CRANIAL IRRADIATION THERAPY FOR PEDIATRIC T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA: A SYSTEMATIC REVIEW

A thesis submitted by

Michael J. Kelly MD, MPH

In partial fulfillment of the requirements for the degree of

Master of Science

Clinical and Translational Science

TUFTS UNIVERSITY Sackler School of Graduate Biomedical Sciences

April, 2013

Thesis Advisor / Program Mentor: Susan K. Parsons, MD, MRP

Project Mentor: Thomas A. Trikalinos, MD, PhD

Statistical Mentor: Issa J. Dahabreh, MD

Abstract

Pediatric cooperative groups have heterogeneous approaches to cranial irradiation therapy (CRT) for T-lineage acute lymphoblastic leukemia (T-ALL). We performed a systematic review of studies that specified a radiation strategy and reported survival for pediatric T-ALL. Our analysis included 59 publications reporting 75 treatment groups (patient n=5731). Over time, average event-free survival (EFS) was higher by 6% per 5 years (p<0.001). Adjusting for year, EFS differed among studies that used different radiation strategies: (a) CRT for all patients: (65%, 95% confidence interval, CI: 61% to 68%); (b) risk-directed CRT (55%, 95% CI: 49% to 62%); (c) CRT for central nervous system (CNS) positive patients only (61%, 95% CI: 50% to 72%); (d) CRT omitted for all (70%, 95% CI: 60% to 80%). Compared to the reference group (CRT for all), studies that administered CRT to CNS positive patients only or omitted CRT completely reported similar EFS in a year-adjusted meta-regression. Intensive asparaginase was associated with higher EFS after adjustment for year (p=0.003). CRT may not be necessary with current chemotherapy for T-ALL. However, because these observations are drawn from noncomparative studies, these associations are susceptible to bias and represent a rather weak evidentiary basis for drawing conclusions on the comparative effectiveness of alternative CRT strategies.

Acknowledgements

I would like to acknowledge and thank my mentorship committee comprised of Issa J. Dahabreh, MD, MS, Thomas A. Trikalinos, MD, PhD, and Susan K. Parsons, MD, MRP for their mentorship and support with this project.

Table of Contents

List of tables	2
List of figures	3
List of abbreviations	4
Introduction	5
Methods	6
Results	12
Discussion	16
References	20
Tables and Figures	

List of Tables

<u>Table 1</u>. Unadjusted and adjusted for enrollment year one factor at a time analysis. The association of treatment

characteristics with EFS.

Supplemental Table 1. Characteristics of treatment studies.

<u>Supplemental Table 2</u>. Unadjusted and adjusted for enrollment year one factor at a time analysis.

The association of treatment characteristics with overall survival.

<u>Supplemental Table 3</u>. Description of quality measures for included studies.

List of Figures

Figure 1. Search strategy flowchart

Figure 2. Results of subgroup meta-analyses

Figure 3. Changes in treatment strategies over time.

Figure 4. Event-free survival meta-regression plots.

Supplemental Figure 1. Sumamry 5-year EFS forest plot.

<u>Supplemental Figure 2</u>. Summary 5-year overall survival forest plot.

<u>Supplemental Figure 3</u>. Overall survival subgroup meta-analyses.

<u>Supplemental Figure 4</u>. Overall survival meta-regression plots.

<u>Supplemental Figure 5.</u> Distribution of sites of relapse for studies that reported relapse by site.

List of Abbreviations

ALL: Acute lymphoblastic leukemia

T-ALL: T-lineage acute lymphoblatic leukemia

CRT: cranial irradiation therapy

CNS: Central nervous system

RCT: randomized controlled trial

IT: intrathecal

TIT: triple intrathecal therapy

IT MTX: intrathecal methotrexate

MIPD: meta-analysis of individualized patient data

EFS: event-free survival

OS: overall survival

Introduction

Cure rates for children with T-lineage acute lymphoblastic leukemia (T-ALL) have improved considerably over the past thirty years with current 5-year event-free survival (EFS) rates that are nearly equivalent to the EFS rates of all but the lowest risk B-lineage ALL patients.¹⁻⁴ However, patients with T-ALL have an increased risk of central nervous system (CNS) relapse compared those with B-ALL.⁵ CNS prophylaxis is currently delivered with either intrathecal (IT) chemotherapy or IT chemotherapy plus cranial irradiation therapy (CRT).

An individual patient data meta-analysis (MIPD) of randomized controlled trials (RCTs), which began prior to 1994, compared event rates among children with ALL treated with CRT plus IT chemotherapy versus IT chemotherapy alone. Results demonstrated that the addition of CRT to IT chemotherapy resulted in fewer isolated CNS relapses, but did not improve EFS or overall survival (OS).⁶ Patients with T-ALL comprised a minority of the patients on each trial and several of the trials did not determine the immunophenotype of the subjects. A recent update of this meta-analysis also concluded that CRT could largely be replaced by intensive systemic and IT chemotherapy. However, the authors acknowledged that the data regarding the optimal CNS prophylaxis were limited for the subset of patients with T-ALL.⁷ Nonetheless, on the basis of these results and findings from cohort studies suggesting that the omission of CRT does not adversely impact outcomes, there has been a gradual reduction of the use of CRT for T-ALL patients in an attempt to limit the late effects of radiation therapy, such as secondary malignancies, endocrine abnormalities, and cognitive impairment.⁸⁻¹⁰ Currently, approaches to the use of CRT for pediatric T-ALL are variable, with some

cooperative groups administering CRT to all T-cell patients, some omitting CRT in all patients, and some using a risk-stratified approach with a prevailing movement to limit the use of CRT.^{3;11-16} However, there is limited comparative evidence on the effectiveness and safety of CRT in pediatric T-ALL in the context of current treatment. We sought to explore the evidentiary basis for the movement to reduce the administration of CRT for pediatric T-ALL by means of a methodologically rigorous synthesis of the totality of the available evidence, based on which we draw principled conclusions.

Here, we report a systematic review and meta-analysis comparing survival data from prospective and retrospective cohort studies in children and adolescents with T-ALL treated with several CRT strategies in order to explore whether CRT improves survival when added to current systemic and IT chemotherapy for T-ALL.

METHODS

We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement for reporting our results.¹⁷ A protocol was developed prior to the conduct of the systematic review and submitted to PROSPERO, an international prospective register of systematic review protocols¹⁸

Literature search

We searched MEDLINE for studies published from inception to May 30, 2012 that reported randomized and non-randomized trials evaluating CNS directed therapy for T-ALL using free-text and MESH terms (e.g., "acute lymphoblastic leukemia," "drug therapy", "radiotherapy".¹⁸ We consulted a research librarian in specifying the search and crosschecked the search results against lists of studies cited in previously published

narrative reviews on the same topic. We limited results to clinical studies in humans, and used PubMed filters for "child" and "clinical trials". We did not set any language restrictions in searches or during citation screening. Reference lists of relevant studies and review papers were screened to identify additional studies meeting inclusion criteria. The titles and abstracts of studies returned by the search were screened by one investigator (MK). The web-based tool, Abstrackr,¹⁹ (Center for Evidence-based Medicine, Brown University) was used to organize the abstract screen.

Eligibility Criteria and Study Selection

One investigator (MK) reviewed full-text articles to determine if studies met eligibility criteria. Eligible studies included at least 10 participants with T-ALL who were younger than 22 years of age at presentation; we did not use a minimum proportion of T-ALL subjects as a cut-off to determine eligibility. We considered randomized studies that either: (a) compared CNS-directed therapies (such as IT chemotherapy alone vs. IT chemotherapy plus CRT) while treating with an identical systemic chemotherapy "backbone" or (b) compared different systemic chemotherapy strategies while treating with an identical CNS prophylactic strategy. In addition we considered prospective and retrospective cohort studies (comparative or single-group). Studies had to report EFS outcomes at 3 years of follow-up (or longer). We excluded non-English language publications at the full-text screening stage because of resource constraints.

When results for a cohort of subjects were reported in multiple publications the "primary" publication from the study was identified as the first publication reporting EFS for the cohort and was used as the primary source for extraction of data. When details regarding the treatments received or EFS statistics were incomplete in the "primary"

publication, review articles or subsequent follow-up articles were used to obtain the missing data. For 20 cohorts we identified multiple publications reporting results on the same patient population.^{4;20-23} In all but two cases the reported data relevant to our analysis were identical. In the two cases, we used data from the primary publication in main analyses, and conducted sensitivity analyses with data from follow-up publications.^{20;24;25}

Studies were categorized *a priori* by their CRT strategy as follows: (a) CRT for all patients (studies that administered CRT to \geq 90% of patients); (b) risk-directed CRT (studies that administered CRT to a subset of patients often stratified by age, white blood cell (WBC) count at diagnosis, and CNS status at diagnosis); (c) CRT for patients with involvement of the CNS with leukemia (CNS positive) at diagnosis only; and (d) CRT omitted for all patients. We generally adopted the outcome definitions applied in each individual study. EFS was most commonly defined as time from the start of treatment to relapse at any site, death during remission, or development of a secondary malignancy. Although the primary outcome was 5-year EFS, we also included a single publication that reported three treatment groups that reported 3-year EFS, given that most relapses for T-ALL patients occur within the first 3 years following the start of treatment.²⁶ Other outcomes of interest included 5-year OS, CNS relapse rate, bone marrow relapse rate, and combined CNS and bone marrow relapse rate.

Data collection and extraction

We created electronic data extraction forms to capture relevant information. Two investigators (MK and MG) extracted data and each verified the other's extracted

information. Discrepancies were resolved by consensus. We did not contact authors to obtain or confirm information. The following study characteristics and outcomes were extracted from each study: (a) eligibility criteria including age range and diagnosis (T-ALL, T-ALL and T-lineage lymphoblastic lymphoma, or any ALL (T-lineage or Blineage)); (b) number of patients; (c) CRT strategy; (d) CRT dose; (e) CRT timing (in 3month intervals); (f) IT chemotherapy administered (methotrexate alone vs. triple IT therapy; the few studies that administered double IT therapy were categorized with triple IT chemotherapy) and number of doses; (g) steroids administered in induction and maintenance; (h) cumulative doses of high-dose methotrexate (defined as any dose >1gram/m²); asparaginase, and anthracyclines (calculated as the sum of daunorubicin and doxorubicin, conversions to daunorubicin or doxorubicin were not performed for the minority of studies that used different anthracyclines); (i) definition of EFS; (j) median follow-up; and (k) outcomes: 5-year EFS, 5-year OS, CNS relapse rate, bone marrow relapse rate and combined (CNS and bone marrow) relapse rate, with their corresponding standard errors.

Assessment of Study Validity / Quality Assessment

In lieu of a scale to assign quality scores to the studies,²⁷ we assessed the following study-level characteristics, which could help us understand the contribution of CRT to EFS: (a) prospective or retrospective study design; (b) whether the definition of EFS was reported; (c) whether EFS estimates include failures before attainment of remission as outcome events; (d) whether the median follow-up was reported; and (e) whether relapses were categorized by site.

Statistical analysis

We obtained summary 5-year EFS and OS probabilities using an inverse variance random effects model for the corresponding Kaplan-Meier estimates.²⁸ The asymptotic normality of Kaplan-Meier survival probability estimates is a standard assumption in survival analysis.^{29;29} Such estimates and their standard errors were available from the majority of studies reporting information on the outcomes of interest (65 of 75 studies for EFS; all studies for OS). In the small minority of studies that did not report the necessary information, we used a normal approximation for the survival proportion assuming no censoring; the impact of this approximation was investigated in sensitivity analysis (see below).

We assessed between study heterogeneity using Cochran's Q statistic³⁰ and the I^2 index³¹ The Q-statistic was considered statistically significant at $P_Q < 0.1$. The I^2 index represents the proportion of between-study heterogeneity that is beyond chance and takes values from 0 to 100%. Higher values indicate greater inconsistency. We conducted subgroup analyses (random effects) and univariate random effects meta-regressions to explore associations between EFS and the following *a priori* selected study-level factors: (a) CRT strategy; (b) IT chemotherapy (methotrexate vs. triple IT chemotherapy); (c) maximum number of IT chemotherapy dose (<10 vs. 10-19 vs. \geq 20); (d) high-dose methotrexate (dose \geq 1 gram/m2) present or absent; (e) intensive asparaginase (\geq 400,000 IU/m² or administration of PEG-asparaginase) present or absent; (f) high cumulative dose of anthracyclines (daunorubicin plus doxorubicin total \geq 300 mg/m²) present or absent; (g) induction steroid (prednisone vs. dexamethasone); (h) EFS definition (included induction failures vs. excluded induction failures vs. definition not reported); (i) the year enrollment started for the study; (j) cumulative dose of asparaginase; (k) cumulative dose of high dose methotrexate; (l) cumulative dose of anthracyclines. When a range of chemotherapy doses was administered for T-ALL patients in a single study we used the maximum dose allowed for our analysis. The meta-regressions generated rate differences in EFS for different levels of categorical variables and for changes in continuous variables. All meta-regression analyses were repeated after adding "year of enrollment start" as a covariate, to account for trends over time.

We performed several sensitivity analyses to assess the robustness of our findings. Specifically, we repeated all analyses: (a) after excluding studies that did not report the standard error of EFS survival probabilities (Appendix 1); (b) after excluding studies that did not report 5-year EFS;²⁶ (c) after substituting slightly different values for EFS and standard errors from follow-up publications for two publications^{20:24;25} in which there were discrepancies between the EFS and standard error from the "primary" publication compared to a follow-up publication; and (d) after excluding the reports from the CCG 1961 trial.³² This trial administered CRT to CNS positive patients, but reported outcomes only on subjects randomized to receive one of two chemotherapy regimens. Children with CNS disease at diagnosis were excluded from this randomization and not included in the publication. Thus none of the patients in the published report received radiation, however, CNS positive patients at diagnosis were excluded.

