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Synchronous rhythmic spiking in neuronal networks can be brought
about by the interaction between E-cells and Icells (excitatory and in-
hibitory cells). The I-cells gate and synchronize the E-cells, and the E-
cells drive and synchronize the I-cells. We refer to rhythms generated in
this way as PING (pyramidal-interneuronal gamma) rhythms. The PING
mechanism requires that the drive II to the I-cells be sufficiently low; the
rhythm is lost when II gets too large. This can happen in at least two ways.
In the first mechanism, the I-cells spike in synchrony, but get ahead of
the E-cells, spiking without being prompted by the E-cells. We call this
phase walkthrough of the I-cells. In the second mechanism, the I-cells fail
to synchronize, and their activity leads to complete suppression of the E-
cells. Noisy spiking in the E-cells, generated by noisy external drive, adds
excitatory drive to the I-cells and may lead to phase walkthrough. Noisy
spiking in the I-cells adds inhibition to the E-cells and may lead to sup-
pression of the E-cells. An analysis of the conditions under which noise
leads to phase walkthrough of the I-cells or suppression of the E-cells
shows that PING rhythms at frequencies far below the gamma range are
robust to noise only if network parameter values are tuned very carefully.
Together with an argument explaining why the PING mechanism does
not work far above the gamma range in the presence of heterogeneity,
this justifies the “G” in “PING.”

1 Introduction

The gamma rhythm, a 30 to 80 Hz rhythm in the nervous system, has been
associated with early sensory processing (Singer & Gray, 1995; Fries, Neuen-
schwander, Engel, Goebel, & Singer, 2001; Fries, Roelfsema, Engel, König,
& Singer, 1997), attention (Tiitinen et al., 1993; Pulvermüller, Birbaumer,
Lutzenberger, & Mohr, 1997), and memory (Tallon-Baudry, Bertrand, Per-
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onnet, & Pernier, 1998; Slotnick, Moo, Kraut, Lesser, & Hart, 2002). It has
also been associated with the formation of cell assemblies, that is, tem-
porarily synchronous sets of cells that work together in some aspect (En-
gel, König, Kreiter, Schillen, & Singer, 1992; Singer & Gray, 1995; Singer,
1999; Olufsen, Whittington, Camperi, & Kopell, 2003). However, it is still
not completely understood which mechanisms underlie gamma rhythms,
which biophysical parameters are important in these mechanisms, and how
gamma rhythms participate in the formation of cell assemblies.

Several different kinds of gamma rhythms have been observed in vivo, in
vitro, and in computational studies. Synchronization may result from chem-
ical synapses between inhibitory cells (Whittington, Traub, & Jefferys, 1995;
Traub, Whittington, Colling, Buzsáki, & Jefferys, 1996; Wang & Buzsáki,
1996; Whittington, Traub, Kopell, Ermentrout, & Buhl, 2000; Tiesinga, Fel-
lous, José, & Sejnowski, 2001; Hansel & Mato, 2003). Gamma rhythms gen-
erated in this way have been called interneuronal gamma (ING) rhythms
(Whittington, et al., 2000) or γ -I rhythms (Tiesinga et al., 2001). The mecha-
nism has also been called the mutual inhibition mechanism by Hansel and
Mato (2003). In this letter, we study gamma rhythms resulting from chemi-
cal synapses between excitatory (pyramidal) cells and inhibitory cells. The
I-cells (inhibitory cells) gate and synchronize the E-cells (excitatory cells),
and the E-cells drive and synchronize the I-cells (Whittington et al., 2000;
Tiesinga et al., 2001; Hansel & Mato, 2003). Gamma rhythms of this kind have
been called pyramidal-interneuronal gamma (PING) rhythms (Whittington
et al., 2000) or γ -II rhythms (Tiesinga et al., 2001). The mechanism has also
been called the cross-talk mechanism by Hansel and Mato (2003)1 In vitro,
PING is produced by tetanic stimulation (Whittington et al., 2000). PING is
believed to be associated with the creation of cell assemblies (Whittington
et al., 2000; Olufsen et al., 2003).

Other mechanisms, not modeled here, are believed to play a role in the
generation of at least some gamma rhythms. Electrical coupling between
dendrites of interneurons can contribute to enhancing the coherence of
rhythms (Tamás, Buhl, Lörincz, & Somogyi, 2000; Traub et al., 2001). Electri-
cal coupling between axons of pyramidal cells is believed to play a central
role in driving persistent gamma oscillations in the CA3 region of the hip-
pocampus (Traub et al., 2000). Chattering cells, which intrinsically generate
bursts of action potentials at gamma frequency, play a role in generating
some gamma rhythms (Gray & McCormick, 1996; Traub, Buhl, Golveli, &
Whittington, 2003).

Unlike these forms of gamma, PING can be captured by models that ab-
stract from much of the biophysical detail. In general, pyramidal cells are
capable of producing many ionic currents. However, some currents that are
not involved in producing action potentials, such as Ih and IT, are negligible

1 PING is one of two “cross-talk mechanisms” discussed by Hansel and Mato (2003).



Rhythms in the Presence of Noise 559

during PING activity, since the voltage does not become sufficiently low
during any part of the cycle. Other currents, such as, slow outward potas-
sium currents, are weakened by the large activation of metabotropic gluta-
mate receptors needed to produce PING (Storm, 1989; Charpak, Gähwiler,
Do, & Knöpfel, 1990; Whittington et al., 2000). Consequently, during PING,
the electrophysiological behavior is well described by standard Hodgkin-
Huxley equations, which can often be well approximated by reduced equa-
tions such as the quadratic integrate-and-fire model (Latham, Richmond,
Nelson, & Nirenberg, 2000) and the theta model (Ermentrout & Kopell,
1986; Hoppensteadt & Izhikevich, 1997; Gutkin & Ermentrout, 1998). These
reductions and relevant parameter regimes are described in section 2.

It is easy to describe and understand the PING mechanism in a network
consisting of just one E-cell and one I-cell. The E-cell fires and excites the
I-cell enough to fire. The I-cell fires and temporarily inhibits the E-cell. This
simple mechanism, discussed in more detail in section 3, requires that ex-
ternal excitatory drive to the I-cell be sufficiently weak that the I-cell fires
only in response to the E-cell, not on its own. When this condition is vio-
lated, phase walkthrough of the I-cell occurs, that is, the I-cell does not wait
for input from the E-cell to fire, destroying the regular rhythm.2 The region
in parameter space in which phase walkthrough occurs is bounded by a
hypersurface that we call the phase walkthrough boundary. It is discussed
in detail in section 4. Clearly, phase walkthrough of the I-cell occurs more
easily when the E-cell is driven less strongly.

The dynamical properties of the rhythm become more subtle when there
are large populations of E- and I-cells. The key to the PING rhythm in large
networks is the mechanism by which the I-cells synchronize the E-cells.
Section 5 gives an explanation of this mechanism. If approximate synchro-
nization is to occur in the presence of heterogeneity, the ratio

r = strength of inhibitory synaptic currents into E-cells
strength of excitatory input drive to E-cells

(1.1)

must be sufficiently large (see section 5). (A refined definition of r is given
later.)

In a two-cell network, phase walkthrough of the I-cells is the only mecha-
nism by which the PING rhythm can be lost as external drives are varied. In
larger networks, there is a second important mechanism: suppression of the
E-cells by asynchronous activity of the I-cells. (The I-cells are most effective
at suppressing the E-cell when they are asynchronous. See appendix A.) In a
simulation in which the I-cells are asynchronous initially and receive strong
external drive, suppression of the E-cells may occur immediately, prevent-
ing the PING mechanism from synchronizing the network. The region in

2 Throughout this letter, we take the word rhythm to denote a regular rhythm. For
instance, the firing pattern in the right panel of Figure 4 is not considered a “rhythm.”
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parameter space in which asynchronous activity of the I-cells is capable of
suppressing the E-cells is bounded by a hypersurface that we call the sup-
pression boundary. It is discussed in detail in section 6. It turns out that
the quantity r plays the central role here: suppression occurs more easily
for larger r. Bistability between suppression and synchrony is analyzed in
section 7.

Our study of the phase walkthrough and suppression boundaries casts
light on the behavior of PING rhythms in the presence of noisy external
drive. The rhythm may not be disrupted by occasional out-of-order spik-
ing of E-cells, caused by noisy external drive. However, too much noisy
spiking of the E-cells generates too much tonic excitatory drive to the I-cell,
resulting in phase walkthrough. This is analyzed in section 8. Since phase
walkthrough of the I-cells occurs more easily for weaker external drive to
the E-cells, PING rhythms are more easily abolished by noisy activity in the
E-cells when external drive to the E-cells is weaker; the analysis in section
8 makes this quantitative.

Similarly, the rhythm may not be disrupted by occasional out-of-order
spiking of I-cells. However, too much noisy spiking of the I-cells generates
too much tonic inhibitory drive to the E-cells, resulting in their suppression.
This is analyzed in section 9. Since suppression of the E-cells occurs easily
for large values of r, PING rhythms are easily abolished by noisy activity in
the I-cells when r is large.

The analysis and most of the simulations presented in this article assume
homogeneity in network parameter values and all-to-all connectivity. How-
ever, we believe that moderate amounts of heterogeneity and significant
sparseness in connectivity do not affect the conclusions. Some simulations,
including heterogeneity and sparseness, are presented in section 10.

To lower the frequency of a PING rhythm, one must decrease the external
drive IE to the E-cells or increase r (or both). A decrease in IE makes phase
walkthrough of the I-cells caused by noisy spiking of the E-cells more likely;
an increase in r makes the rhythm more susceptible to noise in the I-cells.
Our results thus imply that slower PING rhythms are less robust to noise.
A PING rhythm will be disrupted by very low levels of noise if its period
is many times larger than the decay time constant τI of inhibition, that is, if
its frequency is far below the gamma range.

If one attempts to raise the frequency above the gamma range (i.e., if one
tries to decrease its period below τI) by raising IE, leaving other parameter
values unchanged, then r drops, causing the synchronization mechanism
to break down, particularly in the presence of heterogeneity. To restore syn-
chronization, one must raise the strength of the I→E synapses. This brings
the frequency back into the gamma range. These arguments are presented
in section 11.

In summary, our results justify the “G” in “PING”: to be robust in the
presence of both heterogeneity and noise, a PING rhythm must have a
period that is greater than τI, but not many times greater.



Rhythms in the Presence of Noise 561

2 Networks of Theta Neurons

2.1 The Theta Model. In the theta model, a neuron is represented by a
point P = (cos θ, sin θ) moving on the unit circle S1. This is analogous to
the Hodgkin-Huxley model, which represents a periodically spiking space-
clamped neuron by a point moving on a limit cycle in a four-dimensional
phase space. In the absence of synaptic coupling, the differential equation
describing the motion on S1 is

dθ

dt
= 1 − cos θ

τ
+ I (1 + cos θ) . (2.1)

Here, I should be thought of as an input “current,” measured in radians
per unit time. The time constant τ > 0 is needed to make equation 2.1
dimensionally correct. Its meaning will be clarified shortly.

For negative I, equation 2.1 has two fixed points, one stable and the other
unstable. As I increases, the fixed points approach each other. When I = 0,
a saddle node bifurcation occurs: the fixed points collide, and cease to exist
for positive I.

For a theta neuron, to “spike” means to reach θ = π (modulo 2π ), by
definition. The transition from I < 0 to I > 0 is the analog of the transition
from excitability to spiking in a neuron.

