k k = 1, ..,N (3.4)

where (f (j)) is the jth order global score and X̃
(j)
k is the jth order de�ated data block

matrix. As before, these de�ated blocks can be arranged into a de�ated super-matrix

X̃(j+1) = [X̃(j+1)1 ∣...∣X̃
(j+1)
N ] to compute the (j + 1) order scores and loadings.

The low-dimensional representations of data generated from MCIA and CPCA

can di�er greatly, but the relative advantages of each method are not well-understood

[6]. As a consequence of the new de�ation method (3.4), the block loadings in CPCA

are no longer assured to be orthogonal as with (2.18). However, there are some

datasets where the choice to de�ate by global scores yields a better separation of

clusters in the low-dimensional representation (see Figures 3 and 4 in [6]).
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3.3 Eigensystem vs. NIPALS Approach

While the parallels between the NIPALS iteration and the eigensystem approach may

not be immediately obvious, it is important to note that both methods ultimately

generate the same sets of block and global scores. We have shown in (3.2) that

NIPALS does indeed satisfy the optimization criterion that characterizes MCIA, and

this can qualitatively be seen by comparing the graphs in Figures 2.1 and 2.2 with

Figure 2 in [12]. The former were generated using the author's implementation of

NIPALS in MATLAB (see Appendix B), while the latter used the eigensystem approach

via the popular Omicade4 R package.

However, there are practical di�erences between the two approaches. The most

obvious is the iterative nature of NIPALS, which yields the option to stop the cal-

culation once results are `good enough'. Moreover, the NIPALS stopping criterion

is directly tied to the covariance-based MCIA optimization criterion in (2.9). This

makes the stopping point for NIPALS easily interpretable in terms of the covariance

between the block and global scores.

3.3.1 Block Score Weights

Another bene�t of NIPALS is that it de�nes the global scores as a linear combination

of the block scores. From step 7 in Table 3.1, at the end of the NIPALS iteration

process we can express the global score f (j) of order j as a linear combination of the

block scores f
(j)
k of order j, i.e.

f (j) = T(j)w(j) (3.5)

where

T(j) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∣ ∣

f
(j)
1 ⋯ f

(j)
N

∣ ∣

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(3.6)
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Figure 3.1: Plot of the block weights from MCIA computed via the NIPALS ap-
proach. Blocks that contribute more to the �rst/second global scores are plotted
further in the horizontal and vertical directions respectively.

is the matrix of the jth order block scores and w(j) is a column vector of block score

weights.

This gives us another insight into the contribution of each block to the global

structure through the weight vector w(j). Speci�cally, the coe�cient represented

by the kth entry of w(j) indicates how much the score for block k contributes to

the global score for the relevant order j. We can again plot these coe�cients as

coordinates, illustrated in Fig. 3.1. Blocks that contribute most to the �rst order

global score will thus be plotted farthest away from the origin in the horizontal

direction, while block that contribute most to the second order global score are

plotted farther away in the vertical direction.

Note that it is possible to compute the same linear combination f = Tw using

the eigensystem approach. Thus, Fig. 3.1 is not unique to NIPALS. However, the

NIPALS approach requires no additional calculation as these weight vectors as they

are found naturally in the iteration step.
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Chapter 4

Benchmarking MCIA on Synthetic Data

Regardless of the method for computing MCIA, it is clear we have a number of choices

to make when actually implementing the method. This ranges from the choice of

block level initialization to the choice of de�ation step (technically resulting in the

related `Consensus PCA' method). Although there have been attempts to compare

at least the choice of de�ation method (e.g. [6]), there has not yet been rigorous

comparison of the di�erent data pre-processing steps for MCIA. Thus, this chapter

presents a basic benchmarking approach that can be expanded for more rigorous

study of MCIA.

4.1 Parameters Under Investigation

4.1.1 Data Normalization

As discussed in Section 1.3, there are two common approaches to pre-processing data

in MCIA. The �rst, illustrated by (2.1), is to standardize the variables in each block

to have zero mean and unit variance. The blocks are then divided by the square

root of the total number of variables (or equivalently the sum of the block's squared

singular values) for block-level normalization. This is represented concisely by

xij z→
xij − µx⃗j
√
var(x⃗j)

Xk z→
1
√
pk

Xk k = 1, ...,N (4.1)

where xij is the (i, j)th entry in the global dataset X, and Xk ∈ Rn×pk is the kth

data block in the multi-block structure. We will call this `correlation' pre-processing

since it is similar to the steps for correlation-matrix PCA.

