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Abstract 

Mathematical models play an essential role for the purposes of process optimization and control. 

There are two major information sources for the development of these models: the knowledge of 

the process inner workings and the input-output data set. The model estimated using the detailed 

knowledge are called the knowledge-driven model. However, the inner workings of many 

industrial processes are not always fully understood to enable the development of accurate 

knowledge-driven models.  

In such a situation, the data-driven model, relying on the input-output data, is an attractive 

alternative. Among varieties of data-driven modeling approaches, the Design of Dynamic 

Experiments (DoDE), a generalization of the traditional Design of Experiments (DoE) approach, 

has been demonstrated as an effective modeling methodology for optimizing nonlinear processes. 

When time-resolved data are obtainable during the experiments, developing a Dynamic Response 

Surface Methodology (DRSM) model is more favorable. As the estimated DRSM model with 

time-varying parameters captures the process dynamics, it has the potential to be applied for not 

only the process optimization but also the process control purposes.  

The main goal of this research work is to further advance and improve the two data-driven 

methodologies, the DoDE and the DRSM, to model, optimize and control nonlinear processes. We 

first proposed ways to incorporate prior process knowledge to improve the design of the input 

domain, in which the time-varying input of the DoDE experiments are selected. Improved process 

performance has been achieved in the refined input domain. In addition, as process optimization 

is usually under budgetary and time constraint, we developed an evolutionary DoDE approach to 
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optimize the processes in a timely manner. The size of the initial set of experiments has been 

dramatically reduced while the achieved optimal process performance is similar to the one 

obtained using the original DoDE approach. 

To extend the applicability of the original DRSM approach (DRSM-1) to deal with processes with 

various and infinite time duration, we proposed a new DRSM approach (DRSM-2). The novelty 

of the DRSM-2 rests on a nonlinear transformation of time, the independent variable. Comparing 

to the DRSM-1, the new method has the following advantages. It is capable of 

1) Modeling both continuous as well as batch processes, handling semi-infinite as easily as 

finite time domains 

2) Using data that are not equidistant in time 

3) Using data segments that are of varied durations due to possible strong nonlinearities in 

dynamics 

We also developed a single model approach, using the DRSM model, for both process optimization 

and control purposes. The proposed method reduces the experimental effort comparing to the 

current practices which use separate models for process optimization and control purposes, 

respectively. When the number of measurements is small, the proposed approach provides better 

control performance compared to the performance achieved using a model estimated with Pseudo 

Random Binary Signal (PRBS) data.  
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1. Introduction 

Mathematical models are essential to the success of process optimizations and control. Thanks to 

the progress in the computational methods and data collecting techniques, the application of 

mathematical models has become increasingly popular and useful. As shown in Figure 1-1, the 

number of papers with “modeling” in the title has increased exponentially over the past forty years, 

which reflects the increasing academic interest [1]. 

 

Figure 1-1: Number of papers with “modelling” in the title, 1975-2014 

Based on the information used for their development, mathematical models fall into two categories: 

knowledge-driven and the data-driven models. The knowledge-driven model is developed based 

on detailed knowledge of the process inner workings, such as kinetics and mass and hear transfer 
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rates as well as the use of mass and energy balances [2-5]. Once the model structured is determined 

based on first principles, experimental or manufacturing data are used to estimate the values of the 

parameters in the model. However, for some complicated chemical and bio-pharmaceutical 

processes, such as mammalian cell culture in batch reactor [6-8], or polymerization processes [9, 

10], some or all of the metabolic paths or reaction mechanisms are not well understood. Thus, the 

knowledge-driven models with imperfect understanding may not provide the expected accuracy. 

Sometimes, the lack of knowledge might be substantial to even make it impossible to build a 

knowledge-driven model. Even with a knowledge-driven model at hand, optimizing a very 

complex process using such a detailed model is computational costly, which makes real-time 

optimal control a challenge.  

The data-driven models are developed using input-output data collected from a finite number of 

experiments or manufacturing activities. Though some empirical process knowledge may help to 

improve the quality of designed experiments [11], the detailed knowledge about the process inner 

workings is not required to develop an accurate data-driven model. Therefore, it is an attractive 

alternative to the knowledge-driven model. In addition, the simple structure of the data-driven 

model makes the optimization for the process much faster.  

Several types of data-driven models have been proposed for modeling processes with different 

input and output relationships, including linear or nonlinear, static or dynamic ones. Multivariate 

analysis methodologies, such as Principle Component Analysis (PCA)[12, 13] and Partial Least 

Squares (PLS) [14, 15], are used to approximate linear and static relationship between the input 

and output variables. Time-series analysis models [16, 17] and transfer function models [18] are 

employed to represent the linear dynamics of the processes. Dynamic PLS modeling approaches 
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combining the PLS and time-series analysis approaches, have also been reported [19, 20]. The 

Response Surface Model (RSM) [21, 22] resulted from the Design of Experiments (DoE) [23, 24] 

is applied for estimating static and nonlinear input-output relationships.  

Recently, Prof. Georgakis’ group generalized the DoE methodology to incorporate time-variant 

inputs in the framework of Design of Dynamic Experiments (DoDE) [25, 26]. The key 

generalization allows for the time-varying input variables, such as the feeding flow of sugar source 

for batch fermentation processes. The DoDE methodology has also been successfully used in 

optimizing some additional batch processes [27-29] and it has been experimentally verified in an 

industrial hydrogenation reaction [30].  

For the purposes of process optimization, static model, either linear or nonlinear, is sufficient, 

though optimization based on the models account for dynamic behavior might provide better 

process optimum. However, for the purpose of process control, a dynamic model is required. 

Besides the aforementioned dynamic models, Kelebanov and Gerogakis proposed the Dynamic 

Response Surface Methodology (DRSM) [31], a dynamic generalization of the RSM model for 

modeling batch processes with fixed duration.  

The main goal of this research work reported in this thesis is to further advance and improve the 

two data-driven methodologies, the DoDE and the DRSM, to model, optimize and control 

nonlinear processes. We first propose ways to incorporate prior process knowledge to improve the 

design of the input domain, in which the time-varying input of the DoDE experiments are selected. 

Improved process performance has been achieved in the refined input domain [11]. In addition, as 

process optimization is usually under budgetary and time constraint, we propose an evolutionary 

DoDE approach to optimize the processes in a timely manner. The size of the initial set of 
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experiments has been dramatically decreased while the achieved optimal process performance is 

similar to the one obtained using the original DoDE approach. 

To extend the applicability of the original DRSM approach (DRSM-1) to dealing with processes 

with infinite time duration, we proposed a new DRSM approach (DRSM-2). The novelty of the 

DRSM-2 rests on a nonlinear transformation of time, the independent variable. Comparing to the 

DRSM-1, the new method has the following advantages. It is capable of 

1. Modeling both continuous as well as batch processes, handling semi-infinite as easily as 

finite time domains 

2. Using data that are not equidistant in time 

3. Using data segments that are of varied durations due to possible strong nonlinearities in 

dynamics 

We also describe a single model approach, using the DRSM model, for both the process 

optimization and control purposes [32]. The optimal operating conditions are first be determined 

using the DRSM model. Then the time-series model, either a linear or a nonlinear one is identified 

in the vicinity of the optimal trajectory by sampling the DRSM model. The proposed method 

reduces the experimental effort required in comparison to the current practices which develop 

separate models for process optimization and control purposes, respectively. When the number of 

measurements is small, it provides better control performance of a model predictive controller 

compared to the performance achieved through a model estimated using Pseudo Random Binary 

Signal (PRBS) data [33]. 

The thesis is organized as follows. We first introduce the prior work upon which this research work 

builds on in the chapter of back ground information. Following that, we discuss the two 
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methodological improvements on the DoDE approach. In the chapter of a new DRSM 

methodology, we introduce the novel DRSM-2 approach. The proposed framework of using a 

single DRSM model for process optimization and control purposes is discussed in Chapter 5. The 

new methodologies discussed in each chapter are examined using two (or several) in silico 

nonlinear processes, including batch and continuous processes. The further work of each new 

methodologies are discussed in Chapter 6. 
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2. Background Information 

2.1. Nonlinear Process of Interest 

The aim of this research work is to develop data-driven modeling methodologies, based on the 

DoDE and DRSM approaches, for modeling, optimizing and controlling nonlinear processes. 

These nonlinear processes of interest include semi-batch processes and continuous process in 

transitions. The batch or semi-batch processes are widely adopted in pharmaceutical industries for 

producing antibiotics and antibodies. Fermentation and cell culture are two major type of semi-

batch processes used in pharmaceutical industry. Due to the small production rates and 

complicated metabolic mechanisms, it is quite challenging to develop knowledge-driven model 

for such batch processes.  

Another nonlinear process of interest is continuous processes in transition. In olefin polymerization 

industry, polymers of different specifications are made in the same single plant. To meet demands 

for different products, the steady-state operation of a plant should be changed frequently. Model-

based Optimization (MBO) has been applied to determine the optimal input profile to complete 

the transition in shortest time and with minimum off-spec product [10]. However, the process inner 

workings are highly complicated and are not always been fully understood to enable the 

development of the knowledge-driven model to be used in MBO.  

In the aforementioned cases, the data-driven methodologies are attractive alternatives. To examine 

the efficacy of the proposed approaches, we selected several representative simulations based on 

open literatures, including a semi-batch penicillin fermentation [34], a semi-batch cell culture 
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processes [35, 36] and a continuous propylene polymerization process [9]. The mathematical 

descriptions of those processes and the values of the key parameters are given in Appendix A. 

2.2. Knowledge-Driven Model and Model-Based Optimization 

Knowledge-driven models are developed based on the understanding of inner workings of 

processes. Changes caused by reaction kinetics as well as mass and energy transfer are accounted 

for by energy, mass, or momentum, conservation laws and are described by differential equations. 

Many knowledge-driven models have been successfully applied for modeling of continuous and 

batch processes. If the process is thoroughly understood and the model is properly developed, a 

knowledge-driven model will provide accurate predictions in the entire input and output spaces. 

However, this is not always the case as the process might be too complicated to be fully understood. 

Even if the development of knowledge-driven model is feasible, the optimization requires 

substantial computational effort [37], the larger the process under consideration is. In general, the 

optimization problem, consisting of a set of algebraic and differential equations with constraints 

on the states and the decision variables, is formulated as follows, 

 

     𝑚𝑚𝑚𝑚𝑚𝑚
𝒖𝒖

𝐽𝐽(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡)  

𝑠𝑠. 𝑡𝑡.
𝑑𝑑𝒛𝒛
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡); 

      𝑔𝑔(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡) ≤ 𝟎𝟎 

      𝒖𝒖𝑳𝑳 ≤ 𝒖𝒖 ≤ 𝒖𝒖𝑈𝑈;  𝒛𝒛𝐿𝐿 ≤ 𝒛𝒛 ≤ 𝒛𝒛𝑈𝑈 

(2-1) 

Here, 𝒛𝒛 represent the state variables of the system. 𝒑𝒑 are the parameters of the model; and 𝒖𝒖 are 

the decision variable with respect to which we wish to maximize (or minimize) the system’s 
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performance, quantified by the index J. For example, if we aim to maximize the total weight of 

product at the end of the batch, 𝑡𝑡𝑏𝑏, the performance index is defined as  

 𝐽𝐽[𝑧𝑧(𝑡𝑡𝑏𝑏)] = −𝑧𝑧1 (𝑡𝑡𝑏𝑏) × 𝑧𝑧2(𝑡𝑡𝑏𝑏) (2-2) 

where 𝑧𝑧1(𝑡𝑡𝑏𝑏) and 𝑧𝑧2(𝑡𝑡𝑏𝑏) are the volume of the liquid phase and the concentration of the product 

at the end of the batch, respectively. The function 𝑓𝑓(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡) represents the knowledge-driven 

model, which is usually a set of ordinary differential equations (ODEs). 𝑔𝑔(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡) ≤ 0 are the 

set of inequality constraints as function of 𝒛𝒛,𝒑𝒑,𝒖𝒖, and 𝑡𝑡. 

Among the different ways such a model-based optimization can be performed, we choose to follow 

the simultaneous approach, advocated by Professor Biegler’s group [38-40]. In such an approach, 

the interval  is divided into a number of finite elements and inside each element, the method 

of orthogonal collocations [41] is used to convert the set of ODEs into a large set of algebraic 

equations. Then, an optimization algorithm, such as sequential quadratic programming (SQP) [42] 

or interior point method [43], is used to calculate the optimum. The original optimization problem, 

given in eq. (2-1), is rewritten as: 

 

       𝑚𝑚𝑚𝑚𝑚𝑚
𝒖𝒖𝑗𝑗,𝑘𝑘,∆𝜁𝜁𝑗𝑗 

𝐽𝐽�𝒛𝒛𝑗𝑗,𝑘𝑘,𝒑𝒑,𝒖𝒖𝑗𝑗,𝑘𝑘,∆𝜁𝜁𝑗𝑗�  

𝑠𝑠. 𝑡𝑡. � 𝒛𝒛𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑙𝑙(𝜏𝜏𝑘𝑘)
𝐾𝐾

𝑘𝑘=0,𝑙𝑙

− ∆𝜁𝜁𝑗𝑗𝑓𝑓�𝒛𝒛𝑗𝑗,𝑘𝑘,𝒖𝒖𝑗𝑗,𝑘𝑘� = 0; 

       𝒛𝒛𝑗𝑗+1,0 − 𝒛𝒛𝑗𝑗,𝑘𝑘 = 0;  

       𝒛𝒛1,0 − 𝒛𝒛𝑗𝑗,𝐾𝐾 = 0;  

       𝑔𝑔(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡) ≤ 0; 

(2-3) 

(0, ]bt
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       𝒖𝒖𝑗𝑗,𝑘𝑘
𝐿𝐿 ≤ 𝒖𝒖𝑗𝑗,𝑘𝑘 ≤ 𝒖𝒖𝑗𝑗,𝑘𝑘

𝑈𝑈 ;  𝒛𝒛𝑗𝑗,𝑘𝑘
𝐿𝐿 ≤ 𝒛𝒛𝑗𝑗,𝑘𝑘 ≤ 𝒛𝒛𝑗𝑗,𝑘𝑘

𝑈𝑈  

where 𝒛𝒛𝑗𝑗,𝑘𝑘  and 𝒖𝒖𝑗𝑗,𝑘𝑘  represent the state and input variables at kth collocation point in jth finite 

element and ∆𝜁𝜁𝑗𝑗  the length (in time) of the jth finite element. The first constraint forces the 

approximated state profiles equals to the simulated profiles. The second constraint imposed the 

continuity to state variables, but not to input variables. The third constraint is on the initial 

conditions and the inequality constraints confine the variables within the space defined by function 

𝑔𝑔(𝒛𝒛,𝒑𝒑,𝒖𝒖, 𝑡𝑡) and the lower and upper bounds. It is clear that the number of variables for the 

optimization problem is roughly 𝑁𝑁 × 𝐾𝐾 times larger than the original problem, if N finite elements 

and K collocation points are used. This cost lots of computational effort to solve the large-scale 

computational problem.  

Other optimization algorithms for optimizing fed-batch biopharmaceutical processes, such as 

Evolutionary Algorithms (EA) [44], Differential Evolutions (DE) [45] [46] and Particle Swarm 

Optimizations (PSO) [47], are reviewed by [48]. A complete comparison between these bio-

inspired algorithms and the simultaneous approach has not been presented yet. However, Riascos 

and Pinto [49] reported that the simultaneous approach gave a slightly better result than EA in 

optimizing product weight of the penicillin fermentation process, examined in detail in this thesis. 

In our study of hybridoma cell culture [35], reported later in Chapter 3, we obtained a little higher 

product weight using the simultaneous approach than that calculated by a Genetic Algorithm(GA) 

[50], one of the EA approaches.  
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2.3. Design of Dynamic Experiments and Process Optimization 

Design of Dynamic Experiments (DoDE), a generalization of the classic Design of Experiments 

(DoE) [23, 51, 52] approach, allows for time-varying input. In the DoDE framework, we first 

define traditional time-invariant DoE factors, such as the experiment duration, amount of the 

reactants loaded in the reactor at the beginning of each experiment, etc. For example, we here 

define a traditional DoE factor,  𝑤𝑤, that relates to the batch duration 𝑡𝑡𝑏𝑏, and assume that we are 

unsure about its optimal value. 

 𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑏𝑏,𝑟𝑟 + ∆𝑡𝑡𝑏𝑏,𝑟𝑟𝑤𝑤 with −1 ≤ 𝑤𝑤 ≤ +1 (2-4) 

In the above equation, the batch duration varies between 𝑡𝑡𝑏𝑏,𝑟𝑟 − ∆𝑡𝑡𝑏𝑏,𝑟𝑟  and 𝑡𝑡𝑏𝑏,𝑟𝑟 + ∆𝑡𝑡𝑏𝑏,𝑟𝑟  with 𝑡𝑡𝑏𝑏,𝑟𝑟 

being the reference value.  

The time-varying input variable, 𝑢𝑢(𝜏𝜏) is given by 

 𝑢𝑢(𝜏𝜏) = 𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢(𝜏𝜏)𝑤𝑤(𝜏𝜏) with −1 ≤ 𝑤𝑤(𝜏𝜏) ≤ +1 (2-5) 

Where 𝑢𝑢0(𝜏𝜏) is the reference input profile while the ∆𝑢𝑢(𝜏𝜏) is the deviation from the reference. 

𝑢𝑢(𝜏𝜏) varies in the input domain from 𝑢𝑢0(𝜏𝜏) − ∆𝑢𝑢(𝜏𝜏) to 𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢(𝜏𝜏). The time dependency 

within each experiment is defined in terms of the dimensionless time, 𝜏𝜏 = 𝑡𝑡 𝑡𝑡𝑏𝑏⁄  where 𝑡𝑡𝑏𝑏 is the 

batch time for the corresponding experiment. Now let the coded time-varying factor, 𝑤𝑤(𝜏𝜏) be 

expanded in a series of shifted Legendre polynomials [53].  

 𝑤𝑤(𝜏𝜏) = 𝑥𝑥1𝑃𝑃0(𝜏𝜏) + 𝑥𝑥2𝑃𝑃1(𝜏𝜏) + 𝑥𝑥3𝑃𝑃2(𝜏𝜏)⋯ (2-6) 

with 
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 𝑃𝑃0(𝜏𝜏) = 1; 𝑃𝑃1(𝜏𝜏) = 2𝜏𝜏 − 1; 𝑃𝑃2(𝜏𝜏) = 6𝜏𝜏2 − 6𝜏𝜏 + 1;⋯ (2-7) 

Here the coefficients 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are the dynamic sub-factors, which will be varied to define the 

coded time-varying dynamic factor 𝑤𝑤(𝜏𝜏) . 𝑃𝑃𝑖𝑖−1(𝜏𝜏)  is the 𝑖𝑖𝑡𝑡ℎ  shifted Legendre polynomial, an 

(𝑖𝑖 − 1)𝑡𝑡ℎ order polynomial in the dimensionless time 𝜏𝜏. Here we use 3 dynamic sub-factors and 

the first 3 shifted Legendre polynomials as an example. A different number of shifted Legendre 

polynomials, or dynamic sub-factors, parameterizing 𝑤𝑤(𝜏𝜏)  might be selected by the process 

practitioners based on their needs. In general, the more dynamic sub-factors, the more complex the 

input profile will be allowed to be and the obtained process optimum might be better. However, 

the number of experiments increases with the number of dynamic sub-factors. 

A set of DoDE experiments will be selected by varying the traditional factors and the dynamic 

sub-factors, 𝑤𝑤, 𝑥𝑥1 , 𝑥𝑥2 , and 𝑥𝑥3  in the input domain. To minimize the experimental effort and 

maximize the information obtained through those experiments, optimal design criteria [23], such 

as D-optimal design, is usually applied.  

After collecting the data from the designed experiments, a RSM model in the following form is 

estimated via linear regression. Here we use a quadratic RSM model with n factors as an example.  

 𝑦𝑦 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑖𝑖<𝑗𝑗

𝑛𝑛

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (2-8) 

Where y is the output variable of interest and the 𝑥𝑥′s are the traditional factors and the dynamic 

sub-factors. The model parameters, 𝛽𝛽′s are estimated via linear regression. For most processes, the 

quadratic RSM is sufficiently complex to provide an accurate model.  
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Optimizing the process performance using the estimated RSM model is similar to the optimization 

of the process using the knowledge-driven model. The only difference is to substitute the 

knowledge-driven model in the eq.(2-1) with the RSM model given in eq.(2-8). 

2.4. Dynamic Response Surface Methodology for Process Modeling 

The original DRSM [31] methodology (DRSM-1) was proposed to analyze the time-varying 

output variables of batch processes with fixed durations. The obtained DRSM model has a similar 

form to the RSM model, with the DRSM model parameters being functions of time. For example, 

a quadratic DRSM model with n factors is given as follows: 

 𝑦𝑦(𝜏𝜏) = 𝛽𝛽0(𝜏𝜏) + �𝛽𝛽𝑖𝑖(𝜏𝜏)𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏)𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑖𝑖<𝑗𝑗

𝑛𝑛

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏)𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (2-9) 

Where 𝑦𝑦(𝜏𝜏) is the output variable of interest and 𝑥𝑥𝑖𝑖′s are the traditional DoE factors and (or) 

dynamic sub-factors parameterizing the input profile of each DoDE experiment. The time-varying 

input profile, 𝑢𝑢(𝜏𝜏), is given by eq. (2-5).  

Here 𝛽𝛽𝑞𝑞(𝜏𝜏)  will be used to represents any of the time-varying parametric functions, 

𝛽𝛽0(𝜏𝜏),𝛽𝛽𝑖𝑖(𝜏𝜏),𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏),𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏), in eq. (2-9). We select the first 𝑅𝑅 + 1 shifted Legendre polynomials as 

the orthogonal basis for the parameterization of each 𝛽𝛽𝑞𝑞(𝜏𝜏) function given by 

 𝛽𝛽𝑞𝑞(𝜏𝜏) = 𝛾𝛾𝑞𝑞,1𝑃𝑃0(𝜏𝜏) + 𝛾𝛾𝑞𝑞,2𝑃𝑃1(𝜏𝜏) + ⋯+ 𝛾𝛾𝑞𝑞,𝑅𝑅+1𝑃𝑃𝑅𝑅(𝜏𝜏) (2-10) 

With  𝑞𝑞 = 0, 𝑖𝑖, 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖  for 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛  and 𝑗𝑗 > 𝑖𝑖 . The model parameters, 𝛾𝛾 ’s, are estimated via 

linear regression. The fixed value of 𝑡𝑡𝑏𝑏 limits the application of the DRSM-1 approach to the batch 
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process with fixed operating duration. This also prevents the DRSM-1 approach from using 

historical data, which inevitably, will be over different time durations. Such limitations motivate 

the DRSM-2 methodology presented in Chapter 4. 

2.5. Recursive Models and Model Predictive Control 

With the DRSM model capturing the process dynamics, one can potentially use it for both 

optimization and control. However, the DRSM model cannot be directly applied for control 

purpose. The Model Predictive Control (MPC) relies on the recursive models and this will be 

discussed in this sub-section. We will present our approach of using a transformed form of the 

DRSM model for control purposes in Chapter 5. This is a recursive model for control purposes 

which is estimated from the DRSM model at hand. 

2.5.1. Identification of Recursive Models 

In this sub-section, we introduce the recursive models and ways to identify these models. There 

are two classes of recursive models, linear and nonlinear models, approximating the linear and 

nonlinear dynamic input-output relationships. The state-space model and the time-series model 

(including ARX or ARMAX type of models) are two major forms of the recursive model defined 

in time domain. The mathematical expression of an Auto-Regressive with eXogenous input (ARX) 

model, is given by 

 𝑦𝑦𝑘𝑘+1 = 𝑎𝑎1𝑦𝑦𝑘𝑘 + 𝑎𝑎2𝑦𝑦𝑘𝑘−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑦𝑦𝑘𝑘−𝑛𝑛+1 + 𝑏𝑏1𝑢𝑢𝑘𝑘 + 𝑏𝑏2𝑢𝑢𝑘𝑘−1 + ⋯+ 𝑏𝑏𝑚𝑚𝑢𝑢𝑘𝑘−𝑚𝑚 (2-11) 
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This input-output relationship indicates that the current output value is the linear combination of 

previous n outputs and previous m inputs. A generalized form of ARX model is the ARMAX 

model, which also including the effect of moving average as shown in the following equation.  

 𝑦𝑦𝑘𝑘+1 = �𝑎𝑎𝑖𝑖𝑦𝑦𝑘𝑘−𝑖𝑖+1

𝑛𝑛

𝑖𝑖=1

+ �𝑏𝑏𝑗𝑗𝑢𝑢𝑘𝑘−𝑖𝑖+1

𝑚𝑚

𝑖𝑖=1

+ �𝑐𝑐𝑖𝑖𝑒𝑒𝑘𝑘−𝑖𝑖+1

𝑞𝑞

𝑖𝑖=1

 (2-12) 

𝑒𝑒𝑘𝑘  is a nonzero value at time instant 𝑘𝑘, representing the moving average of the process being 

modeled. Both ARX and ARMAX model can be rearranged into canonical state-space form [33], 

given as follows. 

 𝒛𝒛𝑘𝑘+1 = 𝐀𝐀𝒛𝒛𝑘𝑘 + 𝐁𝐁𝒖𝒖𝑘𝑘 (2-13) 

 𝒚𝒚𝑘𝑘 = 𝐂𝐂𝒛𝒛𝑘𝑘 (2-14) 

Where 𝒛𝒛𝑘𝑘 is the state variable. When the 𝐂𝐂 matrix is an identity matrix, the state-space model is 

equivalent to the ARX model.  

Several recursive model structures representing the nonlinear dynamics of the batch processes 

have been proposed as well, including Linear Parameter-Varying (LPV) model and Hammerstein-

Wiener (H-W) model. The LPV model [54] introduces the scheduling parameters varying with 

evolution of state variables in order to approximate bilinear dynamics. The H-W models, 

consisting of two static nonlinear blocks in the inputs and outputs and a dynamic linear block in 

between [55-57], has been applied for the modelling batch processes with linear kinetics and static 

nonlinear functions on the output, such as pH neutralization [58, 59] and distillation column [60]. 

The schematic representation of a Hammerstein-Weiner model is given as below.  
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𝑓𝑓(∙) and 𝑔𝑔(∙) blocks represent the static input and output nonlinearities while the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 block as 

given in eq. (2-11) or eq. (2-13) & (2-14), represents the linear dynamics between the intermediate 

input 𝒖𝒖�k  and intermediate output 𝒚𝒚�k . 𝒖𝒖k  is the input exiting the process while 𝒚𝒚k  is the 

corresponding process output. 

The aforementioned linear and nonlinear recursive models are identified via algorithms such as 

Prediction Error Method (PEM) [17], Multivariable Output Error State Space Model Identification 

(MOESP) [33], and Numerical Algorithms for Subspace System Identification (N4SID) [61]. 

These algorithms utilize the data collected from Pseudo Random Binary Signal (PRBS) or 

Generalized Binary Noise (GBN) [62] experiments in the vicinity of a pre-determined trajectory, 

possibly an optimal one. However, when the available measurements in a single batch are 

infrequent, the estimation of such a linear or nonlinear dynamic model of satisfactory accuracy is 

not feasible. In addition, to determine the optimal trajectory around where the recursive model is 

identified, a separate model may be estimated with the cost of additional experiments.  

2.5.2. Model Predictive Control 

Model Predictive Controller (MPC) has been applied widely in controlling multivariable and 

constrained processes effecting changes in set points and countering the effect disturbances [63-

65]. In general, MPC calculates future control actions, so that it minimize the differences between 

the expected future values of the outputs and the corresponding set-points. The Kalman Filter [66, 

𝑓𝑓(∙) 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑔𝑔(∙) 

Figure 2-1: Hammerstein-Wiener model 

𝒖𝒖𝑘𝑘 𝒖𝒖�𝑘𝑘 𝒚𝒚�𝑘𝑘 𝒚𝒚𝑘𝑘 
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67] is usually applied to update the estimation of the state variables after the present measurements 

have been collected. A schematic datagram of a MPC by Lima [68] is given in Figure 2-2. 

