
Accepted Manuscript

Title: The European wool-carder bee (*Anthidium manicatum*) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection

Authors: Kelsey K. Graham, Steve Brown, Stephanie Clarke, Ursula S.R. Röse, Philip T. Starks

PII:	S0376-6357(17)30136-5
DOI:	http://dx.doi.org/10.1016/j.beproc.2017.08.005
Reference:	BEPROC 3493
To appear in:	Behavioural Processes
Received date:	21-3-2017
Revised date:	6-8-2017
Accepted date:	9-8-2017

Please cite this article as: Graham, Kelsey K., Brown, Steve, Clarke, Stephanie, Röse, Ursula S.R., Starks, Philip T., The European wool-carder bee (Anthidium manicatum) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection.Behavioural Processes http://dx.doi.org/10.1016/j.beproc.2017.08.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The European wool-carder bee (*Anthidium manicatum*) eavesdrops on plant volatile organic compounds (VOCs) during trichome collection.

Kelsey K. Graham^{a,*},¹, Steve Brown^b, Stephanie Clarke^a, Ursula S.R. Röse^c, Philip T. Starks^a

^aDepartment of Biology, Tufts University, Medford, MA 02155, USA ^bNorthern Essex Community College, Haverhill, MA 01830, USA

^cDepartment of Biology, University of New England, Biddeford, ME 04005, USA

¹ Present address: Department of Entomology, Michigan State University, East Lansing, MI, 48824 USA

*Corresponding author: kelsey.katherine.graham@gmail.com; telephone: (517) 432-9554.

Highlights

- Megachilidae bees such as Anthidium manicatum collect plant material for nests.
- *A. manicatum* fill the role of plant mutualist (pollinator) and antagonist.
- Plant (Stachys byzantina) chemical response to leaf tissue damage was measured.
- *A. manicatum* visitation to damaged or intact plants was observed.
- Damaged plants have different chemistry and increased visitation from A. manicatum.

Abstract

The plant-pollinator relationship is generally considered mutualistic. This relationship is

less clear, however, when pollinators also cause tissue damage. Some Megachilidae bees collect plant material for nests from the plants they pollinate. In this study, we examined the relationship between *Anthidium manicatum*, the European wool-carder bee, and the source of its preferred nesting material – *Stachys byzantina*, lamb's ear. Female *A. manicatum* use their mandibles to trim trichomes from plants for nesting material (a behaviour dubbed "carding"). Using volatile organic compound (VOC) headspace analysis and behavioural observations, we explored (a) how carding effects *S. byzantina* and (b) how *A. manicatum* may choose specific *S. byzantina* plants. We found that removal of trichomes leads to a dissimilar VOC bouquet compared to intact leaves, with a significant increase in VOC detection following damage. *A. manicatum* also visit *S. byzantina* plants with trichomes removed at a greater frequency compared to plants with trichomes intact. Our data suggest that *A. manicatum* eavesdrop on VOCs produced by damaged plants, leading to more carding damage for individual plants due to increased detectability by *A. manicatum*. Accordingly, visitation by *A. manicatum* to *S. byzantina* may incur both a benefit (pollination) and cost (tissue damage) to the plant.

Keywords: Communication; cue; herbivore; pollinator; recognition; signal.

Introduction

Insect damage can cause cascading chemical changes within plants that help with healing and protect against further herbivore damage (Karban & Myers, 1989). However, these chemical changes are not just within the plant. Plants can change the volatile organic compounds (VOCs) they emit in response to damage, which can affect the surrounding community of plants, herbivores, and beneficial plant visitors such as predatory and parasitic wasps (Holopainen & Gershenzon, 2010; Pare & Tumlinson, 1999). Here, we investigate a relatively understudied plant-insect relationship - flowering plants and Hymenopteran visitors that can act as both mutualists and antagonists.

Many Hymenoptera have evolved to use changes in plant VOCs for their benefit. For example, predatory and parasitic wasps can use changes in VOCs as a way to locate lepidopteran hosts (reviewed in Pare & Tumlinson, 1999). Herbivore damage induces changes in plant VOCs, either causing an increase in production of VOCs, or a change in compounds emitted. Wasps have evolved to use this plant response as a signal for presence of potential prey (predatory wasps) or hosts (parasitic wasps) (Turlings, Tumlinson, & Lewis, 1990). Following herbivore damage, plants such as corn and cotton have been shown to produce VOCs unique to herbivore damage that are distinguishable from background odours. The release of these VOCs coincides with periods when parasitoids are most likely to be foraging, contributing to recruitment of beneficial parasitoids by the plant (Turlings et al., 1995).

Bees foraging for nectar and pollen have also evolved the ability to use plant VOCs as a signal of resource quality. However, unlike predatory and parasitic wasps, foraging bees generally associate these cues with a lower quality resource (pollen and nectar), and avoid these herbivore damaged plants (Kessler & Halitschke, 2007, 2009; Mothershead & Marquis, 2000). For instance, wild tomato flowers (*Solanum peruvianum*) were visited less frequently by pollinators following both real herbivore damage and a jasmonic acid treatment to induce plant response to herbivore damage (Kessler, Halitschke, & Poveda, 2011).

Accordingly, changes in plant VOCs may be repellent or attractive to Hymenoptera, largely based on what they are searching for. Generally, we expect changes in plant VOCs following damage to be repellent to Hymenoptera seeking floral resources (typical plantpollinator relationship), but attractive to Hymenoptera in search of prey or hosts (typical plantparasitoid relationship). Furthermore, we would expect VOCs produced by damaged plants to be an evolved signal to attract beneficial parasitoids that can lower herbivore loads. Conversely, we would expect a change in plant VOCs to be a cue for pollinators (non-directed passive transfer of information) since changes in VOCs are often repellent to beneficial pollinators

(Bradbury & Vehrencamp, 2001; Smith & David, 2003).

Plant-pollinator interactions are often thought of as mutually beneficial, but the relationship can be complicated when the pollinator also causes damage to the plant. These opposing roles can occur during different life stages of the pollinator; caterpillars might consume plant tissues but later pollinate the same plant as adults (D. Kessler, Diezel, & Baldwin, 2010; Pettersson, 1991; Thompson & Pellmyr, 1992). Conflicts can also occur during the same life stage. Mason bees, leaf-cutter bees, and other members of the family Megachilidae serve as pollinators, but their collection of nesting material can damage the plants they visit.