All analyses were conducted using Stata version IC/12.1 (Stata Corp., College Station, TX, 2012) and OpenMeta-Analyst,³³ (Center for Evidence-based Medicine,

Brown University). Statistical significance was defined as a two-sided p-value <0.05 for all tests except those for heterogeneity. We did not adjust for multiple comparisons.

Results

Included studies

The search returned 2383 abstracts, 491 of which were considered potentially relevant and were reviewed in full text. Eligible were 59 articles (5731 patients with T-ALL enrolled between 1973 and 2005) describing 75 treatment groups (7 studies reported on more than 1 group; Figure 1, Supplemental Table 1, Supplemental Figure 1, & Supplemental references #1-59).

Event-Free Survival

The overall 5-year EFS rate was 63% (95% CI: 59% to 66%; Figure 2). There was extensive heterogeneity among the treatment studies (I^2 =82.4, P_Q <0.001). Slightly more than half of the studies administered CRT to all T-ALL patients (n=42, 56%). A risk-directed approach was applied by 19 (25%), whereas in 7 studies (9%) CRT was administered to CNS positive patients only. Of note, 7 studies (9%) omitted CRT for all patients. A subgroup meta-analysis and a meta-regression analysis demonstrated that studies in the 4 categories had significantly different mean EFS (omnibus p-value for comparison across all categories= 0.046): CRT for all patients (EFS 63%, 95% CI: 59% to 66%) risk-directed CRT (EFS 58%, 95% CI: 52% to 65%), CRT for CNS positive patients only (EFS 57%, 95% CI: 45% to 0.70%), CRT omitted for all patients (EFS 75%, 95% CI: 67% to 82%), (Figure 2). EFS was higher (absolute rate difference, RD,

12%, 95% CI: 1% to 24%; p=0.03) among studies that omitted CRT for all patients compared to the studies that administered CRT to all patients (the reference group). The change in EFS should not be uncritically attributed to the CRT strategies. Figure 3 shows the CRT strategy by enrollment start year. More current studies are more likely to omit CRT. Recent studies are correlated with higher cumulative doses of asparaginase and high-dose methotrexate and with the administration of a greater number of doses of IT chemotherapy.

EFS was significantly associated with the year study enrollment began (p<0.001); in random effects meta-regression average EFS was higher by 6% (95% CI: 4% to 9%) per 5 calendar years (Table 1, Figure 4). The following factors were also associated with higher EFS on univariate analysis: the administration of 10-19 or \geq 20 doses of IT (RD 14%, 95% CI: 6% to 22% and RD 16%, 95% CI: 6% to 26%, respectively), and intensive asparaginase administration when analyzed as a categorical variable (RD 13%, 95% CI: 4% to 22%) or a continuous variable (RD, per 100,000 IU/m², 3% (95% CI: 2% to 5%) (Table 1, Figure 4). There were no significant differences in EFS across the three groups of EFS definitions: EFS definition provided and includes induction failures; EFS definition provided, but does not include induction failures; and EFS definition not reported (omnibus p-value = 0.08).

After adjusting for enrollment year there remained differences in the same direction in EFS by CRT strategy (omnibus p-value= 0.01; Table 1). The adjusted EFS for the reference group, CRT to all patients, was 65% (95% CI: 61% to 68%). Compared to the reference group (CRT for all) the adjusted EFS was significantly worse (55%, 95% CI: 49% to 62%) among studies that used a risk-directed approach to CRT (p=0.002).

The adjusted EFS for the other CRT strategies were similar when compared to the reference group: CRT for CNS positive patients only (EFS 61%, 95% CI: 50% to 72%, p=0.47); CRT omitted for all patients (EFS 70%, 95% CI: 60% to 80%, p=0.29). Compared to the reference group (EFS definition provided and includes induction failures) by year-adjusted meta-regression, treatment groups that did not include induction failures in their EFS definition reported better EFS (RD 12%, 95% CI: 3% to 22%, p=0.01). Intensive asparaginase dosing remained significantly associated with higher EFS compared to non-intensive asparaginase dosing after adjustment for enrollment year (RD 11%, 95% CI: 4% to 19%; p=0.003) (Table 1).

Overall survival

OS data were available for 38 of the 75 treatment groups (51%), which included a total of 3275 T-ALL patients (Supplemental Figure 2). The 5-year summary OS rate was 71% (95% CI: 68% to 75%). OS was similar when stratified by the four CRT strategies: CRT for all (OS 71% 95% CI: 67% to 75%), risk-directed CRT (OS 71%, 95% CI: 62% to 80%), CRT for CNS positive patients only (OS 75%, 95% CI: 69% to 81%), CRT omitted for all patients (OS 80%, 95% CI: 67% to 93%) (Supplemental Figure 3). The number of studies that reported OS data was small in the categories that administered CRT to CNS positive patients only (n=3) and that omitted CRT for all (n=2) (Supplemental Figure 3). In univariate random effects meta-regression OS was higher by 4% (95% CI: 0% to 7%) per every 5 years for more current studies (Supplemental Table 2, Supplemental Fig 4). Higher doses of asparaginase were not associated with OS on univariate or year-adjusted regression analysis (Supplemental Table 2).

Sensitivity analyses

Sensitivity analysis demonstrated that the exclusion of 3 treatment groups reporting 3-year EFS (rather than 5-year EFS) did not influence the results. The results were not affected when re-running the analyses using slightly different EFS estimates and standard errors for the two studies with slightly different reported EFS and standard errors within follow-up publications. Similarly, the exclusion of 10 of 75 treatment groups for which the EFS standard errors were not reported (and had to be calculated with the assumption of complete follow up) did not affect the association of CRT strategy with EFS (year-adjusted meta-regression omnibus p-value=0.02 after excluding these studies).^{14;34-41} Finally, analysis after excluding the results from the CCG 1961 trial (n=2 treatment groups) did not qualitatively affect the results of our analyses: CRT for all (EFS 64%, 95% CI: 61% to 68%), risk-directed CRT (EFS 54%, 95% CI: 47% to 61%), CRT for CNS positive patients only (EFS 60%, 95% CI: 49% to 71%), CRT omitted for all patients (EFS 69%, 95% CI: 57% to 81%); year- adjusted meta-regression omnibus pvalue=0.02.

Assessment of quality and reporting

A definition of EFS was provided for most treatment groups (n=62, 83%) (Supplemental Table 3). Among treatment groups that defined EFS, 11% (n=7) did not include induction failures as "events." Median follow-up time was provided for two-thirds of the treatment groups (n=50). The sites of relapse (specifically among children treated for T-ALL) were reported only in a minority of treatment groups (n=19, 25%).

Among the studies providing this information, there was variability in the proportion of relapses at different sites by treatment studies (Supplemental Figure 5). Most studies did not explicitly provide the criteria for defining relapse at different sites.

Discussion

This systematic review of cohort studies spanning almost 30 years of clinical research found on average, that the EFS (and OS) for T-ALL improved over time. Yet, over these 30 years, treatment strategies have also changed; CRT has been used universally, selectively, or not at all, and chemotherapies have been used in different composition and intensity. In the absence of comparative trials evaluating CRT in pediatric T-ALL we explored with meta-regression the association between EFS (and OS) and characteristics of CRT or other treatments across the years. We found associations between higher EFS and studies that administered more intensive asparaginase dosing. We also found differences in EFS among studies with different CRT strategies, with mean EFS being generally higher in treatment regimens omitting CRT. These findings persisted even after adjusting for how recently a study was conducted (by means of start of enrollment). While these findings appear consistent with the notion that CRT may not be necessary with current treatments for T-ALL, they are based on metaepidemiological associations and are therefore susceptible to bias. The evidentiary basis for the current movement to omit CRT in managing T-ALL patients is rather weak, and should be further supported with dedicated syntheses of existing MIPD or with an adequately powered clinical trial.

Prospective cohort studies have demonstrated excellent EFS with varied CRT approaches for T-ALL.^{3;11;12;15} This has led to calls to restrict or completely omit CRT for all pediatric ALL patients.⁴² We sought to summarize the evidence for this prevailing trend in treatment. In our summary we have no RCTs, not even nonrandomized comparative studies. We have almost 60 manuscripts reporting noncomparative, single arm treatments that have examined various treatment regimens and have been conducted over 30 years. It is well understood that drawing casual inferences form noncomparative studies is precarious, even if there is a "clear signal." We used state-of-the-science methods (random effects meta-regression methods) to understand how clear a signal the single arm trials provide, under the best-case (but implausible) scenario that the comparison is unbiased. We demonstrate that even if one is willing to use this body of evidence for casual evidence, there are no clear signals.

To definitively determine the association of CRT with survival for T-ALL better methodological approaches are needed. An RCT of CRT for T-ALL could determine the treatment effect of CRT when applied to a uniform approach to systemic and IT chemotherapy. However, we are not sure what the optimal comparison groups would be in an RCT. Should CRT for all be compared to omission of CRT for all? Nevertheless data from our analyses may be a good starting point for sample size calculations. For example we found that studies that omitted CRT for all had a mean EFS of 70% whereas those that administered CRT to all had a mean EFS of 65% (both numbers are weighted summaries, adjusted for year). Assuming the above (and for power=85% and two sided alpha=5%) an RCT would need to enroll 2152 patients (1076 per arm) to detect this 6% difference in EFS between the two treatment approaches. It is unlikely that such a trial

will be done because of the large number of patients needed, the time and expense required, and because of preferences for treating with and without CRT among the various international cooperative groups. A more pragmatic approach is to conduct a meta-analysis of individual patient data (MIPD). An MIPD would allow for better estimating if there is a relapse risk reduction with the administration of CRT because patient and treatment level characteristics (such as age, sex, WBC count at diagnosis, cumulative asparaginase, number of intrathecal chemotherapy doses) could be adjusted for in the analysis. An MIPD could be completed more quickly than an RCT and offers an opportunity to align the major stakeholders in ALL therapy to address this important clinical question.

There are several strengths to our systematic review. We performed a comprehensive search that included both prospective and retrospective studies and did not restrict our review to more recent studies or to studies reported by large cooperative groups. Our final dataset included 59 publications of 75 treatment groups and a total of 5731 children with T-ALL. We used consistent selection criteria and explored the association of several *a priori* defined treatment characteristics in addition to CRT strategy with EFS.

Nonetheless, our review is limited in that it is composed primarily of single-arm cohort studies. Importantly, we did not identify any RCTs of alternative CRT strategies that specifically reported outcomes for T-ALL subjects. Our estimates of treatment differences were obtained by indirect comparisons across single group cohorts and are susceptible to confounding by study-level characteristics. As such, our results are primarily hypothesis generating and need to be confirmed in directly comparative studies,

preferably with random assignment of patients to alternative interventions (e.g., different CRT strategies). Because our analysis includes studies performed over four decades and studies conducted in different settings (international cooperative groups as well as single institutions), there is significant heterogeneity in the included populations, treatment protocols, and outcome definitions. We explored this heterogeneity with regression analyses and accounted for unexplained variability through random effects models. Finally, we did not have access to the primary patient data and could only perform regression analyses based on study-level characteristics. An MIPD of T-ALL patients treated on RCTs comparing the addition of CRT to IT and systemic chemotherapy would help evaluate the comparative effectiveness of alternative CRT strategies.

In summary our findings are consistent with similar EFS among studies that administer CRT to all patients, administer CRT to CNS positive patients only or omit CRT for all children with T-ALL. CRT may not necessary for T-ALL patients in the context of modern systemic and IT chemotherapy; however this conclusion cannot be strongly supported on the basis of the available evidence. We encourage investigators to prospectively report the sites of relapse, retrieval rates after relapse by site, secondary malignancy rates, and OS specifically for T-ALL patients on childhood ALL trials so that the contribution of CRT strategy to OS can be better understood. An RCT of CRT for T-ALL or an MIPD would allow for a more conclusive understanding of the effect of CRT strategy on survival for T-ALL.

Reference List

- Moricke A, Zimmermann M, Reiter A et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. *Leukemia*. 2010;24:265-284.
- Gaynon PS, Angiolillo AL, Carroll WL et al. Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983-2002: a Children's Oncology Group Report. *Leukemia*. 2010;24:285-297.
 - 3. Pui CH, Campana D, Pei D et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. *N Engl J Med*. 2009;360:2730-2741.
- Silverman LB, Stevenson KE, O'Brien JE et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000). *Leukemia*. 2010;24:320-334.
- 5. Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. *Lancet Oncol*. 2008;9:257-268.
 - Clarke M, Gaynon P, Hann I et al. CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. *J Clin Oncol*. 2003;21:1798-1809.

7. Richards S, Pui CH, Gayon P. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia. *Pediatr Blood Cancer*. 2012[Epub ahead of print].

- Hijiya N, Hudson MM, Lensing S et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. *JAMA*. 2007;297:1207-1215.
- Pui CH, Cheng C, Leung W et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. *N Engl J Med*. 2003;349:640-649.
- Goldsby RE, Liu Q, Nathan PC et al. Late-occurring neurologic sequelae in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28:324-331.
- Veerman AJ, Kamps WA, van den BH et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004). *Lancet Oncol.* 2009;10:957-966.
 - Moghrabi A, Levy DE, Asselin B et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. *Blood*. 2007;109:896-904.
- Arico M, Valsecchi MG, Rizzari C et al. Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. J Clin Oncol. 2008;26:283-289.
- 14. Mitchell C, Payne J, Wade R et al. The impact of risk stratification by early bonemarrow response in childhood lymphoblastic leukaemia: results from the United

Kingdom Medical Research Council trial ALL97 and ALL97/99. *Br J Haematol*. 2009;146:424-436.