 

Figure 2-2: Constrained MPC strategy with prediction horizon = 9 and control horizon = 4 

The mathematical formulation of a Single-Input-Single-Output (SISO) MPC is given by 

 

       𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑢𝑢𝑖𝑖|𝑘𝑘

�𝑞𝑞� 𝑦𝑦�𝑖𝑖|𝑘𝑘2
𝑘𝑘+𝑁𝑁𝑝𝑝−1

𝑖𝑖=𝑘𝑘+1
+ 𝑤𝑤� 𝛿𝛿𝑢𝑢𝑖𝑖|𝑘𝑘2

𝑘𝑘+𝑁𝑁𝑝𝑝−1

𝑖𝑖=𝑘𝑘+1
� 

𝑠𝑠. 𝑡𝑡 𝛿𝛿𝑢𝑢𝑖𝑖|𝑘𝑘 = ∆𝑢𝑢𝑖𝑖|𝑘𝑘 − 𝑢𝑢𝑖𝑖−1|𝑘𝑘;  𝑦𝑦�𝑖𝑖|𝑘𝑘 = ∆𝑦𝑦𝑠𝑠𝑠𝑠,𝑖𝑖 − ∆𝑦𝑦�𝑖𝑖|𝑘𝑘  

       𝒛𝒛�𝑖𝑖+1|𝑘𝑘 = 𝐀𝐀𝒛𝒛�𝑘𝑘|𝑘𝑘 + 𝒃𝒃𝑇𝑇∆𝑢𝑢𝑖𝑖|𝑘𝑘;   ∆𝑦𝑦𝑖𝑖|𝑘𝑘 = 𝒄𝒄𝑇𝑇𝑧̂𝑧𝑖𝑖|𝑘𝑘;   

       𝑢𝑢𝐿𝐿 ≤ 𝑢𝑢0𝑖𝑖 + ∆𝑢𝑢𝑖𝑖|𝑘𝑘 ≤ 𝑢𝑢𝑈𝑈 

(2-15) 
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Here 𝑦𝑦𝑠𝑠𝑠𝑠,𝑖𝑖 is the set point at time instant 𝑖𝑖. 𝑤𝑤 is the control action weight, 𝑢𝑢𝐿𝐿 and 𝑢𝑢𝑈𝑈 are the lower 

and upper control limit. The subscript 𝑖𝑖|𝑘𝑘 indicates the estimation of the variable value of future 

instance 𝑖𝑖  while the estimation is done at instant 𝑘𝑘 . 𝑁𝑁𝑝𝑝  and 𝑁𝑁𝑢𝑢  are the prediction and control 

horizons, respectively. The tuning parameters for MPC controller, are 𝑁𝑁𝑝𝑝 , 𝑁𝑁𝑢𝑢 , 𝑞𝑞 , and 𝑤𝑤 . 

Guidelines for tuning the MPC has been discussed in the publications [69-73]. Nonlinear MPC 

(NMPC) using nonlinear recursive models has also been reported [74-76], including the control 

strategy based on block oriented models [77-80]. 
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3. Methodological Improvements to DoDE for Process Optimization 

In this chapter, the new methodical improvements to the DoDE approaches have been discussed. 

Batch processes often characterized by small production rates resulting in economic constraints 

that do not afford the necessary time and effort to develop an accurate knowledge-driven model 

describing their inner workings in detail. To accommodate such a lack of detailed understanding, 

we recently introduced a new data-driven approach, the Design of Dynamic Experiments (DoDE) 

[25, 26] The DoDE defines a finite number of time-varying input profiles within an input domain. 

From the collected data at the end of each batch, it develops a data-driven Response Surface 

Methodology (RSM) model that enables the optimization of the process. The DoDE methodology 

has been successfully used in optimizing several batch processes [27-29].  

Even though the input domain has a significant impact on the performance of the DoDE approach 

[81], discussion in the literature about how to improve the design domain is nonexistent. We here 

incorporate a priori process knowledge to aid the design of the input domain. We will show that 

the change in the design domain guided by prior process knowledge results in improved optimal 

process performances in two classes of representative biopharmaceutical processes examined in 

this chapter. In addition, because the model development and process optimization for batch or 

semi-batch processes are always under tight budgetary and time constraints, we consider how the 

number of initial experiment can be reduced and still obtain a process optimum close to the one 

obtained using the more numerous set of experiments in the original DoDE approach. 

The proposed two improvements of the DoDE approach will be examined in silico against two 

classes of representative biopharmaceutical processes. This includes the multi-feed Hybridoma 
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cell culture[82] and a set of eight secondary metabolite fermentations (SMF). These SMF 

processes are defined by varying the four most significant kinetic parameters (𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚, 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚, 𝐾𝐾𝑝𝑝 , 

and 𝐾𝐾𝑖𝑖𝑖𝑖) of the B&R model over a wide range of values. 

3.1. Ordinary DoDE Experiments as a Reference Case 

In this section, we design a set of DoDE experiments, without incorporating the process knowledge. 

This resulting design domain is denoted as Domain A. The obtained process optimum will serve 

as a reference case. In section 3.2 where we incorporate the prior additional process knowledge, 

we will define a different design domain, Domain B, by arguing that the co-reactants flow rates 

should maintain a non-zero value at the end of the batch. We will compare the obtained optimal 

process performances within Domains A and B in the results section and demonstrate the benefits 

of incorporating the process knowledge that motivates the use of Domain B,  

We first define the reference input profile, 𝑢𝑢0(𝑡𝑡). As the total volume of a batch reactor is usually 

fixed, the selected input profile has to satisfy the total volume constraint, which is given by: 

 � 𝑢𝑢0(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝑏𝑏,𝑟𝑟

0
= 𝑉𝑉�𝑡𝑡𝑏𝑏,𝑟𝑟� − 𝑉𝑉(0) = 𝑉𝑉𝑓𝑓 − 𝑉𝑉0 ≡ ∆𝑉𝑉 (3-1) 

where 𝑉𝑉0 and 𝑉𝑉𝑓𝑓 are the initial and final volumes of the liquid phase in the reactor, respectively. 

The simplest choice for 𝑢𝑢0(𝑡𝑡). is with a linear dependence on time, which will be used here. For 

many batch processes and, in particular, the biopharmaceutical processes examined in this chapter, 

when the initial substrate concentration is low, the feeding flow rate of the co-reactant, or substrate, 

should be high at the beginning of the batch and low at the end of the batch. Without the aid of 
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any further process knowledge, we simply impose 𝑢𝑢0(𝑡𝑡𝑏𝑏) = 0, as the substrate is a co-reactant. 

The resulting 𝑢𝑢0(𝑡𝑡), with a linear dependence on t, is 

 𝑢𝑢0(𝑡𝑡) = 2(1 − 𝑡𝑡 𝑡𝑡𝑏𝑏,𝑟𝑟⁄ )∆𝑉𝑉 𝑡𝑡𝑏𝑏,𝑟𝑟⁄  (3-2) 

We then let all substrate inflows vary within the domain 𝑢𝑢0(𝑡𝑡) ± ∆𝑢𝑢0(𝑡𝑡), with 𝑢𝑢0(𝑡𝑡) = ∆𝑢𝑢0(𝑡𝑡). 

This allows 𝑢𝑢(𝑡𝑡) to vary between zero and 2𝑢𝑢0(𝑡𝑡) but at the same time it forces the flow rates to 

be zero at the end of the batch time. We denote this input domain as Domain A.  

We now define the coded time-varying factor, 𝑤𝑤(𝜏𝜏), related to the substrate inflow as given in 

eq.(2-5) 

 𝑢𝑢(𝜏𝜏) = 𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢(𝜏𝜏)𝑤𝑤(𝜏𝜏)   with   −1 ≤ 𝑤𝑤(𝜏𝜏) ≤ +1 (2-5) 

The dimensionless time, 𝜏𝜏, is defined by 𝜏𝜏 = 𝑡𝑡 𝑡𝑡𝑏𝑏⁄  and the batch duration 𝑡𝑡𝑏𝑏, is given by eq. (2-4). 

 𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑏𝑏,𝑟𝑟 + ∆𝑡𝑡𝑏𝑏,𝑟𝑟𝑤𝑤 with −1 ≤ 𝑤𝑤 ≤ +1 (2-4) 

Where w is the traditional DoE factor. Now let the coded time-varying factor, 𝑤𝑤(𝜏𝜏), be expanded 

using three dynamic sub-factors and first three shifted Legendre polynomials.  

 𝑤𝑤(𝜏𝜏) = 𝑥𝑥1𝑃𝑃0(𝜏𝜏) + 𝑥𝑥2𝑃𝑃1(𝜏𝜏) + 𝑥𝑥3𝑃𝑃2(𝜏𝜏) (3-3) 

Here the coefficients 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 are the dynamic sub-factors, which will be varied to define the 

coded time-varying dynamic factor 𝑤𝑤(𝜏𝜏) and therefore define the co-reactant’s inflow in eq.(2-5). 

We limit the series expansion of 𝑤𝑤(τ) to only the first three polynomials so that the set of dynamic 

sub-factors, 𝑥𝑥𝑖𝑖′s and the corresponding number of experiments is limited. Substituting 𝑢𝑢(τ) into 

the total volume constraint in eq. (3-1) we have: 
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 𝑡𝑡𝑏𝑏 � [𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢0(𝜏𝜏)]𝑑𝑑𝑑𝑑
1

0
= ∆𝑉𝑉 (3-4) 

Solving eq. (3-4) for the traditional DoE factor, 𝑤𝑤, we obtain the following relationship in which 

x3 is not present.  

 𝑤𝑤 =
(3𝑥𝑥1 − 𝑥𝑥2)𝑡𝑡𝑏𝑏,𝑟𝑟

[3 + (3𝑥𝑥1 − 𝑥𝑥2)]∆𝑡𝑡𝑏𝑏,𝑟𝑟
 (3-5) 

This relationship reduces the degree of freedom by one, as 𝑤𝑤 is dependent on 𝑥𝑥1 and 𝑥𝑥2. The 

constraints that the designed experiments need to satisfy are the inequalities in eq. (2-4) and the 

following set of inequalities, which ensure that the constraint in eq. (2-5) is satisfied.  

 −1 ≤ 𝑥𝑥1 ± 𝑥𝑥2 ± 𝑥𝑥3 ≤ +1 (3-6) 

The inequality of eq. (2-4) translates, though eq. (3-5), into the following constraint on 𝑥𝑥1 and 𝑥𝑥2: 

 −1 ≤
(3𝑥𝑥1 − 𝑥𝑥2)𝑡𝑡𝑏𝑏,𝑟𝑟

[3 + (3𝑥𝑥1 − 𝑥𝑥2)]∆𝑡𝑡𝑏𝑏,𝑟𝑟
≤ +1 (3-7) 

3.2. Incorporating Prior Knowledge  

Even though many batch processes might not be understood completely to enable the development 

of an accurate knowledge-driven model, some a priori knowledge about the process characteristics 

is usually available. In this section, we discuss how to incorporate such knowledge to improve the 

design of the DoDE experiments and the resulting process performance. In general, the prior 

knowledge will be used to aid the design of the reference time-varying input profile and the 

selection of the corresponding input domain. We here consider two kinds of prior knowledge. In 
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the first subsection, we utilize the knowledge that sufficient amount of the nutrient is needed to 

maintain the product production at the end of the batch in order to compensate the product 

destruction [83, 84]. In the second subsection, we incorporate one additional piece of prior 

knowledge related to the sequential scheduling of multiple co-reactants, such as substrate feeds. 

In both of these two cases, the prior knowledge is used to modify the DoDE input domain.  

3.2.1. Maintenance of Product 

It is understood that in secondary metabolite fermentations (SMF) the product might degrade 

during the entire batch duration. If the glucose supply is too low, the production rate will be low 

and the amount of product will decrease. This motivates the need for the glucose feed rate to be 

larger than zero at the end of the batch. Based on this information, we define the reference input 

with the property that 𝑢𝑢0�𝑡𝑡𝑏𝑏,𝑟𝑟� = 0.2𝑢𝑢0(0). The resulting 𝑢𝑢0(𝑡𝑡), with a linear dependence on 𝑡𝑡, is 

 𝑢𝑢0(𝑡𝑡) = (5 − 4𝑡𝑡 𝑡𝑡𝑏𝑏,𝑟𝑟⁄ )∆𝑉𝑉 (3𝑡𝑡𝑏𝑏,𝑟𝑟)⁄  (3-8) 

Again, the substrate flow profile 𝑢𝑢(𝑡𝑡) = 𝑢𝑢0(𝑡𝑡) + ∆𝑢𝑢0(𝑡𝑡)𝑤𝑤(𝜏𝜏) can vary in the domain 𝑢𝑢0(𝑡𝑡) ±

∆𝑢𝑢0(𝑡𝑡). This allows 𝑢𝑢(𝑡𝑡𝑏𝑏) to vary between zero and 0.4𝑢𝑢0(0), instead of being forced to become 

zero as in Domain A. We will call this domain B. 

The selection of the ratio of the ending flow rate, 𝑢𝑢0(𝑡𝑡𝑏𝑏), to the beginning flow rate, 𝑢𝑢0(0), in the 

reference input, here taken as 20%, is mostly intuitive. A different value of the ratio can be selected 

by the process expert based on a qualitative understanding on how strong is the maintenance 

demand of the product. These assumptions on the reference input can be ameliorated later with 

additional experiments by further modifying the input domain.  
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Substituting eq. (3-8) in eq. (3-4) and solving for 𝑤𝑤, we obtain the following counterpart to eq. 

(3-5) in domain B.  

 𝑤𝑤 = −
(9𝑥𝑥1 − 2𝑥𝑥2)𝑡𝑡𝑏𝑏,𝑟𝑟

[9 + (9𝑥𝑥1 − 2𝑥𝑥2)]∆𝑡𝑡𝑏𝑏,𝑟𝑟
 (3-9) 

The independent factors and the number of experiments for developing a quadratic RSM model 

are the same in both domain A and B. In Figure 3-1, some of the feeding profiles of the substrate 

inflow are given for one of the biopharmaceutical process of interest, SMF process #5, which will 

be defined later. In this figure, we also depict a thick line, the optimal feeding profile, to be also 

discussed later in this chapter. The dashed and dotted lines are the reference input profile and the 

upper limit of the input domain, respectively. In the upper sub-plot we depict some of the input 

profiles constrained in Domain A. The corresponding ones in Domain B are given in the lower 

sub-figure. In each domain, the batch time and the incoming flow profiles are considerably 

different between two experiments in each of the DoDE sets of experiments. All the inflow rates 

become zero at the end of the batch in Domain A. The superiority of the design of Domain B can 

be argued by examining whether the optimal values of the factors (and dynamic sub-factors) for 

Domain A lie on the boundary of A. A similar examination, of whether the optimal values of the 

factors in domain B lie on the corresponding boundary, would indicate whether a third domain C, 

larger than B, would have improved the process optimum further. We will discuss these further in 

the conclusions section.  
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Figure 3-1: Some of the feeding profiles ( ) for SMF #5 in Domain A (upper) and B (lower), 
along with the center point reference profile ( ), the calculated optimal one ( ) and 
the input domain upper limit ( ) 

3.2.2. Scheduling of Feeding Substrates 

For processes with multiple feeding streams, the process performance may not only depend on the 

individual feeding profiles but also on whether these profiles are sequential or simultaneous. If we 

have a priori knowledge that one of the two co-reactants, or substrates in the case of biological 

processes, should be fed ahead of the other, we can improve the effectiveness of the DoDE 

methodology by incorporating this knowledge in the DoDE design. For the Hybridoma cell culture 

examined here, the feed of glucose should be scheduled after the feed of glutamine [82], in a 

sequential manner. Without such prior knowledge, one would most certainly choose to feed 

simultaneously both streams.  
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We now define the reference feeding profiles and the corresponding input domains for the feeding 

of the two co-reactants, both for the simultaneous and the sequential modes. However, we will 

consider only domain B here. A similar study can also be presented in domain A. As in the previous 

definition of domain B, we let 𝑢𝑢𝑖𝑖,0�𝑡𝑡 = 𝑡𝑡𝑏𝑏,𝑟𝑟� = 0.2𝑢𝑢𝑖𝑖,0(0) for 𝑖𝑖 = 1, 2. The total feed volume, ∆𝑉𝑉, 

is split into the feed volume of glutamine (∆𝑉𝑉1) and the feed volume of glucose (∆𝑉𝑉2). We assume 

∆𝑉𝑉1 = 𝛼𝛼∆𝑉𝑉, implying ∆𝑉𝑉2 = (1 − 𝛼𝛼)∆𝑉𝑉 and we select 𝛼𝛼 = 0.8 for both the simultaneous and 

sequential feeding strategies. If one were to explore the impact of different 𝛼𝛼 values, an additional 

factor could be introduced by 𝛼𝛼 = 0.8 + 0.3𝑤𝑤3 with −1 ≤ 𝑤𝑤3 ≤ 0.5 to explore α values between 

0.5 and .0.95. This additional factor will increase the number of experiments but will also help 

select the optimal α value.  

For the simultaneous feeding, the batch time is defined as in eq. (2-4), and the feed streams of 

glucose and glutamine both last for the entire batch duration. Either of the two feeding profiles is 

parameterized using three dynamic sub-factors, {𝑥𝑥𝑖𝑖|𝑖𝑖 = 1, 2, 3} and the counterparts of eq. (3-8) 

and eq. (3-9) can be easily derived. The total number of independent factors is six. The desired 

quadratic RSM model has 28 (1 + 6 + 5 × 6 2⁄ + 6) parameters requiring at least that many 

experiments. We again add three replicated experiments for the estimation of the process 

variability and three additional experiments to estimate the LoF statistics. Therefore, a set of 34 

experiments in total is needed for the case of the simultaneous feeding.  

For the sequential feeding of the two co-reactants, we define an additional factor for the switching 

time, 𝑡𝑡𝑠𝑠, the time when we stop feeding the first co-reactant (glutamine for the application here) 

and start to feed the second co-reactant (glucose). We define the switch time, 𝑡𝑡𝑠𝑠, by 𝑡𝑡𝑠𝑠 =  𝑡𝑡𝑠𝑠,𝑟𝑟 +
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∆ 𝑡𝑡𝑠𝑠𝑤𝑤2 with −1 ≤ 𝑤𝑤2 ≤ +1 in a similar manner as we defined the batch time, 𝑡𝑡𝑏𝑏, by 𝑡𝑡𝑏𝑏 =  𝑡𝑡𝑏𝑏,𝑟𝑟 +

∆ 𝑡𝑡𝑏𝑏𝑤𝑤1 with −1 ≤ 𝑤𝑤1 ≤ +1. 

Because of the two distinct feeding intervals we define two dimensionless times, as follows.  

 𝜏𝜏1 = 𝑡𝑡 𝑡𝑡𝑠𝑠⁄  and 𝜏𝜏2 = (𝑡𝑡 − 𝑡𝑡𝑠𝑠) (𝑡𝑡𝑏𝑏 − 𝑡𝑡𝑠𝑠)⁄  (3-10) 

The feeds of glutamine and glucose, in the reference case, last for 𝑡𝑡𝑠𝑠,𝑟𝑟 and for 𝑡𝑡𝑏𝑏,𝑟𝑟 − 𝑡𝑡𝑠𝑠,𝑟𝑟 units of 

time, respectively. Here ∆𝑉𝑉1 = 𝛼𝛼∆𝑉𝑉 with 𝛼𝛼 = 0.8 and  𝑢𝑢𝑖𝑖,0�𝑡𝑡 = 𝑡𝑡𝑏𝑏,𝑟𝑟� = 0.2𝑢𝑢𝑖𝑖,0(0) for 𝑖𝑖 = 1, 2 as 

mentioned before. The linear reference input profiles for these two feeds are then given as 

 

𝑢𝑢1,0(𝜏𝜏1) = 𝛼𝛼∆𝑉𝑉(5 − 4𝜏𝜏1) (3𝑡𝑡𝑠𝑠,𝑟𝑟)⁄   

𝑢𝑢2,0(𝜏𝜏2) = (1 − 𝛼𝛼)∆𝑉𝑉(5 − 4𝜏𝜏2) [3(𝑡𝑡𝑏𝑏,𝑟𝑟 − 𝑡𝑡𝑠𝑠,𝑟𝑟)⁄ ] (3-11) 

We let ∆𝑢𝑢𝑖𝑖,0(𝜏𝜏𝑖𝑖) = 𝑢𝑢𝑖𝑖,0(𝜏𝜏𝑖𝑖)  and 𝑢𝑢𝑖𝑖(𝜏𝜏𝑖𝑖) = 𝑢𝑢𝑖𝑖,0(𝜏𝜏𝑖𝑖) + ∆𝑢𝑢𝑖𝑖,0(𝜏𝜏𝑖𝑖)𝑤𝑤𝑖𝑖(𝜏𝜏𝑖𝑖)  with 𝑤𝑤𝑖𝑖(𝜏𝜏𝑖𝑖) = 𝑥𝑥𝑖𝑖1𝑃𝑃0(𝜏𝜏𝑖𝑖) +

𝑥𝑥𝑖𝑖2𝑃𝑃1(𝜏𝜏𝑖𝑖) + 𝑥𝑥𝑖𝑖3𝑃𝑃2(𝜏𝜏𝑖𝑖) for 𝑖𝑖 = 1, 2. Then the total volume constraint is given by 

 𝑡𝑡𝑠𝑠 � 𝑢𝑢1(𝜏𝜏1)𝑑𝑑𝜏𝜏1
1

0
+ (𝑡𝑡𝑏𝑏 − 𝑡𝑡𝑠𝑠)� 𝑢𝑢2(𝜏𝜏2)𝑑𝑑𝜏𝜏2

1

0
= ∆𝑉𝑉 (3-12) 

Manipulating eq. (3-12), we can express 𝑤𝑤1, defining the total batch time, in term of other factors 

and reduce the degrees of freedom by one. 

 𝑤𝑤1 = −
(𝑡𝑡𝑏𝑏,𝑟𝑟 − 𝑡𝑡𝑠𝑠,𝑟𝑟) �1 − ℎ1 − ℎ2 − �∆𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠,𝑟𝑟

ℎ1 −
∆𝑡𝑡𝑠𝑠

𝑡𝑡𝑏𝑏,𝑟𝑟 − 𝑡𝑡𝑠𝑠,𝑟𝑟
ℎ2�𝑤𝑤2�

ℎ2∆𝑡𝑡𝑏𝑏
 (3-13) 

where  ℎ1 = 𝛼𝛼(1 + 𝑥𝑥11 − 𝑥𝑥12 9⁄ ) and ℎ2 = (1 − 𝛼𝛼)(1 + 𝑥𝑥21 − 𝑥𝑥22 9⁄ ). Then we design the 42 

DoDE experiments, perform them and fit a quadratic RSM with seven independent 
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factors,  𝑤𝑤2, 𝑥𝑥11, 𝑥𝑥12, 𝑥𝑥13, 𝑥𝑥21, 𝑥𝑥22, and 𝑥𝑥23 . Obviously the number of experiments required to 

estimate the above quadratic RSM is not small. This is because we allowed three dynamic sub-

factors and aimed for a quadratic RSM. We will discuss in the next section ways to reduce the 

number of experiments.   

3.3. Reduction in the Initial DoDE Experiments 

In industrial practice, the practitioner is always interested in optimizing his process while 

satisfying tight budgetary and development time constraints. In such a case, the data-driven 

optimization approach using a significantly smaller number of experiments is of great interest. We 

follow up here the discussion of the previous section in which the initial set of experiment required 

for estimating a quadratic RSM are 16 and 42 for SMF processes and the Hybdridoma cell culture 

respectively. These might appear quite numerous to the practitioner, especially in cases where the 

batch duration might extend to several hours, if not days. There are two ways to reduce the number 

of experiments. The first way is by minimizing the number of sub-factors considered, from three 

to two, and the second is by aiming for the simplest RSM, the linear one, neglecting both quadratic 

and two-way interaction model terms. We will focus here on the benefits of initially estimating a 

linear RSM but still consider three dynamic sub-factors. 

For the sequential feeding of the Hybridoma cell culture, only 14 experiments are required if we 

simply aim for a linear RSM. Here, the number of model parameters is eight and six extra runs are 

added for reasons explained above. For the SMF processes, a linear RSM with three factors can 

be estimated using ten experiments in total. The number of experiments can be further reduced by 

only adding two, instead of three, extra runs for the LoF statistics and only two, instead of three, 
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replicate experiments for the process variability. The last item, reduction on the number of 

replicated runs might reduce significantly the accuracy of estimation of the normal variability of 

the process. This way, the number of runs decreases to 12 and eight (8) for the Hybridoma cell 

culture and the SMF processes, respectively. However this might compromise the soundness of 

the statistical analysis of the collected data, especially the calculation of the uncertainty 

characteristics of the estimated model. It will not be used here. 

We now discuss the modelling and optimization for the processes of interest here, using this 

reduced number of experiments. Because the linear RSM may not accurately model the nonlinear 

process, the calculated optimal conditions will be tentative, with associated prediction intervals 

that might be large. We thus need to worry whether the predicted uncertainty of the planned next 

experiment is too large. If the prediction interval is larger than a desired upper bound, a suboptimal 

operation might be determined and run so that the uncertainty constraint is satisfied, following in 

principle the Tendency Modelling approach [85-88]. This approach accepts the direction of 

process change implied by the preliminary but uncertain tendency model and then selects a 

suboptimal operating point for the next experiment at a location along the line starting from the 

best of the initial experiments and parallel to the direction of the steepest accent predicted by the 

model. The exact location is decided by the maximum allowed predication uncertainty. An 

approach to estimate this bound follows. 

After the model has been estimated from the available data, we can easily calculate the model 

prediction’s uncertainty at any point 𝒙𝒙 in the domain. The uncertainty is quantified by the half 

width of the prediction interval [23] and is defined by:  
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 ∆𝑦𝑦𝑖𝑖 = 𝑡𝑡𝛼𝛼 2⁄ ,𝑛𝑛−𝑝𝑝 �𝜎𝜎�2[1 + 𝒙𝒙𝑖𝑖′(𝐗𝐗′𝐗𝐗)−1𝒙𝒙𝑖𝑖] (3-14) 

Here 𝒙𝒙 is the information matrix of the initial set of experiments [23], 𝜎𝜎� is the estimated standard 

deviation of the process normal variability, while the vector 𝑥𝑥𝑖𝑖 represents the operating conditions 

of interest. Also 𝑡𝑡𝛼𝛼 2⁄ ,𝑛𝑛−𝑝𝑝  is the t-statistics at a confidence level of 100(1 − 𝛼𝛼)%. At first, we 

calculate the above half-width of the prediction interval for each of the 𝑁𝑁 initial experiments, 

∆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 for 𝑗𝑗 = 1, 2,⋯ ,𝑁𝑁, using eq. (3-14). Then the average of these values is given by ∆𝑦𝑦�𝑒𝑒𝑒𝑒𝑒𝑒 =

∑ ∆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗
𝑁𝑁
𝑗𝑗=1 𝑁𝑁⁄  and the estimate of the corresponding standard deviation is 𝜎𝜎�∆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 =

1 (𝑁𝑁 − 1)�∑ (∆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 − ∆𝑦𝑦�𝑒𝑒𝑒𝑒𝑒𝑒)2𝑁𝑁
𝑗𝑗=1� . We are going to use these two values (∆𝑦𝑦�𝑒𝑒𝑒𝑒𝑒𝑒, 𝜎𝜎�∆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒) to 

establish the allowed maximum prediction half-interval for any new optimal or sub-optimal 

operation.  