In this study, we focus on one member in the family Megachilidae, Anthidium manicatum, that collects plant trichomes for nest construction. Trichomes are small hairs protruding from the plant epidermis used in water regulation (Fahn, 1986), herbivore deterrence, and storage of VOCs (Levin, 1973). A. manicatum, the European wool-carder bee, is a solitary bee species whose common name derives from the females' "carding" behaviour - female bees cut plant trichomes with their mandibles, ball them up (a behaviour reminiscent of carding wool), and fly them back to a cavity where they will use the trichomes to line their nest (Eltz, Küttner, Lunau, & Tollrian, 2015; Müller, Töpfl, & Amiet, 1996; Payne, Schildroth, & Starks, 2011). Male A. manicatum do not collect nesting material, but instead guard territories of floral resources, including plants used for nesting material by females (Severinghaus, Kurtak, & Eickwort, 1981). Male A. manicatum will aggressively defend these territories from both conspecific males and heterospecific pollinators (Wirtz, Szabados, Pethig, & Plant, 1988), while female A. manicatum are allowed to enter the floral territories unimpeded, where they can collect nectar, pollen and nesting material. Because female A. manicatum are visiting plants for pollen and nectar, as well as for nesting material, the relationship between A. manicatum females and their trichome sources is complicated. A local

population of *A. manicatum* can both fill the role of pollinator and leaf tissue herbivore through collection of trichomes from the same plants they visit for floral resources. Here, we look at the relationship between *A. manicatum* and its most commonly cited source of nesting material, *Stachys byzantina* (Garbuzov & Ratnieks, 2014; Gibbs & Sheffield, 2009; Hicks, 2011; Miller, Gaebel, Mitchell, & Arduser, 2002; Payette, 2001; Payne et al., 2011; Severinghaus et al., 1981; Strange, Koch, Gonzalez, Nemelka, & Griswold, 2011; Wirtz et al., 1988). *S. byzantina* has both dense glandular trichomes (Salmaki, Zarre, Jamzad, & Brauchler, 2009) and long simple trichomes (Salmaki, Zarre, Lindqvist, Heubl, & Brauchler, 2011). In addition to visiting *S. byzantina* for nesting material, *A. manicatum* also visit *S. byzantina* for food resources, possibly providing a significant contribution to the plant's reproductive fitness (Payette, 2001; Severinghaus et al., 1981). Predicting how *S. byzantina* may have evolved to respond to *A. manicatum* damage is therefore complicated, as attraction of *A. manicatum* may have evolved to use VOCs produced by *S. byzantina* is also of interest, as the upregulation of VOCs may be either attractive or repellent.

Here, we explore this complicated plant-pollinator relationship, by specifically looking at the relationship between *A. manicatum* and *S. byzantina* as a source of nesting material. We first investigated if carding damage changes the VOC output of *S. byzantina*. We performed headspace VOC collection and used GC-MS and GC-FID for identification and relative quantification of VOCs. Second, we determined how trichome damage impacted *A. manicatum* visitation to *S. byzantina*. We quantified the distribution of bee carding damage in semi-natural *S. byzantina* populations, and compared visitation rates of *A. manicatum* to damaged (trichomes removed) versus undamaged (trichomes intact) *S. byzantina* plants. Through these studies, we aimed to gain a clearer understanding of the plant-pollinator relationship; specifically, we wished to better understand the relationship when a pollinator also serves a role more

commonly filled by plant pests.

Methods

Collection and analysis of VOCs released by mechanically carded Stachys byzantina plants

We compared differences in VOCs emitted between mechanically carded and uncarded S. byzantina leaves. Eleven S. byzantina plants of approximately equal size were purchased from a local plant nursery. All plants were checked for general health and lack of previous bee carding damage. We then collected and analysed headspace VOCs from both mechanically carded and uncarded leaves, as well as from ambient air (negative control), at the University of New England (Biddeford, ME). Volatile headspace collections were taken from a mechanically carded region (one stalk consisting of about five leaves, two of which were mechanically carded) and compared to volatile headspace from an uncarded region (one stalk consisting of about five leaves) on the same plant (see Fig. 1). Mechanical carding was performed using a razor blade (Fig. 2). Two healthy leaves, one younger and one older, were chosen haphazardly and the trichomes on the top surface of their leaves were removed using the razor blade. Razor blades were cleaned, or a new razor blade was used between trials. We confirmed similarity of mechanical damage to natural carding damage by visual comparison under a dissection microscope; however, mechanical carding can only be assumed as a representation of actual A. manicatum carding damage. Additionally, A. manicatum carding is found most commonly on the underside of leaves, though also found on the tops of leaves; however, for mechanical carding, only the trichomes on the top of the leaves were removed due to the delicate nature of the underside of the leaf.

To collect headspace volatiles, each stalk was enclosed in a clear PET plastic cup with

an open dome lid and a volume of 850 ml. Purified air was allowed to flow into the chamber through the bottom at a rate of 850 ml/min. At the top of the chamber, we inserted a volatile collection trap containing 50 mg of Super-Q adsorbent (Alltech Associates, Inc, Deerfield, IL). We then attached this trap to a vacuum pump pulling air through the trap at a rate of 850 ml/min for three hours. We extracted the filters with 100 µl dichloromethane, and 600 ng of nonyl-acetate was added as an internal standard. Samples were subsequently analysed by Gas Chromatography-Mass Spectrometry (GC-MS) and quantified using Gas Chromatography-Flame Ionization Detector (GC-FID).

We analysed all samples quantitatively on an Agilent Technologies model 7890A gas chromatograph equipped with model 7693 auto sampler (Agilent Technologies, Wilmington, DE) and flame ionization detection. One µl of each extracted sample was injected on-column and analysed on an Agilent J&W HP-5 30m x 320µm x 0.25µm 19091J-413 capillary column (J&W Scientific, Folsom, CA) with helium as a carrier gas at a constant linear velocity of 32 cm·sec-1. The oven temperature was maintained at 40°C for 5 min and then increased at a rate of 5°C·min1- to 280°C and held for 5 min. The injector temperature was set to track the oven and the detector temperature was 300°C. Data were analysed on MSD ChemStation DS software (Agilent). Estimated abundance was calculated by comparison to the internal standard.

