
A Novel Approach for the Simulation of 

Xenopus laevis Tail Regeneration 
 

A thesis submitted by 

Zachary Taylor Serlin 

In partial fulfillment of the requirements for the degree of  

Master of Science 

In  

Mechanical Engineering 

Tufts University 

May 2016 

 

 

 

 

Adviser: Dr. Jason Rife 

Committee Member: Dr. Behrouz Abedian 

Cross-Department Committee Member: Dr. Michael Levin 

 



ii 

 

Abstract 

A framework for predictively linking cell-level signaling with larger scale 

patterning in regeneration and growth has yet to be created within the field of 

regenerative biology. If this could be achieved, regeneration (controlled cell 

growth), cancer (uncontrolled cell growth), and birth defects (mispatterning of 

cell growth) could be more easily understood and manipulated. This thesis looks 

to create a framework to predict macroscopic regenerative morphology using 

level-set methods, a cellular-based control scheme, and a morphogen-based 

positioning field. The key contribution is defining velocity models for the control 

scheme that bridge microscopic and macroscopic scales. The novel control 

scheme proposed uses three control mechanisms to collectively mimic biological 

regeneration. Application to the simulation of Xenopus laevis tail regeneration 

suggests the utility of the proposed methods. 
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A Novel Approach for the Simulation of 

Xenopus laevis Tail Regeneration 

 

Chapter 1  Introduction 

Section 1.1 Motivation 

This thesis describes a new approach to simulating Xenopus laevis tail 

regeneration. 

The overarching goal behind this work is to glean a deeper understanding of 

regeneration, growth, and patterning mechanics through simplified models. The 

regenerative and developmental biology community has interest in these models 

to fill a void in current predictive capabilities of regeneration and growth. Many 

models exist for microscopic cell communication and growth [1]–[5] but the 

underlying concept behind many of these models is interactions of individual 

cells. Each cell has a basic control law to create these agent-based or cellular 

automata models [1], [6], [7]. These models are effective at modeling clusters of 

individual cells but ultimately struggle to represent larger structures. They require 

a large number of calculations per cell and would be unwieldy and time 

consuming to implement at the macroscopic level (limbs, organs, and even 

organisms). Beyond computation hurdles, when these models are taken to even 

the mesoscale they do not deal with voids, irregularities, and unrealistic features 

and therefore often develop biologically unrealistic features [8]. Some models 
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have been effective at predicting cell differentiation at the macroscopic level 

using regulatory network models and top-down approaches [9], [10]. These 

models look at morphology and cell differentiation but often do not bridge 

multiple scales. Few models attempt to model macroscopic Xenopus tail 

regeneration. Most of these models are still based on micro-scale interactions and 

model large clusters of cells as individual cells to reduce complexity. This results 

in limited accuracy of pattern emergence [5]. 

Section 1.2 Proposed Model 

A novel approach to simulating Xenopus laevis is presented in the following 

chapters. The approach consists of software modules that are intertwined to mimic 

biological cell growth, patterning, and navigation. The first module is a growth 

model that creates the basic physics of the simulation using level set methods. The 

second module is a novel control scheme that mimics both regenerative and 

nominal growth by manipulating boundary velocities in the level set field. This 

scheme contains three control regimes using patterning control for regenerative 

bud patterning and regeneration, isometric control for volumetric growth, and 

smoothing control to reduce curvature and reinforce a minimum feature size in the 

level set field. The third module is a navigation model that mimics cellular 

communication, allowing cells to estimate their position within the regenerating 

structure. The future utility of this simulation is to ultimately better understand the 

biological mechanisms that relate microscopic, cell-level behavior to 

macroscopic, organism-level growth. 
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Section 1.3 Contributions 

For the most part, the tools described in this dissertation to simulate 

Xenopus laevis are not new. What is unique about our simulation is the 

introduction of new control laws that simulate the motion of the outer boundary of 

the organism during growth and regeneration.  These control laws are carefully 

formulated to model how microscopic cell behavior (e.g. cell division) impacts 

morphogenesis at a macroscopic scale. 

Contribution 1: Created a set of novel boundary velocity control laws that link 

micro-scale cell behavior to macro-scale morphogenesis for use in a simulation 

of regeneration. 

  A model for biological growth and regeneration is created using novel 

boundary velocity control laws. Level set methods create a field for the boundary 

motion to take place; while, the control laws manipulate boundary velocities to 

simulate outer organism boundary motion.  

This model bridges an existing gap between current micro and macro scale 

models by abstracting individual cell behavior into collective macroscopic 

phenomena using the control laws. Current micro-scale models have difficulties 

modeling even mesoscale features due to their high level of detail and complexity. 

At the same time, current macro-scale models are either inaccurate or have a low 

level of detail due to their extreme levels of abstraction. The model proposed here 

solves these issues by starting from simple cell behaviors (like in the micro-scale 

models) and merging them with existing level set methods for macro-scale 

boundary propagation.  
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These boundary velocity control laws are a new tool for the regenerative 

biology community to use in the search for deeper understanding of regeneration, 

growth, and patterning. Because they bridge the mesoscale gap, they can directly 

link the functions of individual cells to emergent patterning.  

Contribution 1a: Modeled the boundary velocity using three bioinspired control 

laws: isometric control, patterning control, and smoothing control. 

To model microscopic mechanisms of regeneration and growth, the novel 

controller is implemented using three control laws. Each law (or regime) 

represents a different aspect of cell behavior. The first regime, patterning control, 

alters tail morphology to regenerate tail shape to mimic regenerative cell growth. 

The second regime, isometric control, alters tail size while preserving shape to 

mimic natural cell division. The finally regime, smoothing control, reduces 

curvature in the field to smooth body shape which mimics the collective 

cohesiveness of cells. These regimes work in concert to predict regenerative 

morphology. 

Contribution 1b: Simulated Xenopus laevis tail regeneration to test qualitative 

functionality of proposed control model. 

Xenopus laevis was chosen as the animal of focus for its simplicity, 

regenerative capabilities, and large achieve of previous experimentation. The 

control model is tested with four case studies. Each study looks to test a different 

control law and ultimately determine if the model as a whole qualitatively makes 

sense. The control model can be extended to regenerate any closed contour 
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morphology (i.e. hands, limbs, or organs). This makes it a powerful tool for 

general regeneration research in the future. 

  In support of the primary contribution, we published the first paper on 

modeling regenerative morphology using a level set methodology and the new 

velocity control model. To our knowledge, a control scheme has never before 

been used in level set methods to predict macroscopic biological patterning or 

regeneration. This paper will hopefully disseminate this technique into the 

broader regenerative and developmental biology community.  

Contribution 2: Evaluated the practicality of a diffusion-based model for cell 

navigation.  

 A model is proposed to simplify complex cell communication into the 

diffusion of signaling chemicals throughout the tail structure. This is done using a 

classical diffusion model with discreet sources and a distributed sink. Two 

chemical species, in perpendicular orientations, are independently simulated to 

supply each cell with a unique concentration internal to the regenerating 

morphology. This unique concentration can be directly linked to a unique 

position. This model is, admittedly, a logical extension of existing techniques (i.e. 

other morphogen gradient models); however, in the future this model will provide 

position estimates to the control scheme during regeneration.  
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Section 1.4 Thesis Overview 

The remainder of the thesis comprise two main technical chapters and a 

conclusion.  

Chapter 2 describes both the level set module and the boundary velocity 

control module used in the growth model. These two modules are tightly linked 

and therefore presented together. The chapter begins by presenting a background 

and methodology for the level set method and the control laws. The results of the 

simulation verification are then presented and analyzed to check the functionality 

of the simulation. The chapter is concluded by discussing the results and possible 

future work.  

Chapter 3 describes a morphogen model to estimate internal cell position. It 

begins by presenting a background and methodology for creating two dimensional 

diffusion fields. The implementation and results of the simulation are then 

presented and analyzed.  