If I > 0 and −π ≤ θ1 ≤ θ2 ≤ π , the time it takes for θ to rise from θ1 to θ2
equals

∫ θ2

θ1

dθ

(1 − cos θ)/τ + I(1 + cos θ)
=
√

τ

I

[
arctan

tan(θ/2)√
τ I

]θ2

θ1

. (2.2)

Setting θ1 = −π and θ2 = π in this formula, we find that the period is

T = π

√
τ

I
. (2.3)

We denote the time it takes for θ to rise from π/2 to 3π/2 by δ. This should
roughly be thought of as the spike duration. Applying formula 2.2 with
(θ1, θ2) = (π/2, π) and (θ1, θ2) = (−π, −π/2) and adding the results, we
find

δ =
[
π − 2 arctan

1√
τ I

] √
τ

I
. (2.4)

For physiological realism, we wish to ensure δ/T � 1. By equations 2.3 and
2.4,

δ

T
= 1 − 2

π
arctan

1√
τ I

.
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Therefore, δ/T � 1 means the same as τ I � 1. Since arctan(1/ε) = π/2−ε+
O(ε2) as ε → 0, equation 2.4 implies δ ≈ 2τ when τ I � 1. This reveals the
meaning of τ : in the parameter regime of interest to us, τ is approximately
half the spike duration. Motivated by this discussion and by the fact that
spike durations in real neurons are on the order of milliseconds, we set

τ = 1

for the remainder of this article, think of time as measured in milliseconds,
and always consider input currents I � 1. The frequency of a theta neuron
is defined to be

ν = 1000
T

. (2.5)

Since we think of t as time measured in milliseconds, ν should be thought
of as frequency measured in Hz.

Neuronal models are called of type I if the transition from excitability to
spiking involves a saddle node bifurcation on an invariant circle, and of type
II if it involves a subcritical Hopf bifurcation (Hodgkin, 1948; Ermentrout,
1996; Gutkin & Ermentrout, 1998; Rinzel & Ermentrout, 1998; Izhikevich,
2000). Thus, the theta model is a type I neuronal model. It is canonical,
in the sense that other type I models can be reduced to it by coordinate
transformations (Ermentrout & Kopell, 1986; Hoppensteadt & Izhikevich,
1997). In this letter, the E-cells are always modeled as theta neurons. The
neuronal model used for the I-cells is irrelevant for many of our arguments;
where it matters, we model the I-cells at theta neurons at well.

The theta model can also be derived from the quadratic integrate-and-fire
model (Latham et al., 2000)3. The general equation of this model is

dV
dt

= a(V − V0)(V − V1) + Q, (2.6)

with a > 0 and V0 < V1. After scaling and shifting V and scaling t and Q,
equation 2.6 becomes

dV
dt

= 2V(V − 1) + Q. (2.7)

For Q < 1/2, equation 2.7 has two fixed points, one stable and the other
unstable. As Q increases, the fixed points approach each other. When Q =
1/2, a saddle node bifurcation occurs: the fixed points collide and cease

3 This derivation was shown to us by Rob Clewley, who learned it from Bard
Ermentrout.
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Figure 1: Voltage traces for quadratic integrate-and-fire neuron with (A) thresh-
old at 1 and reset at 0 and (B) threshold at ∞ and reset at −∞.

to exist for positive Q > 1/2. We supplement equation 2.7 with the reset
condition

V(t + 0) = 0 if V(t − 0) = 1 . (2.8)

Figure 1A shows V as a function of t for Q = 0.51.
The change of variables

V = 1
2

+ 1
2

tan
θ

2
(2.9)

transforms equation 2.7 into equation 2.1 with

I = Q − 1/2
1/2

. (2.10)

Note that I is the relative deviation of Q from the threshold value 1/2. The
only difference between the quadratic integrate-and-fire model and the theta
model lies in the reset condition. The two models are precisely equivalent
if equation 2.8 is replaced by

V(t + 0) = −∞ if V(t − 0) = ∞. (2.11)



564 C. Börgers and N. Kopell

(Note that V rises from −∞ to ∞ in finite time when Q > 1/2.) Figure 1B
illustrates the effect of replacing equation 2.8 by 2.11.

2.2 Synapses. The derivation of the theta neuron from the quadratic
integrate-and-fire neuron offers a way of modeling conductance-based synapses
in the framework of the theta model.4 One begins by adding a synaptic cur-
rent to the right-hand side of equation 2.7,

dV
dt

= −2V(1 − V) + Q + gs(Vrev − V) , (2.12)

where g denotes the maximum conductance, s = s(t) ∈ [0, 1] is a synaptic
gating variable (the quantity that the synapse directly acts on), and Vrev is
the reversal potential of the synapse. For excitatory synapses, Vrev should
be substantially above the threshold voltage. For inhibitory synapses, it
should be somewhat below the reset voltage. We use Vrev = 6.5 for exci-
tatory synapses and Vrev = −0.25 for inhibitory synapses throughout this
article. Numerical experiments indicate that changes in these values have no
qualitative and little quantitative effect on our conclusions. With the change
of variables (see equation 2.9), equation 2.12 becomes

dθ

dt
= 1 − cos θ + (

I + (2Vrev − 1)gs(t)
)
(1 + cos θ) − gs(t) sin θ .

Thus, our equation for a theta neuron receiving an excitatory synapse (Vrev =
6.5) is

dθ

dt
= 1 − cos θ + (

I + 12gs(t)
)
(1 + cos θ) − gs(t) sin θ ,

and our equation for a theta neuron receiving an inhibitory synapse (Vrev =
−0.25) is

dθ

dt
= 1 − cos θ +

(
I − 3

2
gs(t)

)
(1 + cos θ) − gs(t) sin θ . (2.13)

For theoretical arguments in this article, we let

s(t) = H(t − t0)e−(t−t0)/τD , (2.14)

where t0 denotes the time of the spike of the presynaptic neuron, H is the
Heaviside function,

H(t) =
{

1 if t > 0 ,
0 if t ≤ 0 , (2.15)

4 This too was shown to us by Rob Clewley, with attribution to Bard Ermentrout.
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and τD > 0 is the synaptic decay time constant. In numerical simulations
of networks of theta neurons, we use a smooth approximation to equation
2.14, defining s to be a solution of the differential equation,

ds
dt

= − s
τD

+ e−η(1+cos θ) 1 − s
τR

,

where θ denotes the dependent variable associated with the presynaptic
neuron, η = 5, and τR = 0.1. Thus, s rises rapidly toward 1 when θ ≈ π

modulo 2π and decays exponentially with time constant τ otherwise.

2.3 Networks of Theta Neurons. The numerical simulations presented
in this article are for networks of excitatory and inhibitory theta neurons.
Unless stated otherwise, the connectivity is all-to-all, and there is no hetero-
geneity in network properties. The following notation will be used through-
out.

NE = number of E-cells in the network
NI = number of I-cells in the network
τE = synaptic decay time constant for excitatory synapses
τI = synaptic decay time constant for inhibitory synapses
IE = external drive to E-cells
II = external drive to I-cells

gIE = sum of all conductances associated with inhibitory synapses
acting on a given E-cell (so an individual I → E synapse
has strength gIE/NI)

gII = sum of all conductances associated with inhibitory synapses
acting on a given I-cell (so an individual I → I synapse
has strength gII/NI)

gEI = sum of all conductances associated with excitatory synapses
acting on a given I-cell (so an individual E → I synapse
has strength gEI/NE)

gEE = sum of all conductances associated with excitatory synapses
acting on a given E-cell (so an individual E → E synapse
has strength gEE/NE)

TE = intrinsic period of E-cells = π/
√

IE (see equation 2.3)
TI = intrinsic period of I-cells (see section 2.4)
TP = period of population rhythm
νE = intrinsic frequency of E-cells = 1000/TE

(see equation 2.5 and the comment following it)
νI = intrinsic frequency of I-cells = 1000/TI

νP = frequency of population rhythm = 1000/TP

r = (3/2)gIE/IE
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The definition of r given here will, for the remainder of the article, replace
the informal definition in equation 1.1. The reason for including the factor
3/2 in the definition of r will become apparent in section 3.

2.4 Parameter Choices. Unless otherwise stated, we use

τE = 2 and τI = 10

in this letter. This is motivated by the decay time constants of excitatory
synapses involving AMPA receptors, approximately 2 ms, and inhibitory
synapses involving GABAA receptors, approximately 10 ms. (Recall that we
think of t as time in milliseconds.)

As discussed in section 2.1, the external drive I to a theta neuron should be
� 1 for the theta model to be biologically reasonable. We therefore assume
that the external drives IE and II are � 1. An external drive I corresponds
to the period T = π/

√
I, and therefore to the frequency ν = 1000

√
I/π .

For example, I = 0.1 corresponds to ν ≈ 100, and I = 0.4 corresponds to
ν ≈ 200.

For the PING rhythms studied in this article, it is important that gIE be at
least comparable in size to IE (see section 5). We will often choose gII = gIE,
but we will also discuss the effects of choosing much smaller values of gII,
or even gII = 0.

We choose gEI in such a way that a population spike of the E-cells
promptly triggers a population spike of the I-cells but does not trigger
multiple spikes. If the I-cells are modeled as quadratic integrate-and-fire
neurons, the following argument gives a rough indication of how large gEI
should be. Consider a network consisting of a single E-cell and a single I-
cell. (This is equivalent to a network in which each group of cells, E and I,
is fully synchronized.) Recall that Vrev = 6.5 for excitatory synapses. Since
V is near 0 except during spikes, we approximate the term gs(Vrev − V) in
equation 2.12 by gsVrev. We use the idealized form of s given by equation
2.14. Thus, a spike of the E-cell at time t0 gives rise to injection of the current
gEIH(t− t0)e−t/τE Vrev into the I-cell. Since τE = 2 is small in comparison with
the periods of the rhythms of interest to us, we introduce the additional ap-
proximation that the charge injection resulting from an excitatory synapse
is instantaneous, causing a rise in the membrane potential of the I-cell by

�V = gEIτEVrev .

The excitatory synapse is sure to cause a nearly instantaneous spike of the
I-cell if �V = 1, that is, if gEI = 1/(τEVrev). Since we use τE = 2 and
Vrev = 6.5 throughout, this means gEI = 1/13 ≈ 0.077. However, even
�V = 0.2 typically leads to a spike in the I-cell after a brief delay, so even
gEI = 0.2/(τEVrev) = 0.2/13 ≈ 0.015 will suffice for PING rhythms.

In the CA1 region of the hippocampus, E→E connections are known
to have low density (Knowles & Schwartzkroin, 1981). Also, some types
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of gamma oscillations are induced by acetylcholine (Fisahn, Pike, Buhl, &
Paulsen, 1998), which in turn suppresses recurrent excitatory connections
(Hasselmo, 1999). Motivated by these experimental findings and following
many previous modeling studies of gamma rhythms (e.g., Whittington,
Stanford, Colling, Jefferys, & Traub, 1997), we assume

gEE = 0

throughout this article. It would be interesting to study the effects of E→E
synapses in the presence of noise, particularly in the presence of noisy spik-
ing of the E-cells; however, this will be deferred to future work.

2.5 The Intrinsic Frequency of the I-Cells. The intrinsic frequency νI
of the I-cells is the frequency at which the I-cells would spike if the E→I
synapses were removed. In the presence of I→I synapses, νI differs from
the frequency of an isolated I-cell and depends on whether the I-cells syn-
chronize.

In many of our arguments, we will make no specific assumption about
the neuronal model used for the I-cells, and simply consider νI a network
parameter. However, we will also apply our general results to the case when
the I-cells are modeled as theta neurons. For this, we will need to compute νI.
The intrinsic frequency νI is related to the intrinsic period TI by νI = 1000/TI.
We will discuss how to compute TI.

2.5.1 Intrinsic Period in the Absence of I→I Synapses. If gII = 0, then

TI = π√
II

(2.16)

by equation 2.4.