For qualitative analyses, the same GC was connected to an Agilent Technologies MS5975C mass spectrometer operating in electron impact mode. We analysed one µl of each sample using split less injection at 250°C. An Agilent J&W HP-5MS 30m x 250µm x .25µm column was used with helium as a carrier gas at a constant velocity of 40 cm·sec-1. The oven temperature was maintained at 40°C for 5 min and then increased at a rate of 5°C·min1- to 280°C and held for 5 min. The transfer line temperature was set to at 280°C and the ion source temperature to at 230°C. Data were analysed on MSD ChemStation DS software. We identified

VOCs by comparison of mass spectra with spectra in the Wiley 9th and NIST 11 MS Library, and spectra obtained of authentic compounds. We also compared GC retention times of VOCs with GC retention times of the authentic compounds on the HP-5MS column.

Comparison of the patterns of VOC composition between treatments was performed using multivariate analysis. A data matrix of pairwise Bray-Curtis dissimilarity indices between samples was built, and nonmetric multidimensional scaling (NMDS) (R package vegan) was used to visualize patterns of dissimilarity (see similar methods in Soler et al. 2012). Estimated VOC abundance (described above) was used for calculation of Bray-Curtis similarities. NMDS finds the best two-dimensional representation of the distance matrix, allowing for visualization of grouping between treatments. A Permutational Multivariate Analysis of Variance (PERMANOVA) was then used to test the null hypothesis - no difference between treatments (mechanical carding and no carding). The PERMANOVA was based on 1000 permutations, and is nonparametric (with only one factor). Similarity percentage (SIMPER) was then used to identify which compounds were responsible for differences between treatments. All analyses were performed using R version 3.3.1 (R Core Team, 2016).

Within plant distribution of bee carding damage on Stachys byzantina

We assessed 54 *S. byzantina* plants for within plant distribution of bee carding damage. We visited five plant nurseries in eastern Massachusetts between June and July 2012. All *S. byzantina* plants at each nursery were checked for carding damage; however, only plants with more than 18 mature leaves and with visible carding damage were included in the study (39 plants total) due to the required minimum number of leaves needed for our methods. We identified three "reference" leaves on each plant: an uncarded leaf, a minimally carded leaf (only one carding track, "singly carded"), and a heavily carded leaf (two or more carding tracks,

"multiply carded"; see Fig. 3). The five closest leaves surrounding the reference leaf were then checked for carding damage, without any overlap of leaf groupings, and the damage on these five leaves was recorded. Selection of reference leaves was almost entirely random. Most of the bee carding damage is on the undersides of leaves. Therefore, on approach to the plant, we could not visually assess damage before turning over leaves (at random). Reference leaves were identified as the first leaf we found on the plant to have the level of damage characterized above.

We used generalized linear mixed models to compare the number of bee carded leaves occurring around each type of reference leaf. The response variable, carding damage on the five leaves surrounding a reference leaf, was considered as a binomial response (0 – uncarded leaf, 1 – carded leaf) for each of the five leaves. We included type of reference leaf as the factor of interest, and individual plant and nursery location were included as random effects. The most parsimonious model was chosen through comparison of AICc scores (Table S1). If competing models were within 2.0 Δ AICc, the simplest model was chosen. Both the marginal R² (R²GLMM(m)) and the conditional R² (R²GLMM(c)) are reported (as calculated in Nakagawa & Schielzeth, 2013). The marginal R² describes the proportion of variance explained by the fixed factor alone. The conditional R² describes the proportion of variance explained by both the fixed and random factors (Nakagawa & Schielzeth, 2013). Data had a binomial distribution, and we used a logit link function. All analyses were performed using R version 3.3.1 (R Core Team, 2016).

"Small" *S. byzantina* plants, those with fewer than 18 mature leaves, could not be used in the analysis above, but were still checked for bee carding damage. Percent of total leaves with any carding damage was recorded. This gave us an estimate of average carding damage per plant in semi-natural populations.

Anthidium manicatum attraction to mechanically carded versus uncarded Stachys byzantina plants

To further test if carding damage is attractive to *A. manicatum*, we observed differences in visitation rates to mechanically carded *S. byzantina* plants versus uncarded *S. byzantina* plants. We performed 32 trials at seven locations at or around Tufts University in Medford, MA. Locations were picked based on presence of foraging *A. manicatum* and presence of *Nepeta cataria* (catmint), a preferred plant for pollen and nectar collection (Payette 2001; pers. obs.). These locations were considered optimal observation areas as they were likely to have high traffic of *A. manicatum* to the area.

Trials were carried out between August and September, 2014 between 11:00-16:00h on days with no precipitation when the temperature was between 21-32°C (Couvillon, Fitzpatrick, & Dornhaus, 2010). A. manicatum will activity forage during this time and temperature window (pers. obs.). In addition, we also checked to see A. manicatum were actively foraging in the area before starting each trial. For each trial, we placed two non-flowering S. byzantina plants of similar size at the testing location. For this study, we were focused on visits related to collection of nesting material, therefore, only non-flowering plants were used. Before trials, S. byzantina plants were housed in the Tufts University greenhouse and had no prior carding damage. Plants ranged in size but typically had approximately 20-25 leaves. One S. byzantina plant was haphazardly chosen to be mechanically carded; approximately 25% of its leaves were carded with a razor. Only the tops of the leaves were carded to minimize damage to the delicate backs of the leaves. Twenty-five percent was chosen as it is the average amount of bee carding damage we found naturally on "small" S. byzantina plants in local plant nurseries (see previous methods). The plants were placed about 1.5 meters from each other, and equidistant from the focal flowering plant (catmint), within 0.5 meters. We observed visitation and behaviour of A. manicatum near the S. byzantina plants for thirty minutes from about 1.5 meters away.

Testing was repeated at each site (four or five times), but at least 24 hours apart. The possible effect of pseudo-replication from the same individual visiting several times could not be completely removed from the study, particularly for territorial males who are likely to visit several times if guarding that area. However, we do not anticipate this significantly effecting the data as trials were done at seven locations far enough apart that an established territorial male would not be guarding multiple locations.

During the testing period, we recorded the number of visits by *A. manicatum* to each *S. byzantina* plant. A visit was counted whenever an *A. manicatum* came in close proximity to the test plant (generally within 15 cm) and hovered over or landed on the plant. Hovering near the plant was included as a visit, because this is a common behaviour for *A. manicatum* near plants, and this behaviour is likely associated with investigation of resources (Severinghaus et al., 1981). Unfortunately, differentiation between female and male *A. manicatum* was often not possible due to the speed of visitations and relative similarity in appearance between small males and females. Therefore, because sex of the visitor could not be determined every time, sex was not included in the analysis. Any incidences of carding at plants was also recorded.