- 15. Schrappe M, Valsecchi MG, Bartram CR et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. *Blood*. 2011;118:2077-2084.
- 16. Asselin BL, Devidas M, Wang C et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children's Oncology Group (POG 9404). *Blood*. 2011;118:874-883.
 - Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med*. 2009;6:e1000097.
 - Kelly, M., Trikalinos, T., Parsons, S., Dahabreh, I., and Gianferante, D. M. Cranial irradiation for pediatric T-lineage acute lymphoblastic leukemia and lymphoma: a systematic review and meta-analysis. *PROSPERO*

2012:CRD42012002442. Available from

http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD4201200244 2. 2012.

 Wallace BC, Small K, Brodley CE, Lau J, Trikalinos T. Deploying an interactive machine learning system in an evidence-based practice center: abstrackr

[abstract]. In Proc.of the ACM International Health Informatics Symposium (IHI) 2012;819-824.

- Pui CH, Pei D, Sandlund JT et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. *Leukemia*. 2010;24:371-382.
- 21. Kamps WA, van der Pal-de Bruin KM, Veerman AJ et al. Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. *Leukemia*. 2010;24:309-319.
- Conter V, Arico M, Basso G et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. *Leukemia*. 2010;24:255-264.
 - Tsuchida M, Ohara A, Manabe A et al. Long-term results of Tokyo Children's Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984-1999. Leukemia. 2010;24:383-396.
- Rivera GK, Raimondi SC, Hancock ML et al. Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. *Lancet*. 1991;337:61-66.
- 25. Pui CH, Sandlund JT, Pei D et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. *Blood*. 2004;104:2690-2696.

- 26. Falletta JM, Shuster JJ, Crist WM et al. Different patterns of relapse associated with three intensive treatment regimens for pediatric E-rosette positive T-cell leukemia: a Pediatric Oncology Group study. *Leukemia*. 1992;6:541-546.
 - Juni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analysis. *JAMA*. 1999;282:1054-1060.
- DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7:177-188.
- 29. Breslow N, Crowley J. A large sample study of the life table and product limit estimates under random censorship. *The Annals of Statistics*. 1974;2:437-453.
 - 30. Cochran WG. The combination of estimates from different experiments. *Biometrics*. 1954;10:101-129.
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-1558.
- 32. Seibel NL, Steinherz PG, Sather HN et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. *Blood*. 2008;111:2548-2555.
- 33. Wallace BC, Schmid CH, Lau J, Trikalinos TA. Meta-Analyst: software for metaanalysis of binary, continuous and diagnostic data. *BMC Med Res Methodol*.

2009;9:80.

- 34. Hitchcock-Bryan S, Gelber R, Cassady JR, Sallan SE. The impact of induction anthracycline on long-term failure-free survival in childhood acute lymphoblastic leukemia. *Med Pediatr Oncol.* 1986;14:211-215.
- 35. Lauer SJ, Pinkel D, Buchanan GR et al. Cytosine arabinoside/cyclophosphamide pulses during continuation therapy for childhood acute lymphoblastic leukemia. Potential selective effect in T-cell leukemia. *Cancer*. 1987;60:2366-2371.
- 36. Shing MM, Li CK, Chik KW et al. Outcomes and prognostic factors of Chinese children with acute lymphoblastic leukemia in Hong Kong: preliminary results. *Med Pediatr Oncol.* 1999;32:117-123.
 - 37. Toyoda Y, Manabe A, Tsuchida M et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol. 2000;18:1508-1516.
- 38. Ishii E, Eguchi H, Matsuzaki A et al. Outcome of acute lymphoblastic leukemia in children with AL90 regimen: impact of response to treatment and sex difference on prognostic factors. *Med Pediatr Oncol*. 2001;37:10-19.
- 39. Yetgin S, Tuncer MA, Cetin M et al. Benefit of high-dose methylprednisolone in comparison with conventional-dose prednisolone during remission induction therapy in childhood acute lymphoblastic leukemia for long-term follow-up. *Leukemia*. 2003;17:328-333.

- 40. Cole PD, Drachtman RA, Masterson M et al. Phase 2B trial of aminopterin in multiagent therapy for children with newly diagnosed acute lymphoblastic leukemia. *Cancer Chemother Pharmacol*. 2008;62:65-75.
- 41. Yamaji K, Okamoto T, Yokota S et al. Minimal residual disease-based augmented therapy in childhood acute lymphoblastic leukemia: a report from the Japanese Childhood Cancer and Leukemia Study Group. *Pediatr Blood Cancer*. 2010;55:1287-1295.
 - Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? *Blood*. 2012;120:1165-1174.
 - 43. Lee L, Wang L, Crump M. Identification of potential surrogate end points in randomized clinical trials of aggressive and indolent non-Hodgkin's lymphoma: correlation of complete response, time-to-event and overall survival end points. *Ann Oncol.* 2011;22:1392-1403.
 - 44. Gill S, Sargent D. End points for adjuvant therapy trials: has the time come to accept disease-free survival as a surrogate end point for overall survival?
 Oncologist. 2006;11:624-629.
- 45. Nguyen K, Devidas M, Cheng SC et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's Oncology Group study. *Leukemia*. 2008;22:2142-2150.

46. Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. *Br J Haematol*. 2010;150:345-351.

Table 1. Unadjusted and adjusted for enrollment year one factor at a time analysis. The association of treatment characteristics with EFS.

Treatment characteristic	Subgroup	N studies	5-yr EFS of reference group (percentage (95% CI)) and absolute rate differences of comparison subgroups (95% CI)	Joint p-value	Adjusted* 5-yr EFS of reference group (percentage (95% CI)) and absolute rate differences of comparison subgroups (95% CI)	Joint p-value
CRT	CRT for all	42	63 (59, 68)	0.046	65 (61,68)	0.01
	Risk-directed CRT	19	- 5 (-12, 3)		-10 (-16, -3)	
	CNS + only	7	-5 (-18, 7)		-4 (-15,7)	
	No CRT	7	12 (1, 24)		5 (-5, 15)	
IT chemotherapy	MTX	38	63 (58, 68)	0.79	64 (60, 69)	0.12
	TIT	36	-1 (-8, 6)		-5(-11, 1)	
Total doses of IT	0-9	18	52 (45, 59)	0.002	56 (49, 63)	0.17
	10-19	33	14 (6, 22)		8 (-1, 18)	
	>=20	14	16 (6, 26)		9 (-2, 21)	
HD Methotrexate	No HD MTX	24	58 (52,64)	0.07	60 (54, 66)	0.41
	HD MTX	42	7 (-1, 15)		3 (-4, 10)	
Asparaginase	<400,000 IU	50	60 (56, 64)	0.003	59 (56, 63)	0.003
	>=400,000 IU or PEG	14	13 (4, 22)		11 (4, 19)	
Anthracycline	<300 mg/m ²	44	63 (58, 68)	0.88	61 (57,65)	0.09
	>=300 mg/m ²	19	1 (-8,9)		6 (-1, 14)	
Induction steroid	prednisone	68	62 (59, 66)	0.50	63 (60, 66)	0.38
	dexamethasone	3	-2 (-20, 17)		-12 (-28,5)	
	randomized	3	9 (-7, 25)		-2 (-16, 12)	

EFS definition	Includes induction failures	55	61 (57, 64)	0.06	61 (58, 64)	0.08
	Excludes induction failures	7	14 (2, 26)		12 (2,23)	
	Definition not reported	13	4 (-5, 14)		1 (-8,9)	
Enrollment year	per 5 years		6 (4,9)	<0.001	N/A	N/A
Asparaginase	per 100,000 IU/m ²		3 (2,5)	<0.001	3 (1, 5)	0.001
HD Methotrexate	per 5 grams/m ²		1 (-1, 3)	0.27	1 (-1, 2)	0.40
Anthracycline	per 100 mg/m ²		0 (-3, 3)	0.92	2 (-1, 5)	0.22

Legend: *Adjusted for enrollment start year; EFS= event-free survival, CRT=cranial irradiation therapy, IT = intrathecal, HD = high dose, PEG = polyethylene glycosylated (PEG) -asparaginase

Figure 1. Search strategy flowchart.

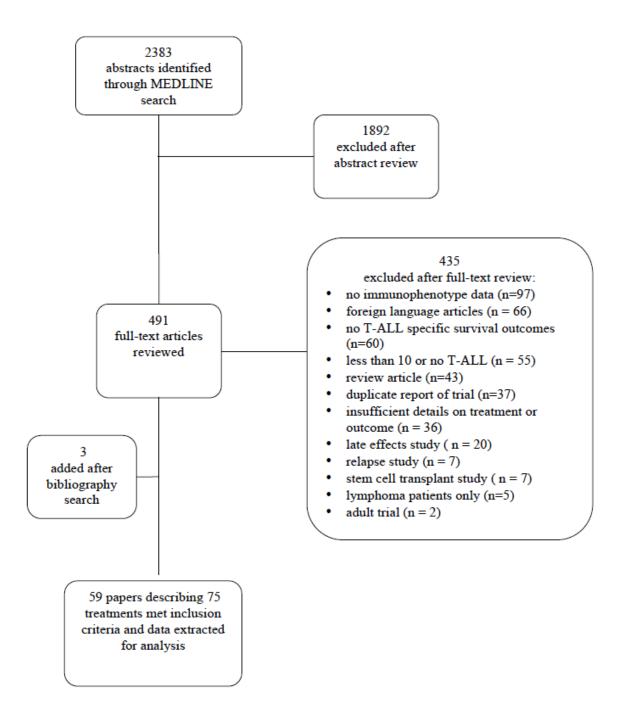
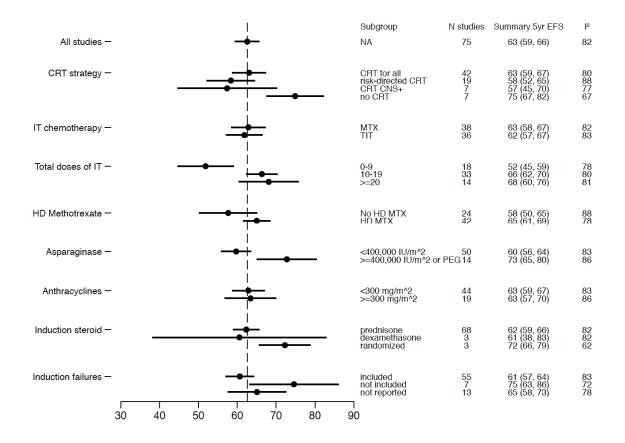
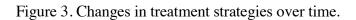
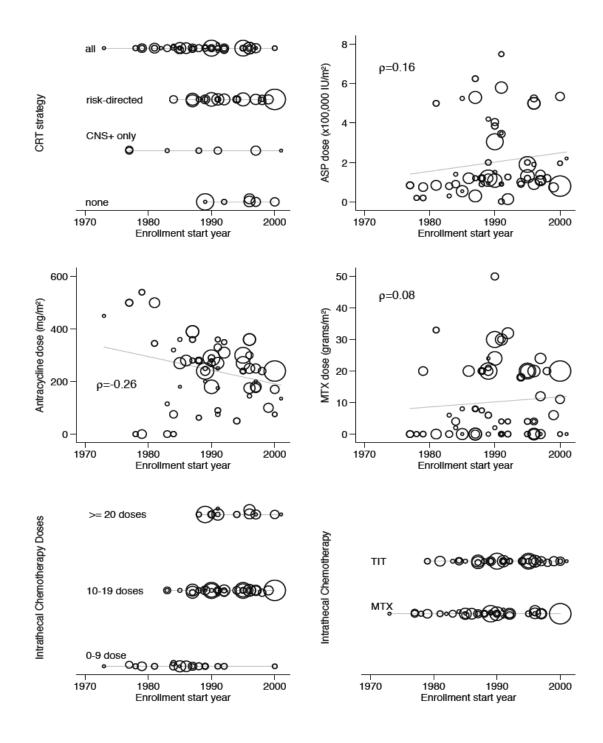





Figure 2. Results of sub-group meta-analyses.

Legend: The sizes of the circles are proportional to the sample sizes of the included studies. The p value represents the Pearson correlation coefficient.

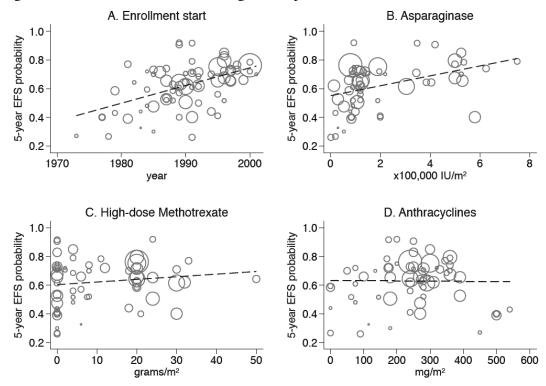


Figure 4. Event-free survival meta-regression plots.

Legend. The area of the circles represents the weight of each study in the meta-analysis.

