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Abstract 

KIF13B, a kinesin-3 family motor, was originally identified by virtue of its 

biochemical interaction with human homolog of Drosophila discs large tumor suppressor 

(hDLG1). Unlike its homolog KIF13A, the KIF13B contains a carboxyl-terminal CAP-Gly 

domain. To investigate the specific functional role of the CAP-Gly domain in KIF13B, and 

its possible compensation by KIF13A, we developed two mouse models. One mouse model 

expresses a truncated form of KIF13B protein lacking only its CAP-Gly domain 

(KIF13BΔCG), whereas the second model lacks the full-length KIF13A (KIF13A FLKO). 

Using these mouse models, we show that the KIF13BΔCG mice exhibit relatively higher 

levels of serum cholesterol consistent with the reduced uptake of [3H]CO-LDL in 

KIF13BΔCG mouse embryo fibroblasts. In contrast, the serum level of factor VIII was not 

significantly elevated in the KIF13BΔCG as compared to wild-type mice, suggesting that 

the CAP-Gly domain of KIF13B selectively regulates Low density lipoprotein Related 

Protein 1-mediated lipoprotein endocytosis. No elevation of either serum cholesterol or 

factor VIII was observed in the KIF13A FLKO. Moreover, we found that the deletion of 

the CAP-Gly domain caused subcellular mislocalization of truncated KIF13B with 

concomitant mislocalization of LRP1. To further delineate the biochemical basis of the 

LRP1-KIF13B complex at the plasma membrane, we discovered that the cytoplasmic 

domain of LRP1 interacts specifically with the alternatively spliced I3 domain of hDLG1, 

which in turn recognizes the MBS domain of KIF13B. Together, this study provides 

evidence for the biochemical basis of LRP1-hDlg1-KIF13B complex formation, which 

regulates LRP1-mediated interactions with implications in metabolism, cell polarity, and 

development. 
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Chapter 1: INTRODUCTION 

1.1 Kinesin motor proteins 

The kinesin superfamily of motor proteins, or KIFs, are motor proteins that 

transport various cargos through the cell along microtubules. As shown in Figure 1.1 (1), 

KIFs are very diverse, with 15 families of kinesins that can be categorized into three groups 

based on the orientation of their motor domain, the  N-, C-, and M-kinesins. The motor 

domain of N-kinesins is located at the N-terminus of the protein, and they transport cargo 

toward the plus end of microtubules, typically in an anterograde (toward the plasma 

membrane) direction. In contrast, a C-kinesin’s motor domain is located at the C-terminus 

of the protein, and they transport cargo toward the minus end of microtubules, usually in a 

retrograde direction, similar to dynein. Finally, the motor domain of M-kinesins is located 

in the center of the protein, and these kinesins depolymerize microtubules.  The diversity 

of KIFs allows for the recognition of different binding proteins, thus allowing for transport 

of diverse cargos, such as vesicles containing protein complexes and mRNA, whole 

organelles, and lipids (Figure 1.1B). KIFs typically exist as homodimers, which allows the 

protein to “walk” along microtubules through an ATP hydrolysis reaction, with the 

exception of KIF1A and KIF1B, which are monomers that “hop” along the track (1). 

 

1.1.1 KIF13 Family 

The KIF13 motor proteins are N-kinesins in the Kinesin 3 family.  Structurally, 

KIF13A and KIF13B are very similar; however, they play very different roles. KIF13A 

interacts with the AP1 binding complex to transport vesicles containing mannose-6- 
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Figure 1.1. Kinesin super family. A) A phylogenetic tree of all 45 KIF genes in the mouse 

genome, which are classified into 15 families. B) The domain structure of the major 

kinesins. The 15 families of kinesins can be broadly grouped into N-kinesins, M-kinesins 

and C-kinesins, which contain their motor domain at the amino terminus, in the middle or 

at the carboxyl terminus, respectively. KIF13B is the only known KIF with a CAP-Gly 

domain. C) KIF cargo is very diverse. Kinesins associate with microtubules through 

c 
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(Figure 1.1. continued from page 2) their head motor domains, either as monomers (one 

sphere) or dimers (two spheres). KIFs associate with their indicated cargos through their 

tails or occasionally through their light chains or adaptor or scaffold proteins. AP1, adaptor 

protein complex 1; APC, adenomatous polyposis coli; APP, β-Amyloid precursor protein; 

FEZ1, fasciculation and elongation protein- ζ1; FHA, Forkhead associated; FMRP, fragile 

X mental retardation protein (also known as FMR1); GluR2, AMPA (α-amino-3-hydroxy-

5-methyl-4-isoxazole propionic acid)-type glutamate receptor 2; GRIP1, glutamate 

receptor-interacting protein 1; JIP1, JUN amino-terminal kinase (JNK)-interacting protein 

1 (also known as MAPK8IP1); KAP3, kinesin superfamily-associated protein 3 (also 

known as KIFAP3); M6PR, mannose-6-phosphate receptor, cation dependent;NR2B, 

NMDA (N-methyl-D-aspartate)-type glutamate receptor 2B; PAR3, partitioning defective 

3; PtdIns(3,4,5)P3, phosphatidylinositol3,4,5-trisphosphate; PtdIns(4,5)P2, 

phosphatidylinositol 4,5-bisphosphate; RanBP2, Ran-binding protein 2; RIP11, RAB11 

family-interacting protein 3 (also known as RAB11FIP5); SNAP25, soluble N-

ethylmaleimide-sensitive factor attachment protein 25. Reprinted with permission from 

Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and 

intracellular transport. Nat Rev Mol Cell Biol. 2009;10(10):682-96. doi: 10.1038/nrm2774. 

 

phosphate receptor from the trans-Golgi network to the plasma membrane (2). KIF13A 

also is responsible for delivering important enzymes from recycling endosomes to nascent 

melanosomes during melanosome maturation (3). On the other hand, KIF13B is involved 

in very different transport pathways, which are discussed in detail below.    

Full length KIF13B was first identified as GAKIN due to its direct binding to the 

guanylate kinase-like (GUK) domain of human homolog of Drosophila discs large tumor 

suppressor (hDLG1) (4). Subsequent studies revealed its similarity to KIF13A and it was 

thus classified as KIF13B (5). Like other Kinesin 3 family members, KIF13B has a motor 

domain at its N-terminus to allow its movement along the plus end of microtubules and a 

neck coiled-coil (NC) domain that is responsible for its transition from monomer to dimer 

(6). The motor activity of KIF13B is required for the transport of PIP3-containing vesicles 

to regulate neuronal cell polarity (7). KIF13B also consists of other functional domains 

including the forkhead-associated (FHA) domain, and the MAGUK (membrane-associated 

GUK) Binding Stalk (MBS) domain. The FHA domain of KIF13B directly interacts with 
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centaurin-α1 (also called PIP3BP), which in turn activates ADP-ribosylation factor (ARF6) 

by suppressing the GAP activity of centaurin-α1 (8). The MBS domain of KIF13B directly 

binds to the GUK domain of MAGUKs, such as hDLG1, and permits KIF13B-mediated 

transport of MAGUK-laden vesicles on microtubules (9). Direct binding of hDLG1 to the 

MBS domain of KIF13B activates the microtubule-stimulated ATPase activity of KIF13B, 

suggesting a regulatory role of this domain (10). Mammalian KIF13B shows homology to 

the Drosophila kinesin-73 motor protein, which engages its GUK domain to bind to fly 

Dlg1 (11, 12). KLP4, a motor protein found in C. elegans, is homologous to KIF13B and 

KIF13A, and plays a role in glutamate receptor trafficking (13).  

 

1.1.1.1 CAP-Gly domain 

The domain that distinguishes KIF13B from its homolog KIF13A is the 

Cytoskeleton-Associated Protein Glycine-rich (CAP-Gly) domain.  This domain is a highly 

conserved ~80 amino acid motif located at the C-terminus of KIF13B. KIF13B is the only 

known kinesin with a CAP-Gly domain, and, compared to other domains, little is known 

about the function of this domain in KIF13B. In general, CAP-Gly domains are found in 

proteins targeted to the plus ends of microtubules, where they play a microtubular-based 

function due to its direct binding to the C-terminal EEY/F motif of microtubules (4, 14). 

For example, the motor protein dynein assembles with a complex called dynactin that 

contains p150glued. Research has shown that the CAP-Gly domain of p150glued enhances the 

engagement of dynein onto microtubules (15), as well as having a role in other initiating 

steps of transport.  While the CAP-Gly domain is not a direct component of the dynein 

protein, there may be some parallel of its function to the CAP-Gly domain of KIF13B. The 

limited evidence suggests that the CAP-Gly domain of KIF13B may stabilize the motor 
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protein by binding to a parallel microtubule or guiding its cargo to a specific destination in 

the cell. 

 The structure of CAP-Gly has been solved by crystallography (16), and its 

interface with microtubules or end binding protein (EB1) has been explored using magic 

angle spinning NMR spectroscopy (17, 18). The CAP-Gly domain contains a highly 

conserved GKNDG motif which has been shown to participate in the microtubule binding 

interface (16, 18). CAP-Gly domains have unusually high loop content and this trait is 

believed to confer intrinsic flexibility and allows its conformational plasticity to bind to 

microtubules and other proteins (18).  

The CAP-Gly domains are known to regulate a variety of intracellular processes, 

including the dynamics of plus-end tracking proteins at the growing end of microtubules, 

anterograde transport of organelles/vesicles, α-tubulin detyrosination-tyrosination cycle, 

assembly of intra-protein switches, and tethering of microtubules to the membrane and 

cytoskeletal compartments (14). These diverse biochemical properties of CAP-Gly 

domains are consistent with their functional role in cell signaling, migration, polarity, 

chromosome segregation, and tumorigenesis (11, 14, 19, 20). Similarly, a critical role of 

CAP-Gly domains in human diseases was underscored by the identification of mutations 

in the p150Glued, a subunit of dynactin, resulting in Perry syndrome and distal hereditary 

motor neuropathy 7B (21). Two independent mutations within the N-terminal CAP-Gly 

domain of p150Glued lead to two distinct pathologies presumably originating from the loss 

of dynactin binding to microtubules and CLIP-170 (22). A deletion in the CAP-Gly domain 

of tubulin-specific chaperone E causes a fatal disorder manifested by hypoparathyroidism, 

mental retardation, and facial dysmorphism (14). Additional evidence comes from the 
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functional inactivation of CYLD tumor suppressor that leads to benign skin and hair follicle 

tumors. These mutations affect the C-terminus of CYLD protein containing three CAP-Gly 

domains. It is believed that the disruption of the third CAP-Gly domain of CYLD likely 

plays a crucial role in disease pathology (23). Despite considerable evidence for their 

importance, the precise biological function of CAP-Gly domains remains poorly 

understood. One reason for this limitation is the absence of mammalian models specifically 

lacking the CAP-Gly domains, which will be addressed below in this thesis.   