We used generalized linear mixed models (R package lme4) to compare number of visits to mechanically carded *S. byzantina* plants to number of visits to uncarded plants. Model response variable was number of *A. manicatum* visits, the fixed effect was treatment, and location was included as a random effect. Due to the paired design of the experiment, trial ID was also included as a random effect. Models used a Poisson distribution with a log link function. The same parameters were then used to compare number of bee carding events during the trial period between carded and uncarded plants. The same methods were used to select the most parsimonious model as described previously (Table S1). All statistical analyses were performed using R version 3.3.1 (R Core Team, 2016).

Results

Measure of VOCs released by mechanically carded Stachys byzantina plants

We were able to identify ten compounds detected from *S. byzantina* headspace collection, as well as tentatively identify three more (Table 1). Most of the VOCs were green leaf volatiles or terpenes. The VOCs detected from mechanically carded leaves were significantly dissimilar compared to those detected from uncarded leaves (PERMANOVA; $R^2 = 0.31$; f=8.96, df=1, p<0.001) (Fig. 4). Abundance of five compounds explained most of the dissimilarity between carded and uncarded leaves: β -pinene (72.5%), (*Z*)-3-hexenol (61.1%), homosalate (49.4%), β -cubebene (37.2%), and (*Z*)-3-hexenyl acetate (19.7%). It should also be noted that the NMDS analysis grouped the VOCs from carded leaves, while VOCs from uncarded leaves were much more scattered (Fig. 4). Overall, there was an 83.9% dissimilarity between treatments, with greater abundance of VOCs detected in the mechanically carded treatment (Table 1). Generally, there were also more unidentified VOCs detected from carded leaves (Fig. S1).

Within plant distribution of bee carding damage on Stachys byzantina plants

Analyses showed that the bee carded reference leaves (both singly and multiply carded) had significantly more carded leaves around them than the uncarded reference leaves $(R^2GLMM(m) = 0.03, R^2GLMM(c) = 0.42; X^2 = 18.63, df=2, p<0.001; Fig. 5)$. Given the amount of carding damage on each plant, it is unlikely that it resulted from one individual making several return trips. However, extensive damage from one individual cannot be ruled out.

Anthidium manicatum visits to mechanically carded versus uncarded Stachys byzantina

plants

More *A. manicatum* visits were made to plants with mechanical carding compared to uncarded plants ($R^2GLMM(m) = 0.15$, $R^2GLMM(c) = 0.77$; $X^2 = 44.64$, df = 1, p < 0.001, Fig. 6). The simplest model within 2.0 Δ AIC removed location ID as a random effect. However, due to the territorial behaviour of male *A. manicatum*, location is an important effect to control for. We would expect locations with territorial males to have higher visitation rates compared to locations without a territorial male. Therefore, we kept location as a random effect included in the model (as this model also was within the 2.0 Δ AIC threshold) (Table S1).

There was no difference in occurrences of carding by *A. manicatum* between plants that were mechanically carded (7) and those that were uncarded (4) ($R^2GLMM(m) = 0.00$, $R^2GLMM(c) = 0.76$; $X^2 = 0.80$, df = 1, p = 0.372).

Discussion

Here, we have shown that (1) *S. byzantina* leaves with their trichomes removed (mechanically carded) released a significantly different bouquet of VOCs compared to leaves with their trichomes intact (uncarded); (2) bee carding damage is grouped in distribution on *S. byzantina* plants; and (3) mechanical carding of plants increases *A. manicatum* visitation. Taken together, our results support the hypothesis that *A. manicatum* carding damage induces changes in *S. byzantina* VOCs, and that these chemical changes are attractive to other *A. manicatum*.

When comparing the headspace VOCs of mechanically carded *S. byzantina* leaves compared to uncarded leaves, we were able to detect significant differences in the emitted compounds. Additionally, four of the five compounds that explained the most dissimilarity between treatments have previously been associated with changes in Hymenoptera behaviour: (Z)-3-Hexenyl acetate (Bruinsma et al., 2009; Whitman & Eller, 1990), β -cubebene (Belz,

Kolliker, Luka, & Balmer, 2013; Patricio, Cruz-López, & Morgan, 2004), (*Z*)-3-hexenol (Turlings et al., 1995; Whitman & Eller, 1990), and β -pinene (Hoebeke, Smith, & Goulet, 2011). Furthermore, the VOC profile of carded treatments was similar across individual plants. This suggests that individual *S. byzantina* respond similarly to carding damage, and therefore produce a stable cue which could be used by *A. manicatum*. However, to better understand whether *A. manicatum* use this cue, and whether they would deem this change in VOCs as attractive or repellent, we needed to observe patterns in carding damage and *A. manicatum* visits.

By observing patterns in carding damage on individual *S. byzantina* plants, we provide evidence that *A. manicatum* carding damage is grouped in distribution, with more carding damage occurring around reference leaves with bee carding damage. This suggests that changes in VOCs following carding damage are attractive to female *A. manicatum* foraging for nesting material, resulting in additional carding damage to that area of the plant. However, we should make note that the marginal R² value for this model was relatively low, indicating that only 3% of the variability is explained by the factor (reference leaf) alone. The conditional R² value is higher (0.42) suggesting between plant variation and between location variation was high. However, we believe the observed grouping in carding distribution represents a real trend as results from our behavioural trials provide additional support for this hypothesis. More *A. manicatum* visited mechanically carded *S. byzantina* plants than uncarded *S. byzantina* plants. These data further suggest that *A. manicatum* are attracted to changes in the *S. byzantina* VOC profile following damage to trichomes.

An alternative hypothesis is that *A. manicatum* are using visual cues to identify plants with or without carding damage. However, we do not think this is likely given the amount of carding damage on the undersides of leaves. Additionally, it is not clear what advantage carded plants would have for *A. manicatum*. Using VOCs to identify plants more easily therefore

seems like a more likely explanation for increased visitation at carded plants.

We provide evidence that *A. manicatum* use plant VOCs as a behavioural cue, but why would this relationship have evolved? Exploitation of plant VOCs is not a unique trait among Hymenoptera (De Moraes et al., 1998; Dicke & Baldwin, 2010; A. Kessler & Baldwin, 2001; A. Kessler & Halitschke, 2007; A. Kessler et al., 2011). However, the relationship between *A. manicatum* and *S. byzantina* does not fit the typical plant-pollinator or plant-parasitoid models. Individual *A. manicatum* can be both a pollinator and a pest to the same plant.