The alternative approach, used in implementations such as the Omicade4 R pack-

age, is to perform MCIA on centered column pro�les as in (2.2). The block-level

normalization then consists of dividing each block by the sum of its squared singular
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values to ensure unit contribution to the total dataset variance. This is represented

concisely as

(xk)ij z→
(xk)ij

∑ (xk)∶,j
−
∑ (xk)i,∶
∑ (xk)∶,∶

Xk z→XkQk (4.2)

Xk z→
1
√
Λk

Xk k = 1, ...,N,

where now (xk)ij refers to an entry speci�cally in the kth data block, ∑ (xk)∶,j is

the sum of the jth column of block k, ∑ (xk)i,∶ is the sum of the ith row of block

k, ∑ (xk)∶,∶ is the sum of all entries in block k, and Λk is the sum of all squared

singular values of Xk. Qk is the diagonal column-weighting matrix de�ned in (2.3).

We call this `column pro�le' pre-processing given that it converts the data entries to

centered column pro�les.

4.1.2 De�ation Step

In addition to the choice of normalization, we have a choice of methods in the

de�ation step that is applicable to both the eigensystem and NIPALS approaches

presented. To compute MCIA, we can choose to de�ate the data matrix block-by-

block via the block loadings (2.18). Alternatively, we may choose to de�ate with

global scores (3.4) and thus compute CPCA as discussed above. This choice has

been investigated previously, although it has not yet been explored when combined

with changes in data pre-processing.

4.1.3 Labeling of Variants

The current options under investigation leave four `variants' of MCIA and CPCA to

benchmark. These variants are labeled according to table 4.1.

Method Name Data Pre-Processing De�ation Method

MCIA 1 Correlation Block Loadings

MCIA 2 Column Pro�les Block Loadings

CPCA 1 Correlation Global Scores

CPCA 2 Column Pro�les Global Scores

Table 4.1: Labels for variants of MCIA and CPCA benchmarked.
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4.2 Benchmarking Approach

There are many di�erent approaches and metrics that have been used to benchmark

various aspects of dimensionality-reduction methods. An ideal investigation would

apply a breadth of di�erent methods to highlight the performance of the variants

identi�ed in table 4.1. However, for an initial analysis, we settle simply for bench-

marking the ability of each variant to pick up clusters of data through their global

score. To do this, we �rst generate arti�cial multi-omics data with known clusters,

apply each variant to the data, cluster on the resulting embeddings, and compare

with the `known' clusters. While this does not involve one of the main selling points

of MCIA � the block-scores � it does test a highly-important feature for an ex-

ploratory data analysis.

4.2.1 Generating Data

To generate enough multi-omics data with known clusters, we used an R package that

creates synthetic datasets according to eight di�erent benchmark pro�les developed

by [14]. In each benchmark, the global data matrix has three blocks each with data

(and noise) generated according to a di�erent distribution. Speci�cally,

X = [XGaussian∣XBeta∣XBinary] (4.3)

where XGaussian, XBeta, and XBinary contain arti�cial clusters distributed by the

Gaussian, Beta, and Bernoulli distributions respectively. Each of the eight di�erent

benchmarks changes the parameters of these distributions as well as the level of

noise in the data, the number of clusters, the proportion of variables relevant to each

cluster, and the size of each cluster. See Appendix A1.1 in [14] for a more thorough

explanation of the dataset generation process. Table 4.2 is replicated from Table 2

in [14], and illustrates the di�erences between each of these benchmarks.