Chapter 4 concludes the thesis. It looks back at the three modules of the 

overall simulation and reiterates the contributions made in the thesis. It then looks 

at possible areas of future work. 
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Chapter 2 A Level Set Approach to Regeneration 1 

Section 2.1 Abstract 

  A framework for predictively linking cell-level signaling with larger scale 

patterning in regeneration and growth has yet to be created within the field of 

regenerative biology. If this could be achieved, regeneration (controlled cell 

growth), cancer (uncontrolled cell growth), and birth defects (mispatterning of 

cell growth) could be more easily understood and manipulated. This chapter 

looks to create a key part of this preliminary framework by using level set 

methods and a cellular control scheme to predict macroscopic regenerative 

morphology. This simulation specifically looks at Xenopus laevis tail 

regeneration, and uses three control regimes to collectively mimic biological 

regeneration. The algorithm shows promise in creating an abstracted model to 

predict cell patterning on a macroscopic level.  

1 This Chapter was published under the title “A Level Set Approach to 

Simulating Xenopus laevis Tail Regeneration” at the ALIFE XV conference. 

The only change made to the text was a substitution of the words this chapter 

for this paper. The text is otherwise identical.   
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Section 2.2 Introduction 

If the control of cell growth and tissue patterning can be better understood, 

cancer (uncontrolled cell growth), birth defects (mispatterning), and organ 

regeneration (cell growth harnessed toward the repair of complex organs) could 

be more easily manipulated. While the molecular mechanisms of cellular control 

are increasingly understood, the field lacks frameworks for predictively linking 

cell-level signals to large-scale pattern controls. This chapter looks to leverage 

methods from continuum mechanics to provide new tools for modeling the 

control of cell growth and patterning. To do this, regeneration in tadpole tails is 

modeled as an iteration between two processes. The first process is a control 

scheme, which decides where and when tissue should grow or shrink. The second 

process is a growth model that describes changes in tissue morphology due to cell 

division, motion, and growth.  

Figure 2: Two-process system model. The control scheme creates local growth commands, 

which the growth model uses to outputs the spatial distribution of tissue. 
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One challenge in modeling regeneration and tissue growth is relating the 

large (organism) scale to small (cell) scales. Traditionally, as the scale of the 

organism increases, so does the computational expense of modeling its smallest 

features and interactions. The average human is composed of 37.2 trillion cells – 

an unrealistic number of cells and interactions to model [11]. Our proposed 

method is advantageous because it treats tissue as a continuum, blurring the 

boundaries between individual cells. This approach avoids the problem of 

managing cells as individual agents, which like marbles on a Chinese checkers 

board, would need to be shuffled to open spaces to make room for new marbles. 

What we describe is the difference between tracking individual agents and 

tracking the motion of bulk material through a fixed volume of space. Two types 

of mathematical thinking exist to distinguish these types of phenomena. The first 

approach is Lagrangian, meaning cells are tracked on an individual basis. Such a 

method allows cells to operate on their own growth rules and is commonly used in 

biological growth modeling [6], [12]. Lagrange models often suffer 

morphologically from internal voids because the individual “cells” cannot directly 

organize in a manner that preserves contact without overlapping. The second 

approach is Eulerian, meaning it focuses on the space through which particles 

move. Eulerian approaches are classically employed in modeling fluid flow and 

heat transfer [13], [14]. Such methods have not been widely used to model tissue 
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growth and patterning; however, they offer great promise to capture the effects of 

microscopic phenomena interacting across macroscopic domains. 

(a) 

(b) (c) 

ϕ < 0 

(a) 

(b) 

  

 

 
ϕ = 0 

ϕ > 0 

Figure 3: Level Set Scalar Field Derivation (a) Xenopus laevis at stage 42. (b) A 2D 

view of the tail representation. This represents the morphology of the tail and is the 

zero level set contour of the scalar field. (c) A 3D representation of the level set field. 

The flat plane is the zero level set. Above that plane represents material inside the 

body; while, the section below that plane is outside the body. The black line 

represents the current zero contour.  

 

Figure 2: (a) Top view of the volcanic island erupting – arrows indicate boundary 

movement. (b) Front view of the volcanic island describing the same boundary 

movement. Elevation above sea level is indicated by the variable ϕ. Addition of 

volcanic material increases elevation and translates directly to change in island 

circumference. 
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Our proposed model uses an Eulerian approach based on the level-set 

method. Level sets use a modified mass balance to describe a moving boundary, 

such as the interface between an organism and the surrounding medium. Level set 

methods are used to model crystal growth and combustion, as well as for 

computer vision and microchip fabrication [13]–[16]. Level set methods have also 

seen some use in biological modeling [17] although not to our knowledge in a 

closed-loop feedback scheme for patterned growth as illustrated in Figure 1. 

Level set methods use a scalar field to describe a moving boundary. The 

boundary is at the zero values of the scalar field and motion of the boundary is 

determined by assigning a speed at each point. The speed function is ultimately 

what controls the development of the boundary. For this biology-motivated 

application, we propose a speed function consisting of three main components: 

isometric control, patterning control, and smoothing control.  

This chapter uses level sets to simulate the regeneration of the amputated 

tail of a Xenopus laevis tadpole. Xenopus is a simple vertebrate that regenerates its 

tail until early in its life cycle, through stage 52 or 53 [18]. This makes Xenopus 

ideal for modeling patterning growth, and regeneration in particular, across a 

macroscopic scale. In this work, we conceptualize regeneration as growth that 

restores animal morphology back to a “reference” shape. Our particular approach 

will assume that a global reference map is available and that control laws act by 

setting growth rate based on the distance of the organism boundary from the 

reference. In fact, it is not critical as to whether an actual reference “map” might 

exist in an animal system [19] or whether the “map” is an emergent pattern that 
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results from local control decisions [5], [20]–[22]. On the simulation scale, both 

mechanisms are functionally equivalent.  

In the following sections, this chapter will detail methods used to 

implement the growth model and the control scheme. The chapter will then go 

into detail on the simulation used to assess these models. Finally, we will present 

results, conclusions, and future work.  

Section 2.3 Methods 

Section 2.3.1 Level Set Analogy 

Level set methods were originally created to model combustion and two-

phase flow [15]. A level set can be conceived as a geographic contour map, where 

each level set is an elevation contour that consists of the set of points at a 

particular elevation. These contours may change over time if geography changes. 

By following a particular contour in time, it is possible to model the motion of an 

interface (e.g. a flame front in combustion or a liquid-gas interface in two-phase 

flow). 

To make the geographic analogy more concrete, consider a particular case 

– a volcanic island rising out of the ocean (Figure 2). In this example, we will 

track sea level over time, as this elevation marks the interface between the island 

and the ocean. As a volcanic eruption takes place and adds material over the 

entire island, the island’s elevation map will evolve both on the land side 

(topography) and on the ocean side (bathymetry). The addition of new material 

will cause the island to grow, such that the sea-level elevation contour pushes 
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outward as shown in Figure 2. Erosion would garner the opposite effect – sharp 

features would be worn down, shrinking the boundary. In Figure 2, the elevation 

is denoted by the scalar ϕ. The interface between land and water is denoted by the 

sea-level contour, with ϕ = 0. 

This geographic concept can be extended to biological modeling. In this 

chapter, we consider a two-dimensional model of the Xenopus tail. In our model, 

the x coordinate corresponds to the anterior-posterior direction, the y coordinate to 

the dorsal-ventral direction, and the lateral direction is not modeled. The level set 

field ϕ(x,y) is now used to represent distance away from the outer surface of the 

organism.  The contour that represents the outer surface of the organism is labeled 

Γ and represents the set of all points where ϕ = 0. Moving inside the organism, the 

distance-from-contour is measured as positive and so ϕ is set positive inside the 

organism.  By contrast, ϕ is set negative outside the organism. This mathematical 

approach lets us track the motion of the outer surface of the organism through 

space as the organism grows in time. An illustration of this concept is shown in 

Figure 3, which depicts a section of the Xenopus tail. A photo of the Xenpous 

tadpole, in Figure 3(a), shows the tail prior to amputation. The outer tail surface 

can be identified and used to generate a binary image, as shown in Figure 3(b), 

where the green region indicates the interior of the organism and the light region 

indicates the exterior. This tail region can also be viewed as a level set field, 

shown in three-dimensions in Figure 3(c).  The height of the field indicates the 

distance of each (x,y) point from the outer surface of the organism.  
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Section 2.3.2 Growth Model 

This section describes the level set equations we used to model organism 

growth. Begin by identifying the outer surface of the organism in a Cartesian 

space described by coordinates x and y. In two-dimensions, the outer surface of 

the animal is a contour, which we label Γ as shown in Figure 3(b). Now construct 

a scalar field ϕ(x,y) that represents distance from the contour Γ, with values 

increasing interior to the organism (ϕ > 0) and decreasing exterior to the organism 

(ϕ < 0). In order to represent distance, note that the gradient of this scalar field 

must be one at all points where the slope of the field is continuous.  Slope 

discontinuities appear only at the center of the field, where points are equidistant 

from multiple sections of the Γ contour, as illustrated by the ridge that appears 

along the midline of the tail, as illustrated in Figure 3(c). 