 

1.1.2. KIF13B and endocytosis 

Recently, KIF13B has been shown to play a functional role in the uptake of 

lipoproteins through an LDL receptor related protein 1 (LRP1)-dependent mechanism via 

the FHA-MBS-CC domains of KIF13B (24). Using a full length KIF13B knock out 

(KIF13B FLKO) mouse model, it was shown that KIF13B can recruit LRP1 to caveolae 

by engaging hDLG1 as an adaptor. The KIF13B-hDLG1-LRP1 complex was further 

reinforced by the recruitment of utrophin and centaurin-α1 via the CC and FHA domains, 

respectively, to induce LRP1 endocytosis (24). Specifically, the utrophin complex interacts 

with caveolin-1 in caveolae (25) and utrophin competes with caveolin for the binding to β-

dystroglycan (26, 27). Additionally, the FHA domain of KIF13B binds to centaurin-α1, 

inhibiting its Arf6-GAP activity and activating Arf6, subsequently enhancing adjacent 

endocytosis (8). Due to the functional interactions of KIF13B, the motor protein offers 

itself as a scaffold for the complex at the plasma membrane.  In that study, the KIF13B 

FLKO mice showed a modest increase of serum cholesterol and factor VIII, likely due to 

the reduced uptake of LRP1 bound ligands (24). Based on previous findings demonstrating 

direct binding of FHA domain of KIF13B to the GAP domain of centaurin-α1 (8), Kanai 
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and colleagues proposed a model rationalizing the enhancement of LRP1 endocytosis and 

its ligands (Figure 1.2). Nonetheless, these studies did not explain how LRP1 binds to 

hDLG1, and if the CAP-Gly domain of KIF13B plays any functional role in the endocytosis 

of specific LRP1 ligands.  

To that end, we employed two mouse models that were developed by the Chishti 

lab to evaluate the role(s) the KIF13 family members play in the regulation of LRP1 

endocytosis. One mouse model expresses a truncated form of KIF13B lacking only its 

CAP-Gly domain (KIF13ΔCG), and the other is a full-length KIF13A null (KIF13A 

FLKO) (Figure 3.1) (unpublished). These models are important tools that allowed us to 

interrogate the role of the CAP-Gly domain of KIF13B, which was not addressed by the 

Kanai study, and assess any compensatory role of KIF13A.  

 

1.2 hDLG1 background 

In addition to characterizing mice lacking the CAP-Gly domain of KIF13B, we 

sought to explore the biochemical basis of the LRP1-hDLG1 interaction due to its 

importance in the linkage to KIF13B and the regulation of LRP1-mediated endocytosis 

(24).  

DLG was originally identified in Drosophila as an important developmental gene 

with tumor suppressor properties; mutations in this gene leads to overgrowth of the 

imaginal discs cells and contributing to embryonic lethality (28). Other functions of 

hDLG1 have been linked to cytokinesis, synaptic function, epithelial polarity, and 

oncogenic or tumor suppressor properties, depending on the subcellular localization of the 

protein (reviewed in (29)). Mice homozygous for knock-out alleles exhibit neonatal 

lethality, kidney defects, reproductive organ morphology, and cleft palate (30, 31). 
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Figure 1.2. Proposed model for the role of KIF13B in caveolin-dependent endocytosis 

of LRP1. (A) KIF13B links LRP1 to caveolae through the LRP1–hDLG1–KIF13B–

utrophin–caveolae linkage. Utrophin complex interacts with caveolin-1 in caveolae and 

utrophin competes with caveolin for the binding to βDG. (B) KIF13B activates Arf6 

through the inhibition of Arf6-GAP activity of centaurin-α1, subsequently enhancing 

endocytosis nearby. (C) KIF13B, as a motor protein, transports the endocytosed vesicles 

along microtubules. Reprinted with permission from Kanai Y, Wang D, Hirokawa N. 

KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. The Journal of 

cell biology. 2014;204(3):395-408. doi: 10.1083/jcb.201309066. 
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hDLG1 belongs to the family of MAGUK scaffolding proteins that recruits various 

signaling proteins to the plasma membrane and is ubiquitously expressed in the mammalian 

body.  Other MAGUK family members include PSD-95 and the MPP subfamily, and are 

all defined by the presence of one or more PDZ domains, an SH3 domain, and a GUK 

domain (32). The GUK domain is structurally very similar to guanylate kinases; however, 

the P-loop that binds ATP is absent, thus rendering it catalytically inactive (28, 33).  

Instead, this domain adopts a role similar to the PDZ and SH3 domains, and is often 

involved in protein-protein interactions, such as that of hDLG1’s interaction with KIF13B.  

The SH3 and GUK domains are known to associate with each other by bending as if on a 

hinge that exists between these domains, leading to a folded conformation. Moreover, 

hDLG1 contains an N-terminal L27 domain that plays a role in autoregulation, in which 

the L27 domain folds back and interacts with the SH3-GUK domains, allowing the protein 

to exist in a compact U-shaped, inactive conformation. This offers the opportunity to 

regulate its interactions with its binding partners (34).  

hDLG1 also contains the alternatively spliced variants insert 2 (I2) or insert 3 (I3) 

located between its SH3 and GUK domains (35). Unlike the I2 insert, the I3 insert, encoded 

by 34 amino acids, contains the sole binding site for the FERM domain of protein 4.1 (36), 

and is required for the membrane targeting of hDLG1 (36). Importantly, a region termed 

the HOOK domain located between the SH3 and GUK domains, which is similar to the I3 

sequence in hDLG1, is essential for the membrane localization as well as polarity and 

overgrowth regulation in Drosophila Dlg (33).  Additionally, the expression levels of each 

variant, as well as the subcellular localization of each, correlate with the differentiation 

state of keratinocytes (37). The hDLG1 I3 variants are selectively up-regulated during 
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epithelial differentiation, with a decrease in cytoplasmic I3 variants, as they are relocated 

to the cell periphery.  This process is accompanied with only a small concomitant reduction 

of I2; however, I2 variants exit the nucleus during differentiation, suggesting that nuclear 

hDLG1 functions in growth, but not maturation, of keratinocytes (37).  

 

1.3 LRP1 background 

  KIF13B and hDLG1 interact to form a complex at the cytoplasmic tail of LRP1 

(24), but the domains or motifs essential for this interaction are not fully elucidated.  We 

sought to identify the domains of hDLG1 and motifs of LRP1 necessary for this theoretical 

interaction.   

LRP1 is a member of the LDL receptor (LDLr) family that is composed of 2 

subunits. The encoded preproprotein is proteolytically cleaved by furin to generate the 

large extracellular α subunit at 515 kDa and the smaller transmembrane β subunit of 85 

kDa that form the mature receptor (38) (Figure 3.8A).  LRP1 is ubiquitously expressed in 

most tissues, with high expression in liver, brain, and fat. Deletion of the LRP1 gene leads 

to lethality in mice, revealing a critical, but undefined, role in development. Furthermore, 

expression of this gene decreases with age, and thus many believe LRP1 plays a protective 

role by clearing excess plasma proteins and maintaining proteostasis (39). Tissue-specific 

gene deletion studies reveal an important contribution of LRP1 in the vasculature, central 

nervous system, in macrophages, and in adipocytes, with various roles in vascular 

permeability and maintenance of the blood-brain barrier, proliferation, cell migration, and 

lipid homeostasis (reviewed in (39, 40)).   

LRP1 is more complex as compared to LDLr; its multiple ligand binding repeats 

located within the α subunit enable it to recognize nearly 40 different ligands (reviewed in 
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(39).   By far the largest group of ligands that are recognized by LRP1 are either proteinases 

or molecules associated with regulating proteolytic activity; therefore, LRP1 plays a major 

role as an endocytic scavenger by mediating extracellular levels of a wide variety of these 

proteins.  For instance, LRP-1-mediated internalization of MMP-2 and MPP-9 is pivotal 

for controlling the extracellular activity of these major proteinases (41).   Additionally, 

LRP1 plays a critical role in brain amyloid β uptake and degradation, thus suggesting a 

protective role during the progression of Alzheimer’s disease (42).   Furthermore, the role 

of LRP1 in lipoprotein metabolism has been strengthened by independent findings that 

revealed that LRP1 binds not only to apolipoprotein E-containing particles, such as 

chylomicron remnants (43), but also the lipases that are directly involved in the generation 

of the remnant lipoproteins from triglyceride-rich chylomicrons (44).  Finally,  LRP1 is 

responsible for mediating catabolism of factor VIII (45), which is important because 

elevated circulating levels of factor VIII, or its inactivating binding partner von Willebrand 

factor, predispose the organism to thrombotic complications like venous thrombosis and 

stroke (reviewed in (46)). 

Furthermore, LRP1 regulates multiple signaling pathways in part due to the 

cytoplasmic tail of its β subunit interacting with a number of adaptor proteins (39).  Besides 

the YxxL motif at tyrosine 4507, which signals for rapid endocytosis through coated pits 

(47), various proteins bind directly to the cytoplasmic tail of LRP1, giving LRP1 a 

regulatory role in many signaling pathways, such as the PDGF or TGFβ signaling pathway 

(40, 48). Specifically, LRP1 controls expression, activity, and trafficking of the PDGF 

receptor-β in vascular smooth muscle cells and is a receptor for TGFβ1 that is required for 

TGFβ mediated inhibition of cell proliferation (49). LRP1 can also function as a co-
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receptor partnering with other cell surface or integral membrane proteins, for example, the 

cytoplasmic tail indirectly binds to β-amyloid precursor protein (APP) via the FE65 adaptor 

(50). LRP1 is necessary for the alpha 2-macroglobulin-mediated clearance of secreted 

amyloid precursor protein and beta-amyloid, the main component of amyloid plaques 

found in Alzheimer’s patients, and has been found to be lower than controls in brain tissue 

from Alzheimer's disease patients. 