<u>Author,</u> <u>Year</u> <u>Study</u>	Enrollm ent Years	Eligib ility Age	<u>N</u> T- AL	CRT Dose (Gy)	<u>Me</u> <u>dia</u> <u>n</u>	IT che mo	H D	<u>Asparagi</u> <u>nase</u> (IU/m ²)	Anthracyli ne** (mg/m ²)	<u>Steroid:</u> <u>Induction/Mai</u> <u>ntenance</u>
<u>Name</u>	Design	Diagn osis	L	Timin g (mo) Strate gy (% CRT*)	<u>foll</u> <u>ow-</u> <u>up</u> <u>(yrs</u> <u>)</u>	<u>Dose</u> <u>s</u>	$\frac{\underline{M}}{\underline{TX}}$ $\frac{(\underline{g})}{\underline{m}^2}$			
Pullen, 1982 ¹ SWOG 7615	1977- 1979 prospect ive	0-18 T- ALL	53	NS NS CNS+	3.3	MT X 7+** *	0	84,000	350-500	pred/none
Clavell, 1986 ² DFCI 81- 01	1981- 1985 prospect ive	0-18 ALL	39	28 Gy 1-2.9 mos All	2.9	MT X 9	4 - 33	500,000+	345	pred/pred
Hitchcock -Bryan, 1986 ³ DFCI 73- 01	1973- 1977 prospect ive	0-20 ALL	11	24 Gy 1-2.9 mos All	10	MT X 7	NS	NS	450	pred/pred
Lauer, 1987 ⁴	1978- 1981 prospect ive	NS ALL	30	20-24 Gy 1-2.9 mos All	5.7	MT X 4	0	20,000	0	pred/none
Gruemaye r, 1990 ⁵ ALL A 84 protocol	1984- 1986 prospect ive	0-18 ALL	18	12-24 Gy 1-2.9 mos All	3.5	MT X NS	0-2	140,000	320	pred/none
Rivera, 1991 ⁶ Total Therapy XI	1984- 1988 prospect ive	0-18 ALL	62	18-24 Gy 12-15 mos Risk directe d NS	3.3	TIT 9	4	60,000 - 90,000	50-75	pred/pred
Falletta, 1992 ⁷ T-cell 2	1977- 1986 prospect ive	0-21 T- ALL	36	15-24 Gy 1-2.9 mos All	NS	TIT NS	0	20,000	540	pred/pred
Falletta, 1992 ⁷ LSA-L2 plus	1977- 1986 prospect ive	0-21 T- ALL	106	NS NS All	NS	TIT NS	0	84,000	350-500	pred/none
Falletta, 1992 ⁷ LSA2-L2	1977- 1986 prospect ive	0-21 T- ALL	51	NS NS CNS +	NS	MT X NS	0	84,000	350-500	pred/none
Pui, 1992 ⁸ Total Therapy X	1979- 1983 prospect ive	0-19 ALL	51	24 Gy 12-15 mos All	NS	MT X 9	0	80,000	0	pred/none
Lauer, 1993 ⁹	1983- 1988	1-21 HR	19	30 Gy cranial	NS	TIT 18	6	30,000	115	pred/none

Supplemental Table 1. Characteristics of treatment studies.

DOC	nnosnost	B-		10 Cu			1			1
POG, 8398	prospect ive	ы- ALL		18 Gy spinal						
0370	IVC	& T-		6-8.9						
		ALL		mos						
				CNS +						
Reiter,199	1986-	0-18	126	12-24	5.0	MT	20	120,000	280	pred/none
4 ¹⁰	1990	ALL		Gy		X				
ALL- BFM 86	prospect ive			6-8.9 mos		9				
BEN 80	Ive			All						
Schorin,	1985-	0-18	20	22-24	6.2	DIT	0-8	475,000-	360	pred/pred
1994 ¹¹	1987	ALL		Gy		11		525,000		1 1
DFCI 85-	prospect			1-2.9						
01	ive			mos						
Chessells,	1985-	0-14	138	All 18-24	5.9	MT	0	54,000	180-270	pred/pred
1995 ¹²	1990	ALL	150	Gy	5.7	X	U	54,000	100-270	pica/pica
MRC	prospect	THE		1-2.9		6-8				
UKALL	ive			mos						
X				All						
Conter, 1995 ¹³	1988- 1992	0-15	54	12-18 Cu	5.7	MT	20	120,000	280	pred/none
AIEOP	prospect	ALL		Gy 3-5.9		X 9				
ALL 88	ive			mos		9				
	- · -			All						
Nachman	1989-	1-16+	22	18 Gy	4.4	MT	0	420,000	250	pred/pred
1997 ¹⁴	1990	NCI		1-2.9		X				
CCG 1882	prospect	HR		mos		13+				
pilot Conter,	ive 1991-	SER 0-15	144	All 12-24	4.4	TIT	20-	120,000-	240-270	pred/none
1998 ¹⁵	1995	ALL	144	Gy	т.т	12-	30	580,000	240-270	pred/none
AIEOP	prospect			3-5.9		23	00	200,000		
ALL 91	ive			mos						
				Risk						
				directe d						
				a 51%						
Evans,	1988-	0-18	29	18-24	NS	TIT	7.5	60,000-	50-75	pred/none
1998 ¹⁶	1991	ALL		Gy		13-		90,000		1
Total	prospect			12-15		20				
Therapy	ive			mos						
XII				Risk						
				directe d						
				NS						
Nachman,	1991-	1-16+	12	18-24	NS	MT	0	348,000	175	pred/pred
1998 ¹⁷	1995	NCI		Gy CSI		Х				
CCG 1882	prospect	HR		1-2.9		17-				
augmente d arm	ive	with SER		mos All		22				
Nachman	1991-	1-16+	14	All 18-24	NS	MT	0	90,000	250	pred/pred
1998 ¹⁷	1995	NCI		Gy	1.0	X				Prediction
CCG 1882	prospect	HR		1-2.9		14-				
standard	ive	with		mos		18				
arm	1001	SER	22	All	4.2	TTT	<i>.</i> 1	60.000	75	prod/crant
Pui, 1998 ¹⁸	1991- 1994	0-18 ALL	23	18-24 Gy	4.3	TIT 15-	dos e	60,000- 90,000	75	pred/pred
Total	prospect			12-		26	e NS	20,000		
Therapy	ive			17.9		-				
XIIIA				mos						
				Risk						
				directe		<u> </u>				

				d						
				NS						
Amylon, 1999 ¹⁹ POG 8704 intensive asparagina se	1987- 1992 prospect ive	1-21 T- ALL & LBL	160	24 Gy 3-5.9 mos Risk directe d	NS	TIT 17	0	530,000	390	pred/pred
				NS						
Amylon, 1999 ¹⁹ POG 8704 control	1987- 1992 prospect ive	1-21 T- ALL & LBL	157	24 Gy 3-5.9 mos Risk directe d NS	NS	TIT 17	0	30,000	390	pred/pred
Campbell, 1999 ²⁰ PINDA 87	1987 1992 prospect ive	0-15 ALL	29	12-24 Gy 6-8.9 mos All	6.5	MT X 9	4 to 8	80,000 - 120,000	280	pred/none
Kamps, 1999 ²¹ Dutch ALL-7	1988- 1991 prospect ive	0-15 ALL	34	12-18 Gy 6-8.9 mos CNS +	5	MT X 10	20	120,000	280	pred/none
Shing,199 9 ²²	1985- 1992 prospect ive	0-15 ALL	10	18 Gy 1-2.9 mos All	6.8	MT X 6	0	54,000	180	pred/pred
Conter, 2000 ²³ AIEOP ALL 87	1987- 1991 prospect ive	1-15 ALL	74	18 Gy 1-2.9 mos All	NS	MT X 9	0	NS	NS	pred/pred
Schrappe, 2000 ²⁴ ALL- BFM 90	1990- 1995 prospect ive	0-18 ALL	284	12-24 Gy 3-6 mos All	4.8	TIT 11- 14	20 -30	222,000- 305,000	240-290	pred/none
Toyoda, 2000 ²⁵ L92-13	1992- 1995 prospect ive	1-15 ALL	39	18 Gy 3-6 mos All	4	TIT 8	0	126,000	NS	pred/none
Tsuchida, 2000 ²⁶ L84-11	1984- 1989 prospect ive	1-15 ALL	32	24 Gy NS All	NS	TIT 5	dos e NS	NS	0	pred/none
Vilmer, 2000 ²⁷ EORTC 58881	1989- 1998 prospect ive	0-18 ALL	299	not used	5	MT X 10- 20	20	120,000	240	pred/none
Hann, 2001 ²⁸ MRC UKALLX I	1990- 1997 prospect ive	1-15 ALL	205	dose NS 1-2.9 mos Risk directe d NS	5.8	MT X 13	0- 24	54,000 or 108,000 (RCT)	180	pred/pred
Ishii, 2001 ²⁹	1990- 1996	0-18 ALL	19	15 Gy 3-6	NS	MT X	2	150,000	280	pred/none