 
∆𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 ≤ ∆𝑦𝑦�𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜆𝜆𝜎𝜎�∆𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒 (3-15) 

Here ∆𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 is half of the 95% certainty prediction interval at the tentative optimal or sub-optimal 

operating point. If we wish to be very conservative we might require 𝜆𝜆 = 2, but a more appropriate 

value will be higher than 2 and less than 3. As the number of experiments has been significantly 

reduced comparing to the number for a quadratic RSM, the estimated linear RSM may have a large 

uncertainty in some regions far away from the experimental points. In particular, the predicted 

optimum by a linear RSM is on the boundary of the input domain where the prediction uncertainty 

is the largest. Therefore, the selection of the optimal operating conditions should be done with 

great caution. Because the initial model is linear, the optimal point will be along a line that starts 

from the best experiment and is parallel to the steepest accent direction. We will call this the 
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“tendency line”. If we were not concerned about the uncertainty constraint in eq. (3-15), the 

calculated optimum with a very large prediction uncertainty would be of minimal practical value. 

Consequently, we should estimate a suboptimal operation, which satisfies the uncertainty 

constraint of eq.(3-15). A simple way to estimate such a suboptimal point is to consider the 

operating points along the “tendency line”. Along this line we select the suboptimal point for the 

next experiment so that it does not violate the uncertainty constraint in eq. (3-15). 

3.4. Biopharmaceutical Processes of Interest 

To examine the two proposed methodological improvements to the DoDE approach we select two 

quite different sets of biopharmaceutical processes: i) eight secondary metabolite fermentations 

(SMF) and ii) a Hybridoma cell culture [82]. The set of eight SMF processes is constructed by 

modifying the four most significant parameters of the initial model reported by B&R [34]. For the 

SMF processes, 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖𝑖𝑖 determine at what substrate concentration the specific production rate 

reaches its maximum while 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 affect the maximum specific growth and production 

rates, respectively. Therefore, the optimal feeding strategies substantially depend on those four 

parameters. The diverse parameter sets used to define the SMF processes are given in columns 2-

5 of Table 3-1. The last row reports the parameter values for the B&R process, the base case. We 

do not examine all the possible combinations of the high and low values of the four significant 

parameters varied. This would have resulted in 16 (=24) processes, a full factorial design. Instead, 

we have designed a resolution IV 24-1 fractional factorial design with eight process examples. The 

diversity of these fermentations is quite apparent if one looks at processes #1, 3 and 5, for example. 

Process #1 is characterized by a relatively slow growth rate for biomass and product. In contrast, 
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process #5 is characterized by fast growth rates for both biomass and product.  Process #3 has a 

slow biomass growth rate and a relatively fast one for the product. 

Table 3-1: Eight diverse sets of model parameters representing a multitude of possible 
fermentation processes and the process optima via the DoDE and the MBO approach 
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 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 

1 5 3 5 32 35.8 1.7 36.2 43.4 1.7 43.6 20.4 45.0 3.1 

2 5 3 20 3 24.2 2.8 24.1 33.5 1.4 32.3 34.3 35.2 8.0 

3 5 11 5 3 120.2 20.2 115.6 138.8 19.9 152.7 32.1 155.3 1.7 

4 20 3 5 3 37.2 1.9 37.6 45.6 3.2 44.6 18.7 46.8 4.6 

5 20 11 20 3 115.6 13.4 115.6 133.9 11.0 138.2 19.6 147.8 6.5 

6 20 11 5 32 153.2 9.5 144.7 167.3 10.0 162.9 12.6 166.1 2.0 

7 20 3 20 32 33.1 1.9 31.7 39.7 2.4 39.4 24.3 41.5 5.0 

8 5 11 20 32 104.4 15.4 111.8 162.5 13.6 149.3 33.6 159.3 6.2 

B&R 10 5.5 10 10 75.0 9.0 71.5 88.1 5.4 85.9 20.1 87.9 2.3 

The Hybridoma cell culture has a significantly different structure from that for the SMF processes. 

Two main substrates, glucose (Glc) and glutamine (Gln), are required to be fed for cell growth and 

antibody production. Meanwhile, two toxic byproducts, lactate (Lac) and ammonia (Amm), are 

released during the production of the desired metabolites. This leads to a more involved multi-feed 

optimization problem.  
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In all cases, the only available process measurements are the product concentration and bioreactor 

volume at the end of the batch. Since these experiments are in silico, we simulate the normal 

variability of the process by adding a 4% measurement error to the simulated value of the product 

concentration, 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠, i.e. 𝑦𝑦~𝑁𝑁(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠, 0.02𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠). The resulting values are the ones used to build the 

RSMs. The same noise has been added to all the processes discussed in this chapter. 

3.5. Results and Discussions 

In this section, we examine the effectiveness of the proposed improvements to the DoDE approach 

in the selected classes of biopharmaceutical processes. We first demonstrate the incorporation of 

prior process knowledge as discussed in the previous sections. In the second subsection, we 

confirm that similar optimal results can be achieved using the reduced number of experiments.  

For the eight SMF processes studied here, we simply assume that the appropriate reference batch 

time depends on the biomass and product growth rates. While in practice, the reference batch time 

will be selected according to the knowledge about the process. In the initial B&R process for 

penicillin, the biomass needed about 30 h to grow and the penicillin production extended for 

another 100 h. For each of the eight processes, the reference batch time is calculated by 

 
𝑡𝑡𝑏𝑏,𝑟𝑟 = 𝑡𝑡𝑔𝑔,𝑟𝑟

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚
+ 𝑡𝑡𝑝𝑝,𝑟𝑟

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
 (3-16) 

With 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟 = 0.1ℎ−1,𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚,𝑟𝑟 = 0.0055 𝑔𝑔𝑝𝑝(𝑔𝑔𝑥𝑥 ∙ ℎ)−1, 𝑡𝑡𝑔𝑔,𝑟𝑟 = 30ℎ, 𝑡𝑡𝑝𝑝,𝑟𝑟 = 100ℎ , the reference 

values from the original B&R process. The value for ∆𝑡𝑡𝑏𝑏,𝑟𝑟 in eq. (2-4) for each of the eight other 

processes will be set by ∆𝑡𝑡𝑏𝑏,𝑟𝑟 = 30𝑡𝑡𝑏𝑏,𝑟𝑟 130⁄  as the values of ∆𝑡𝑡𝑏𝑏,𝑟𝑟 and tb,r for the original B&R 

process is 30 and 130 ℎ. For all the SMF processes, we will assume that the initial volume, 𝑉𝑉0, of 
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the bioreactor is 7 L and the maximum possible value, 𝑉𝑉𝑓𝑓, is 10 L.  For the Hybridoma cell culture, 

the values of ∆𝑡𝑡𝑏𝑏,𝑟𝑟 and 𝑡𝑡𝑏𝑏,𝑟𝑟 are 1 and 9 days, respectively. The switch time 𝑡𝑡𝑠𝑠,𝑟𝑟 and its deviation 

∆𝑡𝑡𝑠𝑠,𝑟𝑟 are 3 days and 1 day, respectively. We assume that the initial and final volume be 1.2 L and 

2 L. 

3.5.1. Improvement through a priori Knowledge  

For each of the eight SMF processes, we design two sets of DoDE experiments for a quadratic 

RSM in Domain A and B, respectively. We simulate these experiments, add the 4% measurement 

error in the results, fit the RSM with the collected data of product weight at the end of the batch 

and, then, calculate the optimal operating conditions by solving a constrained optimization 

problem with the fitted RSMs. The predicted maximum amount of product (P_pred) and the half-

width of the prediction interval (PI Width) are reported in columns 6 & 7 for domain A and in 

columns 9 & 10 for domain B in Table 3-1. For example, for SMF process #1 it is predicted that 

the optimum amount of product is 35.8 ± 1.7 g in domain A and 43.4 ± 1.7 g in domain B. The 

estimated optimal feeding policy is then verified by a follow-up in silico experiment. The resulting 

amount of product (P_sim) is reported in column 8 and column 11 for domain A and B, 

respectively. We will see that for all eight SMF processes examined here, the P_sim is inside the 

prediction interval predicted by the quadratic RSM, which indicates that all RSMs are sufficiently 

accurate. In all the eight processes, the optimal product weights obtained (P_sim) in Domain B are 

higher than those obtained in Domain A. The percentage differences between the optima in the 

two domains are calculated using the equation, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴 = 100|𝑃𝑃𝐷𝐷−𝐵𝐵 − 𝑃𝑃𝐷𝐷−𝐴𝐴| 𝑃𝑃𝐷𝐷−𝐴𝐴⁄ %, and the 

results are listed in column 12 in Table 3-1. On average, the difference is 24.4%, while the process 

specific values range from 12.6% to 34.3%. The process optima have been improved significantly 
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by incorporating the process knowledge about the product degradation that aided the design of the 

input domain. 

 

Figure 3-2: The time-evolution of the state and input variables of the optimal operation for SMF 
# 5 in Domain A ( ) and B ( ) 

We compare the feeding profiles (u) in the two domains as well as the resulting time evolutions of 

other species, including liquid phase volume (V), substrate concentration (S), biomass 

concentration (X) and product weight (P*V), in Figure 3-2. The optimal feeding profiles obtained 

in Domain A and B are similar in shape during the first 65 hours. However, the one in Domain A 

decreases to zero after that. This results in a much lower substrate concentration, shown in 

logarithmic scale in the figure, than that in Domain B during the same period. Due to this 

characteristic of product degradation, the grams of product in Domain A stops increasing after 65 
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hours and even starts to decrease. While the grams of product in Domain B keeps increasing till 

the end of batch. 

 

Figure 3-3: The model-based optimal time-evolution of the state and input variables for SMF # 5 
in Domain B 

We also calculate the process optimum for the eight SMF processes using the Model-Based 

Optimization (MBO) approach and assume that the perfectly accurate model is at hand. We take 

these MBO optima as the maximum obtainable product weight. If the optima obtained using the 

DoDE approach are close to the MBO optima, the power of the DoDE approach for process 

optimization is confirmed. The MBO optimum is calculated using the simultaneous approach [38-

40]. The obtained optimal grams of the product are shown in column 13 in Table 3-1. The percent 

difference between the DoDE and the MBO optima in domain B, is calculated by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝑀𝑀𝑀𝑀𝑀𝑀 =
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100|𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀| 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀⁄ % and listed in column 14. The DoDE and MBO optima are very close 

to each other, the former, naturally, a bit smaller that the latter. In all eight processes the difference 

is less than 8%. The time-evolutions of the state and input variables obtained by the MBO approach 

for SMF process #5 are depicted in Figure 3-3. In this process the data-driven and MBO optima 

have a 6.5% difference. If we compare this figure with Figure 3-2, presenting the DoDE optimal 

operations, we will see that both the obtained substrate concentrations by the MBO and the DoDE 

approaches in Domain B remain constant and non-zero at the end of the batch while the substrate 

concentration of the DoDE in Domain A case drops very close to zero.  

In the above optimization tasks, we have focused on maximizing the total grams of product at the 

end of the batch, independently of how long the batch might last. Maximizing the process 

productivity, e.g. the ratio of the product grams produced to the batch duration, is also possible in 

the DoDE framework. A simpler example has been discussed elsewhere[27]. 

For the Hybridoma cell culture, we compare the resulting optimal product weight using the two 

feeding strategies, the simultaneous and sequential feeding of the two co-reactants, in domain B. 

The first one is selected without the aid of the prior knowledge on the desired feeding sequence. 

While the second one is defined by incorporating the information that glutamine should be fed first 

and then followed by the feed of glucose. The predicted maximum amount of product for the 

simultaneous feeding is 355.5±17.0 mg. and the optimal batch time is 10 days. We perform such 

optimal semi-batch operation and the resulting product weight is 372.1 mg, inside the above 

prediction interval. This again confirms the prediction accuracy of the RSM.  
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Figure 3-4: The optimal time-evolution of the state and input variables for Hybridoma cell culture 
using the simultaneous feeding 

Figure 3-4 presents the time evolution of the main compositions and the inflows of the two 

substrates for the optimal operation of the cell culture. The profiles in the middle left sub-figure 

are presented in logarithmic scale, due to the large variation of the concentrations of glucose and 

glutamine. The concentration of ammonia (Amm) in the middle-right sub-figure is multiplied by 

10, for better visibility. 
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Figure 3-5: The optimal time-evolution of the state and input variables for Hybridoma cell culture 
using the sequential feeding 

For the case of sequential feeding, the DoDE optimum estimated from the RSM model is 

429.6±51.8 mg and the estimated optimal operation of the sequential feeding produces 400.1 mg, 

which is a 7.5% improvement compared to the one obtained using the simultaneous feeding. The 

optimal switch time is 3 days. The time-evolution of the inflows for the two substrates and the 

state variables (volume and concentrations) are depicted in Figure 3-5.  

The MBO optimum calculated by us using the simultaneous approach is 407.6 mg. The DoDE 

optima by the simultaneous feeding and sequential feeding are 8.7% and 1.8% less than the MBO 

optimum, respectively. The time-evolutions of the inflows and the state variables obtained using 

the MBO approach are plotted in Figure 3-6.  
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Figure 3-6: The model-based optimal time-evolution of the state and input variables for 
Hybridoma cell culture 

The above process examples illustrate how to incorporate some a priori knowledge into the DoDE 

design and to improve the optimal process performance. We have here used a key motivator for 

the design of domain B, the need for maintaining the substrate concentrations at non-zero values 

at the end of the batch to compensate the substantial degradation of the product for the SMF 

processes. In addition, we schedule the feeds of the two feeding streams using knowledge on the 

desired sequence. In other similar uses of the DoDE methodology, one will end up using whatever 

is the most appropriate prior knowledge on the process to appropriately select the general 

characteristics of the reference input profile and the design of the input domain, which might 

provide the best optimal results. In processes that are not being developed from ground zero, prior 

experience will influence significantly the definition of 𝑢𝑢0(𝑡𝑡) and the corresponding input domain 
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within which the experiment will be performed. Very often we might select a 𝑢𝑢0(𝑡𝑡) to be the 

present operating conditions and define the domain to represent a certain limited deviation from 

such present conditions.  

3.5.2. Optimization with Fewer Experiments 

In this subsection, we discuss the results of the optimization of the aforementioned 

biopharmaceutical processes using fewer initial experiments. We examine SMF processes #1 and 

#5 and the sequential feeding case of the Hybridoma cell culture as examples. The number of 

experiments in the initial set for each process is minimal because the set of experiments is designed 

to only estimate a linear RSM model. For such a model, one needs a DoDE design with only ten 

(10) experiments for each of the two SMF processes and 14 experiments for the Hybridoma cell 

culture. These sets of experiments include as many as the number of model parameters plus three 

more experiments for estimating the LoF statistic and three replicate runs for the estimation of the 

normal variability of the process, if it is not know a priori. This is a much smaller set of 

experiments compared to the ones used to develop the quadratic RSM in the previous section, 

which consisted of 16 and 42 experiments for the SMF processes and the Hybridoma cell culture, 

respectively. 

With the estimated linear RSM, we calculate the “tentative” data-driven optimum for each of the 

three processes. The prediction uncertainties of the estimated optimal conditions for SMF 

processes #1 and #5 do not violate inequality (3-15). Then the calculated optimum need not be 

called “tentative” and the process should be operated at such a point. As shown in row 2 and 3 of 

Table 3-2, the predicted optima for these two processes are 45.0±4.9 g and 126.0±21.4 g, 
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respectively. Operating each process in such manner, the resulting value for the process output, in 

grams of product, is 43.6 g and 127.7 g, respectively. Both values lie inside the corresponding 

prediction interval of the RSMs. 

Table 3-2: Comparison between data-driven optima obtained using reduced and full sets of 
experiments 

I The two DoDE optima compared here are identical as the optimal values of the dynamic sub-factors they both refer to are the 
same, a vertex of the domain. 

 

For the Hybridoma cell culture, the predicted optimum is 565.3 ± 80.7 mg and the corresponding 

uncertainty violates inequality (3-15). Indeed if one runs the simulated process under these 

uncertain optimal conditions the resulting product amount is 153.0 mg, a very different value from 

the predicted one. This is a direct consequence of the tentative character of this initial model and 

the substantial uncertainty in the prediction of this calculated optimum. Indeed the prediction 

interval at the expected optimum point is characterized by a value of 𝜆𝜆 = 14.7 for eq. (3-15). 

Instead, we will seek out the conditions under which the amount of the product is maximal while 

inequality (3-15) is satisfied, for 𝜆𝜆 = 3.  

Process 

 

P_sim by 
Full 

Experiments  

Reduced Experiments 
% Diff btw  

Reduced and Full 
Experiments 

Α P_pred PI Width P_sim 

𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 𝑔𝑔𝑃𝑃 

SMF 1 43.6 45.0 4.9 43.6 0I 1 

SMF 5 138.2 126.0 21.4 127.7 7.6 1 

Hybridoma 400.1 393.0 49.5 387.8 3.1 0.2 
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To verify the choice of 𝜆𝜆 = 3 for inequality (3-15) as a reasonable one and illustrate the evolution 

of the width of the prediction interval as the operating conditions approach the “tentative” optimal 

conditions from the best one of the previous experiments, we define a series of candidate operating 

conditions 𝒙𝒙𝑖𝑖 along a straight line between the best previous experiment, 𝑥𝑥0, and the “tentative” 

optimal conditions 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜, as given below: 

 𝒙𝒙𝑖𝑖 = 𝒙𝒙0 + 𝛽𝛽 × �𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒙𝒙0� 𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽 ∈ [0,1] (3-17) 

The expected product weight and the related predicted uncertainty is plotted in Figure 3-7 for 10 

values 𝛽𝛽 (0.1, 0.2, … 1.0). We plot the estimated values of the half-width of the prediction intervals 

(y-axis) versus the predicted values of the product grams.  In this plot we denote the characteristics 

of the prior experiments and we draw the ±𝜎𝜎, ±2𝜎𝜎 and ±3𝜎𝜎 lines around the mean value of the 

half-width of the prediction interval of the prior experiments. The plotted red diamonds, for the 10 

values of 𝛽𝛽 = 0.2, indicate that as these values increase so does the expected grams of the product 

as well as the size of the corresponding half prediction interval. We observe that if we are to impose 

the constraint in eq. (3-15) with λ = 3 we should limit this fractional distance about 𝛽𝛽 = 0.2. At 

such point the expected product weight are 393.0 ± 49.5 mg and the corresponding simulated 

operation of the process yields 387.8 mg. We can now claim that by searching for the optimal 

operating conditions along the tendency line and also bounding the model uncertainty we have 

substantially optimized this process.  
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Figure 3-7: Prediction intervals of experiments and new runs calculated using linear RSM for 
Hybridoma cell culture 

In Figure 3-8, we plot the predicted values (blue dashed line) and the corresponding prediction 

intervals (green dashed lines) by the tentative linear RSM model for 𝛽𝛽 varying from 0 to 1. The 

red diamonds are the simulated value at 𝛽𝛽 = 0, 0.1,⋯ , 1 . It has been seen that when the 𝛽𝛽 

increases, the differences between the simulated and predicted values becomes larger. When 𝛽𝛽 >

0.4 , the obtained simulated value falls outside the prediction interval, which indicates the 

extrapolation of the RSM model becomes inaccurate. If we stick to 𝛽𝛽 = 0.2, corresponding to 𝜆𝜆 =

3, we achieved the highest product weight. 
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Figure 3-8: The predicted and simulated product weight vs  

In all three processes examined here, the optimal product weights based on the linear RSM 

estimated from a smaller number of experiments is lower than that obtained when enough 

experiments were performed to estimate a quadratic RSM. This is expected. However the 

difference, as reported in column 6 of Table 3-2, is small. The largest difference is 7.6% in SMF 

process #5. Considering the 37.5% reduction in the number of experiments (from 16 experiments 

to 10 experiments), the proposed approach is quite attractive in optimizing the process in a timely 

manner. Moreover, one may further improve the data-driven optimum by conducting additional 

experiments, which augment the initial design so that one can estimate a more complex RSM 

model. These experiments might also be selected to be in a region where the initial model predicts 

process improvements.  

β
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3.6. Conclusions 

In this chapter, we have discussed two improvements to enhance the originally proposed DoDE 

methodology. The first one uses the prior knowledge about the process characteristics to aid the 

design of the reference input profile and the corresponding input domain. We discussed two 

different types of a priori knowledge. The proposed approaches are examined in two 

representative classes of the biopharmaceutical processes. In the set of eight SMF processes, our 

process insight motivates the design of Domain B, resulting in a 24.4% average improvement over 

Domain A, with the largest improvement equal to 34.3%. For the Hybridoma cell culture, we 

incorporate a different kind of process knowledge, introducing the multiple inputs sequentially 

instead of simultaneously. We thus obtain a 7.5% improvement in product weight. These case 

studies demonstrate that by incorporating the process knowledge into the DoDE framework, one 

can further improve the optimal performance of the process at hand.  

The second methodological improvement of the original DoDE methodology addresses the 

minimization of the initial number of experiments. To minimize the number of the initial 

experiments, one should initially aim for a linear RSM, without any two-factor interaction terms. 

The predicted optimum is considered “tentative” until its prediction uncertainty is estimated and 

is shown to satisfy an uncertainty upper limit. If the uncertainty of the optimal point is larger than 

the maximum allowed, a suboptimal point of operation is sought that will satisfy the uncertainty 

constraint.  This is activated only in the Hybridoma cell culture example.  

We also confirm, with the two representative classes of biopharmaceutical processes, an earlier 

finding that the DoDE optimum is very close to the model-based optimum obtained by using a 
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detailed and perfectly accurate knowledge-driven model of the process, which is rarely available 

with great accuracy, if at all. 

Concerning the examination whether the present domain used is the best and provides the final 

credible possibility for process improvement, the following idea might be of interest. We touch on 

this briefly here but we also recognize that a more thorough and separate examination is required. 

We can state it in the form of a question: Could the calculation of the optimum in a given domain 

(say A here) provide a hint about changes of the initial domain into a new domain (say B, here) 

which will allow further improvement in the process? 

To answer this question, one can investigate whether the optimal operating conditions in Domain 

A, characterized by values of the related factors and dynamic sub-factors, activate some of the 

constraints defining the boundary of Domain A. By identifying the activated constraints, which 

limit the obtained optimal operating conditions, one can appropriately modify the current domain 

by relaxing the activated constraints to allow the further optimization of the process. For the SMF 

process # 5 the optimal values of the three dynamic sub-factors in Domain A are 𝑥𝑥1 = 0, 𝑥𝑥2 =

0.56, 𝑥𝑥3 = 0.44. These values indicate that they activate the constraint 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 = 1 which 

implies that the coded dynamic variable,𝑤𝑤(𝜏𝜏), is attaining its maximum value at the end of the 

batch, i.e. 𝑤𝑤(1) = 1,. This hints that the pinching of domain A at the end of the batch serves as a 

limitation, definitely motivating a move from domain A to domain B. If the same constraint were 

activated by the optimal operating conditions obtained in domain B, we would have understood 

that the initially allowed width at the end of the batch, set to be 20% of the width of the domain at 

time zero, is restrictive and needs to be enlarged. However, the calculated optimal values in domain 
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B are 𝑥𝑥1 = −0.16, 𝑥𝑥2 = −0.10, 𝑥𝑥3 = 0.74 which result to 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 = 0.78 a value that is 

less than 1. Therefore we conclude that the allowed domain size is wide enough. 
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4. The New Dynamic Response Surface Methodologies (DRSM-2) 

Accurate mathematical models are essential for the success of process optimization and control 

for industrial manufacturing processes. Such models are developed either based on our knowledge 

of the inner workings of the process or by analyzing the input-output data from a set of designed 

experiments or historical data of past manufacturing activities. The models estimated using the 

first approach are known as the knowledge-driven models while the ones developed via the second 

are called data-driven models. In many cases, the inner workings of a process are not fully 

understood to enable the development of an accurate knowledge-driven model. Especially for the 

processes with low production rates, such as batch and semi-batch processes employed widely by 

the pharmaceutical and specialty chemicals industries, the development of a knowledge-driven 

model is often prohibitively expensive and time consuming.  

Data-driven modeling approaches are attractive alternatives as they utilize only input and output 

data from an existing process. To analyze and model these time-resolved outputs, we proposed the 

Dynamic Response Surface Methodology (DRSM) [31]. Unlike the time-invariant parameters in 

the RSM model, the parameters estimated in the DRSM model are functions of time. With the 

process dynamics captured in the DRSM model, one can achieve both optimization as well as 

control purposes for batch processes using the single data-driven DRSM model [32], saving 

experimental cost of developing separate models for optimization and control purposes.  

The previously proposed DRSM methodology requires fixed operating durations of the DoDE 

experiments. Consequently, it cannot be applied for the modeling of continuous processes, when 

the operating duration is various and can be even semi-infinite. In this paper, we present a new 
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DRSM methodology, denoted by DRSM-2, which is capable of dealing with the data collected 

over semi-infinite time horizons. With the new approach, we are able to accurately model the time-

varying output variables of continuous processes as well as those of batch processes. In addition, 

the new approach is capable of accounting for time-delayed input changes, and is able to use non-

equidistant data.  

This chapter is organized as follows. We first introduce the DRSM-2 methodology. Here multiple 

decision variables of the DRSM-2 model affecting the model accuracy need to be selected. We 

propose a systematic procedure to select their best values so that the final data-driven model is the 

most accurate possible. We then examine the efficacy of the proposed approach in two 

representative and challenging nonlinear processes. The first one is a continuous propylene 

polymerization process [9, 89] while the second one is a semi-batch penicillin fermentation [34]. 

In both cases, the obtained DRSM-2 models accurately represent the time-varying process outputs.  

4.1. The DRSM-2 Methodology 

As mentioned previously, the limitation of the fixed batch time required by the DRSM-1 approach 

is originated from the definition of the dimensionless time 𝜏𝜏 = 𝑡𝑡 𝑡𝑡𝑏𝑏⁄ . In the DRSM-2 methodology, 

we define a new independent variable 𝜃𝜃, as an exponential function of time, t. 

 𝜃𝜃 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑡𝑡 𝑡𝑡𝑐𝑐⁄ ) (4-1) 

Here 𝑡𝑡𝑐𝑐  is an approximate value for the time constant characterizing the long-term dynamic 

changes in the output variable to the input changes. The definition of 𝜃𝜃 is motivated by our basic 

understanding of linear process dynamic, whose responses to simple inputs are of exponential 
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rather than polynomial character. For cases where an input change takes place at a time instant 

different from zero, say at 𝑑𝑑𝑖𝑖, the corresponding time transformation will be given by 

 𝜃𝜃𝑖𝑖 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 [−(𝑡𝑡 − 𝑑𝑑𝑖𝑖) 𝑡𝑡𝑐𝑐⁄ ] (4-2) 

As the time t increases from zero to infinity, the transformed time variable 𝜃𝜃 increases from zero 

to one, i.e. 𝜃𝜃 ∈ [0, 1] , the interval in which the shifted Legendre polynomials are defined. 