2.5.2 Intrinsic Period in the Presence of I→I Synapses, Assuming Synchronous
Network Activity. Assume now that gII > 0. We model synapses in the
idealized way described by equations 2.13 and 2.14. If the I-cells are in
perfect synchrony, the period TI is the time that it takes for θ to reach π if θ

is governed by

dθ

dt
= 1 − cos θ +

(
II − 3

2
gIIe−t/τI

)
(1 + cos θ) − gIIe−t/τI sin θ ,

θ(0) = −π . (2.17)

This cannot be computed analytically, but it is easy to compute numerically.

2.5.3 Intrinsic Period in the Presence of I→I Synapses, Assuming Asynchronous
Network Activity. If the I-cells are in complete asynchrony, the function
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e−t/τI in equation 2.17 is replaced by its time average. (We neglect fluc-
tuations resulting from the finiteness of the network.) Thus, each I-cell is
governed by

dθ

dt
= 1 − cos θ +

(
II − 3

2
gIIs

)
(1 + cos θ) − gIIs sin θ (2.18)

with

s = 1
TI

∫ TI

0
e−t/τI dt = 1 − e−TI/τI

TI/τI
. (2.19)

If θ obeys equation 2.18, and θ(0) = −π , then θ reaches π at time

∫ π

−π

dθ

1 − cos θ + (
II − (3/2)gIIs

)
(1 + cos θ) − gIIs sin θ

=




arctan
(

tan(θ/2)−gIIs/2√
II−(3/2)gIIs−(gIIs)2/4

)
√

II − (3/2)gIIs − (gIIs)2/4




π

−π

= π√
II − (3/2)gIIs − (gIIs)2/4

. (2.20)

This formula holds if II − (3/2)gIIs − (gIIs)2/4 > 0. For II − (3/2)gIIs −
(gIIs)2/4 ≤ 0, θ = π is never reached. The period TI is therefore determined
by

TI = π√
II − (3/2)gIIs − (gIIs)2/4

. (2.21)

Note that the right-hand side depends on TI, since s does. We cannot solve
this equation analytically. However, it has a unique solution because the
right-hand side is a strictly decreasing function of TI. This solution can
easily be found numerically, for instance, using the bisection method.

2.5.4 An Observation on the Effects of I→I Synapses for Weakly Driven I-Cells.
A major focus of this letter is the behavior of PING rhythms for weak external
drives. We will show later that PING rhythms tend to become noise sensitive
when the external drives become weak, but that the noise sensitivity can be
counteracted, to some extent, by introducing I→I synapses. This motivates
our interest in the effects of I→I synapses in the limit as II → 0. The main
result of the following discussion is equation 2.23, which will play a role in
section 7.

Under the assumption of perfect synchrony of the I-cells, I→I synapses
become irrelevant as II → 0. In this limit, TI → ∞, so the decay time τI
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of the inhibitory synapses becomes negligible in comparison with TI, and
therefore

TI ∼ π√
II

as II → 0. (The symbol ∼ expresses that the ratio of the two quantities
converges to 1.)

Under the assumption of complete asynchrony, the I→I synapses remain
relevant in the limit as II → 0. As II → 0, TI → ∞ and therefore

s ∼ τI

TI
(2.22)

by equation 2.19. Using equation 2.22 in equation 2.21, we find that as II → 0,
the fixed point equation for TI becomes

TI = π√
I − (3/2)gIIτI/TI − (gIIτI/TI)2/4

.

This is equivalent to

IIT2
I = 3

2
gIIτITI + C

with

C = π2 + (gIIτI)
2

4
,

so

TI ∼ 3
2

gIIτI

II
+ C

IITI
∼ 3

2
gIIτI

II
. (2.23)

Comparing equation 2.23 with 2.16, we see that the presence of I→I synapses
makes an important difference in the limit as II → 0.

2.6 The Asynchronous State. In our simulations, we frequently initial-
ize theta neurons in a state of complete asynchrony. We define here what we
mean by “complete asynchrony.” Consider a theta neuron with an external
drive I > 0. Suppose that θ(0) = θ0 ∈ (−π, π). The time to the next spike is
then

R =
∫ π

θ0

dt
dθ

dθ =
∫ π

θ0

1
1 − cos θ + I(1 + cos θ)

dθ

= 1√
I

[
arctan

tan(θ/2)√
I

]π

θ0

= 1√
I

[
π

2
− arctan

tan(θ0/2)√
I

]
. (2.24)
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To initialize a population of uncoupled neurons in complete asynchrony,
we choose R = Uπ/

√
I with U ∈ (0, 1) random, uniformly distributed. We

then compute θ0 from equation 2.24,

θ0 = 2 arctan
(√

I tan (Vπ/2)
)

, (2.25)

with V = 1 − 2U uniformly distributed in (−1, 1).

3 PING in a Simple Two-Cell Network

In this section, we consider a network of a single E-cell and a single I-cell. The
E-cell is modeled as a theta neuron; it is assumed to receive external drive
IE > 0. We make no explicit assumption about the neuronal model used
for the I-cell, but denote by νI its intrinsic frequency. (If the I-cell is driven
below threshold, νI = 0.) We make the following idealizing assumptions:

1. A spike of the E-cell instantaneously triggers a spike of the I-cell but
has no effect lasting beyond the spike time.

2. The spike of the I-cell gives inhibitory input to the E-cell in the ideal-
ized form described by equation 2.14.

3. The I-cell does not spike again until prompted by the next spike of the
E-cell.

Assumptions 1 and 3 imply that the I-cells spike exactly once per oscilla-
tion cycle. By strengthening the E→I synapses, one can generate PING-like
rhythms in which each I-cell fires multiple times on each oscillation cycle.
These rhythms differ from those considered in this letter only in some de-
tails of minor interest; for instance, the oscillation frequency is reduced if the
I-cell population fires several population spikes on each oscillation cycles.
We note that spike doublets of the I-cells play a much subtler and more im-
portant role when conduction delays are substantial (Ermentrout & Kopell,
1998). However, in this article, we neglect conduction delays.

If the two cells spike at t = 0, the E-cell is governed by the initial value
problem

dθ

dt
= 1−cos θ+

(
IE− 3

2
gIEe−t/τI

)
(1+cos θ)−gIEe−t/τI sin θ for t

> 0, (3.1)

θ(0) = −π , (3.2)

until it spikes again. We denote by TP the time at which θ , governed by
equations 3.1 and 3.2, reaches π , and write νP = 1000/TP. Assumption 3
then becomes

νI ≤ νP . (3.3)
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Figure 2: The PING frequency νP as a function of gIE and IE, for τI = 10.

We will now discuss the dependence of the frequency νP on IE, gIE, and
τI. Our main conclusion will be that νP depends weakly on IE and gIE but
strongly on τI.

For τI = 10, Figure 2 shows the graph of νP as a function of IE and gIE.
The graph is quite flat in the region in which neither gIE/IE nor IE is small.
We will argue in later sections that in those regions in which gIE/IE or IE
are small, PING rhythms are not robust. Specifically, one needs gIE/IE > 1
for rapid and robust synchronization in large networks (see section 5), and
PING rhythms with small IE are highly susceptible to noise in the E-cells
(see section 8). Thus, Figure 2 shows that in the most relevant parameter
regime, the dependence of νP on IE and gIE is fairly weak.

We will next derive an approximate formula for TP, valid for sufficiently
large gIE/IE. This formula will confirm that the dependence of TP on IE and
gIE is weak and also show the importance of τI. Defining

J = IE − 3
2

gIEe−t/τI ,

equations 3.1 and 3.2 can be written as follows:

dθ

dt
= 1 − cos θ + J(1 + cos θ) − 2

3
(IE − J) sin θ for t > 0 , (3.4)

dJ
dt

= IE − J
τI

for t > 0 , (3.5)

θ(0) = −π , (3.6)
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Figure 3: (A) Phase portrait for equations 3.4 and 3.5 with IE = 0.1 and τI = 10,
with the stable river indicated in bold. (B) q = (IE − J∗)/IE as a function of IE

and τI.

J(0) = IE − 3
2

gIE . (3.7)

We will study the phase portrait for the two-dimensional dynamical system,
equations 3.4 and 3.5. This is very similar to a discussion for inhibitory
current pulses (not inhibitory synaptic inputs) that we gave earlier (Börgers
& Kopell, 2003).

The phase portrait for equations 3.4 and 3.5 is shown in Figure 3A for
IE = 0.1 and τI = 10. The figure should be extended periodically in θ with
period 2π . The flow is upward, in the direction of increasing J. The most
striking feature of the phase portrait is the existence of strongly attract-
ing and strongly repelling trajectories. Trajectories of this kind are found
in many systems of ordinary differential equations and are called rivers



Rhythms in the Presence of Noise 573

(Diener, 1985a, 1985b). The figure reveals a stable river, that is, a trajectory,

(θs, Js) with Js(t) = IE − 3
2

gIEe−t/τI , (3.8)

that is attracting in forward time. The stable river is indicated as a bold line
in Figure 3A. As t → −∞, Js → −∞, and θs → θ0

s , where θ0
s is the unique

solution in (−π, π) of

1 + cos θ + 2
3

sin θ = 0 .

(It is easy to see that θ0
s = −2 arctan(3/2) ≈ −1.966.)

We denote by T∗ the time when θs(T∗) = π , and define

J∗ = Js(T∗) ∈ (0, IE) . (3.9)

We define

r = (3/2)gIE

IE
, (3.10)

and assume

r > 1 , (3.11)

so J(0) < 0. If J(0) is sufficiently negative, the trajectory (θ(t), J(t)) is rapidly
attracted to (θs(t), Js(t)). At the time when θ = π , we therefore have J ≈ J∗,
or t ≈ T∗. Thus, TP is approximately T∗.

Equations 3.8 and 3.9 imply that

T∗ = ln
(

(3/2)gIE

IE − J∗

)
τI . (3.12)

We write

q = q(τI, IE) = IE − J∗

IE
∈ (0, 1) . (3.13)

Figure 3B shows the graph of q. From equations 3.10, 3.12, and 3.13,

T∗ = ln
(

r
q

)
τI . (3.14)

Of course, this is not an explicit formula for T∗, since q depends on IE and
τI and is not given by an explicit formula. Equation 3.14 does, however,
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Figure 4: From PING (left panel) to phase walkthrough (right panel) as a result
of raising drive to the I-cell.

explicitly describe the dependence of T∗ on gIE, since the only quantity on
the right-hand side of equation 3.14 depending on gIE is r = (3/2)gIE/IE.

We have concluded

TP ≈ ln
(

r
q

)
τI , (3.15)

if r is sufficiently large. Numerical experiments show that r = 3 is sufficient
for this formula to be quite accurate. Figure 3B shows that the graph of q
is fairly flat unless IE is small. In a parameter regime in which q is approx-
imately constant, formula 3.15 shows that TP depends strongly (namely,
approximately linearly) on τI, but only weakly (namely, logarithmically) on
gIE and IE.

4 The Phase Walkthrough Boundary

A necessary condition for the PING mechanism to work is that the I-cells
spike only when prompted by the E-cells, not independently. This is trivially
true if the drive to the I-cells is subthreshold, that is, νI = 0. If νI > 0, then the
PING mechanism works only if the frequency of the rhythm is greater than
the intrinsic frequency of the I-cells. Figure 4 illustrates, using a network of
a single E-cell and a single I-cell, what happens when this condition is not
met. (The figure indicates spike times.) We refer to the phenomenon shown
in Figure 4 as phase walkthrough of the I-cells.