In keeping with the choices made by [14], we generate 50 simulations for each of
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Benchmark Data Type Noise % Relevant

Variables

Variables per

Cluster

1 Gaussian 0.2 0.5% 10, 20, 5 ,25
Binary 0.01 1%
Beta 0.3 2%

2 Gaussian 0.5 0.5% 10, 20, 5 ,25
Binary 0.01 1%
Beta 0.3 2%

3 Gaussian 0.1 0.5% 10, 20, 5 ,25
Binary 0.05 1%
Beta 0.3 2%

4 Gaussian 0.2 0.5% 10, 20, 5 ,25
Binary 0.02 1%
Beta 1.5 2%

5 Gaussian 0.2 1% 10, 20, 5 ,25
Binary 0.01 2%
Beta 0.3 4%

6 Gaussian 0.2 0.5% 25, 25
Binary 0.01 1%
Beta 0.3 2%

7 Gaussian 0.1 0.5% 25, 25, 25
Binary 0.01 1%
Beta 0.3 2%

8 Gaussian 0.1 0.5% 25, 25, 25, 25
Binary 0.01 1%
Beta 0.3 2%

Table 4.2: Parameters that describe the eight benchmarks used to evaluate clustering
with MCIA and its variants. Replicated from Table 2 in [14].

the benchmarks above. For each simulation, we apply the variants under investiga-

tion to generate a two-dimensional embedding of the data via the global scores. We

then run the default k-means clustering algorithm in MATLAB to compute clusters on

the embeddings, which we compare with the known clusters.

4.2.2 Measuring Clustering Performance

To evaluate clustering performance, we use a metric called the `Adjusted Rand Index'

(ARI) to compare the computed clustering with the known clusters in the data.

Brie�y, given a set of n objects S = {O1, ...On}, we may represent a clustering of the

objects as a collection of disjoint subsets of S. For instance, if the objects in S are

divided into L clusters, we would have the clustering V = {V1, ..., VL} where Vi ⊂ S
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for all i = 1, ..., L and Vi ∩ Vj = ∅ if i ≠ j. For two clusterings U = {U1, ..., UR} and

V = {V1, ..., VL} of the same set of n objects, the Adjusted Rand Index is calculated

(see Eq. 5 in [7]) by

ARI(U,V ) =

∑
ij
(
nij

2
) − [∑

i
(
ni⋅

2
) ⋅∑

j
(
n⋅j
2
)] /(

n
2
)

1
2 [∑

i
(
ni⋅

2
) +∑

j
(
n⋅j
2
)] − [∑

i
(
ni⋅

2
) ⋅∑

j
(
n⋅j
2
)] /(

n
2
)

(4.4)

for i = 1, ...,R and j = 1, ..., L, where (n2) = n(n − 1)/2, nij is the number of objects

in Ui ∩ Vj , ni⋅ is the size of cluster Ui, and n⋅j is the size of cluster Vj .

It can be computed directly that ARI(U,V ) = 1 if clusterings U and V match

(up to a change in label). This represents a version of the Rand index is `corrected'

(see [7] Section 2) so that the expectation of the ARI is zero if the objects are

clustered randomly. Thus, while it is never above 1, there is no lower bound on the

values that the ARI can take. Values closer to 1 indicate the two clusterings are

more similar, while more negative values indicate that the clusterings are more dis-

similar than if one of the clusters was generated randomly. Hence, the ARI provides

a metric for how close a computed clustering is to the true clustering.

4.3 Results of Benchmarking

For each variant tested, the benchmarking process output 8 sets of 50 ARI values

based on the number of benchmarks and the number of simulations per benchmark.

Figure 4.1 illustrates plotting the 50 ARI values as box plots for each of the variants

tested across all eight benchmarks. Generally, the methods with values closer to 1

tended to pick out the true clusters better.

The most striking result visible in in Fig. 4.1 is that the two methods with

covariance-based initialization (MCIA-1 and CPCA-1) tended to underperform the

two centered Column Pro�le methods (MCIA-2 and CPCA-2) on every benchmark

except Benchmark 6. It is unclear why the latter pre-processing method works

better, as both methods ensure all blocks have equal weight when contributing to
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the total dataset variance. A more sophisticated analysis is needed to determine the

exact cause of this discrepancy.

Another clear result is that there does not seem to be a major di�erence between

the two de�ation methods � i.e. de�ation by block loadings (MCIA) and de�ation by

global scores (CPCA) appear to be roughly equivalent. This is broadly in agreement

with existing literature (e.g. [6]), although it is possible there are di�erent types of

data where the de�ation method matters more.

Finally, it is unclear why exactly all methods had trouble with Benchmark 6.