Therefore, we can use the shifted Legendre polynomials in 𝜃𝜃  as the functional basis for the 

expression of the 𝛽𝛽𝑞𝑞(𝜃𝜃) function. While the input time delay 𝑑𝑑𝑖𝑖 may be different for each factor, 

we will assume that the 𝑡𝑡𝑐𝑐 value is of the same for the effects of all factors. The 𝑡𝑡𝑐𝑐 value aims to 

characterize the slowest dynamics of interest. Faster dynamics will be modeled by higher powers 

of 𝜃𝜃 corresponding to exponential terms with smaller time constants. We illustrate this with the 

second order Shifted Legendre polynomial. By substituting eq. (4-1) or (4-2) in the polynomial 

𝑃𝑃2(∙), we obtain  

 𝑃𝑃2(𝜃𝜃) = 1 − 6𝜃𝜃 + 6𝜃𝜃2 = 1 − 6 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡 𝑡𝑡𝑐𝑐⁄ ) + 6𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑡𝑡 0.5𝑡𝑡𝑐𝑐⁄ ) (4-3) 

Or 

 𝑃𝑃2(𝜃𝜃𝑖𝑖) = 1 − 6𝜃𝜃𝑖𝑖 + 6𝜃𝜃𝑖𝑖2 

              = 1 − 6 𝑒𝑒𝑒𝑒𝑒𝑒[− (𝑡𝑡 − 𝑑𝑑𝑖𝑖) 𝑡𝑡𝑐𝑐⁄ ] + 6 𝑒𝑒𝑒𝑒𝑒𝑒[− (𝑡𝑡 − 𝑑𝑑𝑖𝑖) 0.5𝑡𝑡𝑐𝑐⁄ ] (4-4) 

The last term, 6𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑡𝑡 0.5𝑡𝑡𝑐𝑐⁄ )  or 6𝑒𝑒𝑒𝑒𝑒𝑒[− (𝑡𝑡 − 𝑑𝑑𝑖𝑖) 0.5𝑡𝑡𝑐𝑐⁄ ] , is from 𝜃𝜃2  and can be seen to 

correspond to a time constant of 0.5𝑡𝑡𝑐𝑐. In general, the 𝑅𝑅𝑡𝑡ℎ order shifted Legendre polynomial, 

𝑃𝑃𝑅𝑅(𝜃𝜃) contains terms with a time constant equals to 𝑡𝑡𝑐𝑐 𝑅𝑅⁄ . This property allows the DRSM-2 

model to accurately represent the time-varying outputs affected by both fast as well as slow 
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dynamics using a single sufficiently large 𝑡𝑡𝑐𝑐. One the other hand, if the 𝑡𝑡𝑐𝑐 is selected to be too 

large, we will need higher order polynomials to make 𝑡𝑡𝑐𝑐 𝑅𝑅⁄  small enough to represent the fast 

dynamics of the process. This will lead to a DRSM-2 model with too many 𝛾𝛾 parameters. To avoid 

the unnecessary large amount of parameters, the value of 𝑡𝑡𝑐𝑐  should be properly selected. The 

appropriate selection of 𝑡𝑡𝑐𝑐 value will be made using the Bayesian Information Criterion (BIC)[90] 

and will be discussed in detail later.  

4.1.1. Definition of the DRSM-2 Variables 

With the new independent variable 𝜃𝜃 or 𝜃𝜃𝑖𝑖, the quadratic DRSM model given in eq (2-9) is re-

written as follows 

 
𝑦𝑦(𝜃𝜃) = 𝛽𝛽0(𝜃𝜃0) + �𝛽𝛽𝑖𝑖(𝜃𝜃𝑖𝑖)𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑛𝑛

𝑖𝑖<𝑗𝑗

𝑛𝑛

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖(𝜃𝜃𝑖𝑖𝑖𝑖)𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (4-5) 

The parametric function, 𝛽𝛽𝑞𝑞(𝜃𝜃𝑞𝑞), in the DRSM model is given by 

 𝛽𝛽𝑞𝑞�𝜃𝜃𝑞𝑞� = 𝛾𝛾𝑞𝑞,1𝑃𝑃0�𝜃𝜃𝑞𝑞� + 𝛾𝛾𝑞𝑞,2𝑃𝑃1�𝜃𝜃𝑞𝑞� + ⋯+ 𝛾𝛾𝑞𝑞,𝑅𝑅+1𝑃𝑃𝑅𝑅�𝜃𝜃𝑞𝑞� (4-6) 

with 𝑞𝑞 = 0, 𝑖𝑖, 𝑖𝑖𝑖𝑖, 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖. Here we use the quadratic model class as an example. However, other model 

classes, such as linear, two-factor interaction (2FI), or cubic, are of interest. For many cases the 

effect of each factor commences at time zero and in such cases we can assume that all 𝜃𝜃𝑞𝑞′s are 

identical. The need for non-identical 𝜃𝜃𝑞𝑞′s will be discussed later in the case study of the propylene 

polymerization process. Before solving the linear regression problem to estimate the values of the 

𝛾𝛾’s,, we list here the definition of the model variables: 
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𝐶𝐶 :  DRSM model class, e.g. linear, 2 factor interaction (2FI), quadratic, cubic, etc. 

𝑛𝑛 :  Total number of factors, including classic factors as well as dynamic sub-factors 

𝑝𝑝 :  Number of parametric functions 𝛽𝛽𝑞𝑞(𝜃𝜃) which depends on the selection of 𝐶𝐶 

𝑅𝑅𝑞𝑞 : Order of Shifted Legendre polynomial parameterizing a corresponding 𝛽𝛽𝑞𝑞(𝜃𝜃) 

𝑀𝑀 :  Number of experiments 

𝐾𝐾𝑚𝑚 : Number of data records in the 𝑚𝑚𝑡𝑡ℎ experiment  

𝐾𝐾𝑇𝑇: Total number of data records of all experiments 

In the DRSM-2 approach, the operating duration and the number of data record in each experiment 

can vary. Also the data need not be equidistant and the K value need not be the same for each 

experiment. These important programming generalizations are also applicable in the DRSM-1 

methodology. 

4.1.2. The Estimation of DRSM-2 Model via Linear Regression 

To estimate the values of the model parameter 𝛾𝛾’s, we rewrite the DRSM-2 model in eq (4-5) in 

matrix form as follows  

 𝒚𝒚 = 𝐆𝐆𝜸𝜸 (4-7) 

Where the 𝐾𝐾𝑇𝑇 × 1  column vector 𝒚𝒚 = [𝒚𝒚1𝑇𝑇 𝒚𝒚2𝑇𝑇 ⋯ 𝒚𝒚𝑀𝑀𝑇𝑇 ]𝑇𝑇  is formed by stacking the 

measurements of the 𝑀𝑀  experiments. Its 𝑚𝑚𝑡𝑡ℎ  element 𝒚𝒚𝒎𝒎 = [𝑦𝑦𝑚𝑚,1 𝑦𝑦𝑚𝑚,2 ⋯ 𝑦𝑦𝑚𝑚,𝐾𝐾𝑚𝑚]𝑇𝑇  is a 

𝐾𝐾𝑚𝑚 × 1 column vector with the 𝐾𝐾𝑚𝑚 measurements of the output variable in 𝑚𝑚𝑡𝑡ℎ data set. 

The 𝐾𝐾𝑇𝑇 × 𝑅𝑅𝑇𝑇 matrix 𝐆𝐆 is the Hadamard product [91] of the two matrices (𝐙𝐙 and 𝐏𝐏) with the same 

dimensions,  
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 𝐆𝐆 = 𝐙𝐙 ∘ 𝐏𝐏 (4-8) 

𝑅𝑅𝑇𝑇 is the total number of 𝛾𝛾’s in the DRSM-2 model. As the number of 𝛾𝛾’s parameterized each 

𝛽𝛽𝑞𝑞(𝜃𝜃𝑞𝑞) is 𝑅𝑅𝑞𝑞 + 1, 𝑅𝑅𝑇𝑇 equals to the value ∑𝑅𝑅𝑞𝑞 + 1.The matrix 𝐙𝐙 is constructed using the values of 

the factors and is defined as 

 𝐙𝐙 = [𝐗𝐗1𝐓𝐓 𝐗𝐗2𝐓𝐓 ⋯ 𝐗𝐗MT ] (4-9) 

The 𝑚𝑚𝑡𝑡ℎ block (𝑚𝑚 = 1, 2,⋯ ,𝑀𝑀) in 𝐙𝐙, e.g. for estimating a quadratic DRSM model, is defined as 

 𝐗𝐗𝐦𝐦 = �𝟏𝟏 𝐱𝐱𝐦𝐦,𝟏𝟏 ⋯ 𝐱𝐱𝐦𝐦,𝐧𝐧 𝐱𝐱𝐦𝐦,𝟏𝟏𝟏𝟏 ⋯ 𝐱𝐱𝐦𝐦,(𝐧𝐧−𝟏𝟏)𝐧𝐧 𝐱𝐱𝐦𝐦,𝟏𝟏𝟏𝟏 ⋯ 𝐱𝐱𝐦𝐦,𝐧𝐧𝐧𝐧� (4-10) 

It is a 𝐾𝐾𝑚𝑚 × 𝑅𝑅𝑇𝑇 matrix, in which each element is a 𝐾𝐾𝑚𝑚 × (𝑅𝑅𝑞𝑞 + 1) matrix with identical elements 

in all its entries as given below.  

 
𝟏𝟏 = �

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

� , 𝐱𝐱𝐦𝐦,𝐢𝐢 = 𝑥𝑥𝑚𝑚,𝑖𝑖𝟏𝟏,  𝐱𝐱𝐦𝐦,𝐢𝐢𝐢𝐢 = 𝑥𝑥𝑚𝑚,𝑖𝑖𝑥𝑥𝑚𝑚,𝑗𝑗𝟏𝟏, 𝐱𝐱𝐦𝐦,𝐢𝐢𝐢𝐢 = 𝑥𝑥𝑚𝑚,𝑖𝑖
2 𝟏𝟏 (4-11) 

The scalar 𝑥𝑥𝑚𝑚,𝑖𝑖 in the above matrices is the values of the 𝑖𝑖𝑡𝑡ℎ factor for the 𝑚𝑚𝑡𝑡ℎ experiment. The 

𝐗𝐗m matrices for estimating the DRSM-2 models of other model classes can be obtained in a similar 

manner. 

Matrix 𝐏𝐏 is defined as 𝐏𝐏 = [𝐏𝐏1T 𝐏𝐏2𝐓𝐓 ⋯ 𝐏𝐏𝐌𝐌𝐓𝐓]𝐓𝐓. It is a 𝐾𝐾𝑇𝑇 × 𝑅𝑅𝑇𝑇 matrix with the entries as the 

values of the Shifted Legendre polynomials at the time instants when the measurements are taken. 

As mentioned previously, these instants can take any values and they do not need to be equidistant 

in time. The 𝑚𝑚𝑡𝑡ℎ block of 𝐏𝐏  is a 𝐾𝐾𝑚𝑚 × 𝑅𝑅𝑇𝑇  matrix defined as 𝐏𝐏𝐦𝐦 =
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�𝐏𝐏𝐦𝐦,𝟎𝟎 𝐏𝐏𝐦𝐦,𝟏𝟏 ⋯ 𝐏𝐏𝐦𝐦,𝐧𝐧 𝐏𝐏𝐦𝐦,𝟏𝟏𝟏𝟏 ⋯ 𝐏𝐏𝐦𝐦,(𝐧𝐧−𝟏𝟏)𝐧𝐧 𝐏𝐏𝐦𝐦,𝟏𝟏𝟏𝟏 ⋯ 𝐏𝐏𝐦𝐦,𝐧𝐧𝐧𝐧�, in which the element is a 

𝐾𝐾𝑚𝑚 × (𝑅𝑅𝑞𝑞 + 1) matrix given as follows.  

 

𝐏𝐏𝐦𝐦,𝐪𝐪 =

⎣
⎢
⎢
⎢
⎡ 𝑃𝑃0(𝜃𝜃𝑞𝑞,1) 𝑃𝑃1(𝜃𝜃𝑞𝑞,1)
𝑃𝑃0(𝜃𝜃𝑞𝑞,2) 𝑃𝑃1(𝜃𝜃𝑞𝑞,2) ⋯

𝑃𝑃𝑅𝑅𝑞𝑞(𝜃𝜃𝑞𝑞,1)
𝑃𝑃𝑅𝑅𝑞𝑞(𝜃𝜃𝑞𝑞,𝐾𝐾𝑚𝑚)

⋮               ⋮ ⋱ ⋮
𝑃𝑃0(𝜃𝜃𝑞𝑞,𝐾𝐾𝑚𝑚) 𝑃𝑃1(𝜃𝜃𝑞𝑞,𝐾𝐾𝑚𝑚) ⋯ 𝑃𝑃𝑅𝑅𝑞𝑞(𝜃𝜃𝑞𝑞,𝐾𝐾𝑚𝑚)⎦

⎥
⎥
⎥
⎤

 with 𝑞𝑞 = 0, 𝑖𝑖, 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖 (4-12) 

The value of 𝜃𝜃𝑞𝑞,𝑘𝑘 is determined by eq. (4-1) and (4-2) with the selected tc and the corresponding 

input time delay, 𝑑𝑑𝑞𝑞. As mentioned previously, we take 𝑑𝑑𝑞𝑞 = 0 for all factors and therefore 𝜃𝜃𝑞𝑞,𝑘𝑘 =

𝜃𝜃𝑘𝑘 for ∀𝑞𝑞.  

All the model parameters to be estimated is listed in the RT × 1 column vector defined as 

 𝜸𝜸 = �𝜸𝜸0𝑇𝑇 𝜸𝜸1𝑇𝑇 ⋯ 𝜸𝜸𝑛𝑛𝑇𝑇 𝜸𝜸12𝑇𝑇 ⋯ 𝜸𝜸(𝑛𝑛−1)𝑛𝑛
𝑇𝑇 𝜸𝜸11𝑇𝑇 ⋯ 𝜸𝜸𝑛𝑛𝑛𝑛𝑇𝑇 �

𝑇𝑇
  (4-13) 

Where each block is a (𝑅𝑅𝑞𝑞 + 1) × 1 column vector 𝜸𝜸𝑞𝑞 = (𝛾𝛾𝑞𝑞,1 𝛾𝛾𝑞𝑞,2
… 𝛾𝛾𝑞𝑞,𝑅𝑅𝑞𝑞)𝑇𝑇, with entries 

the parameters of the polynomial representation of 𝛽𝛽𝑞𝑞(𝜃𝜃). We left-multiply both sides of eq. (4-8) 

by 𝐆𝐆∗ = (𝐆𝐆𝐓𝐓𝐆𝐆)−𝟏𝟏𝐆𝐆𝐓𝐓 and obtain the least squares solution for 𝛾𝛾 given below. 

 𝜸𝜸 = 𝐆𝐆∗𝒚𝒚  (4-14) 

In practice, a set of DRSM-2 models with different choices of the three decision variables are 

estimated via stepwise regression [92]. The decision variables includes the time constant 𝑡𝑡𝑐𝑐, the 

order of Shifted Legendre polynomials 𝑅𝑅𝑞𝑞, for each parametric function, 𝛽𝛽𝑞𝑞(𝜃𝜃), and the model 

class C. The procedure of selecting the most appropriate values for the decision variables resulting 

in the best DRSM-2 model is discussed in the following sub-section. 
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4.1.3. Iterative Procedure for Best DRSM-2 Model 

We here propose an iterative procedure, shown in Figure 4-1, to determine the optimal values of 

the decision variables and estimate the best DRSM-2 model.  

 

For simplicity, we choose the same value of 𝑅𝑅𝑞𝑞 for all 𝛽𝛽𝑞𝑞(𝜃𝜃) functions, i.e. 𝑅𝑅𝑞𝑞 = 𝑅𝑅, to formulate 

the linear regression problem in eq. (4-7). The stepwise regression algorithm with a threshold of 

Estimate DRSMs via  
Stepwise Regression 

 

 

 

 

Figure 4-1: Iterative procedure for the selection of decision variables and the best DRSM-2 
model 

Relax Corresponding 
 Extrema on 𝑅𝑅𝑞𝑞 / 𝑡𝑡𝑐𝑐 

𝑅𝑅𝑞𝑞∗ / 𝑡𝑡𝑐𝑐∗ at Extrema? 

More Complex  
Model Class 

Initial Model Class 

Select 𝑅𝑅𝑞𝑞 ∈ �𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚�  
 𝑡𝑡𝑐𝑐 ∈ �𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚� 

Select DRSM and 𝑅𝑅𝑞𝑞∗ & 𝑡𝑡𝑐𝑐∗ 
with Smallest BIC 

LoF Significant? 

Best Model 
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p-value equals to 0.05 will retain only the significant 𝛾𝛾’s. This could result in a different number 

of the shifted Legendre polynomials parameterizing each 𝛽𝛽𝑞𝑞(𝜃𝜃)  function. In some specific 

applications, one may have prior knowledge on the potential optimal values of each 𝑅𝑅𝑞𝑞′s. In such 

a case, the proposed new algorithm allows the utilization of 𝑅𝑅𝑞𝑞′s of different values by following 

the same procedure described in Figure 4-1. 

We first choose the initial model class, the one for which the experiment have been designed for. 

This might be the linear one if there is a strong preference in minimizing the number of 

experiments. It may be also determined by the prior knowledge on the process nonlinearity. If the 

process is known to be nonlinear, one might start with the 2FI model class or even a more complex 

one. In the selected model class, we estimate a set of DRSM-2 models using different combinations 

of the values for 𝑡𝑡𝑐𝑐  and 𝑅𝑅𝑞𝑞  within their corresponding initial ranges of interest, i.e.  𝑡𝑡𝑐𝑐 ∈

[𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚]  and 𝑅𝑅𝑞𝑞 ∈ [𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚] . For a continuous process, the initial choice of 

𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 are 10% and 40% of the longest settling time [18]. This can be estimated, for 

example, from some step responses. For nonlinear processes, the settling time varies with the input 

magnitude. As the DRSM-2 model can easily account for dynamics that are faster than the one 

characterized by the selected time constant, the longest settling time is used to determine the upper 

value in the 𝑡𝑡𝑐𝑐  interval. For batch processes, where the settling time might not be estimable, we 

will choose 𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚.and 𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚.to be 10% and 40% of the longest batch time. The initial choices of 

𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚 for both batch and continuous processes we have used here are 6 and 10, 

respectively. We feel that this range of polynomial order provides sufficient choices for the 

accurate representation of the time-varying output. Since the model parameters are estimated via 

stepwise regression, an initial polynomial order of 6 or higher could be reduced to a smaller 
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polynomial order if it is sufficient in representing the data at hand. If the process is expected to 

exhibit a more complicated dynamic behaviors, one could select larger values for 𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚  and 

𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚. Meanwhile, the selection of the 𝑅𝑅𝑞𝑞 and 𝑡𝑡𝑐𝑐. has to satisfy the following sampling constraint. 

 𝑡𝑡𝑐𝑐 𝑅𝑅𝑞𝑞⁄ > ∆𝑡𝑡 (4-15) 

Where 𝑡𝑡𝑐𝑐 𝑅𝑅𝑞𝑞⁄  is an approximate time constant for the fastest dynamics represented by the DRSM-

2 model while ∆𝑡𝑡  is the smallest sampling interval. We should not try to model dynamic 

phenomena that have a time constant (𝑡𝑡𝑐𝑐 𝑅𝑅𝑞𝑞⁄ ) smaller than the sampling interval (∆𝑡𝑡).  

For each obtained model with the various values of 𝑅𝑅𝑞𝑞  and 𝑡𝑡𝑐𝑐 , we calculate the Bayesian 

Information Criterion (BIC) [90]. 

 BIC = −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒚𝒚|𝜸𝜸�) + 𝑅𝑅𝑠𝑠𝑙𝑙𝑙𝑙𝐾𝐾𝑇𝑇 (4-16) 

This is a model selection criterion that maximizes the likelihood function and penalizes for 

overfitting. The model with the smaller BIC value is preferred. Here 𝑃𝑃𝑃𝑃(𝒚𝒚|𝜸𝜸�) is the likelihood 

function, the probability of observing the measured data set y given the estimated DRSM-2 model 

parameters 𝜸𝜸� . 𝑅𝑅𝑠𝑠  in the second term of eq. (4-16) is the total number of the significant 𝛾𝛾� ’s 

estimated via stepwise regression and 𝐾𝐾𝑇𝑇 , as defined previously, is the total number of 

measurements. Assuming that the error in the measured data is normal distributed, the log 

likelihood value is estimated via the formula[93] 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒚𝒚|𝜸𝜸�) = −
1
2

(𝒚𝒚 − 𝒚𝒚�)𝑇𝑇𝜎𝜎�𝑦𝑦−2(𝒚𝒚 − 𝒚𝒚�) −
𝐾𝐾𝑇𝑇
2
𝑙𝑙𝑙𝑙𝜎𝜎�𝑦𝑦2 −

𝐾𝐾𝑇𝑇
2
𝑙𝑙𝑙𝑙 (2𝜋𝜋) (4-17) 
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Where the estimated variance is 𝜎𝜎�𝑦𝑦2 = 1
𝐾𝐾𝑇𝑇

(𝒚𝒚 − 𝒚𝒚�)𝑇𝑇(𝒚𝒚 − 𝒚𝒚�) . As the number of significant 𝛾𝛾� 

parameters, 𝑅𝑅𝑠𝑠, increases resulted from an higher value of 𝑅𝑅𝑞𝑞, the value of the second term in eq. 

(4-16) increases and might cause an increase in the BIC value. We will select the values of 𝑡𝑡𝑐𝑐 and 

𝑅𝑅𝑞𝑞 which lead to the DRSM-2 model with the smallest BIC value. This, together with the stepwise 

regression, will keep the DRSM model sparse and accurate. If the selected values, 𝑡𝑡𝑐𝑐∗ and 𝑅𝑅𝑞𝑞∗ , are 

at the boundaries of the examined intervals (e.g. 𝑡𝑡𝑐𝑐∗ = 𝑡𝑡𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑅𝑅𝑞𝑞∗ = 𝑅𝑅𝑞𝑞,𝑚𝑚𝑚𝑚𝑚𝑚) we will relax the 

corresponding boundary and will estimate additional DRSM-2 models using the new combinations 

of 𝑡𝑡𝑐𝑐  and 𝑅𝑅𝑞𝑞  values. We repeat this procedure until the obtained best values for 𝑡𝑡𝑐𝑐∗  and 𝑅𝑅𝑞𝑞∗  are 

inside the examined interval.  

Once the task is completed, we examine if the selected model represents all the non-random 

information in the data. This is quantified through the Lack-of-Fit (LoF) test. In this F-test, we 

examine whether the Sum of Squares due to the LoF (SSLoF) is significantly larger than the one 

related to the normal variability of the process (SSPE), also known as the Sum of Squares due to 

pure error. If the LoF statistic is significant, quantified by a p-value smaller than 0.05, a more 

complex model class should be considered to further increase the model accuracy. To perform the 

LoF test, we first calculate the total residual Sum of Squares (SSE) associated with the estimated 

model using the following equation. 

 
𝑆𝑆𝑆𝑆𝐸𝐸 = � �(𝑦𝑦�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑚𝑚,𝑘𝑘 − 𝑦𝑦𝑚𝑚,𝑘𝑘)2

𝐾𝐾𝑚𝑚

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=1

 (4-18) 

Where 𝑦𝑦�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑚𝑚,𝑘𝑘 and 𝑦𝑦𝑚𝑚,𝑘𝑘are the model predicted and measured values at time instance k in the 

mth experiment, respectively. The degree of freedom (DoF) of SSE is 𝐾𝐾𝑇𝑇 − 𝑅𝑅𝑠𝑠, where 𝐾𝐾𝑇𝑇 is the 
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total number of measurements of all M data sets while 𝑅𝑅𝑠𝑠  is the total number of significant γ 

parameters in the DRSM-2 model. SSE can be partitioned as the sum of SSLoF and SSPEas follows 

 𝑆𝑆𝑆𝑆𝐸𝐸 = 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 (4-19) 

To estimate the value of SSPE, some replicate data are needed. Assume that 𝑀𝑀𝐶𝐶  out of the M 

experiments are replicates at some experimental conditions and the measurements are taken at 𝐾𝐾𝐶𝐶 

time instants in each experiment. The value of the SSPE is calculated as follows 

 
𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 = � �(𝑦𝑦𝑚𝑚,𝑘𝑘 − 𝑦𝑦�𝑚𝑚,𝑘𝑘)2

𝐾𝐾𝑐𝑐

𝑘𝑘=1

𝑀𝑀𝑐𝑐

𝑚𝑚=1

 (4-20) 

Here 𝑦𝑦�𝑚𝑚,𝑘𝑘  is the average of 𝑦𝑦𝑚𝑚,𝑘𝑘 , the 𝑀𝑀𝐶𝐶  replicate values at each of the 𝐾𝐾𝐶𝐶  time instants. 

Therefore, the DoF of SSPE is (𝑀𝑀𝐶𝐶 − 1)𝐾𝐾𝐶𝐶, and the SSLoF is estimated as follows 

 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑆𝑆𝑆𝑆𝐸𝐸 − 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 (4-21) 

The DoF of the SSLoF is calculated as the difference between those for SSE and SSPE, i.e. (𝐾𝐾𝑇𝑇 −

𝑅𝑅𝑠𝑠) − (𝑀𝑀𝐶𝐶 − 1)𝐾𝐾𝐶𝐶. The ratio of the mean SSLoF and SSPE values follows an F distribution 

 
𝐹𝐹0 =

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 𝑛𝑛1⁄
𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 𝑛𝑛2⁄ =

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿 [(𝐾𝐾𝑇𝑇 − 𝑅𝑅𝑠𝑠) − (𝑀𝑀𝐶𝐶 − 1)𝐾𝐾𝐶𝐶]⁄
𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 [(𝑀𝑀𝐶𝐶 − 1)𝐾𝐾𝐶𝐶]⁄

 (4-22) 

The LoF statistics is significant if 𝐹𝐹0 > 𝐹𝐹𝛼𝛼,𝑛𝑛1,𝑛𝑛2 or, equivalently, if the p-value corresponding to 𝐹𝐹0 

is smaller than α. Here we use α = 0.05, corresponding to a 95% confidence level.  

The desired result of this test is that the LoF is not significant, and the corresponding p-value is 

larger than α (0.05). In such a case we will accept the model and the choices of the decision 
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variables. Otherwise, we will turn to a more complex model class, e.g. from the linear to the two-

factor interaction (2FI) model class or from the 2FI to the quadratic class and so on. Additional 

experimental data might be needed to estimate a more complex DRSM-2 model. These new data 

are obtained by augmenting the previous design of experiments with new runs. The augmented 

experiments as well as the initial ones can be designed using commercial software, such as 

MATLAB [94] and JMP [95] For the related algorithm please refer to the publications [96, 97]. 

To minimize the number of the new experiments while obtaining the maximum information, 

optimal experiment design criteria [23], such as D-Optimality, might be used for the design of the 

new experiments. Then a new set of DRSM-2 models of a more complex model class are estimated 

via stepwise regression and are assessed using BIC and LoF statistics. The iterative procedure will 

be repeated until the best DRSM-2 model is arrived at. We will examine the proposed DRSM-2 

approach using two representative and quite different nonlinear processes in the following section. 

4.2. Separate Models for Continuous Polypropylene Grade Transitions 

In this section, we examine the performance of the DRSM-2 methodology in modeling the time-

varying outputs of a continuous polymerization process. We will verify the capability of the 

DRSM-2 approach to model a highly complicated continuous process during a variety of 

transitions between an initial and a finial steady state.  

In the polymerization industry, the operating conditions of a plant are changed frequently to 

produce polymers of different specifications measured, for example, by the Melt Flow Index (also 

known as Melt Flow Rate) of the product. Strong economic incentives motivate the minimization 

of the transition time and thus the amount of the off-spec product. To achieve this, an accurate 
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dynamic model predicting the time-varying process characteristics is needed. As the detailed 

process behavior is not always fully understood, a data-driven modeling approach is of great 

interest. Here we apply the DRSM-2 approach to model the continuous polymerization process 

where the data are obtained from a dynamic simulation based on the published models [9, 89]. As 

shown in Table 8-3 in the Appendix A, the simulation for the propylene polymerization process 

includes five types of reactions; chain initiation, chain propagation, chain transfer, site activation 

and site deactivation. The reactions are described in column 2 while the kinetic constants and the 

corresponding units are given in column 3 and 4, respectively. 