Figure 5 shows, in various different ways, that phase walkthrough occurs
more easily when IE is smaller or gIE is larger, in other words, when the PING
frequency is lower. The figure also shows that I→I synapses protect against
phase walkthrough. We will now discuss the details of Figure 5.
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Figure 5: Phase walkthrough boundary for τI = 10 (A) in (gIE, νE, νI)-space, (B)
in (gIE, IE, II)-space for gII = 0, (C) in the (IE, II)-plane, for gII = 0 and gIE = 0.2,
(D) in (gIE, IE, II)-space, for gII = gIE.

4.1 The Phase Walkthrough Condition. In the simple two-cell network
of section 3, a necessary and sufficient condition for phase walkthrough of
the I-cells to be avoided is

νI ≤ νP . (4.1)

The equation

νI = νP (4.2)

(or equivalently TI = TP) defines a hypersurface in parameter space that
we call the phase walkthrough boundary. As discussed in section 3, νP is
a function of IE, gIE, and τI. Since νE = (1000/π)

√
IE, we can also think of

νP as a function of νE, gIE, and τI. For given νE, gIE, and τI, it is easy to
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calculate νP numerically with great (ten-digit) accuracy. We first determine
the time Tp at which θ , governed by equations 3.1 and 3.2, reachesπ , and then
compute νP = 1000/Tp. For τI = 10, Figure 5A shows the phase walkthrough
boundary in (gIE, νE, νI)-space. If (gIE, νE, νI) lies below the surface in Figure
5A, a PING rhythm is possible. Above the surface, there is no PING rhythm
because of phase walkthrough.

Note that slowing the rhythm without reducing drive to the I-cell even-
tually results in νI > νP, that is, in phase walkthrough.

4.2 I→I Synapses Protect Against Phase Walkthrough. Since νI is a
decreasing function of gII, I→I synapses make phase walkthrough of the
I-cells less likely to occur. (Recall that by the notational conventions of sec-
tion 2, the definition of νI takes I→I synapses into account, but νE denotes
the frequency of the E-cells in the absence of any synapses.) To make this
quantitative, we must assume a specific model for the I-cell. For the remain-
der of this section, we therefore assume that the I-cell is a theta neuron. We
still make assumptions 1 and 2 of section 3, and we also assume that I→I
synapses take the idealized form given by equation 2.14.

For fixed values of τI and gII, the phase walkthrough boundary can then
be thought of as a surface in (gIE, IE, II)-space. For τI = 10 and gII = 0, this
surface is plotted in Figure 5B. The surface in Figure 5B is thus identical to
that of Figure 5A, except for the choice of coordinates. The parameter νI in
Figure 5A is replaced by II in Figure 5B. Equation 2.16 yields the relation
between νI and II. (Note that νI = 1000/TI.) Figure 5B shows that in the
parameter regimes of interest to us (r > 1, that is, gIE > (2/3)IE)), II must be
much smaller than IE for PING to be possible.

In Figure 5C, we show a section through the surface of Figure 5B. In
addition to fixing τI = 10 and gII = 0 as in Figure 5B, gIE = 0.2 is fixed
as well. The curve in Figure 5C is the graph of a function of IE. For later
reference, we denote this function by F = F(IE), suppressing in the notation
the dependence on τI, gII, and gIE. Thus, the curve shown in Figure 5C is
given by

II = F(IE) . (4.3)

Phase walkthrough occurs above the curve, but not below it.
The surface in Figure 5B changes dramatically when gII is taken to be

equal to gIE. It is easy to see that in this case, the walkthrough boundary is
given by

II = IE (4.4)

(see Figure 5D). Thus, I→I synapses have a stabilizing effect, greatly enlarg-
ing the parameter regime in which PING is possible.
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5 PING in Networks of More Than Two Cells

The key to PING rhythms in networks of more than two cells lies in the
fact that a population of uncoupled neurons receiving a single common
strong inhibitory input pulse synchronizes. In this section, we give an ex-
planation of this synchronization mechanism and illustrate it with numer-
ical examples. The main conclusion of this section is that rapid and robust
synchronization in large networks requires r = (3/2)gIE/IE > 1.

In earlier work (Börgers & Kopell, 2003), we discussed the synchroniza-
tion of a population of theta neurons by an inhibitory current pulse. We
present here a very similar discussion referring to an inhibitory synaptic
pulse.

A single theta neuron receiving an inhibitory synaptic input at t = 0 is
described by equations 3.4 and 3.5, with initial conditions θ(0) = θ0, and
equation 3.7. Synchronization of a population of uncoupled theta neurons
by a single inhibitory synaptic pulse can be understood from the phase
portrait in Figure 3A. Recall that the trajectory (θs, Js) indicated as a bold
line in Figure 3A, the “stable river,” attracts nearby trajectories. Also recall
that T∗ is defined by θs(T∗) = π and J∗ by J∗ = Js(T∗).

Assume, as in section 3, r > 1, so J(0) < 0. If J(0) is sufficiently negative
and θ0 is sufficiently far from π , (θ(t), J(t)) is rapidly attracted to the stable
river. At the time when θ = π , we therefore have J ≈ J∗, or t ≈ T∗. Thus,
the first spike after time zero occurs approximately at time T∗.

If θ0 is close to π , then θ(t) quickly passes through π and is then rapidly
attracted to (θs(t) + 2π, Js(t)). (Recall that Figure 3A should be thought of
as extended periodically in θ with period 2π .) When θ(t) reaches 3π , then
J ≈ J∗ and therefore t ≈ T∗. Thus, in that case, a spike occurs soon after time
zero, followed by a spike approximately at time T∗.

Only for values of θ0 in a narrow transition band is (θ(t), J(t)) attracted
to neither (θs(t), Js(t)) nor (θs(t) + 2π, Js(t)). A population of E-cells is ap-
proximately synchronized by an inhibitory pulse with sufficiently large r
because T∗ is independent of θ0.

Figure 6A shows a simulation for a network as described in section 2,

gEI = 0.05, gIE = 0.20, gII = 0, IE = 0.1 (νE ≈ 101), II = 0.002.

(Other parameter values are as specified in section 2.) The common in-
hibitory input received by all E-cells leads to their rapid synchronization as
a result of the mechanism described earlier. This in turn leads to synchro-
nization of the I-cells, which are driven by the E-cells. Note that here,

r = (3/2)gIE

IE
= 0.3

0.1
= 3 .

PING rhythms are possible even for r < 1. For instance, Figure 6B shows
results similar to those of Figure 6A, but with gIE = 0.05, corresponding
to r = 0.75. A rhythm appears, but only after a number of periods, not
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Figure 6: (A) PING with strong inhibitory synapses (gEI = 0.05, gIE = 0.2,
gII = 0, IE = 0.1, II = 0.002). (B) PING with weak inhibitory synapses (gIE = 0.05;
all other parameter values as in A). (C) As in A, with 5% heterogeneity in IE. (D)
As in B, with 5% heterogeneity in IE.

immediately. Thus, when r ≤ 1, PING may still be possible, but it is less at-
tracting and more difficult to analyze. Numerical experiments suggest that
PING with r ≤ 1 is also highly sensitive to heterogeneity. As an example,
we introduce 5% heterogeneity in IE. That is, we take IE to be a normally
distributed random number with mean 0.1 and standard deviation 0.005.
Figure 6A turns into Figure 6C—the rhythm is barely affected. However,
Figure 6B turns into Figure 6D—the rhythm is destroyed. The effect of het-
erogeneity in IE is to spread out the spiking of the E-cells. If r is sufficiently
large, each population spike of the I-cells approximately erases the memory
of the past, bringing the E-cells back together and preventing the effects of
heterogeneity from accumulating over time. In our numerical experience, at
least r ≈ 3 is required if the rhythm is to survive heterogeneity in network
parameter values on the order of 20%.
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6 The Suppression Boundary

As seen in section 4, in a two-cell network (or, equivalently, in a larger
network in which the E-cells and the I-cells are perfectly synchronized),
PING is possible only if the intrinsic frequency νI of the I-cells is sufficiently
small. If the I-cells intrinsically spike too rapidly, phase walkthrough occurs.

In a network with many cells, there is another way in which rapid spiking
of the I-cells can destroy PING: the I-cells can suppress the E-cells altogether.
The I-cells are most effective at suppressing the E-cell when they are asyn-
chronous. For linear integrate-and-fire neurons, this is proved in appendix
A. Although we have not proved it for theta neurons, numerical evidence
suggests that it is true in that case as well. We therefore assume in this
section that the I-cells spike in complete asynchrony and ask under which
circumstances the I-cells suppress the E-cells.

Figure 7 shows, in various different ways, that suppression of the E-cells
occurs more easily when IE is smaller or gIE is larger, in other words, when
the PING frequency is lower. In this section, we will discuss the four panels
of Figure 7 in detail. We will show that the quantity determining how easily
suppression of the E-cells occurs is the ratio gIE/IE, which, up to the constant
factor 3/2, is r.

6.1 The Suppression Condition. Consider a large population of I-cells,
spiking in asynchrony, acting on a single E-cell driven above threshold. We
ask under which conditions spiking in the E-cell will be prevented altogether
by the inhibition. We model the synaptic gating variable in the idealized
way described by equation 2.14. Because the I-cells are assumed to spike in
asynchrony, the term s(t) in equation 2.13 is replaced by its time average.
(We neglect fluctuations resulting from the finiteness of the network.) Thus,
the equation governing the target neuron is

dθ

dt
= 1 − cos θ +

(
IE − 3

2
gIEs

)
(1 + cos θ) − gIEs sin θ, (6.1)

with s defined in equation 2.19. The E-cell escapes suppression if and only
if

3
2

gIEs + 1
4

(
gIEs

)2
< IE . (6.2)

To see this, replace gII by gIE and II by IE in equation 2.20. Since we assume
IE � 1, this is approximately equivalent to

3
2

gIEs < IE .

Using the definition of r, equation 3.10, this condition becomes

s <
1
r

. (6.3)



580 C. Börgers and N. Kopell

A B

0
g

IE
0.5100

ν
E

0
0

ν I

100

0
g

IE
0.50.1

I
E

0
0

I I

0.1

C D

0 0.2
0

0.06

I
E

I I

0
g

IE
0.50.1

I
E

0
0

I I

0.1

Figure 7: Suppression boundary for τI = 10, (A) in (gIE, νE, νI)-space, (B) in
(gIE, IE, II)-space, for gII = 0, (C) in the (IE, II)-plane for gII = 0 and gIE = 0.2
(dashes), together with the phase walkthrough boundary (solid) and the region
of bistability (shaded), (D) in (gIE, IE, II)-space, for gII = gIE.

The equation

s = 1
r

(6.4)

defines a hypersurface in parameter space that we call the suppression
boundary. Since s depends on only TI/τI = 1000/(νIτI) (see equation 2.19),
the suppression boundary could be drawn as a surface in (gIE, νE, νIτI)-
space. However, for easier comparison with Figure 5A, we set τI = 10 and
plot, in Figure 7A, the suppression boundary as a surface in (gIE, νE, νI)-
space. If (gIE, νE, νI) lies below the surface in Figure 7A, suppression of
the E-cells by asynchronous activity of the I-cells is impossible. Above the
surface, suppression occurs if the I-cells spike asynchronously.
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Asynchronous activity of the I-cells can simply be the result of initial
conditions, in the absence of any mechanism synchronizing the I-cells. (The
E-cells cannot synchronize the I-cells if they are suppressed.) It can also be
the result of stochastic external inputs to the I-cells. In that case, each I-cell
spikes in an irregular fashion. However, if TI is taken to be the average
interspike interval, then equation 6.3 is still the condition under which the
E-cells escape suppression. This will be discussed further in section 9.