To model growth, we evolve the scalar field ϕ over time. As time 

advances, the level set is propagated using a velocity field v(x,y), where the 

velocity vector is specified at every point in the field. The magnitude F of the 

velocity vector will be set by the control scheme, as described below. As the 

control scheme transform the scalar field, the outer surface of the organism Γ 

moves in time, representing organism growth. 

The following equation governs the time dynamics of the scalar field 

ϕ(𝑥, 𝑦, 𝑡). 

𝐷

𝐷𝑡
𝜙 =  𝑆(𝑥, 𝑦, 𝑡)                                                 (1) 
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Here the full derivative of the scalar ϕ is related to a source term S. The source 

term allows for the production of new material (or the destruction of old material) 

at every point in the field. Where the source term is zero, there is no change in the 

total amount of material present; in other words, ϕ is conserved in the absence of 

a source term. Equation (1) is a classical conservation law from continuum 

mechanics, as might be used to model the conservation of mass, momentum, or 

energy [23]. 

 The full derivative is linked to velocity v through the following equation. 

𝐷

𝐷𝑡
𝜙(𝑥, 𝑦, 𝑡) =  𝜙𝑡 + ∇𝜙 ⋅  𝐯                                        (2) 

This equation, obtained from standard calculus using the chain rule, uses the 

notation 𝜙𝑡 to identify the partial derivative of ϕ with respect to time and the 

notation ∇𝜙 to identify its spatial gradient. In this work, ϕ contours are assumed 

always to move outward in the direction normal to each existing contour. The 

local unit normal to each contour is defined by the gradient: 

𝐧 =  
∇𝜙

‖∇𝜙‖
                                                       (3) 

The velocity vector can be written in terms of a magnitude term F multiplied by 

this local normal. 

𝐯 = −𝐹𝐧                                                     (4) 

The negative sign is introduced here, so that a positive speed F corresponds to 

organism growth (toward lower values of ϕ). A field in which velocity is locally 

normal to the contour is shown in Figure 4. 
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Substituting equation (4) into equation (2) gives  

𝐷

𝐷𝑡
𝜙(𝑥, 𝑦, 𝑡) =  𝜙𝑡 − 𝐹‖∇ϕ‖                                       (5) 

Recalling that the gradient is equal to one at all points where it is defined, the full 

derivative becomes 

𝐷

𝐷𝑡
𝜙(𝑥, 𝑦, 𝑡) =  𝜙𝑡 − 𝐹                                           (6) 

where the gradient ∇ϕ is continuous.  To avoid issues with the gradient being 

undefined at some locations (at cusps and ridges in the ϕ field), the velocity 

magnitude F is restricted to be zero at these locations.  Thus, by combining 

equations (1) and (6), we obtain the following equation to describe the change in 

the level set field ϕ at each point and at each moment in time. 

𝜙𝑡 =  {
𝐹 +  𝑆, ∇𝜙 𝑑𝑒𝑓𝑖𝑛𝑒𝑑

 𝑆, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                                     (7) 

 

Figure 4: Velocity normal to level set contour. All movement is normal to each point 

on the contour. Only the magnitude of F determines contour movement. 
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Because this equation for propagating the ϕ field behaves differently in 

regions where the gradient is either continuous or not, it is natural to decompose 

our solution approach into two parts. In the first part of the solution, we update 

the field at each time step assuming that the source term is negligible.  For this 

step we use a first-order discretization of equation (7). 

𝜙(𝑡 + ∆𝑡) =  {
𝜙(𝑡) + 𝐹∆𝑡, ∇𝜙 𝑑𝑒𝑓𝑖𝑛𝑒𝑑

 𝜙(𝑡), 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                            (8) 

Assuming a negligible source term is reasonable over short time periods; 

however, over longer periods neglecting the source term rapidly degrades the 

assumption that the gradient is unity magnitude (where defined), since a source 

should exist at peaks and ridges (as in the Volcano example of Figure 2). As such, 

the source term must be taken into account somehow.  

To account for the source term, we use a process called reinitialization 

[13], [14], [24], [25]. Reinitialization serves two purposes; it forces the non-

boundary region to have a gradient of one, and it implicitly adds material to the 

whole field to maintain the field’s shape. In particular, we use a process called a 

narrowband reinitialization [16]. The narrowband solution assumes that the 

location of the zero-contour Γ is predicted accurately. The solution domain is then 

divided into two regions:  a region near the zero-contour (the interface region) 

and the region farther from the zero-contour (the far field). Values of ϕ in the 

interface region are preserved; values in the far field are replaced by computing 

the distance of each location from the zero contour.  Although this process does 

not correct the gradient inside the interface region, the far field values effectively 
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introduce a boundary condition that drives the slope in the interface region back 

toward its correct magnitude (of one). This narrowband approach is numerically 

robust and has been used extensively in other applications of the level set method 

[16].  

A practical issue is that the approximations introduced by narrow banding 

can affect the accuracy of the prediction of the zero-contour Γ. A balance must be 

struck however between giving the zero-contour freedom of movement and 

constraining the field to a gradient of one. For this reason, reinitialization is not 

necessarily performed at every time update. In our method, we used a boundary 

width of 2 pixels on either side of the Γ contour and performed reinitialization at a 

rate of once per 20 time steps.  

In summary, the key idea of the growth model is that a velocity field can 

be assigned to every point in space, allowing the organism surface Γ to be grown 

without knowing the precise location of that surface. This property is in turn 

useful because it permits the simulation of a smooth, continuous boundary using a 

relatively coarse grid.    

Section 2.3.3 Control Scheme 

In this section we describe a control law that can be used to in conjunction 

with the level set methodology to define organism shape during regeneration. The 

control law defines a velocity field at every point in the simulation domain. As 

described by equation (4), the velocity is locally normal to contours of constant ϕ. 

The velocity magnitude F is set by the control described in this section. 

Specifically, F is a summation of three terms, which are assumed to act 
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independent of each other. These terms include patterning control P, isometric 

control I, and smoothing control K. Each term models a distinct aspect of 

biological growth. It is important to note, however, that the models are 

phenomenological in nature and are not derived directly from detailed data sets. 

Taken together, the three terms sum to give F.   

𝐹 = 𝑃 + 𝐼 +  Κ                                                   (9) 

All terms in this equation are functions of 2D space and time. 

Patterning Control: Patterning control, P, is the key term for this chapter as it 

shapes morphology by enabling local growth. The idea is that local cell-level 

actions may trigger tissue deterioration or growth in a small region (as at the 

regeneration site or blastema in an amputated Xenopus tail [26]). These local 

actions are responsible for regeneration and also for shape changes that occur 

during normal growth. Furthermore, this local activity counteracts disturbances, 

constantly adding or removing tissue to maintain an appropriate organism shape 

under varying environmental conditions. In principle, a failure of local patterning 

might result in uncontrolled growth (i.e. cancer). 

In our simulation, we assume that patterning growth is active for cells that 

are near the organism surface Γ but that are not at a desired location. For 

simplicity, we use a global reference map ϕref, which is scaled to the current width 

of the simulated tail. From this map, we derive an error e at each point in the 

simulation domain. 

𝑒(𝑥, 𝑦, 𝑡) = 𝜙𝑟𝑒𝑓(𝑥, 𝑦, 𝑡) − 𝜙(𝑥, 𝑦, 𝑡)                            (10) 
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The error for a given element of tissue represents the difference between its 

desired and actual distance from the organism surface. The error term is limited to 

a maximum value, emax, to reflect a threshold where the cells are so far from their 

target that they grow at a maximum rate. In the region near the organism surface, 

the patterning speed is set to be proportional to the error. 