Finally, post-translational modifications of LRP1-cytoplasmic tail have been 

shown to regulate various interactions with adaptor proteins, particularly via 

phosphorylation of the tyrosine residues embedded within the two NPxY motifs of LRP1-

CT (51-53). Phosphorylation of tyrosine residues at Y4507 and Y4473 located within the 

two NPxY motifs of LRP1-cytoplasmic tail have been shown to regulate various 

interactions of LRP1 with adaptor proteins, such as FE65 or SNX17 (51-53). Importantly, 

the phosphorylation of Y4507 precedes and exposes Y4473 for subsequent 

phosphorylation reaction (51).  Other post-translational modifications to the cytoplasmic 

tail of LRP1 include the phosphorylation of serine and threonine residues.  An example of 

this regulation is when the serine/threonine residues are not phosphorylated, LRP1 is 

internalized more rapidly than phosphorylated LRP1, revealing that phosphorylation 

reduces the association of LRP1 with adaptor proteins of the endocytic machinery (54).  In 

contrast, serine and threonine phosphorylation was necessary for the interaction of LRP 

with Shc, an adaptor protein that participates in signaling events (54). Furthermore, serine 

and threonine phosphorylation increased the interaction of LRP1 with other adaptor 

proteins such as Dab-1 and CED-6/GULP. These results indicate that phosphorylation of 

LRP1 by PKCα modulates the endocytic and signaling function of LRP1 by modifying its 
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association with adaptor proteins. (54).  Finally, glycosylation of the whole LRP1 protein 

plays an important role in signaling, and is differentially glycosylated in a tissue-specific 

manner (55). In particular, carbohydrate addition reduces proteolytic cleavage of the 

extracellular domain and, concomitantly, the release of the cytoplasmic tail. The 

extracellular cleavage step that results in the shedding of the LRP1 α is enhanced when the 

protein is hypo-glycosylated, which in turn results in increased substrate availability for 

the final γ-secretase-mediated release of the cytoplasmic tail (55).  

In this study, we show that the KIF13BΔCG mouse model manifests a relatively 

higher serum cholesterol phenotype, similar to the KIF13B FLKO mouse (24). In contrast, 

the KIF13A FLKO mouse model does not show any discernible defect in LRP1 

endocytosis. This finding suggests that the CAP-Gly domain of KIF13B is involved in the 

uptake of lipoproteins, possibly through an LRP1-mediated mechanism. Furthermore, we 

show that the cytoplasmic tail of LRP1 interacts specifically with the alternatively spliced 

I3 sequence of hDLG1, and this interaction was not affected by the disruption of tyrosine 

phosphorylation of LRP1 at tyrosine 4507. These results reveal a novel function of the 

CAP-Gly domain of KIF13B in receptor-mediated endocytosis and begin to clarify the 

biochemical basis of LRP1-hDLG1 interaction required for recruitment of the membrane 

macromolecular complex. 
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Chapter 2: MATERIALS AND METHODS 

2.1. Materials 

DMEM (11995-065) and FBS (10437-028) were obtained from Gibco. LPDS was made as 

previously described (56).  FuGENE 6 used for transfections was from Promega (E2693). 

LRP1-Herz was obtained from Dr. Joachim Herz, University of Texas Southwestern 

Medical Center (57). [3H]Cholesteryl oleate (NET746) and [3H] oleate (NET289) were 

obtained from Perkin-Elmer. Mouse IgG was from Santa Cruz (sc-2025), Hoechst stain 

was from Calbiochem (382061), and the following antibodies were obtained as follows: 

LRP1 from Abcam (ab92544), β-Actin from Sigma (A5316), hDLG1 mAb 2D11 was 

previously developed as described (58), rabbit KIF13B N-terminus 1246 was previously 

developed as described (7), Streptavidin-HRP from Pierce (21124), Na+/K+ ATPase from 

Abcam (ab2873), mouse mAb anti-β-Tubulin antibody from Sigma (T4026), secondary 

antibodies: Goat Anti-Rabbit HRP conjugate (170-5046) and Goat Anti-Mouse IgG HRP 

conjugate (170-6516) from Bio-Rad, Alexa Goat Anti-Rabbit 568 from Invitrogen 

(948491), and Biotin-SP AffiniPure Donkey Anti-Rabbit IgG (711-065-152) and Cy3 

Streptavidin (016-160-084) from Jackson ImmunoResearch Labs. Normal donkey block 

(NDB: in PBS, 10% Normal Donkey Serum,5% Non-Fat Dry Milk, 4% BSA, 0.1% 

TritonX-100) was a gift from the Schwob lab at Tufts University School of Medicine.  ECL 

Prime Western Blotting Detection Reagent was from GE Healthcare (RPN2232). 

Chromogenix Coatest SP4 Factor VIII assay was from Diapharma (82409463). Phusion 

PCR kit was from NEB (M0530S). Glutathione Sepharose beads were from GE Healthcare 

(17-0756-01). Primers were designed in house and ordered through Tufts University Core 

Facility. MEFs were isolated from mice as described below.  HEK293T and HepG2 cells 
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originally obtained from American Type Culture Collection. Restriction enzymes and 

buffers were from New England Biolabs.  EconoTaq used for genotyping was purchased 

from Lucigen (F93366).   

 

2.2. Mouse studies  

2.2.1. Generation of mouse models 

ES cell clones with targeted alleles for KIF13A (AF0553) and KIF13B (AF0005) 

were obtained from the Knockout Mouse Project Repository at the University of California, 

Davis. Mouse lines were created in Tufts University Transgenic Animal Core Facility. We 

are grateful to Dr. Janis Lem, Director of the Transgenic Core Facility, for generously 

providing technical advice and training during the embryonic stem cell culture, 

electroporation, and colony selection protocols. Primers used for genotyping are:  

13aF1 (5’-CATGTGGCCCTTGAACTTGCAAAG-3’),  

13aR1 (5’-CTTTAGCTCGGGGGCCTTCATGGC-3’),  

13aF2 (5’-AGGGAGCAGCTCTCGCAGGCTGAG-3’),  

13aGeoR (5’-CCCTGGATATGGCAGTCTCTAC-3’),  

13bF1 (5’-AAAGCCTAATGCAAGGCTGGGAG-3’),  

13bR1 (5’-AGAGTGAAGGCAGACTAAAGATGG-3’),  

13bGeoR (5’-ATGAGGGAGCAGGGCTCG-3’). 

 

2.2.2. Measurement of serum lipids in mice  

Serum was harvested from WT (n=10), KIF13BΔCG (n=11), and KIF13A FLKO 

(n=6) male mice of average age 4 months via terminal bleed from the vena cava. The blood 

was allowed to clot for 30 minutes and serum was collected after centrifugation.  The serum 
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was analyzed for total cholesterol, LDL, and HDL. Serum triglycerides and VLDL were 

determined in the subset of wild-type (n=5) and KIF13BΔCG (n=6) male mice that were 

fasted for eight hours before serum collection. These experiments were performed by the 

Jean Mayer USDA Human Nutrition Research Center on Aging core facility at Tufts 

University.  

 

2.2.3. Measurement of plasma factor VIII in mice 

To measure factor VIII in plasma, blood was harvested from 6-month old wild-type 

(n=5) and KIF13BΔCG (n=6) male mice via terminal bleed from the vena cava in the 

presence of acid citrate dextrose (1:10 dilution) as an anticoagulant. Plasma was collected 

within 30 minutes of harvest by centrifugation and used in the factor VIII assays. The timed 

clot formation assay was performed similar to the activated partial thromboplastin time 

(aPTT) assay from (59) and (60). Briefly, mouse plasma was mixed in a two-step method 

with clot activating components and a fibrometer was used to measure the time until a clot 

was formed. Mouse plasma samples were added to plasma mix (20% phosphatidylserine 

phospholipid vesicles) and incubated for five minutes at 37°C.  Activation mix (CaCl2 and 

factor XIa as an activator in Tyrode’s Buffer) was added and the timer was immediately 

started. The longer the time for a clot to form indicates less factor VIII activity. These 

experiments were performed at the Boston VA Hospital in the Gilbert lab by Madhumouli 

Chatterjee. The chromogenic assay was performed on the same samples in parallel using 

the Chromogenix Coatest SP4 Factor VIII kit (Diapharma) per manufacturers’ instructions.   
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2.2.4. Liver histology and immunohistochemistry 

Liver tissue from 6-month old wild-type and KIF13BΔCG mice were harvested and 

stored either flash frozen in OCT compound or fixed in 10% formalin for three days. 

Paraffin embedding, sectioning, and Hematoxylin & Eosin staining were performed at the 

Tufts Medical Center Pathology Core Facility and pathological analysis of the 

Hematoxylin & Eosin slides was performed by Roderick Bronson at Harvard Medical 

School. Paraffin-embedded brain and liver sections were deparaffinized and rehydrated, 

and antigen retrieval was accomplished using sodium citrate. Autofluorescence was 

quenched using quenching solution (2.5 mg/ml ammonium chloride in TBS). Tissues were 

blocked using Normal Donkey Block and were incubated with a rabbit polyclonal antibody 

against the N-terminus of KIF13B at a dilution of 1:200 (7) overnight at 4°C. Tissues were 

then incubated for one hour each in biotinylated donkey anti-rabbit secondary antibody and 

then Streptavidin anti-donkey Cy3 tertiary antibody. Tissues were washed thoroughly with 

PBS after each incubation, and nucleus was counterstained with Hoechst and mounted with 

90% glycerol in PBS. Slides were visualized and photographed at 40X using Zeiss Axio 

Imager.M2 microscope and AxioCam MRm and MrC using AxioVision version 4.8 

software. The exposure time and sharpness were kept consistent across all photos. Control 

slides with secondary and tertiary antibodies only were used to assess the background 

staining.  

 

2.2.5. Fibroblasts establishment 

MEFs were prepared from day 13.5 embryos and maintained in DMEM with 10% 

FBS. KIF13BΔCG and KIF13A FLKO mice were backcrossed to almost pure C57BL/6J 
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background. MEFs from KIF13A FLKO crossed with KIF13BΔCG (DKO) were prepared 

from mixed C57BL/6 x 129 genetic background mice. 

 

2.3. Cell culture 

2.3.1. LRP1 immunofluorescence  

MEFs were seeded on coverslips in DMEM containing 10% FBS for 3 days and 

fixed with 3% paraformaldehyde/PBS. Cells were permeabilized with 0.3% TritonX-100 

and blocked with Normal Donkey Block for one hour. Cells were incubated overnight at 

4oC in Rabbit anti-LRP1 mAb from Abcam diluted 1:5000 in Normal Donkey Block. Cells 

were then incubated for one hour each in biotinylated donkey anti-rabbit secondary 

antibody and then Streptavidin anti-donkey Cy3 tertiary antibody. Cells were washed 

thoroughly with PBS after each incubation, and nucleus was counterstained with Hoechst 

and mounted with 90% glycerol in PBS. Cells were visualized and photographed at 40X 

using Zeiss Axio Imager.M2 microscope and AxioCam MRm and MrC using AxioVision 

version 4.8 software. The exposure time and sharpness were kept consistent across all 

photos. Control cells with secondary and tertiary antibodies only were used to assess the 

background staining. 