Since *A. manicatum* are attracted to previously carded *S. byzantina*, this system seems to follow trends more similar to plant-parasitoid systems, rather than plant-pollinator systems where changes in VOCs are usually repellent (A. Kessler & Halitschke, 2007, 2009; Mothershead & Marquis, 2000). But attraction of predatory or parasitic wasps often benefit the plant through direct reduction in herbivores. In contrast, attraction of *A. manicatum* following plant tissue damage does not appear to bring any similar benefits; in fact, emitting VOCs that attract *A. manicatum* will likely increase the amount of damage a plant sustains due to additional *A. manicatum* carding. *A. manicatum* visitation is also unlikely to significantly increase the plant's reproductive fitness through pollination services. *A. manicatum* are generally considered poor pollinators (Soper & Beggs, 2013) and *S. byzantina* often reproduce clonally (Legkobit & Khadeeva, 2004). Therefore, since the benefits (pollination services) to the plant in attracting *A. manicatum* are minimal at best, a change in VOCs by the plant likely did not evolve as a signal in response to *A. manicatum*.

Instead, *A. manicatum* have likely evolved to eavesdrop on plant signals intended for other uses, e.g. tissue damage repair, beneficial parasitoid attraction, or defence priming (Heil & Karban, 2009; Turlings et al., 1995). (*Z*)-3-hexenyl acetate is commonly associated with herbivore damage in many systems, and its production is thought to increase plant defence (De Moraes, Mescher, & Tumlinson, 2001; Loughrin, Manukian, Heath, Turlings, & Tumlinson,

1994; Rodriguez-Saona, Crafts-Brandner, Williams, & Pare, 2002; Röse, Lewis, & Tumlinson, 1998; Röse, Manukian, Heath, & Tumlinson, 1996). This supports the idea that *S. byzantina* is emitting VOCs, such as (*Z*)-3-hexenyl acetate, in response to the damage caused by *A. manicatum*, not due to an evolved benefit of attracting *A. manicatum*. This interaction could therefore be considered eavesdropping, as the receiver (*A. manicatum*) likely gains a benefit while the sender (*S. byzantina*) does not.

The benefit to *A. manicatum* in eavesdropping is relatively straightforward. Due to increased production of VOCs following damage, *A. manicatum* can likely detect VOCs from a damaged plant more easily than those given off by an undamaged plant. Female *A. manicatum* would therefore benefit by using this cue as a way to reduce their search time for nesting material. Male *A. manicatum* are also likely to benefit from eavesdropping on plant VOCs. Male *A. manicatum* would greatly benefit by using this cue in association with female *A. manicatum* presence. Similar to parasitoid wasps, if male *A. manicatum* associate a change in plant VOCs with presence of female *A. manicatum*, they should be able to decrease their search time for potential mates. It is likely that many of the visits to *S. byzantina* in our behavioural trial that included only hovering were male *A. manicatum*. Males spend the majority of their time actively patrolling their territory, which is punctuated with frequent hovering behaviour (Severinghaus et al., 1981). Males patrol in search of females, heterspecific intruders, and competing males. If males are able to associate a change in plant VOCs following carding damage with the presence of a female *A. manicatum*, this could greatly increase their mating frequency.

Both male and female *A. manicatum*'s use of VOCs would appear to increase the density of *A. manicatum* around *S. byzantina*. However, what effect increased presence of *A. manicatum* (male or female) has on *S. byzantina* can only be speculated. Trichomes are important for plant water regulation (Fahn, 1986) and herbivore deterrence (Levin, 1973).

Anecdotally, we have noticed that herbivore damage is common on naturally carded sections of *S. byzantina* plants. We therefore hypothesize that removal of trichomes would incur a fitness cost to the plant; however, direct effects of trichome removal on the plant should be examined. A change in VOCs is also likely to decrease flower attractiveness to other pollinators, which would be an additional cost (A. Kessler & Halitschke, 2007, 2009; Mothershead & Marquis, 2000). Increased presence of territorial male *A. manicatum* might also decrease pollinator visitations. Male *A. manicatum* actively keep away heterospecific pollinators attempting to gain access to guarded plants. Therefore, guarded plants could face pollinator limitations, though this remains to be explored.

An additional area of future research is understanding how bee damage and mechanical damage differ. A caveat to any study using mechanical damage to replicate natural animal behaviour is that we do not know the differences that may exist between mechanical damage and animal damage. While the mechanical removal of trichomes is visually similar to removal of trichomes by bees, additional effects that bee damage may have on the plant cannot be accounted for. For instance, bees may leave a chemical cue on the plants they visit that can be recognized by other bees (e.g. scent marking; Gawleta, Zimmermann, & Eltz, 2005), or perhaps leave behind a signal that is changing the chemistry of the plant (e.g. insect saliva's manipulation of plant defensive chemicals; Musser, Farmer, Peiffer, Williams, & Felton, 2006). Optimally, in this study, we would have been able to collect headspace VOCs from bee carded plants. However, there were significant limitations in our ability to do this. A. manicatum females would not card plants in a laboratory setting, and we were not able to locate enough A. manicatum actively carding in the field to attempt field VOC collections. Nonetheless, our data support the attractive role of VOCs in both damage types (mechanical and bee carding), though the intricacies of how these two types of damage influence both S. byzantina and A. manicatum remains to be explored.

This study explores the relationship between *A. manicatum*, a world-wide invasive species (Russo, 2016; Strange et al., 2011), and *S. byzantina*, its most commonly cited source of nesting material. Much is still left unknown in this system – fitness effect of carding damage to plants, importance of pollination services provided by *A. manicatum*, and importance of specific VOCs in both plant fitness and *A. manicatum* attraction, to name a few. Given the prevalence of *A. manicatum* (Strange et al., 2011) and *S. byzantina* throughout temperate regions, we propose this system as one particularly well suited for further exploration of this type of complicated plant-pollinator relationship.