Figure 7A shows that in a large portion of parameter space (the portion
where the surface is flat), PING rhythms are highly susceptible to suppres-
sion of the E-cells as a result of asynchronous activity of the I-cells. (Re-
call that suppression occurs above the surface shown in Figure 7A.) In this
portion of parameter space, PING rhythms are easily abolished by noisy
external drive to the I-cells (see section 9). Equation 6.3 shows that r is the
quantity that matters here: the larger r, the more severe is condition 6.3.

6.2 Slow PING Rhythms Are Typically Susceptible to Suppression of
the E-Cells. If a PING rhythm is slowed by lowering νE, that is, lower-
ing IE, with all other parameter values fixed, then r grows, and therefore the
rhythm becomes more susceptible to suppression of the E-cells by the I-cells.
Similarly, if a PING rhythm is slowed by raising gIE, with all other parame-
ter values fixed, then r grows, and the rhythm again becomes increasingly
susceptible to suppression of the E-cells.

6.3 Suppression of the E-cells Can Be Avoided Even at Low Frequen-
cies by Careful Parameter Tuning. Slow PING rhythms are not impossible.
If IE → 0 and gIE → 0 in such a way that r remains fixed, then νP → 0. This
can be seen from Figure 2 or from equation 3.15 in conjunction with Figure
3B (which shows that q decreases as IE decreases and q → 0 as IE → 0).
However, the right-hand side of equation 6.3 remains unchanged in this
limit. Thus, a PING rhythm with small IE and proportionally small gIE is
slow, but not susceptible to suppression of the E-cells by the I-cells.

6.4 I→I Synapses Protect Against Suppression. I→I synapses make it
harder for the I-cells to suppress the E-cells for two reasons. First, they often
destabilize asynchrony of the I-cells. However, even if the I-cells were to
remain completely asynchronous, I→I synapses would make it harder for
the I-cells to suppress the E-cells, by lowering νI.

To illustrate the latter point, we now assume that the I-cells are theta neu-
rons. As before, we assume that I→I synapses take the idealized form given
by equation 2.14. For fixed τI and gII, we draw the suppression boundary as
a surface in (gIE, IE, II)-space. For τI = 10 and gII = 0, this is shown in Figure
7B. The dashed curve in Figure 7C shows a section through the surface of
Figure 7B. In addition to fixing τI = 10, gII = 0, gIE = 0.2 is fixed as well.
This curve is the graph of a function of IE. For later reference, we denote
this function by G = G(IE), suppressing in the notation the dependence on
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τI, gIE, and gII. Thus, the dashed curve in Figure 7C is given by

II = G(IE) . (6.5)

The phase walkthrough boundary for the same parameter values was plot-
ted in Figure 5C; for comparison, it is reproduced in Figure 7C (solid curve).

The two curves in Figure 7C intersect each other, enclosing a region,
shaded in Figure 7C, that lies above the suppression boundary (so suppres-
sion of the E-cells by asynchronous activity of the I-cells is possible), but
below the phase walkthrough boundary (so PING is possible as well). This
is a region of bistability; it will be discussed further in section 7.

Figure 7B changes dramatically when gII is taken to be equal to gIE (see
Figure 7D). The region in phase space in which suppression of the E-cells
by the I-cells is impossible (the region below the surface) is greatly enlarged
by the I→I synapses. As will be shown in the next section, there is no region
of bistability in this case.

7 A Region of Bistability

We observed in section 6 that Figure 7C shows a region of bistability in
parameter space, a region in which both asynchronous activity of the I-cells
with suppression of the E-cells and PING are possible. Which of these two
states occurs depends on initial conditions. This observation is not centrally
important here, but it is an interesting example demonstrating that PING
rhythms can be locally but not globally attracting network states.

In this section, we give analytic arguments demonstrating the existence
of the region of bistability (or, to be more precise, demonstrating that the
two curves in Figure 7C must intersect in a point other than the origin). We
also give a numerical example illustrating the bistability.

The solid curve in Figure 7C, the phase walkthrough boundary, is the
graph of a function. Recall from section 4 that we denote this function by F,
so the curve in Figure 7C is given by II = F(IE). We shall first show

F′(0) = 1 (7.1)

and

lim
IE→∞

F(IE) = ∞ . (7.2)

To prove equation 7.1, note that TP → ∞ as IE → 0. Thus, the (fixed)
decay time τI becomes negligible in comparison with TP. This implies that
the inhibitory synapses become negligible, so TP ∼ TE = π/

√
IE, and TI ∼

π/
√

II. The phase walkthrough boundary is generally given by TP = TI.
In the limit as IE → 0, this means π/

√
IE ∼ π/

√
II, or IE ∼ II, that is,

equation 7.1.
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Figures 5B and 5C appear to suggest that F′(0) is positive, but much
smaller than 1, in contradiction to the result just derived. The explanation
is that IE has to be extremely close to 0 for F′(IE) to come close to 1. A nu-
merically computed blow-up of Figure 5C near the origin indeed confirms
that F′(0) = 1.

To prove equation 7.2, we first note that F increases as gII increases: the
greater gII, the more drive II to the I-cells is needed for phase walkthrough to
occur. Therefore, equation 7.2 follows for gII > 0 if it can be shown for gII = 0.
To prove equation 7.2 for gII = 0, we note that in the limit IE → ∞, the I→E
synapses become negligible as well, but for a different reason: the terms,
including the factor IE in the equation of the E-cell, dominate all others, in
particular, the terms modeling the synapse. As a result, TP ∼ TE as IE → ∞.
The phase walkthrough boundary is generally given by TP = TI. In the limit
as IE → ∞, this means TE ∼ TI. For gII = 0, this means π/

√
IE ∼ π/

√
II, or

IE ∼ II. This implies equation 7.2.
The dashed curve in Figure 7C, the suppression boundary, is the graph

of a function as well. Recall from section 6 that we denote this function by
G, so the dashed curve in Figure 7C is given by II = G(IE). We next show

G′(0) = gII

gIE
(7.3)

and

lim
IE→(3/2)gIE

G(IE) = ∞ . (7.4)

To show equation 7.3, note that as IE → 0, II = G(IE) → 0; therefore,
TI → ∞, and

s ∼ τI

TI

by equation 2.19. Thus, the suppression boundary becomes

TI

τI
∼ r (7.5)

by equation 6.4. Assuming gII > 0, using equation 2.23, this becomes

(3/2)gII

II
∼ (3/2)gIE

IE
,

or

II ∼ gII

gIE
IE,

that is, equation 7.3. If gII = 0, we use equation 2.16 to turn equation 7.5 into

π√
II

∼ (3/2)gIE

IE
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or

II ∼ π2 I2
E

(9/4)g2
IE

.

Thus, equation 7.3 holds for gII = 0 as well.
As IE → (3/2)gIE, r → 1. The suppression boundary is given by

1 − e−TI/τI

TI/τI
= 1

r
(7.6)

(see equations 6.4 and 2.19). The left-hand side of equation 7.6 can easily
be shown to be a strictly decreasing function of TI/τI that tends to 1 as
TI/τI → 0. Thus, as r → 1, TI/τI → 0, so II → ∞. This proves equation 7.4.

Equations 7.1 to 7.4, taken together, imply that the suppression and phase
walkthrough boundaries in the (IE, II)-plane must intersect (in a point other
than the origin) as long as gII < gIE.

We present a numerical example illustrating the bistability that our the-
oretical arguments predict. We use

gIE = 0.2, gEI = 0.05, gII = 0

and

(II, IE) = (0.0025, 0.03) ,

a point inside the region of bistability. We initialize the I-cells asynchronously
(see section 2.6). If we initialize all E-cells at θ = −π/2, complete suppres-
sion of the E-cells results, as shown in Figure 8A. On the other hand, if we
initialize the E-cells at θ = π/2, they start out so close to spiking that they
are able to spike before enough inhibition has built up to suppress them.
This moves the I-cells away from asynchrony, removing their ability to sup-
press the E-cells. The result is the PING rhythm shown in Figure 8B. The
two simulations producing the two panels of Figure 8 are identical, except
for initial conditions.

8 Phase Walkthrough of the I-Cells Resulting from Stochastic Spiking
of the E-Cells

In this section, we consider the effects of noisy spiking of the E-cells, for
instance, as a result of stochastic external input. We show that noisy spiking
of the E-cells disrupts PING rhythms by causing phase walkthrough of the
I-cells. We give an approximate analysis of the conditions under which noise
in the E-cells results in phase walkthrough of the I-cells. Our analysis is not
very accurate quantitatively (we will explain why); however, it does reveal
that slower PING rhythms are much more vulnerable to noise in the E-cells
than faster ones.
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Figure 8: Example illustrating bistability. Suppression of the E-cells (A) or a
rhythm (B) are possible with the same parameter values (gEI = 0.05, gIE = 0.2,
gII = 0, IE = 0.03, II = 0.0025), different initial conditions.

In our simulations, we introduce random spiking of the E-cells as follows.
At randomly selected times,

ti1 < ti2 < ... , 1 ≤ i ≤ NE ,

the ith E-cell is forced to spike; that is, the value of θ associated with it is
instantaneously reset to −π , and the synaptic gating variable s associated
with it is set to 1. We assume that the time intervals between forced spikes,

ti,k+1 − ti,k , 1 ≤ i ≤ NE , k = 1, 2, ...,

are independent of each other and exponentially distributed, with a com-
mon expected value TSE. (The subscript S stands for “stochastic.”) We define

νSE = 1000
TSE

. (8.1)

This is the average frequency of the random spiking of the E-cells.
Figures 9C, 9D, and 9F (discussed in detail shortly) show examples of

rhythms that persist in spite of random spiking in the E-cells. When an E-
cell spikes out of order, it is temporarily out of synchrony with the bulk of
the E-cells. It may or may not participate in the next population spike of
the E-cells. However, it is brought back into synchrony with the bulk of the
E-cells by the next population spike of the I-cells.

If a large fraction of the E-cells spikes out of order, the number of E-
cells participating in the population spikes may be reduced significantly.
The population spikes of the E-cells may then no longer suffice to trigger
population spikes of the I-cells. This effect is neglected in the analysis given
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below, as is justified if gEI is sufficiently large and/or if the ratio νSE/νP is
sufficiently small. For example, in Figure 9D, a large fraction of all E-cells
spike out of order, but gEI is so large that those E-cells that participate in the
population spikes still suffice to prompt the I-cells.

8.1 Analysis. The low-frequency random spiking of some of the E-cells
between population spikes generates extra excitatory drive to the I-cells. If
each I-cell receives input from sufficiently many E-cells, this drive is nearly
constant. For two special cases, we will now analyze when the extra drive
to the I-cells results in phase walkthrough.