A1.90 ive All All All All All All Produce 2001 ³⁰ 1992 ALL 43 18 Gy 7.3 TT 6 NS NS pred/none Silverman 1991 0-18 28 18 Gy 5 DT 4 750.000 360 pred/none Silverman 1991 0-18 28 18 Gy 5 DT 4 750.000 360 pred/none 2002 ²² prospect 0-18 56 18 Gy NS TT 20 12.0000 180-330 pred/none 2002 ²¹ 1996 ALL 35 18 Gy NS TT 20 12.000 345.000 180-330 pred/pred 2002 ²¹ 1991 ALL 35 18-24 6 TT 0 1.200 60-90 pred/pred 2003 ²⁴ 1991 ALL S 18 Gy NS MT 0 1.200 60	VVCCSC		1				1.4		1		
Manabe, 189-12 1989- prospect (ve 1-15 ALL 43 ALL 18 Gy All 7.3 No TT 8-9 6 NS NS pred/none Silverman, 2001 ¹⁰ 1991 0-18 28 18 Gy ALL 5 DIT 4 750,000 360 pred/none Silverman, 2001 ¹⁰ 1991 0-18 56 18 Gy ALL 5 DIT 4 750,000 360 pred/none Silverman, 2001 ¹⁰ 1991 0-18 56 18 Gy ALL NS 111 - 20 120,000- 345,000 pred/none 2002 ¹³ 1996 ALL 38 18 Gy 9.2 DIT 0-8 575,000- 66-90 pred/pred DFCT 87. 1991 ALL 3 18.24 6 TIT 0-8 575,000- 66-90 pred/pred Vergin, 2003 ¹⁴ 1997 ALL 5 18-24 6 TIT 0 1.800 60-90 pred/pred Vergin, 2004 ³¹ 1997 <td< td=""><td>KYCCSG</td><td>prospect</td><td></td><td></td><td>mos All</td><td></td><td>14</td><td></td><td></td><td></td><td></td></td<>	KYCCSG	prospect			mos All		14				
L89-12 prospect ive ISB Participant prospect ive ISG MI Participant	Manabe,	1989-		43	18 Gy	7.3		6	NS	NS	pred/none
Silverman 1991- prospect 0.18 ALL 28 ALL 18 Gy ALL 5 ALL DIT ALL 4 All 750,000 9-14 360 pred/dex 2002 ³¹ DUch ive 1991- DUch ive 0.18 56 18 Gy ALL NS TIT NOS 20- POS 120,000- 9-14 180-330 pred/none 2002 ³¹ DUch ALL 1991- POS 0.18 56 18 Gy LCP NS TIT NOS 20- POS 120,000- POS 360 pred/none 2003 ³¹ DFC1 87. 1987. 0.18 35 18 Gy NOS 2.2 DIT POS 0.8 575,000- POS 360 pred/pred 2003 ³¹ Prospect ive 0.18 35 18.24 6 TIT POS 3.8 75,000- POS 60-90 pred/pred Nathan, 2004 ³¹ 1997 ALL Gy POS 12.29 NS NI NT 0.1 2.000- POS 60-90 pred/pred Nathan, 2004 ³¹ 1997 ALL Gy POS NS NI NT 0.1 2.4 94,000 200 pred/pred			ALL				8-9				
2001 ³¹ 1995 ALL 1-2.9' 11 20 12.00 180-330 pred/none Kamps, LacCare 2003 ³⁴ 1991- ive 0.18 56 18 Gy NS TIT 20- 9.14 120- 305 120.00- 345.000 180-330 pred/none LaClere 2003 ³⁴ 1996 ALL 3.5 18.73 9.2 DIT 0.48 56 18 Gy 9.2 DIT 0.48 575.000- 525.000 360 pred/pred 2003 ³⁴¹ 1991- ive 0.18 35 18.24 6 TIT 1-2.9 0.1 1.800 60-90 pred/pred 2003 ³⁴¹ 1991- ive ALL 5 18.24 6 TIT 1-2.9 0. 1.800 60-90 pred/pred 2003 ³⁴¹ 1991- ive ALL 5 18.49 1.2.9 NX N MT 0 94.000 200 pred/pred 2004 ⁴⁵ 1999 T 1.4.99 12 18 Gy NS MT 24 94.000											
DFC1 91- 01 ive prospect P1996 ALL 0.18 ALL 56 ALL 18 Gy ALL NS Solution (NS + CNS +	Silverman			28		5		4	750,000	360	pred/dex
01 ive All - Duth rev 0.1 35 18.49 12.29 11 0.8 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 </td <td></td> <td></td> <td>ALL</td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td>			ALL				11				
Kamps, 2002 ¹² 1996 prospect ive 0.18 ALL 56 ALL 18 Gy mos CNS + CNS + NS Discrete CNS + TT 9.14 20. 120,000 345,000 180-330 pred/none LaClerc 2002 ¹³ 1991 1987. 1991 0-18 ALL 38 18 Gy 1-2.9 mos 2.0 DIT 11 0-8 575,000- 625,000 360 pred/pred Vergin, 2003 ¹⁴ 1997. 1997 0-18 ALL 35 18-24 6 TIT 0. 0. 1,200- 1.800 60-90 pred/pred Nathan, 2004 ³⁴ 1997 1999 ALL vere ALL 18 Gy 1-2.9 mos Risk directe d NS MT X 0 94,000 200 pred/pred Nathan, 2004 ³⁴ 1983. 1999 1-4.99 12 not vere NS MT X 0 94,000 200 pred/pred Nathan, no sick kids no 1983. 14.49 12. not vere NS MT X 24 94,000 200 pred/pred Vinters, pospect relation 1994. 1998 L4.49 12 not vere NS MT X 18 60,000- 32<		· ·									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0-18	56		NS	TIT	20-	120,000-	180-330	pred/none
ALL-8 ive' ve CNS + - <	2002 ³²	1996	ALL				9-14	30	345,000		1
		· ·									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.10	20						2.50	
DFCI 87- 01 prospect ive Image Image <td></td> <td></td> <td></td> <td>38</td> <td></td> <td>9.2</td> <td></td> <td>0-8</td> <td></td> <td>360</td> <td>pred/pred</td>				38		9.2		0-8		360	pred/pred
01 ive ' c All c<			ALL				11		025,000		
Yetgin. 2003 ³⁴ 1991- 1997 prospect ive 0-18 ALL serve 35 ALL area 18-24 Gy Gy area 6 ALL area TT Gy mos Risk directe d 0 area 1,200- area 0.18 area 60-90 pred/pred Nathan, 2004 ³⁵ 1983- 1999 1-4.99 T- crive 12.2 ALL 18 Gy AlL NS MT AlL 0 1,200- area 200 200 pred/pred Nathan, 2004 ³⁵ 1983- 1999 1-4.99 T- retrospe ctive 14.99 ALL 12 not used NS MT X 24 94.000 200 pred/pred Nathan, 2004 ³⁵ 1999 T- retrospe ctive 14.49 12 not used NS MT X 24 94.000 200 pred/pred 2004 ³⁵ 1994 0-18 43 18-24 6.6 TTT 12 18 60.000- NS 50 pred/pred 2004 ³⁶ 1998 0-18 ALL 18-24 6.6 TTT 17 18 60.000- NS 50 pred/pred Saarinen- Pihkala, 2004 ⁷ 1992- ive 1-15 133 18 G		~ ~									
prospect ive prospect ive<	Yetgin,		0-18	35	18-24	6	TIT	0		60-90	pred/pred
ive ive ive mos Risk directe d mos Risk directe d mos Risk directe d mos Risk directe d mos Risk MT 0 94,000 200 pred/pred Nathan, 2004 ³⁵ 1999 T- 12 18 Gy ALL NS MT 0 94,000 200 pred/pred Nathan, cive 1983- cive 1-4.99 12 not NS MT 24 94,000 200 pred/pred Nathan, po 1989- cive 14.99 12 not NS MT 24 94,000 200 pred/pred 2004 ³⁵ 1999 T- retrospe cive ALL 18 18 24 94,000 200 pred/pred Pui, po 1994 O-18 43 18-24 6.6 TT 18 60,000- 50 pred/pred Saarinen- rotal Therapy XIIB 1992 1-15 133 18 Gy NS NS MT 16- x 14,000 280-310 pred/pred Saarinen- roe <t< td=""><td>2003³⁴</td><td></td><td>ALL</td><td></td><td></td><td></td><td>3-8</td><td></td><td>1,800</td><td></td><td></td></t<>	2003 ³⁴		ALL				3-8		1,800		
Image: Mathan, 2004/3 1983. 1-4.99 12 18 Gy and the constraints of the con											
Image: Section of the sectio		ive									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
Toronto sick kids radiationretrospe ctiveALL allLamos Allonly 15and and 15and and and 15and an				12		NS		0	94,000	200	pred/pred
sick kids radiation ctive radiation ctive retrospe ALL 1-4.99 ALL 12 vector not used NS X MT X 24 X 94,000 200 pred/pred Portono retrospe sick kids no 1993- retrospe retrospe retrospe sick kids no 1994- retrospe 0-18 ALL 43 18-24 Gy 6.6 TIT 12- rotono 18 60,000- 90,000 50 pred/pred 2004 ³⁶ 1998 rotal prospect Therapy XIIIB 1994- rotal prospect 0-18 ALL 43 18-24 Gy 6.6 TIT 12- rotal directe do 18- rotal NS 18 60,000- rotal 50 pred/dex Saarinen- Pihkala, 2004 ³⁷ 1992- rospect 1-15 ALL 133 18 Gy 8/sk NS MT ALL 16- ros 14,000 280-310 pred/pred Saarinen- Pihkala, 2004 ³⁷ 1992- rospect 1-15 ALL 29 ros not s8/sk NS MT ros 16- ros 14,000 280-310 pred/pred Winter, 2006 ³⁸ 1993 ros T- ros 29 ros not ros NS TT ros 4 25,000 350 pred/pre			-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ALL				2				
Nathan, 2004 ³⁵ 1983- 1999 1-4.99 T- ALL 12 used not used NS X MT X 24 NS 94,000 200 pred/pred vick kids no radiation cive ALL all used NS IR 24 94,000 200 pred/pred Pui, rotal Total Therapy XIIIB 1994 0-18 43 18-24 6.6 TIT 18- 18 60,000- 50 pred/dex Saarinen- Pihkala, 2004 ³⁷ 1992- rospect 1-15 133 18 Gy NS NS MT 16- NS 14,000 280-310 pred/pred Saarinen- Pihkala, 2000 ³⁷ 1992- rospect 1-15 133 18 Gy NS NS 16- NS 14,000 280-310 pred/pred Vinter, 2004 ³⁷ 1992- rospect 1-18 29 not used NS TIT 4 25,000 350 pred/pred Winter, 2006 ³⁸ 1993 T- grospect L NS NS TIT N 4 25,000 350 pred/pred Win		cuve					15				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nathan,	1983-	1-4.99	12	not	NS	MT	24	94,000	200	pred/pred
sick kids no radiation ctive mos ctive mos ctive mos result		1999			used						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ALL				18				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ctive									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1994-	0-18	43	18-24	6.6	TIT	18	60.000-	50	pred/dex
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2004^{36}										F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total	prospect					24				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ive									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	XIIIB										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					NS						
200437 NOPHO HR-ALLprospect iveprospect Risk directe d 58%mos Risk directe d 58%14- 1714- Risk directe d 58%14- Risk directe d 58%14- Risk Risk directe d 1714- Risk Risk directe d 1714- Risk Risk Risk 1714- Risk Risk Risk Risk directe d 1714- Risk Risk Risk Risk Risk Risk Risk Risk directe d S8%14- Risk <b< td=""><td></td><td></td><td></td><td>133</td><td></td><td>NS</td><td></td><td></td><td>14,000</td><td>280-310</td><td>pred/pred</td></b<>				133		NS			14,000	280-310	pred/pred
NOPHO HR-ALLiveiveRisk directe d 58%17IImage: Second sec	Pihkala,		ALL					32			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ive					17				
Winter, 2006 ³⁸ 1992- 1993 1-18 T- 29 used NS TIT 17 4 25,000 350 pred/pred POG 9296 prospect ive ALL & used I 17 PEG I											
2006 ³⁸ 1993 T- used 17 PEG POG 9296 prospect ALL Image: second seco											
POG 9296 prospect ALL ive & LBL L	Winter,			29		NS		4		350	pred/pred
ive & LBL			-		used		17		PEG		
LBL	PUG 9296										
		110									
	Moghrabi	1996-	0-18	52	18 Gy	5.7	TIT	4	525,000	300	pred/pred
,2007 ³⁹ 2000 ALL 1-2.9 11		2000	ALL				11				
DFCI 95- prospect mos											

01	ive			All						
Arico, 2008 ⁴⁰ AEIOP ALL 95	1995- 2000 prospect ive	0-18 ALL	191	12-18 Gy 3-5.9 mos Risk directe d NS	7.3	TIT 7-11	20	80,000- 13,000	240-270	pred / randomization of dex for IR in maintenance
Badell, 2008 ⁴¹ SHOP 94	1994- 1998 prospect ive	1-18 ALL	63	12 Gy 9-12 mos Risk directe d NS	7.9	TIT 10	18	100,000	120 + 90 mg/m ² epirubicine	pred/none
Badell, 2008 ⁴¹ SHOP 89	1989- 1993 prospect ive	1-18 ALL	35	15-24 Gy 3-5.9 mos Risk directe d NS	13	TIT 6-8	21	100,000-200,000	120-180 + 20 mg/ ^{m2} mitoxantron e	pred/none
Cole, 2008 ⁴²	2001- 2005 prospect ive	2-20 ALL	10	dose NS cranios pinal 12-15 mos CNS +	3.3	TIT 28	0	220,000	135	dex/none
Karachuns kiy, 2008 ⁴³ Russia ALL- BFM 90m	1995- 2002 Prospect ive	0-18 ALL	39	18-24 Gy 6-9 mos All	7	MT X 13	4	120,000	240	pred/none
Karachuns kiy, 2008 ⁴³ Russia ALL-MB 91	1995- 2002 prospect ive	0-18 ALL	34	12-18 Gy 6-9 mos All	7	TIT 13	0	200,000	240	dex/dex
Moricke, 2008 ⁴⁴ ALL- BFM 95	1995- 2000 prospect ive	0-18 ALL	277	12-18 Gy 1-2.9 mos All	7.2	TIT 8-11	20	40,000- 190,000	240-300	pred/none
Seibel, 2008 ⁴⁵ CCG 1961 standard post induction intensifica tion	1996- 2002 prospect ive	1-21 NCI HR ALL with RER	125	not used	NS	MT X 21- 25	0	90,000	175	pred/pred
Seibel, 2008 ⁴⁵ CCG 1961 intensive postinduct ion	1996- 2002 prospect ive	1-21 NCI HR ALL with RER	110	not used	NS	MT X 22- 27	0	54,000 + 25,000 PEG	250	pred/pred

intensifica										
tion										
Mitchell, 2009 ⁴⁶ UK ALL 97	1997- 2002 prospect ive	1-18 ALL NS	118	24 Gy 1-2.9 mos Risk directe d NS	8	MT X 16	18 -24	108,000	180	pred vs. dex RCT/pred vs. dex RCT
Mitchell, 2009 ⁴⁶ UK ALL 97/99	1997- 2002 prospect ive	1-18 ALL	92	24 Gy 1-2.9 mos CNS+	8	MT X SR: 19- 23 HR: 22- 26	0	108,000	150-250	pred vs. dex RCT/pred vs. dex RCT
Pui, 2009 ⁴⁷ Total Therapy XV	2000- 2007 prospect ive	1-18 ALL	76	not used	4	TIT 16- 25	11	535,000	170	pred/dex
Stark, 2009 ⁴⁸ INS 89	1989- 1998 prospect ive	1-18 ALL	84	12-24 Gy 6-8.9 mos Risk directe d 21%	15.2	TIT 12- 18	20	120,000	240	pred/none
Stark, 2009 ⁴⁸ INS 98	1998- 2003 prospect ive	1-18 ALL	59	12-24 Gy 6-8.9 mos Risk directe d 27%	8.1	TIT 12- 18	20	120,000	240	pred/dex
Sutton, 2009 ⁴⁹ ANZCCS G VII	1998- 2002 prospect ive	NS ALL	47	18 Gy NS Risk directe d NS	NS	NS NS	NS	NS	NS	pred/dex
Veerman, 2009 ⁵⁰ Dutch ALL-9	1997- 2004 prospect ive	0-18 ALL	90	not used	6	TIT 15	12	138,000	175	dex/dex
Escherich, 2010 ⁵¹ COALL 82	1982 prospect ive	0-18 ALL	14	16-24 Gy NS All	16.8	MT X NS	NS	NS	NS	pred/none
Escherich, 2010 ⁵¹ COALL 97	1997 prospect ive	0-18 ALL	94	12 Gy NS All	6.6	MT X NS	NS	NS	NS	pred/none
Escherich, 2010 ⁵¹ COALL 92	1992 prospect ive	0-18 ALL	78	12 Gy NS All	10	MT X NS	NS	NS	NS	pred/none
Escherich,	1985-	0-18	52	16-24	13.7	MT	NS	NS	NS	pred/none