 

2.3.2. LRP1 Western blotting   

Cleared lysates from human umbilical vein endothelial cells and wild-type, 

KIF13A FLKO, KIF13BΔCG, and KIF13 DKO MEFs were analyzed for steady state 

LRP1 protein expression by Western blotting. Lysates from above mentioned cells were 

harvested with NP40 containing lysis buffer with multiple phosphatase and protease 

inhibitors on ice before sonication and centrifugation to remove cell debris. The BCA 
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method was used to determine total protein concentration. Protein (25 µg) was loaded onto 

a 4-12% Bis Tris gel and transferred to a nitrocellulose membrane.  After briefly staining 

with Ponceau S to confirm acceptable transfer of proteins and rinsing with TBS-Tween, 

the membrane was blocked with 5% milk for one hour and incubated with rabbit mAb 

LRP1 at a dilution of 1:50,000 from Abcam in 5% milk overnight at 4°C.  After multiple 

rinses with TBS-Tween, the secondary antibody HRP-conjugated goat anti-rabbit from 

Bio-Rad in 5% milk was applied for one hour at room temperature. After multiple washes 

with TBS-Tween, ECL luminating solution was applied to the membrane and then exposed 

to film and developed.    

 

2.3.3. LPDS, LDL, [3H]-LDL, and [3H]-Cholesteryl oleate production  

Lipoprotein deficient serum (LPDS) was prepared by ultracentrifugation of FBS to 

remove LDL from the serum as previously described, omitting the thrombin incubation 

(56) before being used in the growth media. LDL was isolated from human blood by 

ultracentrifugation as previously described (56). [3H-CO] LDL was made by combining 

[3H] cholesteryl oleate and isolated human LDL as previously described (61) at a specific 

activity around 30 dpm/pmol.  [3H] oleate was prepared by combining with fatty acid free 

bovine serum albumin as previously described (56) with a specific activity around 21 

dpm/pmol. 

 

2.3.4. [3H]-LDL uptake and hydrolysis assay  

MEFs were seeded in DMEM containing 10% LPDS and cultured for 3 days. Cells 

were then incubated with 50 µg/ml [3H]CO-LDL for 3, 4.5, 6, and 7.5 hours. Lipids were 

extracted with hexane:isopropanol (3:2) solvent and dried under air.  Each sample was 
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resuspended in chloroform:methanol (2:1) and thin layer chromatography was performed 

on silica plates in toluene:ethyl acetate (2:1). [3H]-labeled cholesterol and cholesteryl esters 

were quantified and normalized relative to the amount of protein per well. The uptake was 

determined as the sum of labeled cholesterol and cholesteryl esters, and the hydrolysis of 

LDL was determined as the fraction of labeled cholesterol over total labeled uptake. Each 

experiment was run in triplicate.   

 

2.3.5. Cholesterol esterification assay 

MEFs were seeded in DMEM + 10% LPDS and cultured for 4 days. The cells were 

then incubated with varying concentrations of LDL for 8 hours. MEFs were then pulsed 

with [3H] oleate for 2 hours. Lipids were extracted with hexane:isopropanol (3:2) and dried 

under air. Each sample was resuspended in chloroform:methanol (2:1) and thin layer 

chromatography was performed on silica plates in heptane:diethyl ether:glacial acetic acid 

(90:30:1).  [3H] Oleate incorporation into cholesteryl [3H] esters and [3H] triolein was 

quantified and normalized to the amount of protein. Each experiment was run in duplicate.  

 

2.3.6. Surface protein biotinylation 

This protocol was adapted from bio-protocol and Huang et al (62). MEFs were 

plated on poly-dL-Ornithine-coated plates on Day 0. On day 2, at approximately 95% 

confluency, the monolayer was rinsed with PBS +CaCl2 and MgCl2. Cells were incubated 

on a rocker at 4°C with 0.5 Sulfo-NHS-SS-biotin solution for 30 minutes before quenching 

unbound biotin with 50 mM glycine in PBS+CaCl2 and MgCl2. Cells were scraped and 

collected in lysis/IP buffer (in PBS: 5 mM EDTA, 5 mM EGTA, 10 mM sodium 

Pyrophosphate, 50 mM NaF, 1 mM NaVO3, 1% Triton, 1 tablet protease inhibitor) and set 
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on ice for 30 minutes. Cleared lysates were used to load 600 µg of protein onto NeutrAvidin 

beads in IP buffer and left rotating at 4°C overnight.  Beads were washed by rotation three 

times for five minutes in IP buffer and boiled at 65°C for 10 minutes before loading for 

Western blotting. Protein was transferred from 4-12% Bis-tris gel onto a nitrocellulose 

membrane. The membrane was blocked in 5% milk in TBS-Tween and blotted with various 

antibodies: Streptavidin-HRP to confirm biotinylation of total (and only) surface proteins, 

anti-LRP1, anti-β actin for cytoplasmic control, and anti-Na+/K+ ATPase for the membrane 

loading control.  

 

2.4. Cloning and protein interaction assays 

2.4.1. Cloning and site directed mutagenesis 

LRP1-Herz plasmid was a gift from Dr. Joachim Herz at the University of Texas 

Southwestern Medical Center (57). This plasmid includes a portion of LRP1-β from 13201 

bp to 14247 bp in a pcDNA3.1/Zeo backbone, which translates a protein that includes six 

extracellular EGF-like domains (223 extracellular amino acids), the transmembrane 

domain, and the cytoplasmic tail (Figure 3.8A). To generate LRP1- Herz and LRP1-CT 

constructs tagged with Thioredoxin (TRX), primers for LRP1-Herz or LRP1-CT 

containing BamHI or EcoRV restriction sites (Figure 3.8A) were used in Phusion High 

Fidelity PCR using LPR1-Herz plasmid as the template. LRP1-CT forward (5’- GCG-

GGATCC-AAG CGG CGA GTC CAA GGG GCT-3’), LRP1-Herz forward (5’-GCG-

GGATCC-CGG CCT GGA ACC TGT AAC CTG-3’), and LRP1 reverse (5’-GCG-

GAATCC-CTA TGC CAA GGG GTC CCC TAT-3’). The pET32a plasmid with the TRX 

tag and PCR products were digested with enzymes EcoRV and BamHI and ligation 
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products were used to transform E. coli DH5α. PCR with the pET32a forward and LRP1 

reverse primers was used to confirm the inclusion of correct in the pET32a backbone. 

Successfully transformed colonies were expanded for mini preps to transform E. coli BL21 

(DE3). TRX-tagged protein expression was induced for three hours with 200 µM IPTG in 

BL21 cells. TRX and TRX-LRP1-CT were purified on a Nickel column using HPLC and 

pure fractions were confirmed by SDS-PAGE on 4-12% Bis-tris gel and Coomassie 

staining. Expression of TRX and TRX-LRP1-CT was analyzed by SDS-PAGE: Coomassie 

staining of the gel, and Western blotting with anti-TRX antibody with Ponceau S staining 

of the membrane.   

Mutagenesis to convert tyrosine-4507 in the CT tail of LRP1 to phenylalanine 

(phospho-dead mutation) was performed using Quik Change II Site Mutagenesis Kit with 

Phusion High Fidelity PCR with primers containing the targeted mutation (mutated 

nucleotide in bold italics forward: 5'-ccaacttcaccaaccccgtgtttgccacactct-3', reverse: 5'-

agagtgtggcaaacacggggttggtgaagttgg-3'). The LPR1-Herz plasmid was used as the template. 

All plasmids were sequenced by the Tufts University Core Facility. 

 

2.4.2. Pull-down assays 

Previously designed GST-tagged hDLG1 constructs (4, 9, 10) were used for pull-

down assays. The GST-fusion proteins were expressed in E. coli BL21(DE3) and purified 

using Glutathione-Sepharose beads (GE). The hDLG1 fusion proteins were immobilized 

on the beads as bait and incubated with either purified TRX or purified TRX-LRP1-CT 

protein, or lysates from HEK293T cells transfected with either LRP1-Herz or LRP1-

Y4507F with Promega FuGENE 6 transfection reagent as prey. Cleared lysates from 

transfected HEK293T cells were harvested with NP40 detergent containing lysis buffer 
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with multiple phosphatase and protease inhibitors on ice before centrifugation to remove 

cell debris. The BCA method was used to determine total protein concentration. Protein 

was eluted from the beads by boiling at 90°C for 10 minutes and analyzed by SDS-PAGE 

on 4-12% Bis-Tris gel. Upon protein transfer, the nitrocellulose membrane was incubated 

briefly with Ponceau S to determine appropriate transfer and GST construct expression 

before being rinsed with TBS-Tween and immunoblotted with rabbit anti-LRP1 

monoclonal antibody from Abcam as described above in LPR1 Western Blotting.   

 

2.4.3. Co-Immunoprecipitation 

HepG2 cells, an immortalized cell line from human liver carcinoma, were 

homogenized in the subcellular fractionation buffer (20 mM Tris-HCl, pH 7.4, 10 mM KCl, 

2.0 mM MgCl2, 1.0 mM EDTA and protease inhibitors), and nuclei pellet was removed by 

centrifugation at 720 x g for 5 minutes. The membrane fraction was collected by further 

centrifugation at 100,000 x g for one hour and dissolved in the lysis buffer (20 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 0.2% Triton X-100, protease inhibitors). Antibodies used for 

immunoprecipitation (IP) included anti-hDLG1 mAb 2D11 (58), anti-KIF13B mAb 4A5 

(7), and normal mouse IgG (Santa Cruz). Protein A/G PLUS-Agarose (Santa Cruz) beads 

were used to recover the immune-complex, analyzed by SDS-PAGE and Western blotting 

with an anti-LRP1 rabbit mAb (Abcam). 

 

2.5. Statistical analysis 

Data are presented as the mean ± standard deviation. Statistical comparisons were 

made using analysis of variance (ANOVA) and paired student’s t-tests in R and Prism. 