We assume here that the I-cells are modeled as theta neurons. However,
we find it convenient to use the dependent variable V instead of θ (see
section 2.1). In the absence of synaptic input, the equation of an I-cell is then

dV
dt

= 2V(V − 1) + QI

(see equation 2.7). The relation between QI and II is

II = 2QI − 1

(see equation 2.10).
The random spiking of the E-cells approximately adds the term

QSI = gEI
1

TSE

∫ TSE

0
e−t/τE dtVrev = gEI

1 − e−TSE/τE

TSE/τE
Vrev (8.2)

to QI (compare equation 2.12). The average of e−t/τE over [0, TSE] appears
in this formula because the stochastic spiking of the E-cells is assumed to
be asynchronous. We have also used the approximation Vrev − V ≈ Vrev in
equation 8.2; this is reasonable because V is near 0 except during spikes.
We are interested in low-frequency random spiking in the E-cells, so TSE �
τE = 2, and therefore the term e−TSE/τE in equation 8.2 is negligible:

QSI ≈ gEIτEVrev

TSE
. (8.3)

QSI is added to QI, so II = 2QI − 1 turns into II + 2QSI. Denoting by fI(I)
the frequency of an I-cell receiving drive I, the condition under which phase
walkthrough of the I-cells is avoided becomes approximately

fI

(
II + 2gEIτEVrev

TSE

)
≤ νP (8.4)

(see equation 4.1). If gII = 0, then fI(I) = (1000/π)
√

I by equations 2.3 and
2.5. Therefore, inequality 8.4 becomes

1000
π

√
II + 2gEIτEVrev

TSE
≤ νP
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or, equivalently,

νSE

1000
≤ π2(νP/1000)2 − II

2gEIτEVrev
. (8.5)

Inequality 8.5 was derived assuming gII = 0. For gII > 0, the rhythm can
withstand more drive to the I-cells, and therefore more random spiking of
the E-cells. In the special case gII = gIE, the condition under which phase
walkthrough of the I-cells is avoided is

II + 2QSI ≤ IE (8.6)

(compare equation 4.4). With the approximation 8.3, inequality 8.6 is equiv-
alent to

νSE

1000
≤ IE − II

2gEIτEVrev
. (8.7)

To highlight the similarity between this inequality and equation 8.5, we note
that

IE = π2(νE/1000)2

by equations 2.3 and 2.5, so inequality 8.7 can be written as

νSE

1000
≤ π2(νE/1000)2 − II

2gEIτEVrev
. (8.8)

Note that equation 8.8 is obtained from equation 8.5 if νP is replaced by νE.
Both formulas show that slower rhythms (smaller νP or smaller νE) are more
vulnerable to noisy activity in the E-cells than faster ones.

8.2 Numerical Examples.

8.2.1 Too Much Noise in the E-Cells Leads to Phase Walkthrough of the I-Cells.
Figure 9A shows results of a simulation with

gEI = 0.05, gIE = 0.20, gII = 0, IE = 0.1 (νE ≈ 101), II = 0 . (8.9)

(Other parameter values are as specified in section 2.) A rhythm at fre-
quency νP ≈ 40 is seen. We remark that r = (3/2)gIE/IE = 3 here. Inserting
the parameter values 8.9 in inequality 8.5, we find that the rhythm should
hold up for νSE ≤ 12.15. This prediction is not very accurate. With νSE = 7,
phase walkthrough occurs already, as shown in Figure 9B. (Note that Figure
9B is indeed a noisy analog of the sort of phase walkthrough depicted in Fig-
ure 4.) Thus, the breakdown occurs earlier in our simulation than predicted
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Figure 9: (A) Gamma frequency PING rhythm (gEI = 0.05, gIE = 0.2, gII = 0,
IE = 0.1, II = 0). (B) Low-frequency stochastic spiking in the E-cells leads to
phase walkthrough in the I-cells. (C) Phase walkthrough is counteracted by
reducing gEI 0.02. (D) I→I synapses (gII = gIE) make the rhythm astonishingly
robust to noise in the E-cells. (E) A slow PING rhythm (IE = 0.003; all other
parameter values as in A) is highly sensitive to noise in the E-cells. (F) Noise
sensitivity can be greatly reduced, even for the slow rhythm, by setting gII = gIE

and reducing gEI to 0.01.
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by our theory. To understand this discrepancy, we took a detailed look at the
simulation underlying Figure 9B, focusing on the three population spikes of
the I-cells that occur out of order, not prompted by the E-cells, in Figure 9B.
Immediately before each of these population spikes, the actual drive to the
I-cells rises significantly above that predicted by formula 8.2, as a result of
random fluctuations. Our simple theory neglects those fluctuations, assum-
ing instead that QSI is constant. The fluctuations would be less important in
significantly larger networks. Therefore, we would expect the predictions
of inequality 8.5 to be more accurate in larger networks.

For the parameter values of Figure 9A, Figure 11A illustrates the tran-
sition from low, inconsequential levels of noise in the E-cells to disruptive
levels. The figure shows quantities ρE ∈ [0, 1] and ρI ∈ [0, 1], measuring
the regularity of the spiking of the E- and I-cells, plotted as functions of
the noise frequency νSE. The precise definitions of ρE and ρI are given in
appendix B. The closer ρE and ρI are to 1, the more regular is the rhythm.
The figure shows that the regularity of the rhythm is lost abruptly as νSE is
raised above 6.

If in fact it is correct that the rhythm in Figure 9B is disrupted essentially
as a result of too much drive to the I-cells, then it ought to be possible to
restore the rhythm by lowering gEI. Indeed, this is the case. When gEI is
lowered to 0.02, the rhythm shown in Figure 9C is obtained.

8.2.2 At Gamma frequency, I→I Synapses Greatly Reduce Sensitivity to Noise
in the E-Cells. Figures 5B and 5D show that in large portions of parameter
space, I→I synapses greatly enlarge the amount of drive to the I-cells that
PING rhythms can withstand before breaking down as a result of phase
walkthrough. To confirm this by simulation, we use the parameter values
of Figure 9A, but replace gII = 0 by gII = gIE. The resulting rhythm is
astonishingly insensitive to noisy spiking in the E-cells. Formula 8.8 predicts
that the rhythm should survive for νSE ≤ 77. Figure 9D shows a simulation
with νSE = 70. The spike time rastergram for the E-cells looks quite noisy,
of course, but the rhythm is still visible. (Because of stochastic fluctuations,
the rhythm would not, in reality, remain intact if νSE were equal to 77.)

8.2.3 Sensitivity to Noise in the E-Cells Increases as the Rhythm Slows Down.
We now present numerical simulations illustrating that slower PING rhy-
thms are more sensitive to noisy spiking of the E-cells, as predicted by
Figure 5A and formulas 8.5 and 8.8. Figure 9E shows a slow PING rhythm
disrupted by a small amount of stochastic spiking in the E-cells. (Notice
that the time window shown in Figures 9E and 9F is four times longer
than that shown in Figures 9A–9D.) The parameter values of Figure 9E are
those of Figure 9A, except that IE has been reduced from 0.1 to 0.003. The
frequency of the resulting PING rhythm is about 10. Formula 8.5 predicts
that this rhythm should be abolished by random spiking in the E-cells at an
average frequency of about νSE = 0.76. Indeed, phase walkthrough occurs
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for νSE = 0.5 already. This is shown in Figure 9E. Thus, phase walkthrough
again occurs at a (somewhat) lower value of νSE than predicted by our theory.
As before, the discrepancy is due primarily to the stochastic fluctuations in
the drive to the I-cells generated by the random spiking of the E-cells.

For this case, Figure 11B illustrates the transition from nearly inconse-
quential levels of noise in the E-cells to disruptive levels. The regularity of
the rhythm is lost abruptly as νSE is raised above 0.4.

It is not surprising that the maximum allowable value of νSE decreases
as νP decreases. For instance, if the maximum allowable value of νSE is 6 for
νP = 40 (see Figure 11A), one might expect it to be four times smaller for
νP = 10. What is surprising is that it is not 4 but 16 times smaller (see Figure
11B). This is in agreement with inequality 8.5, as the right-hand side of that
inequality, for II = 0, is proportional to (νP/1000)2, not to νP/1000.

8.2.4 At Subgamma Frequencies, Careful Parameter Tuning Can Reduce Sen-
sitivity to Noise in the E-Cells. At low frequencies, I→I synapses do not help
much. Inequality 8.8 predicts that even with gII = gIE, phase walkthrough
of the I-cells will occur as soon as νSE > 2.3. However, the robustness of the
rhythm can be enhanced by reducing gEI. Figure 9F shows a simulation in
which the parameter values are as in Figure 9E, except gII = gIE, gEI = 0.01,
and νSE = 7.

9 Suppression of the E-Cells Resulting from Stochastic Spiking of the
I-Cells

In this section, we consider the effects of random spiking of the I-cells, for
instance, as a result of stochastic external input. We show that noisy spiking
of the I-cells disrupts PING rhythms by causing suppression of the E-cells.
We give an approximate analysis of the conditions under which noise in the
I-cells results in suppression of the E-cells. As in section 8, our analysis is not
very accurate quantitatively, again because it neglects statistical fluctuations
that are significant at least in small networks. It does reveal that the crucial
quantity here is the product rτI: the larger rτI, the less noisy spiking in the
I-cells can be tolerated.

In our simulations, we enforce random spiking of the I-cells in the same
way in which we enforced random spiking of the E-cells in section 8. In
analogy with section 8, TSI denotes the expected time between two random
spikes of a given I-cell, and

νSI = 1000/TSI . (9.1)

Figures 10B and 10F (discussed in detail shortly) show examples of
rhythms that persist in spite of random spiking in the I-cells. When an
I-cell spikes out of order, it is temporarily out of synchrony with the bulk
of the I-cells. However, it is brought back into synchrony when the next
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population spike of the E-cells prompts a population spike of the I-cells.

9.1 Analysis. The low-frequency random spiking of some of the I-cells
between population spikes generates inhibitory synaptic drive to the E-
cells. If each E-cell receives input from sufficiently many I-cells, this drive is
nearly constant. If it is strong enough, it leads to suppression of the E-cells,
and thereby abolishes the rhythm (see Figure 10D).

A necessary and sufficient condition for the E-cells to escape suppression
is

s <
1
r

, (9.2)

with

s = 1
TSI

∫ TSI

0
e−t/τI dt = 1 − e−TSI/τI

TSI/τI
(9.3)

(see equation 6.3, which is the same as equation 9.2, and equation 2.19,
which is nearly the same as equation 9.3, the only difference being that the
deterministic interspike interval TI in equation 2.19 has been replaced by the
expected interspike interval TSI in equation 9.3). We are interested in low-
frequency random spiking of the I-cells, and thus assume TSI � τI = 10.
Therefore, the term e−TSI/τI in equation 9.3 is negligible, and condition 9.2
becomes

τI

TSI
<

1
r

,

or, equivalently, using equation 9.1,

νSI

1000
<

1
rτI

. (9.4)

This formula shows that the sensitivity of PING rhythms to random spiking
in the I-cells depends on the size of rτI.

9.2 Numerical Examples.

9.2.1 Too Much Noise in the I-Cells Leads to Suppression of the E-Cells. Fig-
ure 10A shows, once more, the simulation of Figure 9A. Figure 10B shows
the result of adding random spiking of the I-cells at frequency νSI = 25 to the
simulation in Figure 10A. The noisy spiking in the I-cells slows the rhythm
(as it should, since it inhibits the E-cells), but it does not disrupt it. At νSI = 30
(not shown in Figure 10), the time intervals between population spikes be-
come irregular. Formula 9.4 predicts that suppression of the E-cells should
occur for νSI > 33, approximately. In our simulations, even for νSI = 40, the
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Figure 10: (A) Gamma frequency PING rhythm with r = 3 (gEI = 0.05, gIE = 0.2,
gII = 0, IE = 0.1, II = 0). (B) Considerable noise in the I-cells can be withstood by
this rhythm. (C) Low-frequency PING rhythm with r = 60 (IE = 0.005; all other
parameters as in A). (D) This rhythm is highly sensitive to noise in the I-cells.
(E) Low-frequency PING rhythm with r = 3 (IE = 0.001, gIE = 0.002; all other
parameter values as in A). (F) Considerable noise in the I-cells can be withstood
by this rhythm.
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E-cells are not suppressed, but the intervals between population spikes of
the E-cells are long and quite irregular. Thus, the regularity of the rhythm
is disrupted earlier (for smaller νSI) than predicted by our theory, but com-
plete suppression of the E-cells occurs later (for larger νSI) than predicted
by our theory. This discrepancy between our theory and the numerical sim-
ulations is not hard to understand. In our theory, statistical fluctuations in
the strength of inhibition received by the E-cells are neglected. These fluc-
tuations make the rhythm irregular earlier (for smaller νSI) than predicted
by our theory. When the inhibition happens to be stronger than average,
the E-cells are delayed, and when it happens to be weaker than average,
the E-cells spike earlier. However, statistical fluctuations cause complete
suppression of the E-cells to occur later (for larger νSI) than predicted by
our theory. Even when inhibition is strong enough, on the average, to sup-
press the E-cells, there are time windows when it happens to fall below the
threshold required for suppression. Population spikes of the E-cells may
occur during those time windows.