Acknowledgements

We thank Rachael Bonoan, Amanda Franklin, Sara Lewis, Julia Pilowsky, Michael Reed and four anonymous reviewers for their helpful comments on the manuscript. We would like to thank Janithri Wickramanayake and Kyle Martin for their help with VOC collection. We would also like to thank the staff at Longfellow House – Washington's Headquarters (particularly Mona Mckindley) and MassHORT (particularly David Fiske) for allowing us to catch and observe *A. manicatum*, as well as the many plant nurseries in the greater Boston area that allowed us to look through their *S. byzantina* plants for carding damage. This project was funded through the National Science Foundation Research Experience for Undergraduates (2010-2012: DB1 1015812; 2013-2015: DB2 263030). The acquisition of a GC-MS was funded by the NSF-MRI grant 1229519 awarded to U.R. at the University of New England.

Literature cited

- Belz, E., Kolliker, M., Luka, H., & Balmer, O. (2013). Quantitative olfactory information use for food foraging in the parasitoid Microplitis mediator (Hymenoptera: Braconidae). University of Basel.
- Bradbury, J., & Vehrencamp, S. (2001). *Principles of Animal Communication (2nd ed.)*. Sunderland, Massachusetts: Sinauer Associates, Inc.
- Bruinsma, M., Posthumus, M. A., Mumm, R., Mueller, M. J., Van Loon, J. J. A., & Dicke, M. (2009). Jasmonic acid-induced volatiles of *Brassica oleracea* attract parasitoids:
 Effects of time and dose, and comparison with induction by herbivores. *Journal of Experimental Botany*, 60(9), 2575–2587. https://doi.org/10.1093/jxb/erp101
- Couvillon, M. J., Fitzpatrick, G., & Dornhaus, A. (2010). Ambient air temperature does not predict whether small or large workers forage in bumble bees (*Bombus impatiens*). *Psyche*, 31–33. https://doi.org/10.1155/2010/536430
- De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., Tumlonson, J. H., & Pare, P. W. (1998). Herbivore-infested plants selectively attract parasitoids. *Nature*, 393(June), 570–573. https://doi.org/10.1038/31219
- De Moraes, C. M., Mescher, M. C., & Tumlinson, J. H. (2001). Caterpillar-induced nocturnal plant volatiles repel conspecific females. *Nature*, 410(6828), 577–580. https://doi.org/10.1038/35069058
- Dicke, M., & Baldwin, I. T. (2010). The evolutionary context for herbivore-induced plant volatiles: beyond the "cry for help". *Trends in Plant Science*, 15(3), 167–75. https://doi.org/10.1016/j.tplants.2009.12.002
- Eltz, T., Küttner, J., Lunau, K., & Tollrian, R. (2015). Plant secretions prevent wasp parasitism in nests of wool-carder bees, with implications for the diversification of nesting

materials in Megachilidae. *Frontiers in Ecology and Evolution*, 2(January), 1–7. https://doi.org/10.3389/fevo.2014.00086

- Fahn, A. (1986). Structural and functional properties of trichomes of xeromorphic leaves. Annals of Botany, 57, 631–637.
- Garbuzov, M., & Ratnieks, F. L. W. (2014). Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. *Functional Ecology*, 28(2), 364–374. https://doi.org/10.1111/1365-2435.12178
- Gawleta, N., Zimmermann, Y., & Eltz, T. (2005). Repellent foraging scent recognition across bee families. *Apidologie*, *36*(3), 325–330.
- Gibbs, J., & Sheffield, C. S. (2009). Rapid Range Expansion of the Wool-Carder Bee, Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae), in North America. Journal of the Kansas Entomological Society, 82(November), 21–29. https://doi.org/10.2317/JKES805.27.1
- Heil, M., & Karban, R. (2009). Explaining evolution of plant communication by airborne signals. *Trends in Ecology and Evolution*, 25(3), 137–144. https://doi.org/10.1016/j.tree.2009.09.010
- Hicks, B. (2011). Anthidium manicatum (L.) (Hymenoptera: Megachilidae) found on the island of Newfoundland, Canada. Journal of the Acadian Entomological Society, 7(14), 105– 107.
- Hoebeke, E. R., Smith, D. R., & Goulet, H. (2011). *Athalia cornubiae* Benson (Hymenoptera: Tenthredinidae: Allantinae), A Sawfly Genus and Species New to North America. *Proc. Entomol. Soc. Wash, 113*(3), 309–314. https://doi.org/10.4289/0013-8797.113.3.309
- Holopainen, J. K., & Gershenzon, J. (2010). Multiple stress factors and the emission of plant VOCs. *Trends in Plant Science*, 15(3), 176–184.

https://doi.org/10.1016/j.tplants.2010.01.006

- Karban, R., & Myers, J. (1989). Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 20, 331–348.
 https://doi.org/10.1146/annurev.es.20.110189.001555
- Kessler, A., & Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. *Science*, 291(5511), 2141–4. https://doi.org/10.1126/science.291.5511.2141
- Kessler, A., & Halitschke, R. (2007). Specificity and complexity: the impact of herbivoreinduced plant responses on arthropod community structure. *Current Opinion in Plant Biology*, 10(4), 409–414. https://doi.org/10.1016/j.pbi.2007.06.001
- Kessler, A., & Halitschke, R. (2009). Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: Predictions and case study. *Functional Ecology*, 23(5), 901–912. https://doi.org/10.1111/j.1365-2435.2009.01639.x
- Kessler, A., Halitschke, R., & Poveda, K. (2011). Herbivory-mediated pollinator limitation: Negative impacts of induced volatiles on plant-pollinator interactions. *Ecology*, 92(9), 1769–1780. https://doi.org/10.1890/10-1945.1
- Kessler, D., Diezel, C., & Baldwin, I. T. (2010). Changing Pollinators as a Means of Escaping Herbivores. *Current Biology*, 20(3), 237–242. https://doi.org/10.1016/j.cub.2009.11.071
- Legkobit, M. P., & Khadeeva, N. V. (2004). Variation and morphogenetic characteristics of different stachys species during microclonal propagation. *Russian Journal of Genetics*, 40(7), 743–750. https://doi.org/10.1023/B:RUGE.0000036523.60977.89
- Levin, D. A. (1973). The Role of Trichomes in Plant Defense. *The Quarterly Review of Biology*, 48(1), 3–15.
- Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C., & Tumlinson, J. H. (1994).

Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. *Proceedings of the National Academy of Sciences*, *91*(25), 11836–11840. https://doi.org/10.1073/pnas.91.25.11836

- Miller, S. R., Gaebel, R., Mitchell, R. J., & Arduser, M. (2002). Occurrence of two species of Old World bees, *Anthidium manicatum* and *A. oblongatum* (Apoidea: Megachilidae), in northern Ohio and southern Michigan. *Great Lakes Entomologist*, 1(35), 65–70.
- Mothershead, K., & Marquis, R. J. (2000). Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in *Oenothera macrocarpa*. *Ecology*, *81*(1), 30–40. https://doi.org/10.1890/0012-9658(2000)081[0030:FIOHTI]2.0.CO;2
- Müller, A., Töpfl, W., & Amiet, F. (1996). Collection of Extrafloral Trichome Secretions for Nest Wool Impregnation in the Solitary Bee Anthidium manicatum. Naturwissenschaften, 83, 230–232.
- Musser, R. O., Farmer, E., Peiffer, M., Williams, S. A., & Felton, G. W. (2006). Ablation of caterpillar labial salivary glands: Technique for determining the role of saliva in insectplant interactions. *Journal of Chemical Ecology*, 32(5), 981–992. https://doi.org/10.1007/s10886-006-9049-4
- Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4(2), 133– 142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
- Pare, P. W., & Tumlinson, J. H. (1999). Plant Volatiles as a Defense against Insect Herbivores. *Plant Physiology*, 121(2), 325–332. https://doi.org/10.1104/pp.121.2.325
- Patricio, E. F. L. R. A., Cruz-López, L., & Morgan, E. D. (2004). Electroantennography in the study of two stingless bee species (Hymenoptera: Meliponini). *Brazilian Journal of Biology*, 64(4), 827–31. https://doi.org/10.1590/S1519-69842004000500012

Payette, A. (2001). Premiere mention de l'abeille adventice Anthidium manicatum (Linné)

(Hymenoptera: Megachilidae) pour le Québec. Fabreries, 26(2), 87–97.

- Payne, A., Schildroth, D. A., & Starks, P. T. (2011). Nest site selection in the European woolcarder bee, *Anthidium manicatum*, with methods for an emerging model species. *Apidologie*, 42(2), 181–191.
- Pettersson, M. W. (1991). Flower herbivory and seed predation in *Silene vulgaris* (Caryophyllaceae): effects of pollination and phenology. *Holarctic Ecology*, 14(1), 45– 50. https://doi.org/10.1111/j.1600-0587.1991.tb00632.x
- R Core Team. (2016). *R: A Language and Environment for Statistical Computing. Vienna, Austria.* Retrieved from https://www.r-project.org/
- Rodriguez-Saona, C., Crafts-Brandner, S. J., Williams, L., & Pare, P. W. (2002). Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. Journal of Chemical Ecology, 28(9), 1733–1747. https://doi.org/10.1023/A:1020552932566
- Röse, U. S. R., Lewis, W. J., & Tumlinson, J. H. (1998). Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. *Journal of Chemical Ecology*, 24(2), 303–319. https://doi.org/10.1023/a:1022584409323
- Röse, U. S. R., Manukian, A., Heath, R. R., & Tumlinson, J. H. (1996). Volatile Semiochemicals Released from Undamaged Cotton Leaves: A Systemic Response of Living Plants to Caterpillar Damage. *Plant Physiology*, 111(2), 487–495.
- Russo, L. (2016). Positive and Negative Impacts of Non-Native Bee Species around the World. *Insects*, 7(4), 69. https://doi.org/10.3390/insects7040069
- Salmaki, Y., Zarre, S., Jamzad, Z., & Brauchler, C. (2009). Trichome micromorphology of Iranian *Stachys* (Lamiaceae) with emphasis on its systematic implications. *Flora*, 204, 371–381.
- Salmaki, Y., Zarre, S., Lindqvist, C., Heubl, G., & Brauchler, C. (2011). Comparative leaf

anatomy of *Stachys* (Lamiaceae: Lamioideae) in Iran with a discussion on its subgeneric classification. *Plant Systematics and Evolution*, 294(1–2), 109–125. https://doi.org/10.1007/s00606-011-0450-2

- Severinghaus, L. L., Kurtak, B. H., & Eickwort, G. C. (1981). The reproductive behavior of Anthidium manicatum (Hymenoptera: Megachilidae) and the significance of size for territorial males. Behavioral Ecology and Sociobiology, 9(1), 51–58. https://doi.org/10.1007/BF00299853
- Smith, J., & David, H. (2003). Animal Signals. Oxford: Oxford University Press.
- Soler, C. C. L., Proffit, M., Bessière, J. M., Hossaert-Mckey, M., & Schatz, B. (2012). Evidence for intersexual chemical mimicry in a dioecious plant. *Ecology Letters*, 15(9), 978–985. https://doi.org/10.1111/j.1461-0248.2012.01818.x
- Soper, J., & Beggs, J. (2013). Assessing the impact of an introduced bee, Anthidium manicatum, on pollinator communities in New Zealand. New Zealand Journal of Botany, 51(3), 213–228. https://doi.org/10.1080/0028825X.2013.793202
- Strange, J. P., Koch, J. B., Gonzalez, V. H., Nemelka, L., & Griswold, T. (2011). Global invasion by *Anthidium manicatum* (Linnaeus) (Hymenoptera: Megachilidae): Assessing potential distribution in North America and beyond. *Biological Invasions*, 13(9), 2115–2133. https://doi.org/10.1007/s10530-011-0030-y
- Thompson, J. N., & Pellmyr, O. (1992). Mutualism with Pollinating Seed Parasites Amid Co-Pollinators: Constraints on Specialization. *Ecology*, *73*(5), 1780–1791.
- Turlings, T. C., Loughrin, J. H., McCall, P. J., Röse, U. S. R., Lewis, W. J., & Tumlinson, J. H. (1995). How caterpillar-damaged plants protect themselves by attracting parasitic wasps. *Proceedings of the National Academy of Sciences of the United States of America*, 92(May), 4169–4174.

Turlings, T. C., Tumlinson, J. H., & Lewis, W. J. (1990). Exploitation of herbivore-induced

plant odors by host-seeking parasitic wasps. *Science*, 250(4985), 1251–1253. https://doi.org/10.1126/science.250.4985.1251

- Whitman, D. W., & Eller, F. J. (1990). Parasitic wasps orient to green leaf volatiles. Chemoecology, 1, 69–75.
- Wirtz, P., Szabados, M., Pethig, H., & Plant, J. (1988). An Extreme Case of Interspecific Territoriality: Male Anthidium manicatum (Hymenoptera, Megachilidae) Wound and Kill Intruders. Ethology, 78, 159–167.