This proportionality is capped, however, to reflect a maximum cellular 

growth rate, which is slightly faster than nominal, isometric growth. The 

maximum speed Fmax is related to the maximum cellular growth rate CGC,max.   

  𝐹𝑚𝑎𝑥 =
𝑉𝑝𝑎𝑡

𝑆𝐴
𝐶𝐺𝐶,𝑚𝑎𝑥                                          (11) 

Here the variable SA represents the surface area (which in 2D is the length of the 

contour where  = 0). The variable Vpat represents the volume of tissue that is 

active in patterning and is proportional to Vtot. The result is that patterning growth 

is nonzero only in the active region; in this region patterning growth is nominally 

proportional to error, subject to saturation if the growth rate becomes too large or 

too small. 

𝑃 = {

𝐹𝑚𝑎𝑥
𝑒

𝑒𝑚𝑎𝑥
|𝑒| < 𝑒𝑚𝑎𝑥 and 0 < 𝜙 ≤ 𝑑

𝐹𝑚𝑎𝑥sign(𝑒) |𝑒| ≥ 𝑒𝑚𝑎𝑥 and 0 < 𝜙 ≤ 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     (12)              

Isometric Control: Our simulation uses an isometric control term I to allow for 

growth that is organism wide (as compared to patterning growth which is local). 

We assume that this growth occurs at the same rate throughout the entire 

organism, such that the organism maintains its shape when only I is active. 
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Isometric growth is, in fact, a nominal behavior for some organisms such as the 

flatworm. When food resources are plentiful, the flatworm grows uniformly in all 

directions; when the flatworm is starved it shrinks uniformly in all directions [27]. 

In Xenopus tadpoles, by contrast, some changes in shape occur as the organism 

grows [18], [21], [28], and so nominal growth combines some aspects of 

isometric control I with patterning control P.  

The isometric control term has a uniform value of 𝐹𝑉 everywhere in the 

simulation domain when the term is active. 

𝐼 = 𝐹𝑉                                               (13) 

The isometric model represents constant cellular growth with time, meaning the 

boundary velocity must increase in time (as the volume to surface area ratio 

increases). To account for this, the growth speed Fv is computed as  

 𝐹𝑉 =
𝑉𝑡𝑜𝑡

𝑆𝐴
𝐶𝐺𝐶,𝑛𝑜𝑚                                             (14) 

Here Vtot represents the total volume of the organism (or in this 2D simulation, the 

area of the tail). The rate CGC,nom represents the rate of cellular growth (mitosis), 

which is modeled to be uniform in space . For our simulations we assume that 

sufficient resources are available to the organism to maintain a nominal growth 

rate CGC,nom that is constant in time. 

Smoothing Control: The final term of the speed function is a smoothing control 

term K designed to eliminate sharp features (e.g., corners created by amputation) 

or to eliminate tissue filaments that might (by random chance) begin to develop as 
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extensions of the organism surface. This term essentially regularizes the organism 

surface to maintain smoothness. The specific mechanism for performing 

smoothing is to introduce a perturbation to the growth rate that is proportional to 

the local curvature 𝜅 of the ϕ contours. The constant of proportionality is 𝐶𝜅. 

𝛫(𝑥, 𝑦, 𝑡) =  𝐶𝜅𝜅(𝑥, 𝑦, 𝑡)                                      (15) 

This concept for smoothing has been employed in other applications of level set 

methods, as described by [14], [16], [24], [25]. In our biological application, the 

curvature term not only eliminates spurious features; it is meant to prevent the 

formation of holes and discontinuities that are not represented in the reference 

map.    

By definition, curvature in a level set is the spatial derivative of normal 

vectors along a contour. The more rapidly the contour changes direction, the 

higher will be its curvature. Mathematically, curvature can be written  

𝜅 = ∇ ∙ 𝐧                                                  (16) 

where the normal vector n is defined by equation (3) above.  

Each control regimes can be linked directly to micro scale cell behavior that 

impacts macro scale morphology. Patterning control begins by considering a 

maximum growth rate of individual regeneration, multiplies that growth by the 

number of patterning cells, and then distributes that growth along the growing 

boundary. Similarly, isometric control begins by considering the natural growth 

rate of cell division, multiples that growth by the cells in the tail, and distributes 

this growth over the body boundary by dividing by the surface area of the tail. 
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Smoothing control is not as simply related to cell growth, but instead represents 

cohesiveness in the cellular matrix by minimizing areas of high curvature or 

irregularity. 

There are three main constants that control the behavior of this simulation. 

Patterning control is modulated by CGC,max, the maximum rate of regenerative 

growth. For this thesis, this value is found by fitting simulation results (tail length 

per time) to the regeneration series shown in Reid et. al. [29]. More specifically, 

the length per time curve of the simulation is aligned with the days 5, 9 and 12 

post amputation lengths. This value is found to be 0.02. Isometric control is 

modulated by CGC,nom, the nominal growth constant. This value is found by 

analyzing the length per time growth rate of undamaged tadpoles, shown in the 

normal table of Xenopus laevis [30]. This value is found to be 0.00075. The final 

constant, Cκ, controls the intensity of smoothing control. It is tuned by testing the 

simulation at steady state. This achieved by setting isometric control to zero and 

starting the simulation at its reference morphology. The simulation is then 

qualitatively evaluated to check that the tail is not eroded with time (meaning 

patterning and smoothing controls balance). This value is found to be 0.001. 

These three control parameters, for this thesis, are tuned to Xenopus laevis 

growth. It is important to note however, that these values may vary for different 

animals and different morphologies.  
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Section 2.3.4 Implementation 

Each time step is represented by a single iteration of the main loop shown 

in Figure 5. In general, the simulation is allowed to run for 15,000 time steps, but 

this number must be adapted to grid resolution and control coefficients. 

The level set ϕ is stored as a two-dimensional array on a Cartesian x-y grid. In this 

simulation the size of the grid was 301 pixels (anterior-posterior) and 135 pixels 

(dorsal-ventral). Two extra cells pad the field on each edge to simplify gradient 

and curvature calculations.  

Computing ‖∇𝜙‖ (labeled Magnitude of Gradient of Phi block in Figure 

5) introduces a potential source of numerical error, as derivative operations 

amplify numerical errors. Therefore, a weak Gaussian filter was introduced in this 

block to smooth gradient values. The filter uses a two-dimensional Gaussian 

kernel with a standard deviation of 0.25. 

 At each step, the surface of the organism (ϕ = 0) may lie between cells. 

No attempt is made to interpolate the actual surface (e.g. red contour shown in 

Figure 6). Rather, figures in this chapter report all cells with ϕ > 0 as being part of 

the organism and all cells with ϕ < 0 as being exterior to the organism. 

Figure 5: Implementation of primary simulation loop. 
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Section 2.4 Results of Simulation Verification  

A suite of four test cases were simulated in order to verify the basic 

functionality of the algorithm. The four test cases all considered a simulation 

domain modeling a stereotypical Xenopus tadpole tail. The final tail morphology 

is derived from Reid et. al. [29] and Faber and Nieuwkoop [30]. The four tests 

include (a) no growth, (b) patterning-based regeneration following amputation, (c) 

nominal isometric growth, and (d) nominal isometric growth and simultaneous 

regeneration following amputation. These test cases were selected respectively to 

examine algorithm stability, performance of patterning control (in isolation), 

performance of isometric control (in isolation), and performance of combined 

control terms.  

Patterning and isometric control parameters are derived from experimental 

regeneration data. All four test cases have (unless otherwise noted) CGc,nom = 

0.00075, Cκ = 0.001, Cp  = 0.02,   d = 3, emax = 10, CGc,max = 0.1, 1 time step = 12 

minutes, and are run for 15,000 time steps. The patterning control coefficient (Cp), 

was found using the Reid et. al. image sequence and analyzing its length growth 

rate. Isometric control coefficient (CGc,nom) was found using the normal table of 

Xenopus laevis stage series [30]. The pixel area of the organism was evaluated 

Figure 6: The boundary (red curve) may lie between cell centers, as shown on 

this grid. 
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from experimental images, between stages 40 and 52. Data were plotted and the 

value of the growth rate was determined by a linear fit of the data.  