For the parameter values of Figure 10A, Figure 11C illustrates the tran-
sition from low, inconsequential levels of noise in the I-cells to disruptive
levels. The figure shows the regularity measures ρE and ρI (see appendix B)
plotted as functions of νSI.

9.2.2 Sensitivity to Noise in the I-Cells Increases as Drive to the E-Cells Weak-
ens. We lower IE to 0.005. The frequency of the PING rhythm decreases
to about 12, and r rises to 60. Figure 10C shows the rhythm without any
stochastic spiking. (Notice that the time window shown in parts C–F of
Figure 10 is four times longer than that shown in parts A and B.) Adding
stochastic spiking of the I-cells at average frequency νSI = 5, the E-cells are
suppressed, and thereby the rhythm is abolished (see Figure 10D).

For the parameter values of Figure 10C, Figure 11D illustrates the tran-
sition from low, inconsequential levels of noise in the I-cells to disruptive
levels. Note that the value of IE is 20 times smaller in Figure 11D than in
Figure 11C, and the value of r is therefore 20 times larger. According to in-
equality 9.4, the maximum frequency of noise in the I-cells that the rhythm
can withstand should therefore be 20 times smaller in Figure 11D than in
Figure 11C. Indeed, this is approximately the case.

9.2.3 For Weakly Driven E-Cells, Careful Parameter Tuning Can Reduce Sen-
sitivity to Noise in the I-Cells. We have mentioned that PING rhythms with
low values of IE can be made fairly noise insensitive by lowering gIE pro-
portionally, ensuring that r does not become too large. To illustrate this,
we lower IE even further, to 0.001, but also lower gIE to 0.002, bringing the
value of r back to 3, as in Figure 10A. For reasons discussed in the next para-
graph, we also use a smaller value of gEI here: gEI = 0.005. The frequency of
the resulting rhythm is approximately 8 (see Figure 10E). Remarkably, the
rhythm in Figure 10E survives stochastic spiking of the I-cells at frequency
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Figure 11: Regularity measures ρE and ρI (defined in appendix B) as functions
of noise frequency. (A) At gamma frequency (40 Hz), the rhythm can withstand
6 Hz noise in the E-cells. (B) At four times lower frequency (10 Hz), it can
withstand no more than 0.4 Hz noise in the E-cells. (C) At gamma frequency
(40 Hz), the regularity of the rhythm is lost if the frequency of the noise in the
I-cells is greater than 40 Hz. (D) When IE is reduced twenty-fold, the rhythm can
withstand no more than 1.5 Hz noise in the I-cells.
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5 (see Figure 10F). This is a result of the moderate (not very large) value
of r.

In the preceding simulation, we used a reduced value of gEI. In general,
for small gIE, the PING rhythm is more rapidly established if gEI is small
as well. (Of course, gEI must still be large enough for a population spike of
the E-cells to trigger a population spike of the I-cells.) Section 8 suggests the
following heuristic explanation of this numerical observation. In the initial
phases of the simulation, before the rhythm is established, the population
spikes are fuzzy (see, for instance, the beginning of the simulation in Figure
10E). If gIE is small, there is a considerable amount of nearly asynchronous
activity of the E-cells between activity peaks. This activity results in nearly
tonic drive to the I-cells, which may result in premature spiking of some of
the I-cells, and may therefore make it more difficult for the rhythm to be
established. Lowering gEI reduces this effect.

9.2.4 Effects of I→I Synapses. We have used gII = 0 throughout this sec-
tion. As pointed out in earlier sections, I→I synapses generally stabilize
PING rhythms by slowing disruptive spiking in the I-cells. However, in the
experiments presented here, the disruptive spiking in the I-cells is forced,
regardless of the value of gII. As a result, if gII were set to gIE, the results
presented in this section would remain virtually unchanged. If the random
spiking were instead generated by weaker random input pulses, not neces-
sarily always inducing immediate spiking, then I→I synapses would indeed
counteract the suppression of the E-cells by the I-cells.

10 Simulations Including Sparse Connectivity and Heterogeneity

In this section, we present some numerical simulations including sparse
connectivity and heterogeneity. We sparsen the connectivity as follows. The
possible synaptic connections are considered one at a time. Each possible
connection is removed with probability 0.5. If it is retained, its strength is
doubled. For instance, the strength of an I→E connection is 0 with proba-
bility 0.5, and 2gIE/NI with probability 0.5.

This is a moderate degree of sparseness. However, in earlier work (Börgers
& Kopell, 2003), we showed that the effect of sparseness on the coherence
of a PING rhythm is determined not by the fraction p of connections re-
tained, but by pNE/(1 − p) and pNI/(1 − p). For instance, in a 10 times larger
network (i.e., in a network of 1600 E-cells and 400 I-cells), we would get
approximately the same effect if we removed connections with probability
10/11 and strengthened the retained connections eleven-fold. (Note that
p/(1 − p) = 1/10 when p = 1/11.)

In addition to sparseness, we introduce 20% heterogeneity in synaptic
strengths. For instance, the strength of a given retained I→E synapse is not
precisely 2gIE/NI, but rather a gaussian random number with mean 2gIE/NI
and standard deviation 0.4gIE/NI. (This random number is negative with
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very small but positive probability. If our program draws a negative strength
for one of the synapses, the strength of that synapse is reset to zero.) Thus,
gIE, gEI, and gII are no longer the total synaptic strengths, but they are (very
close to) the expected total synaptic strengths.

We also introduce 20% heterogeneity in the external drive to the E-cells.
That is, the external drive received by a given E-cell is not precisely IE, but
rather a gaussian random number with mean IE and standard deviation
0.20IE. Thus, IE is no longer the external drive to each E-cell, but it is the
expected external drive to each E-cell. Similarly, we introduce 20% hetero-
geneity in the external drive to the I-cells.

Finally, all cells are forced to spike at random times at average frequencies
νSE (for the E-cells) and νSI (for the I-cells).

At gamma frequency, PING is robust to heterogeneity, random connec-
tivity, and noisy external drives. Figure 12A shows the results of a simulation
with

gIE = 0.2, gEI = 0.05, gII = 0.2, IE = 0.1 (νE ≈ 101), II = 0.05,

νSE = 5, νSI = 5.

Figure 12B shows, for the same simulation, quantities sE = sE(t) and sI =
sI(t) measuring the average strength of excitatory and inhibitory synapses
(see appendix B for precise definitions). The rhythm is clearly detectable in
Figures 12A and 12B. Its frequency is approximately 40.

Even with heterogeneity and random connectivity, it is possible to obtain
PING rhythms at subgamma frequencies, but careful parameter tuning is
required. As discussed in section 8.2, one should lower gEI, to avoid phase
walkthrough as a result of the drive to the I-cells resulting from noisy activity
of the E-cells. However, one cannot lower gEI too much, since the I-cells must
respond promptly to population spikes of the E-cells. As discussed in section
9, one should lower both IE and gIE proportionally, keeping r constant. This
avoids making the rhythm vulnerable to suppression of the E-cells by noisy
spiking of the I-cells.

The parameter values

gIE = 0.004, gEI = 0.004, gII = 0.004, IE = 0.001 (νE ≈ 10),

II = 0.0005, νSE = 2, νSI = 2

yield a PING rhythm at frequency νP ≈ 8 in the presence of sparse connectiv-
ity, heterogeneity, and noise. Sparseness and heterogeneity are introduced as
described earlier. Figure 12C shows the spike times, and Figure 12D shows
sE and sI for the same simulation. (Notice that the time window shown in
Figures 12C and 12D is five times longer than that shown in Figures 12A
and 12B.)
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Figure 12: Sparse connectivity, heterogeneity, and noise do not necessarily abol-
ish PING rhythm, either at gamma frequency or—with carefully tuned pa-
rameter values—at lower frequencies. (A) Gamma frequency PING rhythm
(gEI = 0.05, gIE = 0.2, gII = 0.2, IE = 0.1, II = 0.05); spike times (left panel),
and sE and sI as defined in appendix B (right panel). (B) Low-frequency PING
rhythm (gEI = 0.004, gIE = 0.004, gII = 0.004, IE = 0.001, II = 0.0005); spike
times (left panel), and sE and sI (right panel).

11 The Frequency Range in Which PING is Robust

A major theme of this letter has been that PING rhythms at low frequencies,
significantly below the gamma range, are easily abolished by noise, unless
the parameter values are tuned very carefully. In fact, there is also a sense
in which PING rhythms at high frequencies, above the gamma range, are
not robust.

We remarked earlier that one typically needs r ≥ 3 for synchronization in
the presence of 20% heterogeneity in network parameter values. Combining
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this with equation 3.15, and recalling q ≤ 1, we find

TP ≥ (ln 3)τI ≈ 1.1τI .

If τI = 10, then TP ≥ 11, which approximately means νP ≤ 91. Thus, in
the presence of significant heterogeneity, PING rhythms cannot have a fre-
quency above the gamma range.

This argument is, of course, far from precise. In particular, nothing is
really special about the value r = 3. Nevertheless, we do believe that the
argument is correct in essence. In more intuitive language, when one at-
tempts to drive the frequency of a PING rhythm above the gamma range
by raising drive to the E-cells, one must also raise the strength of the I→E
synapses in order to maintain synchronization. The rise in the strength of
the I→E synapses brings the frequency back into the gamma range.

12 Summary and Discussion

We have described and analyzed two distinct ways in which too much
external drive to the I-cells can disrupt PING rhythms: The I-cells may syn-
chronize, but get ahead of the E-cells (phase walkthrough of the I-cells), or
the I-cells may not synchronize, and their activity may keep the E-cells from
spiking altogether (suppression of the E-cells). Our analysis of the effects
of deterministic drive to the I-cells casts light on the effects of stochastic
drive to the E- or I-cells. If there is too much noisy spiking activity in the
E-cells, the resulting rise in excitatory drive to the I-cells may lead to phase
walkthrough; too much noisy spiking in the I-cells may result in suppres-
sion of the E-cells. I→I synapses reduce the spiking frequency of the I-cells,
counteracting phase walkthrough of the I-cells, suppression of the E-cells,
and the effects of noisy external drive on both I- and E-cells, and thereby
enhancing the robustness of the rhythm.

Our analysis also shows why PING rhythms are most robust when their
frequency lies in the gamma range. Above the gamma range, synchroniza-
tion breaks down easily when the E-cell population is heterogeneous. As
the frequency is lowered, on the other hand, PING becomes increasingly
sensitive to noisy spiking of the E-cells, and—unless the strength of the in-
hibitory synapses and the drive to the E-cells are calibrated carefully—more
sensitive to noisy spiking of the I-cells as well.