It is noteworthy that this is the only benchmark with two large clusters, although

there is no mathematical reason to expect the method to fail because of this. It

should be noted that this benchmark also posed problems for MCIA in the original

benchmarking paper (see Figure 4 in [14]).
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Figure 4.1: Box plots of Adjusted Rand Index values for clustering simulated data
for 4 variants of MCIA and CPCA across 8 di�erent benchmarks. Each benchmark
is repeated 50 times to generate a range of ARI values. Values closer to 1 indicate a
better recovery of the true clusters in the data.
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Chapter 5

Conclusions

Starting from the comfortable background of Principal Component Analysis, we

have illustrated how to compute MCIA and shown how it is useful as a data analysis

method for multi-block datasets. We also adapted a di�erent approach � the mod-

i�ed NIPALS method � to compute MCIA and demonstrated how it satis�ed the

relevant optimization criteria. Finally, we made an exploratory attempt to bench-

mark the di�erent initialization and de�ation choices for MCIA in clustering on the

global scores. We found that the centered row pro�le initialization seems to outper-

form the covariance initialization, although could not deduce the reason why this is.

There remains a signi�cant amount of further investigation and development that

could be done on MCIA.

5.1 Further Evaluation of MCIA Variants

An obvious extension of this approach to benchmarking could be applying the full

benchmarking process given by [14]. This would include testing clustering perfor-

mance on multiple dimensions of low-dimensional embedding, using an automated

process to choose the number of clusters, and computing receiver operating char-

acteristic (ROC) curves to evaluate variable importance selection. It would also be

useful to derive a metric that takes into account the block scores generated by MCIA,

which have been ignored in most benchmarking attempts despite being a key feature

of the method.

In addition to simulated data, there is also the opportunity to evaluate the dif-

ferent variations of MCIA on real data. The version of MCIA computed by the

Omicade4 R package has shown good performance on cancer datasets compared to

other multi-block methods (e.g. in [1]). Thus, it would be interesting if di�erent

variations perform better or worse in these real-world scenarios.
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5.2 Adapting MCIA to Tensors

A key limitation of MCIA as it stands is its restriction to two-dimensional datasets

� i.e. data without a time dimension. Thus, the method is not easily applicable

to the large number of bioinformatics datasets that track variables at di�erent time-

points. A closely-related method to MCIA called `Regularized Generalized Canonical

Correlation Analysis' (RGCCA) has recently been adapted to blocks with a tensor

structure (in [4]). The resulting method � called Multiway Generalized Canonical

Correlation Analysis (MGCCA) � may provide a way to extend MCIA to multi-

block tensors.

We can brie�y illustrate this potential development path. In the multi-way frame-

work, a multi-block tensor dataset now consists of a collection of N data tensors

{X1, ...,XN}, where Xl has dimension I × Jl ×Kl. As with matrix MCIA, note that

the number of samples (I) is the same across all blocks while the number of vari-

ables (Jl) and time points (Kl) may vary. We further de�ne Xl to be the �rst mode

matricized version of Xl, i.e.

Xl = [X
l
∶,∶,1∣...∣X

l
∶,∶,Kl
] ∈ RI×JlKl (5.1)

where Xl
∶,∶,k is the kth frontal slice of Xl. MGCCA then solves the the optimization

criterion

argmax
w1,...,wN

N

∑
k,l=1
(ckl) g(I

−1wT
k X

T
kXlwl) (5.2)

subject to wT
l Mlwl = 1 l = 1, ...,N, (5.3)

where g is a continuously di�erentiable function, ckl is a constant picked to describe

a `connection' between data blocks (see [16]), Ml is a positive de�nite matrix, and

wl ∈ RKl⋅Jl is a weight vector. In the proposed MGCCA framework, the weight

vector wl is the Kronecker product of weights associated with slices of the tensor
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block Xl along the Kl and Jl directions, i.e.

wl =w
K
l ⊗wJ

l l = 1, ..., L. (5.4)

Although (5.2) is not exactly comparable to the MCIA optimization criterion

(2.9), choosing g(x) = x2, ckl = 1, Ml = I, and identifying the weight vectors wl with

the block loadings appears to yield an optimization criterion similar to performing

MCIA on the mode-1 unfoldings of each tensor in the multi-block structure. More

work would need to be done to �nish the adaptation, since (5.2) doesn't di�erentiate

between block and global scores as MCIA does. A bene�t of adapting MGCCA

to compute `tensor MCIA' is the fact that MGCCA comes with its own iterative

computation method (Algorithm 1 in [4]), meaning a computation method for `tensor

MCIA' might be relatively easy to derive.