In analyzing the four test cases, it is useful to consider image sequences 

that illustrate the growth process. Figure 7 shows four image sequences, one for 

each test cases. At the end of each row, an additional plot shows growth 

contributions per time step for each term (P, I, and K). Each image sequence starts 

from the left; the green body is the current body shape, and the black outline is the 

final target reference. In the growth contributions plot (far right) the horizontal 

axis indicates time and the vertical axis indicates the growth contribution (for P, I, 

and K) integrated over the entire organism for each time step in units. Growth is 

measured in terms of grid cells, or pixels, that the organism fills. Hence the units 

Figure 7: Verification tests: (a) No Growth, (b) Regeneration Following Amputation 

(c) Nominal Growth (d) Nominal Growth and Simultaneous Regeneration Following 

Amputation. The right most graph shows contributions of individual control terms to 

F, integrated over the simulation domain.  
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of the vertical axis can be considered to be pixels per unit time. The area under 

each of the growth contribution curves can loosely be viewed as the overall 

contribution of material due to each growth contribution (P, I, and K) from the 

start of the simulation.  

Section 2.4.1 Case A: No Growth 

The first test case looks at the stability of the patterning algorithm by 

considers a fully-grown tail where the surface of the organism is already at its 

reference location and where the nominal growth term is shut off (CGC,nom = 0). 

One would expect there should be no change in body shape, and little to no 

contribution from any of the active control regimes, since the initial organism 

shape matches the reference contour. Indeed, the image sequence in Figure 7(a) 

shows qualitatively that the tail remains stationary. Growth contributions are tiny 

but nonzero (smaller than 0.1 pixel/time step, as shown in the growth 

contributions plot at the end of the row). Though nonzero, the growth 

contributions from patterning (positive) and smoothing (negative) are essentially 

balanced. The implication is that the smoothing term is continually active at a low 

level and that the patterning term compensates, such that the two remain in static 

equilibrium. The fact that the system reaches equilibrium indicates that the 

algorithm is in fact stable.  

Section 2.4.2 Case B: Regeneration Following Amputation 

The second test case considers a simplified model of regeneration 

following amputation, with no nominal organism growth. The purpose of the test 

case is to examine the performance of the patterning control term. The amputation 
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is performed digitally, with the tail being “cut” at the initial time to leave tissue 

only in the 10 leftmost grid cells of the image. For this simulation, nominal 

growth is again disabled (CGc,nom = 0). Under these conditions, we would expect 

the tail to return its nominal shape (pre-amputation), with tissue filling the 

reference map much as material might flow into a mold. 

Figure 7(b) shows that by time step 15,000, the tail has in fact regenerated 

to its nominal shape and size. Note that, for Case B only, the patterning growth 

rate was reduced relative to its nominal value (to Cp = 0.005), in order to better 

visualize the growth process. As shown in the initial sequence, the corners created 

in the amputation persist through time step 5,000. Together the smoothing term 

and the reference image (which inhibits patterning growth when the organism 

boundary reaches the reference boundary) introduce more curvature into the 

regenerating tail, as seen by time step 10,000. The smoothing term becomes more 

active as the tail becomes sharper, but eventually the patterning term overcomes 

the smoothing term to fill the pointed tip of the tail, as seen in time step 15,000. 

The growth contribution plot shows that total patterning growth ramps up 

slowly to a peak around time step 4,000 before tapering toward zero approaching 

time step 10,000. The explanation is that initially the amputation boundary grows 

nearly straight (toward the right), such that the total patterning growth (which is 

proportional to the size of the amputation surface) is nearly constant with some 

slight rise due to the curvature appearing at the top and bottom corners of the 

amputated face. As the tail narrows, the surface area of the amputation face grows 

narrower and the amount of patterning growth falls quickly toward zero. Note that 
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the scale of the growth contribution plot for Case B is zoomed out by 100 times 

relative to that of Case A, indicating much, much higher growth rates in Case B 

(as would be expected).  

Section 2.4.3 Case C: Nominal Growth 

The third test case mimics nominal growth with no amputation or 

regeneration. In this example, the initial organism is set to the same shape as the 

initial organism in Case A, but scaled down in size by 50%. In concept, one 

would expect only isometric control would be necessary to grow the tail, even 

with patterning control active. 

The simulation indicates that the organism shape is preserved during 

growth, as shown in Figure 7(c). The growth contributions plot for this row shows 

that the majority of all growth is generated by the isometric growth term. Though 

the patterning growth term is active, it remains essentially zero throughout the 

simulation, as expected. (The exception is a small spike near time step 15,000, 

triggered by a combination of the reinitialization process and by erosion due to 

smoothing). The final image of the sequence shows the simulated organism 

overgrows the reference contour slightly, as can be observed near the tip of the 

tail.  This occurs largely because of the action of the smoothing term, which 

rounded the tail during otherwise isometric growth. 

As a final note, it is worth observing that the organism growth rate 

increases slightly over time, as is evident from the growth contributions plot at the 

end of row (c) in Figure 7. The acceleration of growth over time matches the 

intent of equation (14), which was designed to keep the rate of cellular division 
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constant, with the implication that the organisms total growth (pixels added per 

time step) should become faster as the organism becomes larger. 

Section 2.4.4 Case D: Nominal Growth and Regeneration 

A final test case combines Cases B and C to provide a more realistic 

model for amputation, one in which patterning growth occurs in parallel with 

nominal growth. For this case, all three control terms are active simultaneously 

(with control parameters set to their nominal values). 

The Case D simulation confirms that the patterning and isometric growth 

terms complement each other when they are both active, allowing the organism to 

change size and shape simultaneously. It is perhaps surprising to observe that the 

combined growth (Case D) image sequence much more closely resembles 

nominal growth (Case C) than regeneration (Case B). In fact, as early as time step 

5000 of the image sequence, Case D and Case C appear qualitatively the same, 

even though the initial conditions (at time step 1) are entirely different. The 

similarity of the image sequences can be explained by examining the growth 

contributions plot, which shows that patterning growth term is most active early, 

approximately through time step 1000. In fact, the shape of the patterning growth 

curve for Case D is nearly identical to what was observed for Case B, but with a 

smaller peak amplitude and scaled to a shorter time scale (about five times faster 

completion of patterning as compared to Case B). The shortened duration of 

patterning growth is related to the choice of patterning growth coefficient Cp 

(which was reduced in Case B) and to the initial condition of Case D (which has 
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half the width of the initial condition for Case B, such that the velocity-to-length 

ratio is increased in Case D). 

At first glance, it appears that the growth contribution plot for Case D 

suggests some interaction between the isometric and patterning growth terms, 

since the isometric growth rate in Case D appears to dip for the first 1000 time 

steps as compared to Case C. This difference in the initial isometric growth can 

more simply be explained as a size effect, however, rather than an interaction. 

Since the total amount of isometric growth scales with the amount of material in 

the organism, and since the amount of simulated material is very low post 

amputation (in Case D), it should not be surprising that the volumetric growth rate 

is initially much lower in Case D than Case C.  

Section 2.5 Discussion 

The verification tests described in the prior section, and in particular the 

Case D test, suggest that this simulation can provide a relevant model for 

simulation of Xenopus regeneration. In the Case D simulation, morphology is 

regenerated while the tail grows in size, a behavior seen in Xenopus regeneration. 

Importantly, the verification tests of the prior section also demonstrate that the 

simulation is stable and qualitatively well behaved. The patterning control 

switches off when the organism shape approaches the reference map (Case A). 

The isometric growth and volumetric terms perform as expected when active 

individually (Case B and Case C) and when active simultaneously (Case D). The 

smoothing control term was active in all cases, providing small adjustments to 
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regularize shape (as visible in Case B in particular), but always resulting in a very 

small contribution to the overall growth of the simulated organism, so small that 

the contribution was only visible when magnifying the scale of the growth 

contribution plot (as in Case A). 

The simulation does have limitations. First, the reinitialization process 

introduces slight irregularities, since reinitialization occurs only periodically 

(once every 20 time steps). The result is that the growth contribution plots can 

appear slightly choppy (as is visible in the saw tooth pattern for patterning growth 

in Case C and Case D). Reinitialization is also somewhat computationally 

intensive. As such, an alternative to reinitialization may be pursued in the future. 