2010 ⁵¹	1990	ALL	1	Gy		Х				
COALL	prospect	ALL		NS		NS				
85	ive			All		110				
Escherich,	1989-	0-18	18	12-18	11.7	MT		NS	NS	pred/none
2010 ⁵¹	1992	ALL		Gy		Х	NS			1
COALL	prospect			NS		NS				
89	ive			All						
Liang,	1997-	0-18	83	18 Gy	NS	TIT	20	75,000	0	pred/dex
201052	2001	ALL		NS		14-				
TPOG-	prospect			All		30				
ALL-97	ive									
Nagatoshi,	1996-	1-15	21	18 Gy	NS	MT	4	140,000-	145	pred/dex or pred
2010 ⁵³	2002	ALL		3-6		X		190,000		
KYCCSG	prospect			mos		11-				
ALL-96	ive	1.10	56	All	NG	15	20	00.000	240.270	1/
Stary, 2010 ⁵⁴	1990- 1996	1-18	56	12 Gy 3-5.9	NS	MT	20- 50	80,000-	240-270	pred/none
Czech per						X 11-	50	405,000		
ALL-	prospect ive			mos All		20				
BFM 95	Ive			All		20				
	1990-	1-18	45	12 Gy	NS	MT		120,000-	240-290	pred/none
Stary, 2010 ⁵⁴	1990-	ALL	U.L.	3-5.9	110	X	NS	385,000	270-290	preu/none
Czech per	prospect	TILL		mos		11-	110	505,000		
ALL-	ive			All		20				
BFM 90										
Yamaji,	2000-	1-15	25	18 Gy	5.6	TIT	0	196,000	75+	pred/pred
201055	2004	ALL		3-6		6		,		1 1
JCCLSG	prospect			mos						
ALL2000	ive			All						
Arya	1992-	0-15	60	18	NS	MT	NS	NS	NS	NS/NS
2011 ⁵⁶	2002	A T T		MG		**				
1	2002	ALL		NS		Х				
	retrospe	ALL		NS All		X				
	retrospe ctive			All						
Asselin,	retrospe ctive 1996-	1-21	148	All 18 Gy	8.7	TIT	20	500,000	360	pred/pred
Asselin, 2011 ⁵⁷	retrospe ctive 1996- 2001	1-21 T-	148	All 18 Gy 3-5.9	8.7		20	500,000	360	pred/pred
Asselin, 2011 ⁵⁷ POG 9404	retrospe ctive 1996- 2001 prospect	1-21 T- ALL	148	All 18 Gy 3-5.9 mos	8.7	TIT	20	500,000	360	pred/pred
Asselin, 2011 ⁵⁷ POG 9404 ALL	retrospe ctive 1996- 2001	1-21 T- ALL &	148	All 18 Gy 3-5.9	8.7	TIT	20	500,000	360	pred/pred
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX	retrospe ctive 1996- 2001 prospect ive	1-21 T- ALL & LBL		All 18 Gy 3-5.9 mos All		TIT 11				
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin,	retrospe ctive 1996- 2001 prospect ive 1996-	1-21 T- ALL & LBL 1-21	148	All 18 Gy 3-5.9 mos All 18 Gy	8.7	TIT 11 TIT	20	500,000	360	pred/pred
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷	retrospe ctive 1996- 2001 prospect ive 1996- 2001	1-21 T- ALL & LBL 1-21 T-		All 18 Gy 3-5.9 mos All 18 Gy 3-5.9		TIT 11				
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect	1-21 T- ALL & LBL 1-21 T- ALL		All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos		TIT 11 TIT				
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL	retrospe ctive 1996- 2001 prospect ive 1996- 2001	1-21 T- ALL & LBL 1-21 T- ALL &		All 18 Gy 3-5.9 mos All 18 Gy 3-5.9		TIT 11 TIT				
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive	1-21 T- ALL & LBL 1-21 T- ALL & LBL	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All	8.7	TIT 11 TIT 11	0	500,000	360	pred/pred
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe,	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000-	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18		All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18		TIT 11 TIT 11 MT				pred/pred Randomization
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006	1-21 T- ALL & LBL 1-21 T- ALL & LBL	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All	8.7	TIT 11 TIT 11	0	500,000	360	pred/pred
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000-	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T-	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy	8.7	TIT 11 TIT 11 MT X	0	500,000	360	pred/pred Randomization of pred vs. dex
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP-	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T-	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9	8.7	TIT 11 TIT 11 MT X 12-	0	500,000	360	Randomization of pred vs. dex in induction /
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T-	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos	8.7	TIT 11 TIT 11 MT X 12-	0	500,000	360	Randomization of pred vs. dex in induction /
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000***	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T-	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d	8.7	TIT 11 TIT 11 MT X 12-	0	500,000	360	Randomization of pred vs. dex in induction /
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	464	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS	5.6	TIT 11 TIT 11 MT X 12- 18	0	500,000	360	Randomization of pred vs. dex in induction / none
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	151	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS 12-18	8.7	TIT 11 TIT 11 MT X 12- 18 TIT	0	500,000	360	Randomization of pred vs. dex in induction /
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	464	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS 12-18 Gy	5.6	TIT 11 TIT 11 MT X 12- 18	0	500,000	360	Randomization of pred vs. dex in induction / none
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive 1999- 2003 prospect	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	464	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS 12-18 Gy NS	5.6	TIT 11 TIT 11 MT X 12- 18 TIT	0	500,000	360	Randomization of pred vs. dex in induction / none
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	464	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS 12-18 Gy NS Risk	5.6	TIT 11 TIT 11 MT X 12- 18 TIT	0	500,000	360	Randomization of pred vs. dex in induction / none
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive 1999- 2003 prospect	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	464	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS 12-18 Gy NS Risk directe	5.6	TIT 11 TIT 11 MT X 12- 18 TIT	0	500,000	360	Randomization of pred vs. dex in induction / none
Asselin, 2011 ⁵⁷ POG 9404 ALL HDMTX Asselin, 2011 ⁵⁷ POG 9404 ALL control Schrappe, 2011 AIEOP- BFM ⁵⁸ 2000*** *	retrospe ctive 1996- 2001 prospect ive 1996- 2001 Prospect ive 2000- 2006 prospect ive 1999- 2003 prospect	1-21 T- ALL & LBL 1-21 T- ALL & LBL 1-18 T- ALL	464	All 18 Gy 3-5.9 mos All 18 Gy 3-5.9 mos All 12-18 Gy 3-5.9 mos Risk directe d NS 12-18 Gy NS Risk	5.6	TIT 11 TIT 11 MT X 12- 18 TIT	0	500,000	360	Randomization of pred vs. dex in induction / none

Supplemental Table 1 Abbreviations / Legend: % CRT: the percentage of subjects treated with cranial irradiation; CRT strategy: (i) All: CRT for all patients, (ii)CNS+: CRT for those patients CNS + at diagnosis only, (iii) Risk-directed: CRT to a subset of patients based on clinical features, (iv) None: no patients received CRT; IT chemo: intrathecal chemotherapy; HD MTX: high-dose methotrexate; NS: not stated; MTX: methotrexate; Pred: prednisone; Dex: dexamethasone; mos: months from the start of treatment; TIT: triple intrathecal therapy; DIT: double intrathecal chemotherapy; NCI: National Cancer Institute; HR: high risk; SR: standard risk; RCT: randomized controlled trial; SER: slow early response; CSI: cranial-spinal irradiation; LBL: lymphoblastic lymphoma; PEG: PEG-asparaginase

* The percentage of subjects who received CRT for studies that used a risk-directed approach was calculated when the information was provided.

** Anthracycline: sum of total daunorubicin and doxorubicin administered

*** A "+" indicates that additional doses of chemotherapy were given but not explicitly quantified.

****AIEP-BFM 2000: AIEOP institutions used a risk-stratified approach; BFM centers administered CRT to all T-ALL patients.

Supplemental Table 2. Unadjusted and adjusted for enrollment year one factor at a time analysis. The association of treatment characteristics with OS.

Treatment characteristic	Subgroup	N studies	5-yr OS of reference group (percentage (95% CI)) and absolute rate differences of comparison subgroups (95% CI)	Joint p-value	Adjusted* 5-yr OS of reference group (percentage (95% CI)) and absolute rate differences of comparison subgroups (95% CI)	Joint p-value
CRT	CRT for all	25	70 (66, 75)	0.62	70 (66, 74)	0.87
	Risk-directed CRT	8	1 (-8,9)		-2 (-10,7)	
	CNS + only	3	3 (-10, 16)		2 (-11, 14)	
	No CRT	2	10 (-6, 26)		4 (-12, 20)	
IT chemotherapy	MTX	17	70 (64, 75)	0.34	69 (64, 74)	0.73
	TIT	21	3 (-4, 10)		1 (-6, 8)	
Total doses of IT	0-9	6	64 (55, 74)	0.29	68 (58, 78)	0.95
	10-19	18	8 (-2, 19)		2 (-11, 15)	
	>=20	9	8 (-5, 20)		2 (-12, 15)	
HD Methotrexate	No HD MTX	6	66 (56, 76)	0.23	66 (57,75)	0.38
	HD MTX	25	6 (-4, 17)		4 (-6, 15)	
Asparaginase	<400,000 IU	21	71 (66, 76)	0.30	69 (65, 74)	0.36
	>=400,000 IU or PEG	9	4 (-4, 13)		4 (-5, 12)	
Anthracycline	<300 mg/m ²	22	70 (65, 74)	0.02	68 (64, 73)	0.02
	>=300 mg/m ²	8	10 (1, 18)		9 (1, 17)	
Induction steroid	prednisone	33	72 (68, 75)	0.16	71 (67, 74)	0.11

	dexamethasone	2	-11 (-27, 4)		-15 (-30, -1)	
	randomized	2	8 (-5, 21)		1 (-12, 15)	
EFS definition	Includes induction failures	31	71 (67, 75)	0.40	61 (58, 64)	0.08
	Excludes induction failures	1	8 (-18, 35)		12 (2, 23)	
	Definition not reported	6	6 (-4, 16)		1 (-8,9)	
Enrollment year	per 5 years		4 (1,7)	0.02	N/A	N/A
Asparaginase	per 100,000 IU/m ²		1 (-1, 3)	0.42	1 (-1, 3)	0.49
HD Methotrexate	per 5 grams/m ²		0 (-2, 2)	0.75	0 (-2, 2)	0.98
Anthracycline	per 100 mg/m ²		1 (-4, 5)	0.72	0 (-4, 4)	0.97

Legend: *Adjusted for enrollment start year; EFS= event-free survival, CRT=cranial irradiation therapy, IT = intrathecal, HD = high dose, PEG = polyethylene glycosylated (PEG) –asparaginase

Author, Year	Study name	Design	EFS include early failures	Median f/u (yrs)	relapses categorized by site
Pullen, 1982	SWOG 7615	prospective	1	3.3	yes
Clavell, 1986	DFCI 81-01	prospective	1	2.9	no
Hitchcock-Bryan, 1986	DFCI 73-01	prospective	1	10	no
Lauer, 1987	Lauer 1987	prospective	1	5.7	no
Gruemayer, 1990	ALL A 84 protocol	prospective	1	3.5	no
Rivera, 1991	Total Therapy XI	prospective	0	3.3	yes
Falletta, 1992	Falletta 1992 LSA2-L2	prospective	1	NS	no
Falletta, 1992	Falletta 1992 T-cell 2	prospective	1	NS	no
Falletta, 1992	Falletta 1992 LSA-L2 plus	prospective	1	NS	no
Pui, 1992	Total Therapy X	prospective	2	9	no
Lauer, 1993	POG 8398	prospective	1	NS	yes
Reiter, 1994	ALL-BFM 86	prospective	1	NS	no
Schorin, 1994	DFCI 85-01	prospective	1	6.2	yes
Chessels, 1995	MRC UKALL X	prospective	0	5.9	no
Conter, 1995	AIEOP ALL 88	prospective	1	5.7	no
Nachman, 1997	CCG 1882 pilot	prospective	2	4.4	no
Conter, 1998	AIEOP ALL 91	prospective	1	4.4	no
Evans, 1998	Total Therapy XII	prospective	2	NS	yes
Nachman, 1998	CCG 1882 augmented arm	prospective	2	NS	no
Nachman, 1998	CCG 1882 standard arm	prospective	2	NS	no
Pui, 1998	Total Therapy XIIIA	prospective	0	4.3	no

Supplemental Table 3. Description of quality measures for included studies.

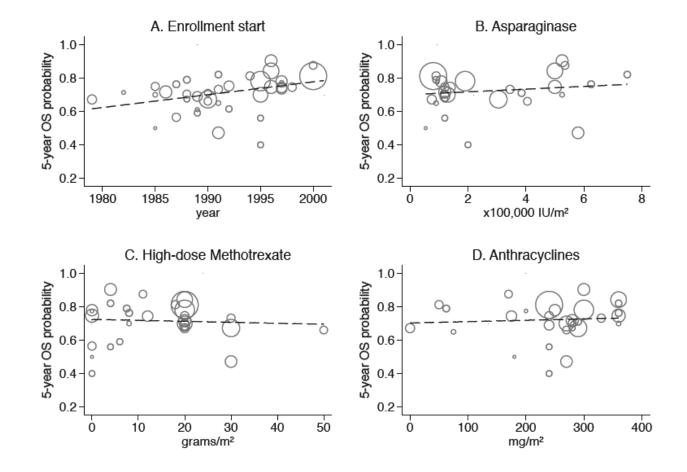
Amylon, 1999	POG 8704 control	prospective	0	NS	yes
Amylon, 1999	POG 8704 intensive ASP	prospective	1	NS	yes
Campbell, 1999	PINDA 87	prospective	1	6.5	no
Kamps, 1999	Dutch ALL-7	prospective	1	5	no
Shing, 1999	Shing 1999	prospective	0	6.8	no
Conter, 2000	AIEOP ALL 87	prospective	1	NS	no
Schrappe, 2000	ALL-BFM 90	prospective	1	4.8	no
Toyoda, 2000	L92-13	prospective	1	4	no
Tsuchida, 2000	L84-11	prospective	1	NS	no
Vilmer, 2000	EORTC 58881	prospective	1	5	no
Hann, 2001	MRC UKALLXI	prospective	1	5.8	no
Ishii, 2001	KYCCSG AL90	prospective	1	NS	no
Manabe, 2001	L89-12	prospective	1	7.3	no
Silverman, 2001	DFCI 91-01	prospective	1	5	no
Kamps, 2002	Dutch ALL-8	prospective	1	NS	no
LeClec, 2002	DFCI 87-01	prospective	1	9.2	no
Yetgin, 2003	Yetgin 2003	prospective	1	6	no
Nathan, 2004	Toronto sick kids no CRT	retrospective	0	NS	yes
Nathan, 2004	Toronto sick kids radiation	retrospective	0	NS	yes
Pui, 2004	Total Therapy XIIIB	prospective	1	6.6	yes
Saarinen-Pihkala, 2004	NOPHO HR-ALL	prospective	1	NS	no
Winter, 2006	POG 9296	prospective	1	NS	yes
Moghrabi, 2007	DFCI 95-01	prospective	1	5.7	no
Arico, 2008	AEIOP ALL 95	prospective	0	7.3	no
Badell, 2008	SHOP 89	prospective	1	13	no