A P value < 0.05 was considered statistically significant. 
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Chapter 3: RESULTS 

3.1. Mouse Characterization 

3.1.1. Generation of KIF13A and KIF13B mouse models  

Two mouse models were developed by the Chishti lab to evaluate the role(s) the 

KIF13 family members play in various systems. One mouse model expresses a truncated 

form of KIF13B lacking only its CAP-Gly domain (KIF13ΔCG), and the other is a full-

length KIF13A null (KIF13A FLKO) (Figure 3.1) (unpublished). These models are 

important tools that allowed us to interrogate the role of the CAP-Gly domain of KIF13B, 

which was not addressed by the Kanai study (24), and assess any compensatory role of 

KIF13A.  

KIF13A FLKO and KIF13BΔCG mice were generated by inserting a β-Geo 

cassette within each of the respective genes. The genotype and protein expression were 

verified through PCR and Western blotting (Figure 3.1 A & B insets). The insertion of the 

β-Geo cassette in the KIF13A gene leads to complete knockout of the gene (Figure 3.1A, 

top right inset), leading to no protein expression (Figure 3.1A, bottom right inset). The 

insertion of the β-Geo cassette in the KIF13B genomic locus leads to a truncation of the 

gene, and expression of the truncated protein missing the CAP-Gly domain (Figure 3.1B). 

The mutant KIF13B protein was not detectable by Western blotting (Figure 3.1B bottom 

right insert) due to the β-Geo insert increasing the size of the protein beyond what can be 

transferred and/or the epitope recognized by the monoclonal antibody was removed with 

the deletion. To that end, the expression of truncated KIF13B protein was verified by the 

LacZ staining of embryos and mouse embryonic fibroblasts (MEFs) (Figure 3.1 C & E). 

In confluent culture of fibroblasts isolated from mutant KIF13BΔCG day 13.5 embryos, 
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the KIF13B-LacZ fusion protein was observed as intracellular blue dots near the nucleus 

resembling the microtubule-organizing center. Counterstaining with anti-β-Tubulin 

antibody showed that the blue dots coincide with the center of microtubule arrays (Figure 

3.1E top, arrowheads). Interestingly, in the scratch induced migrating fibroblasts, the blue 

stain diffused throughout the cells, with significant accumulation at the leading edge 

(Figure 3.1E bottom, arrowheads). This pattern of KIF13B-LacZ staining is consistent with 

the reported endogenous localization of hDLG1 and KIF13B at the leading edge of 

migrating cells (29, 63). This finding suggests the motor function of KIF13BΔCG is still 

preserved and can move along the microtubules in an anterograde manner.   

Both KIF13A FLKO and KIF13BΔCG mice were viable, born at normal Mendelian 

ratios, and developed to adulthood. To assess the compensatory role of KIF13B and 

KIF13A, the Chishti lab attempted to generate a double mutant mouse model in C57BL/6J 

background by crossing of KIF13A FLKO and KIF13BΔCG mice (DKO). Morphological 

analysis of the embryos at E14.5-E15.5 did not reveal dying/dead embryos. However, high 

mortality after birth was observed in the DKO mice. Most of the new born pups were either 

dead or cannibalized, and therefore no viable pups could be recovered after day one. 

Occasionally, newborn pups were found dead at day one (Figure 3.1D). These pups seem 

to have their stomachs filled with air without any milk (Figure 3.1D asterisks), suggesting 

that they are unable to suckle milk properly. Interestingly, morphological evaluation of 

dead pups revealed relatively short nose appearance and potential craniofacial 

developmental anomalies that could be the underlying cause of their inability to properly 

suckle (Figure 3.1D arrowheads). This developmental phenotype appears to be similar to 

the craniofacial anomalies and cleft palate phenotype observed in mouse Dlg1 mutant  
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Figure 3.1. Mouse model development and verification. Diagrams of A) KIF13A FLKO 

and B) KIF13BΔ CG mouse model production by β-geo cassette insertion and verification 

by PCR (top right of panel) and Western blot (bottom right of panel.)  C) LacZ staining 

showing expression of truncated KIF13B protein in KIF13BΔCG embryo E13.5. D) 

Representative image of newborn WT and KIF13 DKO pups.  Arrowheads indicate face 

deformity (short snout), and asterisk indicates milk-less stomach full of air. E) LacZ  
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(Figure 3.1 continued from page 26) staining in MEFs from KIF13BΔCG mice.  Top 

image is a confluent culture, thus KIF13B appears to be inactive. Bottom image is after a 

scratch assay is initiated to activate cell migration, thus activating KIF13B and changing 

the subcellular localization.  Inset of right image is an enlarged frame of the leading edge 

of the fibroblast. Orange arrows discern the change of location of KIF13B in confluent 

versus migrating MEFs.  

 

mice (30, 31). The initial analysis of two dead pups recovered at day one did not show any 

discernible evidence of cleft palate. However, the lab did not pursue further 

characterization of the dead newborn DKO mice since the colony of DKO mice was not 

sustainable.   

 

3.1.2. Effect of CAP-Gly domain deletion in mice on cholesterol and factor VIII 

phenotype 

A previous study has shown that KIF13B FLKO mice exhibit increased levels of 

serum cholesterol and plasma factor VIII, which are known ligands of LRP1 (24). We 

measured the levels of serum lipids and plasma factor VIII in our KIF13BΔCG mouse 

model to determine if the CAP-Gly domain was required for maintaining the homeostasis 

of these LRP1 ligands. The levels of total serum cholesterol, LDL, HDL, vLDL, and 

triglycerides (Figure 3.2) were analyzed from wild-type, KIF13BΔCG, and KIF13A FLKO 

mice. The KIF13BΔCG mice, lacking the CAP-Gly domain, showed significantly elevated 

levels of total cholesterol (p = 0.033), LDL (p = 0.0051), and HDL (p = 0.067) as compared 

to wild-type mice, when analyzed using the two-tailed unpaired t test. The F test to compare 

variances was not significant for total cholesterol and HDL measurements; however, it was 

significant for the LDL measurements; therefore, the Welch’s correction was administered 

in the two-tailed unpaired t test. In contrast, the levels of VLDL and triglycerides were not 
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Figure 3.2. Characterization of 

mouse lipid profile. Total cholesterol, 

direct measurement of LDL, and HDL 

of wild-type (WT), KIF13A FLKO, 

and KIF13BΔCG mouse serum, and 

vLDL and triglyceride measurement of 

WT and KIF13BΔCG mouse serum 

after 6 hour fasting. N= 10 WT, 11 

KIF13BΔCG, 6 KIF13A. Significant p 

values between WT and KIF13BΔCG: 

Total: p= 0.033, LDL: p= 0.0051, 

HDL: p=0.067. Error bars represent the 

SEM. 
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Figure 3.3. Cholesterol trafficking in 

MEFS.  A & B) Time course of [3H]CO-

LDL (A) uptake and (B) hydrolysis by 

MEFs from wild-type (WT) or 

KIF13BΔCG mice. MEFs were stimulated 

with 50 µg/ml of [3H]CO-LDL for the 

indicated time and the amount of [3H]CO 

internalized and hydrolyzed was measured.  

Measurements are from triplicate wells. 

*p=0.0031. C) Incorporation of [3H] oleate 

into cholesteryl esters after 8 hours of 

indicated doses of [3H] oleate in MEFs. 

Error bars represent the SEM.  
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significantly different between fasted wild-type and KIF13BΔCG mice, nor did the 

KIF13A FLKO mice show any measurable difference in the levels of these lipids as 

compared to wild-type mice. To further investigate the biochemical basis of the observed 

cholesterol phenotype, we measured the uptake of [3H]CO-LDL in MEFs derived from 

wild-type and KIF13BΔCG embryos. The uptake and hydrolysis of [3H]CO-LDL in MEFs 

indicate that KIF13BΔCG MEFs exhibit only slightly decreased uptake of [3H]CO-LDL at 

later time points (Figure 3.3A). Hydrolysis of the LDL-derived [3H]CO appeared normal 

(Figure 3.3B) as did cholesterol esterification (Figure 3.3C). 

In addition, we measured plasma factor VIII levels in wild-type and KIF13BΔCG 

mice either by the timed clot assay (Figure 3.4A) or Chromogenix colorimetric assay 

(Figure 3.4B). We did not find any significant difference in the factor VIII levels between 

wild-type and KIF13BΔCG mice using these assays. It is to be noted that although the 

difference was not statistically significant, nearly half of the KIF13BΔCG mice showed 

elevated levels of serum factor VIII activity. The standard deviation for KIF13BΔCG in 

each assay was much greater than that of the wild-type results (timed clot assay: wild-type 

average= 411.2±27.33 seconds, KIF13BΔCG average 465.8±44.62 seconds. Chromogenic 

assay: WT average 98.8±27.1 units/ml, 22.4% activity, SD ±6.2, KIF13BΔCG average 

103.6±72 units/ml, 23.5% activity, SD ±16.4.)  To resolve whether the CAP-Gly domain 

of KIF13B plays a functional role in the uptake of factor VIII would require a larger cohort 

of age and sex matched KIF13BΔCG mice in future studies.  

 

3.1.3. Liver histology 

 Paraffin-embedded liver sections were stained with hematoxylin and eosin to 

determine if the CAP-Gly domain deletion of KIF13B leads to morphological changes,   
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Figure 3.4. Characterization of mouse factor VIII levels.  A) Timed clot assay to measure Factor 

VIII activity in wild-type (WT) and KIF13BΔCG mouse plasma n=5. B) Chromogenic assay of 

same samples to measure factor VIII activity. 100% is equivalent to 1 IU/ml of factor VIII. Error 

bars represent the SEM.  

 

Figure 3.5. Characterization of mouse liver histology.  Paraffin-embedded livers from wild-type 

(WT) and KIF13ΔCG mice were H&E stained. No pathological anomalies were identified.  

Pictures were taken at 10x (top) and 40x (bottom). 
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such as fibrosis or fatty deposits as would be seen in an animal with elevated cholesterol 

levels. No pathogenesis was found in these livers, even in mice over 12 months of age 

(Figure 3.5). To exaggerate a possible phenotype, both wild-type and KIF13BΔCG mice 

could be put on a high fat diet to see if the mutant’s liver is more affected by the diet in 

future studies. 