Second, smoothing control effects make it difficult to generate sharp corners. 

Some modification to the smoothing control may be necessary in the future to 

allow sharp features to develop when desired (as in the tip of the simulated tail). 

Third, at small tail sizes, the discrete nature of the patterning control reference 

map can introduce dithering when the reference map is rescaled. To mitigate this 

effect, we will consider alternate representations of the reference map in the 

future. Since, the current reference map is binary (with a one indicating a grid 

point inside the organism and a zero indicating a grid point outside), a floating 

point representation of the reference map would likely be helpful to reduce 

dithering that occurs when the reference map is scaled. 

The intended application of our simulation tools is to examine control 

policies and sensing modalities that might be used during regenerative growth. 

Future studies will validate our simulation tools through direct comparison to 
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biological studies of Xenopus tail regeneration. Also, we will augment our 

simulations with new models of control and sensing with the goal of explaining 

biological observations about the impact of external factors (electrical, chemical, 

damage, etc.) on regenerative growth.   

Section 2.6 Conclusion 

This algorithm creates a simplified abstraction of cell regeneration 

morphology, using level set methods and control regimes, that is a base module 

for a future framework to predictively link cell-level signaling to macroscopic 

patterning. This ultimate framework may provide insight into regeneration, 

cancer, and even birth defects. This algorithm reduces complex cellular 

interactions into body boundary movement using three control regimes – 

patterning control, isometric control, and smoothing control. Patterning control 

mimics regeneration at wound sites and acts on the body boundary. Isometric 

control mimics bulk growth of the organism with time, and smoothing control 

regularizes growth by reducing high curvature regions. Looking specifically at 

Xenopus laevis tail regeneration, this algorithm shows promise in predicting cell 

patterning on the macroscopic scale. Although this chapter specifically discusses 

simulation of a Xenopus tail in two dimensions, the methodology is general 

enough to be applied to arbitrary morphologies in both two and three dimensions.   
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Chapter 3 A Model for Cell Positioning  

Section 3.1  Introduction  

Cell communication and positioning has long been believed to be critical 

in cellular patterning, growth, and regeneration. Many models have used 

signaling models to determine cellular gene expression, behavior, and 

differentiation. Morphogens, signaling chemicals that are transported throughout 

an organism to alter cell behavior, have long been the focus of this type of 

research. The simulation presented in this chapter is meant to be a similar type 

of model that could ultimately provide position estimates to cells in the Chapter 

2 simulation. This chapter explores how these morphogens might diffuse 

throughout a regenerating tail and what their steady state distributions might 

look like. Recently, Xenopus laevis regeneration research has focused on the 

contribution of voltage potentials, ion concentrations, gap junctions, and 

signaling pathways to describe how macroscopic patterning may emerge from 

underlying collaborative phenomena [4], [5], [9], [21], [29], [31], [32]. This 

simulation could be used to abstract these processes and supply information to 

“cells” through a diffusion based algorithm. 

Nominal regeneration of tadpole tails occurs reliably, and completes, on 

average, within 14 days of amputation [33]. Xenopus laevis can only regenerate 

its tail and limbs, its body does not have any regenerative ability [34] (unlike 

Planaria), during the early stages of its development. It loses this ability after 

approximately stage 50 [29]. Xenopus tadpole literature classically use an 
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anterior/posterior and dorsal/ventral coordinate system to describe body feature 

position. These distinctions can be seen in Figure 8 and are used in this chapter 

interchangeably with the x and y axes.    

Figure 8: Stage 42 Xenopus laevis tadpole with indication of anterior/posterior and 

dorsal/ventral directions. This image was taken from the Normal Table of Xenopus laevis 

and is 7.14 mm in length for reference [30].   

Section 3.2  Methods  

 In this chapter, it is important to note that time steps in the diffusion model 

are different than time steps in the growth model presented in Chapter 

2.Therefore, time steps in the growth model are referred to as “growth time steps” 

and are much longer than diffusion time steps.  

Section 3.2.1  Diffusion Based Relative Positioning System   

The goal of the morphogen model is to abstract the biological mechanism 

with which cells collectively communicate and position themselves. Cells 

communicate many ways, including voltage potentials, gap junction pathways, 

electric fields, and ion concentrations [9], [29], [31], [32], [35], [36] . To mimic 

this information, a diffusion model, with point sources and a distributed sink, is 
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proposed. As the morphogen diffuses through the tail, cells destroy it at a regular 

rate. This process is represented by equation (17)  

ρt = Dρxx – Cρ + S                                           (17)   

where, ρ represents the concentration of the morphogen, D is the diffusion 

coefficient, C is the morphogen rate of destruction and S is the source term. The 

source cells exist along either the anterior or dorsal edge of the tail and are fixed 

at a value of one. As the signaling chemical is destroyed, its concentration 

distribution, when plotted on a log scale, is linear and stable, even as the tail 

grows (as shown in Figure 9, 10, and 11).  

  Each of these simulations employs adiabatic boundary conditions on the 

entire tail boundary. This means no material is allowed to pass through the tail 

boundaries. As for initial conditions, the source cells are set to one while the rest 

of the cells are set to zero. The steady state solution is then found iteratively using 

a discrete Eulerian formulation detailed in the implementation section. The steady 

state solution is used in this case because it is assumed the morphogen gradient 

develops much faster than the cells grow.  
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  The steady state solutions to this type of diffusion partial differential 

equation (equation 17) are exponential in nature. This means the distributions can 

be more easily visualized as linear when plotted on a logarithmic scale. Figures 9, 

10, and 11 employ a logarithmic scale to visualize the steady state distributions of 

the given morphology. Figure 9 shows the anterior/posterior morphogen 

distribution of a regenerating tail at 12 days post amputation. The source cells in 

this case are uniformly distributed along the left edge of the tail image and are 

highlighted in red. Both Figures 9 and 10 are plotted in the xy plane and have a 

color bar representing the logarithm of the morphogen concentration.  

Figure 9: Steady state solution for anterior/posterior morphogen field. Source cells are 

located along the left edge of the field and highlighted in red. 



38 

 

As can be seen in Figure 9, the steady state solution creates a very evenly spaced 

distribution and therefore a reliable measure of distance from the souce cells 

based on concentration.  

Similarly to Figure 9, Figure 10 shows the steady state solution to the 

dorsal/ventral morphogen distribution in a regenerating tail that is 12 days post 

amputation. The source cells are located along the top (dorsal) edge of the tail and 

highlighted in pink. The smallest logirathmic term is larger in the dorsal/ventral 

case because the tail is much longer than it is wide. 

Figure 10: Steady state solution for dorsal/ventral morphogen field. Source cells are 

located along the top edge of the tail boundary.  

Figure 10 exhibits a distribution that is less regular that Figure 9, due to the source 

cells being placed along an irregular boundary. Although the contours are not as 



39 

 

perfectly distributed, a reliable measure of distance from the dorsal edge can still 

be extracted from a given concentration.  

It is important to note, anterior and dorsal source cells give off different 

morphogen species, allowing for a unique dorsal/ventral and anterior/posterior 

position to be found by each cell. Figure (11) shows these two species and the 

distribution that is formed within an ideal tail section. Figure 11 shows how these 

morphogen gradients might be used to create a unique coordinate system within 

the regenerating tail.    

Figure 11: Ideal distribution for diffusion of dorsal/ventral and anterior/posterior 

chemical species on log scale with D = 0.01, C = 0.01, and dorsal and anterior sources 

where indicated at 100% concentration. 

Section 3.2.2  Discrete Diffusion Model Formulation 

An Eulerian scheme for modeling diffusion was used to generate the 

concentration distributions. This type of scheme looks at the difference between 

surrounding grid cells and is shown in equation (18). 
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𝜌𝑛+1(𝑥, 𝑦) − 𝜌𝑛(𝑥, 𝑦)

∆𝑡

= 𝐷 (
𝜌𝑛+1(𝑥, 𝑦 + 1) − 𝜌𝑛+1(𝑥, 𝑦) + 𝜌𝑛+1(𝑥, 𝑦 − 1)

(∆𝑥)2

+
𝜌𝑛+1(𝑥 + 1, 𝑦) − 𝜌𝑛+1(𝑥, 𝑦) + 𝜌𝑛+1(𝑥 − 1, 𝑦)

(∆𝑦)2 )

− 𝐶𝜌𝑛+1(𝑥, 𝑦) + 𝑆(𝑥, 𝑦) 

(18) 

 

In equation (18), ρ is the morphogen concentration, x and y are grid positions, Δt 

is the time step size, D is the diffusion coefficient, Δx and Δy are the grid step 

sizes, C is the decay constant, S is the source term, and n denotes the simulation 

time step.  