Gutkin and Ermentrout (1998) showed that noise sensitivity of type I
model neurons is greater at lower frequencies than at higher frequencies,
(see in particular Figure 6B of their article). Our point about noise sensitivity
and frequency may seem similar at first but is in fact quite different. Gutkin
and Ermentrout showed for a single theta neuron that noisy drive has a more
severe effect when the intrinsic frequency of the neuron is low than when it
is high. We have shown for an E/I network that the tonic component of the
drive to the I-cells created by noisy spiking in the E-cells has a more severe
effect when the population frequency is low than when it is high.
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We conclude with a brief discussion of the relation of our work to pre-
vious work on synchronization in networks of model neurons. Much of
this work has addressed purely excitatory networks (e.g., Peskin, 1975;
Mirollo & Strogatz, 1990; Somers & Kopell, 1993; Hansel, Mato, & Me-
unier, 1995; Crook, Ermentrout, & Bower, 1998; Bose, Kopell, & Terman,
2000; van Vreeswijk & Hansel, 2001; Acker, Kopell, & White, 2003), purely
inhibitory networks (e.g., Wang & Rinzel, 1992; Golomb & Rinzel, 1993;
Skinner, Kopell, & Marder, 1994; Chow, 1998; Chow, White, Ritt, & Kopell,
1998; Terman, Kopell, & Bose, 1998; White, Chow, Ritt, Soto-Tervino, &
Kopell, 1998; Brunel & Hakim, 1999), or pairs of neurons that are either both
excitatory, or both inhibitory (e.g. van Vreeswijk, Abbott, & Ermentrout,
1994; Kopell & Ermentrout, 2002). Synchronization in networks including
both excitatory and inhibitory model neurons has been studied widely as
well (e.g., Wang, Golomb, & Rinzel, 1995; Ermentrout & Kopell, 1998; Brunel,
2000a, 2000b; Whittington et al., 2000; Tiesinga et al., 2001; Hansel & Mato,
2001; van Vreeswijk & Hansel, 2001; Börgers & Kopell, 2003; Hansel & Mato,
2003). For more complete references, see Kopell and Ermentrout (2002) or
Hansel and Mato (2003).

Much of the work on (a)synchrony in neuronal networks has focused
on states of asynchronous spiking and ways in which such states can lose
stability (Abbott & Van Vreeswijk, 1993; Gerstner & van Hemmen, 1993;
Hansel et al., 1995; Gerstner, 2000; Neltner Hansel, Mato, & Meunier, 2000;
van Vreeswijk, 2000; Hansel & Mato, 2003). In this letter, we have taken
a complementary point of view, focusing on states of nearly synchronous
spiking, asking for which parameter values such states exist and how sen-
sitive they are to changes in parameter values and noise.

Hansel and Mato (2003) gave a comprehensive analysis of the bifurca-
tions by which asynchronous states can lose stability in networks of exci-
tatory and inhibitory neurons. They identified four codimension 1 bifur-
cations, of which three lead to oscillatory behavior. One of these (the one
associated with crossing the curve L4 in Figure 11 of Hansel and Mato,
2003) corresponds to the emergence of PING and another (associated with
the curve L2 in the same figure) to the emergence of ING. In drawing their
phase diagrams, Hansel and Mato varied the strengths of synaptic conduc-
tances while adjusting external drives to keep the average firing rates of
the E- and I-cell populations constant. By contrast, we have treated synap-
tic strengths and external drives as independent parameters. This differ-
ence in point of view complicates direct comparisons between the results
of Hansel and Mato and ours. In particular, the lower panel of Figure 11
of Hansel and Mato shows that in a certain sense, I→I synapses counteract
PING. For stronger I→I synapses, stronger coupling between the E- and
I-cells is needed for the transition from asynchrony to PING (crossing the
L4 boundary). At first sight, this appears to contradict our conclusion that
I→I synapses promote PING by protecting against phase walkthrough of the
I-cells and suppression of the E-cells. However, in fact, there is no contra-
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diction, since different points in the phase plane depicted by Hansel and
Mato correspond to different external drives.

The frequency of PING oscillations was analyzed in a recent paper by
Brunel and Wang (2003). We note that their study was concerned with os-
cillations driven by noisy input, whereas in this article, we have focused
on oscillations driven by deterministic input (and, in some cases, disrupted
by a noisy input component). However, not all discrepancies between their
results and ours can plausibly be explained by this difference. For instance,
equation 18 of Brunel and Wang (2003) determines the population frequency
of the oscillation for E/I networks without E→E and I→I synapses. Ac-
cording to this equation, the frequency depends on synaptic delay, rise, and
decay times. In our simulations, there are no synaptic delays, and synaptic
rise times are very short. Furthermore, numerical results (not shown here)
indicate that shortening the synaptic rise times much further has little im-
pact on the results of our simulations, and the same holds even when the
rhythm is driven by noise instead of deterministic tonic drive. This moti-
vates consideration of the limit of equation 18 of Brunel and Wang (2003) as
the synaptic delay and rise times tend to zero. Doing this, one finds the pre-
diction that the population oscillation frequency should tend to infinity—in
stark discrepancy with our numerical results. The reason for this and other
discrepancies between the results of Brunel and Wang and ours remains to
be determined. An important difference between the study of Brunel and
Wang and ours lies in the choice of membrane time constants for the excita-
tory neurons. Brunel and Wang used linear integrate-and-fire neurons with
time constants equal to 10 ms for inhibitory neurons and 20 ms for excita-
tory ones. Significantly shorter membrane time constants are believed to be
appropriate for neocortical pyramidal neurons in vivo during high ongoing
activity (Destexhe & Paré, 1999; Destexhe, Rudolph, & Paré, 2003).

For theta neurons, as for real cortical neurons, the membrane time “con-
stant” is not actually a constant, but depends on external input. In our simu-
lation of gamma rhythms, the E-cells typically have rather short membrane
time constants (on the order of few milliseconds) shortly after receiving in-
put from the I-cells; this is what makes the stable river in Figure 3A strongly
attracting and allows for synchronization of the E-cells within one gamma
cycle.

Appendix A: The Impact of Synchrony and Asynchrony on Downstream
Effects

In computing the suppression boundary, we assumed that the activity of
the I-cells was completely asynchronous. The rationale for this assumption
was that asynchrony maximizes the downstream effect of an assembly of
inhibitory neurons. In this appendix, we prove a precise statement to this
effect. We also prove a precise statement showing that synchrony maximizes
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the downstream effect of an assembly of excitatory neurons. In contrast with
the main portion of this article, we use the linear integrate-and-fire model
here. We have not so far generalized these results to the theta model.

We begin with a precise version of the following claim. If N periodic
current inputs succeed in making an integrate-and-fire neuron spike, then
the same inputs would also succeed in making the neuron spike if they were
synchronized.

Theorem 1. Let ϕ ≥ 0 be periodic function with period T, and let t1, ..., tN ∈
[0, T). Let τ > 0, and consider the initial value problems

dV
dt

= −V
τ

+
N∑

i=1

ϕ(t − ti)

V(0) = 0

and

dV̂
dt

= − V̂
τ

+ Nϕ(t).

V̂(0) = 0

Then

sup
t≥0

V̂(t) ≥ sup
t≥0

V(t) .

Proof. Denote by V(V0; t1, ..., tN; t) the solution of

dV
dt

= −V
τ

+
N∑

i=1

ϕ(t − ti).

V(0) = V0.

In general,

V(V0; t1, ..., tN; t) =
∫ t

0

(
N∑

i=1

ϕ(s − ti)

)
e(s−t)/τ ds + V0e−t/τ . (A.1)

To find solutions with period T, we define V0,per > 0 to be the solution of

∫ T

0

(
N∑

i=1

ϕ(s − ti)

)
e(s−T)/τ ds + V0,pere−T/τ = V0,per .
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We write

Vper(t1, ..., tN; t) = V(V0,per; t1, ..., tN; t) .

From equation A.1,

V(0; t1, ..., tN; t) < V(V0,per; t1, ..., tN; t)

for all t, but

lim
t→∞

∣∣V(0; t1, ..., tN; t) − V(V0,per; t1, ..., tN; t)
∣∣ = 0 .

Therefore,

sup
t≥0

V(0; t1, ..., tN; t) = sup
t≥0

Vper(t1, ..., tN; t) .

We denote by V̂per the uniquely determined solution with period T of

dV̂per

dt
= − V̂per

τ
+ ϕ(t) .

Then

Vper(t1, ..., tN; t) =
N∑

i=1

V̂per(t − ti) .

Therefore,

sup
t≥0

Vper(t1, ..., tN; t) ≤ N sup
t≥0

V̂per(t) ,

with “=” if ti = 0 for all i. Therefore,

sup
t≥0

V(0; t1, ..., tN; t) = sup
t≥0

Vper(t1, ..., tN; t)

≤ N sup
t≥0

V̂per(t)

= sup
t≥0

Vper(0, ..., 0; t)

= sup
t≥0

V(0; 0, ..., 0; t).

This proves the assertion.
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We next show that asynchrony minimizes the downstream effect of an as-
sembly of excitatory neurons. More precisely, we will show that if a given
asynchronous excitatory synaptic input succeeds in making an integrate-
and-fire neuron spike, then the same input, delivered phasically with a
period T, will also succeed in making the neuron spike.

Theorem 2. Let I ∈ IR, τ > 0, Vrev ∈ IR (think of Vrev as the reversal potential
of an excitatory synapse), and let g = g(t) ≥ 0 be a function with period T. Define
V = V(t) by

dV
dt

= −V
τ

+ I + g(Vrev − V)

V(0) = 0 .

Let

g = 1
T

∫ T

0
g(t)dt .

Define V = V(t) by

dV
dt

= −V
τ

+ I + g(Vrev − V)

V(0) = 0 .

Then

sup
t≥0

V(t) ≤ sup
t≥0

V(t) .

Proof. If supt≥0 V(t) = ∞, then we have nothing to prove, so assume
supt≥0 V(t) < ∞.

dV
dt

= −V
τ

+ I + g(t)(Vrev − V)

≥ −
sup
t≥0

V(t)

τ
+ I + g(t)

(
Vrev − sup

t≥0
V(t)

)
. (A.2)

The right-hand side of this inequality is a periodic function of t and a lower
bound on dV/dt. The assumption supt≥0 V(t) < ∞ then implies that the
average of the right-hand side of equation A.2 is ≤ 0:

−
sup
t≥0

V(t)

τ
+ I + g

(
Vrev − sup

t≥0
V(t)

)
≤ 0 .
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This means that dV/dt would be ≤ 0 if V ever reached supt≥0 V(t). So V
cannot exceed supt≥0 V(t). This proves the assertion.

Thinking of Vrev as the reversal potential of an inhibitory synapse, one can
reinterpret the statement just proved as follows. If a given inhibitory synap-
tic input suppresses an integrate-and-fire neuron, then the same input, de-
livered asynchronously, will also suppress the neuron. That is, asynchrony
maximizes the downstream effect of an assembly of inhibitory neurons.

Appendix B: A Measure of Regular Rhythmicity

We associate synaptic gating variables with the presynaptic neurons (see
section 2.2). Let sE,i denote the synaptic gating variable associated with ith
E-cell, 1 ≤ i ≤ NE, and let sE(t) be the average of sE,i over i ∈ {1, 2, ..., NE} and
over the time interval [t − 5, t + 5]. We approximate the time average using
the trapezoid method. The time averaging is needed in some of our noisier
simulations (for instance, those of Figure 12) to eliminate small random
fluctuations that would make automatic detection of the underlying rhythm
difficult.

We define

sE,min = min
t

sE(t) , sE,max = max
t

sE(t) , and sE,av = sE,min + sE,max

2
.

The minimum and maximum are taken over the second half of the simula-
tion time interval to avoid the effects of initial transients. We consider those
times t in the second half of the simulation time interval at which sE changes
from values below sE,av to values above sE,av. We denote these times by

tE,1 < tE,2 < ... < tE,nE .

Our measure of (regular) rhythmicity is

ρE =



min(tE,i+1 − tE,i)

max(tE,i+1 − tE,i)
if nE ≥ 3 ,

0 otherwise .

Here the minimum and maximum are taken over i ∈ {1, 2, ..., nE−1}. Clearly
ρE ∈ [0, 1]; the closer ρE is to 1, the more regular is the rhythm.

To visualize and measure rhythmicity of the I-cells, sI(t)andρI are defined
analogously.
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