 

3.1.4. Effect of CAP-Gly domain deletion on KIF13B protein localization 

The subcellular localization of KIF13B protein in WT and KIF13ΔCG mice was 

analyzed in the brain tissue sections by immunofluorescence microscopy using a 

polyclonal antibody that recognizes the N-terminus of KIF13B protein. As shown in figure  

3.6A, there is a punctate staining pattern of the protein in both mice; however, the puncta 

in the KIF13BΔCG mice is less localized in the perinuclear region as compared to wild-

type. In addition, the expression of truncated KIF13B protein appears to be substantially 

reduced compared to the expression level of wild-type KIF13B (Figure 3.6A). This 

observation suggests that the deletion of the CAP-Gly domain causes the KIF13B protein 

to be mislocalized. Since KIF13B is abundantly expressed in the liver, we also analyzed 

localization in liver tissue from wild-type and KIF13BΔCG mice. However, auto-

fluorescence of liver tissue prevented from visualizing normal and truncated KIF13B 

(Figure 3.6B). Of note, a monoclonal antibody previously generated against the C-terminus 

of KIF13B (7) cannot be used for these experiments since its epitope is missing in the 

truncated KIF13B protein of KIF13BΔCG mice. In future studies, high resolution live 

imaging and immune-gold electron microscopy approaches would be required to determine 
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Figure 3.6. 

Subcellular 

localization of KIF13B 

protein in WT and 

KIF13BΔCG brain 

and liver.  

Paraffin-embedded 

sections of A) brain and 

B) liver were stained 

with a polyclonal 

antibody recognizing the 

N-terminus of KIF13B 

(red), which is present in 

both WT and 

KIF13BΔCG, and 

nuclear counterstain 

with Hoechst (blue). 

Pictures were taken at 

40x and a representative 

frame was enlarged 

(insets A).  
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the precise subcellular compartments of KIF13B protein in wild-type and KIF13BΔCG 

mice. 

 

3.2 Cell culture studies 

3.2.1. LRP1 status in fibroblasts lacking KIF13B CAP-Gly domain 

The mislocalization of the KIF13BΔCG protein leads to the hypothesis that the 

localization of LRP1 may be disrupted as well, due to the suggested interaction of these 

proteins. MEFs from wild-type, KIF13A FLKO, and KIF13BΔCG mice were used to 

visualize LRP1 by immunofluorescence microscopy. LRP1 staining appears to be more 

diffuse in the KIF13BΔCG MEFs as compared to wild-type MEFs in which LRP1 punctate 

staining is more intense (Figure 3.7A). In contrast, LRP1 staining in the KIF13A FLKO 

was similar to wild-type. The diffuse staining of LRP1 in KIF13BΔCG MEFs could result 

from either quantitatively less LRP1 protein in these cells or a redistribution of LRP1 from 

endosomal vesicles to the cell surface.  

If the protein levels of LRP1 were different in wild-type and KIF13BΔCG MEFs, 

this may reflect decreased stability or decreased synthesis of the LRP1 protein due to the 

truncated KIF13B protein. Using Western blotting on whole cell lysates from wild-type, 

KIF13A FLKO, KIF13BΔCG, and KIF13 DKO MEFs, we found the steady state protein 

expression of LRP1 was not different in MEFs of different genotypes (Figure 3.7B). Cell 

lysate from human umbilical vein endothelial cells, which do not express LRP1, was used 

as a negative control (Figure 3.7B). We could not perform double staining of LRP1 and 

KIF13B in fibroblasts to analyze their colocalization due to the weak reactivity of our 

polyclonal antibody against the N-terminus of KIF13B, as described above.    
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Figure 3.7. LRP1 subcellular localization and expression in MEFs. A) LRP1 subcellular 

localization in MEFs.  MEFs were stained with LRP1 (red) and nuclear counterstain with Hoechst 

(blue). Pictures were taken at 40x and a representative frame was enlarged. B) LRP1 steady state 

protein expression in MEFs by Western blotting. Human umbilical vein endothelial cells served 

as the negative control for LRP1 expression, and β-actin was used as a loading control. 
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3.2.2. Biotinylation of surface LRP1 

Since our results demonstrated that the steady state expression of LRP1 protein is 

similar in WT and KIF13BΔCG MEFs, we further investigated the subcellular localization 

of LRP1 in these MEFs.  To investigate if LRP1 was trapped on the surface of the 

KIF13BΔCG MEFs due to reduced endocytosis caused by the CAP-Gly mutation in 

KIF13B, surface proteins of WT and KIF13BΔCG MEFs were biotinylated and 

precipitated from complete lysates with Neutravidin beads.  The eluents from the beads  

were separated by SDS-PAGE and blotted with Streptavidin-HRP to confirm biotinylation 

and purification. As shown in Figure 3.8A, there was successful biotinylation (Input lanes 

+ Biotin), and the labeled proteins were successfully purified with the beads (Beads lanes 

+ Biotin). The selective biotinylation of surface proteins was confirmed by the absence of 

β-actin on the beads, which is only found in the cytoplasm (Figure 3.8B). Unfortunately, 

we encountered technical challenges when analyzing the surface LRP1.  Only a minimal 

amount of surface LRP1 was accessible to biotinylation and pulled out with the beads. 

Moreover, our surface protein positive control, the Na+/K+ ATPase, was not detectable in 

either the Beads or Input lanes. This control was required as a loading control to normalize 

the surface LRP1 protein. Without a reliable antibody for our positive control and our low 

yield of surface LRP1, this experimental approach was not pursued further. 

 

3.3 Cloning, expression, and protein interaction assays  

Using tagged protein constructs and immunofluorescence microscopy, Kanai and 

colleagues have recently shown that hDLG1 serves as an adaptor between LRP1 and 

KIF13B at the membrane (24). To further expand our understanding of how KIF13B could 

be regulating LRP1, we investigated the protein-protein interactions of this complex. A  
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Figure 3.8. Surface LRP1 biotinylation. A) Streptavidin-HRP blot to confirm biotinylation of 

only surface proteins in MEFs from WT and KIF13BΔCG mice. B) Western blot for surface LRP1. 

β-actin was used as a cytosolic fraction control and Na+/K+ ATPase was attempted as a surface 

protein loading control. The β-actin membrane was excised from the same membrane as the LRP1 

blot.  The β-actin boxes show two different exposures, the input blot was exposed for 1 second, the 

Beads blot was exposed for 200 seconds. The Na+/K+ ATPase blot includes the same samples 

(without “No Biotin Input” samples) but analyzed on a different gel.   
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detailed characterization of the ternary complex between LRP1-hDLG1- KIF13B is 

required since many transmembrane proteins are known to recognize hDLG1 via its PDZ 

domains (64). In fact, the previous study by Kanai and colleagues implied that this 

possibility may indeed be the case for LRP1 recognition of hDLG1. Their data using a 

dominant negative construct of hDLG1, which is a GFP-tagged construct that includes 

only the SH3-I3-GUK domains, shows colocalization only with their myc-KIF13B 

protein but not LRP1 (24).   

 

3.3.1. TRX-LRP1 cloning and purification 

 Generation of a tagged LRP1 protein expressing a functional cytoplasmic domain 

was the most straightforward approach to investigate LRP1’s interaction with hDLG1.  

Since LRP1 is a Type I transmembrane protein with a 100-amino acid cytoplasmic domain, 

we generated a TRX-tagged LRP1-cytoplasmic domain construct termed TRX-LRP1-CT. 

This construct was made by generating a PCR product of the CT with added restriction 

enzymes sites using LRP1-Herz as a template: BamHI at the 5’ end and EcoRV at the 3’ 

end (Primers 2 and 3 in Figure 3.9A). The digested PCR products of LRP1-CT with added 

restriction enzyme sites (Figure 3.9B, left green circle) were ligated into a digested pET32a 

backbone. Positive clones were identified by PCR using the TRX forward primer and LRP1 

reverse primer (Figure 3.9C top, green circle). Sequencing was performed to confirm 

proper insertion into the backbone. We also attempted to create a TRX-LRP1-Herz 

construct in the same manner, using primer 1 from Figure 3.9A.  After multiple attempts, 

a positive clone was identified (Figure 3.9C bottom, green circle); however, sequencing 

revealed inappropriate insertion, and therefore this approach was abandoned.  
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 The expression of the TRX-LRP1-CT protein was induced by IPTG in BL21 E. coli 

and purified via FPLC on a NiNTA column. Fractions were collected every two minutes 

over 20 minutes (Figure 3.10A bottom, hash marks on X-axis). To confirm the presence 

and purity of the protein, fractions 3-10 were analyzed separately by SDS-PAGE and the 

gel was stained with Coomassie blue (Figure 3.10B bottom). Fractions 4-7 were pooled 

and used in the pull-down assays. 

As a negative control for the pull-down assays, the TRX protein was expressed and 

purified in parallel to TRX-LRP1-CT. Fractions were collected every four minutes over 75 

minutes (Figure 3.10A top, hash marks on X-axis), and fractions 5-12 were run on SDS-

PAGE, and the gel was stained with Coomassie blue (Figure 3.10B top.)  Fractions 6-10 

were pooled and used in the pull-down assays. 

Finally, to confirm the expression and identification by immunoblotting, the pooled 

fractions for both TRX and various dilutions of TRX-LRP1-CT were analyzed by SDS-

PAGE alongside the protein from the uninduced (no IPTG) BL21 E. coli. One gel was 

stained with Coomassie blue and showed bands of appropriate size in only the induced 

lanes: TRX at ~25 kDa and TRX-LRP1-CT at ~35 kDa (Figure 3.10C top left). Another 

gel was transferred to a nitrocellulose membrane and stained with Ponceau S (Figure 3.10C 

top right), and then immunoblotted with a TRX antibody. Both TRX and TRX-LRP1-CT 

bands were identified by the TRX antibody, with TRX showing an additional band ~50 

kDa that represents the commonly observed dimer species. As expected, the TRX-LRP1-

CT fusion showed an increasing intensity with decreasing dilution (Figure 3.10C bottom.)   
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Figure 3.9. LRP1 constructs and primer designs. A) Cartoon of LRP1. Window magnifies 

LRP1-β to identify LRP1-Herz construct, primer targets for cloning, and NPxY domains in the 

cytoplasmic tail, in which Y4507 is mutated to LRP1-Y4507F. Orange box= Herz construct, Red 

arrow 1= forward primer for LRP1-Long sequence with BamHI site added (start of Herz construct), 

Purple arrow 2= forward primer for LRP1-CT with BamHI site added (cytoplasmic tail starting at 

first nucleotide after transmembrane domain), and Green arrow 3= reverse primer (a) with or (b) 

without the stop codon with EcoRV site added. PM= plasma membrane. B) PCR products using 

indicated primers and LRP1-Herz as a template. Products in lane 1 and 3 (green circle) were used 

to ligate into the pET-32a(+) backbone to add a TRX tag. C) PCR of clones with successful 

insertion of LRP1-CT (top, lane 5) and LRP1-Long (bottom, lane 7) using TRX forward primer 

and LRP1(a) reverse primer.   
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Figure 3.10. Purification, expression, and verification of TRX tagged LRP1-CT. A) Elution 

profile of NiNTA column. B) Coomassie stain of eluted fractions of TRX (top) and TRX-LRP1-

CT (bottom). C) Coomassie, Ponceau S, and Western blot to confirm TRX and TRX-LRP1-CT 

induced expression in BL21 E. coli.   
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3.3.2. LRP1 interacts with the I3 domain of hDLG1 

To investigate the biochemical basis of LRP1-hDLG1 interaction, we employed a 

series of defined fusion proteins of hDLG1 and pull-down assays (Figure 3.11 and 3.12). 