Section 3.2.3  Limitations 

The major limitation of this method lies in the variability of relation 

between concentration and distance from source cells as the animal’s shape 

changes. This stems from source cells being located on a section of the animal 

that is altered as the animal regenerates. Specifically, the source positions along 

the dorsal edge are not stationary as the tail grows. Another limitation of this 

simulation is computational intensity increasing with field size. Because the 

whole field is run to steady state at each growth time step, there is a large 

computational requirement associated with the use of this module for position 

estimation.  
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Section 3.3  Implementation  

This simulation is meant to be a module in the much larger growth and 

patterning simulation shown in Chapter 2. For this chapter however, the level set 

growth model and the control scheme will not be used to close the sense-plan-act 

loop. The results in this chapter show the diffusion system operating from a 

contour supplied by the level set and control modules working independently. 

Figure 12 shows the basic implementation architecture used to generate the steady 

state diffusion solutions. This architecture is run at each growth time step (on the 

most current zero level set contour) to refresh the steady state solution.  

 

Figure 12: Implementation schematic for the steady state diffusion model. 

 The implementation shown in Figure 12 starts with an initial tail shape. The 

initial source positions are then determined from this shape by finding the dorsal 

and anterior edges of the tail shape. These sources are then initialized to a value of 

one. An iterative loop is then used to propagate the morphogen until equation (19) 

is satisfied.  

|𝜌𝑛 − 𝜌𝑛−1| = 0                                           (19) 
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Equation (19) is a simple definition of the steady state condition, where the 

difference between the current time step and the last time step is zero. In simple 

terms, the field has not changed between time steps. Within the loop, the field is 

first “padded” on the tail boundary. This means the boundary values are copied 

one space outside the boundary to create a zero net flux across the boundary (no 

material is transported at the boundary). The source cells in the field are set to 

unity – creating material as need. Equations (21a-c) are then used to compute the 

local differences in the field. These values are then combined in equation (20) to 

calculate the change in the field with each iteration.  

𝜌𝑡 = (𝐷 ∗ ∆𝑡(𝛿𝜌𝑟𝑖𝑔ℎ𝑡 + 𝛿𝜌𝑙𝑒𝑓𝑡 + 𝛿𝜌𝑢𝑝 + 𝛿𝜌𝑑𝑜𝑤𝑛)) − 𝐶𝜌 + 𝑆         (20) 

In equation (20), Δt is the time step size, D is the diffusion coefficient, C is the 

decay coefficient, ρ is the morphogen concentration, S is the source term, and 

δρright is the difference between the center and right cell (as shown in equation 

(21d) and Figure 13). Similarly, δρleft, δρup, and δρdown are all differences between 

the center and their respective cells and are shown in equations (21a-c) and Figure 

13. 

𝜌𝑢𝑝 = 𝜌(𝑥, 𝑦) − 𝜌(𝑥, 𝑦 + 1)                                    (21a) 

𝜌𝑑𝑜𝑤𝑛 = 𝜌(𝑥, 𝑦) − 𝜌(𝑥, 𝑦 − 1)                                  (21b) 

𝜌𝑙𝑒𝑓𝑡 = 𝜌(𝑥, 𝑦) − 𝜌(𝑥 − 1, 𝑦)                                   (21c) 

𝜌𝑟𝑖𝑔ℎ𝑡 = 𝜌(𝑥, 𝑦) − 𝜌(𝑥 + 1, 𝑦)                                  (21d) 
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To visualize the local difference shown in equations (21a-d), Figure 13 shows 

each of these values in relation to a center point ρ(x,y). 

Figure 13: Visualization of Eulerian diffusion scheme. The center point changes at each 

time step based on equation (20).   

To propagate the diffusion scheme in time, the result of equation (20) is used in 

equation (22). 

𝜌𝑛+1 = 𝜌𝑛 + 𝜌𝑡                                              (22) 

Where n is again the time step and ρ is the morphogen concentration. This process 

is then repeated until equation (19) is satisfied. At that point, the field has reached 

its steady state distribution. This process typically takes approximately 2000 time 

steps for the field shown in Figure 11.   

Section 3.4  Results 

This section provides insight into the development of these fields with 

time. At each growth time step the morphogen distribution is calculated. Figure 

14 shows these distributions at four different time steps. The diffusion coefficient 
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for all sequences is D = 0.01, C = 0.01, and the distributions are run until they 

reach steady state as explained in the Section 3.3. The left column of Figure 14 

shows the anterior/posterior distribution with source cells along the anterior edge 

of the tail region. The right column shows the dorsal/ventral distribution in the 

Figure 14: Anterior/Posterior and Dorsal/Ventral diffusion progression in time. 
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same tail contours. Source cells in this column are distributed along the dorsal 

edge of the tail. The units on the color bar represents a concentration of 1 

molecule per 10n molecules.  

These distributions are one possible approach to creating a conformal 

coordinate system within the growing tail shape. These source locations were 

largely chosen for their creation of a distribution that aligns closely with the 

primary coordinate system within the tadpole tail (the anterior/posterior and 

dorsal/ventral directions). The anterior/posterior distribution directly relates 

concentration to distance from source cell based on a known distribution. This 

allows cells to estimate their individual location in the anterior/posterior and 

dorsal/ventral location. 

 It is important to note that these two distributions are independent and 

meant to create unique positions based on a cells value within the two systems 

(similar to a unique x and y location in a Cartesian coordinate system). The 

stability in these fields in growth time lend themselves to both cell position 

estimation and ultimately numerical interpolation to the same coordinate system 

as the growth and control module. An interpolation step is ultimately required to 

convert the diffusion position system into Cartesian cell position.  

Section 3.5  Discussion 

The results section above shows the progression of the steady state 

morphogen fields in growth time. The dorsal/ventral and anterior/posterior fields 

are meant to represent two separate signaling chemicals. This allows for a unique 
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position to exist for each set of concentration values. As can be seen, the 

exponential decay, discrete source terms, and adiabatic boundary conditions 

create a stable concentration field that has a steady state solution. Figure 14 shows 

this approach scales with tail size effectively and can be used in the future for cell 

positioning. In figure 14, it is important to note the gradient values shrink with 

distance from source cells, creating a unique location for each cell in the 

anterior/posterior and dorsal/ventral fields. 

A limitation exists in the biological plausibility of the concentration in the 

presented plots. The diffusion term D and the decay term C will need to be altered 

in future simulations to create a minimum concentration, at the largest tail size, of 

one part per billion. The current minimum is extremely unrealistic at one part per 

10450. Another limitation stems from the instability of source locations in growth 

time. This causes inconsistent concentration values along the boundaries of the 

simulation when evaluated in growth time. The steady state solutions are still 

stable, but as the animal grows the boundary concentrations tend to shift. It is 

assumed that these gradients develop much faster than cell growth occurs and 

therefore the diffusion solution needs to be recalculated at each growth time step. 

The average diffusion solution requires 2000 time steps to converge to steady 

state and therefore adds a large computational expense to the other components to 

the overall model detailed in chapter 2. The final limitation in this model stems 

from its ultimate integration into the control module. The control scheme relies on 

highly accurate boundary position estimates for the narrow band of patterning 

control. Because the position estimation model has lower accuracy in the 
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boundary region it may be an issue in future simulations. This will need to be 

explored in future work and may be solved by fusing morphogen based 

positioning estimates and a global positon estimate.  

Section 3.6  Conclusion  

 This chapter presents and evaluates a diffusion based model that could 

ultimately be used for estimating cell position based on morphogen 

concentrations. This type of morphogen model is classically implemented in 

models of cell differentiation, gene expression, and cell patterning. This particular 

application, however, uses this morphogen construct to abstract many processes 

used by cells to communicate and position and ultimately create a relative 

coordinate system within the tail morphology for cells to estimate their positions. 