4.2.1. DRSM-2 Model for Increasing MFI Transitions 

As the process dynamics for transitions to higher Melt Flow Index (MFI) are different from those 

for the transitions to lower MFI values, separate DRSM-2 models should be developed for each 

case, respectively. We here explain in detail the development of the DRSM-2 model for the 

increasing MFI case. The decreasing MFI case is modeled in a similar manner. 

The feed concentration of hydrogen, affecting the chain length and thus the MFI value of the 

produced polymer, is the input variable. Here we parameterize the time-varying input profile in a 

series of segments following the industrial practice. Each profile consists of three ramps and a 

steady-state value of the input variable for the remaining time. This finial input value is related to 

the finial steady state for the output. The mathematical expression of the input profiles for the 

increasing MFI operations are given below. 
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𝑢𝑢(𝑡𝑡) = �

𝑢𝑢1 + 𝑎𝑎𝑎𝑎,      0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1
𝑢𝑢2 − 𝑎𝑎𝑎𝑎,      𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
𝑢𝑢3 + 𝑎𝑎𝑎𝑎,      𝑡𝑡2 < 𝑡𝑡 ≤ 𝑡𝑡3
𝑢𝑢4,                𝑡𝑡3 < 𝑡𝑡 ≤ ∞

 (4-23) 

Here 𝑢𝑢1 and 𝑢𝑢4 are the necessary steady-state input values to achieve the corresponding output 

values at the initial and final steady-state operating points. The a value is fixed from process 

consideration and represents the maximum allowed rate of the change in the input. The 𝑢𝑢2 and 𝑢𝑢3 

values need to be properly selected to achieve the most desirable transition between the initial and 

final steady states. The four values, 𝑢𝑢1, 𝑢𝑢2, 𝑢𝑢3 and 𝑢𝑢4 will be the factors for the experiments that 

we soon design. Using the selected ui values and the fixed a value, the time instants 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3 

can be calculated by 

 𝑡𝑡1 = �
𝑢𝑢2 − 𝑢𝑢1

𝑎𝑎
� , 𝑡𝑡2 = 𝑡𝑡1 + �

𝑢𝑢3 − 𝑢𝑢2
𝑎𝑎

� , 𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡3 = 𝑡𝑡2 + �
𝑢𝑢4 − 𝑢𝑢3

𝑎𝑎
�    (4-24) 

In the first row of Figure 4-2, we show two example input profiles and their corresponding outputs 

profiles in the second row for the increasing MFI case. The range of interest for 𝑢𝑢𝑖𝑖′s is between 

0.001 and 0.030 gmol/L. We estimate that it takes 4 hours to increase the hydrogen concentration 

from its minimum to its maximal value. Thus the ramp rate is 𝑎𝑎 = 0.0073 gmol/L/h. For each 

operation with different input profile, the transient period is of different length. As shown in Figure 

4-2, the two runs last 14.9 and 12.4 hours, respectively. We will demonstrate later that the DRSM-

2 methodology is capable to dealing with data sampled from runs with different durations. 
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Figure 4-2: Example of the process responses (lower) to two different input profiles (upper) for 
the increasing MFI case. The responses in the right indicate an overshoot. 

To design the set of experiments, we express each ui using a coded factor, 𝑥𝑥𝑖𝑖, by 

 𝑢𝑢𝑖𝑖 = 0.0155 + 0.0145𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2,3,4 (4-25) 

The values of 𝑥𝑥𝑖𝑖 ′s  are in the [-1, +1] interval. In addition we wish to impose the following 

constraints on the four coded factors to constrain the input profiles so that they lead to a higher 

MFI value than the initial one. 

 �
𝑥𝑥4 > 𝑥𝑥1
𝑥𝑥2 > 𝑥𝑥4
𝑥𝑥4 > 𝑥𝑥3

 (4-26) 
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Because design of experiments software cannot enforce strict inequalities and thus avoid having 

some of the 𝑥𝑥𝑖𝑖 values equal to each other, e.g. 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3. We modify the above constraints to 

the following ones. 

 
�
𝑥𝑥4 − 𝑥𝑥1 ≥ 𝜀𝜀
𝑥𝑥2 − 𝑥𝑥4 ≥ 𝜀𝜀
𝑥𝑥4 − 𝑥𝑥3 ≥ 𝜀𝜀

  (4-27) 

We here let 𝜀𝜀 = 0.1 but other values could be selected as well. Some of the possible input profiles 

lead to an overshoot in the output MFI, as shown in the lower right of Figure 4-2. This is because 

we have no prior knowledge on the dynamic characteristics of the process we are trying to model. 

If additional process information exists, we could design the experiments over a narrower domain 

using a tighter set of inequalities. Because we do not have prior process information, the task of 

modeling in this larger domain is more challenging as the responses with overshoot require 

additional γ parameters to be accurately represented. As we will see later in this section, the 

DRSM-2 models developed over this larger than necessary input domain are very accurate. 

We design four sets of experiments to estimate four different classes of DRSM-2 models: linear, 

two-factor interactions (2FI), quadratic and cubic. The total number of experiments in each set is 

11, 17, 21, and 41, respectively. Among them, the minimum number of experiments corresponding 

to the number of 𝛽𝛽𝑞𝑞(𝜃𝜃𝑞𝑞) parametric functions in the model is 5, 11, 15 and 35 for the four classes 

of models. To this minimum amount of experiments, one adds three distinct additional experiments 

for the estimation of the LoF statistic and three replicate runs for the estimation of the SSPE, 

quantifying the normal process variability. During each experiment, the MFI is sampled every 0.1 

h. We use equidistant sampling in t, which translates into a non-equidistant sampling in θ 
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When the u(t) changes from 0.001 to 0.030 gmol/L, the MFI value varies from 0.4 to 282.2 

gram/10 min, a change of almost three orders of magnitude; a substantial modeling challenge. To 

narrow the range of values in the output variable, we choose to model the cubic root of 

MFI, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
1
3, in the DRSM-2 model. With the cubic root transformation, the output 

variable varies in the range [0.7, 6.2]. To the results of the simulated experiments, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠, we add 

a normally distributed fractional noise to arrive the measured 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 value for estimating the 

DRSM-2 model. 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠[1 + 𝜎𝜎𝜎𝜎(0,1)] 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜎𝜎 = 0.02 (4-28) 

As each of the factors starts to affect the output at different times, there are different time delays 

associated with each factor. Because 𝑥𝑥1 and 𝑥𝑥2 define the first ramp of the input profile which 

affects the output variable at the beginning of the polymer grade transition, the corresponding time 

delays for these two factors are zero. The 𝑥𝑥3 factor defines the minimum value of the second ramp, 

which affects the output after the end of the first ramp. So the time delay associated with 𝑥𝑥3 is the 

time instant the second ramp starts. For a similar reason, the time delay for the 𝑥𝑥4 factor is the time 

instant the third ramp starts. Consequently, the four time delays for the four factors are summarized 

as follows: 

 𝑑𝑑1 = 𝑑𝑑2 = 0; 𝑑𝑑3 = 𝑡𝑡1;  𝑑𝑑4 = 𝑡𝑡2 (4-29) 

The time delays used to calculate the 𝜃𝜃𝑞𝑞  for each parametric function 𝛽𝛽𝑞𝑞(𝜃𝜃𝑞𝑞) in the DRSM-2 

model is determined based on the above four factors’ time delays with the following additional 

rules. 
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1) The time delay, 𝑑𝑑𝑞𝑞, for 𝜃𝜃𝑞𝑞 associated with terms involving a single factor (e.g. 𝑞𝑞 =

𝑖𝑖, 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖𝑖𝑖 ⋯ and 𝑖𝑖 = 1,2,3,4) has the same time delay of the corresponding factor, i.e. 

𝑑𝑑𝑞𝑞 = 𝑑𝑑𝑖𝑖. 

2) The time delay, 𝑑𝑑𝑞𝑞, for 𝜃𝜃𝑞𝑞 associated with multiple factors equals to largest time delay 

of the related factors. For a two-factor interaction term (𝑞𝑞 = 𝑖𝑖𝑖𝑖 ) we have 𝑑𝑑𝑞𝑞 =

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑑𝑑𝑖𝑖, 𝑑𝑑𝑗𝑗). Similarly for a three-factor interaction term (𝑞𝑞 = 𝑖𝑖𝑖𝑖𝑖𝑖) we have 𝑑𝑑𝑞𝑞 =

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑑𝑑𝑖𝑖, 𝑑𝑑𝑗𝑗 , 𝑑𝑑𝑟𝑟) and so on. This is because the interaction effect of the related factors 

starts to affect the output behavior when all of the related factors are acting on the 

process.  

3) The time delay for 𝜃𝜃0, associated with 𝛽𝛽0(𝜃𝜃0), is zero, as 𝛽𝛽0(𝜃𝜃0)represents the output 

profiles of the reference case, in which all factors are equal to zero (𝑥𝑥 = 0). 

Then the calculated 𝜃𝜃𝑞𝑞′s are substituted into the Shifted Legendre polynomials, care should be 

exercised to evaluate a non-zero value only when 𝜃𝜃𝑞𝑞 is positive. In particular, the value of the 

Shifted Legendre polynomial, 𝑃𝑃𝑘𝑘(𝜃𝜃𝑞𝑞)  (𝑘𝑘 = 0, 1,⋯ ,𝑅𝑅𝑞𝑞 ), used to parameterize the parametric 

function 𝛽𝛽𝑞𝑞(𝜃𝜃𝑞𝑞) is given by 

 
𝑃𝑃𝑘𝑘(𝜃𝜃𝑞𝑞) = �

0,             𝑖𝑖𝑖𝑖 𝜃𝜃𝑞𝑞 ≤ 0
𝑃𝑃𝑘𝑘�𝜃𝜃𝑞𝑞�, 𝑖𝑖𝑖𝑖 0 ≤ 𝜃𝜃𝑞𝑞 ≤ 1 (4-30) 

We know that the transient behavior of the polymer grade transition is nonlinear. However, for the 

purpose of illustrating the overall procedure for the selection of the best DRSM-2 model, we 

assume that such knowledge is not at hand. To minimize the number of initial experiments, we 

start by estimating DRSM-2 models of the linear class. For a continuous process, we choose the 

initial range of the time constant, 𝑡𝑡𝑐𝑐, based on the estimate of the settling time possibly from a set 

of step response experiments.  
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Figure 4-3: Three step responses of the cubic root transformed MFI (lower) corresponding to the 
different magnitudes of inputs change (upper). Each input and output pair is in the same 
type of line.  

In Figure 4-3, we show three such step responses of the polymerization process, corresponding to 

three different input magnitudes. The settling time, marked with “×” in the lower figure on each 

output profile, is calculated as the time when 99.33% of the final change of the output variable is 

achieved. Because the process is nonlinear, the settling time increases as the input change increases. 

The longest settling time is 10.7 hours when the input variable changes from its minimal value of 

0.001 gmol/L to its maximal value of 0.03 gmol/L.  
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Figure 4-4: Transformed BIC values (y-axis) of linear DRSM-2 models vs tc for various R values 
for the increasing MFI case of propylene polymerization process. Markers (○) indicate the 
model has significant LoF (p-value<0.05). All the DRSM-2 models satisfy the sampling 
constraint. 

Therefore, we choose to assign tc the following values 𝑡𝑡𝑐𝑐 = 1, 2, 3, 4, 5 in hours. The initial range 

for 𝑅𝑅 is [6, 7,⋯ ,10]. The calculated BIC values of the corresponding estimated DRSM-2 models 

are plotted in Figure 4-4. The BIC values shown in the y-axis are the 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐵𝐵𝐵𝐵𝐵𝐵 + 2350) values 

for better visibility of where the minimal BIC value is achieved. The x-axis is the value of the time 

constant, 𝑡𝑡𝑐𝑐. Each line plotted in the figure represents the models estimated using the same value 

of R but different value of 𝑡𝑡𝑐𝑐. To keep the figure concise, the BIC values with 𝑅𝑅 =6 and 7 are not 

shown, as those values are larger than the ones with other 𝑅𝑅′s. In our initial round of estimating 

the DRSM-2 models, we realize that the model with the smallest BIC value results from 𝑅𝑅 = 10 

and 𝑡𝑡𝑐𝑐 = 5, which lie on the corresponding upper limits. Therefore we enlarge the range of 𝑡𝑡𝑐𝑐 and 
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𝑅𝑅  to also include 𝑡𝑡𝑐𝑐 = 6  and 𝑅𝑅 = 12 .The BIC values of the corresponding DRSM-2 models, 

estimated with the new values of the decision variables, are also shown in the same figure. We can 

see now that 𝑅𝑅 = 11 and 𝑡𝑡𝑐𝑐 = 5 have resulted in the model with the smallest BIC value. Following 

this we examine the LoF statistic of this model. The corresponding p-value is almost zero, 

indicating that a more complex model class should be considered. In fact, all the obtained models 

of the linear class have significant LoF and correspond to p-values quite smaller than 0.05. 

Before we proceed to design and perform the experiments to estimate DRSM-2 models in the class 

of two-factor interaction (2FI), we can eliminate some choices of the decision parameters which 

are unlikely to provide an accurate model based on the results for the linear models. We observe 

that for 𝑡𝑡𝑐𝑐 = 1 h, one obtain very large BIC values. This indicates that such a choice of time 

constant is too small. In addition, the BIC values of the DRSM models with 𝑅𝑅 = 6, 7 are always 

larger than those with 𝑅𝑅 ≥ 8. Because the process dynamics are quite complex, one is not surprised 

that several Shifted Legendre polynomials are needed for an accurate approximation of the process 

behavior. So in the next round of DRSM-2 model estimation, we will explore value of 𝑅𝑅 that are 

higher than 7. The related calculations, not presented here, for the best DRSM-2 model of the 2FI 

model class reveal that the LoF statistic is still significant. This motivates us to examine model 

classes with higher complexity, such as Quadratic and Cubic models. The best models in each 

class examined (Linear, 2FI, Quadratic and Cubic) and their related statistics are listed in row 3-6 

of Table 4-1. It has been seen in the last column of the table that only the Cubic model class 

provides the desired result for the insignificant LoF statistic, with a p-value of 0.25. The best values 

of the decision variables are 𝑅𝑅 = 11 and 𝑡𝑡𝑐𝑐 = 3 h as reported in row 6 of the table. In addition 
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𝑡𝑡𝑐𝑐 𝑅𝑅⁄ (= 0.21 ℎ) is larger than the sampling interval (0.1 h). Thus the sampling constraint given 

in eq.(4-15) is satisfied. Therefore, we choose this model as the best one. 

Table 4-1: Statistics of the DRSM-2 models with smallest BIC values in four model classes for the 
propylene polymerization process 

The increasing MFI case 

Model Class 𝑅𝑅 𝑡𝑡𝑐𝑐 BIC(x104) LoF p-value 

Linear 11 5 -0.2331 0 

2FI 11 5 -0.2382 0 

Quadratic 10 4 -0.5415 0.02 

Cubic 11 3 -1.3349 0.25 

The decreasing MFI case 

Model Class 𝑅𝑅 𝑡𝑡𝑐𝑐 BIC(x104) LoF p-value 

Linear 13 4 -0.1679 0 

2FI 11 4 -0.2451 0 

Quadratic 11 3 -0.5574 0.03 

Cubic 11 3 -1.3198 1.00 

The BIC value of the DRSM models in the Cubic model for different combinations of 𝑡𝑡𝑐𝑐 and R 

values are shown in Figure 4-5, from which we can tell that the smallest BIC is achieved at 𝑅𝑅 =

11 and 𝑡𝑡𝑐𝑐 = 3 h. For higher 𝑡𝑡𝑐𝑐 values, the BIC value increases, sometimes dramatically. This is 

because more Shifted Legendre polynomials have to be included in the obtained model to represent 

the fast dynamics when the time constant is chosen too large.  
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Figure 4-5: BIC values of cubic DRSM-2 models vs tc for various R values for the increasing MFI 
case of propylene polymerization. Hollow marker (○) indicates the model has significant 
LoF (p-value<0.05). Solid markers (●) represent the model with insignificant LoF (p-
value>0.05). All the models satisfy the sampling constraint. 

We apply analysis of residuals to examine the quality of the selected best model. The residuals 

between the data, y, and the predicted values by the DRSM-2 model,𝑦𝑦�, is calculated by 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

𝑦𝑦 − 𝑦𝑦�. The model with desired quality should have residuals that are normally distributed and 

independent from the factors and dynamic sub-factors.  
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Figure 4-6: Analysis of residuals of the selected DRSM-2 model for the case of increasing MFI. 

In the top-left sub-figure of Figure 4-6, we plot the histogram. The x-axis is the value of residuals, 

error, while the y-axis is the probability of the corresponding residual value. It has been shown 

that the residuals are normally distributed. We plot the residual against the time in the top-right 

sub-figure. We can tell that the residuals are independent of time. In the rest for sub-figures, we 

plot the residuals against each of the four sub-factors, 𝑥𝑥1 , 𝑥𝑥2 , 𝑥𝑥3 , and 𝑥𝑥4 . The values of the 

residuals are independent of the values of the sub-factors as well except for 𝑥𝑥2 which usually 

determines the highest MFI value during each transition in the case of increasing MFI. As the noise 

added to the simulated data is fractional noise, it is reasonable that the variance of the residuals is 

smaller when the MFI value and the 𝑥𝑥2 value is smaller. Based on the results of residual analysis, 

the obtained DRSM-2 model exhibits consistent prediction accuracy over the input domain. 
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To further examine the accuracy of the obtained data-driven model, we define a cross-validation 

set of four new experiments which are not used for estimating the DRSM-2 model. The comparison 

of the DRSM-2 model predictions and the measured values are shown in Figure 4-7.  

 

Figure 4-7: Comparison between the measurements (•) and the DRSM-2 model predictions (―) 
in the cross-validation set for the increasing MFI case of propylene polymerization. Only 
one out of eight measured values are marked in red dots along with their corresponding 
error bars. 

The values of the factors parameterizing each input profile is shown in the title of each sub-figure. 

The durations of the four runs are quite different ranging from 11.6 h (upper left) to 17.9 h (upper 

right). So that we do not crowd the figure, we only plot every 8th measured data point, along with 

the corresponding error bars. The corresponding DRSM-2 model predictions are plotted in a blue 

line. In all four runs, the predicted values overlap with the data and always lie within the error bars, 

which indicates that the DRSM model is very accurate. Whether such a very accurate model is 
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necessary largely depends on the task that it will be used for. Quite possibly the models that will 

be used for control purposes would not require such high accuracy. 

4.2.2. DRSM-2 Model for Decreasing MFI Transitions 

We also developed the DRSM-2 model for the case of decreasing MFI transitions. The time-

varying input profile consisting of three ramps and one final steady-state value is in the same input 

range as the one for the increasing MFI operations. The mathematic expression is similar to eq. 

(4-23) but with the new ramp rate, 𝑎𝑎′, defined by 𝑎𝑎′ = −𝑎𝑎. The time instants, 𝑡𝑡1−3, and the time 

delays, 𝑑𝑑1−4 are calculated using eq.(4-24) and eq. (4-29) with the new ramp rate, 𝑎𝑎′, respectively. 

The factors, 𝑥𝑥𝑖𝑖′s, are defined in eq. (4-25) as well. Four set of experiments for estimating the 

DRSM-2 models in four model classes, linear, 2FI, quadratic, cubic, are designed in the domain 

defined by the following constraints. 

 
�
𝑥𝑥1 − 𝑥𝑥4 ≥ 𝜀𝜀
𝑥𝑥4 − 𝑥𝑥2 ≥ 𝜀𝜀
𝑥𝑥3 − 𝑥𝑥4 ≥ 𝜀𝜀

 with 𝜀𝜀 = 0.1 (4-31) 

Two of the input and corresponding output profiles among the designed experiments are plotted 

in Figure 4-8. As discussed previously, this can be mitigated by a more considered design domain 

than the one in eq.(4-31). We will show later again that we have obtain accurate DRSM-2 model 

for the decreasing MFI case using the data with overshoot. The same fractional noise has been 

added to the simulated value as given in eq. (4-28). 
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Figure 4-8: Example of the process responses (lower) to two different input profiles (upper) for 
the decreasing MFI case of propylene polymerization. The responses in the left indicate an 
overshoot. 

The statistics of the best obtained model of each model class are given in row 9-12 of Table 4-1. 

Based on the p-value, we arrive at the best DRSM-2 model of the cubic model class. The 

corresponding values of 𝑅𝑅 and 𝑡𝑡𝑐𝑐  are 11 and 3 h, respectively. We note that these values are the 

same ones arrived at for the increase MFI model. We verify the accuracy of the obtained DRSM-

2 model using four cross-validation runs. As shown in Figure 4-9, the durations of the four runs 

are quite different ranging from 11.6 h (upper left) to 18.3 h (upper right). We here again plot every 

8th measured data point, along with the corresponding error bars. The corresponding DRSM-2 

model predictions are plotted in a blue line. In all four runs. The predicted values almost overlap 
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with the data and almost lie within the error bars, which indicates that the DRSM-2 model for the 

decreasing MFI case is very accurate as well.  

 

Figure 4-9: Comparison between the measurements (•) and the DRSM-2 model predictions (―) in 
the cross-validation set for the decreasing MFI case of propylene polymerization. Only one 
out of eight measured values are marked in red dots along with their corresponding error 
bars 

4.3. Modeling Semi-Batch Penicillin Fermentation 

In the previous case study, we applied the DRSM-2 methodology to the modeling of continuous 

processes. We here demonstrate that the new approach is also capable in modeling batch processes 

using the example of the penicillin fermentation. For the pharmaceutical industry, the process 

production rate is usually small, comparing to the continuous chemical processes, which makes 

the development of the knowledge-driven model frequently economically unaffordable. A data-
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driven modeling approach, such as the DRSM-2 methodology is an efficient and economic 

alternative. With such a data-driven dynamic model at hand, one may use it to optimize and control 

the process to achieve the desired product quality. In the penicillin fermentation, the amount of 

penicillin produced is mainly determined by the feeding profile of the substrate and the initial 

concentration of biomass. We here take them as the input variables and the penicillin concentration 

measured at different time instants as the output variable. 

To estimate the DRSM-2 model, we first design and conduct a set of DoDE experiments. We 

define the factor related to initial biomass concentration varying between 1 and 2 g/L as follows 

 𝑥𝑥(0) = 1.5 + 0.5𝑤𝑤1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ − 1 ≤ 𝑤𝑤1 ≤ +1 (4-32) 

The time-varying input variable, the flow rate of the substrate feeding stream, is parameterized 

using three dynamic sub-factors and is defined as [31] 

 𝑢𝑢(𝜏𝜏) = 𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢(𝜏𝜏)[𝑥𝑥1𝑃𝑃0(𝜏𝜏) + 𝑥𝑥2𝑃𝑃1(𝜏𝜏) + 𝑥𝑥3𝑃𝑃2(𝜏𝜏)]  (4-33) 

where the dimensionless time is defined as 𝜏𝜏 = 𝑡𝑡 𝑡𝑡𝑏𝑏⁄ , and 𝑢𝑢0(𝜏𝜏) = ∆𝑢𝑢(𝜏𝜏) = 2∆𝑉𝑉(1 − 𝜏𝜏) 𝑡𝑡𝑏𝑏⁄ . The 

𝑢𝑢0(𝜏𝜏) is selected to ensure that the constraint on the reactor volume, given below, is met. 

 
� 𝑢𝑢0(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝑏𝑏

0
= ∆𝑉𝑉 = 𝑉𝑉(𝑡𝑡𝑏𝑏) − 𝑉𝑉(0)  (4-34) 

Furthermore, ∆𝑢𝑢(𝜏𝜏)  is so selected to allow 𝑢𝑢(𝜏𝜏)  to vary between zero and 2𝑢𝑢0(𝜏𝜏) . In each 

experiment, we will fill the maximum allowed capacity of the bio-reactor at 10 L, from the initial 

value of 7 L (i.e.∆𝑉𝑉 = 3𝐿𝐿). As our purpose here is to show that the DRSM-2 approach is applicable 

for modeling batch processes, we will fix the batch time 𝑡𝑡𝑏𝑏 = 130 h to reduce the total number of 
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factors and the resulting number of experiments. We impose two additional equality constraints, 

given as below, which further reduce the number of required experiments.  

 
𝑡𝑡𝑏𝑏 � [𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢(𝜏𝜏)𝑧𝑧(𝜏𝜏)

1

0
𝑢𝑢(𝜏𝜏)]𝑑𝑑𝑑𝑑 = ∆𝑉𝑉

[𝑥𝑥1𝑃𝑃0(1) + 𝑥𝑥2𝑃𝑃1(1) + 𝑥𝑥3𝑃𝑃2(1)] = 0
  (4-35) 

The first constraint in eq. (4-35) is motivated by the total volume constraint of the bioreactor. The 

second one is introduced because 𝑢𝑢0(𝜏𝜏) = ∆𝑢𝑢(𝜏𝜏) = 0 at 𝜏𝜏 = 1. Consequently, there is no reason 

for [𝑥𝑥1𝑃𝑃0(1) + 𝑥𝑥2𝑃𝑃1(1) + 𝑥𝑥3𝑃𝑃2(1)] to have any other value than zero. By solving the constraints 

in eq. (4-35) for 𝑥𝑥2 and 𝑥𝑥3, we obtain 𝑥𝑥2 = 3𝑥𝑥1 and 𝑥𝑥3 = −(𝑥𝑥1 + 𝑥𝑥2). Therefore the number of 

independent factors is reduced to two, 𝑤𝑤1 and 𝑥𝑥1. As the process is nonlinear, a D-optimal design 

of experiments is selected for estimating a quadratic DRSM-2 model. This consists of a minimum 

of six experiments to estimate the six parametric functions, three additional experiments to assess 

the LoF statistic, and three replicates to estimate the inherent process variability.  

The product concentration is sampled in every 6.5 hours. So the total number of measurements in 

each experiment is 20. We add to each simulated output value, 𝑦𝑦𝑠𝑠, a fractional error that is normally 

distributed. 

 𝑦𝑦𝑚𝑚 = 𝑦𝑦𝑠𝑠 + 𝑁𝑁(0,𝜎𝜎𝑦𝑦𝑠𝑠) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝜎𝜎 = 0.04 (4-36) 

For the semi-batch process, the initial values of tc examined are in the range of 10% to 40% of the 

batch time of 130 h. We thus estimate the DRSM-2 models with 𝑡𝑡𝑐𝑐 = 13, 23, 33, 42, and 52 h. 

The values of 𝑅𝑅 examined are 𝑅𝑅 = 6, 7, 8, 9 10. The BIC value of each DRSM-2 model is plotted 

in Figure 9. According to the figure, the values of 𝑡𝑡𝑐𝑐 and R of the model with the smallest BIC are 
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42 h and 9, respectively. The corresponding LoF statistic with a p-value = 0.95 strongly indicates 

that all the non-random information in the data indeed been modeled. Thus, the obtained DRSM-

2 model is sufficiently accurate. However, the sampling constraint described in eq. (4-15) is not 

satisfied. The value of 𝑡𝑡𝑐𝑐 𝑅𝑅⁄ = 4.7 h while the sampling interval ∆𝑡𝑡 = 6.5 h. The resulted DRSM-

2 model may exhibit oscillatory behavior in the interval between the two samples. 

 

Figure 4-10: Transformed BIC values (y-axis) of quadratic DRSM-2 models vs 𝑡𝑡𝑐𝑐  and R for 
penicillin fermentation. Hollow marker (○, or □) indicates the model has significant LoF 
(p-value<0.05). Solid marker (● or ) represents the model with insignificant LoF (p-
value>0.05). Square marker (□ or ) means the models satisfy the sampling constraint  

To illustrate this, we use the DRSM-2 model with 𝑡𝑡𝑐𝑐 = 42 hours and 𝑅𝑅 = 9 to predict the time-

varying profiles of the penicillin concentrations of two new cross-validation runs. The values of 

the factors for the two new runs are shown in the titles of the sub-figures in Figure 4-10. The 
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predicted values by the DRSM-2 model are shown in blue line while the simulated values and their 

corresponding error bars are represented using red diamonds. In general, the DRSM-2 model 

predictions are quite accurate, as the predicted values almost overlap with the simulated ones at 

times larger than 6.5 h after the start of the batch. However, we observe oscillatory predictions by 

the DRSM-2 model during the first 6.5 h. 