Figures

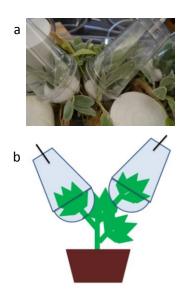


FIG. 1. Headspace VOC collection on one *S. byzantina* plant. (a) Picture; (b) Schematic. VOCs were collected from eleven plants total. Each plant had both treatments – VOCs collected from a mechanically carded and an uncarded region.

FIG. 2. Mechanical removal of trichomes on *Stachys byzantina* using a razor blade. Only the trichomes from the tops of the leaves were removed to avoid damage to the leaf tissue on the more irregular undersides of the leaves.

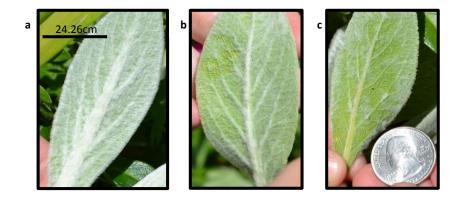


FIG. 3. Carding distribution methods. Three reference leaves were chosen on each *Stachys byzantina* plant – (a) uncarded, (b) singly bee carded and (c) multiply bee carded. Five surrounding leaves were then checked for damage around each reference leaf, with no overlap between leaf groupings.

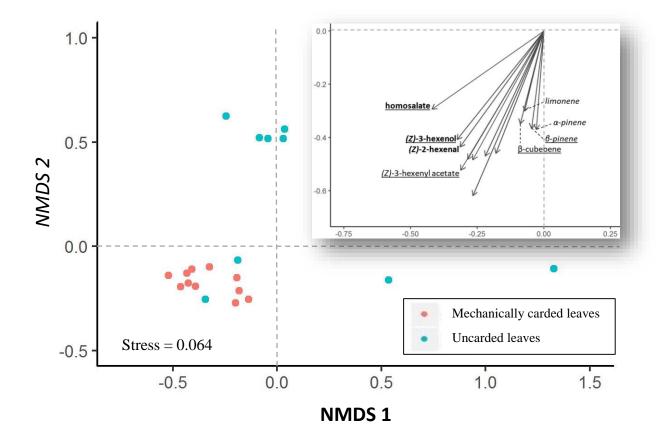


FIG. 4. Non-metric multi-dimensional scaling (NMDS) of the relative proportions of VOCs detected under two treatments – uncarded and mechanically carded *Stachys byzantina* leaves. NMDS based on Bray-Curtis dissimilarity index. Inset graph shows average VOC contribution to dissimilarity (no points under the inset picture). Compounds in bold were the most important loadings for NMDS 1, and compounds in italics were the most important loadings for NMDS 2. Underlined compounds were the top five compounds driving dissimilarity between the treatments.

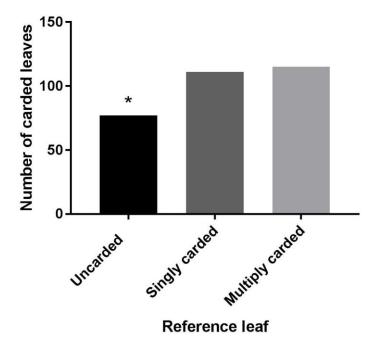


FIG. 5. Number of carded leaves around each type of reference leaf. There were significantly fewer total carded leaves around an uncarded reference leaf than either type of carded reference leaf (singly or multiply carded) (GLMM; $X^2 = 18.63$, df=2, *p<0.001, 54 plants).

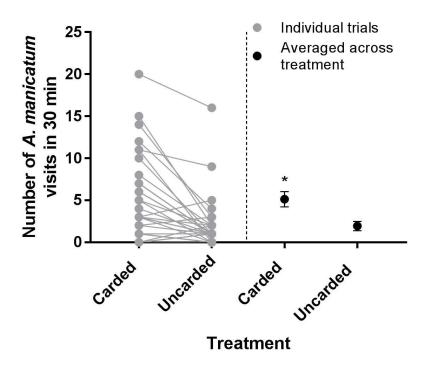


FIG. 6. Average number of A. manicatum visits to mechanically carded S. byzantina versus

uncarded *S. byzantina*. Each observational trial lasted 30 minutes. Each trial is represented by the grey dots and lines, with almost all trials have more visits at the carded plant than the uncarded plant. Means by treatment are shown by the black dots, with standard error. Overall, there were significantly more *A. manicatum* visits to mechanically carded *S. byzantina* than uncarded *S. byzantina* (GLMM; $X^2 = 44.65$, df = 1, *p<0.001).

TABLE 1. Identified volatile organic compounds (VOCs) detected through headspace collection of *Stachys byzantina* leaves that underwent two treatments – mechanical removal of trichomes (carded) or no manipulation (uncarded). Collections ran for three hours and VOCs were quantified and qualified through GC-MS and GC-FID. Non-metric multi-dimensional scaling (NMDS) was used to visualize differences between the relative proportions of VOCs detected from the two treatments (carded and uncarded leaves) (Fig. 4). Similarity percentage (SIMPER) was then used to determine contribution of each VOC to dissimilarity between treatments.

				NMDS	
VOC	Classification	Carded (ng over 3 hours)	Uncarded (ng over 3 hours)		
				Average contribution to dissimilarity	SD of contribution
(Z)-3- Hexenyl acetate	Green leaf volatile	372.2	16	0.16542	0.11035
β-cubebene*	Sesquiterpene	603.5	33.27	0.14645	0.13771
Homosalate*	Ester of Salicylic acid	183.4	24.64	0.1028	0.11178
(Z)-3- Hexenol	Green leaf volatile	202.5	3.91	0.09818	0.08414
β-pinene	Monoterpene	321.7	43.45	0.0951	0.08771
(+) valeranone*	Sesquiterpenoid	167.6	24.55	0.05321	0.02861
α-pinene	Monoterpene	141.7	30	0.04418	0.04298
(E)-2- Hexenal	Green leaf volatile	100.5	1	0.03811	0.0392
Limonene	Monoterpene	146	2.45	0.03503	0.0343

Hexyl acetate	Green volatile	leaf	45.7	1.64	0.021	0.01654
(Z)-2- Hexenal	Green volatile	leaf	36.4	1	0.01902	0.01758
(E)-2- Hexenol	Green volatile	leaf	26.2	1.45	0.01187	0.0117
(E)-2- Hexenyl acetate	Green volatile	leaf	19	1.09	0.00834	0.00589

*Tentative identification