Badell, 2008	SHOP 94	prospective	1	7.9	no
Cole, 2008	Cole 2008	prospective	0	3.3	yes
Karachunskiy, 2008	Russia ALL-BFM 90m	prospective	1	7	no
Karachunskiy, 2008	Russia ALL-MB 91	prospective	1	7	no
Moricke, 2008	ALL-BFM 95	prospective	1	7.2	no
Seibel, 2008	CCG 1961 augmented arm	prospective	2	NS	no
Seibel, 2008	CCG 1961 standard arm	prospective	2	NS	no
Mitchell, 2009	UK ALL 97/99	prospective	0	8	yes
Mitchell, 2009	UK ALL 97	prospective	0	8	no
Pui, 2009	Total Therapy XV	prospective	0	4	no
Stark, 2009	INS 89	prospective	1	15.2	yes
Stark, 2009	INS 98	prospective	1	8.1	yes
Sutton, 2009	ANZCCSG VII	prospective	0	NS	no
Veerman, 2009	Dutch ALL-9	prospective	1	6	no
Escherich, 2010	COALL 82	prospective	1	16.8	no
Escherich, 2010	COALL 85	prospective	1	13.7	no
Escherich, 2010	COALL 89	prospective	1	11.7	no
Escherich, 2010	COALL 92	prospective	1	10	no
Escherich, 2010	COALL 97	prospective	1	6.6	no
Liang, 2010	TPOG-ALL-97	prospective	1	NS	no
Nagatoshi, 2010	KYCCSG ALL-96	prospective	1	NS	no
Stary, 2010	Czech per ALL-BFM 90	prospective	1	NS	no
Stary, 2010	Czech per ALL-BFM 95	prospective	1	NS	no
Yamaji, 2010	JCCLSG ALL2000	prospective	1	5.6	no
Arya, 2011	Arya 2011	retrospective	1	NS	yes

Asselin, 2011	POG 9404 ALL HDMTX	prospective	1	8.7	yes
Asselin, 2011	POG 9404 ALL control	prospective	1	8.7	yes
Schrappe, 2011	AIEOP-BFM 2000	prospective	1	5.6	yes

Legend: 0: EFS definition not reported; 1: EFS definition reported, induction failures included; 2: EFS definition reported, induction failures not included

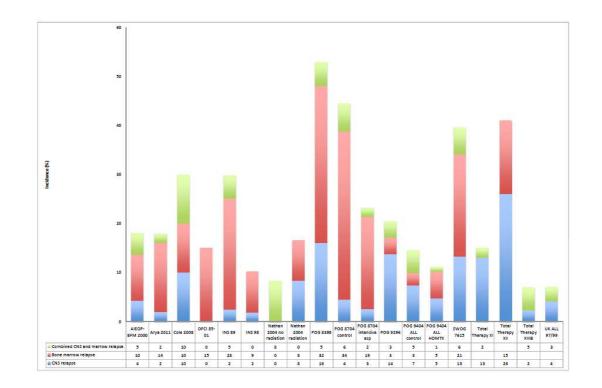
							_
					Trial name	EFS (SE)	Start year
Pullen, 1982 -					SWOG 7615	0.40 (0.08)	1977
Clavell, 1986 — Hitchcock-Bryan, 1986 —		•			DFCI 81-01 DFCI 73-01	0.77 (0.07) 0.27 (0.13)	1981 1973
Lauer, 1987 -		—			Lauer 1987	0.27 (0.13)	1978
Gruemayer, 1990 -		_			ALL A 84 protocol	0.72 (0.14)	1984
Rivera, 1991 -	•	•	<u> </u>		Total Therapy XI	0.48 (0.13)	1984
Falletta, 1992 -			_		Falletta 1992 LSA2-L2	0.40 (0.07)	1977
Falletta, 1992 – Falletta, 1992 –					Falletta 1992 LSA-L2 plus Falletta 1992 T-cell 2	0.39 (0.05) 0.43 (0.09)	1981 1979
Pui, 1992 -		ě			Total Therapy X	0.44 (0.15)	1983
Lauer, 1993 -				-	POG 8398	0.33 (0.27)	1983
Reiter, 1994 -					ALL-BFM 86	0.71 (0.04)	1986
Schorin, 1994 – Chessels, 1995 –		_	_		DFCI 85-01 MRC UKALL X	0.70 (0.10) 0.47 (0.04)	1985 1985
Conter, 1995 -		•			AIEOP ALL 88	0.63 (0.07)	1988
Nachman, 1997 -			_		CCG 1882 pilot	0.91 (0.07)	1989
Conter, 1998 -			•		AIEOP ALL 91	0.40 (0.04)	1991
Evans, 1998 – Nachman, 1998 –			<u> </u>	_	Total Therapy XII CCG 1882 augmented arm	0.52 (0.09)	1988 1991
Nachman, 1998 -		-	•	_	CCG 1882 standard arm	0.71 (0.12)	1991
Pui, 1998 🗕		_			Total Therapy XIIIA	0.61 (0.10)	1991
Amylon, 1999 -		_	←		POG 8704 control	0.53 (0.04)	1987
Amylon, 1999 — Campbell, 1999 —					POG 8704 intensive ASP PINDA 87	0.65 (0.04) 0.52 (0.09)	1987 1987
Kamps, 1999 -					Dutch ALL-7	0.58 (0.09)	1988
Shing, 1999 -		•	-		Shing 1999	0.30 (0.14)	1985
Conter, 2000 -		-	-		AIEOP ALL 87	0.53 (0.06)	1987
Schrappe, 2000 - Toyoda, 2000 -		_			ALL-BFM 90 L92-13	0.62 (0.03) 0.62 (0.08)	1990 1992
Tsuchida, 2000 -			—		L84-11	0.59 (0.09)	1984
Vilmer, 2000 —					EORTC 58881	0.64 (0.03)	1989
Hann, 2001 —		-	<u> </u>		MRC UKALLXI	0.51 (0.04)	1990
lshii, 2001 — Manabe, 2001 —					KYCCSG AL90 L89-12	0.71 (0.10) 0.57 (0.08)	1990 1989
Silverman, 2001 -			→		DFCI 91-01	0.79 (0.08)	1991
Kamps, 2002 —				n	Dutch ALL-8	0.71 (0.06)	1991
LeClerc, 2002 -		•			DFCI 87-01 Votain 2002	0.74 (0.07)	1987 1991
Yetgin, 2003 - Nathan, 2004 -			_		Yetgin 2003 Toronto sick kids no CRT	0.26 (0.07) 0.92 (0.08)	1991
Nathan, 2004 -					Toronto sick kids radiation	0.75 (0.13)	1997
Pui, 2004 —				•	Total Therapy XIIIB	0.70 (0.07)	1994
Saarinen-Pihkala, 2004				_	NOPHO HR-ALL	0.62 (0.04)	1992
Winter, 2006 — Moghrabi, 2007 —				—	POG 9296 DFCI 95-01	0.69 (0.09) 0.85 (0.05)	1992 1996
Arico, 2008 —				•	AEIOP ALL 95	0.66 (0.04)	1995
Badell, 2008 -			_		SHOP 89	0.40 (0.08)	1989
Badell, 2008 - Cole, 2008 -		_			SHOP 94 Cole 2008	0.44 (0.06)	1994 2001
Karachunskiy, 2008 –			—		Russia ALL-BFM 90m	0.70 (0.14) 0.56 (0.08)	1995
Karachunskiy, 2008 -			_		Russia ALL-MB 91	0.41 (0.08)	1995
Moricke, 2008 -					ALL-BFM 95	0.75 (0.03)	1995
Seibel, 2008 - Seibel, 2008 -				_	CCG 1961 intensive CCG 1961 standard	0.83 (0.05) 0.72 (0.06)	1996 1996
Mitchell, 2009 –			_ ———		UK ALL 97/99	0.73 (0.05)	1997
Mitchell, 2009 –			—		UK ALL 97	0.65 (0.04)	1997
Pui, 2009 -					Total Therapy XV	0.78 (0.08)	2000
Stark, 2009 — Stark, 2009 —				-	INS 89 INS 98	0.62 (0.05) 0.73 (0.06)	1989 1998
Sutton, 2009 -			_	_	ANZCCSG VII	0.77 (0.06)	1998
Veerman, 2009 🗕					Dutch ALL-9	0.72 (0.05)	1997
Escherich, 2010				-	COALL 82	0.64 (0.13)	1982
Escherich, 2010 – Escherich, 2010 –					COALL 85 COALL 89	0.73 (0.06) 0.61 (0.12)	1985 1989
Escherich, 2010 -			_ —		COALL 92	0.71 (0.05)	1992
Escherich, 2010 -					COALL 97	0.65 (0.05)	1997
– Liang, 2010 – Nagatoshi, 2010					TPOG-ALL-97 KYCCSG ALL-96	0.58 (0.06) 0.52 (0.11)	1979 1996
Stary, 2010 -					Czech per ALL-96	0.64 (0.07)	1990
Stary, 2010 -			—		Czech per ALL-BFM 95	0.64 (0.06)	1990
Yamaji, 2010 -			- _	_	JCCLSG ALL2000	0.72 (0.09)	2000
Arya, 2011 - Asselin, 2011 -					Arya 2011 POG 9404 ALL HDMTX	0.50 (0.07) 0.68 (0.04)	1992 1996
Asselin, 2011 -			_ →	-	POG 9404 ALL control	0.80 (0.04)	1996
Schrappe, 2011 -			•		AIEOP-BFM 2000	0.76 (0.02)	2000
Inukai, 2012 —					L99-15	0.66 (0.05)	1999
		I					
	0.0 0.2	2 0.4	0.6 0.8	3 1.0			


Supplemental Figure 1. Summary 5 year EFS forest plot.

11 0	5 5	Trial name	OS (SE)	Start year
Reiter, 1994 -	- -	ALL-BFM 86	0.72 (0.04)	1986
Schorin, 1994 -	- 	DFCI 85-01	0.70 (0.10)	1985
Conter, 1995 -	- 	AIEOP ALL 88	0.70 (0.06)	1988
Conter, 1998 -	- 	AIEOP ALL 91	0.47 (0.04)	1991
Evans, 1998 -		Total Therapy XII	0.79 (0.07)	1988
Pui, 1998 -	- 	Total Therapy XIIIA	0.65 (0.10)	1991
Kamps, 1999 –	- 	Dutch ALL-7	0.67 (0.08)	1988
Shing, 1999 -		Shing 1999	0.50 (0.16)	1985
Conter, 2000 -	- 	AIEOP ALL 87	0.56 (0.06)	1987
Schrappe, 2000 -	- -	ALL-BFM 90	0.67 (0.03)	1990
Manabe, 2001 -		L89-12	0.59 (0.08)	1989
Silverman, 2001 -	- 	DFCI 91-01	0.82 (0.07)	1991
Kamps, 2002 -	- _	Dutch ALL-8	0.73 (0.06)	1991
LeClerc, 2002 -		DFCI 87-01	0.76 (0.07)	1987
Nathan, 2004 -		Toronto sick kids radiation	0.78 (0.13)	1997
Pui, 2004 -		Total Therapy XIIIB	0.81 (0.06)	1994
Moghrabi, 2007 –		DFCI 95-01	0.90 (0.04)	1996
Arico, 2008 -	- -	AEIOP ALL 95	0.70 (0.03)	1995
Karachunskiy, 2008 –		Russia ALL-BFM 90m	0.56 (0.08)	1995
Karachunskiy, 2008 –		Russia ALL-MB 91	0.40 (0.08)	1995
Moricke, 2008 -		ALL-BFM 95	0.78 (0.03)	1995
Mitchell, 2009 -	_	UK ALL 97/99	0.78 (0.04)	1997
Pui, 2009 -		Total Therapy XV	0.88 (0.06)	2000
Stark, 2009 -		INS 89	0.69 (0.05)	1989
Stark, 2009 -	_	INS 98	0.75 (0.06)	1998
Veerman, 2009 -		Dutch ALL-9	0.74 (0.05)	1997
Escherich, 2010 -		COALL 82	0.71 (0.12)	1982
Escherich, 2010 -	· _•-	COALL 85	0.75 (0.06)	1985
Escherich, 2010 -		COALL 89	0.61 (0.12)	1989
Escherich, 2010 -	_ 	COALL 92	0.75 (0.05)	1992
Escherich, 2010 -	·	COALL 97	0.74 (0.05)	1997
Liang, 2010 –	·	TPOG-ALL-97	0.67 (0.05)	1979
Stary, 2010 -	·	Czech per ALL-BFM 90	0.71 (0.07)	1990
Stary, 2010 -	· _•-	Czech per ALL-BFM 95	0.66 (0.06)	1990
Arya, 2011 -		Arya 2011	0.61 (0.08)	1992
Asselin, 2011 -	- -	POG 9404 ALL HDMTX	0.75 (0.04)	1996
Asselin, 2011 -	- -	POG 9404 ALL control	0.84 (0.03)	1996
Schrappe, 2011 -		AIEOP-BFM 2000	0.81 (0.02)	2000
	0.0 0.2 0.4 0.6 0.8 1.0	0		

Supplemental Figure 2. Summary 5-year OS forest plot.