 

Figure 4-11: Comparison of the simulated data sampled every 6.5 h () and the predicted values 
(―) by the DRSM-2 model(R=9, 𝑡𝑡𝑐𝑐=42 h) for penicillin fermentation. The error bars of 
two standard deviation of the simulated value are also plotted in the figure. 

In Table 4-2, we list the DRSM-2 models examined that satisfy the sampling constraint given in 

eq. (4-15) and their corresponding BIC values. If we choose the model with smallest BIC value 

from those three models, the selected DRSM-2 model has 𝑡𝑡𝑐𝑐 = 52 and 𝑅𝑅 = 7. The ratio 𝑡𝑡𝑐𝑐 𝑅𝑅⁄ =

7.4 > 6.5 h. The corresponding LoF statistic is not significant, with a p-value=0.44.  
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Table 4-2: Statistics of the DRSM-2 models satisfying the sampling constraint for the penicillin 
fermentation 

Model # 𝑅𝑅 𝑡𝑡𝑐𝑐 𝑡𝑡𝑐𝑐 𝑅𝑅⁄  BIC LoF p-value 

1 6 42 7.0 24.7 0.01 

2 6 52 7.7 -44.7 0.21 

3 7 52 7.4 -62.6 0.44 

 

 

Figure 4-12: Comparison of the simulated data sampled every 6.5 h () and the predicted values 
(―) by the DRSM-2 model(R=7, 𝑡𝑡𝑐𝑐 = 52 h) for penicillin fermentation. The error bars of 
two standard deviation of the simulated value are also plotted in the figure. 

The predictions for the output profiles of the same two cross-validation experiments are plotted in 

Figure 4-12. It is seen that the oscillations have been dramatically reduced. This validate the the 
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sampling constraint shown in eq. (4-15) should be satisfied when we select the values for 𝑡𝑡𝑐𝑐 and 

𝑅𝑅 and the resulting best DRSM-2 model. Therefore, we should choose the DRSM-2 model with 

𝑡𝑡𝑐𝑐 = 52 h and 𝑅𝑅 = 7 instead of the one with 𝑡𝑡𝑐𝑐 = 42 h and 𝑅𝑅 = 9.  

 

Figure 4-13: Comparison of the simulated data sampled every 3.25 h () and the predicted values 
(―) by the DRSM-2 model(R=9, 𝑡𝑡𝑐𝑐=42 h) for penicillin fermentation. The error bars of 
two standard deviation of the simulated value are also plotted in the figure. 

The violation of this sampling constraint can be taken as an indicator that the sampling interval is 

not sufficiently small. When the data-driven model with the smallest BIC value is achieved with a 

combination of (𝑡𝑡𝑐𝑐,𝑅𝑅) for which 𝑡𝑡𝑐𝑐 𝑅𝑅⁄ ≤ ∆𝑡𝑡, we should consider whether it is possible to reduce 

the sampling interval. To demonstrate this, we reduce the sampling interval from 6.5 h to 3.25 h, 

taking 40 measurements during each experiment. The obtained best DRSM-2 model has 𝑡𝑡𝑐𝑐 = 42 h, 
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𝑅𝑅 = 9 and a LoF p-value = 0.22. We compare the predicted and simulated values of the same two 

cross-validation experiments in Figure 4-11 and plotted them in Figure 4-13. 

It is seen that the oscillatory predictions in the first several hours have been significantly reduced 

to the level even lower than the one shown in Figure 4-12, confirming the benefit of the decrease 

in the sampling interval. If more frequently measured data is not available, the DRSM-2 model 

with the smallest BIC value among the ones who satisfy the sampling constraint should be selected. 

4.4. Conclusions 

We have presented here a new Dynamic Response Surface Methodology, DRSM-2, for the 

modeling of nonlinear continuous processes and we have also demonstrated that the DRSM-2 

approach is also applicable to batch processes. The main idea is to define a new independent 

variable 𝜃𝜃 as an exponential transformation of time. With the new variable 𝜃𝜃, we can model the 

time-varying output over a semi-infinite time horizon as easily as over a finite one. The new 

method also allows the utilization of the data that are not measured equidistantly. 

In addition, we proposed a systematic procedure to determine the most appropriate values of the 

decision variables that influence the structure of the DRSM model. In the original DRSM-1 

approach [31], we only considered the  polynomial order, 𝑅𝑅, on the model accuracy. In the new 

DRSM-2 methodology, three decision variables, the model class 𝐶𝐶, the time constant 𝑡𝑡𝑐𝑐 as well as 

𝑅𝑅 are examined. The choice of the most appropriate values of these decision variables within each 

model class is determined using two statistics, the BIC and the LoF. We select the DRSM-2 model 

with the smallest BIC value and an insignificant LoF. Moreover, we pointed out in this paper that 
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the choices of 𝑡𝑡𝑐𝑐 and 𝑅𝑅𝑞𝑞, determining the fastest dynamics represented by the DRSM-2 model are 

also constrained by the sampling interval. 

To illustrate the power and versatility of this new methodology, we examined the accuracy of the 

proposed approach in two nonlinear processes, a continuous propylene polymerization and a semi-

batch penicillin fermentation. The presented results clearly demonstrate that the DRSM-2 model 

provides an accurate representation of the dynamic behaviors of the processes examined. With 

such a detailed model at hand, one can readily proceed in optimizing the operations of the process 

with respect to a performance characteristic in a similar manner as discussed previously [32]. The 

purpose of process control can be achieved using the DRSM model as well. The approach of 

converting the DRSM model to linear state-space model and nonlinear block-oriented model has 

been discussed in the same publication [32]. Alternative approaches of utilizing the obtained 

DRSM-2 model for control purposes will be discussed in forthcoming paper. 
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5. DRSM-1 for Process Optimization and Control 

Data-Driven modelling of batch processes for process optimization and control purposes has 

attracted substantial interest from both academic and industrial researchers in the past decades. 

Several recursive model structures representing the nonlinear dynamics of the batch processes 

have been proposed, including Hammerstein-Wiener (H-W) model and Linear Parameter-Varying 

(LPV) model. The H-W models, consisting of two static nonlinear blocks in the inputs and outputs 

and a dynamic linear block in between [55-57], has been applied for the modelling batch processes 

with linear kinetics and static nonlinear functions on the output, such as pH neutralization [58]. 

The LPV model[54] introduces the scheduling parameters varying with evolution of state variables 

in order to approximate bilinear dynamics. The aforementioned models are identified locally 

through Pseudo Random Binary Signal (PRBS) or Generalized Binary Noise (GBN) [62] 

experiments in the vicinity of a pre-determined trajectory, possibly an optimal one. However, when 

the available measurements in a single batch are infrequent, the estimation of such a linear or 

nonlinear dynamic model of satisfactory accuracy is not feasible. In addition, to determine the 

optimal trajectory around where the recursive model is identified, a separate data-driven model 

may be estimated with the cost of additional experiments.  

We here proposed process optimization and control method relying on a single DRSM model. The 

estimation of the DRSM model does not require excessive number of measurements during each 

batch. The DRSM model will be used to calculate the optimal input trajectory and will also be 

used here to estimate a recursive model for control purposes in a Model Predictive Controller 

(MPC) [63]. Because the DRSM model captures both the linear and nonlinear dynamics of the 

process quite accurately, it can be used to develop either a linear or a nonlinear recursive model. 
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Therefore, we can achieve both the process optimization and process control using a single DRSM 

model, which saves the experimental cost of developing separate models for each purpose, 

respectively. Moreover, it has been shown that when the number of measurements is limited, the 

MPC using a DRSM model provides improved control performance compared to the one using a 

state-space model estimated via PRBS experiments. 

This chapter is organized as follows. We first discuss the optimization of a nonlinear process using 

a DRSM model. After the optimal input profile as well as the optimal operating duration is 

determined, we estimate linear state space model and Hammerstein-Wiener model for control 

purposes via the DRSM model. The nonlinear MPC controller using Kalman Filter [66] is 

described in the following section. We examine the proposed approach using an in silico 

isothermal batch reactor with three nonlinear reactions in the Results section and obtained 

satisfying control performance when measurements are infrequent. 

5.1. Process Optimization Using DRSM Model 

As the DRSM model captures the process dynamics, the process optimization using a DRSM 

model can determine the optimal batch durations as well as the optimal input profile without 

including the operating duration as a factor. In contrast, the optimization for batch duration using 

a static RSM model requires such a factor which costs more experiments[81]. The optimal input 

profile and the optimal batch duration, are determined by solving the following constrained 

optimization problem. 
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(𝒙𝒙∗, 𝜏𝜏∗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥,𝜏𝜏
𝐽𝐽(𝑦𝑦,𝒙𝒙, 𝜏𝜏)  

𝑠𝑠. 𝑡𝑡 𝑦𝑦(𝜏𝜏) = 𝛽𝛽0(𝜏𝜏) + �𝛽𝛽𝑖𝑖(𝜏𝜏)𝑥𝑥𝑖𝑖

3

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏)𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

3

𝑖𝑖<𝑗𝑗

3

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖(𝜏𝜏)𝑥𝑥𝑖𝑖2
3

𝑖𝑖=1

  

      𝑔𝑔(𝒙𝒙, 𝜏𝜏) ≤ 0, 𝑙𝑙𝑙𝑙 ≤ 𝒙𝒙, 𝜏𝜏 ≤ 𝑢𝑢𝑢𝑢 

(5-1) 

Where 𝐽𝐽(𝒙𝒙, 𝜏𝜏) is the cost function. 𝒙𝒙 and 𝜏𝜏 are the dynamic sub-factors parameterizing the input 

profile and the dimensionless time, respectively. 𝑔𝑔(∙) are inequality constraints. 𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢 are 

lower and upper limit of the variables (𝒙𝒙, 𝜏𝜏). Once the optimal solution, 𝒙𝒙∗ and 𝜏𝜏∗, are obtained, 

the optimal batch time is given by 𝑡𝑡𝑏𝑏∗ = 𝜏𝜏∗ × 𝑡𝑡𝑏𝑏  while the input profile is determined by 

substituting them into eq.(2-4). 

5.2. Transforming DRSM Models to Hammerstein-Wiener Models 

Here we detail the transformation of the nonlinear DRSM model to a nonlinear H-W recursive 

model appropriate for the design of feedback controllers.  This is necessary because the DRSM 

model is an input-output model and not a recursive one for real-time online use.  The advantage 

of the DRSM model is that it is a non-linear one between the process inputs and its output but 

linear in its parameters and thus can be estimated using linear regression methods.  Its role is also 

especially important when the number of output measurements during a batch process is very 

limited, for example when we measure the concentration of reaction species such as products or 

intermediates.  Then the direct estimation of a recursive model is almost infeasible. However, the 

limited number of the output measurements is not a limitation for the estimation of a DRSM model.  

With such a model at hand, a much larger set of in silico data can be generated for the estimation 

of the recursive model.  For example, 100 to 500 or more in silico measurements per batch can 
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easily generated by the DRSM model which in turn might have used as few as 10 to 20 real process 

measurements for its estimation. The recursive dynamic models that we will identify here will 

represent deviations from a reference batch profile. We denote the input and output variables of 

the reference profile by 𝑢𝑢∗(𝜏𝜏) and 𝑦𝑦∗(𝜏𝜏), respectively. This reference profile might be the optimal 

one, just calculated through the DRSM model, or any other profile of interest. Initially we will 

ignore the nonlinear character of the DRSM model and a linear recursive state space model will 

be estimated for comparison purposes with the Hammerstein-Weaner models to be examined later. 

In such an estimation, we will use the MOESP [23] subspace identification algorithm to relate 

∆𝑢𝑢(𝜏𝜏) and ∆𝑦𝑦(𝜏𝜏) in the following discrete model: 

 𝒛𝒛𝑘𝑘+1 = 𝐀𝐀𝒛𝒛𝑘𝑘 + 𝒃𝒃∆𝑢𝑢𝑘𝑘 (5-2) 

 ∆𝑦𝑦𝑘𝑘 = 𝒄𝒄𝑇𝑇𝒛𝒛𝑘𝑘 (5-3) 

Where 𝒛𝒛𝑘𝑘 is the state variable at the time instant, 𝜏𝜏 = 𝜏𝜏𝑘𝑘.  The type of linear model will only be 

accurate enough when the nonlinear component of the DRSM model are not dominant.  

As the general character of the DRSM model is a nonlinear one, we will address the estimation of 

a nonlinear recursive model next. The interest here is the Hammerstein-Wiener (H-W) type of 

model. The H-W models consisting of static nonlinear input and output blocks and a dynamic 

linear block in between are shown in Figure 2-1. The functional blocks 𝑓𝑓(∙) and 𝑔𝑔(∙) represent the 

static input and output nonlinearities while the linear block represents the dynamics between the 

intermediate input ∆𝑢𝑢�𝑘𝑘 and intermediate output ∆𝑦𝑦�𝑘𝑘. The input exciting the process is ∆𝑢𝑢𝑘𝑘 and 

∆𝑦𝑦𝑘𝑘 is the corresponding process output. Here we will assume that the nonlinear bocks 𝑓𝑓(∙) and 

𝑔𝑔(∙) are of polynomial form.  
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The mathematic representations of each block for SISO case are shown in eq. (5-4)-(5-7).  

 
∆𝑢𝑢�𝑘𝑘 = 𝑓𝑓(∆𝑢𝑢𝑘𝑘) = �𝛼𝛼𝑖𝑖𝛥𝛥𝛥𝛥𝑘𝑘𝑖𝑖

𝐼𝐼

𝑖𝑖=1

 (5-4) 

 𝒛𝒛𝑘𝑘+1 = 𝐀𝐀𝒛𝒛𝑘𝑘 + 𝒃𝒃∆𝑢𝑢�𝑘𝑘  (5-5) 

 ∆𝑦𝑦�𝑘𝑘 = 𝒄𝒄𝑇𝑇𝒛𝒛𝑘𝑘  (5-6) 

 
 ∆𝑦𝑦𝑘𝑘 = 𝑔𝑔(∆𝑦𝑦�𝑘𝑘) = �𝜅𝜅𝑗𝑗𝛥𝛥𝑦𝑦�𝑘𝑘

𝑗𝑗
𝐽𝐽

𝑗𝑗=1

  (5-7) 

As given in eq (5-4) and (5-7), the static input and output nonlinearities are in the polynomials of 

order 𝐼𝐼𝑡𝑡ℎ and 𝐽𝐽𝑡𝑡ℎ order respectively. The coefficients 𝛼𝛼𝑖𝑖 and 𝜅𝜅𝑗𝑗 representing the input and output 

nonlinearities are going to be estimated using the DRSM model. For simplicity and without losing 

generality, we let 𝐼𝐼 = 𝐽𝐽 the rest of the chapter. For the case of 𝐼𝐼 > 𝐽𝐽 (or 𝐼𝐼 < 𝐽𝐽), the derived results 

still apply if we let 𝜅𝜅𝑗𝑗>𝐽𝐽 = 0 (or 𝛼𝛼𝑖𝑖>𝐼𝐼 = 0).  

With a DRSM model at hand, we identify a Hammerstein-Wiener model in two steps: 1) estimating 

nonlinearity coefficients, 𝛼𝛼𝑖𝑖′s and 𝜅𝜅𝑗𝑗′s, from the DRSM model; 2) identifying linear block using 

the subspace identification method [33]. As discussed in literature [98], we let 𝛼𝛼1 = 𝜅𝜅1 = 1, to 

obtain the unique set of the nonlinearity coefficients of the identified H-W model. The nonlinearity 

of the identified H-W model is up to the nonlinearity of the DRSM model. For example, with a 

quadratic or a cubic DRSM model at hand, we can identify an H-W model with quadratic or cubic 

nonlinearities, respectively.  

To avoid burdening the reader with excessive algebra, we present the algorithm using a quadratic 

DRSM model with three dynamic sub-factors parametrizing the input, as given in (2-9) with n=3. 
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The deviations of the input and output profiles from the corresponding optimal trajectories in 

discrete forms are given by 

 ∆𝑢𝑢𝑘𝑘 = ∆𝑢𝑢0,𝑘𝑘(∆𝑥𝑥1𝑃𝑃0,𝑘𝑘 + ∆𝑥𝑥2𝑃𝑃1,𝑘𝑘 + ∆𝑥𝑥3𝑃𝑃2,𝑘𝑘) (5-8) 

 
∆𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑘𝑘 = �𝛽𝛽𝑖𝑖,𝑘𝑘𝛥𝛥𝛥𝛥𝑖𝑖

3

𝑖𝑖=1

+ ��𝛽𝛽𝑖𝑖𝑖𝑖,𝑘𝑘𝛥𝛥𝛥𝛥𝑖𝑖𝛥𝛥𝑥𝑥𝑗𝑗

3

𝑖𝑖<𝑗𝑗

3

𝑖𝑖=1

+ �𝛽𝛽𝑖𝑖𝑖𝑖,𝑘𝑘𝛥𝛥𝛥𝛥𝑖𝑖2
3

𝑖𝑖=1

 (5-9) 

where ∆𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖∗ for 𝑖𝑖 = 1, 2, 3 is the deviations of the dynamic sub-factors from their optimal 

values. The quadratic input and output nonlinearities coefficients of the H-W model, 𝒉𝒉 =

(𝛼𝛼2 𝜅𝜅2)𝑇𝑇, are going to be estimated from the DRSM model via least square regression as follows, 

 𝒉𝒉 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎‖𝚫𝚫𝐘𝐘𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃(𝛥𝛥𝒙𝒙) − 𝚫𝚫𝐘𝐘𝐇𝐇−𝐖𝐖(𝛥𝛥𝒙𝒙,𝒉𝒉)‖𝐹𝐹2   (5-10) 

‖∙‖F2  is the Frobenius norm[99]. ∆𝐘𝐘DRSM  and ∆𝐘𝐘H−W  are the 𝐾𝐾 × 𝑀𝑀  matrices of the outputs 

predicted by DRSM and H-W model to be identified, respectively, assuming that there are 𝑀𝑀 

simulated runs and 𝐾𝐾 samples during each run. In the case study examined in section 5.3, we 

choose 𝐾𝐾 = 100 and 𝑀𝑀 = 16. To estimate the input and output nonlinearity coefficients of the H-

W model, we will express 𝚫𝚫𝚫𝚫DRSM and 𝚫𝚫𝚫𝚫H−W as a function of 𝛥𝛥𝒙𝒙 and 𝒉𝒉 in the following sub-

sections. As it will become apparent in the following subsections, the identification of the H-W 

model will be done in an iterative fashion. Initially, a linear dynamic state space model will be 

identified ignoring the H-W nonlinear blocks. Then the nonlinear parameters of the vector h of the 

H-W blocks will be identified through a modified version of eq. (5-10). Once an estimate of the 

two nonlinear static blocks is at hand, then the intermediate inputs ∆𝑢𝑢�𝑘𝑘 can be calculated from the 

𝛥𝛥𝑢𝑢𝑘𝑘 values through eq. (5-4) and the values of ∆𝑦𝑦�𝑘𝑘 can be back-calculated from the ∆𝑦𝑦𝑘𝑘 values 

through eq.(5-5). With the ∆𝑢𝑢�𝑘𝑘 and  ∆𝑦𝑦�𝑘𝑘 values at hand an updated linear state space model can 
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be estimated. These two interacting steps are repeated until the algorithm converges and no update 

in the model is obtained. In the following we present the details of this iterative algorithm. 

5.2.1. Formulation of the ∆𝐘𝐘𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 

We first detail the dependence of 𝚫𝚫𝚫𝚫DRSM on the process inputs by rewriting the eq (5-9) in matrix 

form 

 Δ𝐘𝐘𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 = (𝚿𝚿𝚿𝚿)Δ𝐗𝐗  (5-11) 

The (𝑝𝑝 − 1) × 𝑀𝑀 matrix Δ𝐗𝐗 consisting of the deviation values of the dynamic sub-factors in the 

simulated runs is given by 

 Δ𝐗𝐗 = [Δ𝐱𝐱1 Δ𝐱𝐱2 ⋯ Δ𝐱𝐱M] (5-12) 

Each column in Δ𝐗𝐗 consists of 𝑝𝑝 − 1 elements and is given as follows 

 Δ𝐱𝐱m = [𝛥𝛥𝛥𝛥𝑚𝑚,1  ⋯  𝛥𝛥𝛥𝛥𝑚𝑚,3  𝛥𝛥𝛥𝛥𝑚𝑚,12 ⋯  𝛥𝛥𝛥𝛥𝑚𝑚,23  𝛥𝛥𝛥𝛥𝑚𝑚,11  ⋯ ,𝛥𝛥𝛥𝛥𝑚𝑚,33]T (5-13) 

With 𝛥𝛥𝛥𝛥𝑖𝑖𝑖𝑖 = 𝛥𝛥𝛥𝛥𝑚𝑚,𝑖𝑖𝛥𝛥𝛥𝛥𝑚𝑚,𝑗𝑗  and 𝛥𝛥𝛥𝛥𝑖𝑖𝑖𝑖 = 𝛥𝛥𝛥𝛥𝑚𝑚,𝑖𝑖𝛥𝛥𝛥𝛥𝑚𝑚,𝑖𝑖 . The scalar 𝑥𝑥𝑚𝑚,𝑖𝑖  in the above matrices is the 

values of the 𝑖𝑖𝑡𝑡ℎ  factor for the 𝑚𝑚𝑡𝑡ℎ  experiment.  𝚿𝚿  is the 𝐾𝐾 × (𝑅𝑅 + 1) matrix consists of the 

values of shifted Legendre polynomials defined as follows 

 

𝚿𝚿 =

⎣
⎢
⎢
⎡ 𝑃𝑃0,0 𝑃𝑃1,0 ⋯ 𝑃𝑃𝑅𝑅,0

𝑃𝑃0,1 𝑃𝑃1,1 ⋯ 𝑃𝑃𝑅𝑅,1
⋮

𝑃𝑃0,𝐾𝐾−1

⋮
𝑃𝑃1,𝐾𝐾−1

⋱
⋯

⋮
𝑃𝑃𝑅𝑅,𝐾𝐾−1⎦

⎥
⎥
⎤
  (5-14) 
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𝚪𝚪 is a (𝑅𝑅 + 1) × (𝑝𝑝 − 1) matrix consisting the DRSM model parameters and is defined in as 

follows  

 𝚪𝚪 = [𝜸𝜸𝟏𝟏 𝜸𝜸𝟐𝟐 𝜸𝜸𝟑𝟑 𝜸𝜸𝟏𝟏𝟏𝟏 𝜸𝜸𝟏𝟏𝟏𝟏 𝜸𝜸𝟐𝟐𝟐𝟐 𝜸𝜸𝟏𝟏𝟏𝟏 𝜸𝜸𝟐𝟐𝟐𝟐 𝜸𝜸𝟑𝟑𝟑𝟑] (5-15) 

Where each column,  𝜸𝜸𝒒𝒒, is a (𝑅𝑅 + 1) × 1 column vector 𝜸𝜸𝒒𝒒 = (𝛾𝛾𝑞𝑞,1 𝛾𝛾𝑞𝑞,2 … 𝛾𝛾𝑞𝑞,𝑅𝑅)𝑇𝑇 for 𝑞𝑞 =

𝑖𝑖, 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖.  

5.2.2. Formulation of the 𝚫𝚫𝚫𝚫𝐇𝐇−𝐖𝐖 

To obtain the expression of Δ𝐘𝐘𝐇𝐇−𝐖𝐖, we first rewrite the H-W model in the input-output relation 

form as given below by substituting eq. (5-4)-(5-6) and eq. (5-8) into eq. (5-7)and letting the initial 

state variable 𝐳𝐳𝟎𝟎 = 𝟎𝟎,  

 
𝛥𝛥𝑦𝑦𝐻𝐻−𝑊𝑊,𝑘𝑘(𝑥𝑥,ℎ) = �𝜅𝜅𝑗𝑗 �𝒄𝒄𝑇𝑇�𝐀𝐀𝑘𝑘𝒃𝒃�𝛼𝛼𝑖𝑖 �∆𝑢𝑢0,𝑘𝑘�𝛥𝛥𝑥𝑥𝑠𝑠𝑃𝑃𝑠𝑠−1,𝑘𝑘−𝜂𝜂

3

𝑠𝑠=1

�

𝑖𝑖2

𝑖𝑖=1

𝑘𝑘

𝜂𝜂=1

�

𝑗𝑗
2

𝑗𝑗=1

 (5-16) 

Where 𝛥𝛥𝑦𝑦𝐻𝐻−𝑊𝑊,𝑘𝑘 is the output predicted by the H-W model at time instant 𝑘𝑘. By expanding eq. 

(5-16) and letting 𝛼𝛼1 = 𝜅𝜅1 = 1, we rearrange the input-output relation of the H-W model into the 

similar form of the DRSM model. 

 
𝛥𝛥𝑦𝑦𝐻𝐻−𝑊𝑊,𝑘𝑘 = ∆𝑢𝑢0,𝑘𝑘�𝜑𝜑𝑗𝑗,𝑘𝑘∆𝑥𝑥𝑗𝑗

3

𝑗𝑗=1

+ 2∆𝑢𝑢0,𝑘𝑘
2 ���𝛼𝛼2𝜑𝜑𝑗𝑗𝑗𝑗,𝑘𝑘 + 𝜅𝜅2𝜑𝜑𝑗𝑗,𝑘𝑘𝜑𝜑𝑠𝑠,𝑘𝑘�

3

𝑠𝑠>𝑗𝑗

∆𝑥𝑥𝑗𝑗

3

𝑗𝑗=1

∆𝑥𝑥𝑠𝑠

+ ∆𝑢𝑢0,𝑘𝑘
2 ��𝛼𝛼2𝜑𝜑𝑗𝑗𝑗𝑗,𝑘𝑘 + 𝜅𝜅2𝜑𝜑𝑗𝑗,𝑘𝑘

2 �
3

𝑗𝑗=1

𝛥𝛥𝛥𝛥𝑗𝑗2 + 𝑂𝑂(∆𝒙𝒙,𝜶𝜶,𝜿𝜿) 

(5-17) 
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Where 𝑂𝑂(∆𝒙𝒙,𝜶𝜶,𝜿𝜿) is the higher order (>2) term of ∆𝑥𝑥𝑖𝑖′s which cannot be estimated through the 

intermediary DRSM model. The scalars 𝜑𝜑𝑗𝑗,𝑘𝑘 = 𝝍𝝍𝑗𝑗,𝑘𝑘𝒘𝒘, 𝜑𝜑𝑗𝑗𝑗𝑗,𝑘𝑘 = 𝝍𝝍𝑗𝑗𝑗𝑗,𝑘𝑘𝒘𝒘, 𝜑𝜑𝑗𝑗𝑗𝑗,𝑘𝑘 = 𝝍𝝍𝑗𝑗𝑗𝑗,𝑘𝑘𝒘𝒘, with 𝒘𝒘 =

(𝒄𝒄𝑇𝑇𝐀𝐀0𝒃𝒃 𝒄𝒄𝑇𝑇𝐀𝐀1𝒃𝒃 ⋯ 𝒄𝒄𝑇𝑇𝑨𝑨𝐾𝐾−1𝒃𝒃)𝑇𝑇 is a 𝐾𝐾 × 1 column vector.  𝝍𝝍𝑗𝑗,𝑘𝑘 and 𝝍𝝍𝑖𝑖𝑖𝑖,𝑘𝑘 are the 𝑘𝑘𝑡𝑡ℎ row of 

the upper triangular matrices 𝚿𝚿𝐣𝐣 and 𝚿𝚿𝐢𝐢𝐢𝐢 which are given by 

 

𝚿𝚿𝐣𝐣 =

⎣
⎢
⎢
⎡

𝑃𝑃𝑖𝑖,0∆𝑢𝑢0,0 0 ⋯ 0
𝑃𝑃𝑖𝑖,1∆𝑢𝑢0,1 𝑃𝑃𝑖𝑖,0∆𝑢𝑢0,0 ⋯ ⋮

⋮
𝑃𝑃𝑖𝑖,𝐾𝐾−1∆𝑢𝑢0,𝐾𝐾−1

⋮
𝑃𝑃𝑖𝑖,𝐾𝐾−2∆𝑢𝑢0,𝐾𝐾−2

⋱
⋯

0
𝑃𝑃𝑖𝑖,0∆𝑢𝑢0,0⎦

⎥
⎥
⎤
  and 𝚿𝚿ij = 𝚿𝚿i ∘ 𝚿𝚿j (5-18) 

Here ∘ is Hadamard product[91] and 𝐾𝐾 is the number of the simulated data in each experiment.  