Several hDLG1 constructs expressed as GST fusion proteins (Figure 3.11A & B) were used 

to pull-down the purified TRX-LRP1-CT protein expressed in bacteria. None of the 

hDLG1 segments was successful in demonstrating LRP1-hDLG1 interaction (Figure 

3.12A). This unexpected observation suggested that lack of direct binding between LRP1 

and hDLG1 under these conditions could be due to either post-translational modifications 

lacking in the bacterially expressed LRP1-CT protein or its improper folding due to some 

missing co-factors (51). A successful construction of active TRX-LRP1-Herz fusion 

protein would be useful to test the feasibility of LRP1-hDLG1 interaction.    

As an alternative strategy, we used a construct gifted from the Herz lab to express 

a longer segment of LRP1 in a mammalian expression system for the binding studies.  This 

construct, designated LRP1-Herz, includes the cytoplasmic tail of LRP1 as well as the 

transmembrane domain and part of the extracellular domain that includes six extracellular 

EGF-like domains of LRP1.  This construct produced a protein smaller than the full β 

subunit by about 30 kDa (229 extracellular amino acids in LRP1-Herz versus 457 

extracellular amino acid in LRP1β  (57)) (Figure 3.9A). LRP1-Herz was transfected into 

HEK293T cells and total lysates from 24-hour post-transfection cells were used as prey. 

The GST-hDLG1 fusion proteins were used as bait in the pull-down assays (Figure. 3.11A 

& B). The hDLG1 constructs that included the alternatively spliced I3 insertion, but not the 

I2 insertion, successfully pulled down the LPR1-Herz protein expressed in HEK293T cell  
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Figure 3.11. GST constructs used for pull-down assays. A) Cartoons of GST-tagged hDLG1 

constructs used in the pull-down assays. GST = tag only, FLI2 = full length hDLG1 with Insert 2, 

PDZ = PDZ 1-3 domains, SI3G = SH3-Insert 3-GUK domains, SI2G = SH3-Insert 2-GUK domains, 

GUK = GUK domain, GUK-FL = GUK domain and C-terminus, I3 = Insert 3 only, I3-pY = full I3 

insert with pY segment, I3-GUK = Insert 3-GUK domains. All constructs have the GST tag. B) 

Ponceau staining of the membrane shows verification of protein expression of each GST construct 

(marked with *).  
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lysates (Figure. 3.12B). An important requirement was the presence of the GUK domain 

in the active hDLG1 constructs for binding to the LPR1-Herz protein. The GUK domain 

alone did not bind to LPR1-Herz protein (Figure. 3.12B). This finding suggests that the 

GUK domain confers stability to the relatively small 34 amino acid I3 sequence that 

would be otherwise exposed, unstructured, and prone to degradation. Consistent with this 

model, the GST-I3 construct without the GUK domain did not bind to LRP1-Herz protein 

(Figure. 3.12B). Finally, a comparison of SH3-I2-GUK and SH3-I3-GUK constructs 

confirmed that the I3 sequence of hDLG1 is critical for binding to the cytoplasmic 

domain of LRP1 (Figure. 3.12B).  

 

3.3.3. Effect of tyrosine phosphorylation of LRP1 on hDLG1 interaction  

The two NPxY motifs in the cytoplasmic tail of LRP1 serve as sites of regulation 

for adaptor protein interactions. Phosphorylation of the tyrosine residues at Y4507 and 

Y4473 located within these NPxY motifs have been shown to regulate various interactions 

of LRP1 with adaptor proteins (51-53). To investigate if the hDLG1 interaction with LRP1 

is regulated by the phosphorylation of Y4507, we replaced the Y4507 in LRP1-Herz 

construct with phenylalanine. This construct termed LRP1-Y4507F, which acts as a 

phospho-dead mutation, retains the aromatic ring with no impact on protein expression. 

The SH3-I3-GUK construct of hDLG1 successfully pulled down both LRP1-Herz and 

LRP1-Y4507F constructs (Figure. 3.12C) indicating that loss of tyrosine phosphorylation 

of LRP1-CT does not affect its interaction with hDLG1. In fact, upon equal protein loading 

(Figure 3.12C bottom), a semi-quantitative assessment of the LRP1-hDLG1 interaction 

suggests that the mutation of Y4507 to phenylalanine in LRP1-CT may in fact potentiate 

the LRP1-hDLG1 interaction under these conditions. To validate this observation, 
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mutating Y4507 to glutamic acid to act as a phospho-mimetic and repeat the pull-down 

assays would be necessary.  

 

3.3.4. Existence of endogenous LRP1 and hDLG1 complex 

To further investigate the physiological relevance of the LRP1/hDLG1/KIF13B 

complex, we performed co-immunoprecipitation experiments using HepG2 human liver 

cell line that expresses both LRP1 and KIF13B. Endogenous LRP1 was co-precipitated 

with hDLG1 from the detergent solubilized membrane fraction using a monoclonal 

antibody 2D11 directed against the N-terminus of hDLG1 (Figure 3.12D). This result 

demonstrates the existence of an endogenous interaction between LRP1 and hDLG1 in 

these cells. We could not detect LRP1 in the immunoprecipitate of anti-KIF13B using a 

monoclonal antibody 4A5 directed against the C-terminus of human KIF13B. This 

observation might reflect the transient nature of interaction of the KIF13B motor with 

LRP1/hDLG1 complex in this cell line. Since the interaction between hDLG1 and KIF13B 

has been well established (4), it is likely that LRP1, hDLG1, and KIF13B form a stable 

ternary complex in the polarized hepatocytes harvested as primary cells from liver. Our 

attempt to detect hDLG1 in the immunoprecipitate of LRP1 was also unsuccessful 

presumably because the binding of the LRP1 monoclonal antibody occluded hDLG1 

interaction within the short stretch of LRP1 cytoplasmic domain.  
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Figure 3.12. Protein interaction assays. A) Immunoblot of TRX-LRP1-CT in pull-down 

assays. The GST constructs (bold, top) were used as bait and purified TRX or TRX-LRP1-

CT protein was the targeted prey. Anti-TRX antibody was used for immunoblotting. B) 

Immunoblot of LRP1-Herz in pull-down assays from transfected HEK293T cell lysates. 

Anti-LRP1 antibody was used for immunoblotting and identified exogenous LRP1-β in the 

input lane and in the lanes corresponding to the beads that contain the I3 domain of hDLG1.  

Each box represents a different gel and breaks indicate non-consecutive wells. C) 

Immunoblot of LRP1-Herz or LRP1-Y4507F in pull-down assays from transfected 

HEK293T cell lysates. LRP1 antibody identified exogenous LRP1-β in the input lane and 

in the lanes corresponding to the beads that contain the I3 domain of hDLG1. Ponceau 

staining of the membrane verifies GST construct expression (marked with *) and equal 

loading of protein onto glutathione S beads. D) Co-IP of LRP1 by anti-hDLG1, anti-

KIF13B, or mouse IgG in the membrane fraction of HepG2 lysates. 
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Chapter 4: DISCUSSION 

This study reports the first characterization of a mouse model expressing a 

truncated form of KIF13B specifically lacking its CAP-Gly domain. We showed the CAP-

Gly domain of KIF13B is important for stabilization and proper localization of the protein. 

The mislocalization of KIF13B perhaps renders the protein non-functional, which is why 

it has a similar phenotype to KIF13B FLKO mice in regard to elevated blood cholesterol 

(24). Additionally, we discovered that the I3 insert of hDLG1 is necessary for the 

interaction with the cytoplasmic tail of LRP1, contrary to the speculation that the PDZ 

domains of hDLG1 would be the necessary domains for this interaction.  Finally, we were 

surprised to find that the mutation of Y4507 to a phospho-dead phenylalanine seems to 

enhance the interaction between hDLG1 and LRP1.  

Mammalian kinesins are grouped into 15 families encompassing 45 motor proteins 

(1). The kinesin-3 family includes 8 members including two homologs termed KIF13A and 

KIF13B. Among the 45 known kinesins, the KIF13B is the only motor that contains a CAP-

Gly domain at its C-terminus.  We used our mouse model with a truncated KIF13B protein 

that lacks the CAP-Gly domain to investigate its role in LRP1 endocytosis.  In addition, 

KIF13A FLKO mice were used to assess any compensatory role. Unlike KIF13B, KIF13A 

lacks a CAP-Gly domain and does not bind to hDLG1 (Hanada, unpublished data). 

Recently, Hirokawa and colleagues reported a functional role of KIF13B in the endocytosis 

of LRP1 (24). Using a KIF13B FLKO mouse model, they demonstrated ~25% elevation 

of serum cholesterol and plasma factor VIII, which are known ligands of LRP1. 

Nonetheless, the increase in plasma factor VIII was heterogenous showing a large variation 

in 10 animals analyzed in their study (24).  Unlike KIF13B FLKO mice, our mouse model 
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only lacks the CAP-Gly domain of KIF13B thus permitting specific evaluation of its 

function in vivo. Our findings demonstrated an increase in the serum lipoprotein levels in 

KIF13BΔCG mice, a phenotype that is similar to KIF13B FLKO mice (24). The total 

cholesterol levels in our WT mice had a slightly elevated mean and larger standard error 

of mean (SEM) compared to previously reported levels in C57BL6 mice (24), which may 

obscure the true significance compared to the KIF13BΔCG levels. Furthermore, the LDL 

levels in mice are inherently low because they rely more on HDL, rather than LDL, to 

traffic cholesterol through their bodies. Therefore, what seems like a small increase in LDL 

levels in the KIF13BΔCG mice is truly significant. The KIF13A FLKO mice did not show 

any functional effect on serum cholesterol. Conversely, our measurements of plasma factor 

VIII by two independent assays did not show any statistically significant elevation in 

KIF13BΔCG mice. This finding suggests that either the CAP-Gly domain of KIF13B 

differentially regulates the endocytosis of LRP1 ligands or the variation in factor VIII 

levels requires further validation of this phenotype in a larger number of age and sex 

matched animals. Alternatively, the CAP-Gly domain may have a role in the endocytosis 

of other receptors that recognize LDL, and while the Kanai paper ruled out the involvement 

of the LDL receptor (24), there are other family members that have yet to be investigated.  