The structure of the diffusion model, with individual source cells and a distribute 

sink, was shown to have a steady state solution using an iterative Eulerian 

scheme. This solution also shows stability over multiple tail morphologies. This 

stability will be crucial for successful integration into the simulation presented in 

Chapter 2. Two individual morphogen species and corresponding source locations 

(anterior/posterior and dorsal/ventral species and anterior and dorsal source 

locations respectively) were used to allow for unique two dimensional locations 

within the tail morphology.  These steady state distributions can directly correlate 

to a known distance from source cells, making them a plausible cell position 

estimation mechanism. 
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Chapter 4  Conclusion 

Section 4.1  Summary 

This thesis introduced a new approach to simulating Xenopus laevis tail 

regeneration. More specifically, it looked at a novel growth simulation, comprised 

of a level set based physics model and a boundary velocity control scheme, and a 

model for cell position estimation based on a diffusion model. The simulation 

modules were introduced to mimic and ultimately predict the regenerative 

morphology of Xenopus laevis. The novel contribution of the thesis is a control 

scheme that bridges microscopic cell growth and macroscopic tissue patterning. 

The growth simulation employed preexisting level set methods to act as a 

physics model for regenerative growth. A control scheme is implemented on the 

level set boundary velocity function to mimic microscopic cell operations that 

ultimately create macroscopic regenerative morphology. The control scheme has 

three components: patterning control, isometric control, and smoothing control. 

Patterning control mimics growth in a regeneration bud and alters the morphology 

of the tail. Isometric control mimics bulk growth of the organism, based on 

natural cell mitosis and growth, and alters only tail size and not shape. Finally, 

smoothing control regularizes growth by reducing high curvature regions such as 

voids or spurs. This methodology shows promise in predicting regenerative 

morphology. Although Xenopus laevis is the focus of this thesis, the methods used 

in Chapter 2 are general enough to be applied to any two or three dimensional 

morphology. 



49 

 

The diffusion simulation creates a morphogen distribution based on a 

classic diffusion equation with discrete sources and a distributed sink. Two 

morphogen species are independently simulated to create a possible scheme for 

cell position estimation. The first species is modeled with source cells along the 

dorsal edge of the tail morphology. The distribution allows cells to relate sensed 

dorsal/ventral morphogen concentration to distance from the dorsal edge source 

cells. The second species employs source cells along the anterior most cells in the 

field and allows cells to relate sensed anterior/posterior morphogen concentration 

to distance from anterior source cells. These two distributions allow cells to 

estimate their unique two dimensional position relative to the source cells. This 

method will ultimately be integrated into the growth model in the future to close 

the control loop. 

This thesis has laid the groundwork for more complex future simulations. 

Future work focuses on two key aspects. First, the closure of the feedback loop 

between the navigation and control modules. Second, an analysis of the predictive 

capability of the simulation by comparing the Case D simulation in Chapter 2 to 

the real tail regeneration image series. 

Section 4.2 Contribution 

This thesis has introduced a set of new control laws to simulate the outer 

boundary motion of an organism during growth and regeneration.   
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Contribution 1: Created a set of novel boundary velocity control laws that link 

micro-scale cell behavior to macro-scale morphogenesis for use in a simulation 

of regeneration. 

  A model for biological growth and regeneration was created using novel 

boundary velocity control laws. Level set methods created a field for the 

boundary motion to take place; while, the control laws manipulate boundary 

velocities to simulate outer organism boundary motion. This model bridges an 

existing gap between current micro and macro scale models by abstracting 

individual cell behavior into collective macroscopic phenomena using the control 

laws. The model proposed here starts from simple cell behaviors (like mitosis) 

and merges them with existing level set methods for macro-scale boundary 

propagation.  

 Chapter 2 has shown that with the use of the boundary velocity control 

laws, we have created a viable simulation for biological regeneration. 

Specifically, Case D in Chapter 2 is able to completely regenerate the tail 

morphology. These control laws bridge the mesoscale gap and directly link the 

functions of individual cells to emergent patterning. 

Contribution 1a: Modeled the boundary velocity using three bioinspired control 

laws: isometric control, patterning control, and smoothing control. 

Three control laws are used in the growth model to mimic key functions 

during growth and patterning. Patterning control alters tail morphology to 

regenerate tail shape to mimic regenerative cell growth and patterning. Isometric 

control alters tail size while preserving shape to mimic natural cell division. 
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Smoothing control reduces curvature in the field to smooth boundary shape - 

mimicking the collective cohesiveness of cells. These regimes work in concert to 

predict regenerative morphology, as shown in Chapter 2. 

Contribution 1b: Simulated Xenopus laevis tail regeneration to test qualitative 

functionality of proposed control model. 

Four case studies are used to test different control law behaviors and 

ultimately determine if they qualitatively make sense. In Chapter 2, Case A looks 

at the stability of patterning control. That case shows it is stable, when at its 

reference map, and that smoothing control and patterning control balance to 

ultimately maintain a final shape. Case B looks at patterning control’s ability to 

regenerate morphology, and shows this control law to be operating as expected. 

Case C demonstrates how isometric control maintains tail shape while altering 

size (or scale) of the tail. Finally, Case D shows how these control laws can work 

in concert to regenerate tail morphology post amputation. 

 Additionally, we published the first paper on modeling regenerative 

morphology using a level set methodology to disseminate this technique to the 

broader regenerative and developmental biology community.  

Contribution 2: Evaluated the practicality of a diffusion-based model for cell 

navigation.  

 This module creates two morphogen distributions (Figures 9 and 10) 

simplify complex cell communication and create unique internal cell positions. 

Unique dorsal/ventral and anterior/posterior morphogen concentrations can be 
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sensed and directly linked to these unique cell positions. In the future this model 

will provide position estimates to the control scheme during regeneration.  

Section 4.3 Future Work 

 This thesis presents the basic components for a number of future 

simulations. Two possible avenues for future work are presented below.  

Section 4.3.1  Closing the Feedback Loop  

One focus of future work is to close the feedback loop between the 

navigation module and the control module. The current level set and control 

modules use ideal positioning information to generate their results. The 

navigation module can be easily integrated into the overall simulation to 

substitute position estimates for these ideal positions. This would not only close 

the loop in this simulation but also allow exploration into what type of positioning 

information is important for successful regeneration. We would like to explore the 

relationship between global information, possibly provided by a spine surrogate, 

and the relative positions created by the morphogen model. This exploration 

would provide insight into how cells determine position and what information is 

most important during pattern formation. 

Section 4.3.2  Analysis of Predictive Capability Accuracy  

The simulations presented in this thesis are designed to test the overall 

functionality of the proposed methods but are not directly designed to test 

predictive capability. We have shown that the individual components of this 

method function as intended and the simulations are able to regenerate tail 
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morphology as a whole. What we would like to explore further is the accuracy of 

the emergent growth rate of the morphology. This rate is collectively created by 

the interaction of the control laws (which are currently tuned individually using 

nominal growth and nominal regeneration rates). There is no comprehensive 

source for all of these parameters and therefore, we would like to create an 

experimental regeneration image series to determine these values. This will 

ultimately improve the predictive capability of the Case D simulation presented in 

Chapter 2.   

To create a comprehensive regeneration series, we would like to first 

perform an actual tadpole amputation and collect a highly detailed series of 

regeneration images. Currently available regeneration series have ambiguities in 

scale and growth rate and contain a limited number of samples during a single 

regeneration. To fix this, a series will ideally be collected that has full body 

frames, a scaled control frame, a frame of the tadpole pre-amputation, a consistent 

scale bar, and a large number of sample times (more than 10). This series would 

allow us to analyze the predictive capability of the simulation in the areas of 

morphology and growth rate.  

There may be differences between experimental and simulation results early 

in the regeneration process. In an attempt to provide the control scheme with more 

flexibility during these early time steps, we would like to explore varying the 

patterning control formulation in one of two way. The first possibility is to delay 

the onset of patterning control until later in the simulation. The second possibility 

is to vary the patterning boundary layer thickness. Before we can test either of 
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these possibilities however, we will first need to create the regeneration series to 

compare them with.  
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