By rewriting the eq. (5-17) in matrix form, the Δ𝐘𝐘H−W is expressed as follows,  

  Δ𝐘𝐘H−W = 𝚽𝚽Δ𝐗𝐗 (5-19) 

Where the matrix 𝚽𝚽 is defined as follows 

 𝚽𝚽 = [𝝋𝝋1  𝝋𝝋2  𝝋𝝋3  (𝝋𝝋12𝒉𝒉)  (𝝋𝝋13𝒉𝒉)  (𝝋𝝋23𝒉𝒉)  (𝝋𝝋11𝒉𝒉)  (𝝋𝝋22𝒉𝒉)  (𝝋𝝋33𝒉𝒉)] (5-20) 

With 𝝋𝝋𝑖𝑖 = 𝚿𝚿i𝒘𝒘  is 𝐾𝐾 × 1  column vector while 𝝋𝝋𝑖𝑖𝑖𝑖 = 2[𝚿𝚿𝑖𝑖𝑖𝑖𝒘𝒘  𝚿𝚿𝑖𝑖𝒘𝒘 ∘ 𝚿𝚿𝑗𝑗𝒘𝒘]  and 𝝋𝝋𝑖𝑖𝑖𝑖 =

[𝚿𝚿ii𝒘𝒘  𝚿𝚿i𝒘𝒘 ∘ 𝚿𝚿i𝒘𝒘] are 𝐾𝐾 × 2 matrices.  

5.2.3. Estimation of the Nonlinearity Parameters in 𝒉𝒉 

As we are interested to select the nonlinearity coefficients, 𝒉𝒉, that minimizes the ‖Δ𝐘𝐘DRSM −

Δ𝐘𝐘H−W‖F2 = ‖(𝚿𝚿𝚿𝚿−𝚽𝚽)Δ𝐗𝐗‖F2 regardless the choice of Δ𝐗𝐗, we estimate the value of h by solving 

the following optimization problem. 
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 (𝒉𝒉,𝒘𝒘) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽(𝒉𝒉,𝒘𝒘) = ‖(𝚿𝚿𝚿𝚿) −𝚽𝚽‖𝐹𝐹2   (5-21) 

According to the submultiplicative property of the Frobenius norm[100], ‖(𝚿𝚿𝚿𝚿)∆𝐗𝐗 −𝚽𝚽∆𝐗𝐗‖F2  ≤

‖(𝚿𝚿𝚿𝚿) −𝚽𝚽‖F2 × ‖∆𝐗𝐗‖F2. The obtained 𝒉𝒉 by eq. (5-21) minimizes the upper bond of the mismatch 

between the DRSM model and the H-W model for any given ∆𝐗𝐗.  

As the above optimization problem is nonlinear on 𝒉𝒉 and 𝒘𝒘, we will solve 𝒘𝒘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽(𝒘𝒘|𝒉𝒉)] 

and 𝒉𝒉 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽(𝒉𝒉|𝒘𝒘)] for 𝒘𝒘 and 𝒉𝒉 iteratively. The procedure for estimating the nonlinearities 

are summarized as follows: 

Step 1, let 𝒉𝒉 = 0 , estimate the initial 𝒘𝒘(𝟎𝟎)  by solving 𝒘𝒘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽(𝒘𝒘|𝒉𝒉)] . The obtained 

solution is 𝒘𝒘(𝟎𝟎) = �(𝚿𝚿𝟏𝟏
𝑻𝑻  𝚿𝚿𝟐𝟐

𝑻𝑻  𝚿𝚿𝟑𝟑
𝑻𝑻)𝑻𝑻�

∗
[(𝚿𝚿𝛄𝛄𝟏𝟏)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟐𝟐)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟑𝟑)𝑻𝑻]𝑻𝑻 . 

Step 2,  solve 𝒉𝒉 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽(𝒉𝒉|𝒘𝒘)]  for 𝒉𝒉 with 𝒘𝒘 = 𝒘𝒘(𝟎𝟎) . The obtained solution is, 𝒉𝒉(0) =

��𝝋𝝋𝟏𝟏𝟏𝟏
𝑻𝑻   𝝋𝝋𝟏𝟏𝟏𝟏

𝑻𝑻   𝝋𝝋𝟐𝟐𝟐𝟐
𝑻𝑻   𝝋𝝋𝟏𝟏𝟏𝟏

𝑻𝑻   𝝋𝝋𝟐𝟐𝟐𝟐
𝑻𝑻   𝝋𝝋𝟑𝟑𝟑𝟑

𝑻𝑻 �
𝑻𝑻

  �
∗

×

                                            [(𝚿𝚿𝛄𝛄𝟏𝟏𝟏𝟏)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟏𝟏𝟏𝟏)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟐𝟐𝟐𝟐)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟏𝟏𝟏𝟏)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟐𝟐𝟐𝟐)𝑻𝑻  (𝚿𝚿𝛄𝛄𝟑𝟑𝟑𝟑)𝑻𝑻]𝑻𝑻 

Step 3, update 𝒘𝒘 by solving 𝒘𝒘(𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽�𝒘𝒘(𝑘𝑘)|𝒉𝒉(𝑘𝑘−1)�]  

Step 4, update 𝒉𝒉 by solving 𝒉𝒉(𝑘𝑘) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽�𝒉𝒉(𝑘𝑘)|𝒘𝒘(𝑘𝑘)�] 

Step 5, Repeat Step 3-4 until �𝒉𝒉(𝑘𝑘) − 𝒉𝒉(𝑘𝑘−1)� < 𝜀𝜀  where 𝜀𝜀  is a small threshold value for 

determining convergence. 
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Though we presents identifying a quadratic SISO Hammerstein-Wiener model via a quadratic 

DRSM example here, it can be generalized to dealing with higher order nonlinearities if a DRSM 

model of corresponding nonlinearity is at hand.  

5.2.4. Model Predictive Control 

For batch processes, we are interested in achieving the desired product concentration or qualities 

at the end of the each run. Therefore, we design the following receding horizon MPC controller, 

in which the prediction horizon decreases as the process proceeds in time.  

 
𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑢𝑢𝑖𝑖|𝑘𝑘

�𝑞𝑞1𝑦𝑦�𝑁𝑁|𝑘𝑘
2 + 𝑞𝑞2� 𝑦𝑦�𝑖𝑖|𝑘𝑘2

𝑘𝑘+𝑁𝑁𝑝𝑝−1

𝑖𝑖=𝑘𝑘+1
+ 𝑤𝑤� 𝛿𝛿𝑢𝑢𝑖𝑖|𝑘𝑘2

𝑘𝑘+𝑁𝑁𝑝𝑝−1

𝑖𝑖=𝑘𝑘+1
� 

𝑠𝑠. 𝑡𝑡 𝛿𝛿𝑢𝑢𝑖𝑖|𝑘𝑘 = ∆𝑢𝑢𝑖𝑖|𝑘𝑘 − 𝑢𝑢𝑖𝑖−1|𝑘𝑘;  𝑦𝑦�𝑖𝑖|𝑘𝑘 = ∆𝑦𝑦𝑠𝑠𝑠𝑠,𝑖𝑖 − ∆𝑦𝑦�𝑖𝑖|𝑘𝑘  

       ∆𝑦𝑦�𝑖𝑖|𝑘𝑘 = 𝑔𝑔�∆𝑦𝑦�𝑖𝑖|𝑘𝑘�;    ∆𝑢𝑢𝑖𝑖|𝑘𝑘 = 𝑓𝑓−1(∆𝑢𝑢�𝑖𝑖|𝑘𝑘) 

       𝒛𝒛�𝑖𝑖+1|𝑘𝑘 = 𝐀𝐀𝒛𝒛�𝑘𝑘|𝑘𝑘 + 𝒃𝒃∆𝑢𝑢�𝑖𝑖|𝑘𝑘;   ∆𝑦𝑦�𝑖𝑖|𝑘𝑘 = 𝒄𝒄𝑇𝑇𝒛𝒛�𝑖𝑖|𝑘𝑘;   𝑢𝑢𝐿𝐿 ≤ 𝑢𝑢0𝑖𝑖 + ∆𝑢𝑢𝑖𝑖|𝑘𝑘 ≤ 𝑢𝑢𝑈𝑈  

(5-22) 

Here 𝑦𝑦𝑠𝑠𝑠𝑠,𝑖𝑖  is the set points, the optimal trajectory at time instance 𝑖𝑖 . w is the control action 

weight, 𝑢𝑢𝐿𝐿 and 𝑢𝑢𝑈𝑈 are the lower and upper control limit. The subscript 𝑖𝑖|𝑘𝑘 indicates the estimation 

of the variable value of future instance 𝑖𝑖 while the estimation is done at instance 𝑘𝑘. A Kalman 

Filter[66] is used to update 𝒛𝒛�𝑘𝑘|𝑘𝑘 using the new measurement made at 𝑘𝑘. The function 𝑔𝑔�∆𝑦𝑦�𝑖𝑖|𝑘𝑘� in 

the output nonlinearity function while 𝑓𝑓−1(∆𝑢𝑢�𝑖𝑖|𝑘𝑘) is the inverse function of the input nonlinearity 

function. The nonlinear MPC here requires that the input nonlinear function to be invertible. In the 

MPC using linear state-space model, the intermediate input and output are identical with the input 

and output variables, i.e. ∆𝑦𝑦�𝑖𝑖|𝑘𝑘 = ∆𝑦𝑦�𝑖𝑖|𝑘𝑘 and  ∆𝑢𝑢𝑖𝑖|𝑘𝑘 = ∆𝑢𝑢�𝑖𝑖|𝑘𝑘. So the controller discussed in eq. (5-22) 

is still applicable. 
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As the recursive models, include the linear and H-W model are identified by “sampling” the DRSM 

model with a much higher frequency than the actual measurement frequency, the state variable 

will be updated when there is an available measurement. For example, the recursive models are 

identified by sampling the DRSM every 9 min, while the real measurements are available every 

45 min. Consequently, the state variables will be updated every 45 minutes. The tuning parameters, 

for MPC controller, are 𝑁𝑁𝑝𝑝 , 𝑁𝑁𝑢𝑢 , 𝑞𝑞1 , 𝑞𝑞2  and w. We use 𝑁𝑁𝑝𝑝 = 𝑁𝑁 − 𝑘𝑘 , 𝑁𝑁𝑢𝑢 = 𝑚𝑚𝑚𝑚𝑚𝑚 (10,𝑁𝑁𝑝𝑝)  and 

w=0.05. Since MPC controller the aims to control the end product concentration, the weight for 

mismatch at the end of the batch is ten times larger than those during the batch. Therefore 𝑞𝑞1 =

100 and 𝑞𝑞2 = 10. For the MPC with linear model identified using PRBS experiments (sampling 

every 45 mins), the equivalent controller settings are 𝑁𝑁𝑝𝑝′ = 0.2𝑁𝑁𝑝𝑝, 𝑁𝑁𝑢𝑢′ = 𝑚𝑚𝑚𝑚𝑚𝑚 (2,𝑁𝑁𝑝𝑝′) and 𝑞𝑞2 = 50.  

5.3. Results and Discussions 

We demonstrate the efficacy of the proposed method in silico by considering a reaction example 

in a semi batch reactor where one of the reactants is fed over a time period during the batch. We 

consider two cases of optimal operation; the first one maximizes the product weight at the end of 

the batch and the second one maximizes the product yield, defined as the moles of product per 

moles of reactants fed. We will control the process so it reaches the desired product concentration 

in the above two optimal operating conditions. The batch process is described as follows: 

1
1 1 1

2 1
2 2 2

1
3 3 3

Rxn1:  ,    [ ][ ]   with 0.13  l gmol h

Rxn2:  2 ,        [ ]        with 0.08  l gmol h

Rxn3:  ,          [ ]        with 0.07  h

A B C r k A B k
B D r k B k

C E r k C k

−

−

−

+ → = =

→ = =

→ = =
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We assume a reactor volume of 10 L. Reactant 𝐴𝐴  is loaded at the beginning with an initial 

concentration of 5.0 gmol/L while reactant 𝐵𝐵 is fed in semi-batch mode to reduce the production 

of by-product 𝐷𝐷. The batch time, 𝑡𝑡𝑓𝑓, is 15 h. In practice, one will select the batch time base on the 

available knowledge of the process. If the optimal batch time is one the boundary of the constraint, 

one can increase the batch time and improve the process further using augmented experiments. 

The decision variables for designing the experiments are the amount of reactant 𝐵𝐵 to be fed and 

its feeding profile. We set 75 gmol as the reference value for the total amount of 𝐵𝐵 fed, and we 

will vary it in the range between 50 and 100 gmol. Then the total amount of 𝐵𝐵 fed, 𝐵𝐵𝑇𝑇 is given by 

𝐵𝐵𝑇𝑇 = 75 + 25𝑎𝑎 with −1 ≤ 𝑎𝑎 ≤ +1. We define a reference feeding profile, 𝑢𝑢0(𝑡𝑡), which uses the 

reference amount of 𝐵𝐵 fed. In order to satisfy these conditions, 𝑢𝑢0(𝑡𝑡), will be constrained by 

∫ 𝑢𝑢0(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
0 = 75. There are many possible choices for 𝑢𝑢0(𝑡𝑡), which satisfy the above constraint. 

Without any prior information, it is reasonable to choose the simplest meaningful profile, a linear 

one. As 𝐵𝐵 is a reactant, we choose a decreasing linearly profile in which the initial feed of 𝐵𝐵 is 3 

times that at the end of the batch, i.e. 𝑢𝑢0(0) = 3𝑢𝑢0(𝑡𝑡𝑏𝑏). This results into the following reference 

feeding profile: 𝑢𝑢0(𝜏𝜏) = 7.5 − 5𝜏𝜏, in gmol/h. We select ∆𝑢𝑢0(𝜏𝜏) = 𝑢𝑢0(𝜏𝜏).The flow rate of 𝐵𝐵 for 

the experiments is defined by substitute 𝑢𝑢0(𝜏𝜏) and ∆𝑢𝑢0(𝜏𝜏) in eq.(2-5). Because −1 ≤ 𝑤𝑤(𝜏𝜏) ≤ +1, 

the input profile will vary in the domain of [0,   2𝑢𝑢0(𝜏𝜏)]. The dynamic factor, 𝑤𝑤(𝜏𝜏), will be 

parameterized using the first three shifted Legendre polynomials as given in eq. (2-6). Besides the 

constraints, −1 ≤ 𝑤𝑤(𝜏𝜏) = 𝑥𝑥1 ± 𝑥𝑥2 ± 𝑥𝑥3 ≤ +1 , one additional constraint must be imposed on 

𝑢𝑢(𝜏𝜏), to ensure that the amount of reactant B, fed is the desired one: 
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 𝑡𝑡𝑓𝑓 � �𝑢𝑢0(𝜏𝜏) + ∆𝑢𝑢(𝜏𝜏)𝑤𝑤(𝜏𝜏)�𝑑𝑑𝑑𝑑
1

0
= 75 + 25𝑎𝑎  (5-23) 

This results into 𝑎𝑎 = 3𝑥𝑥1 − 0.5𝑥𝑥2 and reduces the number of independent factors from 4 to 3, 

namely 𝑥𝑥1, 𝑥𝑥2. and 𝑥𝑥3. Since −1 ≤ 𝑎𝑎 ≤ +1., we have −1 ≤ 3𝑥𝑥1 − 0.5𝑥𝑥2 ≤ +1. We design a set 

of 16 experiments for fitting a quadratic DRSM with 3 factors by systematically varying the values 

of 𝑥𝑥1, 𝑥𝑥2and 𝑥𝑥3 satisfying constraints: aforementioned constraints.  

 

Figure 5-1: Input profiles (―) of reactant B parameterized by 3 dynamic sub-factors. The upper 
limit (--) and reference case (--) are also plotted as well. 

The experiments are determined using a D-Optimal design. Among the 16 experiments, 10 are 

needed to estimate the 10 parametric functions, 𝛽𝛽𝑞𝑞(𝜏𝜏)′s, 3 experiments to estimate the Lack-of-Fit 

(LoF) statistic and another 3 are replicates for the estimation of the normal variability of the process. 
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The designed input profiles of the selected experiments are shown in Figure 5-1. The dashed lines 

are reference (in the middle) input profile and the upper limit (at the top) of the design domain. 

While the solid blue lines are the selected input profiles to estimate the DRSM model. In these 

experiments, functions 𝑢𝑢0(𝜏𝜏) and ∆𝑢𝑢(𝜏𝜏) have a linear dependency on time. 

The DRSM model is estimated using the data collected from the designed experiments. In section 

5.3.1 and 5.3.2, we illustrate the proposed single DRSM model approach for process optimization 

and control for two objectives, maximizing the product concentration and maximizing the product 

yield, respectively. In each case, we measure the concentration of 𝐶𝐶 every 45 min, resulting in 20 

measurements for each batch experiment. We further study the effect of lower sampling 

frequencies (10 and 5 measurements in each experiment) on the optimization and control 

performances in section 5.3.3. The control performances for the MPC controllers under different 

disturbances magnitudes are discussed in section 5.3.4.  

5.3.1. Maximizing and Controlling the Production 

With the collected measurements, 20 measurements/batch, we develop a DRSM model as 

discussed previously using 9 Shifted Legendre polynomials (𝑅𝑅 + 1 = 9) parameterizing each 

𝛽𝛽𝑞𝑞(𝜏𝜏) . The predicted output values by the DRSM model are compared with the in silico 

experimental data in Figure 5-2. The DRSM predictions are plotted in blue solid line while the 

experimental data are given in red diamonds. One can observe that the DRSM model approximates 

the nonlinear batch process very accurately. 
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Figure 5-2: Comparison of DRSM model predictions (―) and the experiment measurements () 

We determine the optimal input profile of B maximizing the production of 𝐶𝐶 as described in eq. 

(5-1). The cost function 𝐽𝐽(𝒙𝒙, 𝜏𝜏) is defined as 𝐽𝐽(𝒙𝒙, 𝜏𝜏) = −𝑦𝑦(𝜏𝜏) × 𝑉𝑉, where V is the reactor volume. 

The obtained optimal values for the dynamic sub-factors are 𝒙𝒙∗ = (0.2,−0.8, 0) and the optimal 

batch time is 𝑡𝑡𝑓𝑓∗ = 8.7 h. The maximum product concentration is 2.90 gmol/L and the maximum 

product is 29.0 gmol. The determined optimal input profile (upper part) is plotted in Figure 5-3. 

The maximum value for the input profiles and the reference profiles are plotted in dashed lines as 

well. To further confirm the obtained optimization result, we run the batch process with the 

determined optimal input profile and compare the resulting optimal output with the one predicted 

by the DRSM model. Both output profiles, the simulated (in blue) and predicted (in red), are 
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plotted in Figure 5-3 and they are indistinguishable, which verifies again that the DRSM model is 

quite accurate. 

 

Figure 5-3: Optimal input (upper) and output (lower) profiles for the case of maximizing product 
concentration. 

To test the MPC based on the identified models, we introduce a severe step disturbance in the rate 

constant 𝑘𝑘1. The rate constant for the main reaction, 𝑘𝑘1, is decreased by 30% at 𝑡𝑡 = 1.5 h. This 

can be caused by some toxic substrates that entered the reactor along with the feeding of reactant 

B. The controller is designed to make the concentration of product C meet the desired concentration 

at the end of the batch by manipulating the feed of reactant B using the receding horizon control 

given in eq. (5-22). The optimal batch duration is 8.7 h. The sampling interval for the state-space 

model estimated using the DRSM model is 9 min. Therefore the total number of time instances 
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during the batch is 𝑁𝑁 = 59. However, the measurement is available every 45 min, so the number 

of measurements during the batch is 11. The upper limit for the manipulated input is 15 gmol/h, 

the highest flow of B allowed by the actuator. The lower limit is zero. Here we identify three local 

models, a linear and a Hammerstein-Wiener model from the DRSM model, notated as Linear and 

H-W respectively. And a linear model by conducting PRBS experiment round the optimal input 

trajectory with 11 measurements, notated as PRBS.  

 

Figure 5-4: Input (left) and output (right) profiles under MPC for the case of maximizing product 
concentration with k1 decreases by 30% at t=1.5 hours 

The inputs calculated by MPCs based those models are plotted in the left of Figure 5-4 while the 

corresponding output profiles are plotted in the right. The final product concentration, defined as 

the controller’s set point, is 2.90 gmol/L and is denoted by a red dot. The time evolution of the 
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output under the disturbance without the MPC is plotted in magenta circles with an end product 

concentration at 2.60 gmol/L, substantially less than the desired value. The evolution of the output 

values, when the MPC controller is active, is plotted in a blue continuous line (Linear) and red 

dash-dotted line (H-W) in the right of Figure 5-4. Both the linear and nonlinear controller have 

increased the inflow of B (left) and lead to a final concentration at 2.88 gmol/L, quite close to the 

set point. In contrast, the MPC based on the model identified via PRBS experiment leads to a final 

concentration of 2.81 gmol/L (in purple dotted line), less than those based on the models estimated 

from the DRSM model. Due to limited number of measurements, PRBS model is not estimated in 

desired accuracy. Therefore, the identified model based on DRSM is more favorable 

5.3.2. Maximizing and Controlling Product Yield 

For the case of the maximizing the product yield, we still use the same DRSM model estimated in 

section 5.3.1. As the DRSM model accurate represents the process behaviors in the entire design 

domain of interest, we can apply the same estimated DRSM model for different optimization and 

control aims. We only need to update the cost function for the optimization problem. Here we 

define the cost function as 𝐽𝐽(𝒙𝒙, 𝜏𝜏) = −2𝐶𝐶(𝜏𝜏∗) [𝐴𝐴0 + 𝐵𝐵𝑇𝑇(𝜏𝜏∗)]⁄ , the negative yield of product. 

Since we are going to maximize the yield, we use the negative sign in the cost function. The 

product yield is the ratio of moles of the product to the total moles of reactant fed into the reactor. 

Here 𝐴𝐴0  is fixed at 50 gmol, 𝐵𝐵𝑇𝑇(𝜏𝜏∗) = ∫ 𝑢𝑢(𝜏𝜏)𝑑𝑑𝑑𝑑𝜏𝜏∗

0  and 𝐶𝐶(𝜏𝜏∗) = 𝑦𝑦(𝜏𝜏∗) × 𝑉𝑉, where 𝑦𝑦(𝜏𝜏∗) is the 

concentration of 𝐶𝐶 at time instance 𝜏𝜏∗. By maximizing the yield, we obtain the optimal solution as 

𝒙𝒙∗ = (0,−0.4, 0.6) and the optimal batch time 𝑡𝑡𝑓𝑓∗ = 7.05 h. The maximum yield is 46.8%. Since 

the reaction is 𝐴𝐴 + 𝐵𝐵 → 𝐶𝐶, two moles of reactant are needed for one mole of product. This justifies 
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the multiplication by 2 in the yield defined in the cost function. The corresponding product 

concentration is 2.50 gmol/L, while 56.7 gmol B is used for producing 25 gmol 𝐶𝐶. In contrast, for 

the maximum production case, 29 gmol 𝐶𝐶  is obtained with 82.8 gmol 𝐵𝐵  consumed. The 

determined optimal input profile and both the simulated and predicted output profiles are plotted 

in Figure 5-5. It has been seen that the predicted optimal output profile (in red solid line) and the 

simulated one (in blue dashed line) are almost identical. which indicates that the DRSM prediction 

for the optimal output is very accurate.  

 

Figure 5-5: Optimal input (upper) and output (lower) profiles for the case of maximizing product 
yield. 

The disturbances and the controller settings are the same with the ones in Section 5.3.1. The batch 

duration now is 7.1 h and only 9 measurements are available during the batch. Three local models 
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(Linear, H-W and PRBS) are identified and the control performances based on these models are 

compared. As shown in Figure 5-6, the final product concentration controlled using H-W model 

meets the target at 2.46 gmol/L. However, the one controlled based on linear model is 2.40 gmol/L, 

slightly lower than the target value. The one controlled using PRBS model is even lower at 2.34 

gmol/L but higher than the open-loop one (2.21 gmol/L). The control performances based on the 

model identified from DRSM again are better when the measurements are limited.  

 

Figure 5-6: Input (left) and output (right) profiles under MPC for the case of maximizing product 
yield with k1 decreases by 30% at t=1.5 hours 

5.3.3. Performances of the Proposed Method with Fewer Measurements 

For the measurements of certain species, the sampling frequency might be very low. It is of great 

interest to examine the performances of the proposed approach when the number of experiments 
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are fewer than the previously discussed cases. Here we reduces the number of measurements taken 

during each batch from 20 to 10 and 5. The corresponding sampling interval increased form 45 

mins to 1.5 and 3.0 hours. In each case, we estimate a quadratic DRSM model. The number of 

shifted Legendre polynomials of each DRSM model is given in column 2 of Table 1. As the 

number of measurements obtained in each batch decrease, the allowed numbers of shifted 

Legendre polynomials parameterizing the parametric function in the DRSM models decreases to 

5 and 4, respectively.  

Table 5-1: Process optima obtained using the DRSM estimated with different number of 
measurements in each experiment for the cases of maximizing product weight and 
maximizing yield 

Samples/Batch R+1 Maximizing Product Maximizing Yield 

  𝐶𝐶𝐶𝐶 (gmol/L) Time (h) Yield (%) 𝐶𝐶𝐶𝐶 (gmol/L) Time (h) 

20 9 2.90 8.70 46.8 2.50 7.05 

10 5 2.90 8.40 46.7 2.50 7.20 

5 4 2.90 8.70 46.5 2.50 6.75 

 

With each of the two DRSM model, we maximize the product concentration and the product yield 

as discussed previously. The product concentration at the end of the batch, 𝐶𝐶𝐶𝐶, for the case of 

maximizing product concentration is reported in column 3 of Table 5-1 and the corresponding 

optimal batch times are listed in column 4. It has been seen that the obtained process optima of the 

DRSM models estimated using different sampling frequencies (20, 10 and 5 per batch) are 

identical, i.e. 2.90 gmol/L. This demonstrates that the process optimization using a DRSM model 

provides satisfying process optimum even when the sampling frequency becomes very low. As we 
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aimed to maximize the product concentration itself, the optimal batch time does not need to be the 

shortest. Therefore, we can see that the obtained optimal batch times are a little different from each 

other, varying from 8.40 to 8.70 hours. 

The obtained yield for the case of maximizing product yield has been listed in column 5 of Table 

5-1. As the number of measurements in each batch for estimating the DRSM model decreases from 

20 to 5, the resulted optimal yield becomes slightly lower, from 46.8% to 46.5%. Therefore, we 

confirm that the achieved optimization performances using the DRSM model are almost identical, 

regardless the sampling frequencies. The corresponding product concentration at the end of each 

batch and the optimal batch time are reported in column 6 and 7 respectively. 