		Subgroup	N studies	Summary 5yr OS	12
All studies -		NA	38	71 (68, 75)	76
CRT strategy -		CRT for all risk-directed CRT CRT CNS+ no CRT	25 8 3 2	71 (67, 75) 71 (62, 80) 75 (69, 81) 80 (67, 93)	71 89 0 65
IT chemotherapy -		MTX TIT	17 21	70 (66, 74) 73 (68, 78)	62 82
Total doses of IT -		0-9 10-19 >=20	6 18 9	66 (60, 71) 73 (69, 77) 72 (62, 82)	28 78 83
HD Methotrexate -		No HD MTX HD MTX	6 25	65 (52, 78) 73 (69, 77)	88 77
Asparaginase -		<400,000 IU/m^2 >=400,000 IU/m^2 or PE0	21 G 9	71 (68, 75) 75 (66, 85)	66 89
Anthracyclines -		<300 mg/m^2 >=300 mg/m^2	22 8	70 (65, 74) 80 (75, 84)	79 49
Induction steroid -	- - - - - - - - - - -	prednisone dexamethasone randomized	33 2 2	72 (68, 75) 58 (24, 92) 81 (77, 84)	72 93 0
Induction failures -		included not included not reported 100	31 1 6	71 (67, 75) 79 (65, 93) 74 (67, 82)	79 100 51


Supplemental Figure 3. Overall survival subgroup meta-analyses.

Supplemental Figure 4. Overall survival meta-regression plots.

Legend: The size of the circles is proportional to the sample size of the treatment group.

Supplemental Figure 5. Distribution of sites of relapse for studies that reported relapse by site.

Legend: Blank boxes indicate that relapse was not reported for that site by the corresponding study.

Supplemental Reference List

- Pullen DJ, Sullivan MP, Falletta JM et al. Modified LSA2-L2 treatment in 53 children with E-rosette-positive T-cell leukemia: results and prognostic factors (a Pediatric Oncology Group Study). *Blood*. 1982;60:1159-1168.
- Clavell LA, Gelber RD, Cohen HJ et al. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med. 1986;315:657-663.
- Hitchcock-Bryan S, Gelber R, Cassady JR, Sallan SE. The impact of induction anthracycline on long-term failure-free survival in childhood acute lymphoblastic leukemia. *Med Pediatr Oncol.* 1986;14:211-215.
- Lauer SJ, Pinkel D, Buchanan GR et al. Cytosine arabinoside/cyclophosphamide pulses during continuation therapy for childhood acute lymphoblastic leukemia. Potential selective effect in T-cell leukemia. *Cancer*. 1987;60:2366-2371.
- Gruemayer ER, Gadner H, Mutz I et al. Childhood acute lymphoblastic leukemia: results of the Austrian Cooperative Study Group with the ALL A 84 protocol. *Med Pediatr Oncol.* 1990;18:6-14.
- Rivera GK, Raimondi SC, Hancock ML et al. Improved outcome in childhood acute lymphoblastic leukaemia with reinforced early treatment and rotational combination chemotherapy. *Lancet*. 1991;337:61-66.

- Falletta JM, Shuster JJ, Crist WM et al. Different patterns of relapse associated with three intensive treatment regimens for pediatric E-rosette positive T-cell leukemia: a Pediatric Oncology Group study. *Leukemia*. 1992;6:541-546.
- Pui CH, Simone JV, Hancock ML et al. Impact of three methods of treatment intensification on acute lymphoblastic leukemia in children: long-term results of St Jude total therapy study X. *Leukemia*. 1992;6:150-157.
- Lauer SJ, Camitta BM, Leventhal BG et al. Intensive alternating drug pairs for treatment of high-risk childhood acute lymphoblastic leukemia. A Pediatric Oncology Group pilot study. *Cancer*. 1993;71:2854-2861.
- Reiter A, Schrappe M, Ludwig WD et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. *Blood*. 1994;84:3122-3133.
- Schorin MA, Blattner S, Gelber RD et al. Treatment of childhood acute lymphoblastic leukemia: results of Dana-Farber Cancer Institute/Children's Hospital Acute Lymphoblastic Leukemia Consortium Protocol 85-01. *J Clin Oncol*. 1994;12:740-747.
- Chessells JM, Bailey C, Richards SM. Intensification of treatment and survival in all children with lymphoblastic leukaemia: results of UK Medical Research Council trial UKALL X. Medical Research Council Working Party on Childhood Leukaemia. *Lancet*. 1995;345:143-148.

- 13. Conter V, Arico M, Valsecchi MG et al. Extended intrathecal methotrexate may replace cranial irradiation for prevention of CNS relapse in children with intermediate-risk acute lymphoblastic leukemia treated with Berlin-Frankfurt-Munster-based intensive chemotherapy. The Associazione Italiana di Ematologia ed Oncologia Pediatrica. *J Clin Oncol.* 1995;13:2497-2502.
- 14. Nachman J, Sather HN, Gaynon PS et al. Augmented Berlin-Frankfurt-Munster therapy abrogates the adverse prognostic significance of slow early response to induction chemotherapy for children and adolescents with acute lymphoblastic leukemia and unfavorable presenting features: a report from the Children's Cancer Group. J Clin Oncol. 1997;15:2222-2230.
- Conter V, Arico M, Valsecchi MG et al. Intensive BFM chemotherapy for childhood ALL: interim analysis of the AIEOP-ALL 91 study. Associazione Italiana Ematologia Oncologia Pediatrica. *Haematologica*. 1998;83:791-799.
- Evans WE, Relling MV, Rodman JH et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. *N Engl J Med.* 1998;338:499-505.
- Nachman JB, Sather HN, Sensel MG et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. *N Engl J Med.* 1998;338:1663-1671.

- 18. Pui CH, Mahmoud HH, Rivera GK et al. Early intensification of intrathecal chemotherapy virtually eliminates central nervous system relapse in children with acute lymphoblastic leukemia. *Blood*. 1998;92:411-415.
- 19. Amylon MD, Shuster J, Pullen J et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. *Leukemia*. 1999;13:335-342.
- Campbell M, Salgado C, Quintana J et al. Improved outcome for acute lymphoblastic leukemia in children of a developing country: results of the Chilean National Trial PINDA 87. *Med Pediatr Oncol.* 1999;33:88-94.
- Kamps WA, Bokkerink JP, Hahlen K et al. Intensive treatment of children with acute lymphoblastic leukemia according to ALL-BFM-86 without cranial radiotherapy: results of Dutch Childhood Leukemia Study Group Protocol ALL-7 (1988-1991). *Blood*. 1999;94:1226-1236.
- Shing MM, Li CK, Chik KW et al. Outcomes and prognostic factors of Chinese children with acute lymphoblastic leukemia in Hong Kong: preliminary results. *Med Pediatr Oncol.* 1999;32:117-123.
- Conter V, Arico M, Valsecchi MG et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) acute lymphoblastic leukemia studies, 1982-1995. *Leukemia*. 2000;14:2196-2204.

- Schrappe M, Reiter A, Ludwig WD et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. *Blood*. 2000;95:3310-3322.
- Toyoda Y, Manabe A, Tsuchida M et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. *J Clin Oncol.* 2000;18:1508-1516.
- Tsuchida M, Ikuta K, Hanada R et al. Long-term follow-up of childhood acute lymphoblastic leukemia in Tokyo Children's Cancer Study Group 1981-1995. *Leukemia*. 2000;14:2295-2306.
- Vilmer E, Suciu S, Ferster A et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. *Leukemia*. 2000;14:2257-2266.
- 28. Hann I, Vora A, Harrison G et al. Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukaemia XI protocol. *Br J Haematol*. 2001;113:103-114.
- Ishii E, Eguchi H, Matsuzaki A et al. Outcome of acute lymphoblastic leukemia in children with AL90 regimen: impact of response to treatment and sex difference on prognostic factors. *Med Pediatr Oncol.* 2001;37:10-19.

- 30. Manabe A, Tsuchida M, Hanada R et al. Delay of the diagnostic lumbar puncture and intrathecal chemotherapy in children with acute lymphoblastic leukemia who undergo routine corticosteroid testing: Tokyo Children's Cancer Study Group study L89-12. *J Clin Oncol*. 2001;19:3182-3187.
- Silverman LB, Gelber RD, Dalton VK et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. *Blood*. 2001;97:1211-1218.
- 32. Kamps WA, Bokkerink JP, Hakvoort-Cammel FG et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991-1996). *Leukemia*. 2002;16:1099-1111.
- LeClerc JM, Billett AL, Gelber RD et al. Treatment of childhood acute lymphoblastic leukemia: results of Dana-Farber ALL Consortium Protocol 87-01. J *Clin Oncol*. 2002;20:237-246.
- 34. Yetgin S, Tuncer MA, Cetin M et al. Benefit of high-dose methylprednisolone in comparison with conventional-dose prednisolone during remission induction therapy in childhood acute lymphoblastic leukemia for long-term follow-up. *Leukemia*. 2003;17:328-333.
- 35. Nathan PC, Maze R, Spiegler B et al. CNS-directed therapy in young children with T-lineage acute lymphoblastic leukemia: High-dose methotrexate versus cranial irradiation. *Pediatr Blood Cancer*. 2004;42:24-29.

- Pui CH, Sandlund JT, Pei D et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. *Blood*. 2004;104:2690-2696.
- 37. Saarinen-Pihkala UM, Gustafsson G, Carlsen N et al. Outcome of children with high-risk acute lymphoblastic leukemia (HR-ALL): Nordic results on an intensive regimen with restricted central nervous system irradiation. *Pediatr Blood Cancer*. 2004;42:8-23.
- Winter SS, Holdsworth MT, Devidas M et al. Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: a report of POG study 9296. *Pediatr Blood Cancer*. 2006;46:179-186.
- Moghrabi A, Levy DE, Asselin B et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. *Blood*. 2007;109:896-904.
- 40. Arico M, Valsecchi MG, Rizzari C et al. Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. *J Clin Oncol*. 2008;26:283-289.
- 41. Badell I, Munoz A, Estella J et al. Long-term results of two consecutive trials in childhood acute lymphoblastic leukaemia performed by the Spanish Cooperative Group for Childhood Acute Lymphoblastic Leukemia Group (SHOP) from 1989 to 1998. *Clin Transl Oncol.* 2008;10:117-124.

- 42. Cole PD, Drachtman RA, Masterson M et al. Phase 2B trial of aminopterin in multiagent therapy for children with newly diagnosed acute lymphoblastic leukemia. *Cancer Chemother Pharmacol*. 2008;62:65-75.
- Karachunskiy A, Herold R, von SA et al. Results of the first randomized multicentre trial on childhood acute lymphoblastic leukaemia in Russia. *Leukemia*. 2008;22:1144-1153.
- 44. Moricke A, Reiter A, Zimmermann M et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. *Blood*. 2008;111:4477-4489.
- 45. Seibel NL, Steinherz PG, Sather HN et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. *Blood*. 2008;111:2548-2555.
- 46. Mitchell C, Payne J, Wade R et al. The impact of risk stratification by early bonemarrow response in childhood lymphoblastic leukaemia: results from the United Kingdom Medical Research Council trial ALL97 and ALL97/99. *Br J Haematol*. 2009;146:424-436.
- 47. Pui CH, Campana D, Pei D et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. *N Engl J Med*. 2009;360:2730-2741.

- 48. Stark B, Avrahami G, Nirel R et al. Extended triple intrathecal therapy in children with T-cell acute lymphoblastic leukaemia: a report from the Israeli National ALL-Studies. *Br J Haematol*. 2009;147:113-124.
- 49. Sutton R, Venn NC, Tolisano J et al. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. *Br J Haematol*. 2009;146:292-299.
- Veerman AJ, Kamps WA, van den BH et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004). *Lancet Oncol.* 2009;10:957-966.
- Escherich G, Horstmann MA, Zimmermann M, Janka-Schaub GE. Cooperative study group for childhood acute lymphoblastic leukaemia (COALL): long-term results of trials 82,85,89,92 and 97. *Leukemia*. 2010;24:298-308.
- Liang DC, Yang CP, Lin DT et al. Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. *Leukemia*. 2010;24:397-405.
- 53. Nagatoshi Y, Matsuzaki A, Suminoe A et al. Randomized trial to compare LSA2L2-type maintenance therapy to daily 6-mercaptopurine and weekly methotrexate with vincristine and dexamethasone pulse for children with acute lymphoblastic leukemia. *Pediatr Blood Cancer*. 2010;55:239-247.

- 54. Stary J, Jabali Y, Trka J et al. Long-term results of treatment of childhood acute lymphoblastic leukemia in the Czech Republic. *Leukemia*. 2010;24:425-428.
- 55. Yamaji K, Okamoto T, Yokota S et al. Minimal residual disease-based augmented therapy in childhood acute lymphoblastic leukemia: a report from the Japanese Childhood Cancer and Leukemia Study Group. *Pediatr Blood Cancer*. 2010;55:1287-1295.
- 56. Arya LS, Padmanjali KS, Sazawal S et al. Childhood T-lineage acute lymphoblastic leukemia: management and outcome at a tertiary care center in North India. *Indian Pediatr*. 2011;48:785-790.
- 57. Asselin BL, Devidas M, Wang C et al. Effectiveness of high-dose methotrexate in T-cell lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma: a randomized study by the Children's Oncology Group (POG 9404). *Blood*. 2011;118:874-883.
- Schrappe M, Valsecchi MG, Bartram CR et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. *Blood*. 2011;118:2077-2084.
- 59. Inukai T, Kiyokawa N, Campana D et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children's Cancer Study Group Study L99-15. *Br J Haematol*. 2012;156:358-365.