Ultimately MCIA has proven to be a highly successful method in multi-block data

analysis. There remains much to understand regarding the choice of data normal-

ization and de�ation, and we have only completed a �rst approach at benchmarking

a few of these di�erent choices. An adaptation of MCIA to tensor datasets could

be particularly helpful for bioinformatics applications, helping to keep MCIA at the

forefront of multi-block exploratory data analysis.
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Appendix A

Table of Symbols and Notation

X Dataset matrix or global data matrix (MCIA) typically in Rn×p

p The number of columns/variables/features of the global data matrix
n The number of rows/samples/observations of the global and block data

matrices

Xk kth Data block matrix in the multi-block structure (MCIA)

pk The number of columns/variables/features of the hth block data matrix
N The number of blocks in the multi-block structure of X

f (j) PC score of order j (PCA) or global score of order j (MCIA)

a(j) PC loading of order j (PCA) or global loading of order j (MCIA)

f
(j)
k Block score for block k of order j

a
(j)
k Block loading for block k of order j

S or SX Covariance matrix of dataset X

T(j) The n ×N matrix with columns consisting of the order-j block scores

Table A.1: Table of symbols and notation.
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Appendix B

MATLAB Code

B.1 Implementation of the NIPALS in MATLAB

Note that the attached code is simply an implementation of the NIPALS iteration

found in section 3, and only represents part of the code necessary to replicate the

�gures in this paper. The remaining code, including sample data, plotting, and

initialization code is available at https://github.com/Muunraker/MATLAB_MCIA

function [F, Q, F_block, Q_block, EigVals, B_weights] = nipals_multiBlock(X_normalized,...

num_PCs, tol, max_iter, deflationMethod)

% Function to implement the NIPALS method from Hanafi 2010

% Options to perform either Multiple Co-Inertia Analysis or

% Consensus Principle Component Analysis

% * Does NOT include any preprocessing steps on input data.

% * Does NOT normalize output vectors.

% Inputs:

% * X_normalized Vertical cell array of NORMALIZED data matrices

% (each has n rows)

% * num_PCs Number of PCs desired in output

% * tol Scalar tolerance in stopping criterion for NIPALS

% * max_iter Maximum number of iterations allowed in NIPALS algorithm

% * deflationMethod Choice of block deflation method:

% 'block' to use block loadings for deflation

% (MCIA - default)

% 'global' to use global scores for deflation (CPCA)

% Outputs:

% * F Matrix of global scores
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% * Q Matrix of global loadings

% * F_block Cell array of local score matrices

% * Q_block Cell array of local loading matrices

% * EigVal Array of eigenvalues corresponding to first

% 'num_PCs' global scores

% * B_weights Matrix where i^th column has the block

% contributions to i^th global score

if nargin < 5

deflationMethod = 'block';

end

% Getting variable and sample numbers for each dataset

num_datasets = length(X_normalized);

% Extract number of samples in datasets (i.e. # rows)

num_samples = size(X_normalized{1},1);

% Array with number of variables in each block

num_variables = zeros(1,num_datasets);

for i = 1:num_datasets

num_variables(1,i) = size(X_normalized{i},2);

end

% Total number of variables across whole dataset:

total_vars = sum(num_variables,'all');

% Global score/loadings storage matrices

F = zeros(num_samples,num_PCs);% Matrix of global scores

% - each column is one global score

Q = zeros(total_vars,num_PCs); % Matrix of global loadings

% - each column is one global loading (F = X Q)

% Block score storage cell array

F_block = cell(1,num_datasets);

% CELL index specifies the dataset
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% For cell index i: F_block{i} = [f_i^(1) | f_i^(2) | ... | f_i^(num_PCs)]

for i = 1:num_datasets

F_block{i} = zeros(num_samples, num_PCs);

end

% Block loadings storage cell array

Q_block = cell(1,num_datasets);

% CELL index specifies the dataset

% For cell index i: Q_block{i} = [q_i^(1) | q_i^(2) | ... | q_i^(num_PCs)]

for i = 1:num_datasets

X_i = X_normalized{i};

num_vars = size(X_i); num_vars = num_vars(2);