We here again identify in the vicinity of the obtained optimal trajectories three recursive models, 

the linear state-space model using PRBS experiment, the linear model and H-W model from the 

DRSM model. The close-loop performances of the MPC controller based on these three models 

are shown in column 2-4 of Table 5-2 for the case of maximizing the product concentration and in 

column 6-8 for the case of maximizing product yield. The optimal product concentrations reported 

in column 3 and 6 of Table 5-2 serve as the set points for the corresponding cases. The open-loop 

product concentrations obtained without any control action are given in column 5 and 9, 

respectively. The disturbance considered here is that 𝑘𝑘1 drops by 30% at t=1.5 hours. 
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Table 5-2: Comparison of control performances using different reclusive models with different 
sampling frequencies and under different disturbances. 

∆𝑘𝑘1 = −30%, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 1.5 ℎ 

Samples/Batch Maximizing Product Maximizing Yield 

 H-W Linear PRBS OL H-W Linear PRBS OL 

20 2.88 2.88 2.81 2.60 2.46 2.40 2.34 2.21 

10 2.84 2.82 2.77 2.59 2.41 2.34 NA 2.21 

5 2.78 2.77 NA 2.60 2.36 2.35 NA 2.21 

∆𝑘𝑘1 = −20%, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 1.5 ℎ 

20 2.89 2.88 2.85 2.72 2.47 2.44 2.41 2.33 

10 2.88 2.87 2.83 2.72 2.46 2.41 NA 2.33 

5 2.84 2.83 NA 2.72 2.42 2.41 NA 2.33 

∆𝑘𝑘1 = −40%, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 1.5 ℎ 

20 2.82 2.82 2.75 2.46 2.40 2.33 2.25 2.08 

10 2.75 2.74 2.69 2.45 2.34 2.26 NA 2.07 

5 2.70 2.68 NA 2.46 2.26 2.26 NA 2.08 

∆𝑘𝑘1 = −30%, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 0.5 ℎ 

20 2.88 2.88 2.82 2.59 2.44 2.39 2.34 2.19 

10 2.86 2.84 2.79 2.58 2.41 2.34 NA 2.18 

5 2.79 2.78 NA 2.59 2.36 2.36 NA 2.19 

∆𝑘𝑘1 = −30%, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 3 ℎ 

20 2.88 2.88 2.81 2.60 2.45 2.39 2.34 2.21 

10 2.84 2.82 2.77 2.59 2.41 2.34 NA 2.21 

5 2.78 2.77 NA 2.60 2.36 2.35 NA 2.21 
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According to the results reported in the row 3-6 of Table 5-2, if there is no control action, the 

product concentrations at the end of each run are 2.60 gmol/L and 2.21 gmol/L for the maximizing 

product concentration and yield, respectively. As the number of measurements decreases from 20 

to 10, the close-loop product concentration obtained by a MPC using H-W model reduces from 

2.88 gmol/L to 2.84 gmol/L for the case of maximizing product concentration. However, it still 

provides best control performances among the three recursive models examined here. In addition, 

the MPC using the model identified with PRBS experiment, provides the worst control 

performances. When the number of measurements during each run further reduces to 5, the control 

performances of the MPCs using the H-W model and linear model identified from the DRSM 

model becomes worse, from 2.84 and 2.82 gmol/L to 2.78 and 2.77 gmol/L, respectively. However, 

the linear model with PRBS experiment is not identifiable when the measurement is so few. As 

the sampling interval is 3.0 hours, there are only two measurements taken during the 8.4 or 8.7 

hours batch time. Therefore a “NA” is filled in the cell of the table. In fact, if there is no recursive 

model and the corresponding MPC, we can assume that the obtained product concentration is 2.60 

gmol/L, a much lower value than the ones achieved using the recursive models by the DRSM 

model. 

The differences in control performance between the controllers based on H-W model and linear 

model identified from DRSM model becomes more significant for the case of maximizing yield 

than the case of maximizing product concentration. This may be because that the former case is 

more nonlinear than the latter. When there are 10 measurements, the concentration obtained using 

the H-W model is 2.41 gmol/L while the one obtained using the linear model by the DRSM model 

is 2.34 gmol/L. As the sampling frequencies further decrease, the obtained product concentration 
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at the end of the batch using the two model are about the same. This may be because that the 

number of measurements during each run is too few. When there are only 5 measurements in each 

experiment, the sampling interval is 3 hours. The optimal batch time for maximizing yield case is 

about 7 hours. Consequently, the state variables are only updated twice during the operation. As 

the Kalman filter is used only to update the state variable instead of adapting the model parameters 

to the disturbances, even the MPC using the H-W model does not provide a final product 

concentration close to the set point value. However, it is still much better than the MPC based on 

the model identified using PRBS experiments, which is not identifiable due to the too few 

measurements. The optimal batch time for the maximizing yield case is about 7.0 hours, while the 

sampling intervals corresponding to the sampling frequencies of 10 and 5 measurements/ batch are 

1.5 and 3.0 hours. As a result, the number of measurements during each optimal run is 4 and 2, 

too few for identifying a linear state-space model. In such a case, the control using a DRSM model 

is the only feasible way to achieve a product concentration higher than the open-loop concentration. 

5.3.4. Control Performances under Different Disturbances Magnitudes 

We also examine the effect of different disturbances introduced at different time instants on the 

control performances. In row 8-10 and 12-14 of Table 5-2, we examined the disturbances of 𝑘𝑘1 

drops by 20% and 40% at t=1.5 hours. Comparing these results with the ones listed in row 4-6 for 

the case that 𝑘𝑘1 drops by 30% at t=1.5 hours, we can see that as the disturbances increase, i.e. 𝑘𝑘1 

decreases by 20% to 40%, the obtained product concentrations using all three kinds of models 

become lower. However, the controller using the H-W model from the DRSM model still provides 

the best control performances while the one using the linear model by the PRBS experiments 

provides the worst performances.  
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In the last 8 rows of Table 5-2, we examine the effect of the disturbance introduced at different 

time instants, i.e. at t=0.5 and 3 hours. As the open-loop results are not affected much by the 

starting time instants of the disturbance, the control performance are almost identical. However, 

the results have demonstrated again the controller using the H-W model provides the product 

concentrations closest to the desired values while the controller using the linear model by PRBS 

experiments, provides the least close values. 

5.4. Conclusions 

In this chapter, we present a new data-driven dynamic model, the DRSM, for optimizing and 

controlling batch processes. Based on the DRSM accurately approximating the batch processes, 

one can determine the optimal operation conditions. Then a local recursive models, including 

linear state-space model and Hammerstein-Wiener model, can be identified by directly “sampling” 

the DRSM in the vicinity of the optimal input profiles without conducting another set of 

experiments. In this way, process optimization and control are achieved based on a single data-

driven dynamic model, which saves experimental effort to identify local dynamic models, 

especially when the desired optimal operating conditions are changed, for example, from 

maximum production to maximum yield. In addition, when the measurement during the batch 

operation is too limited to estimate state-space model, sampling the DRSM may be the most 

attractive way to identify dynamic models with satisfactory accuracy for control purposes. 

The effectiveness of this proposed method has been verified by the in silico nonlinear reactions in 

semi-batch reactor. The obtained process optimum compromises little as the number of 

measurements during each experiment decreases. The control performances based on the recursive 
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models, including the linear model via PRBS experiments, the linear and nonlinear models 

estimated from the DRSM, become worse. However, in all cases examined, the MPC based on H-

W model estimated using the DRSM model always provides the best control performance. In 

addition, when the sampling frequency becomes quite low, say 5 measurements per batch, the 

recursive model is still identifiable through the DRSM model, but not via the PRBS experiment. 

Therefore, the identification via DRSM is a more favorable approach in the situation when the 

sampling frequency is low.  



114 

 

6. Conclusions and Future Work 

In this thesis, we advance the two data-driven modeling concepts, the DoDE and the DRSM, for 

the purposes of process optimization and control. There are three major contributions, 

improvements to DoDE of this research work: 1) we have made two methodological improvements 

to the DoDE approach; 2) we have developed a new DRSM methodology for modeling both 

continuous and batch processes; 3) we have proposed the single model approach, using a DRSM 

model, for both process optimization and control purposes. All the proposed approaches have been 

examined using representative nonlinear processes, which demonstrates the efficacy the 

methodologies as data-driven tools for process optimization and control purposes. In this chapter, 

we summarized the three aforementioned contributions. The future work related to each 

methodological improvement has been discussed in the corresponding section as well. . 

6.1. Methodological Improvements to DoDE 

6.1.1. Conclusions for the Improved DoDE 

We have discussed two improvements to the DoDE methodology in Chapter 3. The first one 

focuses on improving the design of the input domain using the prior knowledge about the process 

characteristics. Though the input domain has a significant impact to the obtained process optimum, 

the ways to select better input domain has not been discussed yet. We use two different types of a 

priori knowledge to illustrate the proposed approaches and examine it in two representative classes 

of the biopharmaceutical processes, the set of eight SMF processes and the Hybridoma cell culture. 

The refined input domains lead to higher process optima in both two classes of biopharmaceutical 
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processes. These case studies demonstrate that by incorporating the process knowledge into the 

DoDE framework, one can further improve the optimal performance of the process at hand.  

The second methodological improvement of the original DoDE methodology addresses the 

minimization of the initial number of experiments. It is motivated by the fact that the process 

optimization task in industry has to be completed within tight time and budgetary constraints. To 

minimize the number of the initial experiments, one should initially aim for a linear RSM. The 

predicted optimum is considered “tentative” until its prediction uncertainty is estimated and is 

shown to satisfy an uncertainty upper limit. If the uncertainty of the optimal point is larger than 

the maximum allowed, a suboptimal point of operation is sought that will satisfy the uncertainty 

constraint.  

6.1.2. Future Work related to DoDE 

The ways to reduce the initial number of DoDE experiments could be further developed into an 

evolutionary DoDE approach. After one runs the process at the initial optimal point obtained using 

the initial RSM as discussed in chapter 3, a new data point is obtained, which can be used to update 

the RSM model and a new optimal point will be obtained using the updated model. If we repeated 

these steps, we expect to continuously improve the process performance with minimal number of 

experiments, which meets the industrial demand for completing the process optimization tasks 

under tight time and budgetary constraints. We have presented such an evolutionary DoDE 

approach, described in Figure 6-1, at AICHE 2016[101]. 
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Figure 6-1: Schematic diagram for evolutionary DoDE operations 
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It has been shown in the two case studies, the penicillin fermentation and hybridoma cell culture, 

examined in the presentation that the evolutionary DoDE approach leads to close process optimum 

to the ones obtained using the model-based optimization. 

To complete the evolutionary DoDE approach, one may consider to develop a systematic 

procedure to refine the input domain when one notices that the present domain is not the best one. 

As the input domain affects significantly the obtained process optimum, it is of great interest to 

update the input domain appropriately. In the previous AICHE presentation, we consider the 

relaxation of the activated constraint (boundary of the input domain) by 20%. However, further 

investigation should be made concerning whether such a choice of relaxation is an optimal one. 

6.2. New DRSM Methodology 

6.2.1. Conclusions for DRSM-2 

In Chapter 4, we have presented here a new Dynamic Response Surface Methodology, DRSM-2, 

for the modeling of both continuous and batch processes with various duration. In contrast, the 

original DRSM methodology is only capable of modeling batch processes with fixed duration. The 

key idea of the DRSM-2 approach is to define a new independent variable 𝜃𝜃 as an exponential 

transformation of time. The new method also allows the utilization of non-equidistant data or 

missing data which makes the DRSM-2 approach have the potential to use historical data to save 

the experimental cost for the model development. 

In addition, we proposed a systematic procedure to determine the most appropriate values of the 

decision variables that influence the structure of the DRSM model. Three decision variables, the 
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time constant, 𝑡𝑡𝑐𝑐, the polynomial order, 𝑅𝑅, as well as the model class, C, are considered. The choice 

of the most appropriate values of these decision variables within each model class is determined 

using two statistics, the BIC and the LoF. We select the DRSM-2 model with the smallest BIC 

value and an insignificant LoF. Moreover, we pointed out that the choices of 𝑡𝑡𝑐𝑐  and 𝑅𝑅𝑞𝑞 , 

determining the fastest dynamics represented by the DRSM-2 model are also constrained by the 

sampling interval. 

The DRSM-2 approach has been applied to model two nonlinear processes, a continuous propylene 

polymerization and a semi-batch penicillin fermentation. The results clearly demonstrate that the 

DRSM-2 model provides an accurate representation of the dynamic behaviors of the processes 

examined. 

6.2.2. Future Work related to DRSM-2 

The estimation of the DRSM-2 model utilizes the unconstrained linear regression in each iteration 

of the stepwise regression. It may be of interest to use regularized regression, such as ridge 

regression[102, 103] or LASSO regression[104, 105], to estimate the model parameters. As we 

pointed out in Chapter 4, when the sampling constraint given in eq.(4-15) is violated, the DRSM-

2 model predictions will exhibit oscillations between the two measurements. We consider such 

oscillation is caused by the DRSM-2 model representing the dynamics faster than the sampling 

frequency. As the regularization methods are known for the capability of reducing the effect of 

overfitting, it is of interest to refine the DRSM-2 model estimation using the regularized regression. 

In addition, we are interested to see if a single DRSM model can represent the increasing and 

decreasing MFI cases of the polymerization process discussed in Chapter 4. The first step for 
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developing a single model is to combine the input domain. The preliminary thoughts on the design 

of a single input domain for both increasing and decreasing MFI cases are given as follows 

 (𝑥𝑥4 − 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥4) > 𝜀𝜀1
(𝑥𝑥2 − 𝑥𝑥4)(𝑥𝑥4 − 𝑥𝑥3) > 𝜀𝜀1
(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥3 − 𝑥𝑥1) > 𝜀𝜀1
(𝑥𝑥3 − 𝑥𝑥1)(𝑥𝑥4 − 𝑥𝑥1) > 𝜀𝜀1

(𝑥𝑥4 − 𝑥𝑥1)[𝑥𝑥2 − (1 + 𝛿𝛿)𝑥𝑥3 + 𝛿𝛿𝑥𝑥1] < 𝜀𝜀2

 (6-1) 

The above input domain is obtained by combining the input domains given by eq.(4-27) and 

eq.(4-31). We here propose to choose 𝜀𝜀1 = 0.01 and 𝜀𝜀2 = −0.01. The ramp rate, 𝑎𝑎, has the same 

magnitude as discussed previously, but the its sign is determined by the values of 𝑢𝑢1 and 𝑢𝑢4 by  

 �𝑎𝑎 > 0, 𝑖𝑖𝑖𝑖  𝑢𝑢4 > 𝑢𝑢1
𝑎𝑎 < 0,         𝑖𝑖𝑖𝑖  𝑢𝑢4 < 𝑢𝑢1

 (6-2) 

The factors 𝑥𝑥𝑖𝑖 ’s for the DoDE experiments are defined as in eq. (4-25) and in the interval of 

[−1, +1]. The ratio, 𝛿𝛿, reduces the overshoot/undershoot resulting from the selected input profile. 

The value of 𝛿𝛿 can be selected by prior process knowledge. We here assume 𝛿𝛿 = 1. By combining 

the input domain, we can reduce the number of experiments required for estimating the DRSM-2 

model by half. Further examination of the proposed method worth the thorough discussion in a 

journal paper.  



120 

 

6.3. A Single DRSM Model for Optimization and Control 

6.3.1. Conclusions for Optimization and Control using DRSM 

We have proposed a single model approach, using a DRSM model, for optimizing and controlling 

batch processes in Chapter 5. Based on the DRSM model accurately approximating the batch 

processes, one can determine the optimal operation conditions. Then a local recursive models, 

including linear state-space model and Hammerstein-Wiener model, can be identified by directly 

by “sampling” the DRSM in the vicinity of the optimal input profiles without conducting another 

set of experiments. In addition, when the measurement during the batch operation is too limited to 

estimate state-space model, sampling the DRSM model may be the most attractive way to identify 

dynamic models with satisfactory accuracy for control purposes. 

The effectiveness of this proposed method has been verified by the in silico nonlinear reactions in 

semi-batch reactor. The obtained process optimum compromises little as the number of 

measurements during each experiment decreases. The control performances based on the recursive 

models, including the linear model via PRBS experiments, the linear and nonlinear models 

estimated from the DRSM model, become worse. However, in all cases examined, the MPC based 

on H-W estimated using the DRSM model always provides the best control performance. In 

addition, when the sampling frequency becomes quite low, say 5 measurements per batch, the 

recursive model is still identifiable through the DRSM model, but not via the PRBS experiment. 

Therefore, the identification via DRSM is a more favorable approach in the situation when the 

sampling frequency is low. 
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6.3.2. Future Work Related to Control using DRSM Model 

The identification of nonlinear recursive model using a DRSM model discussed in this research 

work is limited to Hammerstein-Wiener model, which accounts for input and output nonlinearities, 

but not the nonlinearities of the interactions between input and output variables. In the future, we 

are interested to identify the nonlinear recursive model with more flexible form of nonlinearities. 

An example quadratic SISO nonlinear dynamic model is given as follows, 

 𝒚𝒚𝑘𝑘 = 𝒂𝒂𝑇𝑇𝒚𝒚𝑘𝑘−1 + 𝒂𝒂2𝑇𝑇𝒚𝒚𝑘𝑘−12 + 𝒃𝒃𝑇𝑇𝒖𝒖𝑘𝑘−1 + 𝒃𝒃2𝑇𝑇𝒖𝒖𝑘𝑘−12 + 𝒄𝒄𝑇𝑇𝒚𝒚𝑘𝑘−1⨂𝒖𝒖𝑘𝑘−1 (6-3) 

Where the scalar yk  is the output at time instant k. 𝒚𝒚𝑘𝑘−1  is a 𝑛𝑛 × 1 column vector defined as 

𝒚𝒚𝑘𝑘−1 = [𝑦𝑦𝑘𝑘−1  𝑦𝑦𝑘𝑘−2  ⋯  𝑦𝑦𝑘𝑘−𝑛𝑛]𝑇𝑇. 𝒚𝒚𝑘𝑘−12 = 𝒚𝒚𝑘𝑘−1⨂𝒚𝒚𝑘𝑘−1, and ⨂ is the Kronecker product[106]. 𝒖𝒖𝑘𝑘−1 

is a 𝑚𝑚 × 1 column vector defined as 𝒖𝒖𝑘𝑘−1 = [𝑢𝑢𝑘𝑘−1  𝑢𝑢𝑘𝑘−2  ⋯  𝑢𝑢𝑘𝑘−𝑚𝑚]𝑇𝑇  and 𝒖𝒖𝑘𝑘−12 = 𝒖𝒖𝑘𝑘−1⨂𝒖𝒖𝑘𝑘−1 . 

The model parameters to be estimated are 𝒂𝒂,  𝒂𝒂2, 𝒃𝒃, 𝒃𝒃2 , and 𝒄𝒄. They are 𝑛𝑛 × 1, 𝑛𝑛2 × 1, 𝑚𝑚 × 1, 

𝑚𝑚2 × 1 and 𝑚𝑚𝑚𝑚 × 1 column vectors, respectively. The estimation of the model parameters can be 

achieved using use the regularized identification methods[107, 108]. With the new identification 

method, we expect to 1) identify nonlinear recursive model with nonlinear interactions between 

the input and the output variables; 2) estimate higher order nonlinearities using lower order DRSM 

model. For example, we can estimate cubic nonlinearities using a quadratic DRSM model.  
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8. Appendix A: Process Simulations 

8.1. Penicillin Fermentation 

The penicillin fermentation examined in the thesis are from the work by Bajpai and Reuss[34]. 

Substrate (s) is fed in semi-batch mode to produce penicillin (p) and support the growth of biomass 

(x). The mathematical descriptions with 4 ordinary differential equations are given as follows 

/ /

                 

1

 u      

f

f
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x s p s m f
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dx xx
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The rate constants reported by Riascos and Pinto[49] are listed in the following table. 

Table 8-1: Parameters of Penicillin fermentation 

Parameter Definition Value 

𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 Max biomass specific growth rate (h−1) 0.11 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 Maximum specific production rate (gP/gXh) 0.0055 

𝐾𝐾𝑋𝑋 Saturation parameter for biomass growth (gS/gX) 0.006 
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𝐾𝐾𝑃𝑃 Saturation parameter for production (gs/L) 0.0001 

𝐾𝐾𝑖𝑖𝑖𝑖 Inhibition parameter for production (gs/L) 0.1 

𝐾𝐾𝑑𝑑 Product degradation rate (h−1) 0.01 

𝐾𝐾𝑚𝑚 Saturation parameter for maintenance consumption (gs/L) 0.0001 

𝑚𝑚𝑠𝑠 Maintenance consumption rate (gs/gXh) 0.029 

𝑌𝑌𝑋𝑋 𝑆𝑆⁄  Yield factor for substrate to biomass (gX/gS) 0.47 

𝑌𝑌𝑃𝑃 𝑆𝑆⁄  Yield factor for substrate to product (gP/gS) 1.2 
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8.2. Hybridoma Cell Culture 

The Hybridoma cell culture examined in the thesis are from the work by Nguang. et. al[50]. Two 

substrates, glucose (Glc) and glutamine (Gln) are fed in semi-batch mode to support the growth of 

cells (xv) and produce antibody (MAb). Ammonia (Amm) and Lactate (Lac) are toxic byproduct. 

The mathematical descriptions consisting of 7 ordinary differential equations are given as follows 
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The rate constants reported in the paper [50] are listed in the following table. 
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Table 8-2: Parameters of Hybridoma cell culture 

Parameter Value Parameter Value 

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 1.09 day−1 𝑘𝑘𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  0.69 day−1 

𝑌𝑌𝑋𝑋𝑋𝑋 𝑔𝑔𝑔𝑔𝑔𝑔⁄  1.09 × 108 cells mmol−1 𝑌𝑌𝑋𝑋𝑋𝑋 𝑔𝑔𝑔𝑔𝑔𝑔⁄  3.8 × 108 cells mmol−1 

𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔 0.17 mmol 10−8 cells day−1 𝐾𝐾𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔  19.0 mM 

𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔 1.0 mM 𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔 0.3 mM 

𝛼𝛼0 2.57 mg 10−8 cells day−1 𝑘𝑘𝜇𝜇 0.02 day−1 

𝛽𝛽 0.35 mg 108 cells day−1 𝑘𝑘𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙  0.01 day−1 mM−1 

𝑘𝑘𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎  0.06 day−1 mM−1 𝑘𝑘𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔  0.02 mM 

𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑔𝑔⁄  1.8 mmol mmol−1 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔⁄  0.85 mmol mmol−1 
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8.3. Propylene Polymerization 

The propylene polymerization process used to examine the data-driven modeling approach is 

developed based on the literatures [9, 89]. The polymerization process is operated with high 

recycle ratio, which makes it behave like a CSTR. Therefore, we assume the polymerization 

process proceed in a non-isothermal CSTR. We here consider five reaction steps including the site 

activation, chain initiation, chain propagation, chain transfer and site deactivation. The reactions 

are listed in the second column of the following table. The reacting species are potential catalyst 

sites (𝑆𝑆𝑃𝑃), co-catalyst (𝐴𝐴), activated site (𝑃𝑃0), by-product (𝐵𝐵), monomer (𝑀𝑀) , live polymer with 

length i (𝑃𝑃𝑖𝑖), hydrogen (𝐻𝐻2),dead polymer with length i (𝑄𝑄𝑖𝑖) and dead catalyst site (𝑆𝑆𝐷𝐷). The rate 

constant and the corresponding units are given in column 3 and 4, respectively. 

Table 8-3: Kinetic mechanism and rate constants for the propylene polymerization 

Reaction Step Reaction Rate Constant Unit 

Site Activation 𝑆𝑆𝑃𝑃 + 𝐴𝐴
𝑘𝑘𝐴𝐴�� 𝑃𝑃0 + 𝐵𝐵 kA = 7.04 ∙ 102e−12 RgT⁄  l/gmol/s 

Chain Initiation 𝑃𝑃0 + 𝑀𝑀
𝑘𝑘𝑃𝑃�� 𝑃𝑃1 kP = 6.30 ∙ 108e−10 RgT⁄  l/gmol/s 

Chain Propagation 𝑃𝑃𝑖𝑖 + 𝑀𝑀
𝑘𝑘𝑃𝑃�� 𝑃𝑃𝑖𝑖+1 kP = 6.30 ∙ 108e−10 RgT⁄  l/gmol/s 

Chain Transfer 𝑃𝑃𝑖𝑖 + 𝐻𝐻2
𝑘𝑘𝑇𝑇𝑇𝑇�⎯� 𝑃𝑃0 + 𝑄𝑄𝑖𝑖 kTH = 2.22 ∙ 1010e−14 RgT⁄  l/gmol/s 

𝑃𝑃𝑖𝑖 + 𝑀𝑀
𝑘𝑘𝑇𝑇𝑇𝑇�⎯� 𝑃𝑃0 + 𝑄𝑄𝑖𝑖 kTM = 2.76 ∙ 107e−14 RgT⁄  l/gmol/s 

𝑃𝑃𝑖𝑖
𝑘𝑘𝑇𝑇𝑇𝑇�� 𝑃𝑃0 + 𝑄𝑄𝑖𝑖 kTS = 1.72 ∙ 103e−14 RgT⁄  1/s 

Site Deactivation 𝑃𝑃𝑖𝑖
𝑘𝑘𝐷𝐷�� 𝑆𝑆𝐷𝐷 + 𝑄𝑄𝑖𝑖 

𝑃𝑃0
𝑘𝑘𝐷𝐷�� 𝑆𝑆𝐷𝐷 

kD = 7.92 ∙ 103e−12 RgT⁄  1/s 



135 

 

The ordinary differential equations used to describe the non-isothermal polymerization process in 

a CSTR are given below.  
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The parameters for the polypropylene simulations are given in Table 8-4. 
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Table 8-4: Values of the parameters for the propylene polymerization in a CSTR 

V (L) D (dm) F(L/s) Fc(L/s) 

50303[9] 6[9] 11.55[9] 220[9] 

Tin(K) Tc,in(K) ρc (gmol/L) ρ (gmol/L)a 

318.15[9] 327.15[9] 55.56 14.64 

Ecat(gmol/g) ΔHr (kcal/gmol) U (kcal/dm2 K s) cp (kcal/gmol K)a 

0.0188[9] -20[109] 0.1[109] 1.6548 

cpc (kcal/gmol K) Ccat,in(g/L s) CM,in(gmol/L s) CA,in(gmol/L s) 

18 0.26[9] 10.1[9] 0.105[9] 

aHere take the heat capacity (density) of propylene as the average heat capacity (density) for all 

reactants and products.  

The melt flow index are calculated by 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎(𝑀𝑀�𝑤𝑤)𝑏𝑏  with 𝑎𝑎 = 3.39 × 1022  and  𝑏𝑏 = −3.92 

[110]. The number average molecular weight is calculated by 𝑀𝑀�𝑛𝑛 = (𝑋𝑋1 + 𝑌𝑌1) (𝑋𝑋0 + 𝑌𝑌0)⁄  while 

the weight average molecular weight is calculated by𝑀𝑀�𝑤𝑤 = (𝑋𝑋2 + 𝑌𝑌2) (𝑋𝑋1 + 𝑌𝑌1)⁄ .  

The nomenclature for the species and parameters involved in the simulation is listed as follows: 

C Concentration  

cp Specific heat capacity 

D Diameter of the reactor  

Ea Activation energy 

F Inlet/outlet flow  
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ΔH Reaction heat 

H2 Hydrogen 

T Temperature 

U Heat transfer coefficient 

V Volume  

Xi i-th moment of dead chain 

Yi i-th moment of live chain 

ρ Density 
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