To investigate the biochemical basis of lipid homeostasis in mutant mice, we 

measured the uptake of LDL in fibroblasts generated from the KIF13BΔCG and found it 

was slightly reduced as compared to wild-type mice. The hydrolysis of LDL-derived 

cholesterol esters was unaffected by the KIF13B truncation.  Furthermore, LDL stimulation 

of cholesterol esterification was also unaffected in the KIF13ΔCG MEFs as compared to 

the wild-type, demonstrating that the trafficking of cholesterol from lysosomes to the 
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endoplasmic reticulum is normal, as well as the esterification machinery in the endoplasmic 

reticulum. These findings suggest a functional role of the CAP-Gly domain in only the 

endocytosis element of this trafficking pathway, using lipoproteins as our ligand to measure 

these aspects of endocytosis. We also examined the expression of KIF13BΔCG protein in 

brain sections and found that the truncated protein exhibits lower expression and altered 

subcellular localization as compared to the WT protein. These findings suggest that the 

CAP-Gly domain plays a role in the stabilization and appropriate localization of KIF13B.  

Moreover, we found altered subcellular localization of LRP1 in KIF13BΔCG 

MEFs as compared to WT mice. Since Western blotting did not show any change in the 

steady state levels of LRP1 across genotypes, altered LRP1 immuno-localization is 

presumably due to the mislocalization of the receptor. The lack of efficient endocytosis of 

LRP1 ligands could be attributed to the accumulation of surface LRP1 by the deletion of 

CAP-Gly domain of KIF13B. To interrogate this possibility, we attempted to quantify the 

amount of surface LRP1 in fibroblasts using surface protein biotinylation approach. 

However, only a minimal amount of surface LRP1 was able to be biotinylated and pulled 

out with the beads. This is likely due to the large extracellular α subunit of LRP1 masking 

the extracellular domain of the β subunit. The α subunit is likely a “sink” for the biotin, 

and that subunit cannot be blotted for due to its large size and unstable non-covalent bond 

to the β subunit. A semiquantitative analysis shows the levels of biotinylated surface 

LRP1β do not seem to differ between the various MEFs; however, our surface protein 

positive control, the Na+/K+ ATPase, was not detectable in any of our samples using the 

available antibody. This control is necessary to 1) confirm appropriate technique conditions 

and 2) to use as a loading control to normalize our surface LRP1 protein to, as there is no 
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indication that the levels of this protein should be altered between these MEFs. Without a 

reliable antibody for our positive control and our low yield of surface LRP1, this 

experiment was abandoned. Moving forward, the precise location of LRP1 in KIF13BΔCG 

fibroblasts should be investigated using organelle-specific probes with LRP1 staining in 

conjunction with high resolution microscopy. 

Since LRP1 does not bind to KIF13B directly, Kanai et al proposed that hDLG1 

may function as an adaptor to link LRP1 with KIF13B (24). In their study, disruption of 

LRP1 localization in fibroblasts using a dominant negative mutant of hDLG1 (GFP-

hDLG1-DN), which is a GFP-tagged construct that includes only the SH3-I3-GUK 

domains and colocalizes with their myc-KIF13B protein but not LRP1, implied that LRP1 

may bind to the amino terminal half of hDLG1 (24).  This model seems to be consistent 

with the premise that the C-termini of multiple transmembrane proteins recognize the PDZ 

domains of adaptor proteins (reviewed in (65)). Since hDLG1 contains three PDZ domains 

in its N-terminal half, we tested the LRP1-hDLG1 interaction using pull-down assays. Our 

first attempt using purified TRX-LRP1-CT in a bacterial system did not reveal any 

interactions with the hDLG1 constructs, which suggests 1) the TRX-LRP1-CT protein was 

too small and unstructured for the interaction to take place, 2) post-translational 

modification of LRP1-CT is necessary for this interaction, or 3) other proteins are involved 

in this complex.   

Our next approach to the protein-protein interaction investigation shifted into a 

mammalian system. The LRP1 construct composed of the CT, transmembrane domain, and 

part of the extracellular domain (LRP1-Herz) expressed in a mammalian system did not 

bind to the three PDZ domains of hDLG1 as expected. However, further scanning of other 
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hDLG1 domains revealed that LRP1-Herz specifically recognizes the I3 domain of hDLG1. 

Previous studies have shown that the alternatively spliced I3 motif, flanked by the SH3 and 

GUK domains in hDLG1, binds to the FERM domain of protein 4.1 family of cytoskeletal 

proteins (36). In addition, we have demonstrated that the SH3-I3-GUK, but not SH3-I2-

GUK, module of hDLG1 activates the microtubule-stimulated ATPase activity of KIF13B 

by 10-fold (10). Genetic studies of Drosophila discs large tumor suppressor protein 

(DLG1) have shown that the HOOK domain, which corresponds to the I3 motif in hDLG1, 

is essential for maintaining the epithelial structure and growth regulation (33). This 

observation is consistent with the previous findings that the I3 motif plays a critical role in 

recruiting hDLG1 to the plasma membrane of epithelial cells (36).  

Kanai et al has shown that their myc-KIF13B and GFP-hDLG1-DN proteins 

colocalize when over-expressed in KIF13B FLKO MEFs; however, this complex fails to 

colocalize with endogenous LRP1 (24).  On the other hand, we have shown the LRP1 

interacts with hDLG1 via the I3 domain of hDLG1, which is present in Kanai’s GFP-

hDLG1-DN.  There are a couple of possible explanations of why the myc-KIF13B and 

GFP-hDLG1-DN complex did not colocalize with LRP1, even with the I3 of hDLG1 

present.  First, GFP-hDLG1-DN is missing a large amount of the protein; therefore, this 

may render it, and the complex, non-functional, thus preventing the interaction with the 

cytoplasmic tail of LRP1. Additionally, endogenous hDLG1 was still being expressed in 

these MEFs, so the LRP1-hDLG1 interaction may still exist, and the GFP-hDLG1-DN 

protein could not out compete the endogenous hDLG1. Finally, the use of over-expressed, 

tagged proteins may have a preferential binding to each other, yielding a complex unable 

to be properly localized to the cytoplasmic tail of LRP1 (24). What was not reported was 
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if LRP1 and GFP-hDLG1-DN colocalized; this may be helpful in addressing if this 

interaction exists in an over-expression model. 

LRP1 is detected as a broad band in Western blots because of its numerous post-

translational modifications.  When LRP1 was coimmunoprecipitated with hDLG1 from 

HepG2 lysates, the larger-sized fraction of total LRP1β was seen.  This further observation 

further suggests the necessity of post-translational modification of LRP1 to allow 

interaction with hDLG1. To test if the LRP1-hDLG1 interaction is regulated by 

phosphorylation, we mutated the tyrosine 4507 to phenylalanine in the LRP1 cytoplasmic 

tail thus mimicking a phospho-dead mutation. Unexpectedly, we observed an enhancement 

of LRP1 interaction with hDLG1. To validate this observation, mutating Y4507 to glutamic 

acid to act as a phospho-mimetic and repeat the pull-down assays would be necessary. It is 

important to note, the mutation to glutamic acid is more suited to mimic phosphoserine or 

phosphothreonine. To validate Y4507E as an appropriate phosphotyrosine mimic, proper 

controls must be included, such as comparing to an alanine substitution in place of the 

tyrosine (66).  Additionally, a complementary in vivo analysis of LRP1-hDLG1 interaction 

would be required to assess the biological significance of this observation. Together, these 

observations raise the possibility that the LRP1 interaction with the I3 domain of hDLG1 

may constitute a novel switch that regulates the cytoskeletal reorganization affecting the 

clustering and localization of receptors by KIF13B. Our model is detailed in Figure 4.1A.  

LRP1’s interaction with hDLG1 may have implications for non-endocytic signaling 

pathways. If the interaction with hDLG1, and thus KIF13B, is the preferential interaction 

over other adaptor proteins, without the formation of this complex in the KIF13ΔCG mice, 

there may be enhanced downstream signaling that would not otherwise be seen. In 
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particular, if hDLG1 does not interact with LRP1-CT, it can become more accessible to 

phosphorylation (40, 54), thus shifting the balance between LRP1 endocytosis and LRP1 

signaling. Investigating the downstream targets of LRP1 signaling in wild-type and 

KIF13BΔCG systems would be an important next step to improve our understanding of 

LRP1 signaling regulation. 

In summary, our findings demonstrate that KIF13B specifically lacking its CAP-

Gly domain retains its motor activity and can translocate to the membrane when activated, 

as indicated by the movement of the protein to the leading edge in migrating MEFs (Figure 

3.1E). However, the deletion of CAP-Gly results in the mislocalization of truncated 

KIF13B, thus preventing the dysfunctional KIF13B to regulate LRP1 endocytosis in vivo 

via hDLG1 (Figure 4.1B). The cytoplasmic tail of LRP1 interacts specifically with the 

alternatively spliced I3 insert of hDLG1, and other post-translational modification of LRP1-

CT likely play a regulatory role for this interaction; however, it is not due to the 

modification of Tyr4507. Using markers of KIF13A and KIF13B complexes, future 

characterization of these mouse models and the regulation of the interaction between 

LRP1-CT and hDLG1 are likely to enhance our mechanistic understanding of LRP1 

endocytosis with implications in diseases such as hypercholesterolemia, tumorigenesis, 

thrombosis, and Alzheimer’s disease. 
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Figure 4.1. Proposed LRP1-hDLG1-KIF13B interaction model. A) hDLG1 interacts 

with LRP1-CT via its I3 domain and with KIF13B’s MBS domain via its GUK domain. 

When Y4507 of LRP1 is not phosphorylated, the shape of the cytoplasmic tail allows for 

interaction with hDLG1. Upon phosphorylation, the site of interaction is disrupted and 

decreases the strength of binding. When Y4507 is mutated into a phenylalanine, which 

cannot be phosphorylated, this causes the CT to retain a conformation that allows for 

optimal hDLG1 interaction. B) KIF13B interacts with LRP1-CT at the plasma membrane 

via hDLG1.  Truncation of the CAP-Gly domain of KIF13B mislocalizes the protein away 

from the plasma membrane, preventing this complex from forming and efficiently inducing 

LRP1 endocytosis. The mislocalization of KIF13B leads to the mislocalization of LRP1. 
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