Q_block{i} = zeros(num_vars, num_PCs);

end

%% NIPALS implementation (see Hanafi et. al. 2010)

X_deflated = X_normalized; % Creating copy of data to run deflation process

% Creating data super-matrix

X_super = X_normalized{1};

if num_datasets > 1

for i = 2:num_datasets

X_super = [X_super X_normalized{i}];

end

end

% Creating eigenvalue list

EigVals = zeros(1,num_PCs);

% Creating block weight array

B_weights = zeros(num_datasets,num_PCs);

% Main NIPALS iteration
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for j = 1:num_PCs % repeat deflation/iteration process for desired number of PCs

%%% Initialization

% matrix to store block scores

T = zeros(num_samples,num_datasets);

% cell array to store block loading vectors

block_loadings = cell(1,num_datasets);

f = ones(num_samples,1); % arbitrary starting vector

iter = 0; % iteration count

as_old = 0; % stopping criterion variable

err = 10; % tolerance metric

if ~exist('max_iter')

max_iter = 10000; % iteration limiter if not specified

end

%%% NIPALS iteration loop

while err > tol

for i = 1:num_datasets

X_i = X_deflated{i}; % extract ith dataset

q_i = X_i'*f/(f'*f); % compute block loadings

q_i = q_i/norm(q_i); % normalize loading vector

f_i = X_i*q_i; % compute block scores

T(:,i) = f_i; % add block score to matrix;

block_loadings{i} = q_i; % store block loadings

end

w = T'*f/(f'*f); % compute global weights (relative to matrix of

w = w/norm(w); % normalize global weights

f = T*w; % update global score

% calculating stopping criterion:

fnorm = f/sqrt(cov(f)); % unit variance global scores
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% iterating stopping metric

as = 0;

for i = 1:num_datasets

C = cov(T(:,i),fnorm);

C = C(2)^2; % taking the covariance between qnorm and block scores.

as = as + C;

end

% checking stopping metric vs. stopping criterion

err = abs(as - as_old); % error metric

as_old = as;

iter = iter+1;

if iter > max_iter

fprintf('WARNING: exceeded maximum iteration threshold \n')

break

end

end

%%% Updating outputs not used in iteration

for i =1:num_datasets

% record jth order block score in matrix relating to block i:

Fi = F_block{i};

Fi(:,j) = T(:,i);

F_block{i} = Fi;

% record jth order block loading in matrix relating to block i:

Qi = Q_block{i};

Qi(:,j) = block_loadings{i};

Q_block{i} = Qi;
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end

% jth global score --> jth column of matrix F

F(:,j) = f;

% jth set of block weights --> jth column of B_weights

B_weights(:,j) = w;

% Computing global loadings

Qi = Q_block{1};

q_global = B_weights(1,j)*Qi(:,j);

q_global= q_global';

% compute global loadings by weighted concatenation of block loadings:

if num_datasets > 1

for i = 2:num_datasets

Qi = Q_block{i};

q_global = [q_global (B_weights(i,j)*Qi(:,j))';];

end

end

% jth global loading --> jth column of matrix Q

Q(:,j) = q_global;

% Creating deflated data super-matrix

X_super_deflated = X_deflated{1};

if num_datasets > 1

for i = 2:num_datasets

X_super_deflated = [X_super_deflated X_deflated{i}];

end

end

% Recording first eigenvalue of deflated super-matrix (corresponding to

% covariance matrix)

svs = svd(X_super_deflated);
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EigVals(j) = svs(1);

fprintf(['Completed after ', num2str(iter), ' iterations \n']);

%%% Deflation step

% Deflate using either global scores (for CPCA) or block loadings (for MCIA)

if strcmp('global',deflationMethod)

% Deflation via global scores

for i = 1:num_datasets

X_i = X_deflated{i}; % extract ith dataset

Xnew_i = X_i - (f*f'/(f'*f))*X_i;

X_deflated{i} = Xnew_i;

end

else

% Deflation via block loadings

for i = 1:num_datasets

X_i = X_deflated{i}; % extract ith dataset

% extract block loading matrix related to ith dataset:

q_i = Q_block{i};

Xnew_i = X_i - X_i*q_i(:,j)*(q_i(:,j)');

X_deflated{i} = Xnew_i;

end

end

end

end
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